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Abstract 25 

Robust diagnosis of ovarian cancer is crucial to improve patient outcomes. The lack of a single 26 

and accurate diagnostic approach necessitates the advent of novel methods in the field. In the 27 

present study, two spectroscopic techniques, Raman and surface-enhanced Raman 28 

spectroscopy (SERS) using silver nanoparticles, have been employed to identify signatures 29 

linked to cancer in blood. Blood plasma samples were collected from 27 patients with ovarian 30 

cancer and 28 with benign gynecological conditions, the majority of which had a prolapse. 31 

Early ovarian cancer cases were also included in the cohort (n=17). The derived information 32 

was processed to account for differences between cancerous and healthy individuals and a 33 

support vector machine (SVM) algorithm was applied for classification. A subgroup analysis 34 

using CA-125 levels was also conducted to rule out that the observed segregation was due to 35 

CA-125 differences between patients and controls. Both techniques provided satisfactory 36 

diagnostic accuracy for the detection of ovarian cancer, with spontaneous Raman achieving 37 

94% sensitivity and 96% specificity and SERS 87% sensitivity and 89% specificity. For early 38 

ovarian cancer, Raman achieved sensitivity and specificity of 93% and 97%, respectively, 39 

while SERS had 80% sensitivity and 94% specificity. Five spectral biomarkers were detected 40 

by both techniques and could be utilised as a panel of markers indicating carcinogenesis. CA-41 

125 levels did not seem to undermine the high classification accuracies. This minimally 42 

invasive test may provide an alternative diagnostic and screening tool for ovarian cancer that 43 

is superior to other established blood-based biomarkers. 44 

 45 

 46 

 47 

Keywords: Ovarian cancer; diagnostics; biospectroscopy; Raman; SERS 48 
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Introduction 49 

Ovarian cancer is frequently discovered at a late stage due to non-specific 50 

symptomatology. More than 70% of ovarian cancer patients are diagnosed at an advanced state 51 

(stage IV) when the five-year survival rate is 25% [1]. Ideally, disease should be diagnosed 52 

promptly and at an early stage (stage I), when cancer is completely confined to the ovaries, as 53 

stages II, III and IV are considered advanced with cancer being spread outside the ovaries into 54 

the pelvis (e.g., fallopian tubes, bladder or rectum), abdominal cavity (e.g., lining of the 55 

abdomen or lymph nodes) and other distinct organs (e.g., lungs), respectively [2]. As a 56 

consequence, the five-year survival rate of stage II patients is increased to 70%, while for stage 57 

I patients it is further increased to 90% [1, 3]. 58 

Screening or diagnostic tests for ovarian cancer comprise of cancer antigen CA-125 59 

alone, ultrasound imaging of the ovaries or a combination. These tests have different screening 60 

utility depending on whether they are applied in low or high risk populations. However neither, 61 

even in combination, have robust levels of diagnostic accuracy [4, 5]. A variety of blood tests 62 

have also been developed with CA 19-9, human epididymis protein 4 (HE4), apolipoprotein 63 

A1 (ApoA1), insulin growth factor II (IGF-II) and transferrin being some of them [6-9]. 64 

However, most of these individual biomarker tests yield unacceptable diagnostic accuracies 65 

which render them unsuitable for clinical use. Recent strategies attempt to combine a number 66 

of these tests to achieve superior performance. 67 

Raman spectroscopy has been used extensively in cancer diagnostics utilising a variety 68 

of samples (e.g., cells, tissues or biological fluids). Other diagnostic techniques, such as optical 69 

coherence tomography, fluorescence microscopy or nonlinear microscopy could also be used 70 

for diagnostic purposes, however Raman spectroscopy has been shown in many cases to 71 

provide better results [10]. Cervical, skin, breast, oral and brain cancers, as well as other 72 

diseases, are some of the wide applications of Raman, facilitating disease detection/monitoring 73 
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or even intraoperative assessment of surgical margins [11-19]. Moreover, previous 74 

spectroscopic studies have successfully investigated ovarian tissue post-surgery and showed 75 

significant differences between normal and malignant cases [20-22]. However, the use of 76 

biological fluids, such as blood samples, are numerous: minimally-invasive collection, easier 77 

sample preparation and collection of serial samples from the same participants, just to name a 78 

few [23, 24]. Raman spectroscopy investigates the phenomenon of inelastic light scattering that 79 

is caused after the interaction of light with matter. The sample’s electrons first get excited to a 80 

virtual state and then fall back to their original energy level either by losing or by gaining 81 

energy. The generated shift in energy is characteristic for specific biomolecules such as 82 

proteins, lipids and nucleic acids, providing thus invaluable information for a biological 83 

sample.  84 

Raman scattering is inherently weak and, therefore, enhancement techniques have been 85 

developed to increase the derived signal [25]. Surface-enhanced Raman spectroscopy (SERS) 86 

is one of the commonly applied methods which utilises rough metallic surfaces or 87 

nanostructures (e.g., silver or gold nanoparticles) to increase the Raman signal by 103-1010 88 

times. SERS exploits the great electromagnetic field enhancement that is caused by oscillations 89 

of surface electrons, called surface plasmons [26]. This allows detection of molecules at low 90 

concentration and can partly account for fluorescence that may distort the spectra [15, 27]. 91 

 The main objective of this study was to use blood spectroscopy in order to assess the 92 

diagnostic accuracy for ovarian cancer in women with both early- and late-stage cancer, which 93 

has not been previously attempted. Extraction of differential spectral biomarkers was also 94 

performed and tentative assignments were made for the development of a panel of diagnostic 95 

markers. An important confounding factor, which has not been taken into account in previous 96 

spectroscopic studies, and could lead to falsified classification between cancer and healthy 97 

controls was the CA-125 level; therefore its effect on the spectral results has been now 98 
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calculated in a separate subgroup analysis. To the best of our knowledge this is also the first 99 

study employing both Raman and SERS to investigate the effect of the enhanced approach in 100 

the diagnostic accuracy – does increased signal necessarily imply improved diagnostic 101 

accuracy as well? 102 

Materials and Methods 103 

Population  104 

This study included 27 women with ovarian cancer (17/27 stage I) and 28 women with 105 

benign gynecological conditions or a prolapse. All specimens were collected with ethical 106 

approval obtained at Royal Preston Hospital UK (16/EE/0010). Mean-age was 68 years for the 107 

cancer group and 56 years for the non-cancer group. More information about the cohort 108 

characteristics can be found in Table 1; more detailed information about each participant is 109 

given in Table S1 [see Supplementary Information (SI)]. Age difference between the different 110 

groups was also taken into account to demonstrate whether it affected the spectral results, and 111 

therefore the diagnostic accuracy (see SI Fig. S1). Women who were on Tamoxifen have been 112 

excluded.  113 

CA-125 measurement 114 

CA-125 levels were determined in blood serum samples for both the ovarian cancer patients 115 

and healthy individuals. This test, is a two-site sandwich immunoassay using 116 

electrochemiluminescence (ECL) technology which uses monoclonal antibodies (Elecsys CA 117 

125 II, Roche Diagnostics GmbH). The system (Roche Cobas 8000) automatically dispenses 118 

20 µl of sample into a cuvette and then dispenses a biotinylated CA125-specific antibody and 119 

a CA125-specific antibody labelled with ruthenium complex react to form a sandwich complex. 120 

Streptavidin microparticles are then added and the complex becomes bound to the solid phase 121 

via the interaction of biotin and streptavidin. The reaction mixture is aspirated in to the reaction 122 
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cell where the microparticles are magnetically captured onto the surface of the electrode. 123 

Unbound substances are then removed with Procell solution. Application of a voltage to the 124 

electrode induces the chemiluminescent emission, which is measured by the photomultiplier; 125 

the results are then determined via a calibration curve. A direct relationship exists between the 126 

amount of CA-125 in sample and the amount of photons detected by the system. The reference 127 

range of CA-125 is 0-35 units/ml (0-35 kU/L), with values >35 kU/L indicating an increased 128 

probability for residual or recurrent ovarian cancer in patients treated for primary epithelial 129 

ovarian cancer. 130 

Blood plasma preparation for spontaneous Raman and SERS analysis 131 

Whole blood was collected into EDTA tubes, centrifuged at 2000 rpm for 10 min to 132 

remove the cells (erythrocytes, white blood cells and platelets) from plasma. The supernatant 133 

was then collected and stored at -80oC and thawed at room temperature prior to spectroscopic 134 

interrogation. After the samples were thawed, 50 μL were deposited directly on aluminium foil 135 

slides and left to air-dry. In order to employ SERS as an enhancement method, silver 136 

nanoparticles (AgNPs), with a diameter of 100 nm, were used (nanoComposix, Inc., San 137 

Diego). The stock solution (mass concentration: 1.02 mg/ml) was diluted in phosphate buffered 138 

saline (PBS); 1 μl AgNPs was diluted in 100 μl PBS. Fifty μl of the diluted solution were mixed 139 

with 50 μl of the biological fluid and the resulting mixture (100 μl) was then deposited on 140 

aluminium foil slides and was again left to air-dry at room temperature before Raman spectra 141 

were acquired. 142 

Spectral acquisition 143 

The experimental settings were kept the same for both Raman and SERS analysis. 144 

Spectra were collected with an InVia Renishaw Raman spectrometer coupled with a charge-145 

coupled device (CCD) detector and a Leica microscope. A 785 nm laser was used with a 1200 146 

l/mm grating and the system was calibrated to 520.5 cm-1 by using a silicon source before every 147 
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run. Seven point spectra were acquired per sample using a 50× objective, 10 second exposure 148 

time, 5% laser power and 2 accumulations in the spectral range of 2000-400 cm-1 to achieve 149 

optimum spectral quality. 150 

Spectral pre-processing and classification 151 

Spectra were evaluated during collection and any cosmic rays were removed by using 152 

the Renishaw WiRe software. An in-house developed IRootLab toolbox 153 

(http://trevisanj.github.io/irootlab/) was then implemented within MATLAB environment 154 

(MathWorks, Natick, USA) for further pre-processing and classification of the data. An initial 155 

pre-processing phase is required to deal with any background noise or non-biological 156 

variability associated with spectral acquisition or instrumentation. Herein, all spectra were 157 

firstly truncated to the biological region (1800-500 cm-1), wavelet denoised, polynomial 158 

baseline corrected and vector normalized. All of these steps are standard in the Raman analysis 159 

of biological samples in order to generate noise-free spectra with conventional appearance [27]. 160 

Difference-between-mean (DBM) spectra was also performed to extract potential biomarkers 161 

by subtracting the mean spectra of two classes (i.e., ovarian cancer patients and controls); a 162 

peak detection algorithm was implemented to identify the ten most segregating peaks. 163 

Support vector machine (SVM) is a supervised machine-learning technique for creating 164 

a classification function from training data. Some of the criteria for the choice of classifier 165 

include the achieved diagnostic accuracy, as well as training and computational time [28]. For 166 

SVM implementation, the already pre-processed dataset was further normalized (to the [0, 1] 167 

range) in order to put all the variables on the same scale. We used the Gaussian kernel SVM, 168 

which implies that there are two parameters to be tuned to the value that gives best 169 

classification: c and gamma [29]. The optimal tuning parameters were found using grid search 170 

(5-fold cross-validation) and then used to calculate the sensitivity and specificity for the 171 

different comparisons [29, 30]. Sensitivity is defined as the probability of a test being positive 172 

http://trevisanj.github.io/irootlab/
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when the disease is present, while specificity is defined as the probability that a test will be 173 

negative at the absence of disease; they were calculated by the following equations: 174 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100      (1) 175 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100      (2) 176 

where TP is defined as true positive; FN as false negative; TN as true negative; and FP as false 177 

positive. 178 

Statistical analysis 179 

 The common peaks that were found to differentiate the classes in both Raman and 180 

SERS, after the implementation of the DBM algorithm, were further analyzed in GraphPad 181 

Prism 7.0 (GraphPad Software Inc., La Jolla, CA, USA). A student’s t-test (non-parametric, 182 

two–tailed, 95% confidence interval (CI)) was performed to account for statistical significance 183 

with a P-value of 0.05 or less being considered significant. Statistical analysis was carried out 184 

on averaged spectra in order to account for differences between individuals and not spectra. 185 

Availability of data 186 

All data (raw and pre-processed spectra) along with appropriate code identifiers will be 187 

uploaded onto the publicly accessible data repository Figshare.  188 

Results 189 

 The enhancement effect of SERS is shown in Fig. 1; after the addition of the AgNPs 190 

solution in the blood samples, the Raman signal is notably increased as the silver nanostructures 191 

are closely adsorbed to the biomolecules present in the plasma (Fig. 1B). The spectral 192 

differences between Raman and SERS spectra were expected and can be attributed to the 193 

complex nature of the samples, as well as the nonspecific binding of the nanoparticles to the 194 

biomolecules. 195 
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 The classification algorithm was performed in both datasets, spontaneous Raman and 196 

SERS, to calculate the sensitivity and specificity rates with which these methods can 197 

distinguish ovarian cancer patients (n=27) and healthy individuals (n=28). For the Raman 198 

dataset the achieved sensitivity and specificity were 94% and 96%, respectively (Fig. 2A); for 199 

the SERS dataset sensitivity and specificity were 87% and 89%, respectively. After the DBM 200 

implementation, ten peaks responsible for the differentiation, were selected; out of those, five 201 

peaks were picked up by both and Raman and SERS and, therefore, these were used for further 202 

statistical analysis (Fig. 3A and 3B). The five peaks that were selected with Raman 203 

spectroscopy were: 1657 cm-1 (Amide I, P = 0.0158; 95% CI = 0.00049 to 0.00471), 1418 cm-204 

1 (CH2 in lipids, P = 0.0034; 95% CI = 0.00061 to 0.00334), 1301 cm-1 (CH2 in lipids, P = 205 

0.0612; 95% CI = -0.00379 to 0.00007), 1242 cm-1 (Amide III, P = 0.0103; 95% CI = -0.00521 206 

to -0.00066) and 916 cm-1 (amino acids/carbohydrates, P = 0.0024; 95% CI = 0.00111 to 207 

0.0047), while with SERS: 1655 cm-1 (Amide I, P = 0.0351; 95% CI = -0.0117 to -0.0005), 208 

1429 cm-1 (CH2 in lipids, P = 0.066; 95% CI = -0.00049 to 0.00873), 1302 cm-1 (CH2 in lipids, 209 

P = 0.0882; 95% CI = -0.00825 to 0.00079), 1257 cm-1 (Amide III, P = 0.0003; 95% CI = -210 

0.00916 to -0.00283) and 919 cm-1 (amino acids/carbohydrates, P = 0.0004; 95% CI = -0.0067 211 

to -0.00163). 212 

 In order to show that the achieved accuracy was not just due to the difference in the 213 

CA-125 levels between cancer patients and healthy individuals, we also performed the SVM 214 

classification after taking into account the different protein levels. Sensitivity and specificity 215 

remained exceptionally high: Raman yielded 99% sensitivity and 85% specificity after 216 

comparing individuals with CA-125>35 (Fig. 4A), as well as 78% sensitivity and 99% 217 

specificity for individuals with CA-125<35 (Fig. 4B); SERS achieved sensitivity and 218 

specificity of 96% and 74%, respectively, for the group with CA-125>35 (Fig. 4C), as well as 219 

72% sensitivity and 97% specificity for the CA-125<35 group (Fig. 4D). Similarly, we 220 
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considered the age difference between the different groups using the spectra from the 221 

spontaneous Raman spectroscopy only (as these provided better results in the previous 222 

analyses). The average age of women diagnosed with endometrial cancer is 60 and therefore 223 

we considered this as our threshold value. Re-arranging according to age, we had the below 224 

cohorts: OC ≥60 years (n=20), Control ≥60 years (n=10), OC <60 years (n=7), Control <60 225 

years (n=19). After following the same pre-processing and multivariate analysis as previous, 226 

we achieved 98% sensitivity and 90% specificity for the older group (≥60 years) as well as 227 

79% sensitivity and 97% specificity for the younger group (<60 years) (see SI Fig. S1).  228 

 Raman and SERS were also used to detect the early ovarian cancer cases (n=17) and 229 

assess their diagnostic performance. Spontaneous Raman spectroscopy achieved 93% 230 

sensitivity and 97% specificity (Fig. 5A), while SERS achieved 80% sensitivity and 94% 231 

specificity (Fig. 5B). 232 

Discussion 233 

Although there has been a great effort in developing biomarkers for the early diagnosis 234 

of ovarian cancer, there is still no robust method to achieve this. This study has demonstrated 235 

the effectiveness of Raman spectroscopic methods toward the diagnosis of ovarian cancer 236 

patients, including early cases. Herein, blood plasma samples were used as a minimally 237 

invasive way of specimen collection. Blood biospectroscopy, with either infrared (IR) or 238 

Raman, has been previously evaluated in gynecological malignancy. Specifically, IR analysis 239 

of plasma and serum was applied to diagnose ovarian and endometrial cancers, providing 240 

remarkable accuracy (~97% for ovarian and ~82% for endometrial cancer) [31]; SERS analysis 241 

of plasma achieved 97% sensitivity and 92% specificity for the segregation of cervical cancer 242 

cases from normals [32]; cervical cancer and precancer were also detected with serum sample 243 

Raman spectroscopy [33]; both IR and spontaneous Raman were used to analyze blood plasma 244 
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and serum towards the diagnosis of ovarian cancer, yielding 93% accuracy for IR spectra and 245 

74% for Raman spectra of plasma [34]; Raman spectroscopy also showed promising results for 246 

ovarian cancer diagnosis in 11 patients with the disease, reaching 90% sensitivity and 100% 247 

specificity [10]; more recently, it was demonstrated that SERS was able to diagnose 248 

endometrial cancer in a pilot study using plasma and serum [35]. Some of the limitations of the 249 

above-mentioned studies include either the small number of samples or the absence of a 250 

subgroup analysis detecting early stage cases, as well as the lack of CA-125 information as a 251 

confounding factor in ovarian cancer. All of these issues have been adequately addressed in 252 

the present study. By using a satisfactory number of samples (almost 30 participants in each 253 

cohort), we managed to accurately detect both early- and late-stage ovarian cancer cases, which 254 

has not been previously shown. 255 

In order to overcome the limitation of low signal in spontaneous Raman, SERS using 256 

AgNPs was also employed. Another advantage coming with the use of NPs is that they can be 257 

used for more specialised analysis if conjugated with targeting biomolecules, such as antibodies 258 

[36]. SERS has been shown to substantially increase the Raman signal and be beneficial for 259 

single-molecule detection; however, at the same time it presents with a number of limitations, 260 

such as lack of reproducibility and preferential metal-molecule binding, which leads to 261 

localised enhancement. This may be the reason for the decreased diagnostic accuracy when 262 

compared to spontaneous Raman. The preferential enhancement and lack of repeatability in 263 

SERS are also reflected by the increased standard deviation in the class means (Fig. 2B). 264 

Sensitivities and specificities were substantially high in both SERS (87% and 89%, 265 

respectively) and spontaneous Raman (94% and 96%, respectively), with SERS possibly being 266 

more sensitive as a biomarker extraction technique. 267 

Another plausible explanation for the decreased accuracy in SERS is the use of EDTA 268 

during plasma collection. EDTA is a molecule for complexing metal ions and it has been found 269 
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that its carboxylate groups can bind to nanoparticles surface and be responsible for the 270 

generation of new spectral bands [37]. This could potentially obscure the detection of the 271 

biological information in the derived spectra. Common anticoagulants used in plasma tubes, 272 

such as EDTA and citrate, have been previously found to interfere with SERS spectra; this was 273 

suggested to be dealt by the use of serum samples or lithium heparin as the anticoagulant [38]. 274 

Blood and its constituents are an invaluable source of information, reflecting alterations 275 

in the circulation that can be indicative of a change in health status. Recently, circulating 276 

tumour DNA (ctDNA) has attracted much attention as a blood biomarker for early and late 277 

stage malignancies, introducing an era of “liquid biopsies” [39, 40]. Also, cell-free DNA 278 

(cfDNA), reflecting both normal and ctDNA that is released after cellular necrosis and 279 

apoptosis, has been previously found significantly increased in the plasma samples of ovarian 280 

cancer patients [41]. A recent systematic review and meta-analysis of nine studies (including 281 

462 ovarian cancer and 407 controls) concluded that cfDNA diagnosed ovarian cancer with 282 

70% sensitivity and 90% specificity and suggested further validation and/or combination with 283 

other available biomarkers to improve the diagnostic accuracy [42]. Another study has also 284 

shown that ctDNA biomarkers could detect residual tumour, as well as predict response to 285 

treatment and survival in ovarian and endometrial cancer cases [43]. With all this in mind, it is 286 

quite possible that ctDNA fragments also contributed to the considerably high diagnostic 287 

accuracy in this spectroscopic study. 288 

Another scope of the current study was to extract spectral biomarkers, responsible for 289 

the differentiation between the malignant and healthy individuals. Each spectral peak 290 

corresponds to chemical bonds which are present in specific biomolecules; thus, one can 291 

tentatively assign a number of disease biomarkers. To achieve this, the difference between 292 

ovarian cancer and control spectra was calculated and the ten most discriminating peaks were 293 

selected with a peak-detection algorithm; both Raman and SERS revealed five peaks in 294 
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common and these were chosen for further statistical analysis (Fig. 3). The common peaks 295 

were correlated to proteins (Amide I and Amide III), lipids and amino acids/carbohydrates. 296 

Surprisingly, two out of five spectral regions (~1657-1655 cm-1 and ~919-916 cm-1) showed 297 

inconsistency between the two spectroscopic approaches; Amide I region was decreased for 298 

ovarian cancer patients after Raman spectroscopy, while after SERS the same region was 299 

increased. Similarly, the amino acid/carbohydrate region was found decreased in ovarian 300 

cancer after Raman and increased after SERS. However, due to the fact that SERS increases 301 

significantly the signal of specific peaks, allowing thus more detailed assessment, it is possibly 302 

a more sensitive method for biomarker extraction. 303 

More than 160 proteins have been reported to be differentially expressed in ovarian 304 

cancer, with some being upregulated, such as CA-125, CA19-9, HE4 or mesothelin, and other 305 

being downregulated, such as epidermal growth factor receptor (EGFR) and ApoA1 [44]. 306 

Amide I (~1650 cm-1) and Amide III (~1300 cm-1) bands represent protein molecules and are 307 

mainly associated with the C=O stretching and C-N stretching/N-H bending vibrations, 308 

respectively. The increased level of Amide I and Amide III in ovarian cancer patients after 309 

SERS, may correlate with the changes occurring due to the overexpressed proteins. The 310 

spectral bands indicative of lipids were both decreased (1429 cm-1) and increased (1302 cm-1) 311 

in the ovarian cancer group, which is also backed by previous studies showing a dysregulation 312 

of lipid metabolism in cancer [45]. For instance, some studies have shown increased lipid levels 313 

in ovarian cancer [45-47], while a limited number of studies have reported reduction [47, 48]. 314 

An alternative interpretation of the decreased lipid region (1429 cm-1) could be the 315 

downregulation of ApoA1 which has been previously shown to diagnose ovarian cancer in 316 

plasma and was estimated at 1484-1427 cm-1 [49]. The rise seen in the amino 317 

acids/carbohydrate region (919 cm-1) could potentially be attributed to ctDNA, as discussed 318 
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previously, or correlated with increased amount of carbohydrates which is considered a risk 319 

factor for ovarian cancer [50, 51]. 320 

Previous spectroscopic studies investigating ovarian malignancy have not taken into account 321 

the differences between CA-125 levels, which may have led to an unrealistic segregation 322 

between patients and healthy controls. In order to investigate whether the high diagnostic 323 

accuracies achieved in our study were actually attributed to the presence of cancer or just the 324 

difference in the CA-125 levels, we also carried out a subgroup analysis to account for this. 325 

The extra analysis showed that sensitivities and specificities remained equally satisfactory 326 

which denotes that the differences found in our cohort were not attributed to CA-125 but rather 327 

to the cancerous condition. Also, after accounting for age differences, it was evident that age 328 

alone was not the reason for the high diagnostic accuracy. Even though there is a slight decrease 329 

in sensitivity and specificity (i.e., for ≥60 years, specificity dropped from 96% to 90%; for <60 330 

years, sensitivity dropped from 94% to 79%), the diagnostic capability remained very high.  331 

Improved diagnostic performance for the early-stage ovarian cases was a critical 332 

objective of this study in order to allow early intervention and potentially improve patient 333 

outcomes. Again, both spectroscopic methods provided outstanding diagnostic accuracy, with 334 

Raman (sensitivity: 93% and specificity: 97%) being superior to SERS (sensitivity: 80% and 335 

specificity: 94%). Current approaches for the early detection of ovarian cancer include 336 

biomarker tests, such as serum CA-125 and HE4, imaging techniques, such as computed 337 

tomography (CT), transvaginal ultrasound (TVUS) and positron emission tomography (PET) 338 

or a combination of these [52]. However, there are still a number of limitations in these methods 339 

including expense and lack of optimal sensitivity and specificity. For instance, the sensitivity 340 

and specificity of CA-125 is known to be poor, with only 50% of the patients having elevated 341 

levels of the protein at stage I and ~75-90% of the cases at a later stage [4]. CA-125 level can 342 

be used more reliably to monitor treatment as levels of CA-125 decrease when a treatment is 343 
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efficient. However, it is not useful for screening as CA-125 level can be elevated in other 344 

conditions, such as endometriosis, breast or lung malignancies, and also not every woman with 345 

ovarian cancer has elevated CA-125; CT is expensive and has high false-positive rates which 346 

prevent its use in screening [1]. Even though TVUS is preferred than other imaging techniques 347 

in terms of speed and sensitivity, there is yet no convincing evidence that it detects early 348 

ovarian cancer without causing overtreatment of non-malignant cases [2]. TVUS can indeed 349 

show a mass in the ovary but it cannot distinguish whether the mass is benign or malignant. 350 

Therefore, other blood biomarkers (CA-125) are used together with ultrasound to identify 351 

ovarian tumour at high risk of malignancy. Previous large cohort studies have evaluated the 352 

sensitivity and specificity of multimodal screening (MMS) (i.e., annual testing of CA-125 with 353 

ultrasound scan as a second line test) and ultrasound screening (USS) (i.e., ultrasound alone); 354 

their results showed that the MMS gave slightly higher sensitivity [5, 53]. Specifically, the 355 

overall sensitivity for detection of ovarian cancers, diagnosed within a year of a screening, was 356 

84% in the MMS group and 73% in the USS group [5]. However, the positive predictive value 357 

for USS was estimated at around ~5%, which indicates a quite high false-positive rate [53]. In 358 

an effort to improve the diagnostic accuracy many groups have also combined different 359 

biomarkers, which however increase the cost and time requirement [1, 44]. By using 360 

spectroscopic techniques these drawbacks seem to be eliminated as they provide a simpler, 361 

cost-effective, multi-marker assay, thus securing robustness. The diagnostic accuracy shown 362 

in this study is even better than the currently used tests. 363 

 In conclusion, the efficacy of Raman spectroscopic methods (i.e., spontaneous Raman 364 

and SERS) in detecting ovarian cancer, including early-stage patients, has been demonstrated. 365 

Continuous efforts are being made to improve clinical diagnosis and monitoring of disease in 366 

ovarian cancer. Our findings suggest improved diagnostic accuracy compared to traditional 367 

biomarkers. Specific biomolecules were also found responsible for the segregation between the 368 
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cancer and healthy cases and could be used as spectral biomarkers. Future spectroscopic studies 369 

should focus on the validation of these results in larger datasets and across different scientific 370 

groups and laboratories; this would open a new road in ovarian cancer research and potentially 371 

allow the implementation of blood spectroscopy in clinical practice as a promising diagnostic 372 

tool. 373 
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Figure Legends 584 

 585 

Figure 1: Enhancement effect of SERS after the addition of silver nanoparticles (AgNPs) in 586 

blood samples. 587 

 588 

 589 

  590 
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 591 

Figure 2: Diagnostic segregation of ovarian cancer (OC) with (A) Raman spectroscopy and 592 

(B) SERS. 593 
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 594 

Figure 3: Differentiating spectral peaks after (A) Raman spectroscopy and (B) SERS. The 595 

tables show the peak positions and tentative assignments of major vibrational bands [54-58]; 596 

peaks shown with bold were detected with both Raman and SERS and may be used as more 597 

reliable diagnostic biomarkers. Abbreviations: OC: ovarian cancer; ν: stretching mode; δ: 598 

bending mode. 599 
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 600 

Figure 4: Diagnostic segregation between ovarian cancer (OC) patients and healthy controls 601 

according to their CA-125 levels. Sensitivity and specificity are provided for (A) individuals 602 

with CA-125>35 u/ml after Raman analysis, (B) individuals with CA-125<35 u/ml after 603 

Raman, (C) individuals with CA-125>35 u/ml after SERS and (D) individuals with CA-125<35 604 

u/ml after SERS. 605 
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 606 

Figure 5: Diagnosis of early ovarian cancer (OC) after (A) Raman spectroscopy and (B) SERS. 607 


