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Abstract  

MicroRNAs (miRNAs) are small RNA sequences 22-25 nucleotides in length 

which play a role in post-transcriptional gene regulation by binding to target mRNA 

sequences preventing translation. Changes in miRNA expression can contribute to 

disease pathogenesis, including gliomagenesis. The release of glioblastoma specific 

exosomes containing miRNA into the circulation of patients provides a source of 

biomarkers which could be utilised in a relatively non-invasive diagnostic test.  The 

primary aim of this thesis was to identify secreted biomarkers in biofluids of 

glioblastoma patients for the diagnosis and prognosis of glioblastoma mulitforme 

(GBM). 

This is the first report of miRNA expression based on the age and sex of GBM 

patients. GBM and non-cancerous control patients were grouped into age categories 

(20-39, 40-59 and 60+ years old) and gender. Initial analysis was performed using 

miScript Brain Cancer Array (n=3 per category) and a total of 28 dysregulated miRNAs 

were identified in GBM patient serum as candidate biomarkers for further study.   

Using a new patient cohort (n=3 per category), further analysis of the 28 

miRNAs by qPCR identified five miRNAs with altered expression in GBM serum: miR-

34a-5p, miR-92a-3p, miR-20a-5p, miR-30c-5p, and miR-150-5p. Further validation 

following power analysis identified four of the five miRNA biomarkers: miR-34a-5p, 

miR-92a-3p, miR-20a-5p and miR-30c-5p to be significantly dysregulated in the serum 

of GBM patients. Grouping of patients by age and gender identified miR-34a-5p as 

significantly increased in aged 60+ patients (p < 0.05); miR-92a-3p expression was 

significantly higher in male GBM patients compared to female GBM patients (p < 0.05) 

and miR-20a-5p was significantly higher in a sub group of GBM patients (p < 0.01).  

Moreover, increased expression of miR-20a-5p in the serum of GBM patients was 

associated with a better median survival compared to those with no change in miR-

20a-5p expression.   

Investigation into the origin of the serum miRNA biomarkers using qPCR, in situ 

hybridisation and GBM tissue data from The Cancer Genome Atlas (TCGA) identified 

potential differences in origin of the four miRNA biomarkers; miR-20a-5p in the serum 

of GBM patients was likely to originate from the GBM. MiR-34a-5p showed increased 

expression in the GBM tissue analysed by TCGA. In contrast, analysis of matched 

patient serum and tissue lysate samples using qPCR demonstrated a higher expression 

of miR-34a-5p in the serum of GBM patients compared to tissue expression, possibly 

due to increased miRNA secretion by neighbouring non-cancerous cells, or from 

leukocytes as part of an immune response. Further work utilising larger patient 

samples could confirm the origin of miR-34a-5p. 

Overall four miRNAs were identified in this thesis with altered expression in 

GBM patients. Further studies could evaluate their use as diagnostic and prognostic 

serum biomarkers for glioblastoma which could provide a relatively non-invasive 

alternative to current diagnostic methods requiring surgery.  
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1.1 Glioma  
 
Gliomas are brain tumours that arise from glial cells within the brain, and account for 

81% of all malignant brain tumours (Ostrom et al., 2014). The three main types of glial 

cell are astrocytes, ependymal cells and oligodendrocytes. Tumours that arise from 

these cell types often share similar characteristics, including indistinct margins and 

increased malignancy over time (Abrey and Mason, 2009).  

 

Originally, glial cells were believed to have only a supportive function within the brain, 

but extensive research into the roles of glial cells has revealed that they also play a 

part in controlling the microenvironment, and the development of the nervous system 

(Dimou and Götz, 2014).  Radial glia are now known to have a role as neural progenitor 

cells, giving rise to both neurons and astrocytes within the gliovascular network 

(Dimou and Götz, 2014). In this network, the glia are connected by gap-junctions that 

allow communication between the cells, providing structural and functional 

organisation to the brain (Giaume et al., 2010). 

 

Glial cells are also involved in the regulation of synaptic transmission and the 

formation of new synaptic contacts (Gundersen et al., 2015). It has been proposed that 

astrocytes may contribute to neurogenesis, originally believed to involve only neuronal 

cells, by enhancing synaptic activity via the release of glial factors, including cholesterol 

(Slezak and Pfrieger, 2003) and thrombospondin (Allen and Barres, 2009). The release 

of cholesterol and thrombospondin contributes to dendrite formation and the 

promotion of synapse formation respectively, by mediation of cell-cell and cell-matrix 

interactions (Allen and Barres, 2009). 

1.1.1 WHO Classification, Grades of Glioma and Prognosis 

 
The classification of the World Health Organisation grades neoplasms from I-IV, Grade 

I being a benign tumour with low proliferative potential which, with surgical 

treatment, can have a promising prognosis and potential cure (Louis et al., 2007). 

Grade II neoplasms also display low-proliferative potential with infiltration of 

surrounding tissue, however, grade II tumours have the potential to progress to a 

higher grade and also present the risk of tumour recurrence following initial 
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treatment. Grade III tumours often have atypical nuclei and are malignant. Grade IV 

neoplasms are highly malignant and are often characterised by necrosis and infiltration 

of surrounding tissue. Even with aggressive treatment, prognosis for grade IV tumours 

is poor (Ostrom et al., 2014). According to the World Health Organisation’s 

classification of gliomas, ependymomas and oligodendrogliomas are classed as grade II 

neoplasms. Malignant oligodendrogliomas however, are classed as a grade III 

(Scheithauer, 2008). Anaplastic astrocytomas are classed as grade III (Kajiwara et al., 

2009) and glioblastoma multiforme, the most common form of glioma, is classed as 

grade IV, due to  high malignancy and poor prognosis  (Yoon et al., 2010). The grading 

and characteristics of the most common gliomas types are outlined in Table 1.1.  

Table 1.1 Outline of Common Glioma Types, Grades and Characteristics adapted from Louis, 2007 

Glioma  Classification Characteristics 

Pilocytic Astrocytoma  
Grade I Benign neoplasm with potential for 

malignant transformation can be 

removed by surgical resection. 

Ependymoma 
Grade II Slow growing, treatment with surgery 

and radiotherapy. 

Oligodendroglioma 
Grade II Slow growing, survival rate around 11-12 

years, treatment with chemotherapy or 

radiotherapy depending on specific 

mutation. 

Malignant Oligodendroglioma 
Grade III Survival rate around 3-4 years, treatment 

with chemotherapy or radiotherapy 

depending on specific mutation. 

Anaplastic Astrocytoma 
Grade III Treatment with surgery and radiotherapy 

often with chemotherapy, survival rate 

around 2-5 years. 

Glioblastoma Multiforme 
Grade IV Poor prognosis, high malignancy, 

treatment with combined radiotherapy 

and chemotherapy. 
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Patients with oligodendroglial tumours have a survival rate of between 4 and 15 years 

following diagnosis, depending on the grade of neoplasm (Abrey and Mason, 2009). 

Ependymomas are the least common form of brain tumour and complete surgical 

resection can often be curative. More malignant cases of ependymomas can be 

treated with both surgery and chemotherapy, however there is a high risk of 

recurrence and metastasis (Freyschlag et al., 2011). For low grade astrocytomas, 

treatment with surgical resection and low dose radiotherapy normally leads to a 

survival rate between 6-8 years in the majority of cases (Arko et al., 2010). 

The prognosis for higher grade gliomas is less ideal, where patients with anaplastic 

astrocytomas have a survival rate of 2-3 years following surgical and radiotherapy 

treatment, which may sometimes be combined with chemotherapy (Yoon et al., 2010). 

The most malignant grade of glioma; glioblastoma multiforme, has the least promising 

prognosis.  Aggressive treatment including maximal surgical resection and 

chemotherapy is often used in an attempt to prevent recurrence of the tumour after 

surgery, however, in the majority of cases patient survival in the UK even after 

aggressive treatment, is only 9 months (Alqallaf et al., 2014). 

1.1.2 Epidemiology  

 
In Europe, astrocytic tumours are the most common tumours of the CNS with an 

incidence rate of 4.8 per 100,000 of the population (Crocetti et al., 2012). Incidence 

and survival rates for glioma in the United Kingdom and Ireland are outlined in Table 

1.2. Between 2000 and 2002, the United Kingdom and Ireland had the highest 

incidence of astrocytic tumours in Europe with 5.1 cases per 100,000 of the population 

(Crocetti et al., 2012). The incidence of astrocytic tumours was higher in men than 

women and highest in individuals over the age of 60 years (Crocetti et al., 2012).  

Overall in Europe, five-year survival rates were slightly better for women than men; 

20.7% compared to 18.7% respectively (Crocetti et al., 2012). Again, the UK and Ireland 

had the lowest survival rates of Europe at 16.6%, however the poor incidence and 

survival rates could potentially be due to differences in diagnostic and treatment 

modalities (Crocetti et al., 2012).  
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Table 1.2: Incidence per 100,000 people and Survival of Glioma in UK and Ireland between 2000 - 2002, adapted 
from Crocetti et al., (2012). 

 

Glioma Type 

Incidence – Sex Incidence – Age Survival (%) 

Male Female 0-19 20-39 40-59 60+ 1 year 5 years 

Astrocytic 5.7 4.0 0.9 2.0 6.2 11.6 31 12 

Oligodendroglial 0.4 0.3 0.1 0.3 0.6 0.4 81 51 

Ependymal 0.2 0.2 0.2 0.2 0.2 0.2 91 78 

 

1.1.3 Symptoms and Diagnosis 

 

Symptoms of gliomas often consist of seizures caused by the compression of the cortex 

and headaches caused by intracranial pressure, which can also result in focal 

neurological deficits, including muscle weakness, numbness, or loss of coordination 

(Snyder et al., 1993). 

 

The main methods of diagnosing glioma are magnetic resonance imaging (MRI) and 

histology. MRI provides a detailed anatomical image of the neoplasm and surrounding 

structures. Histology is most often used to determine tumour grade and characteristics 

which is used to determine the most effective course of treatment to provide the best 

prognosis (Abrey and Mason, 2009).  In addition, perfusion MRI or magnetic resonance 

spectroscopy can provide information about tumour vascularity and changes in the 

normal pattern of biomolecular composition respectively (Abrey and Mason, 2009). 

For example, a computerized tomography (CT)-MRI scan can be useful when assessing 

oligodendrogliomas, which often contain deposits of calcium (calcification) and 

hyperostosis caused by invasion of glioma cells into bone in close proximity to the 

tumour (Marosi et al., 2008).  

1.1.4 Treatment of Glioma  

 
Current chemotherapeutic treatments are outlined in Table 1.3. Initial treatment for 

glioma entails resection of as much of the tumour as possible depending on the 

localisation. Functional MRI and diffusion tensor imaging sequences are used to 

visualise functional areas of the brain and intraoperative cortical and subcortical 

stimulation are used to monitor essential areas of the brain which must be avoided to 
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prevent permanent disability of the patient (Preusser et al., 2011). Resection of the 

tumour is often guided by the use of 5-aminolevulinic acid which is metabolised within 

the tumour and leads to the accumulation of fluorescent porphyrins. This allows visual 

identification of tumour margins and enables complete resection (Stummer et al., 

2006). Higher grades of glioma however are more difficult to remove surgically due to 

the infiltrative nature and cancerous cells often remain after surgical resection. 

Following resection, wafers comprising of the cytotoxic agent carmustine can be 

implanted. The use of biodegradable carmustine wafers allows localised treatment of 

the tumour for three weeks (Preusser et al., 2011). Guidelines by the National Institute 

for Health and Care excellence (NICE) recommend temozolomide (TMZ), an oral 

alkylating agent, for patients with newly diagnosed high-grade glioma, patients who 

undergo resection of 90 % of their tumour are recommended to receive carmustine 

implants.  

The main method of treatment for glioma, in particular glioblastoma, is the Stupp 

regimen which employs TMZ with concurrent radiotherapy followed by TMZ treatment 

alone (Stupp et al., 2005). TMZ is an alkylating agent which causes DNA mismatches 

and double strand breaks by alkylation of the O6-position of guanine. MGMT is capable 

of repairing the DNA damage caused by TMZ thereby reducing the chemotherapeutic 

effect of this drug. Hypermethylation of the MGMT promoter reduces its ability to 

repair DNA damage and patients with hypermethylated MGMT promoter respond 

better to treatment with alkylating agents (Von Deimling et al., 2011). MGMT status is 

determined clinically using methylation-specific PCR using primers for methylated and 

unmethylated CpG areas of the MGMT promoter region (Jansen et al., 2010).    

Patients were found to benefit from improved survival compared to those who 

received radiotherapy alone (Stupp et al., 2009) and as a result, newly diagnosed 

glioma patients are often prescribed this course of treatment. 
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Table 1.3 Current Treatments For Glioma 

Drug Mechanism of action and Limitations References 

Carmustine Alkylating agent- causes DNA methylation leading to 

disrupted mismatch repair, senescence and apoptosis. 

 

Papait et 

al., 2009 

 

Carboplatin Platinum compound – causes intrastrand and 

interstrand DNA crosslinks and DNA-protein adducts 

causing senescence and apoptosis. 

 

Samimi et 

al., 2004 

 

Cisplatin Platinum compound – forms DNA-cisplatin adducts 

leading to senescence and apoptosis. 

 

Samimi et 

al., 2004 

 

Temozolomide Alkylating agent- causes DNA methylation leading to 

disrupted mismatch repair, senescence and apoptosis. 

 

Papait et 

al., 2009 

 

Radiation Causes DNA damage, often used in combination with 

chemotherapeutics such as temozolomide to prevent 

development of secondary tumours. 

Kato, 2010 

 

 

1.1.5 Molecular Subtypes of Glioblastoma  

 
Genome-wide analysis has revealed glioblastoma to be a heterogeneous group of 

neoplasms comprising of subtypes which differ in genotypic and molecular alterations 

and subsequently clinical outcome (Dunn et al., 2012).  Analysis of sequencing data 

from The Cancer Genome Atlas (TCGA) identified four glioblastoma subtypes: classical, 

mesenchymal, proneural and neural (Verhaak et al., 2010).  The genetic aberrations 

associated with these subtypes are outlined in Table 1.4.  

The classical subtype exhibits both a gain of chromosome 7 and a loss of chromosome 

10, and for the majority of classical glioblastomas, an EGFR amplification. Although 

mutation of TP53 is prevalent in glioblastoma, it is not often observed in the classical 

subtype. The most common mutation of the mesenchymal subtype is NF1 gene 

deletion, point mutations or low levels of NF1 expression often combined with 

comutation of PTEN (Goodenberger and Jenkins, 2012). The neural subtype shares 

characteristics of the classical and proneural subtypes. Similar to classical 

glioblastomas, EGFR amplification is frequent in the neural subtype. Neural 

glioblastomas are classified by the expression of neuron marker genes not identified in 

any of the other subtypes including, NEFL, GABRA1 and SYT1.  The proneural subtype 
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exhibits point mutations in IDH1 and IDH2 as well as a high level of PDGFRA 

amplification. Proneural glioblastomas which do not display a mutation of PDGFRA 

often have P13K mutations (Goodenberger and Jenkins, 2012).   

Analysis of clinical characteristics of glioblastoma patients with differing subtypes 

showed that treatment efficacy of concurrent chemotherapy and radiotherapy was 

dependent on subtype, where patients with the classical and mesenchymal subtypes 

showed a reduction in mortality rates in comparison to patients with the proneural 

subtype in which no difference in survival was seen between treatment regimens. 

Patients with the neural subtype displayed a slight, but not significant, improvement in 

mortality (Verhaak et al., 2010).   

Table 1.4 Molecular Subtypes of Glioblastoma adapted from Verhaak et al, (2010) 

Subtype Aberrant Signalling 

Pathways 

Gene Type of Mutation 

Classical NES, Notch and Sonic 

hedgehog 

EGFR 

 

 

High level amplification/point 

mutation/ vIII EGFR mutation 

 

  CDKN2A 

 

Homozygous deletion 

  RB1 Homozygous deletion 

 

Mesenchymal AKT, NF-ĸB NF1 Hemizygous deletion 

 

Proneural  PDGFRA Focal amplification and high 

gene expression level 

  IDH1 Point mutation 

  TP53 Loss of heterozygosity 

 

Neural  EGFR Amplification 
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1.2 Biomarkers  
 

Biomarkers are defined as objectively measured characteristics within the body which 

are used to gain information about a particular disease (Pavlou et al., 2013). Due to the 

poor prognosis of glioma, early detection and effective treatment strategies for glioma 

patients are vital for improving clinical outcomes, and developing biomarkers for this 

purpose has long been an aim of research. In addition, biomarkers can provide an 

insight into the characteristics of the neoplasm. Biomarkers are either produced by the 

pathological processes of the tumour progression or by the host system in response to 

the tumour (Manne et al., 2005). As shown in Table 1.5, the information that 

biomarkers provide about cancer can be used to predict important factors such as 

prognosis (Lenos et al., 2012, Zougman et al., 2013) and response to therapy (Bauer et 

al., 2013), as well as to improve diagnosis (Qian et al., 2012) and to assist earlier 

detection (Manne et al., 2005). Biomarkers can also be used to differentiate between 

different tumour grades (Ludwig and Weinstein, 2005) and subtypes (Morrison et al., 

2012), both of which can be used to tailor treatment strategies.  

 
Current cancer biomarkers in clinical use are outlined in Table 1.5. Although these 

biomarkers are used for diagnosis and treatment, they lack sufficient sensitivity and 

specificity required for a successful biomarker (Diamandis, 2010). Current diagnostic 

biomarkers, such as prostate specific antigen (PSA), are subject to a high incidence of 

false positive diagnoses (Abu-Asab et al., 2011). Mucin-16, a serum based diagnostic 

marker of ovarian cancer, lacks sensitivity and specificity for early diagnosis because 

50% of patients in the early stages of ovarian cancer do not present with serum mucin-

16 expression (Chauhan et al., 2009). Alpha-fetoprotein and beta-human chorionic 

gonadotropin, both diagnostic markers for testicular cancer, are found to be up-

regulated in only 60% of patients therefore risking a false negative diagnosis (Favilla et 

al., 2010). The up-regulation of HER2 occurs in only 20 to 30% of breast tumours 

making it an effective biomarker for only a small population of patients (Lam et al., 

2013). There is need for biomarkers which can be identified in the majority of a patient 

population and with a greater sensitivity to reduce the risk of incorrect diagnosis.  
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Table 1.5 Current cancer biomarkers in use 

Biomarker 
Cancer Type Type of Biomarker Ref 

Prostate specific 

antigen (KLK3) 

Prostate Cancer Diagnostic (Abu-Asab et al., 

2011) 

Mucin-16 
Ovarian Cancer Diagnostic (Chauhan et al., 

2006) 

Alpha-fetoprotein 

(AFP) 

Testicular Cancer Diagnostic (Favilla et al., 

2010) 

Beta-human chorionic 

gonadotropin 

Testicular Cancer Diagnostic (Favilla et al., 

2010) 

Her-2 
Breast Cancer Prognostic and risk of 

recurrence 

(Lam et al., 2013) 

 

1.2.1 Current Biomarkers for Glioma  

 
Biomarkers currently used for glioma include O6-methylguanine-DNA-

methyltransferase (MGMT) promoter hypermethylation, combined loss of 

hetrozygosity (LOH) of chromosomes 1p and 19q, LOH of chromosome 10q, mutations 

of isocitrate dehydrogenases (IDH) and mutations of the epidermal growth factor 

receptor (EGFR). The main prognostic and predictive biomarker for glioma is MGMT, a 

DNA repair protein which catalyses the transfer of methyl groups from the O6-position 

of guanine to cysteine (Von Deimling et al., 2011). MGMT status is an important factor 

in the success of chemotherapeutic treatment with alkylating agents such as TMZ (Von 

Deimling et al., 2011).  

Mutations in the IDH genes occur mainly in low grade gliomas and secondary 

glioblastomas and are present in 50-80% of astrocytomas, oligodendrogliomas and 

oligoastrocytomas (Von Deimling et al., 2011). Mutations in IDH1 and IDH2 are rare in 

primary de novo glioblastomas and ependymal tumours and therefore provide a useful 

method of differential diagnosis (Von Deimling et al., 2011). Patients with IDH 

mutations often have a better prognosis than those without, however IDH mutations 

as prognostic biomarkers are still being defined (Foote et al., 2015). IDH1 mutations 
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can be identified using immunohistochemistry with an antibody for mutant Arg132His 

IDH1 protein (Jansen et al., 2010).  

In 60% of glioblastomas the epidermal growth factor receptor (EGFR) is overexpressed 

and in addition, is often mutated (Jansen et al., 2010). The most common EGFR 

mutation is EGFR variant III (EGFRvIII). EGFRvIII does not contain a ligand binding 

domain and as a consequence is constitutively activated causing continual activation of 

the EGFR-phospho-inositide 3-kinase pathway contributing to oncogenesis. 

Glioblastomas with the EGFRvIII mutation have been found to exhibit more aggressive 

characteristics and patients with this mutation may benefit from treatments which 

target EGFR (Jeuken et al., 2009).  EGFRvIII protein can be detected 

immunohistochemically using antibodies specific for this mutation and amplification of 

EGFR can be determined using fluorescent in situ hybridisation (FISH) (Jansen et al., 

2010). 

For patients with oligodendroglial tumours, co-deletion of the 1p and 19q 

chromosomal arms is a prognostic biomarker. Patients with this deletion have been 

found to display enhanced chemosensitivity and longer overall survival which has been 

attributed to mutations of tumour suppressor genes FUBP1 and CIC mutations in 1p 

and 19q respectively (Foote et al., 2015). Clinically, 1p/19q status can be determined 

using FISH or PCR-based LOH assays (Jansen et al., 2010).  

The difficulty in identifying a specific biomarker for glioma lies partly in the complex 

heterogeneous nature of the cancer itself. The multiple mutations a tumour cell 

undergoes during transformation and the frequency of genomic changes between 

grades, and sub-types within the grades all contribute to this heterogeneity. Using a 

group of biomarkers to detect a range of these characteristics or a set of related 

biomarkers for one specific characteristic is more beneficial than using a single 

biomarker. This has driven research to the identification of multiple biomarkers which 

could be used together in a panel (Tainsky, 2009). These panels could be detected 

using a range of readily accessible high-throughput techniques including qRT-PCR 

(Garcia-Bilbao et al., 2012, Urquidi et al., 2012) and ELISA (Barderas et al., 2012). One 

such family of molecules which promises increased sensitivity and specificity as a 

biomarker is microRNA (miRNA).  
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1.3 MicroRNAs 

1.3.1 MicroRNA Biogenesis and Function  

 
MiRNAs are small non-coding RNAs which are 22-25 nucleotides in length. MiRNAs 

regulate gene-expression at a post-transcriptional level by binding to mRNA. MiRNA 

function to regulate cell behaviour (Wang et al., 2011), and modulate gene expression 

at the post-transcriptional level, by binding to mRNA and suppressing translation 

(Baraniskin et al., 2012). 

 Since the discovery of the first miRNA in 1993 (Lee et al., 1993), the biogenesis and 

maturation of miRNA has been well researched (Graves and Zeng, 2012). To date 2,588 

human miRNA genes have been discovered, however the function of many of these 

has not yet been elucidated. Most miRNA genes are located within introns of both 

coding and non-coding transcripts, those that are located in the introns of protein-

coding genes share the promoter sequence (Ozsolak et al., 2008).  

The basic process of miRNA biogenesis involves transcription of the miRNA gene to 

produce a primary miRNA (pri-miRNA) which is processed into a stem-loop precursor 

miRNA (pre-miRNA). Cleavage of the pre-miRNA produces a miRNA duplex which is 

again cleaved into 5p and 3p mature miRNA strands, named in relation to the 

orientation of the seed sequence. The mature miRNA strand which is not subsequently 

incorporated into the RISC complex is labelled as miRNA* (Ha and Kim, 2014) (Figure 

1.1). 

MiRNAs are transcribed by RNA polymerase II producing a long hairpin primary miRNA 

(pri-miRNA) containing a stem-loop (Lee et al., 2002) (Figure 1.1).  The transcription of 

miRNAs is regulated by transcription factors and epigenetic mechanisms including DNA 

methylation (Saito et al., 2006) and histone modification (Scott et al., 2006). The stem-

loop of the pri-miRNA is cropped by a microprocessor complex, consisting of RNAse III 

Drosha and DGCR8, to create a smaller hairpin with a 3’ overhang known as a pre-

miRNA (Denli et al., 2004).  

Pre-miRNA is subsequently exported into the cytoplasm by a transport complex 

consisting of exportin 5, RAN·GTP and the pre-miRNA. Following transport GTP is 

hydrolysed, disassembling the complex and releasing the pre-miRNA into the cytosol 

(Bohnsack et al., 2004). Following translocation into the cytosol, the stem-loop of the 
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pre-miRNA is cleaved by Dicer which binds to the 3’ overhang produced by Drosha 

within the microprocessor complex, producing a small RNA duplex (Bernstein et al., 

2001).  

 

 

 

Figure 1.1 MiRNA Biogenesis Pathway. Cleavage and incorporation of miRNA and miRNA* into RISC complex. Pre-

miRNA is cleaved by DICER to produce a predominant mature strand and a complementary miRNA* strand, both of 

which can be incorporated into RISC and function as post-transcriptional regulators (Tumilson, 2015).  

 

The small RNA duplex is loaded onto an AGO protein to form the RNA-induced 

silencing complex (RISC) (Pratt and MacRae, 2009). The duplex consists of a guide 

strand and a passenger strand, following loading into RISC the duplex is unwound and 

removed leaving the guide strand (Kawamata and Tomari, 2010). The 5’ 

monophosphate of the guide strand is anchored to a 5’-phosphate-binding pocket 

within AGO and the 3’ end binds to the PAZ domain of the AGO protein (Schirle and 

MacRae, 2012).  The seed sequence of the guide strand has an A-form helix 
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conformation, a short compact helical structure with bases not perpendicular to the 

helix axis, which allows scanning of target mRNA for complementation and cleavage of 

target mRNA by the PIWI domain (Ha and Kim, 2014).  

Mature miRNAs which share 2-8 nucleotides are considered to be from the same 

family (Bartel, 2009). Some mature miRNAs are encoded by separate loci and are 

identified by numerical suffixes such as miR-92a-1 and 92a-2. MiRNA genes which 

share similar sequences are termed ‘miRNA sisters’, these miRNA may differ by only 

one or two nucleotides in their seed sequence and share common targets. Sister 

sequences are identified by lettered suffixes such as miR-181a and 181b. The small 

difference in seed sequence however, means that these miRNA may also target 

distinct mRNAs (Ha and Kim, 2014).   

1.3.2 MicroRNA Profiles in Glioma  

 
In 2005, the first miRNA profiles were obtained from a range of cancers using bead-

based flow cytometry. MiRNA expression profiles were found to differ across cancer 

types, but a general decrease in miRNA expression was observed in all samples (Lu et 

al., 2005). One explanation for this could be that exportin 5, necessary for 

translocation of pre-miRNA into the cytosol during maturation, is truncated in some 

tumours, and prevents transport of pre-miRNA from the nucleus resulting in a global 

reduction of mature miRNAs (Ha and Kim, 2014).  

Profiling was also able to discriminate between the developmental origin of samples 

(Lu et al., 2005). This could be particularly useful in metastatic cancers to determine 

the tissue of origin and location of the primary neoplasm (Rosenfeld et al., 2008). 

Different mutations within the same cancer type, demonstrated by differences in 

miRNA expression, were also observed within this study (Lu et al., 2005). These 

differences in expression have been linked to response to treatment and prognosis 

(Duffy et al., 2011), and to identify these mutations using specific miRNA profiles 

would permit better understanding of the tumour and enable improved treatment 

decisions and patient outcomes (Duffy et al., 2011).  

MiRNA signatures have been identified in both glioblastoma tissue and the circulation 

of glioblastoma patients. Recently, the employment of deep sequencing in which 

sequences are read multiple times to reduce errors in base calling, produced one of 
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the largest sets of miRNA profiles for glioblastoma and control brain tissue (Hua et al., 

2012b). This study identified 33 up-regulated miRNA in the glioblastoma tissue and 40 

down-regulated. In addition, 18 novel miRNA and 16 novel miRNA-3ps were identified 

(Table 1.6). Moreover, analysis of miRNA isoforms, termed ‘isomiRs’, identified 23 

miRNAs whose most abundant isomiRs were those with 5’ variations.   

 
Table 1.6 Novel miRNA-3p identified in glioblastoma and non-cancerous tissue, Hua et al. (2012b). 

Novel miRNA-3p Discovered 

miR-539 miR-758 

miR-382 miR-98 

miR-1307 miR-873 

miR-212 miR-135a-2 

miR-204 miR-511-1 

miR-301a miR-1271 

miR-181b-1 miR-381 

miR-3676 miR-487a 

 

Increasing the glioblastoma sample size by utilising multiple studies from public 

databases increases the statistical likelihood that the miRNA signature found will be 

clinically relevant. One such study from The Cancer Genome Atlas (TCGA) public 

repository analysed individuals with glioblastoma and identified an expression 

signature of ten miRNA which could be used to predict survival.  Three up-regulated 

miRNA - 20a, 106a and 17-5p, in the signature were associated with a better survival 

rate. The remaining seven - 31, 222, 148a, 221, 146b, 200b and 193a, were associated 

with poor survival. It was concluded that these miRNAs could also be used as 

therapeutic targets for the treatment of glioblastoma in addition to being used as 

prognostic markers (Srinivasan et al., 2011). Analysis of the TCGA data showed 19 

miRNA in glioblastoma with gender, race, therapy and recurrence dependent 

differences; including miR-222, 181, 34 and 140. These findings indicated a range of 

population variables which could affect miRNA expression and therefore biomarker 

panel selection. Taking these variables into account will increase the success of such 

panels as well as their specificity towards their intended populations (Delfino et al., 

2011).  
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As previously discussed in Section 1.1.6, glioblastoma consists of subclasses which vary 

in clinical and genetic characteristics, these subclasses can also be differentiated by 

miRNA signatures. Analysis of profiles from the TCGA identified five subclasses relating 

to neural precursor types. Identification of sample subclasses in a study could provide 

subtype specific miRNA biomarkers. Furthermore, additional information of patient 

characteristics within the subtypes such as age and response to treatment could be 

extrapolated to predict survival. MiRNA markers identified for these characteristics 

included miR-222 for gender, miR-137 as a race dependent marker and miR-140 as a 

marker for survival (Kim et al., 2011). Another study analysing the TCGA dataset has 

demonstrated this approach and identified subtype specific prognostic miRNA 

biomarkers which were subsequently validated using qRT-PCR. Each subtype displayed 

a panel of biomarkers which contained both positive and negative prognostic markers, 

some of which were shared by more than one subtype (Li et al., 2014). The classical 

subtype of GBM displayed seven prognostic miRNAs, five indicative of a poor prognosis 

– miR-26a, 767-3p, 153, 31, 222, and two indicative of a good prognosis – miR-654 and 

422b. Identification of a patient’s glioblastoma subtype will provide important 

information on response to treatment and prognosis as well as providing a diagnosis.  

The main appeal of miRNA biomarkers is the tissue and cell specificity of expression. 

For example, miR-10b is specifically expressed in glioma (Gabriely et al., 2011). MiR-

10b has been identified in both low and high grade glioma but is not present in non-

cancerous brain tissue. As well as demonstrating tissue specificity in expression 

profiles, miRNA are known to contribute to the progression of glioma. Through loss-of-

function studies, miR-10b was implicated in the regulation of glioma proliferation and 

apoptosis. In these studies, the overexpression of miR-10b caused the up-regulation of 

cell cycle regulators including cyclin B1 and D1. Up-regulation of miRNAs usually causes 

a down-regulation of direct miRNA targets rather than an up-regulation as observed in 

this study, which led to the suggestion that miR-10b promotes glioma cell growth by 

indirectly influencing cell cycle regulators (Gabriely et al., 2011) (Figure 1.2). The 

inhibition of miR-10b led to senescence, growth arrest and apoptosis, both in vitro and 

in vivo (Gabriely et al., 2011). The role of miRNA in glioma development and 

progression, and the tissue specificity, makes miRNA important candidate biomarkers 

that could provide important characteristic information of a tumour and improve 

treatment and prognosis.  
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1.3.3 Role of MicroRNAs in Glioma 

 
Research into the effect of dysregulated miRNA and the role in glioma progression has 

identified the importance of miRNA within pivotal signalling pathways. These signalling 

pathways are important when determining glioma characteristics which affect 

prognosis and treatment outcomes and provide potential targets for biomarker 

development. Understanding the role of miRNA in signalling pathways and how they 

affect progression permits the identification of miRNA biomarkers for specific 

purposes, for example diagnosis or treatment choice. This section outlines the role of 

miRNA in such pathways which affect glioma behaviour and contribute to a range of 

characteristics including migration, invasion and proliferation.  

Although miRNAs have different targets in different signalling pathways, their effects 

can all lead to one common tumour characteristic (Figure 1.2). For example, miR-23b, 

miR-130b and miR-107 regulate different signalling pathways but all contribute to 

invasion. This underlines the complexity and importance of miRNA in glioma biology 

and altered expression signatures could again provide important information 

characteristic of a particular tumour. A recent study into the role of miR-107 in glioma 

migration and invasion identified Notch2 as a key target (Chen et al., 2013). MiR-107 is 

down-regulated in glioma, and over-expression in glioma cell lines led to down-

regulation of Notch2, which controls a number of tumour characteristics including 

migration (Figure 1.2). The authors concluded that down-regulation of miR-107 in 

glioma promotes migration and invasion through Notch2 signalling pathways (Chen et 

al., 2013). A comparison of miRNA expression profiles in migratory glioblastoma cell 

lines identified miR-23b as a regulator of both migration and invasion when compared 

to migration restricted control cell lines (Loftus et al., 2012). MiR-23b down-regulation 

results in increased expression of the non-receptor tyrosine kinase Pyk2 which leads to 

cell migration and invasion (Figure 1.2). It was concluded that identifying miRNA 

important in regulating glioma invasion could provide targets for modulation to reduce 

invasion and improve treatment outcomes of glioma (Loftus et al., 2012).  MiR-23a 

shares sequence similarities to 23b and has been found to be regulated by cAMP 

response element-binding protein (CREB) and through increased expression promotes 

glioma cell growth and survival (Tan et al., 2012b) (Figure 1.2). An isoform of p63 

containing a transactivation domain known as TAp63 is known to be structurally and 
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functionally similar to the tumour suppressor protein p53. TAp63 has been identified 

as a tumour suppressor which represses metastasis. In a study involving both mouse 

and human tumour cell lines, Dicer and miR-130b were shown to be targets of TAp63. 

Binding of TAp63 to the Dicer promoter led to transcriptional activation. As well as 

regulation of Dicer, TAp63 was found to target miR-130b leading to its up-regulation 

and decrease in invasion (Figure 1.2). Inactivation of TAp63 led to increased metastasis 

and invasion (Su et al., 2010). 

Dysregulation of the transforming growth factor β (TGF-β)/smad pathway in high grade 

glioma is known to contribute to tumour progression (Song et al., 2012). MiR-182 has 

been shown as a target of TGF-β which, once activated, down-regulates the expression 

of NF-κB inhibitors (Figure 1.3). One such inhibitor is ubiquitin carboxyl-terminal 

hydrolase (CYLD) which is known to be expressed at a lower level in glioma. Although 

CYLD is down-regulated in glioma, CYLD mRNA levels do not alter, suggesting 

regulation by direct targeting by miR-182 (Song et al., 2012) (Figure 1.3).  NF-κB and 

the associated signalling pathways are constitutively activated in cancer including 

glioma, and contribute to tumorigenesis (Karin et al., 2002). The inhibition of the NF-κB 

negative feedback loop by over-expression of miR-30e-3p constitutively activates this 

signalling pathway in glioma (Jiang et al., 2012b) (Figure 1.2 and 1.3). Although further 

research is needed to elucidate the full function of miR-182 in this pathway, miR-182 

may also inhibit the negative feedback loop and either miRNA may function 

individually or together to sustain NF-κB signalling in cancer cells and tumorigenicity in 

glioma.   

To sustain hyperproliferation within a tumour, cells must adapt their metabolic 

pathways to utilise energy sources available to them both in hypoxic and normoxic 

conditions. MiR-451 has been found to regulate pathways involved in the adaptation 

of cancer cells to metabolic stress. MiR-451 is a regulator of the liver kinase B1/Amp 

activated protein kinase (LKB1/AMPK) signalling pathway. Down regulation of the 

pathway in the absence of glucose permits the activation of LKB1, allowing cancer cells 

to adapt to cellular stress by reducing proliferation and activating migratory processes 

(Godlewski et al., 2010). Furthermore down-regulation of miR-451 in glioblastoma 

patients is associated with reduced survival, providing a potential prognostic 

biomarker (Godlewski et al., 2010) (Figure 1.2).  
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1.3.4 MicroRNA Biogenesis and Glioma  

 

Research is beginning to identify new levels of complexity in miRNA regulation and 

current studies are showing that deregulation of biogenesis and maturation can also 

contribute to tumorigenesis.  The biogenesis of miRNA is known to be subject to 

regulation by RNA editing.  Pri-miRNA transcripts can undergo conversion of adenosine 

(A) to inosine (I) by adenosine deaminase acting on RNA (ADAR), known as A to I 

editing (Kawahara et al., 2008). A to I editing has been found to affect pri-miRNA 

processing and has been shown in some studies to result in a reduction in levels of 

mature miRNA (Yang et al., 2006). Alternatively, editing can also lead to the production 

of mature miRNA with altered sequences, known as ‘isomiRs’, which target different 

mRNA transcripts (Kawahara et al., 2008) and can contribute to tumour progression. 

 Evidence suggests that miRNA transcripts in glioma, particularly high-grade, undergo A 

to I editing as a result of dysfunctional ADARs (Galeano et al., 2012). Editing within the 

seed sequence can alter the target of a miRNA. This disrupts regulation of protein 

expression and contributes to progression (Galeano et al., 2012). On the other hand, 

lack of editing can also lead to altered gene and protein expression. One such study 

identified reduced editing of the miR-376 cluster in glioblastoma as a result of lower 

expression of ADAR and the isoform ADARB1. This caused accumulation of unedited 

miR-376a-3p transcripts and was shown to contribute to invasiveness and migration of 

glioma cells (Choudhury et al., 2012) (Figure 1.2). The low expression of ADAR could 

potentially affect other, currently unknown, targets which may also contribute to the 

progression of high grade glioma (Choudhury et al., 2012). Another source of 

alternative miRNA transcripts is the cleavage of miRNA duplexes during maturation. 

The duplexes are cleaved to produce a functional mature miRNA which is incorporated 

into the RISC and a miRNA* believed to be degraded following cleavage (Figure 1.1). 

One such study however, found that miRNA* transcripts are functional and capable of 

translational repression of mRNA targets, which could therefore have a notable effect 

in the pathology of disease (Yang et al., 2011). 

 



20 
 

 

Figure 1.2 Role of miRNAs in Glioma. Altered expression of miRNA affects a number of different targets which influence the same glioma characteristic (Tumilson et al., 2014). 
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Figure 1.3 Role of miR-30e* and 182 in TGF-β and NFĸB signaling contributing to glioma progression adapted from KEGG. Constitutive activation of the TGF-β/Smad pathway 

increase miR-182 expression. MiR-182 reduces inhibition of NF-κB intermediary signalling molecules by binding to CYLD mRNA causing increased activation of the pathway. MiR-30e* 

binds to IKβα mRNA preventing action of the negative feedback loop and again, increasing the activity of the NF-κB pathway, and thereby contributing to aggressiveness in glioma 

(Tumilson et al., 2014). 
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1.4 Circulating MicroRNA  

1.4.1 Exosome Packaging and Release 

 

To prevent degradation in the circulation, miRNA are released by cells in both 

exosomes and miRNA/protein complexes (Cortez et al., 2011). Exosomes are lipid 

vesicles ranging between 50-100 nm in size and contain a range of molecules including 

mRNA, miRNA, DNA and proteins (Hannafon and Ding, 2013). The detection of 

biomarkers within serum is attractive due to the relatively non-invasive process of 

collection (Yang et al., 2013a) and subsequent isolation of miRNA from the circulation 

is a convenient method for biomarker detection.  

Exosomes originate from multi-vesicular bodies (MVB) within the cell which fuse with 

the cell membrane through a secretion pathway involving Rab GTPases to release the 

exosomes into the extracellular environment (Trajkovic et al., 2008). Analysis of the 

lipid membranes of exosomes has shown them to be enriched in the sphingolipid 

ceramide suggesting it to be a pivotal component of exosome formation (Trajkovic et 

al., 2008). It has been shown that lipid-raft microdomains containing high levels of 

sphingomyelin promote the inward budding of MVBs following the production of 

ceramide from sphingomyelin, to form exosomes (Trajkovic et al., 2008). Silencing of 

two members of the Rab GTPase family, Rab27a and Rab27b, resulted in a reduction of 

MVB docking to the cell membrane in the HeLa cell line (Ostrowski et al., 2010), 

showing that Rab27a and Rab27b and the effector proteins can promote intracellular 

trafficking of MVBs and subsequent exosome secretion in certain instances. Further to 

this study, the authors investigated the function of Rab27a and Rab27b in in vivo 

murine breast carcinoma models. Although they found that Rab27a modulates 

exosome secretion as shown in the previous study, Rab27b on the other hand was not 

required for exosome secretion in the murine models. These findings suggest that MVB 

trafficking and secretion is a complex pathway which may not be identical across cell 

types and therefore must be further elucidated (Bobrie et al., 2012).   

Analyses of exosome composition have identified a number of different proteins, 

lipids, mRNAs and miRNAs which differ dependent on the cell type from which they 

are released and the physiological status of that cell (Hannafon and Ding, 2013). The 

most commonly identified proteins in exosomes, which seem to be present in most 
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exosomes regardless of the cell type of origin are membrane transport and fusion 

proteins, heat shock proteins, GTPases and MVB biogenesis proteins (Hannafon and 

Ding, 2013). Exosomes frequently contain lipids including cholesterol, sphingolipids 

and phospholipids (Hannafon and Ding, 2013). Commonly identified exosomal proteins 

and lipids are outlined in Table1.7.  

Table 1.7 Commonly found exosomal proteins and lipids 

Proteins Lipids  

Tetraspanins – CD9, CD63, CD81 Cholesterol  

Heat Shock proteins – Hspa8, Hsp90 Diglycerides 

GTPases – EEF1A1, EEF2 Sphingolipids 

MVB biogenesis protein – Alix  Phospolipids 

Cytoskeletal proteins – Actin, Syntenin, Moesin Glycerophospholipids 

Metabolic enzymes – GAPDH, LDHA, PGK1, Aldolase, PKM Polyglycerophospholipids 

Signal Transduction proteins – Annexin, 14-3-3ε  

Albumin   

 

1.4.2 Glioblastoma derived Exosomes  

 
Exosomes are known to be released by both non-cancerous and cancerous cells (Chen 

et al., 2012) as a form of cellular communication, and perform a variety of functions 

depending on the contents and cellular context. Exosomes originating from different 

cell types share a standard set of proteins including tetraspanins and heat shock 

proteins (Chen et al., 2012), as well as proteins specific to the cell of origin such as the 

tumour specific EGFRvIII (Skog et al., 2008). The abundance of circulatory exosomes 

has been shown to increase with tumour progression (Xiao et al., 2012). Although it is 

unclear how miRNA, mRNA and proteins are packaged into exosomes, research has 

shown that the packaging of exosomes is a specific and selective process (Chen et al., 

2012). Only certain miRNA are incorporated and released into the circulation due to 

the selectivity of exosome packaging. As a result, certain deregulated miRNA within 

glioma cells may not be present within isolated exosomes and therefore tissue 

biomarkers may not translate into circulatory biomarkers. This leads to the conclusion 

that miRNA signatures for tissue and circulatory biomarkers need to be investigated 

independently (Jarry et al., 2014).  
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Analysis of primary glioblastoma tissue and exosomes by qRT-PCR identified the 

presence of 11 miRNAs, including miR-21 in both sample types. These miRNAs were 

commonly up-regulated in glioma and present in the exosomes, albeit at a lower level 

than in the corresponding glioblastoma tissue, however there was a good correlation 

with the tissue profile leading to the conclusion that circulating exosomes could 

provide a ‘snapshot’ of the glioblastoma transcriptome (Skog et al., 2008). Over 28 

miRNAs, including miR-21, have been identified in exosomes from the U251 

glioblastoma cell line, and at least 22 were significantly enriched in exosomes isolated 

from culture media compared to cell line expression suggesting specific tumour 

modulatory roles (Li et al., 2013). Further to this, not only was there an enrichment of 

certain miRNAs, there was also a higher level of 9 miRNA* including miR-181a*, 93*, 

452* and 106a* compared to the mature miRNA form as well as an increase in 3p 

miRNA when the 5p form was also present. The authors concluded that this change in 

abundance of the less dominant miRNAs could result in different mRNA being targeted 

within recipient cells than those in the glioma cells. 

Compared to other biomarker types such as protein biomarkers, detection of a small 

panel of miRNA from the circulation using techniques such as qRT-PCR provides 

increased sensitivity. The starting concentration of total RNA required from biofluid 

samples for biomarker detection is relatively low, as little as 25 pg of RNA (Chen et al., 

2005). The selective packaging of miRNA into exosomes containing components 

indicating the cell of origin and the detection of tissue specific miRNAs in the 

circulation provides specificity for miRNA biomarkers. In addition the detection of 

more than one tissue specific miRNA provides the advantage of reducing overlap with 

other pathologies which may share deregulated miRNA biomarkers (Sheinerman and 

Umansky, 2013).  

Solexa sequencing of pooled sera identified a panel of seven down-regulated 

circulating miRNA which could be used as a signature for glioma (Yang et al., 2013a). 

The seven miRNAs which made up this panel included miR-15b*, miR-23a, miR-133a, 

miR-150*, miR-197, miR-497 and miR-548b-5p. In addition to this main panel, certain 

miRNA made up smaller groups which could be used to differentiate between benign 

and malignant astrocytomas, as well as other primary brain tumours (Yang et al., 

2013a). The expression of miR-15b*, miR-23a, miR-150*, miR-197, and miR-548b-5p 
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were significantly up-regulated in malignant neoplasms in comparison to benign 

samples.  

A less studied source of miRNA biomarkers is plasma, one such study showed the 

levels of certain miRNA including 21, 128 and 342-3p, were altered in the plasma of 

glioblastoma patients in comparison to non-cancerous plasma samples (Wang. et al., 

2012). This particular study used qRT-PCR to identify target miRNAs from individual 

plasma samples which could account for differences between the miRNAs identified in 

the seven miRNA panel, as well as other variables including a smaller sample size, 

different extraction and qRT-PCR reagents being used. This study not only identified 

potential miRNA biomarkers but also showed that isolation of miRNA need not be 

restricted to serum alone.  

Due to the close proximity of cerebrospinal fluid (CSF) to the brain and spinal cord, 

disorders arising in the CNS can often cause an alteration in CSF composition. The 

presence of a glioma within the CNS results in the alteration of CSF composition as a 

result of: humoral responses (Tainsky, 2009); breakdown of structures within the CSF 

such as the blood-brain barrier (BBB) (de Bont et al., 2006); or as a result of up-

regulated production and secretion by the glioma cells themselves (Niclou et al., 2010). 

Alternatively, the function of the structures related to CSF production and composition 

can become affected and subsequently contribute to pathophysiology (Tainsky, 2009). 

The role of CSF in the pathogenesis of glioma is mainly the delivery of substances that 

play a role in tumourigenesis. These substances include growth factors, hormones and 

signalling molecules, as well as many other components of CSF and are believed to 

contribute to a number of glioma characteristics such as invasion, migration and 

metastases (Tainsky, 2009). 

The presence of miRNA in the CSF of glioma patients has initiated studies into the 

potential of CSF as a source of biomarkers. Although CSF is not routinely obtained from 

patients with glioma (Baraniskin et al., 2012), the proximity of CSF to a glioma, and its 

isolation from general circulation, means it could provide a more specific and accurate 

miRNA profile in comparison to serum and plasma (Teplyuk et al., 2012). In 2012, the 

identification of miR-21 and 15b within the CSF of patients with malignant glioma was 

reported (Teplyuk et al., 2012). MiR-21 promotes migration and invasion by targeting 

MMP inhibitors RECK and TIMP3 (Gabriely et al., 2008), miR-15b is a cell cycle 
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regulator which targets CCNE1 (Xia et al., 2009) (Figure 1.2). This initial study 

highlighted CSF as a potential source for miRNA biomarkers and concluded that in the 

future, CSF miRNA could differentiate between glioma subtypes (Baraniskin et al., 

2012). Following this, a pilot study (Teplyuk et al., 2012) identified miRNA which could 

potentially be used to diagnose glioblastoma or discriminate between glioblastoma 

and metastatic cancer, once again highlighting the potential of cerebrospinal fluid as a 

source of biomarkers for glioma. Both studies highlighted miR-21 in the CSF of 

glioblastoma patients but the latter study also found miR-10b significantly up-

regulated. Furthermore, members of the miR-200 family, which share the same seed 

sequence to each other, were up-regulated in the CSF of patients with brain 

metastasis. A member of the miR-200 family, miR-200b targeted CREB1 and regulated 

glioma growth thereby acting as a tumour suppressor (Figure 1.2) (Peng et al., 2013).  

Table 1.8 outlines deregulated miRNAs in glioma, sample types they have been 

identified in and the target signalling pathways.                                                      
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Table 1.8 Deregulated microRNAs from different sample types in glioma and their corresponding signalling pathway 

MicroRNA Up/Down 

regulation 

Targets/Signalling Pathway Sample Type References 

10b Up BCL2L11/Bim, CDKN1A/p21, 

CDKN2A/p16 

Tissue, cell lines, CSF (Gabriely et al., 2011, Teplyuk et al., 

2012) 

15b* Down - Serum (Yang et al., 2013a) 

15b Up CCNE1 CSF (Baraniskin et al., 2012) 

17-5p Up Cyclin D1 Tissue (Srinivasan et al., 2011) 

20a Up E2F1, Cyclin D1 Tissue (Srinivasan et al., 2011) 

21 Up PI3k/Akt Tissue, serum, plasma, CSF (Baraniskin et al., 2012) 

23b Down Pyk2 Cell lines (Loftus et al., 2012) 

23a Down IL6R Serum (Yang et al., 2013a) 

30e-3p Up NF-κB Tissue, cell lines, primary 

culture 

(Jiang et al., 2012b) 

31 Down FIH Tissue (Srinivasan et al., 2011) 

106a Up FASTK Tissue (Srinivasan et al., 2011) 

107 Down Notch2 Tissue, cell lines (Chen et al., 2013) 

128 Down E2F3a Plasma (Wang. et al., 2012) 
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133a Down CAV1, LIM, LASP1 Serum (Yang et al., 2013a) 

146b Down MMP Tissue (Srinivasan et al., 2011) 

148a Down DNMT1 Tissue (Srinivasan et al., 2011) 

150* Down - Serum (Yang et al., 2013a) 

182 Up TGFβ/smad,  NF-κB Tissue, cell lines, primary 

culture 

(Song et al., 2012) 

193a Down Mcl-1 Tissue (Srinivasan et al., 2011) 

197 Down Fus1 Serum (Yang et al., 2013a) 

200b Down RND3 Tissue (Srinivasan et al., 2011) 

221 Down PTEN, p27 and p57 Tissue (Srinivasan et al., 2011) 

222 Down PTEN, p27 and p57 Tissue (Srinivasan et al., 2011) 

342-3p Down BMP7 Plasma (Wang. et al., 2012) 

451 Down LKB1/AMPK Cell lines (Godlewski et al., 2010) 

497 Down BCL2 Serum (Yang et al., 2013a) 

548b-5p Down PTEN, CDK6 Serum (Yang et al., 2013a) 
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1.4.3 Uptake of Exosomes by Recipient Cells 

 
 Tumour derived exosomes have the ability to transfer their contents to recipient cells 

and promote angiogenesis and metastasis. It is believed that there may be a number of 

mechanisms of exosome uptake, which could be dependent on the target cell, 

however this remains to be elucidated (Svensson et al., 2013).  Recently, uptake of 

exosomes originating from GBM cells has been shown to occur by non-clathrin 

dependent, lipid raft-mediated endocytosis and ERK1/2-HSP27 signalling (Svensson et 

al., 2013). Further to this, heparan sulfate proteoglycans (HSPGs) have been shown to 

play a role in mediating the uptake of exosomes by recipient cells. The binding of 

exosomes to HSPGs induces activation of the ERK1/2 signalling and subsequent uptake 

(Christianson et al., 2013).  Malignant tumours are often characterised by an acidic 

microenvironment and it has been suggested that the low pH of the tumour 

microenvironment may promote both the release and uptake of exosomes (Parolini et 

al., 2009). An acidic microenvironment influences membrane rigidity of exosomes and 

increases fusion capacity with recipient cells. The increased fusion capacity of 

exosomes in a low pH is believed to be a result of the increased formation of lipid rafts 

in the exosome membrane, which modulate the efficiency of membrane fusion 

(Parolini et al., 2009). The increased ability of exosomes to fuse with recipient cells in 

an acidic environment suggests that exosome trafficking occurs more frequently within 

tumours compared to non-cancerous tissues (Parolini et al., 2009).    

1.5 MicroRNAs as Biomarkers 

1.5.1 MicroRNA Biomarkers for Diagnosis and Prognosis  

 
The diagnosis of glioma is currently performed by MRI and subsequent histological 

examination of tumour sections which are obtained by surgery. Therefore the 

development of a non-invasive test for glioma diagnosis would be highly beneficial to 

patients and would potentially allow early diagnosis. Circulating miRNA could provide a 

minimally invasive diagnostic tool however the main focus of research has been on 

miRNAs for the prediction of prognosis and response to therapy. One study which 

investigated circulating miRNAs for the diagnosis of glioma was Manterola et. al. 

(2014) who identified a signature comprising of two miRNA; miR-320 and miR-574-3p, 
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and one small non-coding RNA, RNU6-1 which were significantly associated with GBM 

diagnosis. This signature was identified by the isolation of microvesicles from the 

serum of patients and subsequent profiling using qRT-PCR and the signature was 

validated using a second independent cohort of patients (Manterola et al., 2014).  MiR-

125b has also been identified as a potential diagnostic biomarker for glioma, analysis 

of serum samples obtained from patients using qRT-PCR identified down-regulation of 

miR-125b compared to control samples (Wei et al., 2014). Analysis of the diagnostic 

accuracy of miR-125b identified a sensitivity of 82 % for detection of glioma grades II-

IV (Wei et al., 2014).   

Evaluation of the miR-29 family, miR-29a, miR-29b and miR-29c, in the serum of glioma 

patients identified that this family of miRNAs had good sensitivity and specificity for 

the diagnosis of high-grade glioma (Wu et al., 2014). Serum samples from high-grade 

and low-grade glioma patients were analysed using qRT-PCR and the miR-29 family 

was found to be down-regulated in both high and low-grade glioma serum, with a 

greater down-regulation observed in high-grade samples (Wu et al., 2014). The authors 

concluded however, that the miR-29 family may not have sufficient sensitivity to 

detect early-stage glioma but could be useful in the identification of glioma 

progression (Wu et al., 2014).  

A number of studies have identified miRNAs within tumour tissue for predicting the 

prognosis of glioma patients. Some miRNAs identified as prognostic biomarkers are 

outlined in Table 1.9. One such study identified miRNA expression patterns which 

could be used to identify subgroups of glioblastoma patients with differing prognosis 

(Niyazi et al., 2011). Tissue sections obtained from glioblastoma patients were 

analysed using microarray and identified two differing expression patterns of 30 

miRNA which was used to group patients into ‘long-term’ or ‘short-term’ survivors 

(Niyazi et al., 2011). This study, however was limited by the small sample size of 

patients and was retrospectively performed.  

Analysis of serum from astrocytoma patients identified three serum miRNAs; miR-19a-

3p, miR-106a-5p and miR-181b-5p, which were significantly correlated with survival 

(Zhi et al., 2014). Patients with an up-regulation of these three miRNAs exhibited a 

poorer survival rate than those with a down-regulation (Zhi et al., 2014).  
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Table 1.9 Prognostic miRNAs and miRNA signatures identified in serum and tissue samples from glioblastoma.   

MiRNA Source Expression Prognosis Reference 

miR-124 Frozen tissue Down-regulation Poor (Chen et al., 2015) 

miR-155 Frozen tissue Up-regulation Poor (Sun et al., 2014) 

30 miRNA 

signature 

FFPE tissue 

sections 

Up and down-

regulation 

Long-term and 

short-term 

survival 

(Niyazi et al., 

2011) 

miR-335 Frozen tissue Up-regulation Poor (Jiang et al., 

2012a) 

miR-196a, 

miR-196b 

Frozen tissue Up-regulation Poor (Guan et al., 2010) 

Ten miRNA 

signature 

TCGA dataset Seven up-

regulated, three 

down-regulated 

Good and poor 

prognosis 

(Srinivasan et al., 

2011) 

Six miRNA 

signature  

FFPE tissue  Up and down-

regulation  

Good and poor 

prognosis  

(Sana et al., 2014) 

Six miRNA 

signature  

Frozen tissue  Up and down-

regulation  

Good and poor 

prognosis  

(Barbano et al., 

2014) 

miR-19a-3p, 

miR-106a-5p, 

miR-181b-5p 

Serum  Up-regulation  Poor Prognosis  (Zhi et al., 2014) 

 

1.5.3 MicroRNA biomarkers for response to therapy 

 
In the treatment of glioma, chemoresistance can be a pivotal factor in the prognosis of 

a patient. The ability to predict response to treatment could improve prognosis by 

selecting the right treatment course as soon after diagnosis as possible and permit 

rapid adaption of treatment to the acquisition of chemotherapeutic and radio-

resistance. This not only benefits the patient by improving their prognosis but also 

improves the cost-effectiveness of chemotherapeutics by using them only when they 

are expected to succeed. Furthermore, the use of predictive biomarkers in clinical 

trials could identify patients most likely to respond to new anti-cancer therapies, 

thereby accelerating the development of novel therapeutics (Carden et al., 2010). 

Currently, the gold standard for glioblastoma treatment is TMZ usually combined with 
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radiotherapy. Only a small subset of patients respond to TMZ treatment, as patients 

with the functional O6-methyl guanine methyltransferase (MGMT) DNA repair protein 

reverse the guanine methylation caused by TMZ leading to chemoresistance and 

limited success of this drug (Zhang et al., 2012). MiR-181d could be used as a 

biomarker to identify patients who would respond the best to TMZ, because MGMT is 

a candidate target of miR-181d, and a higher expression of miR-181d correlates with a 

lower expression of MGMT and subsequently improved response to TMZ (Zhang et al., 

2012).  

 
Whilst miR-181d up-regulation may correspond to a better response to TMZ, up-

regulation of miR-21 on the other hand, may predict poor response linked to the high 

rate of TMZ resistance which develops in patients. MiR-21 is one of the most 

frequently up-regulated miRNAs in glioblastoma and has been found to protect 

U87MG glioblastoma cells from TMZ-induced apoptosis (Shi et al., 2010). Inhibition of 

miR-21 in the resistant D54MG cell line enhanced chemosensitivity to TMZ (Wong et 

al., 2012). Both of these findings suggest that miR-21 could be used as a biomarker to 

predict or monitor the acquisition TMZ resistance in glioblastoma patients to enable 

quick adaptation in treatment strategy and maintain a good prognosis. Further to the 

role as a chemotherapeutic marker, miR-21 has also been shown to function in the 

acquisition of radio-resistance. Analysis of radio-resistance in a number of 

glioblastoma cell lines including U87MG and U373 showed that radio-sensitivity was 

closely related to the expression level of miR-21 (Gwak et al., 2012). The silencing of 

miR-21, using anti-miR-21 in radio-resistant malignant glioma cell lines led to the 

sensitisation of these cells to radiation (Gwak et al., 2012). Anti-miR-21 was found to 

sensitise U87MG and U373 cells through inactivation of the PI3K/Akt signalling 

pathway. Whilst these findings point towards a mechanism of acquired radio-

resistance, they also highlight miR-21 levels could be an important predictor of 

acquired radio-resistance which if monitored would permit quick adaptation of 

treatment plans and effective treatment of the glioblastoma as it progresses.  

 
As well as affecting TMZ and radio-resistance miRNA 21 along with miR-30b and 30c 

have been identified as regulators of TNF-related apoptosis-inducing ligand (TRAIL) 

induced apoptosis. These three miRNAs therefore, could affect the sensitivity of glioma 

cells to treatment with the TRAIL ligand (Quintavalle et al., 2012). A study of glioma cell 
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lines and primary cultures found that miRNA-21, 30b and 30c were significantly up-

regulated in TRAIL-resistant glioma cell lines (Quintavalle et al., 2012). Consequently 

TRAIL-sensitive cells were found to exhibit down-regulation of these three miRNA. The 

targets of these miRNA were found to include caspase-3 by the miR-30 family and 

Tap63 by miR-21. It was concluded that these miRNA regulate apoptotic programs 

within glioma cell lines. The results obtained also demonstrated a difference in miRNA 

expression between TRAIL sensitive and resistant cells (Quintavalle et al., 2012). These 

miRNA biomarkers for response to treatment and therapeutic resistance are outlined 

in Table 1.10.  

 

Table 1.10 MicroRNA Biomarkers for Response to Therapy 

 

 

 

 

 

 

 

 

 

 

 

1.6 Challenges in biomarker discovery 
 
Although miRNA appear to be extremely promising biomarkers and research into the 

identification of miRNA biomarkers for cancer remains on the increase, to date, there 

are no clinically utilised miRNA biomarkers for glioma. On-going clinical studies 

investigating miRNA profiles for a number of cancers have been outlined in a previous 

review (Nana-Sinkam and Croce, 2013). Researchers believe that the lack of clinical 

miRNA biomarkers compared to the number identified in research, is due to limitations 

in standardising of sample type collection (Git et al., 2010), determining optimal 

MiRNA Therapeutic Response 

MiR-181d 

 

Temozolomide resistance  

MiR-21 Temozolomide resistance, TRAIL resistance, Radio-

resistance 

MiR-30b 

 

TRAIL resistance 

MiR-30c  

 

TRAIL resistance  

MiR-425-5p Radiochemotherapy response  

 

MiR-93-5p Radiochemotherapy response  
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methods of extraction, and processing of both samples (McDonald et al., 2011) and 

data (Qureshi and Sacan, 2013), all of which can affect the reproducibility of individual 

findings.  

The choice of sample type, and the origin of miRNA, can be a limitation in biomarker 

discovery. An analysis of circulating miRNA isolated from plasma samples identified 

miRNA of hematopoietic cell origin. The presence of these miRNA in plasma samples is 

a pre-analytical variable which could affect the analysis of circulating miRNA 

expression. The employment of sub-fractionation to remove cellular miRNA improves 

specificity of circulating miRNA markers. The use of miRNA categories for the 

classification of circulating and cellular miRNA in plasma samples was proposed as a 

method that could improve miRNA biomarker studies (Duttagupta et al., 2011). The 

expression of specific miRNAs can differ between sample types used in studies (Wang. 

et al., 2012). Whilst miR-15b did not appear to be significantly dysregulated in a study 

using plasma samples, a significant increase in miR-15b levels in CSF samples has been 

reported (Baraniskin et al., 2012).  

Initial collection of sample biofluids must also be taken into account as there are 

variables in this process that may also affect miRNA data. Differences in collection tube 

type and phlebotomy techniques have both been suggested as factors which may 

cause variability in circulating miRNA expression. Hemolysis of the sample can increase 

the abundance of certain miRNA in biofluid samples which can subsequently affect 

biomarker selection (McDonald et al., 2011) therefore effective removal of cells is 

essential when using plasma and serum samples for biomarker detection. In addition 

to cells, other components of serum and plasma which are present in high levels, such 

as lipids and proteins, can affect the isolation of the RNA (Zampetaki and Mayr, 2012).    

Although tumour cells are known to shed exosomes, non-neoplastic cells and platelets 

also release exosomes. Serum isolated exosomes were used to identify mRNA 

expression patterns in glioblastoma patients (Noerholm et al., 2012). When compared 

with control serum samples, the expression patterns of mRNA within the exosomes 

could differentiate between those patients with glioblastoma and those without, 

however, the down-regulation of mRNA in serum exosomes could either be due to 

tumour exosomes, or from exosomes with an altered expression due to disease states 

and lifestyle from non-cancerous cells (Noerholm et al., 2012). Like mRNA expression, 
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the release of miRNAs from non-neoplastic cells must be taken into account in 

circulating miRNA expression studies for the identification of biomarkers (Pritchard et 

al., 2012b). 

The tissue and cell specificity of miRNA and individual variations due to diet, disease, 

infection or even age and gender, could potentially affect the detection of circulating 

miRNA biomarkers. One such review illustrated the influence of a number of 

environmental factors including diet, infection and stress on epigenetic mechanisms 

including microRNA expression (Mathers et al., 2010). Although the focus was the 

effect of these factors on cancer susceptibility, it also shows that inter-individual 

variations in lifestyle can affect the expression of miRNA which could subsequently 

affect the detection and use of miRNAs as biomarkers. The analysis of gene expression 

in the peripheral blood of healthy subjects also demonstrated inter-individual 

variability depending on the ratio of different blood subsets, age, gender and even the 

time of day when the blood sample was collected (Whitney et al., 2003). This has an 

important meaning for the identification of circulating biomarkers from blood samples 

as inter-variation in both cancerous and control sample sets may alter the miRNA 

levels within samples. Subsequently selection of a miRNA biomarker deregulated as a 

result of the glioblastoma and not of any other factor becomes difficult and accurate 

patient information capturing this data needs to be recorded in public miRNA 

databases.  

 

The presence of other diseases or infections, which is likely in older patients, could also 

skew data toward deregulated miRNAs as a result of an unrelated pathology leading to 

the failure of that miRNA biomarker in further studies.  MiRNA expression and levels 

are also subject to change following therapeutic treatment (Summerer et al., 2013). 

MiR-425-5p and 93-5p abundance alters in response to radiochemotherapy in head 

and neck squamous cell carcinoma patients and could be used as a biomarker to 

monitor response to treatment. At the same time this study illustrates the importance 

of knowing the origin of samples used in studies and any treatment undertaken before 

collection of the sample. Ideally, samples for use in biomarker identification studies, 

particularly for diagnostic markers, should be taken before any treatment or surgery to 

ensure any candidate miRNAs are up-regulated as a result of the glioblastoma and not 

the response of the tumour to treatment. In addition, this further highlights the need 
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to analyse data subsets where patterns of miRNA profiles can be extrapolated from 

patients grouped depending on age, gender, sampling time, treatment and other 

variables.  

The methods of isolating and measuring miRNA expression employed in a study can 

also affect the identification of miRNA biomarkers and cause variability between 

studies. A comparison of two RNA isolation methods and their effect on serum 

microarray expression analysis identified differences in miRNA expression between the 

two methods. Overall, a higher expression of miRNA was observed when using a total 

RNA isolation method (guanidine isothiocyanate) compared to a silica-gel column 

based method for isolating small RNA alone (Podolska et al., 2011). It was concluded in 

the latter that the high lipid content of serum samples affected the isolation of RNA. 

The total RNA isolation method removes lipids from the sample before isolation and 

therefore provides a better recovery of RNA (Podolska et al., 2011). Following 

isolation, miRNA expression is frequently determined using microarray and qRT-PCR 

methods. The data produced from these methods requires an endogenous candidate 

ubiquitously expressed across all samples for normalization (Peltier and Latham, 2008). 

For serum and plasma samples, there have been no significant endogenous control 

established for use in normalisation (Mitchell et al., 2008).  As a result, researchers use 

a number of different methods such as mathematical models or synthetic miRNA 

spike-ins, to normalise their data. While this permits research into circulating miRNA to 

be performed, the resulting data from different studies is often incomparable and not 

reproducible contributing to the failure of these biomarkers to reach clinical trials. 

Standardisation of methods for extraction and data analysis would therefore improve 

the reproducibility of biomarker research and speed the discovery of a clinically 

effective biomarker panel. 

There is a need for standardisation of isolation and analysis techniques to improve the 

reliability of candidate miRNA biomarker data. A large scale multi-centre study into the 

optimal techniques and protocols for miRNA biomarker discovery from a range of 

sample types including tissues and biofluids would provide data which could be used 

to reach a consensus on standard techniques to be used by all researchers. This would 

subsequently improve the success of miRNA biomarkers for all disease states including 

glioma. Conducting a study to identify miRNA biomarkers from biofluids must be 
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strictly regulated throughout the whole process from patient selection and sample 

collection through to processing and analysis. Stringent guidelines to minimise 

variability in patient cohorts, and validate the source of miRNAs, normalisation 

methods and good experimental design should be agreed upon to ensure 

reproducibility of data and the efficacy of these markers during further studies and 

clinical trials.  

1.7 Aims  

 
Glioblastoma is a highly malignant tumour with a poor prognosis despite aggressive 

treatment. Therefore the need for new, sensitive diagnostic and prognostic biomarkers 

is essential for early detection and selection of the most appropriate treatment regime 

to improve patient outlook. The global aim of this study is to identify diagnostic and 

prognostic miRNA biomarkers in the serum of glioblastoma patients. Current research 

investigating miRNA biomarkers for glioblastoma patients often does not account for 

age and gender variables in miRNA expression therefore this study aimed to identify 

miRNA biomarkers which may be gender or age specific to provide more accurate 

biomarkers.  

Following a review of the literature it was found that biofluids were the most attractive 

sample for non-invasive analysis of circulatory biomarkers for early diagnosis of GBM 

and prediction of prognosis. Gaps in current miRNA research include whether GBM 

tissue miRNA biomarkers translate into circulatory biomarkers and conversely, 

whether uptake of circulating exosomes containing miRNA can alter intracellular 

glioma and miRNA expression and subsequent extracellular release.  

 

The first aim was to identify the effect of serum on intracellular miRNA expression and 

miRNA released by glioma or glial cells. This was achieved by developing an in vitro cell 

culture model to investigate miRNA expression utilising human serum, U87MG 

(glioma) and SVGp12 (non-cancerous, glial) cell lines to 1) define miRNA expression in 

the respective cell lines and 2) to determine the influence of serum type (Foetal bovine 

serum and human serum (from glioma patients or controls)) on cell behaviour and 

intracellular glioma/glial miRNA expression and miRNA released by cells into the 

media. 



38 
 

The second aim was to identify miRNAs with altered expression in the serum of 

glioblastoma patients and investigate the use of these miRNA as biomarkers. Initial 

studies determined the miRNA expression profile of glioblastoma patients grouped by 

gender and age: 20-39, 40-59 and 60+. Dysregulated miRNAs identified from profiling 

were validated in larger patient cohorts and survival data was utilised to investigate 

identified miRNAs as prognostic biomarkers. To address some of the pre-analytical 

challenges outlined in Section 1.6 serum samples utilised in this thesis were obtained 

pre-operatively before treatment was begun and samples were initially centrifuged 

prior to homogenisation in the total RNA extraction protocol to ensure the removal of 

contaminants such as lipids and polysaccharides.  

The final aim was to identify whether dysregulated miRNAs in the serum originated 

from the glioblastoma tissue or from an alternative source such as leukocytes as part 

of an immune response. miRNA profiles of glioblastoma patient tissue and miRNA 

tissue data from TCGA were compared to serum miRNA expression data obtained in 

Chapter 4 to determine any differences in expression which might suggest an 

alternative source of the serum miRNAs than the glioblastoma. Further investigation of 

miRNA origin was performed in Chapter 5 using In situ hybridisation (ISH) with tissue 

sections selected from patients whose serum was used in Chapter 4. ISH data was 

compared with matched serum and tissue miRNA expression data to determine 

whether miRNA expression was significantly different across these three sample types.    
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2. Materials and Methods 
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2.1 Patient Samples  

 
Human tissue, whole blood, serum and cerebrospinal fluid samples were obtained 

from the Brain Tumour North West tissue bank, Royal Preston Hospital. NHS ethical 

approval was obtained for the collection and storage of patient samples by Brain 

Tumour North West (REC Ref: 09/H0304/88). BTNW Tissue Bank approval and 

university ethical approval was obtained for the use of the patient samples in this 

study (Appendix 1). All patients provided written informed consent for the storage and 

use of their biological samples for research.   

2.2 Culture of Immortalised Cell Lines 

 
U87MG (human grade IV Glioblastoma) and SVGp12 (human non-cancerous foetal 

astrocytes) were obtained from the European Collection of Cell Cultures (ECACC: HPA, 

Salisbury, UK) and maintained in T75 flasks (Corning, Flintshire, UK) with 10 ml Eagle’s 

minimal essential medium (EMEM, Lonza, Slough, UK), supplemented with 2mM L-

Glutamine (Sigma-Aldrich, Dorset, UK) and 10 % foetal bovine serum (FBS) (Biosera, 

East Sussex, UK) for both cell lines. Cells were incubated at 37 ᵒC in 5 % CO2 and 

passaged at 70 % confluency.   

To passage the cells at a ratio of 1:2, medium was aspirated and cells washed with 0.1 

M phosphate buffered saline pH 7.4 (PBS, Life Technologies, Paisley, UK), the PBS was 

then aspirated and  1 X trypsin-EDTA (Sigma-Aldrich, Dorset, UK)  added and incubated 

with the cells for 5 minutes. After incubation, an equivalent volume of medium was 

added to the detached cells and transferred to new flasks containing EMEM.  

2.2.1 Cell Count and Trypan Blue Assay  

 
Trypan blue is a dye which is able to permeate necrotic and apoptotic cells while being 

excluded by live cells {Strober, 2001 #653}. This improves the accuracy of cell counting 

as it ensures only viable cells are included. Briefly, cell suspensions were diluted 1:10 

with trypan blue, and the cell suspension was then placed onto the haemocytometer 

and the count performed. Cells containing the blue dye were not counted. The cells 

within five 4x4 squares were counted excluding any cells which lay across the outer 
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lines of the 4x4 square. An average of the cell counts for each 4x4 square was 

calculated then multiplied by 10 to determine the number of cells x 104/mL.  

2.2.2 Standard Growth Curves  

 
Growth curves for each cell line used were performed in 24 well plates to ensure that 

all subsequent experiments were performed in the logarithmic phase of growth. Cells 

were seeded at a density of 2 x 103/mL per well and incubated at 37 °C in 5 % CO2. 

Cells were trypsinised and counted using the trypan blue exclusion method {Strober, 

2001 #653} in triplicate each day over a seven day period. The growth curve was 

plotted and the lag and exponential phase were determined for each cell line, to 

determine the optimal seeding density for the serum replacement cultures.  

2.2.3 Weaning of Cell Lines onto Replacement Serum 

 
Serum from patients was obtained from the Brain Tumour North West (BTNW) tissue 

bank, Royal Preston Hospital. Local (Ref STEM041) and NHS ethical approval via BTNW 

tissue bank approval (Ref 1206) and informed patient consent was obtained for the 

use of patient serum samples.  Cells were weaned gradually to allow acclimatisation to 

a new serum type and to minimise stress (van der Valk et al., 2010). Cells were 

cultured in T25 flasks initially with a concentration of 2 % human serum and 8 % FBS. 

After 48 hours of incubation the concentration of human serum was increased in 

increments of 5 %, 7 % and 10 %. At the same time the concentration of FBS was 

decreased to 5 %, 3 % and 0 %, thus the total concentration of serum in the medium 

was maintained at 10 %. For the serum free medium condition, cells were cultured in 

25 % serum free medium and 75 % standard culture medium. The concentration of 

serum free medium was increased to 50 %, 75 % and 100 % at 48 hour intervals.  

2.2.4 Serum Replacement Method I – Investigation of Morphological Changes 

 
To determine the response of cell lines to serum replacement in terms of changes in 

morpohology, cells were cultured in T25 flasks and weaned off 10 % FBS and onto one 

of three conditions; 1) 10 % human serum from a pool of glioma patients (BTNW, Royal 

Preston Hospital), 2) a pool of 10 % non-cancerous human serum (BTNW, Royal 

Preston Hospital) or 3) 100 % serum free medium, a low protein, serum and animal 

product free substitute (Sigma-Aldrich, Dorset, UK). Samples from three patients of 
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each sex were obtained and pooled (Table 2.1).  Weaning was performed in triplicate 

and three biological repeats were carried out.  

Table 2.1 Serum pools of patients used in each biological repeat 

Pool Age Sex Diagnosis 

1 60+ Male Glioblastoma 

2 60+ Female Glioblastoma 

3 60+ Male Non-Cancerous 

4 60+ Female Non-Cancerous 

 

2.2.5 Serum Replacement Method II – Investigation of Changes in Phenotype  

 
To determine phenotypic changes in the cell lines following serum replacement, 

U87MG and SVGp12 cells were seeded at a density of 1 x 103 in BD Falcon 8 well 

chamber slides (BD Biosciences, Oxford, UK). Four wells contained medium with 

human serum from glioma patients and four wells contained medium with FBS as a 

control.  For each serum weaning experiment, cells were seeded in wells in triplicate, 

initially with a concentration of 2 % human serum and 8 % FBS. After 48 hours 

incubation the concentration of human serum was increased in increments of 5 %, 7 % 

and 10 %. At the same time the concentration of FBS was decreased to 5 %, 3 % and 0 

%.   

2.2.6 Serum Replacement Method III – Investigation of MicroRNA Expression  

 

To determine the changes in miRNA expression in response to serum replacement, 

cells were seeded at 2 x 104 cells in 96 well plates. After 24 hours incubation to allow 

the cells to attach, weaning was started and the medium was replaced with a 

concentration of 2 % human serum and 8 % FBS. The cells were subsequently weaned 

following the method outlined in Section 2.1.3. A 10 % FBS control was included and a 

medium change for the FBS control performed at the same time as the glioma and 

non-cancerous serum concentration was increased to ensure all cells received fresh 

medium. Weaning was performed in triplicate and three biological repeats were 

carried out. 
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2.2.7 Serum Replacement Growth Curves  

 
To determine rate of growth during the process of serum replacement, U87MG and 

SVGp12 cell lines were seeded in 96 well plates at a density of 2 x 103 cells and 

incubated overnight. Wells were trypsinised and counted using a haemocytometer to 

determine the cell count for each day over a nine day period. At the same time, cells 

were weaned gradually onto 10 % non-cancerous human serum or 10 % serum from 

glioma patients following method III, Section 2.1.6. Cell counts were performed in 

triplicate and a trypan blue assay performed during each cell count. A 10 % FBS control 

was included and fresh medium was added at the time that the replacement serum 

concentration was increased in the other conditions.  Growth curves were performed 

in triplicate and three biological repeats were performed.   

2.3 Immunostaining  

 
After 72 hours incubation of cells in BD Falcon 8 well chamber slides (BD Falcon, 

Oxford, UK) with 10 % human serum or 10 % FBS, cells were fixed and stained for 

neuronal and mesenchymal markers (Table 2.2).  

Medium was aspirated and cells were washed three times with 0.1 M PBS. Ice cold 

methanol and ice cold acetone at a ratio of 1:1 was added to the chambers and fixed 

at -20 ˚C for 10 minutes. Following aspiration of the methanol and acetone, cells were 

left to air dry and subsequently rehydrated with 0.1 M PBS.  

The PBS was then removed and 100 µl of primary anti-mouse antibody (Table 2.2) was 

added to each chamber and incubated with the lid on the slide to prevent the cells 

from dehydrating for 30 minutes at room temperature. The antibody was then 

removed and the cells washed three times with 0.1 M PBS. 

A volume of 100 µl of biotinylated secondary antibody diluted 1:200 (Vectastain ABC 

Kit, Vector Labs, Peterborough,UK) was added to the chambers and incubated for 30 

minutes with the lid on the slide. The antibody was then removed and the cells washed 

three times with 0.1 M PBS.  

A volume of 100 µl of streptABC complex (Vectastain ABC Kit, Vector Labs, 

Peterborough, UK) was added to each chamber and incubated for 30 minutes at room 



44 
 

temperature and then removed and washed three times with 0.1 M PBS. 3,3’-

diaminobenzidine (DAB) solution (Vectastain ABC Kit, Vector Labs, Peterborough, UK)  

was then added to each chamber and incubated for five minutes, aspirated and 

washed twice with distilled water. The cells were then counterstained with a few drops 

of hematoxylin (Sigma-Aldrich, Dorset, UK) for five minutes and rinsed with warm 

running water until the water became clear.  

The cells were then dehydrated using 95 % ethanol followed by 100 % ethanol and 

finally xylene.  The chamber was removed and the cells mounted with Eukitt mounting 

medium and a coverslip then viewed using a Nikon light microscope (Nikon, Surrey, 

UK) at x 10 objective.  
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Table 2.2 Antibodies and dilutions used for immunostaining 

Marker 

Group 

Antibody Species  Ig 

Type 

Marker Type Starting 

Concentration 

Dilution 

Glial 

GFAP 

(Dako, 

Cambridgeshire, 

UK) 

Mouse IgG1 Glial Marker 0.042 g/L 1:50 

S100B 

(Leica 

Biosystems, 

Milton Keynes, 

UK) 

Mouse IgG1 Astrocyte 

Marker 

8 g/L 1:100 

 

 

 

Neuronal 

Nestin 

(Merck 

Millipore, 

Hertfordshire, 

UK) 

Mouse IgG1 Type IV 

intermediate 

filament 

protein 

1 g/L 1:100 

Neurofilament 

(Leica 

Biosystems, 

Milton Keynes, 

UK) 

Mouse IgG1 Neuron 

Specific 

Cytoplasmic 

Filament 

0.022 g/L 1:25 

Synaptophysin 

(Leica 

Biosystems, 

Milton Keynes, 

UK) 

Mouse IgG1 Presynaptic 

Vesicle 

membrane 

glycoprotein 

0.072 g/L 1:50 

NeuN 

(Merck 

Millipore, 

Hertfordshire, 

UK) 

Mouse IgG1 Neuronal 

Nuclei 

1 g/L 1:250 

 

 

 

Vimentin 

(Leica 

Biosystems, 

Mouse IgG1 Type III 

Intermediate 

filament 

0.016 g/L 1:100 
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Mesenchymal 

Milton Keynes, 

UK) 

protein 

expressed in 

mesenchymal 

cells 

Desmin 

(Leica 

Biosystems, 

Milton Keynes, 

UK) 

Mouse IgG1 Type III 

Intermediate 

filament 

protein 

expressed in 

mesenchymal 

cells 

0.027 g/L 1:25 

α-SMA 

(Leica 

Biosystems, 

Milton Keynes, 

UK) 

Mouse IgG1 Myofibroblast 

marker 

expressed in 

mesenchymal 

cells 

0.0045 g/L 1:25 

 

2.4 MicroRNA Isolation  

2.4.1 MicroRNA Isolation from Cell Lines 

 

After the cell lines were weaned onto 10 % human serum (either non-cancerous or 

from glioma patients) as per Section 2.1.6, for 72 hours, the total isolation of RNA from 

the cells was performed using the mirVana miRNA Isolation Kit (Life Technologies, 

Paisley, UK).  

To maintain an RNase free environment, RNase free consumables including pipette 

tips and eppendorfs were utilised and workspaces were wiped down with RNase Zap 

(Life Technologies, Paisley, UK).  

Medium was aspirated from the cells and the cells washed with 0.1 M PBS, trypsinised 

and counted to ensure there were 102 – 107 cells as required. The cells were 

transferred to a 1.5 mL RNase free centrifuge tube (Life Technologies, Paisley, UK) and 

centrifuged at 4500 x g for five minutes, the supernatant discarded and the cells 

washed in 0.1 M PBS. The cells were centrifuged again at 4500 x g for five minutes and 

placed on ice. The PBS was aspirated and a volume of lysis buffer was added according 
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to the number of cells counted, a larger volume of lysis buffer was added for a larger 

cell number. Cells were vortexed for 30 seconds to obtain a homogenous lysate.  

Homogenate additive was added to the lysate at one tenth of the volume and vortexed 

for 30 seconds to mix. The cells were then incubated on ice for 10 minutes. Acid-

phenol chloroform was added at a volume equal to the lysate volume before the 

homogenate additive was added and vortexed for 30 seconds to mix. The lysate was 

then centrifuged using an Eppendorf 5415D microcentrifuge (Eppendorf, Stevenage, 

UK) for five minutes at 16,100 x g to separate the phases and make the interphase 

compact. The aqueous upper phase was removed and transferred to a new centrifuge 

tube and the volume of liquid removed was recorded. 

The elution solution was preheated to 95 ˚C over two hours, using a Grant UBD heat 

block (Grant Instruments, Cambridge, UK). Ethanol was added at 1.25 times the 

volume of the aqueous phase. A maximum volume of 700 µl of aqueous phase was 

pipetted onto the filter of a centrifuge collection tube. The collection tubes were 

centrifuged for 15 seconds at 9300 x g. The flow through was discarded from the tube 

and repeated with the remaining aqueous phase. Wash solution 1 was added to the 

collection filter and centrifuged for five seconds at 9300 x g. The flow through was 

then discarded and the filter replaced. Wash solution 2/3 was added and centrifuged 

for five seconds at 9300 x g, the flow through was discarded and the wash was 

repeated with solution 2/3. The flow through was discarded and the collection tubes 

were centrifuged for one minute at 9300 x g to remove residual fluid. The filter was 

transferred to a new collection tube and 100 µl of elution was added to the filter and 

spun for 30 seconds at 16,100 x g to recover the RNA. The concentration of the RNA 

was then quantified using the RNA quantification protocol in Section 2.5.   

2.4.2 Exosome Isolation from Spent Media 

 
After 72 hours incubation in the new serum conditions outlined in Section 2.1.6, 

exosomes were isolated using Total Exosome Isolation (from cell culture media) 

Reagent (Life Technologies, Paisley, UK).  An equal volume of isolation reagent was 

added to spent medium, vortexed for 30 seconds to mix and incubated overnight at 2 

˚C. Following incubation the medium was centrifuged at 10,000 x g for one hour at 4 ˚C 

in an Eppendorf 5415R microcentrifuge (Eppendorf, Stevenage, UK). The medium was 
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then aspirated and the pellet resuspended in 0.1 M PBS. Total RNA was isolated from 

the pellet using the cell line isolation protocol (Section 2.3.1) and expression measured 

using the qRT-PCR protocol in Section 2.6 and 2.7.  

2.4.3 Total RNA Isolation from Serum and Cerebrospinal Fluid  

 
Cerebrospinal fluid samples were obtained from glioblastoma and hydrocephalus 

patients at the University of Athens, Greece. Local and NHS ethical approval and 

informed patient consent was obtained for the use of patient CSF samples. To isolate 

total RNA from serum and cerebrospinal fluid samples, three parts Trizol LS reagent 

(Life Technologies, Paisley, UK) was added to one part serum, the sample was 

homogenised by pipetting up and down several times and incubated at room 

temperature for five minutes. The samples were then centrifuged for 10 minutes at 4 

˚C at 12,000 x g, to remove extracellular matrix, polysaccharides and high molecular 

weight DNA.  

The supernatant containing RNA was transferred to a new tube and incubated at room 

temperature for five minutes. A volume of chloroform equal to one quarter of the 

supernatant volume was added to the sample and shook vigorously by hand for 15 

seconds, then incubated for 10 minutes at room temperature. The sample was then 

centrifuged at 12,000 x g at a temperature of 4 ˚C for 15 minutes to separate the 

phenol and aqueous phase.  

The aqueous phase was transferred to a fresh tube and 100 % ice cold isopropanol was 

added and incubated for 10 minutes at room temperature. The sample was then 

centrifuged at 12,000 x g at a temperature of 4 ˚C for 10 minutes.  The supernatant 

was removed and 75 % ethanol was added to the pellet and vortexed for 30 seconds to 

mix. The sample was then centrifuged at 7500 x g, 4 ˚C for five minutes. The 

supernatant was removed and air dried for two minutes and resuspended in RNase 

free water (Invitrogen, Paisley, UK).  The RNA concentration was measured using a 

nanodrop as outlined in Section 2.5. 

2.4.4 MicroRNA Isolation from Frozen Tissue  

 
Local and NHS ethical approval and informed patient consent was obtained for the use 

of patient tissue samples. To isolate total RNA from frozen tissue samples, samples 



49 
 

were thawed on ice. The tissue was transferred to a 1.5 mL RNase free eppendorf tube 

(Life Technologies, Paisley, UK) containing Trizol LS reagent (Life Technologies, Paisley, 

UK) and homogenised using an OMNI tissue homogenizer (VWR, Leighton Buzzard, UK) 

to generate a tissue lysate.  Following homogenization total RNA was extracted as 

outlined in Section 2.3.3 and the RNA concentration was measured using a nanodrop 

as outlined in Section 2.5.  

2.5 Isolation of Mononuclear Cells  

 
To determine the expression of miRNA in mononuclear cells, fresh blood samples were 

obtained from the BTNW tissue bank (Royal Preston Hospital, Preston, UK) and 

processed within two hours following collection. Local and NHS ethical approval and 

informed patient consent was obtained for the use of patient blood samples.  Blood 

samples were diluted 1:1 in 0.1 M PBS and layered on top of a volume of lymphoprep 

(Alere LtD, Stockport, UK) double that of the blood and PBS. Samples were centrifuged 

for 30 minutes, 800 x g at 21 °C in an ALC PK 120R centrifuge (DJB labcare, 

Buckinghamshire, UK). The top layer of media was aspirated and the buffy coat layer 

containing mononuclear cells was removed and retained using a glass Pasteur pipette. 

Total RNA was extracted from the buffy coat using Trizol LS (Section 2.3.3), quantified 

following Section 2.5 and miRNA expression analysis was performed as outlined in 

Section 2.6 and 2.7.   

2.6 RNA Quantification  

 
Following extraction, total RNA concentration was measured using the Nanodrop 1000 

Spectrophotometer (Thermo Scientific, Loughborough, UK) at a wavelength of 280 nm. 

Purity of the total RNA was determined using the 260/280 ratio, RNA samples with a 

260/280 ratio of ~2.0 were considered ‘pure’ and used for downstream analysis 

(Majumdar et al., 2015).  

To determine the accuracy of RNA Quantification known concentrations of a synthetic 

miRNA were quantified. The miRNA standard (Integrated DNA Technologies, Glasgow, 

UK) was diluted to produce a solution of known concentration by adding RNase free 

diethylpyrocarbonate (DEPC) treated water (Invitrogen, Paisley, UK) producing a stock 

concentration of 1 µg/µl. Subsequent serial dilutions were performed to produce a 
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range of concentrations; 100 ng/µl, 10 ng/µl, 5 ng/µl, 1 ng/µl and 0.1 ng/µl. The 

solutions were then used to determine the accuracy of the nanodrop for determining 

the concentration of miRNA within a solution.  Measurements were performed in 

triplicate and the nanodrop was blanked using RNase free DEPC water (Invitrogen, 

Paisley, UK).  Data shown in Appendix 2, total RNA concentrations above 1 ng/µl were 

found to be accurately measure by the nanodrop.  

2.7 MiScript MiRNA PCR Array  

 
Miscript miRNA PCR Array Brain Cancer panels (Qiagen, Manchester, UK), were used to 

select miRNA for a preliminary panel.  Following isolation from serum samples, total 

RNA was reverse transcribed using the miScript RT II kit (Qiagen, Manchester, UK) and 

the expression level of 84 miRNAs associated with brain cancer were determined using 

qPCR. The C.elegans miR-39 miScript Primer Assay (Qiagen, Manchester, UK) was used 

as a control to normalise qPCR data. 

Total RNA was isolated from serum and cerebrospinal fluid as outlined in Section 2.3.3 

and from tissue as outlined in Section 2.3.4. The C.elegans miR-39 miScript Primer 

Assay) was diluted to a final concentration of 1.6 x108 copies/µl (Table 2.3) and added 

to the sample following homogenisation and lysis. Total RNA was diluted to a final 

concentration of 12.5 ng/µl and then reverse transcribed. The master mix components 

excluding the reverse transcriptase mix were thawed at room temperature and the 

master mix was prepared following Table 2.4.  The reverse transcriptase was removed 

from -20 ˚C immediately before adding to the master mix and then immediately 

replaced into -20 ˚C to maintain integrity of the enzyme. The master mix was mixed by 

pipetting, centrifuged at 2000 x g for five seconds in a Technico mini centrifuge (Fisher 

Scientific, Loughborough, UK) stored on ice and then incubated at 37 ˚C for 60 minutes 

followed by 95 ˚C for five minutes.  

Table 2.3: Dilution and Final Concentration of C. elegans miR-39 miScript Primer Assay. 

 Dilution Concentration (Copies/µl) 

Initial Stock 300 µl DEPC treated H2O + 10 

pmol lyophilised sample 

2 x 1010 

Dilution 4 µl stock + 16 µl RNase-free 

water 

4 x 109 

Working Solution 2 µl of dilution + 48 µl RNase 1.6 x108 
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free water 

 

Table 2.4: Reverse Transcription Master Mix, Components and Final Working Concentrations. 

Component Volume Final Concentration 

5 X miScript HiSpec Buffer 4 µl 1 X 

10 X miScript Nucleics Mix 2 µl 1 X 

RNase-free water Variable - 

MiScript Reverse Transcriptase 

Mix 

2 µl - 

Template RNA Variable 12.5 ng/μl 

Total Volume 20 µl - 

 

Following reverse transcription cDNA was diluted 1:10 in RNase free DEPC water (Life 

Technologies, Paisley, UK) prior to qPCR. The qPCR master mix components were 

thawed at room temperature and pipetted following Table 2.5.  The brain cancer 

panels were thawed at room temperature, and 25 µl of reaction mix was added to 

each well and the plate sealed with optical adhesive film. The plate was then 

centrifuged at 1000 x g for one minute to ensure all the master mix was at the bottom 

of the well. The C.elegans, reverse transcription control and positive PCR control wells 

within the brain cancer panels were utilised in this study. 

The qPCR reaction was performed on an Applied Biosystems 7500 Real Time PCR 

System in standard mode using the parameters outlined in Table 2.6 and a dissociation 

analysis step added at the end of the run.  

Table 2.5: qPCR Master Mix and Final Working Concentration. 

Component Volume (µl) Final Concentration 

2 X QuantiTect SYBR Green 

PCR Master Mix 

1375  1 X 

10 X miScript Universal Primer 275  1 X 

RNase free water 1000  - 

Template cDNA (diluted) 100  - 

Total Volume 2750  - 
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Table 2.6: qPCR Parameters. 

 

The data were analysed using the miScript miRNA PCR Array Data Analysis tool 

(SABiosciences) available online at http://pcrdataanalysis.sabiosciences.com/mirna.  

Threshold cycle (Ct) values were normalised using the C.elegans miR-39 miScript 

Primer Assay (Qiagen, Manchester, UK). Normalisation was performed by subtracting 

the Ct value of the C.elegans spike in from the target miRNA Ct value. Each miRNA was 

scored either A, B or C by the miScript data analysis tool based on the average Ct to 

determine whether the calculated fold change was representative of the actual fold 

change within the sample (Table 2.7). ‘A’ being representative of the actual fold 

change and ‘B’ suggesting a variation in fold change between samples which may not 

be representative of the actual fold change. MiRNAs were scored ‘C’ if the average Ct 

of either the target sample or the control sample was beyond the defined cut off of 35 

cycles, making the calculated fold change invalid. Following analysis using the miScript 

miRNA PCR Array Data Analysis tool, data was examined and miRNAs with a fold 

change scored as a ‘C’ were omitted from the study.  

Table 2.7 Fold Change Scoring system defined by the miScript data analysis tool. 

Score Definition 

A This gene’s average threshold cycle is relatively high (> 30) in either the control or the 

test sample, and is reasonably low in the other sample (< 30).These data mean that 

the gene’s expression is relatively low in one sample and reasonably detected in the 

other sample suggesting that the actual fold-change value is at least as large as the 

calculated and reported fold-change result. 

B This gene’s average threshold cycle is relatively high (> 30), meaning that its relative 

expression level is low, in both control and test samples. 

Enzyme Activation Hold 15 minutes 95 ˚C 

PCR - 40 Cycles Denature Hold 15 seconds 94 ˚C 

Anneal Hold 30 seconds 55 ˚C 

Extend Hold 34 seconds 70 ˚C 

Melt curve 

analysis – 1 

Cycle 

Dissociation  60-95 ˚C 
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C This gene’s average threshold cycle is either not determined or greater than the 

defined cut-off (default 35), in both samples meaning that its expression was 

undetected, making this fold-change result erroneous and un-interpretable. 

 

2.8 NCode miRNA First-Strand cDNA Synthesis  

 
For subsequent analysis of miRNA expression following the use of the miScript arrays, 

total RNA was polyadenylated and reverse transcribed using the NCode miRNA First-

Strand cDNA synthesis kit (Life Technologies, Paisley, UK). Following extraction of total 

RNA as outlined in Section 2.3.3, the samples were polyadenylated and reverse 

transcribed using the NCode miRNA First-Strand cDNA Synthesis kit. RNA samples were 

diluted in RNase free DEPC water to 200 ng. Stock 10 mM dATP was diluted 2:50 with 1 

mM Tris, pH 8.0. A master mix for Polyadenylation was prepared as detailed in Table 

2.8.  

Table 2.8: Polyadenylation Reaction Master Mix 

Component Volume (µl) Final Concentration 

5 X miRNA Reaction Buffer 5 1 X 

25 mM MnCl2 2.5 2.5 mM 

Diluted ATP 1 0.8 mM 

Poly A Polymerase 0.5 - 

Diluted total RNA 16 12.5 ng/µl 

Total  25 - 

   

The samples were incubated in a Grant UBD heat block (Grant Instruments, 

Cambridge, UK), pre-heated to 37 °C, for 15 minutes. Immediately following 

incubation, the samples were reverse transcribed. A volume of 4 µl of polyadenylated 

RNA was used in the following cDNA synthesis reaction. The RNA samples were 

combined with annealing buffer and universal RT primer in the volumes outlined in 

Table 2.9.  

Table 2.9: Initial cDNA Synthesis Master Mix 

Component Volume (µl) Final Concentration 
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Polyadenylated RNA 

 

4 12.5 ng/µl 

Annealing Buffer 

 

1 - 

Universal RT Primer (25 µM) 

 

3 9.375 µM 

Total 

 

8 - 

 

The tubes were incubated for five minutes in a Veriti Thermal cycler (Life Technologies, 

Paisley, UK) pre-heated to 65 °C and then placed on ice for one minute. Further 

components were added to the tubes, shown in Table 2.10 and incubated at 50 °C for 

50 minutes followed by five minutes at 85 °C to stop the reaction. The cDNA was 

stored at -20 °C before proceeding to qPCR.  

Table 2.10: Secondary cDNA Master Mix 

Component Volume (µl) Final Concentration 

2 X First-strand reaction mix 

 

10 1 X 

SuperScript III RT enzyme mix 

 

2 - 

Total 

 

12 - 

 

2.9 GoTaq SYBR Green qPCR Reaction  

 
Following first strand cDNA synthesis as outlined in Section 2.7, cDNA samples were 

diluted 1:10 in RNase free DEPC water. The qPCR master mix was prepared as outlined 

in Table 2.11 using the universal reverse primer provided with the NCode miRNA First-

Strand cDNA synthesis kit and miRNA specific forward primers outlined in Section 2.9.1 

(Integrated DNA Technologies, Glasgow, UK).   

Table 2.11: GoTaq SYBR Green qPCR Master Mix  

Component Volume (µl) Final Concentration 
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2 X qPCR master mix 

 

12.5 1 X 

Forward primer, 10 µM 

 

0.5 200 nM 

Universal reverse primer, 10 µM 

 

0.5 200 nM 

RNase free water 

 

6.5 - 

Total 20 

 

- 

 

The cDNA was diluted 1:5 with qPCR master mix and added to each well of a 

MicroAmp Optical 96-Well Reaction Plate (Life Technologies, Paisley, UK) the plate was 

sealed with MicroAmp Optical Adhesive Film (Life Technologies, Paisley, UK) and 

centrifuged for one minute at 1000 x g.   

The qPCR reaction was performed on an Applied Biosystems 7500 Real Time PCR 

System (Life Technologies, Paisley, UK) in standard mode using the parameters 

outlined in Table 2.12 and a dissociation analysis step added at the end of the run. 

Data was analysed using the ΔCt method and normalised using the C.elegans miR-39 

miScript Primer Assay (Qiagen, Manchester, UK).  

 

Table 2.12: qPCR run parameters  

 

2.9.1 Primer Design  

 

Enzyme Activation Hold 2 minutes 95 ˚C 

PCR - 40 Cycles Denature Hold 15 seconds 95 ˚C 

Anneal/Extend Hold 60 seconds 60 ˚C 

Melt curve 

analysis – 1 

Cycle 

Dissociation  60-95 ˚C 
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Specific forward primers (Integrated DNA Technologies, Glasgow, UK), were designed 

using sequences obtained from miRBase available online www.miRBase.org (Table 

2.13).  

2.10 MiRNA Expression in TCGA Dataset 

 
To determine the tissue expression of miRNA in a larger patient cohort of 558 patients, 

microarray data was analysed from the TCGA by Josie Hayes, Leeds Institute of 

Molecular Medicine. Log fold change expression in glioblastoma patients compared to 

patients without glioblastoma was determined and a comparison of expression and 

age was determined using Pearson’s correlation. Survival analysis was performed using 

both cox regression and log-rank above and below the median.  

 

 

 

Table 2.13 Specific forward primers designed and utilised in this study. 

Primer  Sequence  

hsa-let-7-5p 5’-TGA GGT AGT AGG TTG TAT AGT T-3’ 

hsa-miR-7-5p 5’-TGG AAG ACT AGT GAT TTT GTT GT-3’ 

hsa-miR-9-3p 5’-ATA AAG CTA GAT AAC CGA AAG T-3’ 

hsa-miR-15b-5p 5’-TAG CAG CAC ATC ATG GTT TAC A-3’ 

hsa-miR-16-5p  5’-TAG CAG CAC GTA AAT ATT GGC G-3’ 

hsa-miR-17-5p 5’-CAA AGT GCT TAC AGT GCA GGT AG-3’ 

hsa-miR-18a-5p 5’-TAA GGT GCA TCT AGT GCA GAT AG-3’ 

hsa-miR-19a-3p 5’-TGT GCA AAT CTA TGC AAA ACT GA-3’ 

hsa-miR-19b-3p 5’-TGT GCA AAT CCA TGC AAA ACT GA-3’ 

hsa-miR-20a-5p 5’-TAA AGT GCT TAT AGT GCA GGT AG-3’ 

hsa-miR-21-5p 5’-TAG CTT ATC AGA CTG ATG TTG A-3’ 

hsa-miR-23a-3p 5’-ATC ACA TTG CCA GGG ATT TCC-3’ 

hsa-miR-25-3p 5’-CAT TGC ACT TGT CTC GGT CTG A-3’ 

hsa-miR-26a-5p 5’-TTC AAG TAA TCC AGG ATA GGC T-3’ 

hsa-miR-29b-3p 5’-TAG CAC CAT TTG AAA TCA GTG TT-3’ 

hsa-miR-29c-3p 5’-TAG CAC CAT TTG AAA TCG GTT A-3’ 

hsa-miR-30b-5p 5’-TGT AAA CAT CCT ACA CTC AGC T-3’ 

hsa-miR-30c-5p 5’-TGT AAA CAT CCT ACA CTC TCA GC-3’ 

hsa-miR-34a-5p 5’-TGG CAG TGT CTT AGC TGG TTG T-3’  

hsa-miR-92a-3p 5’-TAT TGC ACT TGT CCC GGC CTG T-3’ 

hsa-miR-93-5p 5’-CAA AGT GCT GTT CGT GCA GGT AG-3’ 

http://www.mirbase.org/
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hsa-miR-101-3p 5’-TAC AGT ACT GTG ATA ACT GAA-3’  

hsa-miR-148a-3p  5’-TCA GTG CAC TAC AGA ACT TTG T-3’  

hsa-miR-150-5p 5’-TCT CCC AAC CCT TGT ACC AGT G-3’ 

hsa-miR-181a-5p 5’-AAC ATT CAA CGC TGT CGG TGA GT-3’  

hsa-miR-181b-5p 5’-AAC ATT CAT TGC TGT CGG TGG GT-3’ 

hsa-miR-185-5p 5’-TGG AGA GAA AGG CAG TTC CTG A-3’  

hsa-miR-191-5p 5’-CAA CGG AAU CCC AAA AGC AGC UG-3’ 

hsa-miR-320a 5’-AAA AGC TGG GTT GAG AGG GCG A-3’ 

hsa-miR-328-3p  5’-CTG GCC CTC TCT GCC CTT CCG T-3’ 

hsa-miR-451a 5’-AAA CCG TTA CCA TTA CTG AGT T-3’ 

hsa-miR-486-5p 5’-TCC TGT ACT GAG CTG CCC CGA G-3’ 

cel-miR-39-3p 5’-TCA CCG GGT GTA AAT CAG CTT G-3’ 

 

 

 

 

2.11 In Situ Hybridisation  

2.11.1 Preparation of Buffers and Stock solutions  

 
To determine the localisation of microRNAs within tumour tissue sections, in situ 

hybridisation (ISH) was performed using the miRCURY LNA microRNA ISH Optimization 

Kit (FFPE) (Exiqon, UK) and the ISH protocol outlined by Gerard Nuovo (Nuovo, 2010).  

Prior to the ISH experiment proteinase-K (Exiqon, UK) was reconstituted in 10 mM Tris-

HCl (pH 7.5) to produce a 20 mg/mL stock which was aliquoted and stored at - 20 °C.  

Proteinase-K buffer, 0.2 X saline-sodium citrate (SSC) solution (Sigma-Aldrich, Dorset, 

UK) and 0.1 % PBS-Tween (PBS-T, pH 7.4) were also prepared prior to the ISH 

experiment as outlined in Table 2.14 and autoclaved to minimise RNase activity.  

Table 2.14: Buffers and solutions prepared prior to ISH 

Buffer Component Volume (mL) Final Concentration 

Proteinase-K Buffer RNase free water 

1 M Tris-HCl (pH 7.4) 

5 M NaCl 

500 

2.5  

0.1  

- 

 

0.2 X SSC RNase free water 

20X SSC 

495 

5  

- 

0.2 X 
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PBS-T pH 7.4 PBS 

Tween-20 

500  

0.5  

- 

0.1 % 

 

Prior to the ISH experiments stocks of the hybridisation solution containing each probe 

were prepared. To prepare the hybridisation mix, 2 X microRNA ISH buffer (miRCURY 

LNA microRNA ISH Optimization Kit) was diluted 1:1 with RNase free DEPC water to 

produce a final concentration of 1 X.  The double-DIG-labelled probes were diluted in a 

2 mL non-stick RNase free tube (Life Technologies, Paisley, UK). The probes were 

denatured at 90 °C for 4 minutes using a Grant UBD heat block (Grant Instruments, 

Cambridge, UK) and 1 X microRNA ISH buffer was added to each of the tubes to dilute 

the probes to the appropriate final concentration. The probe stocks were aliquoted 

and stored at - 20 °C. 

 

2.11.2 Optimisation of Proteinase-K Step 

 
Optimisation of the proteinase-K concentration and duration of treatment was 

performed using the LNA U6 snRNA double-digoxygenin (DIG) labelled detection probe 

(Exiqon, UK). The LNA U6 snRNA probe was diluted in microRNA ISH buffer in a 2 mL 

non-stick RNase free tube (Life Technologies, Paisley, UK) to produce a range of 

concentrations between 0.1 and 2 nM as outlined in Table 2.15.  

Table 2.15: Concentrations of LNA U6 snRNA Probe used for Proteinase-K Optimisation  

Dilution Factor Probe Volume (µl) 1 X ISH Buffer Volume 

(mL) 

Final Concentration (nM) 

1:5000 0.4 2 0.1 

1:1000 2 2 0.5 

1:500 4 2 1 

1:333 6 2 1.5 

1:250 8 2 2 

 

Immediately before proteinase-K treatment of slides, proteinase-K stock solution was 

added to the proteinase-K buffer to produce a final concentration of 15 µg/mL. Diluted 

proteinase-K was added to each slide to cover the tissue section and incubated for 10 
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minutes at 37 °C in a HYBAID Micro-4 hybridisation oven (VWR, Leighton Buzzard,UK). 

Following negative probe signal from sections incubated with 15 µg/mL proteinase-K 

for 10 minutes, a second optimisation experiment was performed with 15 µg/mL 

proteinase-K incubated at 37 °C for 20 minutes, which produced a signal using the U6 

probe.  

2.11.3 Optimisation of Hybridisation Temperature and Incubation Time 

 
Following optimisation of the proteinase-K step, optimisation of the hybridisation 

temperature for the U6 and miR-21 positive control probes was performed. The U6 

snRNA probe was diluted to a final concentration of 10 nM. The miR-21 positive 

control probe and the scrambled negative control probe were both diluted to a final 

concentration of 40 nM (Table 2.16). The hybridisation mix was added to each slide to 

cover the section, a sterile cover glass was added and sealed with fixogum and 

hybridised overnight at 37 °C or 4 °C.  

Table 2.16 Probe dilutions and final concentrations for hybridisation temperature optimisation. 

Probe Dilution Factor Probe Volume 

(µl) 

1 X ISH Buffer 

Volume (mL) 

Final 

Concentration 

(nM) 

U6 snRNA 1:250 4 1 10 

miR-21 1:625 3.2 2 40 

Scrambled 1:625 3.2 2 40 

 

Following optimisation of the hybridisation temperature, optimisation of incubation 

times for anti-DIG AP and NBT-BCIP was performed. Slides were incubated for one 

hour with anti-DIG AP and one hour with NBT-BCIP, two hours with anti-DIG AP and 

one hour with NBT-BCIP and two hours with anti-DIG AP and two hours with NBT-BCIP. 

2.11.4 Optimised In Situ Hybridisation of Target MiRNAs 

 

Prior to ISH of miRNA biomarkers optimisation of proteinase-K concentration (Section 

2.10.2), duration of proteinase-K treatment (Section 2.10.2) and optimisation of probe 

hybridisation temperature (Section 2.10.3) was carried out.    
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Local and NHS ethical approval and informed patient consent was obtained for the use 

of patient tissue section samples. Glioblastoma FFPE tissue sections (BTNW tissue 

bank, Royal Preston Hospital, UK) were deparrafinised for five minutes in histoclear 

(Fisher Scientific, Loughborough, UK) and five minutes in 100 % ethanol. Following 

deparaffinisation, slides were air dried at room temperature.  

Immediately before proteinase-K treatment of slides, proteinase-K stock solution was 

added to proteinase-K buffer to produce the final concentration of 15 µg/ml as 

optimised in Section 2.10.2. Diluted proteinase-K was added to each slide to cover the 

section and incubated for 20 minutes at 37 °C in a HYBAID Micro-4 hybridisation oven 

(VWR, Leighton Buzzard, UK). Slides were washed briefly in RNase free water followed 

by 100 % ethanol and air dried at room temperature.  

Hybridisation mix was added to each slide to cover the section and a sterile cover glass 

was applied and sealed with fixogum rubber cement (Amazon, London, UK). Slides 

were incubated at 65 °C for five minutes and subsequently incubated overnight at 37 

°C.  

Immediately prior to continuing the ISH experiment antibody blocking solution, 

antibody diluent solution and anti-DIG reagent were prepared. To prepare the 

antibody blocking solution sheep serum (Sigma Aldrich, Dorset, UK) was added to 0.1 

% PBS-T (pH 7.4) to produce a final concentration of 2 % sheep serum. 5 mL of blocking 

solution was aliquoted into a new tube for the antibody diluent solution. Stock 30 % 

BSA was added to the blocking solution to produce a final concentration of 1 %. To 

prepare the antibody diluent solution, 30 % BSA was added to 0.1 M PBS to produce a 

final concentration of 1 % BSA. Sheep-anti-DIG-AP was diluted 1:200 in antibody 

dilutant solution.   

Following overnight hybridisation, the cover glass was detached and slides were placed 

in 0.2 X SSC in a glass jar placed in a Grant JB1 water bath (Fisher Scientific, 

Loughborough, UK) set at 50 °C for 10 minutes.  

A hydrophobic barrier was made around each section and antibody blocking solution 

was added to each slide and incubated for 15 minutes at room temperature. The 

blocking solution was removed and anti-DIG-reagent was added to each slide and 

incubated for two hours at 37 °C in humidifying conditions in a HYBAID Micro-4 
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hybridisation oven (VWR, Leighton Buzzard, UK). The slides were subsequently washed 

for three minutes in PBS-T prior to application of the substrate.  

Immediately prior to use alkaline phosphatase (AP) substrate was prepared by 

dissolving one nitro-blue tetrazolium and 5-bromo-4-chloro-3’-indolyl-phosphate (NBT-

BCIP) tablet (Roche, Hertfordshire, UK) in 10 mL of double distilled water pre-heated to 

37 °C. Levamisol stock (Sigma-Aldrich, UK) was added to the NBT-BCIP to produce a 

final concentration of 0.2 mM.  The AP substrate was applied to each section and 

incubated for one hour at 37 °C in a HYBAID Micro-4 hybridisation oven (VWR, 

Leighton Buzzard, UK), the slides were protected from light. The slides were washed 

for one minute with running tap water.  

Nuclear fast red (Vector Laboratories, UK) was added to each slide to cover the section 

for one minute for nuclear counter staining. Slides were placed in a glass jar and rinsed 

with running tap water for 10 minutes, dipped in 100 % ethanol and allowed to air dry.  

Slides were dipped in histoclear and subsequently mounted with one drop of Eukitt 

quick-hardening mounting medium (Sigma-Aldrich, Dorset, UK) and a sterile glass 

cover slip. The precipitate was allowed to settle overnight and viewed with a Nikon 

Eclipse E200 Phase Contrast microscope (Nikon, Surrey, UK) on the brightfield setting 

at x10 and x100 objectives the following day.  

2.12 Power Analysis  

 
To ensure any miRNA biomarkers identified were statistically significant, power 

analysis was performed to determine the sample size required for 80 % power. Power 

analysis was performed using the GraphPad Statmate software (San Diego, USA). 

Standard deviations for each of the miRNA biomarkers were used to determine the 

sample number required to detect a difference between means of 1 Ct value.   

2.13 Data Analysis  

 
Data were analysed using GraphPad Prism 5.0 statistical software (San Diego, USA). 

Raw ΔCt values for both target and control data were used for statistical analysis. 

Following statistical analysis control ΔCt values were presented as a standard fold 

change value of one in figures with no standard deviation. Where sample numbers 
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permitted, a Kolmogorov Smirnov test was used to determine whether data were 

normally distributed. Data consisting of two groups were analysed by student’s t-test 

with Levene’s F test or the non-parametric Mann-Whitney U test. Data consisting of 

three groups were analysed by one-way ANOVA with Tukey post-hoc test or non-

parametric Kruskal-Wallis with Dunn’s post-hoc test. Data consisting of paired groups 

were analysed by two-way ANOVA with Tukey post-hoc test. Following analysis of both 

one-way and two-way ANOVA using the Tukey post-hoc test, data was tested for 

multiple variances by adjusting the p-value for the number of groups. Survival data 

were analysed using Log-rank (Mantel Cox) test to determine whether differences 

between survival curves were significantly different. The TCGA dataset was analysed 

by Josie Hayes (Leeds Institute of Molecular Medicine) using log-rank above and below 

the median. Correlations between miRNA expression and age were determined using 

Pearson’s correlation. All data except the miSCript brain cancer array data in Chapters 

3 and 5 were displayed as means of triplicate experiments + SD. A p-value of < 0.05 

was considered significant.  
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3. Effect of Serum Replacement on 

Immortalised Cell Lines  
 

 

 

 

 

 

 

 

 

 

3.1 Introduction           

 
Foetal bovine serum (FBS) is the standard serum type used to supplement basal 

medium in the culture of immortalised cell lines including U87MG and SVGp12 cells. 

FBS contains high levels of hormones, proteins and growth factors required to 

stimulate growth and proliferation of cell lines (Zheng et al., 2006). Although 

commonly used for the culture of numerous cell lines, FBS is poorly defined and the 

exact composition is unknown. The composition of FBS can vary between different 

batches and therefore can have varying effects on the growth of cell lines (Zheng et al., 

2006). Whilst not used for the maintenance of immortalised cell lines, human serum is 

one of a variety of serum types that is used for the ex vivo expansion of mesenchymal 

or human embryonic stem cells (hESC) prior to in vivo transplantation (Mannello and 

Tonti, 2007). Studies have shown that the culture of hESC with human serum 

encourages the maintenance of the hESC karyotype and pluripotency even after 

prolonged culture (Mannello and Tonti, 2007).  
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During disease, factors within human serum may change in abundance or the presence 

or absence of certain components may occur (Tirumalai et al., 2003). One such 

component is exosomes, small lipoprotein vesicles which are present in the serum of 

both healthy and diseased individuals. Exosomes are believed to be a method of 

intercellular communication (Colombo et al., 2014) and are capable of immune 

modulation (Blin and Fitzgerald, 2015) and manipulation of tumour 

microenvironments (Milane et al.). Exosomes contain mRNA, miRNA and proteins 

which can be released and taken up by neighbouring cells (Meckes et al., 2010). The 

specific contents of exosomes often reflect the cell of origin therefore those derived 

from tumour cells contain proteins and RNA with the ability to promote tumour 

characteristics in recipient cells including invasion and proliferation (Meckes et al., 

2010).   

Glioblastoma cells release exosomes containing angiogenic proteins as well as mRNA 

and miRNA which stimulate tubule formation in recipient endothelial cells (Skog et al., 

2008). The release of glioblastoma specific exosomes can therefore play an important 

role in stimulating invasion and metastasis (Katakowski et al., 2010), a vital 

characteristic which contributes to the malignancy of glioblastoma and hinders 

successful treatment (Demuth and Berens, 2004).    

 

The release and uptake of exosomes has been demonstrated in vitro in U87MG and 

U251 glioblastoma cell lines (Katakowski et al., 2010). Furthermore, studies have 

shown that recipient cells incorporate exosomal miRNA into cellular pathways 

resulting in altered protein expression (Katakowski et al., 2010). Short-term 

glioblastoma derived from primary cells are also able to influence protein expression 

of endothelial cells in culture and promote angiogenesis (Skog et al., 2008). In addition, 

isolation of exosomes from primary glioblastoma cells and incubation with U87MG 

cells caused an increase in proliferation compared to untreated U87MG cells (Skog et 

al., 2008), showing exosomes of in vivo origin can influence the behaviour of 

immortalised cell lines. The aforementioned studies investigating the function of 

circulating miRNAs in cell lines have utilised the standard FBS culture conditions, 

however as FBS is of bovine origin this may affect data collected. Cell culture using 
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human serum as a supplement may, therefore, provide a more representative model 

for miRNA function in humans and could provide more accurate data.  

The aim of the current study was to establish a human serum based cell culture model 

which could be used to investigate miRNA expression. Once established, the behaviour 

of U87MG and SVGp12 cells in culture with glioblastoma patient serum and non-

cancerous human serum was investigated. Further studies were performed to 

determine whether human serum could alter the miRNA expression of immortalised 

cell lines and whether the resulting phenotype differed between cells cultured in 

serum from cancerous and non-cancerous subjects.  It was hypothesised that the 

composition FBS, human serum from glioma patients and non-cancerous control 

patients would differ and therefore alter the growth behaviour and expression of 

selected miRNAs in the cell lines.  

 

 

 

 

 

3.2 Results  

3.2.1 Culture of U87MG and SVGp12 cells in replacement serum resulted in 

increased cell number  

 
To determine whether the weaning of cell lines off standard FBS and onto human 

serum had an effect on growth characteristics, growth curves were performed during 

the weaning phase. Cells were initially seeded with 10 % FBS and subsequently weaned 

onto increasing concentrations of human serum pooled from three glioblastoma 

patients or three control patients in increments of 2 %, 5 %, 7 % and 10 % whilst 

decreasing the FBS at increments of 8 %, 5 % , 3 % and 0 % to maintain the total serum 

concentration at 10 % (Section 2.1.7). Cells were cultured for 48 hours in each serum 

concentration to allow completion of one cell cycle of growth before increasing the 

replacement serum concentration (Section 2.1.7).  
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The growth of U87MG cells in all three serum conditions was not significantly different 

(p > 0.05) until 48 hours culture in 7 % replacement serum; after which there was a 

significant increase in cell number in both the 7 % serum from glioblastoma patients 

and 7 % serum from non-cancerous patients compared to cells cultured in 10 % FBS (p 

< 0.05) (Figure 3.1). There was also a significant increase in cell number in the glioma 

patient serum compared to the non-cancerous subjects after 48 hours incubation. 

(Figure 3.1D). Following culture in 10 % replacement serum, U87MG cells cultured in 

10 % glioma patient serum showed the greatest increase in cell number (p < 0.001) 

compared to those cultured in FBS, followed by U87MG cells cultured in 10 % non-

cancerous human serum (p < 0.01).  

A similar trend in growth was observed with the SVGp12 cell line where cell number 

was not significantly different until after 48 hours incubation with 7 % replacement 

serum (Figure 3.2). In contrast to the U87MG cell line, SVGp12 cells grown in 7 % non-

cancerous human serum and 3 % FBS showed the greatest increase in cell number 

compared to both the 7 % glioma patient serum and 10 % FBS conditions (p < 0.001) 

(Figure 3.2D). Following culture in 10 % replacement serum SVGp12 cells incubated in 

10 % glioma patient serum showed a similar cell number to those cultured in 10 % FBS 

and no significant difference in cell number was observed between the glioma patient 

serum and FBS conditions (Figure 3.2D). 

Comparison of the two cell lines cultured in the same serum condition showed that cell 

numbers for U87MG were significantly higher than SVGp12 following 48 hours 

incubation with 7 % replacement serum and in the 10 % FBS control condition. Cell 

numbers were not significantly different for both cell lines in the same condition prior 

to incubation in 7 % replacement serum.   
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Figure 3.1 Growth of U87MG cells during serum replacement. A) U87MG cells cultured in glioblastoma patient serum. B) U87MG cells cultured in non-cancerous human serum. C) U87MG cells 

cultured in FBS. D) Combined growth curves of all serum types. Cell number for U87MG cells cultured in glioblastoma patient serum was signifcantly higher compared to those cultured in non-

cancerous human serum and FBS, ***p < 0.001. U87MG cells cultured in non-cancerous human serum had significantly higher cells numbers compared to FBS, **p < 0.01. Data shown as mean of 

triplicate experiments (n=9) with SD, analysed by two way ANOVA with Tukey post-hoc test. Ratios are shown as percentage of replacement serum to percentage of FBS.  
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*** 
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Figure 3.2 Growth of SVGp12 cells during serum replacement. A) SVGp12 cells cultured in glioblastoma patient serum. B) SVGp12 cells cultured in non-cancerous human serum. C) SVGp12 cells 

cultured in FBS. D) Combined growth curves of all serum types. There was no significant difference in cell number between cells cultured in glioblastoma patient serum and those cultured in FBS. 

SVGp12 cells cultured in non-cancerous human serum had a significantly higher cell number compared to those cultured in glioblastoma patient serum and FBS. Data shown as mean of triplicate 

experiments (n=9) with SD, analysed by two way ANOVA with Tukey post-hoc test ***p < 0.001. Ratios are shown as percentage of replacement serum to percentage of FBS. 

A B C 

D 

*** 



69 
 

3.2.2 The culture of U87MG and SVGp12 cells in replacement serum resulted 

in morphological changes  

 
The process of serum replacement was observed to have a morphological effect on 

U87MG cells. When cultured in the presence of either non-cancerous human or 

glioblastoma patient serum, the cells underwent changes in appearance (Figure 3.3).  

Serum-free medium was used as a control in morphology studies to determine the 

morphological response of cells to an absence of serum. 

The morphology of U87MG cells in non-cancerous human serum displayed spiky 

processes were star-like (Figure 3.3E-H). In human serum obtained from glioma 

patients, U87MG cells exhibited a more arranged morphology forming branched linear 

structures similar to an epithelial phenotype (Figure 3.3A-D). Conversely, the 

appearance of SVGp12 cells did not visibly alter when cultured in both cancerous and 

non-cancerous human serum compared to those cultured in 10 % FBS (Figure 3.4A-H).  

Changes in morphology of the U87MG cells was observed from 48 hours culture in 3 % 

replacement serum and 7 % FBS (Figure 3.3A). The linear structures of an epithelial 

phenotype were observed most frequently after 48 hours incubation with 10 % glioma 

serum alone (Figure 3.3D). In addition to the observed morphological changes, the 

culture of U87MG cells in human serum led to an increase in spheroid formations. 

These spheroids were mainly attached to the flask and those in the glioma patient 

serum were also incorporated into the linear structures which radiated from a central 

spheroid (Figure 3.3B).  The changes in morphology were most pronounced after 48 

hours culture in 10 % glioma patient serum (Figure 3.2D). 

The culture of cells in varying concentrations of serum free medium also led to a 

change in morphology. Non-viable cells for both U87MG and SVGp12 were observed as 

dark, detached, rounded cells (Figure 3.3I and 3.4I). In addition, the confluency of both 

cell lines was also greatly reduced compared to the other serum conditions. The 

culture of SVGp12 and U87MG cells in serum free medium led to the formation of both 

detached and attached spheroids (Figure 3.3 and 3.4). 
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Figure 3.3 Morphology of U87MG cells cultured in glioma patient serum and non-cancerous human serum. The culture of U87MG cells in glioblastoma patient serum was shown to cause a change 

in morphology with the formation of attached spheroids and elongated uniform arrangements of cells (A-D), seen most prominently following culture in 10 % human serum (D). U87MG cells cultured 

in non-cancerous serum exhibited a ‘star-like’ appearance similar to that of fibroblasts (E-H). Following culture in 10 % non-cancerous serum, spheroids were also observed (H). U87MG cells cultured 

in serum-free medium were observed to form detached spheroids (I). (J) U87MG cells cultured in standard 10 % FBS conditions. Images taken following 48 hrs culture in replacement serum 

concentrations at x10 magnification. 
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Figure 3.4 Morphology of SVGp12 cells cultured in 10 % glioma patient serum and 10 % non-cancerous human serum. Culture of SVGp12 in both glioma patient serum (A-D) and non-cancerous 

human serum (E-H) did not show any visible changes in morphology. SVGp12 cells cultured in serum free medium showed reduced confluency and an increase in necrotic cells (I). (J) SVGp12 cells 

cultured in standard 10 % FBS conditions. Images taken following 48 hrs culture in replacement serum concentrations at x10 magnification.  
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3.2.3 Immunostaining of U87MG and SVGp12 following serum replacement 

indicated cells had not undergone an epithelial-mesenchymal transition  

 
Changes in serum type could stimulate changes in cell phenotype due to differences in 

composition such as growth factors and miRNAs. To determine whether the 

morphological changes observed in Section 3.2.2 following serum replacement were 

associated with changes in cell phenotype, cells were immunostained for various 

markers. Neuronal and epithelial-mesenchymal transition markers were used to 

determine whether the structures seen were related to de-differentiation and re-

differentiation into an alternative cell phenotype and glial markers were also used to 

determine whether the cell lines had not changed in phenotype. SVGp12 and U87MG 

cells stained positive for glial fibrillary acidic protein (GFAP), a glial cell marker, and 

S100B, an astrocyte marker, in all serum conditions (Figure 3.5). U87MG and SVGp12 

cell lines cultured in all three serum conditions were negative for the neuronal specific 

markers (Figure 3.6 and 3.7). In the mesenchymal marker set all immunostaining of 

cells were negative except for vimentin which was positive for both 10 % glioma 

patient serum and 10 % FBS control in both SVGp12 and U87MG cultures (Figure 3.8).  
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Figure 3.5 Immunostaining of glial markers and negative control in U87MG and SVGp12 cells following serum replacement. U87MG and SVGp12 cells cultured in both glioma patient serum and FBS 

showed positive staining (indicated by brown colour) for GFAP and S100B and negative staining for the negative control containing no primary antibody. Cells were counterstained with haematoxylin. 
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Figure 3.6 Neuronal marker immunostaining of U87MG cells cultured in 10 % glioma patient serum and 10 % FBS.  

U87MG cells cultured in both glioma patient serum and FBS were negative for all neuronal markers. Positive 

controls GFAP and S100B (Figure 3.5). Cells were counterstained with haematoxylin.  
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Figure 3.7 Neuronal marker immunostaining of SVGp12 cells cultured in 10 % glioma patient serum and 10 % FBS.  

SVGp12 cells cultured in both glioma patient serum and FBS were negative for all neuronal markers. Positive 

controls GFAP and S100B (Figure 3.5).  Cells were counterstained with haematoxylin. 
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Figure 3.8 Mesenchymal marker immunostaining of U87MG and SVGp12 cells cultured in 10 % glioma patient serum and 10 % FBS.  SVGp12 and U87MG cells cultured in both glioma patient serum 

and FBS stained positive for vimentin. SVGp12 and U87MG cells cultured in both serum conditions were negative for both desmin and α-SMA. Positive controls GFAP and S100B (Figure 3.5).   
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3.2.4 MicroRNA expression of U87MG in standard culture conditions 

compared to SVGp12 

 
To elucidate the effect of serum replacement on miRNA expression of U78MG and 

SVGp12 cell lines, expression of miRNAs in cell lines cultured in standard conditions (10 

% FBS) was determined using the miScript brain cancer array panel.  MiRNA expression 

in U87MG cells was measured against SVGp12 cells as a control. MiR-29b-3p showed 

the greatest increase in fold change of 3.94 in U87MG compared to SVGp12. The 

remaining three up-regulated miRNAs, miR-9, miR-101 and miR-328, exhibited around 

a two-fold change (Figure 3.9).  Overall there was a greater number of miRNAs with a 

decrease in expression in the U87MG cell line compared to SVGp12. From the 84 

miRNAs within the panel, 28 showed a decrease in expression in the U87MG cell line 

compared to SVGp12 (Figure 3.10). Comparing the 28 miRNAs with reduced 

expression, miR-326 and miR-31-5p showed the greatest decrease in fold change of 

0.0065 and 0.0244 respectively.  

 

Figure 3.9 Intracellular expression of up-regulated miRNA in U87MG in standard culture conditions. Four miRNAs 

showed an increase in expression in U87MG cells cultured in 10 % FBS (n=1) compared to SVGp12 cells (n=1). MiR-

29b-3p showed the greatest increase in expression. MiR-101-3p, miR-328 and miR-9-5p showed a similar increase in 

expression in U87MG cells. Data shown as fold change expression compared to SVGp12 set at a standard value of 1. 
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Figure 3.10 Intracellular expression of miRNA with reduced expression in U87MG in standard culture conditions. A total of 28 miRNAs showed reduced expression in U87MG cells 

cultured in 10 % FBS (n=1) compared to SVGp12 cells (n=1). MiR-326 and miR-31-5p showed the greatest decrease in expression in U87MG cells. Data shown as fold change expression 

compared to SVGp12 set at a standard value of 1.  
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3.2.5 MicroRNA expression in U87MG and SVGp12 cells following Serum 

Replacement 

 
Following analysis of miRNA expression of U87MG and SVGp12 in standard FBS 

conditions (Section 3.2.4), the four up-regulated miRNAs (miR-101-3p, 29b-3p, 328, 9-

5p) and four miRNAs (miR-326, 31-5p, 141, 148a) with the largest magnitude of 

reduced expression were chosen to determine whether serum replacement would 

cause a change in intracellular miRNA expression in the cell lines. U87MG and SVGp12 

cells were weaned from 10 % FBS onto either 10 % serum from glioma patients or 10 % 

serum from non-cancerous patients (Section 2.1.7). Cells were cultured for 48 hours in 

10 % replacement serum to allow one full cell cycle, then total RNA was extracted and 

used to analyse miRNA expression. Further to this, extracellular miRNA expression in 

the spent media of weaned cell lines was compared to those cultured in FBS, to 

determine whether serum replacement would affect the expression of secreted 

exosomal miRNAs.  The miRNAs with reduced expression, miR-141 and 31-5p, were 

not detected in any of the serum conditions intracellularly or extracellularly for both 

U87MG and SVGp12.  

From the eight miRNAs chosen for this study, miR-148a alone was found to be 

expressed in exosomes isolated from the spent media of both SVGp12 and U87MG cell 

lines (Figure 3.11), for all three serum conditions. Changing the serum in the culture 

media from 10 % FBS to 10 % glioma patient serum or 10 % control serum did not 

significantly alter miR-148a secreted into the spent media extracellularly for either 

U87MG or SVGp12 (Figure 3.11A and B). MiR-148a detection was significantly higher (p 

< 0.001) in the medium of U87MG cells cultured in 10 % glioma serum (Figure 3.11C), 

10 % non-cancerous serum (Figure 3.11D), and 10 % FBS (p < 0.01)(Figure 3.11E) 

compared to the media of SVGp12 cells.  
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Figure 3.11 Extracellular expression of miR-148a in U87MG cells following serum replacement. A) Comparison of miR-148a expression in U87MG cultured in different serum conditions. No 

significant difference was observed between the three serum conditions by one-way ANOVA with Tukey post-hoc test. B) No significant difference in miR-148a expression was observed in SVGp12 

cells cultured in 10 % replacement human serum compared to 10 % FBS by one-way ANOVA with Tukey post-hoc test. C) MiR-148a expression in U87MG cells cultured in 10 % glioma patient serum 

was significantly higher compared to SVGp12 by student’s t-test. D) MiR-148a expression in U87MG cells cultured in 10 % non-cancerous human serum was higher compared to SVGp12. E) MiR-148a 

expression in U87MG cells cultured in 10 % FBS was significantly higher compared to SVGp12.Data shown as mean of triplicate experiments with SD with control SVGp12 expression set to a standard 

value of 1. Significance between groups indicated by a solid black line, p > 0.05, **p < 0.01, ***p < 0.001. 
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A comparison of intracellular U87MG cells cultured in the three different serum 

conditions showed a significantly (p < 0.01) higher level of expression of miR-148a in 

U87MG cells cultured in non-cancerous human serum and those cultured in FBS 

(Figure 3.12A). There was no significant difference in intracellular expression of miR-

148a in SVGp12 cells cultured in the three serum conditions (Figure 3.12B). 

Intracellular miR-148a expression was significantly (p < 0.01) reduced in U87MG cells 

cultured in glioma patient serum and FBS compared to SVGp12 cells cultured in the 

same conditions (Figure 3.12C and D). There was no significant difference in 

intracellular miR-148a expression between U87MG and SVGp12 cells cultured in non-

glioma patient serum (Figure 3.12D).   
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Figure 3.12 Intracellular expression of miR-148a in U87MG cells following serum replacement. A) Comparison of miR-148a expression in U87MG cells cultured in three serum conditions. MiR-148a 

was significantly higher in U87MG cells cultured in 10 % non-cancerous serum compared to 10 % FBS by one way ANOVA with Tukey post-hoc test. B) Expression of miR-148a in SVGp12 cells cultured 

in varying serum conditions was not significantly different. C) Expression of miR-148a in U87MG cells cultured in 10 % glioma patient serum was reduced compared to SVGp12, student’s t-test. D) 

Expression of miR-148a in U87MG cells cultured in 10 % non-cancerous human serum was not significantly different compared to SVGp12. E) Expression of miR-148a in U87MG cells cultured in 10 % 

FBS was down-regulated compared to SVGp12. Data shown as mean of triplicate experiments with SD with control SVGp12 values set to a standard value of 1 (A, C-E) and B) control FBS set to a 

standard value of 1. Significance between groups indicated by a solid black line, p > 0.05, **p < 0.01, ***p < 0.001. 

** C 
*** 

E D 

B A 



83 
 

MiR-101 was expressed in U87MG cells alone (Figure 3.13). Furthermore, expression of 

miR-101 was not detected in the spent media of U87MG cells cultured in all three 

serum conditions. Higher expression of miR-101 in U87MG cells compared to SVGp12 

correlated with the data shown in Figure 3.9. MiR-101 was significantly higher (p = 

0.0106) in U87MG cells cultured in 10 % glioma patient serum compared to those 

cultured in FBS. U87MG cells cultured in 10 % non-cancerous human serum also 

exhibited a significantly higher expression (p = 0.0106) of miR-101 compared to FBS. 

There was no significant difference in miR-101 expression between U87MG cells 

cultured in glioma patient serum and non-cancerous human serum.  

 

                

Figure 3.13 Intracellular expression of miR-101 in U87MG cells following serum replacement. Expression of miR-

101 in U87MG cells cultured in 10 % glioma patient serum and 10 % non-cancerous human serum was significantly 

higher compared to U87MG cells cultured in standard 10 % FBS conditions by one way ANOVA with Tukey post-hoc 

test, p<0.05. Data shown as mean of triplicate experiments with SD with 10 % FBS control value set to a standard 

value of 1. Significance between groups indicated by a solid black line, *p = 0.0106. 

 

Intracellular miR-29b was significantly higher (p < 0.01) in all three serum conditions 

for U87MG compared to SVGp12 (Figure 3.14B, C and D).  

 

* 
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Figure 3.14 Intracellular expression of miR-29b in U87MG cells following serum replacement. A) Comparison of miR-29b in U87MG cells cultured in three serum conditions. There was no significant 

difference in miR-29b expression in U87MG cells cultured in 10 % human serum or 10 % FBS. B) Expression of miR-29b in U87MG cells cultured in  10 % glioma patient serum was up-regulated 

compared to SVGp12, student’s t-test, p <0.01. C) Expression of miR-29b in U87MG cells cultured in 10 % non-cancerous human serum was up-regulated compared to SVGp12, student’s t-test, p < 

0.001. D) Expression of miR-29b in U87MG cells cultured in 10 % FBS was up-regulated compared to SVGp12, student’s t-test, p < 0.001. Data shown as mean of triplicate experiments with SD with 

control SVGp12 expression set to a standard value of 1.  
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MiR-328 was not expressed in SVGp12 cells in any of the three serum conditions but 

was expressed in U87MG cells (Figure 3.15). Expression was slightly reduced in U87MG 

cells cultured in 10 % glioma serum compared to the FBS control. U87MG cells cultured 

in 10 % non-cancerous human serum expressed miR-328 at a slightly higher level than 

cells cultured in FBS. The changes observed however, were not significantly different (p 

> 0.05).   

             

Figure 3.15 Intracellular expression of miR-328 in U87MG cells following serum replacement. Expression of miR-

328 in U87MG cells cultured in 10 % glioma patient serum and 10 % non-cancerous human serum was not 

significantly different compared to U87MG cells cultured in 10 % FBS. Data shown as mean of triplicate experiments 

with SD with control FBS set to a standard value of 1.   

 

MiR-9 was also expressed in U87MG cells alone and in all three serum conditions miR-

9 was not significantly reduced (p > 0.01) in U87MG cells cultured in glioma patient 

serum compared to those cultured in FBS. No significant difference in expression (p > 

0.01) was observed between U87MG cells cultured in non-cancerous human serum 

and either FBS or glioma patient serum (Figure 3.16).  
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Figure 3.16 Intracellular expression of miR-9 in U87MG cells following serum replacement. Expression of miR-9 in 

U87MG cells cultured in both 10 % non-cancerous human serum and 10 % glioma patient serum was not 

significantly different compared to U87MG cells cultured in 10 % FBS p > 0.01. Data shown as mean of triplicate 

experiments with SD with control FBS set to a standard value of 1.  

 

Comparison of the three serum conditions showed that miR-326 was significantly 

higher (p < 0.001) in U87MG cells cultured in non-cancerous human serum compared 

to U87MG cells cultured in glioma patient serum and FBS (Figure 3.17A). In contrast, 

miR-326 was not significantly different (p > 0.01) in SVGp12 cells grown in glioma 

serum compared to cells grown in non-cancerous serum (Figure 3.17B). SVGp12 cells 

grown in either 10 % glioma serum or FBS showed no significant difference in 

intracellular miR-326 expression than U87MG cells grown in the same conditions (p > 

0.01) (Figure 3.17C and). Conversely, U87MG cells grown in 10 % control patient serum 

showed a significantly higher level of intracellular miR-326 expression than SVGp12 (p 

< 0.01).  
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Figure 3.17 Intracellular expression of miR-326 in U87MG cells following serum replacement. A) Comparison of miR-326 expression in U87MG cells cultured in different serum conditions. MiR-326 

was significantly increased in U87MG cells cultured in 10 % non-cancerous human serum compared to those cultured in 10 % FBS. U87MG cells cultured in 10 % non-cancerous human serum had a 

higher expression of miR-326 compared to those cultured in 10 % glioma patient serum. B) Expression of miR-326 in SVGp12 cells grown in varying serum conditions was not significantly different 

between SVGp12 cells cultured in 10 % glioma serum and 10 % non-cancerous serum. C) Expression of miR-326 in U78MG cells in 10 % glioma patient serum was reduced compared to SVGp12. D) 

Expression of miR-326 in U87MG cells cultured in 10 % non-cancerous human serum was higher compared to SVGp12. E) Expression of miR-326 in U87MG cultured in 10 % FBS was reduced compared 

to SVGp12. Data shown as triplicate experiments with SD with control SVGp12 set to a standard value of 1 (A, C-E) and B) control FBS set to a standard value of 1. Significance between groups 

indicated by solid black line, *p < 0.05, **p < 0.01, ***p < 0.001.  
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3.3 Discussion  

 
A human cell culture model for the investigation of miRNA expression has been 

developed using serum replacement techniques to wean cells off FBS and onto human 

serum. The differential effects of human serum from both glioma and non-cancer 

control subjects on the morphology and growth of U87MG and SVGp12 cells suggests a 

variance in sera compositions. Whilst the precise difference in serum composition is 

unknown, changes in miRNA expression as identified in previous studies could 

potentially be a contributing factor to the results observed in this study (Roth et al., 

2011, Yang et al., 2013b). Previously, analysis of tumour derived exosomes has 

identified differences in protein, mRNA and miRNA expression (Xiao et al., 2012). 

Profiling of melanoma cell line derived exosomes and non-cancerous melanocyte cell 

line exosomes showed distinct profiles of differentially expressed proteins and mRNAs 

as well as tumour-specific oncogenic miRNAs (Xiao et al., 2012). The proteins and RNA 

present within melanoma exosomes were found to play a role in cell migration, 

invasion and proliferation (Xiao et al., 2012). The cellular uptake of exosomes of 

different protein and RNA composition present in non-cancerous and cancerous serum 

could therefore result in differences in cell growth and phenotype as observed in this 

study.  

In this study, the culture of U87MG and SVGp12 cells in sera from both cancerous and 

non-cancerous subjects resulted in an increase in cell number compared to standard 

FBS. The presence of exosomes within the replacement serum could have resulted in 

the increase in cell number. The application of glioblastoma exosomes to U87MG cells 

has previously been shown to increase their proliferative potential (Skog et al., 2008). 

The application of exosomes to cell culture in increasing concentrations has also shown 

a dose-dependent increase in proliferation and glycolytic activity (Graner, 2011). In the 

current study however, cells were not cultured with human derived exosomes alone 

but with whole replacement serum containing growth factors and signalling molecules 

which could also cause an increase in cell number. To determine whether the increase 

in cell number was a result of exosomes U87MG and SVGp12 cells could be cultured 

with exosomes, enriched from cancerous and non-cancerous serum and cell numbers 

compared to U87MG and SVGp12 cells cultured in whole replacement serum and 

standard FBS.   
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The changes in morphology observed following serum replacement could have been a 

result of transdifferentiation of cells into a different phenotype. Initial investigations 

were therefore performed to determine whether the changes were due to the 

expression of neuronal markers. Immunohistochemical staining for neuronal markers 

however was negative for both U87MG and SVGp12 in all three serum conditions. This 

suggested that the acquisition of a neuronal phenotype had not occurred following 

serum replacement.  

In glioma, including glioblastoma, cells undergo an epithelial-mesenchymal transition 

(EMT) to facilitate tumour progression and metastasis. Tumour cells undergoing EMT 

undergo both molecular reprogramming and morphological changes to acquire 

invasive characteristics which allow them to alter the microenvironment, enter the 

stroma and promote metastasis (Iwatsuki et al., 2010). EMT is initially characterised by 

the loss of endothelial markers such as E-cadherin and the acquisition of mesenchymal 

markers such as vimentin, through alterations in signalling pathways which regulate 

these proteins. E-cadherin is an epithelial-specific transmembrane glycoprotein which 

forms tight junctions with neighbouring cells, reduced expression of E-cadherin causes 

the loss of cell-cell adhesion (Iwatsuki et al., 2010). Clinically, the loss of E-cadherin is 

often associated with an aggressive phenotype and poor prognosis (Gregory et al., 

2008). Following the induction of mesenchymal marker expression, cells undergo 

cytoskeletal remodelling and subsequent changes in cell-matrix adhesion through 

activation of proteolytic enzymes such as MMPs (Iwatsuki et al., 2010).  

Research has also identified a role for miRNAs in EMT miRNA microarray profiling has 

identified the miR-200 family and miR-205 as regulators of EMT. These miRNAs repress 

EMT by targeting critical signalling pathways and inhibitors of E-cadherin, ZEB1 and 

ZEB2 (Gregory et al., 2008). Down-regulation of these miRNAs in cancer promotes EMT 

and subsequent invasion (Gregory et al., 2008). Following transition to a mesenchymal 

phenotype, cells display a spindle-shaped morphology and have increased migratory 

ability (Iwatsuki et al., 2010). 

Following serum replacement and culture in 10 % glioma serum, U87MG cells were 

observed to have spindle-shape morphology consistent with that observed following 

EMT. This morphology however was also observed in U87MG cells cultured in 10 % 
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non-cancerous serum suggesting that factors within the serum which caused this 

alteration may not be glioblastoma specific and not a result of EMT.  Further to this, 

staining for EMT markers was negative except for vimentin which stained positive for 

both cell lines cultured in both glioma serum and FBS. Vimentin is an intermediate 

filament expressed in cells (Schiffer et al., 1986) that is up-regulated in EMT (Lee et al., 

2006). The strength of staining for the vimentin marker in both cell lines did not 

appear to be increased in the U87MG cells compared to those cultured in glioma 

serum compared to FBS and the SVGp12 cell line cultured in both serum conditions. 

Along with the negative staining of desmin and α-SMA EMT markers, this suggests that 

the U87MG cells cultured in glioma serum had not undergone EMT.   

Both U87MG and SVGp12 stained positive for the glial marker GFAP and the astrocyte 

marker S100B. GFAP is the main intermediate filament in astrocytes which modulates 

astrocyte motility and shape (Eng et al., 2000). S100B is a protein of the S100-

calmodulin-troponin family and is an astrocyte specific marker (Adami et al., 2001). 

Positive staining for the glial and astrocyte cell markers again supported the conclusion 

that the cells had not undergone EMT.  

Cells undergo changes in shape and therefore morphology by rearrangement of the 

cytoskeleton changes (Bissell et al., 2003), biochemical changes and changes in gene 

expression (Kenny et al., 2007). The culture of U87MG cells in both cancerous and non-

cancerous human serum caused changes in morphology, culture of SVGp12 cells in the 

same conditions however, did not result in any clear changes in morphology and in 

addition, immunostaining confirmed retention of a glial phenotype. This suggests a cell 

type specific response to changes in serum conditions which may be a result of 

differences in gene and protein expression between the two cell lines and not 

transdifferentiation into a new cell phenotype.  

In comparison to replacement of serum type, the effect of serum-free conditions on 

cell line morphology U87MG and SVGp12 cells was also determined. Cells were 

cultured in decreasing concentrations of FBS and increasing concentrations of serum 

free medium. The culture of both cell lines in serum-free medium resulted in the 

formation of spheroids, a visual reduction in cell number and an increase in necrotic 

cells. There were no apparent similarities in morphology between U87MG and SVGp12 
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cells cultured in serum-free medium compared to those cultured in both cancerous 

and non-cancerous human serum. When cultured in serum free medium both cell lines 

showed an increase in necrotic cells and a reduction in cell number, this suggested that 

the cell may have been weaned too quickly to adjust to the stress of the new serum 

condition rather than an effect of the serum free medium.    

To determine whether the culture of U87MG and SVGp12 in human serum caused a 

change in miRNA expression, miRNA profiles of U87MG cells compared to SVGp12 cells 

both grown in standard 10 % FBS serum conditions were determined. U87MG cells in 

standard culture conditions showed reduced expression of 28 miRNAs and increased 

expression of four miRNAs compared to non-cancerous SVGp12 cells. The general 

decrease in miRNA expression is similar to the global decrease in miRNA expression 

observed in tumour tissues (Calin and Croce, 2006). MiR-326 and 31-5p showed the 

greatest decrease in expression in U87MG cell lines compared to SVGp12. Out of the 

28 miRNAs reduced in U87MG cells cultured in 10 % FBS, 16 are expressed at a lower 

level in glioblastoma tissue (Table 3.1) and 12 are increased (Table 3.2). MiR-190a 

expression, targets and role in glioma has not previously been studied. MiR-187 

altered expression has been identified, however, targets and function in glioma has 

not yet been elucidated. MiR-130b has been identified to have a role in the regulation 

of metastasis, however the targets of miR-130b have not yet been validated.  
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Table 3.1 Expression of miRNA down-regulated in both U87MG cells and glioblastoma tissue 

 

 

 

 

 

Table 3.2 Expression of miRNA down-regulated in U87MG cells and up-regulated in glioblastoma tissue 

MicroRNA Expression in GBM Targets Role Reference 
miR-107 Down VEGF,  

Notch 2 
Migration, Invasion  (Singh et al., 2012, 

Chen et al., 2013) 

miR-125a Down ERBB2, PDPN Invasion  (Henriksen et al., 
2014a, Cortez et 
al., 2010) 

miR-128 Down E2F3a Proliferation  (Zhang et al., 2009) 

miR-132 Down CDKN1A Gliomagenesis (Singh et al., 2012) 

miR-138 Down IGF1R, 
ROCK2 

Proliferation, 
apoptosis 

(Wang et al., 2012, 
Singh et al., 2012) 

miR-146a Down EGFR, 
 Notch 1 

Glioma growth and 
migration 

(Mei et al., 2011) 

miR-16 Down BCL2 Glioma growth and 
invasion 

(Yang et al., 2014) 

miR-18a Down Smad3 Migration, radiation 
resistance 

(Fox et al., 2013) 

miR-200a Down Β-catenin Cell growth and 
survival 

(Su et al., 2012) 

miR-203a Down Robo1 Migration (Dontula et al., 
2013) 

miR-31 Down Radixin Invasion and 
migration 

(Hua et al., 2012a) 

miR-326 Down PKM2,  
Notch 1/2 

Metabolism, 
proliferation  

(Singh et al., 2012) 

miR-7 Down EGFR Invasion (Kefas et al., 2008) 

miR-187 Down  - - (Wang et al., 2012) 

miR-425 Down  Notch1/2 Proliferation, 
radioresistance, 
‘stemness’ 

(Singh et al., 2012) 

MicroRNA Expression in GBM Targets Role Reference 
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Three of the four miRNAs with increased expression in U87MG cells cultured in 

standard FBS conditions have been found to show reduced expression in glioblastoma 

tissue. The four miRNAs with increased expression in U87MG cells were miR-101-3p, 

29b-3p, miR-328 and miR-9-5p. MiR-101 expression is reduced in glioblastoma tissue 

which subsequently promotes proliferation, migration and angiogenesis due to the 

overexpression of the miR-101 target EZH2 (Smits et al., 2010). MiR-29b is also down-

regulated in glioblastoma tissue and plays a role in suppressing invasion by targeting 

podoplanin membrane sialo-glycoprotein (PDPN) (Cortez et al., 2010). MiR-29b also 

targets Cdc42 a GTPase which regulates cell morphology and migration signalling 

miR-183 Up EGR1 Migration  (Sarver et al., 

2010) 

miR-106b Up RBL2 Proliferation (Zhang et al., 2013) 

miR-130b Up - Metastasis (Su et al., 2010) 

miR-141 Up PTEN, TGFB2 Glioma growth, 

invasion  

(Singh et al., 2012, 

Koul, 2008) 

miR-148a Up MIG6, BIM Apoptosis  (Kim et al., 2014) 

miR-17-5p Up PTEN Invasion, migration (Li and Yang, 2013) 

miR-17-3p Up MDM2 Proliferation and 

drug resistance 

(Li and Yang, 2013) 

miR-182 Up CYLD, TNIP1, 

OPTN, USP15 

Invasion, 

angiogenesis 

(Song et al., 2012) 

miR-19b Up PTEN Gliomagenesis (Jia et al., 2013) 

miR-20a Up E2F1/2/3, 

PTEN, NRAS 

Apoptosis, 

proliferation  

(Sylvestre et al., 

2007, Singh et al., 

2012) 

miR-93 Up Integrin-β8 Glioma growth, 

angiogenesis 

(Fang et al., 2011) 

miR-96 Up HBP1 Proliferation  (Yan et al., 2014) 
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pathways (Cortez et al., 2010) and can induce apoptosis by up-regulating p53 (Park et 

al., 2009). MiR-328 expression is also reduced in glioblastoma tissue and plays a role in 

cell cycle progression, high expression of miR-328 in U87MG cells has been shown to 

suppress proliferation (Wu et al., 2012). MiR-9 has been found to be highly expressed 

in glioblastoma tissue and suppresses the mesenchymal differentiation of GBM cells as 

well as promoting chemoresistance to TMZ by inducing the expression of the drug 

efflux transporter, p-glycoprotein (Munoz et al., 2013).   

Differences in expression between the U87MG cell line and glioblastoma may be a 

result of culture artefacts, such as mutations which occur as a result of establishment 

and long term culture of cells, therefore acquired mutations may cause an alteration in 

miRNA expression not representative of glioblastoma. Genomic analysis of established 

glioma cell lines including U87MG identified recurrent aberrations and global gene 

expression clusters not represented in primary gliomas, suggesting that established 

glioma cell lines, including U87MG, are poorly representative of primary gliomas (Li et 

al., 2008). Although miRNA expression was not determined by Li et al., changes in gene 

expression will most likely affect miRNA expression and therefore the data observed in 

this study. Conversely, the use of one U87MG and SVGp12 sample may have affected 

the data observed as the changes in miRNA expression observed in this study may be 

specific to these samples.   

Following identification of miRNAs with altered expression in U87MG cells cultured in 

FBS, the effect of serum replacement on the expression of selected miRNAs identified 

was investigated. MiR-148a alone was detected extracellularly in exosomes isolated 

from the spent media. The presence of this single miRNA out of the 8 chosen may be 

due to the selective packaging of exosomes (Chen et al., 2012). MiR-148a plays a role 

in a number of glioblastoma functions including cell growth, survival, migration and 

invasion (Kim et al., 2014). MiR-148 targets include MIG6 which regulates EGFR, and 

BIM which regulates apoptosis (Kim et al., 2014). The extracellular presence of miR-

148a may be due to its migratory and invasive promoting properties, as uptake of 

exosomal miR-148a by recipient cells may result in recruitment of neighbouring cells in 

the tumour microenvironment to promote invasion (Skog et al., 2008). Comparison of 

intracellular and extracellular miR-148a expression showed that expression of this 

miRNA was higher in the medium than in the cell. Again, this may be due to selective 
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exosomal packaging of miRNAs. Expression of miR-148a was higher in U87MG cells 

cultured in non-cancerous human serum compared to glioma serum. 

MiR-148a exhibited a higher intracellular expression in U87MG cells cultured in glioma 

serum and non-cancerous serum. This suggests that the culture of U87MG cells in 

human serum caused an increase in expression of this miRNA. Intracellular expression 

of miR-148a was higher in U87MG cells cultured in non-cancerous human serum 

compared to those cultured in glioma serum and this trend was also observed in the 

extracellular expression of miR-148a. The high expression of miR-148a in U87MG cells 

cultured in both cancerous and non-cancerous serum suggests factors in human serum 

which promote the up-regulation of this miRNA. The higher expression of miR-148a in 

U87MG cells cultured in non-cancerous serum suggests that the components which 

cause this up-regulation are present at a higher level in non-cancerous serum 

compared to glioma serum.  

Although miR-148a is a tumour promoting miRNA up-regulated in glioblastoma tissue, 

U87MG cells cultured in FBS showed a reduced expression of miR-148 compared to 

SVGp12 determined by both the miScript analysis and the subsequent serum weaning 

study.  This again highlights the difference in gene and protein expression observed 

between the U87MG cell line and glioblastoma tissue (Li et al., 2008).  

Out of the eight miRNAs, three were not detected in the SVGp12 cells in any of the 

culture conditions and miR-141 and 31-5p were not detected in any of the serum 

conditions for both cell lines. This may be due to the expression of these miRNAs being 

below the limit of detection. The detection of these miRNAs in U87MG cells suggests 

that these miRNAs may be expressed at a higher level than in SVGp12 cells.  

Expression of miR-101 was not significantly different in U87MG cells cultured in both 

glioma patient serum and non-cancerous human serum compared to those cultured in 

FBS. This suggests that factors present in both cancerous and non-cancerous human 

serum do not affect the expression of miR-101.  

The intracellular expression of miR-29b and 328 was not significantly different 

between the three culture conditions suggesting that factors within the glioma and 

non-cancerous serum do not affect the expression of these miRNAs or the 

transcription factors which may target them and regulators of their expression. 
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Furthermore miR-328 was not detected in SVGp12 cells and expression of miR-29b was 

up-regulated in all three serum conditions in U87MG compared to SVGp12, suggesting 

that both the miRNAs are up-regulated in U87MG cells however this up-regulation is 

not dependent on serum type.  

Intracellular expression of miR-9 was highest in U87MG cells cultured in 10 % FBS and 

was not significantly different in U87MG cells cultured in glioma patient serum 

compared to FBS. MiR-9 however, has been previously found to be highly expressed in 

glioblastoma (Malzkorn et al., 2010). MiR-9 inhibits proliferation of glioma cells by 

targeting CREB and promotes migration by targeting NF1 (Tan et al., 2012a). 

Expression of intracellular miR-326 was not significantly different in U87MG cells 

cultured in 10 % glioma serum and FBS compared to SVGp12. MiR-326 is a tumour 

suppressor, the down-regulation of which contributes to tumourigenesis and invasion 

in glioma (Wang et al., 2013). The culture of U87MG cells in non-cancerous human 

serum had no significant effect on the expression of miR-326. Down-regulation of miR-

326 is believed to be as a result of decreased expression of its host gene, Arrestin β1 

(Jiang et al., 2014). MiRNA expression can be down-regulated by transcriptional 

repression by various transcription factors, therefore the up-regulation of transcription 

factors in glioma serum compared to non-cancerous human serum may have resulted 

in the down-regulation observed in U87MG cells cultured in glioma serum and the up-

regulation observed in those cultured in non-cancerous serum. Conversely, the 

presence of proteins in the non-cancerous human serum which may inhibit a miR-326 

repressor may have also resulted in the observed up-regulation in U87MG cells 

cultured in this serum type. MiR-326 has been found to be up-regulated following the 

knockdown of Notch-1 (Kefas et al., 2009). Furthermore, miR-326 is part of a 

regulatory feedback loop, in which miR-326 inhibits the Notch pathway and in turn is 

inhibited itself by Notch (Kefas et al., 2009).  Comparison of U87MG miR-326 

expression in the three serum conditions showed a significant up-regulation in non-

cancerous human serum compared to both glioma patient serum and FBS. MiR-326 

was also significantly higher in U87MG cells cultured in glioma patient serum 

compared to those cultured in FBS. 
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Analysis of the effects of serum replacement on U87MG and SVGp12 cell lines showed 

that the culture of these cell lines in both cancerous and non-cancerous human serum 

had cell growth and morphological effects. Initial studies identifying miRNA expression 

of cell lines in standard culture conditions showed differences in miRNA expression 

between U87MG and SVGp12. Cell culture in human serum caused changes in miRNA 

expression suggesting differences in composition between human and bovine serum. 

Furthermore changes in miRNA expression were observed in cells cultured in non-

cancerous and cancerous serum. The intracellular miRNA expression of cell lines 

observed in this study was different to that of glioblastoma serum therefore caution 

should be exercised when extrapolating miRNA data from in vitro cell culture, and all 

components should ideally be defined to accurately determine the source of variation.   

Overall, the data collected within this study suggests that the composition of serum is 

different between patients with and without glioblastoma and that serum can alter 

miRNA expression of cells in culture. The identification of differences in miRNA could 

be used for biomarkers for diagnosis of glioblastoma. Further studies were performed 

to determine whether serum miRNA expression differed between glioblastoma 

patients and control patients and whether these differences could be used as 

biomarkers.   
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4.1 Introduction  

 
MiRNAs are present in the serum of both healthy and diseased individuals. The expression 

levels of these miRNAs can alter during disease, therefore the identification of miRNA 

which alter in a disease specific manner could be utilised as biomarkers (Chen et al., 

2008). Serum miRNA biomarkers would be particularly useful for diagnosis, prognosis and 

predicting response to treatment for glioma as they provide a relatively non-invasive test 

and would require only a blood sample in comparison to the current diagnostic method of 

surgical brain biopsy. The detection of miRNA in serum samples can be performed by 

techniques such as SOLEXA sequencing (Ji et al., 2014), qRT-PCR (Kroh et al., 2010) and 

microarray (Lodes et al., 2009). These techniques are sensitive and can detect low copy 

numbers of miRNA (Chen et al., 2005).   

Data from Chapter 3 (Section 3.2.5) showed that immortalised cell lines U87MG and 

SVGp12 cultured in either human serum from glioblastoma patients or individuals without 

glioblastoma differed in the morphology, growth and expression of miRNA. One of the 

factors which differ between cancerous and non-cancerous serum is the miRNA profile 

(Chen et al., 2008). Changes in miRNA expression in the serum of glioblastoma patients 

have already been identified and therefore have the potential to be used as biomarkers 

for this disease (Yang et al., 2013b). The aim of this chapter was to identify miRNA with 

altered expression in the serum of glioblastoma patients and investigate the use of 

miRNAs as diagnostic and prognostic biomarkers. The potential of altered miRNA 

expression in glioblastoma patient serum for prognostic information was determined 

utilising survival data of the patients used in this study.  

The attractiveness of miRNAs as circulatory biomarkers has led a number of studies to 

identify serum miRNA signatures which could be used for glioblastoma detection 

(Baraniskin et al., 2012, Chen et al., 2008, Noerholm et al., 2012), however, few of these 

studies have investigated the effects of variables such as age and gender on the 

expression profile of glioblastoma patients. Recently variables such as age and gender 

were shown to affect serum expression of some miRNAs in non-cancerous individuals 

(Sawada et al., 2014). As shown in Section 1.1.2, epidemiological data indicate that the 



100 
 

incidence of glioblastoma differs depending on the gender and age of a patient. The 

incidence of glioma is higher in males compared to females and increases with age 

(Crocetti et al., 2012) suggesting differences in the molecular characteristics of 

glioblastomas between individuals which could include miRNA expression. This study 

therefore aimed to not only identify a serum miRNA profile for glioblastoma patients but 

to also investigate the effect of age and gender on miRNA expression to provide a more 

accurate biomarker panel for glioblastoma.  
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4.2 Results 

4.2.1 MiScript MicroRNA Expression in Serum Obtained from Glioblastoma 

Patients Aged between 20 and 39 Years. 

 
In order to select miRNA biomarkers for glioblastoma, initial studies were performed to 

determine the miRNA profile of serum from glioblastoma patients analysed in gender and 

age groups selected based on those used by Crocetti et al., (2012). Serum expression 

profiles were elucidated using the miScript brain cancer array and analysed using the 

online PCR array tool. MiRNAs were scored either A, B or C by the online tool from the 

average Ct value, where C was a miRNA whose calculated fold change may not be 

representative of the actual fold change. These data were used to identify dysregulated 

miRNAs which could be further studied for use as biomarkers. Serum samples from 18 

glioblastoma patients and 18 control patients, three male and three female samples for all 

three age groups, were individually analysed in matched groups in order to identify age 

and gender specific miRNA expression.  

In the 20-39 glioblastoma age group, eight miRNAs exhibited altered expression in all 

three serum samples for both males and females compared to age matched controls 

(Table 4.1). Comparison of the eight miRNAs identified five miRNAs with a similar fold 

change in expression for both genders with the exception of miR-16-5p, 15b-5p and 451a. 

MiR-16-5p had a 3.5 fold increase in expression in male samples compared to a 15.3 fold 

up-regulation in female samples. MiR-15b-5p showed a 2.76 fold increase in expression in 

female patient serum and a 4.17 fold increase in male patient serum. MiR-486-5p showed 

a 5.1 fold increase in expression in the male samples however a reduction in expression 

was observed in the female samples. MiR-451a showed a 4.5 fold increase in expression in 

male samples whereas female samples showed a 39.7 fold increase.  

Analysis of serum samples obtained from glioblastoma patients aged between 20 and 39 

years identified 13 miRNAs with an increase in expression in all three samples tested in 

the female group (Figure 4.1A). MiR-451a exhibited the highest fold change increase in 

expression of 39.7 fold. Analysis of miRNA expression in the serum of male glioblastoma 

patients aged between 20 and 39 years identified 17 miRNAs with an increase in 
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expression, but no miRNAs were observed to be reduced. Let-7b-5p exhibited the greatest 

increase in expression in the male 20-39 age group compared to matched controls (Figure 

4.1B).   

Three miRNAs showed an increase in expression in the sera of female patients only, miR-

29c-3p, 27a-3p and 24-3p (Figure 4.2A). The expression of six miRNAs were increased in 

the sera of male 20-39 patients alone; let-7-5p, miR-25-3p, 26a-5p, 92a-3p, 144-3p and 

320a (Figure 4.2B).   

Table 4.1 MiRNAs dysregulated in the serum of both male and female glioblastoma patients aged between 20 and 39 
years compared to age and sex matched controls. 

 Female  Male  

MiRNA Average Fold Change  SD Average Fold Change  SD 

miR-15b-5p 2.76 1.09 4.17 0.42 

miR-16-5p 15.30 6.08 3.50 0.95 

miR-17-5p 2.47 2.47 2.46 0.58 

miR-19a-3p 4.38 0.86 4.71 0.72 

miR-23a-3p 3.43 0.32 2.50 0.29 

miR-148a-3p 3.68 1.23 2.25 0.25 

miR-191-5p 4.26 0.89 5.07 0.37 

miR-451a 39.70 19.73 4.50 0.82 
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Figure 4.1 Expression of miRNAs in the serum of glioblastoma patients aged between 20 and 39 years. A) Average miRNA fold change in female glioblastoma patients aged between 20 

and 39 years showed a number of miRNAs undetected in the sample set. The majority of the miRNAs dysregulated in this cohort were increased (red). B) Average fold change of miRNA 

in male glioblastoma patients aged between 20 and 39 years. The majority of miRNAs in this cohort were increased compared to gender and age matched controls. Heat map is 

representative of all three patient samples analysed showing all miRNAs scored A, B and C using online data analysis tool, line H of 96 well plate containing controls is not included in the 

heat maps. Ce: C. elegans primer assay, SN1-6: snoRNA/snRNA PCR controls, miRTC: Reverse transcription control, PPC: Positive PCR control. 

A B 
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Figure 4.2 Expression of dysregulated miRNAs in the serum of glioblastoma patients aged between 20 and 39 years 

compared to age and sex matched controls. A) 13 miRNAs were increased in the serum of female glioblastoma patients 

between 20 and 39 years, with miR-451a showing the greatest increase in expression. B) 17 miRNAs were increased in 

the serum of male glioblastoma patients aged between 20 and 39 years with let-7b-5p showing the greatest increase in 

expression. No miRNAs were observed to be reduced in the male cohort. Data shown as mean of triplicate samples plus 

SD, representative of 3 samples per group, normalised to the cel-miR-39 spike in, with an average Ct scored either A or B 

using the online array tool. Significance between glioblastoma serum expression and control patient serum indicated by 

letters. ap < 0.001, bp < 0.01, cp < 0.05.  
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4.2.2 MiScript MicroRNA Expression in Serum Obtained from Glioblastoma 

Patients Aged between 40 and 59 Years. 

 
Analysis of serum samples obtained from three female and three male glioblastoma 

patients aged between 40 and 59 years identified eight miRNAs expressed in all three 

samples from both the male and female 40-59 age groups (Table 4.2). Four of the eight 

miRNAs, let-7b-5p, 150-5p, 181b-5p and 92a-3p, displayed an increased up-regulation in 

male 40-59 serum samples compared to age matched female samples. The remaining 

four, 21-5p, 23a-3p, 25-3p and 191-5p, were expressed at higher levels in female samples 

compared to male age matched samples.  

Most miRNAs with altered expression in all three female samples tested were up-

regulated (Figure 4.3A). The majority of miRNAs analysed were undetected in the three 

samples tested from the female 40-59 group. A greater number of miRNAs were detected 

in the male 40-59 age group compared to the female group with four of the 84 miRNAs 

being undetected in all three samples (Figure 4.3B).  

Serum obtained from female glioblastoma patients aged between 40 and 59 years showed 

an increase in expression of 20 miRNAs in all three samples compared to age and sex-

matched control samples (Figure 4.4A). MiR-21-5p was the highest expressed miRNA in 

female 40-59 patients with a fold change of 8.59, was the second highest expressed 

miRNA was let-7b-5p with a fold change of 7.97. Three of the miRNAs showed a five-fold 

increase in expression, miR-451a, miR-23a-3p and miR-25-3p with a further two exhibiting 

a four-fold increase, miR-486-5p and 191-5p.   

Out of the 84 miRNAs analysed, 18 were highly expressed in the three serum samples of 

male glioblastoma patients aged between 40 and 59 years (Figure 4.4B). Let-7b-5p had the 

highest expression with a fold change of 17.32 and miR-203a-3p being the second highest 

expressed miRNA with a fold change of 9.62. Mir-21-5p exhibited a 5.00 fold increase in 

expression with miR-222-5p and 150-5p showing a 4.00 fold increase in expression.  
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Table 4.2 MiRNAs dysregulated in the serum of both male and female glioblastoma patients aged between 40 and 59 
years.

 

 

 

 

 Female  Male  

MiRNA Average Fold Change  SD Average Fold Change SD 

Let-7b-5p 7.97 2.43 17.32 6.21 

MiR-150-5p 3.35 1.02 4.25 2.12 

MiR-181b-5p 2.59 0.87 3.42 2.14 

MiR-92a-3p 2.09 0.54 3.92 1.17 

MiR-21-5p 8.59 0.72 5.11 1.60 

MiR-23a-3p 5.44 1.42 2.38 1.02 

MiR-25-3p 5.27 0.84 2.52 1.36 

MiR-191-5p 4.27 0.26 2.20 1.81 
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Figure 4.3 Expression of miRNAs in serum samples from glioblastoma patients aged between 40 and 59 years. A) Average miRNA fold change in the serum of female patients. The 

majority of dysregulated miRNAs were found to be up-regulated (red) in this patient cohort however most miRNAs within the array were not detected in this sample set. B) Average 

miRNA fold change in the serum of male patients. Four miRNAs were not detected in this patient cohort, many of the miRNAs that were detected in this cohort showed a similar 

expression to matched controls. Heat map is representative of all three patient samples analysed showing all miRNAs scored A, B and C using online data analysis tool, line H of 96 well 

plate containing controls is not included in the heat maps. Ce: C. elegans primer assay, SN1-6: snoRNA/snRNA PCR controls, miRTC: Reverse transcription control, PPC: Positive PCR 

control.

B A 
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Figure 4.4 Expression of dysregulated miRNAs in glioblastoma patients aged between 40 and 59 years. A) 20 miRNAs 

were up-regulated in the serum of female glioblastoma patients in the 40-59 age group with miR-21-5p exhibiting the 

highest fold change. B) 16 miRNAs were up-regulated in the serum of male glioblastoma patients between the ages of 40 

and 59 years. Let-7b-5p exhibited the highest up-regulation with a fold change of 17.32. Data shown as mean of 

triplicate samples plus SD, representative of 3 samples per group, of miRNAs scored either A or B using the online array 

tool, normalised to the cel-miR-39 spike in. Significance between glioblastoma serum expression and control patient 

serum indicated by letters. ap < 0.001, bp < 0.01, cp < 0.05. 
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4.2.3 MiScript MicroRNA Expression in Serum Obtained from Glioblastoma 

Patients Aged Over 60 Years.  

 
Analysis of serum obtained from glioblastoma patients aged over 60 years identified a 

total of seven miRNAs dysregulated in the six serum samples of both male and female 

glioblastoma patients over the age of 60 years (Table 4.3). Comparison of the seven 

miRNAs identified five miRNAs which exhibited a higher expression in the male 60+ 

glioblastoma group compared to age matched females except miR-9-3p and miR-29c-3p 

which were expressed at a higher level in the female group.  

An overall trend of reduced expression in miRNAs compared to age and sex-matched 

controls was observed in all three samples obtained from female glioblastoma patients 

when all miRNAs were investigated regardless of Ct score (Figure 4.5A). Analysis of the 

dysregulated miRNAs scored A or B only showed 10 miRNAs with an increase in expression 

and no miRNAs with a lower expression compared to age and sex-matched controls 

(Figure 4.6).  Upon analysis of serum miRNA expression in male glioblastoma patients aged 

over 60 years increased expression of 42 miRNAs in all three serum samples compared to 

age and sex-matched controls was observed (Figure 4.5B). Overall the male group 

displayed a general trend of increased miRNA expression compared to age and sex-

matched controls. 

In the female group, miR-19a-3p and miR-29b-3p showed the greatest increase in 

expression compared to matched controls with a fold change of 4.99 and 4.45 respectively 

(Figure 4.6). Four miRNAs showed a 3.00 fold increase in the female group, miR-9-3p, miR-

17-5p, miR-29c-3p and miR-128-3p.  

Analysis of the male group identified miR-328-3p and 181a-5p as having the greatest 

increase in expression in comparison to matched controls with a fold change of 6.22 and 

5.9, respectively (Figure 4.7). Two miRNAs exhibited a five-fold increase, miR-181a-5p and 

miR-15a-5p and five miRNAs showed a four-fold increase, miR-29b-3p, 15b-5p, 34a-5p, 

miR-92a-3p and miR-9-5p. Nine miRNAs showed approximately a three fold increase in 

expression and 25 miRNAs showed at least a two fold increase in expression.  
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Table 4.3 MiRNAs dysregulated in the serum of both male and female glioblastoma patients aged over 60 years 
compared to age and sex matched controls. 

 Female  Male  

MiRNA Average Fold Change SD Average Fold Change SD 

miR-9-3p 3.98 0.51 3.33 0.49 

miR-15b-5p 2.38 0.65 4.91 0.27 

miR-29b-3p 4.45 0.87 4.99 0.58 

miR-29c-3p 3.22 0.74 2.48 0.27 

miR-34a-5p 2.72 0.81 4.70 0.43 

miR-181a-5p 2.28 1.30 5.90 0.68 

miR-181b-5p 2.78 0.73 3.72 0.35 
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Figure 4.5 Expression of miRNA in serum obtained from glioblastoma patients over the age of 60 years. A) Average miRNA expression in the serum of female patients showed both a 

down-regulation (green) and up-regulation (red) of miRNAs compared to gender and age-matched controls. 17 miRNAs were not detected in this patient cohort. B) Average miRNA fold 

change in the serum of male patients. The majority of dysregulated miRNAs were found to be up-regulated in this patient cohort and 20 miRNAs were not detected in this sample set. 

Heat map is representative of all three patient samples analysed showing all miRNAs scored A, B and C using online data analysis tool, line H of 96 well plate containing controls is not 

included in the figure.  

A B 
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Figure 4.6 Dysregulated miRNAs in the serum of female glioblastoma patients aged over 60 years. 10 miRNAs were increased in the serum of female 60+ glioblastoma patients with 

miR-19a-3p exhibiting the highest fold-change. Data shown as mean of triplicate samples plus SD, representative of 3 samples per group of miRNAs scored either A or B using the online 

array tool, normalised to the cel-miR-39 spike in. Significance between glioblastoma serum expression and control patient serum indicated by letters. ap < 0.001, bp < 0.01. 
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Figure 4.7 Dysregulated miRNAs in the serum of male glioblastoma patients aged over 60 years. 42 miRNAs were increased in the serum of male glioblastoma patients aged over 60 

years, with miR-328-3p showing the greatest increase in expression. Data shown as mean of triplicate samples plus SD, representative of 3 samples per group, of miRNAs scored either A 

or B using the online array tool, normalised to the cel-miR-39 spike in. Significance between glioblastoma serum expression and control patient serum indicated by letters. ap < 0.001. 
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4.2.4 Selection of Serum MicroRNA Biomarkers  

 
Following identification of miRNAs with altered expression in the sera of glioblastoma 

patients grouped by age and gender, a panel was selected for further analysis in a new 

patient cohort of 18 GBM patients and 18 control patients. Due to the small sample size 

used in the initial study, miRNAs with altered expression in more than three patient 

groups or both gender cohorts of the same age group were selected for this study. 

Following these criteria, 32 miRNAs were selected for analysis in a new patient cohort 

(Table 4.4).  

Analysis of the 32 miRNAs selected in the new patient cohort using student’s t-test with 

Levene’s F test identified 18 miRNAs that were undetected in any of the patient serum 

samples grouped by age and gender (Table 4.5).  Analysis of the 32 miRNAs identified nine 

miRNAs with no significant change (p > 0.05) in expression in glioblastoma patient serum 

compared to age and sex matched controls. Comparison of the non-significant miRNAs in 

glioblastoma patient serum compared to control patient serum is shown in Figure 4.8. 

Data were further analysed by gender and age groups which also showed no significant 

difference (p > 0.05) in expression (Appendix 3). Five miRNAs were identified to have a 

significant change in expression in the serum of glioblastoma patients, miR-20a-5p, miR-

30c-5p, miR-34a-5p, miR-92a-3p and miR-150-5p. MiR-34a expression was not 

significantly different (p > 0.05) in the serum of glioblastoma patients compared to control 

patients (Figure 4.9A). Analysis of patients grouped by gender showed no significant 

difference (p > 0.05) in miR-34a expression in both male and female glioblastoma patient 

cohorts (Figure 4.9 B and C). When grouped by age miR-34a was not detected in the 

serum of glioblastoma patients or control patients aged between 20 and 39 years. MiR-

34a expression was not significantly different (p > 0.05) between glioblastoma patients 

aged between 40 and 59 years compared to age matched controls (Figure 4.9D). 

Expression of miR-34a in the serum of glioblastoma patients aged over 60 years was found 

to be significantly up-regulated (p < 0.05) compared to age matched controls (Figure 4.9E).  

Comparison of miR-92a expression in glioblastoma patient serum compared to control 
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patient serum showed no significant difference (p > 0.05) between the two cohorts (Figure 

4.10A).  

Table 4.4 MiRNAs selected for analysis as biomarkers and average fold change of all patient groups. Red – Increased 
expression, Green – Decreased expression, Black – No change in expression compared to control samples.  

MiRNA Female 

60+ 

Male 

60+ 

Female 

40-59 

Male 

40-59 

Female 

20-39 

Male 

20-39 

let-7-5p 1.35 1.52 7.97 17.32 0.54 11.76 

7-5p 0.31 3.36 2.18 0.68 - 0.92 

9-3p 3.98 3.33 - 0.84 - - 

15b-5p 2.38 4.91 3.94 3.02 2.76 4.17 

16-5p 2.48 1.63 2.43 1.53 15.37 3.53 

17-5p 3.24 1.21 - 2.17 2.47 2.46 

18a-5p 0.49 2.61 - 0.48 - 1.59 

19a-3p 4.99 1.71 - 2.25 4.38 4.71 

19b-3p 1.50 1.81 - 2.21 3.48 2.18 

20a-5p 1.67 1.24 2.25 1.05 3.12 2.05 

21-5p 1.57 1.06 8.59 4.25 1.17 1.76 

23a-3p 0.68 2.70 5.44 2.38 3.43 2.50 

25-3p 0.33 2.32 5.27 2.52 0.80 4.75 

26a-5p 0.58 2.88 2.56 0.62 1.93 4.07 

29b-3p 4.45 4.99 - 1.38 - 1.21 

29c-3p 3.22 2.48 - 1.15 2.61 1.68 

30b-5p 0.45 2.60 - 1.01 1.71 0.93 

30c-5p 0.48 2.79 - 0.74 1.81 1.25 

34a-5p 2.72 4.70 2.44 0.75 - - 

92a-3p 0.88 4.24 2.09 3.92 0.50 2.3 

93-5p 1.85 2.32 - 2.43 2.00 2.52 

101-3p 1.14 2.33 - 0.70 2.01 3.00 

148a-3p 1.81 1.99 - 1.44 3.68 2.25 

150-5p 1.50 1.06 3.35 4.25 1.12 1.74 

181a-5p 2.28 5.90 - 1.09 - 0.69 

181b-5p 2.78 3.72 2.59 3.42 1.15 0.79 

185-5p 0.59 2.55 - 2.37 1.36 2.11 

191-5p 2.12 3.28 4.27 2.20 4.26 5.07 

320a 0.62 2.82 3.24 1.26 1.96 4.40 

328-3p 0.22 6.22 0.47 0.92 1.71 1.11 

451a 1.51 1.29 5.46 0.51 39.76 4.51 

486-5p 0.88 3.25 4.78 1.66 0.07 5.13 
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Table 4.5 MiRNAs undetected in glioblastoma patient serum samples in new patient cohort analysed using miScript 
brain cancer panel. 

Undetected miRNAs 

miR-7-5p miR-26a-5p 

let-7b-5p miR-29b-3p 

miR-9-3p miR-29c-3p 

miR-15b-5p miR-30b-5p 

miR-16-5p miR-93-5p 

miR-18a-5p miR-148a-3p 

miR-19a-3p miR-181a-5p 

miR-19b-3p miR-185-5p 

miR-21-5p miR-191-5p 

 

Analysis of miR-92a by gender showed that miR-92a was significantly up-regulated in the 

sera of male glioblastoma patients (p < 0.05) but not in female glioblastoma patients (p > 

0.05, Figures 4.10B and C). Analysis of miR-92a by age groups showed no significant 

difference in expression (p > 0.05) compared to age matched controls for all three patient 

cohorts (Figure 4.10D-F).  

Analysis of miR-20a expression displayed a significant up-regulation (p < 0.05) in the 

serum of glioblastoma patients compared to control patients (Figure 4.11A).  When 

grouped by gender miR-20a was significantly increased in the serum of both male (p < 

0.05) and female (p < 0.05) glioblastoma patients compared to sex matched controls 

(Figure 4.11 B and C).  Analysis of miR-20a by age showed a significant increase of miR-20a 

in the 20-39 (p < 0.001) and 40-59 (p < 0.05) age groups (Figure 4.11 D and E). Expression 

of miR-20a in the serum of glioblastoma patients over the age of 60 years was not 

significantly different (p > 0.05) to age matched controls (Figure 4.11F). Further analysis of 

miR-20a expression in glioblastoma patient serum identified a subgroup of nine patients 

who did not exhibit an increase in miR-20a and nine patients who exhibited an up-

regulation of miR-20a (p > 0.05, Figure 4.12A). Expression of miR-20a was significantly 

increased in glioblastoma patients between the ages of 20 and 39 years compared to 

those aged between 40 and 59 years (p < 0.01) and those aged over 60 years (p < 0.001, 

Figure 4.12B). No significant difference (p > 0.05) in expression of miR-20a was observed 

between the 40-59 age group and the 60+ age group. 
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Figure 4.8 Selected serum miRNAs with no significant change in expression.  Nine miRNAs exhibited no significant change in expression in GBM patient serum compared to matched 

controls.  Data shown as mean of triplicate samples plus SD analysed by unpaired student’s t-test, miR-486-5p analysed by Mann Whitney U test, p > 0.05.  

miR-486-5p  

miR-17-5p  miR-23a-3p  miR-101-5p  

miR-181b-5p  miR-328-5p  miR-451-5p  miR-320-5p  

miR-25-5p  
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Figure 4.9 Expression of miR-34a in glioblastoma patients aged over 60 years. Expression of miR-34a was not 

significantly different between GBM and control patients (A) or when grouped by gender (B and C).Expression of miR-

34a was not significantly different between GBM patients aged between 40 and 59 years and age matched controls (D). 

MiR-34a was significantly up-regulated in the serum of glioblastoma patients aged over 60 years compared to age 

matched controls (E). Data shown as mean plus SD of replicate samples (A - n = 18, B and C - n = 9, D and E - n = 6 per 

group), data analysed by Mann Whitney U test. Significance indicated between groups by solid black lines, * p < 0.05.  
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Figure 4.10 Expression of miR-92a in serum. Expression of miR-92a was not significantly altered in the serum of GBM patients compared to controls (A) or female GBM patients (B). MiR-

92a was significantly increased in the serum of male GBM patients compared to sex matched controls (C). Expression of miR-92a was not significantly different when patients were 

grouped by age (D-F). Data shown as mean of replicates (A - n = 18, B and C - n = 9, D-F - n = 6 per group) plus SD, analysed by unpaired student’s t-test. Significance indicated between 

groups by solid black lines, * p < 0.05.  
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Figure 4.11 Expression of miR-20a in serum. MiR-20a was significantly increased in glioblastoma patient serum compared to controls (A). MiR-20a was significantly up-regulated in both 

male and female patients (B and C). When grouped by age miR-20a was significantly increased in GBM patients in the 20-39 (D) and 40-59 (E) age groups but not the 60+ age group (F). 

Data shown as mean of replicates (A - n = 18, B and C - n = 9, D-F - n = 6 per group) plus SD, A - analysed by unpaired student’s t-test B-F analysed by Mann Whitney U test. Significance 

indicated between groups by solid black lines, * p < 0.05, *** p < 0.001.  
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Figure 4.12 Expression of miR-20a in the serum of glioblastoma patient subgroups. A) Two groups of GBM patients 

were observed with differing miR-20a expression, those with an increase in expression (> 2 fold change, n = 9) and those 

with no change (< 2 fold change, n = 9). B) Expression of miR-20a was inversely correlated with age with GBM patients 

aged between 20 and 39 years exhibiting the highest expression. Data shown as mean of replicate samples (A- n = 18 

GBM, 18 control, B - n=6 per age group) plus SD, analysed by one-way ANOVA with Tukey post-hoc test. Significance 

between groups indicated by a solid black line, **p < 0.01, ***p < 0.001. 
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The subgroup of glioblastoma patients with an increase of miR-20a comprised all six 

patients aged between 20 and 39 years, one patient aged between 40 and 59 years and 

two patients aged over 60 years. The subgroup of glioblastoma patients with no change in 

miR-20a expression comprised of five patients aged between 40 and 59 years and four 

patients aged over 60 years.  

Analysis of miR-30c exhibited a significant down-regulation (p < 0.01) in the serum of both 

male and female glioblastoma patients aged between 20 and 39 years. MiR-30c was not 

detected in either the 40-59 or 60+ age groups (Figure 4.13). MiR-150 was observed to be 

significantly down-regulated (p < 0.05) in the serum of both male and female glioblastoma 

patients aged between 20 and 39 years. MiR-30c was not detected in the 40-59 or 60+ 

glioblastoma patient age groups (Figure 4.14).  

 

                     

Figure 4.13 Expression of miR-30c in the serum of glioblastoma patients aged between 20 and 39 years. MiR-30c was 

down-regulated in the serum of GBM patients aged between 20 and 39 years. Data shown as mean of replicates (n=6 

per group) plus SD, analysed unpaired student’s t-test. Significance between groups indicated by a solid black line, **p < 

0.01.  

** 
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Figure 4.14 Expression of miR-150 in the serum of glioblastoma patients aged between 20 and 39 years. Expression of 

miR-150 was significantly down-regulated in the serum of GBM patients aged between 20 and 39 years compared to 

matched controls. Data shown as mean of replicate samples (n=6 per group) plus SD, analysed by unpaired student’s t- 

test. Significance between groups indicated by a solid black line, *p < 0.05.  

 

4.2.5 Validation of MicroRNA Biomarkers by Power Analysis  

 
Following the identification of a panel of potential miRNA biomarkers, the five miRNAs 

were validated in a further study using power analysis to determine the appropriate 

sample size to ensure confidence in any significant changes observed in expression. Power 

analysis was performed using GraphPad prism Statmate and standard deviation of ΔCt 

values for each miRNA were used to determine sample size for at least 80 % power to 

detect a difference between means of 1 Ct value (Table 4.6). 

Table 4.6 Sample number required in each experimental group required for a minimum of 80 % power. 

MiRNA Standard Deviation Sample Size Required   Statistical Power  

miR-34a-5p 0.65 8 90 % 

miR-92a-3p 1.4 35 80 % 

miR-20a-5p 0.85 14 90 %  

miR-30c-5p 0.21 3 80 % 

miR-150-5p 0.68 9 80 %  

 

* 
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The power analysis determined that eight samples were required in each group for miR-

34a, 14 for miR-20a-5p, 35 for miR-92a-3p, three for miR-30c-5p and nine for miR-150-5p.  

Data from the validation study showed that miR-34a was increased in the serum of 

glioblastoma patients aged over 60 years compared to age matched controls (p < 0.001, 

Figure 4.15). MiR-34a was undetected in the 20-39 patient group, and expression was not 

significantly altered in the 40-59 age group (p > 0.05), compared to age matched controls.  

MiR-92a was significantly increased (p < 0.001) in the validation cohort of male 

glioblastoma patient serum (Figure 4.16).  

MiR-30c was found to be significantly reduced (p < 0.01) in the serum of glioblastoma 

patients aged between 20 and 39 years (Figure 4.17). Analysis of miR-20a expression 

showed an up-regulation (p < 0.01) in a subset of ten patients (Figure 4.18A) and no up-

regulation in five patients however this was not significantly different compared to 

control.  

Expression was highest in glioblastoma patients aged between 20 and 39 years, and 

lowest in patients aged over 60 years (Figure 4.18B). The patient subgroup with an 

increase of miR-20a comprised of all five glioblastoma patients aged between 20 and 39 

years, three patients aged between 40 and 59 years and two patients aged over 60 years. 

MiR-150 expression was not found to be significantly different (p > 0.01) in the serum of 

glioblastoma patients aged between 20 and 39 years in the validation cohort (Figure 4.19).  
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Figure 4.15 Expression of miR-34a in validation cohort. MiR-34a was significantly higher in a validation cohort of serum 

from GBM patients over the age of 60 years compared to age matched controls. Data shown as mean of replicate 

samples (n = 8 per group) plus SD, analysed by unpaired student’s t-test. Significance between groups indicated by a 

solid black line, ***p < 0.001.   

                             

Figure 4.16 Expression of miR-92a in validation cohort. MiR-92a was shown to be significantly higher in a validation 

cohort of serum samples from male GBM patients compared to matched controls. Data shown as mean of replicate 

samples (n=35 per group) plus SD, analysed by unpaired student’s t-test. Significance between groups indicated by a 

solid black line ***p < 0.001. 

 

*** 
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Figure 4.17 Validation of miR-30c expression in the serum of glioblastoma patients aged between 20 and 39 years. 

Expression of miR-30c in the validation cohort exhibited a significant reduction. Data shown as mean of replicate 

samples (n = 3 per group) plus SD, analysed by unpaired student’s t-test. Significance between groups indicated by a 

solid black line, ***p < 0.001.  

 

*** 
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Figure 4.18 Expression of miR-20a in validation cohort. A) Serum miR-20a was observed to be significantly increased in 

a subset of ten GBM patients in the validation cohort however this was not significantly different to control patients. 

Five patients exhibited a less than 2-fold change in expression B) Expression of miR-20a in the validation cohort was 

found to be inversely correlated with age. Data shown as mean of replicate samples (A - n= 15 gbm and 15 control, B - 

n= 5 per age group) plus SD, analysed by Shapiro-Wilk normality test and one way ANOVA with Tukey post-hoc test. 

Significance indicated by a solid black line, **p < 0.01.  
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Figure 4.19 Validation of miR-150 expression in the serum of glioblastoma patients aged between 20 and 39 years. 

Expression of miR-150 in the validation cohort showed no significant difference between 20-39 GBM patient serum and 

matched controls. Data shown as mean of replicated (n= 9 per group) plus SD, analysed by unpaired student’s t-test, p > 

0.05.  

4.2.6 Reanalysis of Unselected MiRNAs  

 
Analysis and validation of the 32 miRNAs identified in Section 4.2.4 identified four miRNAs 

with a significant change in expression in glioblastoma patient serum. The 27 remaining 

miRNAs which were not significantly different in Section 4.2.4 were used to select a small 

panel for reanalysis in a new patient cohort in order to identify additional biomarkers 

which may have been discounted due to false negative data.  

Five miRNAs from the original 32 panel were selected for reanalysis in a new patient 

cohort comprising of 18 GBM patient samples and 18 control patient samples. MiR-19a, 

miR-19b and miR-17-5p were selected for reanalysis as they are part of the miR-17~92 

cluster of miRNAs which also comprises of miR-20a and miR-92a.  MiR-29c was selected 

for reanalysis as it has not been identified in the serum of glioblastoma patients 

previously. Power analysis was performed for miR-17-5p and miR-101 using the standard 

deviations determined in Section 4.2.4 (Table 4.7) to determine the sample size required 

for at least 80 % power. MiR-19a and miR-19b were not detected in the identification 
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cohort in Section 4.2.4, consequently power analysis could not be performed therefore a 

patient cohort consisting of 18 GBM samples and 18 control samples was utilised to 

perform the reanalysis. MiR-19a was not detected in the serum of glioblastoma patients 

following reanalysis. Expression of the remaining four reanalysed miRNAs was not 

significantly different (p > 0.05) between glioblastoma patients and matched controls 

(Figure 4.20 further analysed in Appendix 4). 

Table 4.7 Power analysis for miR-17-5p and miR-101 reanalysis 

MiRNA SD  Sample Size Required for 80 % 

Power  

Power of Reanalysis cohort of 18 

patient samples 

miR-17-5p 0.37 4 99 % 

miR-101  0.55 6 99 % 

  

     

Figure 4.20 Expression of four re-analysed miRNAs in glioblastoma patient serum. Four of the five re-analysed miRNAs 

showed no significant difference in expression in GBM patient serum compared to matched controls. MiR-19a was 

undetected. Data shown as mean of replicates (n = 18 per group) plus SD, MiR-29c and 101 analysed by unpaired 

student’s t-test, miR-17-5p and 19b analysed by Mann Whitney U test, p > 0.05.      

miR-17-5p miR-19b 

miR-101 miR-29c 
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   4.2.7 Prognostic Potential of Serum MiRNA Biomarkers  

 
Following the identification of four significantly dysregulated miRNAs, survival of the 

patients utilised in both the identification and validation panel study were analysed. 

Patient survival data for the samples used in this study were obtained from the BTNW 

tissue bank. Initially, overall survival was plotted for all glioblastoma patients used 

regardless of age or gender, 78 glioblastoma patients and 73 control patients were used in 

this study. Patients were then grouped by age and gender to determine any differences in 

overall survival between these cohorts. Following analysis of patient variable such as age 

and gender, patients were subsequently grouped by expression of the miRNA biomarkers 

validated in Sections 4.2.5. Analysis of miR-20a in the serum of glioblastoma patients 

identified two groups of glioblastoma patients; those with at least a two fold increase in 

miR-20a and those without. Survival data for these patients was obtained and grouped by 

miR-20a expression to determine whether miR-20a was a prognostic indicator for 

glioblastoma patients.   

Overall survival of glioblastoma patients compared to non-cancerous control patients was 

lower with the median overall survival for glioblastoma patients used in this study being 

6.62 months (Figure 4.21). All individuals within the control group were alive during this 

study. When grouped by age, median survival for patients aged between 20 and 39 years 

was 8.88 months. For patients aged between 40 and 59 years, median survival was 6.53 

months and for patients aged over 60 years median survival was 3.36 months (Figure 

4.22). No significant difference in survival was observed between the 20-39 and 40-59 age 

groups (p > 0.05). Survival for the 40-59 age group was significantly different (p < 0.05) 

when compared to the 60+ age group and for the 20-39 age group when compared to the 

60+ group (p < 0.001). When grouped by gender no significant difference in survival was 

observed (p > 0.05). Male patients had a median survival of 5.88 months whereas female 

patients had a median survival of 7.98 months (Figure 4.23).   

Analysis of survival for glioblastoma patients over the age of 60 years from the biomarker 

identification cohort grouped by miR-34a expression showed that patients with a low 

expression of miR-34a had a median survival of 10.6 months and patients with a high 
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expression of miR-34a had a median survival of 8.78 months (Figure 4.24). Of the six 

patients analysed in the identification cohort, four exhibited a greater than two fold 

change of miR-34a, with one patient still living and two patients exhibited a less than two 

fold change, with one patient still living. Median survival between patients with and 

without a two fold change in miR-34a expression in the identification cohort was not 

significantly different (p > 0.05). 

 

Figure 4.21 Kaplan-Meier survival curve of glioblastoma (GBM) patients compared to patients without glioblastoma 

(Control). Median survival of 78 GBM patients used in this study was 6.62 months. Steps down indicate the death of a 

patient, dashes indicate patients alive at the time of this study. Survival was significantly different between the groups 

determined by Mantel-Cox test, ****p < 0.0001.   

 

 

 

**** 
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Figure 4.22 Kaplan-Meier survival curve of glioblastoma (GBM) patients grouped by age. Median survival of GBM 

patients grouped by age was 8.88 months for patients aged between 20 and 39 years, 6.53 months for patients aged 

between 40 and 59 years and 3.36 months for patients aged over 60 years. Steps down indicate the death of a patient, 

dashes indicate patients alive at the time of this study. Survival was significantly different between the 20-39 and 60+ 

age groups (p < 0.001) and the 40-59 and 60+ age groups (p < 0.05) but not the 20-39 and 40-59 age groups (p > 0.05) 

determined by Mantel-Cox test.  

 

 

Figure 4.23 Kaplan-Meier survival curve of glioblastoma (GBM) patients grouped by gender. Median survival for male 

GBM patients (n = 54) was 5.8 months compared to 7.98 months for female GBM patients (n = 24). Steps down indicate 

the death of a patient, dashes indicate patients alive at the time of this study. Survival was not significantly different 

determined by Mantel-Cox test, p > 0.05.  
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In the validation cohort, five patients exhibited a greater than two fold increase of miR-

34a expression and exhibited a median survival of 4.85 months (Figure 4.25). Three 

patients exhibited a less than two fold change in miR-34a expression in the validation 

cohort and had a median survival of 7.32 months (Figure 4.25). Median survival was not 

significantly different (p > 0.05) between patients with and without a two fold change in 

miR-34a expression.  

Combined analysis of 60+ glioblastoma patients in both the identification and validation 

cohorts showed that the nine patients with a greater than two fold increase in miR-34a 

expression exhibited a median survival of 9.49 months, the five patients with a less than 

two fold change in miR-34a expression showed a median survival of 8.05 months (Figure 

4.26). Survival was not significantly different (p > 0.05) between patients with and without 

a twofold change in expression.  

Analysis of patient survival by miR-92a expression showed no significant difference (p > 

0.05) in expression between patients with a greater than two fold change in expression 

and those without.  

 

Figure 4.24 Kaplan-Meier survival curve of glioblastoma patients over the age of 60 years grouped by miR-34a 

expression. Median survival for patients with a high expression of miR-34a was 10.6 months (n = 4). Median survival for 

patients with a low expression of miR-34a was 8.78 months (n = 2). Survival was not significantly different between 

groups determined by Mantel-Cox test, p > 0.05 
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Figure 4.25 Kapan-Meier survival curve of 60+ glioblastoma patients in the validation cohort grouped by miR-34a 

expression. Median survival for patients in the validation cohort with a greater than two fold change of miR-34a was 

4.85 months (n = 5). Median survival for patients with a less than two fold change in miR-34a expression was 7.32 

months (n= 3). Survival was not significantly different between groups determined by Mantel-Cox test, p > 0.05 

 

 

 

Figure 4.26 Kaplan-Meier survival curve of combined identification and validation patient cohorts over the age of 60 

years grouped by miR-34a expression. Median survival for patients with a two fold change in miR-34a expression was 

9.49 months (n = 9). Median survival for patients with a less than two fold change in miR-34a expression was 8.05 

months (n = 5). Survival was not significantly different between groups determined by Mantel-Cox test, p > 0.05 
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Male glioblastoma patients with an increase in expression of miR-92a had a median 

survival of 9.55 months and those with no change in miR-92a expression had a median 

survival of 6.30 months (Figure 4.27). From the nine male patients whose samples were 

used in the identification cohort, six exhibited a greater than two fold increase and three 

exhibited a less than two fold change in expression. Analysis of male glioblastoma patients 

in the validation cohort showed 28 patients with a greater than two fold increase of miR-

92a with a median survival of 5.67 months (Figure 4.28).  Eight patients exhibited a less 

than two fold change in expression and had a median survival of 5.85 months, therefore 

survival was not significantly different (p > 0.05) between patients with and without a two 

fold change in miR-92a expression (Figure 4.28). Combined analysis of both the 

identification and validation cohorts for miR-92a expression showed no significant 

difference (p > 0.05) in expression between those with a two fold increase of miR-92a and 

those without (Figure 4.29).  

 

 

Figure 4.27 Kaplan-Meier survival curve of male glioblastoma patients grouped by miR-92a expression. Median 

survival for male glioblastoma patients with a high expression of miR-92a was 9.55 months (n = 6). Median survival for 

patients with a low expression of miR-92a was 6.30 months (n = 3). Survival was not significantly different determined by 

Mantel-Cox test, p > 0.05. 
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Figure 4.28 Kaplan-Meier survival curve of male glioblastoma patients in the validation cohort grouped by miR-92a 

expression. Median survival for male glioblastoma patients with a greater than two fold change in miR-92a was 5.67 

months (n = 28). Median survival for male glioblastoma patients with a less than two fold change in miR-92a was 5.85 

months (n = 8). Survival was not significantly different determined by Mantel-Cox test, p > 0.05. 

 

 

Figure 4.29 Kaplan-Meier survival curve of male patients from both the identification and validation cohorts grouped 

by miR-92a expression. Median survival of male glioblastoma patients with a greater than two fold change in miR-92a 

expression had a median survival of 6.68 months (n = 34). Median survival of male glioblastoma patients with a less than 

two fold change in miR-92a expression had a median survival of 5.75 months (n = 11).  Survival was not significantly 

different determined by Mantel-Cox test, p > 0.05. 

 



137 
 

The patient cohorts used in the initial biomarker identification study and validation study 

both exhibited a reduced expression of miR-30c. The reduction in expression however, 

was greater in the validation study cohort than in the identification study cohort, 

therefore the median survival for the two cohorts was compared (Figure 4.30). Median 

survival for patients in the two cohorts was not significantly different (p > 0.05) with 

patients in the identification cohort having a median survival of 30.89 months and 

patients in the validation cohort having a median survival of 20 months (Figure 4.30). 

Patients used in the initial biomarker identification study with an increase in miR-20a had 

a median survival of 21.39 months compared to 4.45 months for patients with no change 

in miR-20a expression p < 0.001 (Figure 4.31). Patients in the validation cohort with an up-

regulation of miR-20a had a median survival of 9.49 months compared to 1.65 months for 

patients with no change in miR-20a expression p < 0.001 (Figure 4.32A). Combined 

survival analysis of patients from the initial biomarker identification phase and patients 

from the validation cohort showed that patients with an increase of miR-20a had a 

median survival of 10.12 months compared to a median survival of 3.04 months p < 0.001 

for those with no change in miR-20a expression (Figure 4.32B).  
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Figure 4.30 Kaplan-Meier Survival Curve of glioblastoma patients aged between 20-39 years grouped by 30c 

expression. Mean fold change of miR-30c in the serum of glioblastoma patients aged between 20-39 years was 0.17 and 

these patients exhibited a median survival of 30.89 months (n = 9). Mean fold change for patients in the validation 

cohort was -1.36 and these patients exhibited a median survival of 20 months (n = 3). Steps down indicate the death of a 

patient, dashes indicate patients alive at the time of this study. Median survival between the two cohorts was not 

significant, determined by Mantel-Cox test, p > 0.05. 

 

Figure 4.31 Kaplan-Meier survival curve of glioblastoma patients grouped by miR-20a expression. Median survival for 

GBM patients with a 2-fold or greater increase of miR-20a expression was 21.39 months (n = 9). Median survival for 

patients with less than a 2-fold change in miR-20a expression was 4.45 months (n = 9). Steps down indicate the death of 

a patient, dashes indicate patients alive at the time of this study. Survival was significantly different between groups 

determined by Mantel-Cox test, ***p < 0.001.  

*** 
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Figure 4.32 Kaplan-Meier survival curve of glioblastoma patients grouped by miR-20a expression. A) Median survival 

of GBM patients in the validation set with a greater than two fold increase of miR-20a expression was 9.49 months 

compared to 1.65 months for patients with no change in miR-20a expression. B) Combined survival data for patients 

from both initial biomarker identification and validation cohorts displayed a median survival of 10.12 months for 

patients with a greater than two fold increase of miR-20a expression and 3.04 for patients with no change in miR-20a 

expression. Steps down indicate the death of a patient, dashes indicate patients alive at the time of this study. Survival 

was significantly different between groups determined by Mantel-Cox test, ***p < 0.001. 

 

*** 

*** 

A 

B 
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4.2.8 Correlation between MiR-34a and Patient Age 

 
MiR-34a expression has previously been shown to have a correlation with the age of 

individuals (Li et al., 2011b, Sawada et al., 2014). The correlation between miR-34a and 

age was analysed in the serum samples used in this study to elucidate whether a similar 

trend in expression and age was observed. In order to determine the expression of miR-

34a in the control samples as well as the glioblastoma samples, delta Ct values were used 

for the analysis of miR-34a expression and age. 

Analysis of miR-34a expression in control serum showed no significant difference in miR-

34a expression in patients over the age of 60 years compared to those aged between 40 

and 59 years (Figure 4.33). MiR-34a was not detected in non-cancerous serum from 

individuals aged between 20 and 39 years. MiR-34a was increased in the sera of 

glioblastoma patients aged over 60 years compared to patients aged between 40 and 59 

years (Figure 4.33). MiR-34a was not detected in the serum of glioblastoma patients aged 

between 20 and 39 years. Expression of miR-34a was higher in glioblastoma patients over 

the age of 60 years compared to age-matched control patients. Expression of miR-34a in 

glioblastoma patients aged between 40 and 59 years was not significantly different (p > 

0.05) when compared to age-matched controls (Figure 4.33).  
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Figure 4.33 Expression of miR-34a by age in glioblastoma and control patient serum. MiR-34a was significantly higher 

in glioblastoma patients over the age of 60 years compared to the 40 and 59 group. MiR-34a was significantly higher in 

glioblastoma patients over the age of 60 years compared to age matched controls. Data analysed by one way ANOVA 

with Tukey post-hoc test. Significance between groups indicated by a solid black line,  ***p < 0.001.   

 

4.2.9 Relationship between MiR-92a and MiR-20a Expression  

 
MiR-92a and 20a are part of the 17~92 cluster of miRNAs which are located in the same 

region of the genome and transcribed together (Mendell, 2008), therefore the expression 

of these two miRNAs was analysed together in the serum of each glioblastoma and control 

patient to determine whether there was a correlation between the expression levels. 

Analysis of miR-92a and 20a in serum from control patients (Figure 4.34A) and patients 

with glioblastoma (Figure 4.34B) showed no correlation in expression. 

*** *** 
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Figure 4.34 Relationship between miR-20a and miR-92a expression. A) Analysis of serum miR-20a and miR-92a 

expression in individuals without glioblastoma showed no correlation. B) Analysis of serum miR-20a and miR-92a 

expression in glioblastoma patients showed no correlation. Data analysed by Pearson correlation, A) p > 0.05 (r = 0.19), 

B) p > 0.05 (r = 0.06).  

 

A 

B 
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4.3 Discussion  

 
The miRNA expression profiles obtained in this chapter exhibited differences in miRNA 

expression between genders and age groups of glioblastoma patients, highlighting the 

importance of considering these variables when investigating miRNA biomarkers for 

disease, including glioblastoma. Analysis of miRNA expression using the miScript brain 

cancer array identified miR-191-5p alone to be up-regulated in both male and female 

glioblastoma patients in all three age groups. MiR-191-5p has previously been 

identified to be up-regulated in glioblastoma cell lines (Ciafrè et al., 2005) however, 

there is no current research investigating the role of miR-191-5p in glioblastoma.  MiR-

191-5p is part of the miR-191/425 cluster which is expressed in an intron of the 

DALRD3 gene with which it is co-expressed (Kulshreshtha and Nagpal, 2014). Altered 

expression of miR-191 has been observed in a number of cancer types including lung, 

liver, prostate and breast cancer, however whether expression is up or down-regulated 

depends on the cancer type (Kulshreshtha and Nagpal, 2014).   

Five miRNAs were identified which displayed significantly altered expression in the 

sera of glioblastoma patients: miR-20a, miR-30c, miR-34a, miR-92a and miR-150. MiR-

34a expression was up-regulated in the serum of glioblastoma patients over the age of 

60 years. MiR-34a has been found to be down-regulated in glioblastoma tissue and is a 

target of p53, a known tumour suppressor (Okada et al., 2014). MiR-34a targets c-Met, 

Notch-1 and Notch-2 in glioblastoma tissue to inhibit proliferation and invasion (Li et 

al., 2009).  MiR-34a expression in the brain has previously been found to increase with 

age (Li et al., 2011b) which corroborated the data observed in this chapter. Analysis of 

ΔCt values of both control and glioblastoma patient serum showed an increase in 

expression of miR-34a with age. Further to the correlation between miR-34a 

expression and age, the expression of miR-34a was observed to be higher in 

glioblastoma patients compared to age matched control patients in which patients 

over the age of 60 years with glioblastoma exhibited a higher expression of miR-34a 

compared to age-matched controls. Glioblastoma patients aged between 40 and 59 

years displayed a similar expression of miR-34a compared to age-matched controls 

suggesting the presence of the glioblastoma further promoted the expression of miR-

34a in the serum of patients over the age of 60 years. 
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MiR-34a has not previously been identified in the serum of glioblastoma patients or 

any other disease, therefore the up-regulation of miR-34a in this study cannot be 

compared to other studies. A similar difference in miRNA expression between tissue 

and biofluid samples was demonstrated in a previous study investigating miR-128 

expression which was found to be up-regulated in the blood of glioblastoma patients 

but was down-regulated in glioblastoma tissue (Roth et al., 2011). Analysis of miRNA 

expression in the blood of other diseases such as multiple sclerosis and melanoma 

have also identified an inverse correlation between circulating expression and tissue 

expression (Roth et al., 2011). The difference in expression between the serum up-

regulation observed in this thesis and the tissue down-regulation of miR-34a observed 

in previous studies could be due to a number of factors such as selective exosomal 

packaging (Chen et al., 2012), or competitive interactions between glioblastoma cells 

and neighboring non-cancerous cells in the tumour microenvironment (Kosaka et al., 

2012).  

Non-cancerous epithelial cells can prevent or reduce the growth of transformed 

neighbouring cells by the release of autocrine and paracrine factors as a means of cell 

growth homeostasis in a process known as cell competition (Kosaka et al., 2012). 

Disruption of this homeostatic cell competition process has been proposed as a factor 

which can contribute to tumour initiation. Kosaka et al. (2012) demonstrated that non-

cancerous epithelial prostate cells secreted tumour suppressor miRNAs as anti-

proliferative signals which were able to attenuate proliferation of prostate cancer cells.  

Although non-cancerous cells have been shown to attenuate proliferation of 

transformed cells by the secretion of anti-proliferative miRNAs, cancerous cells can 

combat these signals by impairing the process of exosome uptake to prevent the 

incorporation of tumour suppressive miRNAs (Kosaka et al., 2012). MiR-34a exerts 

anti-proliferative effects by targeting cell cycle regulators such as Notch-1 (Li et al., 

2011a), and could potentially be released by neighbouring epithelial cells in the brain 

in response to the presence of glial tumours. Impaired uptake of exosomes containing 

miR-34a by glioblastoma cells could lead to an enrichment of these exosomes 

containing miR-34a and subsequently the increase in expression of this miRNA in 

glioblastoma patient serum samples.  
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MiR-92a expression was high in the serum of male glioblastoma patients whilst female 

glioblastoma patients exhibited no change in expression. The difference in expression 

between genders may be due to the location of multiple miR-92a sequences in the 

genome. MiR-92a-1 is found within the 17~92 cluster of miRNAs on chromosome 13 

and miR-92a-2 is found within the paralogous cluster 106~363 on the X chromosome, 

both miR-92a-1 and 92a-2 share the same miR-92a-3p sequence. Females have two X 

chromosomes and males have one, to maintain equilibrium of gene expression 

between male and females, the mechanism of X-chromosome inactivation (XCI) occurs 

during embryonic development in which one X chromosome is inactivated at random 

(Pinheiro et al., 2011). XCI can be ‘skewed’ where the X-chromosome containing a 

detrimental mutation can be preferentially silenced, this has been observed for 

recessive X-linked immune disorders, where females are carriers for the disorder and 

do not exhibit symptoms (Pinheiro et al., 2011). This mechanism can also affect 

miRNAs found on the X chromosome which are also susceptible to skewing and 

therefore could account for differences in miRNA expression between genders. 

Mutations in one X-chromosome, therefore, could cause the up-regulation of miR-92a-

2 to be silenced by XCI in females, whereas males are hemizygous, thus the same 

mutation cannot be silenced leading to an up-regulation of miR-92a-3p. Furthermore, 

as males are hemizygous for X-linked mutations in both protein encoding genes and 

miRNA, this may partially explain the difference in gender susceptibility to cancer 

(Pinheiro et al., 2011), including glioblastoma, and differences in survival as observed 

in this study.   

MiR-20a showed differential expression between glioblastoma patients in the initial 

identification cohort. One subset exhibited a more than two fold increase in expression 

compared to controls however the other subset of patients exhibited no change in 

expression. The difference in expression between the two groups of glioblastoma 

patients could indicate a difference in glioblastoma subtype. Glioblastoma subtypes 

differ in the profile of mutations present as well as miRNA expression, which could 

subsequently affect miRNA expression as observed in this study. Analysis and grouping 

of glioblastoma data in The Cancer Genome Atlas (TCGA) based on neural 

differentiation for identifying glioblastoma subtypes led to identification of miR-20a 

expression in the oligoneural precursor expression profile (Kim et al., 2011). Patients 
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used in this current study with an up-regulation of miR-20a could be of the oligoneural 

precursor subtype and those without an up-regulation could be of a different 

glioblastoma subtype. The use of miRNA biomarkers during diagnosis to identify 

glioblastoma subtypes could improve treatment decisions based on the response of a 

particular glioblastoma subtype due to the specific molecular profile.   

MiR-30c was observed to have a significantly lower expression in the serum of 

glioblastoma patients between the ages of 20 and 39 years compared to matched 

control patients. A decrease in miR-30c expression in the serum of glioblastoma 

patients has not previously been reported however, an increase in miR-30c expression 

has been reported in TRAIL-resistant glioblastomas (Quintavalle et al., 2012).  

Validation of the five miRNA biomarkers identified in Section 4.2.4 using sample 

numbers determined by power analysis confirmed that four of the five miRNAs 

showed a similar trend in the second cohort in Section 4.2.5. MiR-92a was shown to 

have a high expression in male glioblastoma patient serum by a similar fold change in 

the validation cohort compared to the initial study. MiR-34a and miR-20a were 

increased in the validation cohort as observed in the initial study, however both 

miRNAs showed a smaller increase in the validation study compared to the initial 

study. The mean expression of miR-34a in the initial study was approximately a three-

fold increase, in the validation study the mean expression of miR-34a was 

approximately a two fold increase however, the standard deviation of miR-34a 

expression in the validation study shows that there were certain samples within the 

cohort which showed a similar expression to samples within the initial study. MiR-20a 

showed the greatest variation in expression between the initial and validation groups. 

This could be due to the variation in expression of different proteins which may target 

miR-20a between different subtypes of glioblastoma. Patients with decreased 

expression in miR-30c in the identification cohort exhibited a median decrease of 0.5 

fold however patients in the validation cohort exhibited a median decrease of -1.05 

fold. The variation in median fold decrease of miR-30c expression could be due to 

variables other than glioblastoma such as drug treatments or the presence of other 

diseases which may affect miRNA expression in either the glioblastoma patient cohort 

or the control patient cohort. 
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Out of the four validated miRNAs, miR-20a showed a significant difference in median 

survival times between patients with an increase in expression of miR-20a, compared 

to those without. Patients used in the initial biomarker identification cohort with an 

increase of miR-20a had a median survival time of 21.39 months compared to a 

median survival time of 4.45 months for patients without an increase in miR-20a. 

Patients in the validation cohort with an increase of miR-20a also exhibited a better 

prognosis, 9.49 months median survival, compared to those with no change in 

expression, 1.65 months median survival. MiR-20a has the potential, therefore, to be a 

prognostic miRNA biomarker for glioblastoma patients, which could be utilised for 

improved treatment strategies. 

 Analysis of survival data for the patients used in this study identified that age and 

gender both had an effect on the median patient survival time. Overall, the median 

survival time for glioblastoma patients used in this study was 6.62 months, this is lower 

than the median survival time of 9 months generally observed for glioblastoma 

patients (Alqallaf et al., 2014). When grouped by age, glioblastoma patients aged 

between 20 and 39 years had the best median survival time of 8.88 months. Patients 

aged between 40 and 59 years had a median survival time of 6.53 months and patients 

over the age of 60 years had the worst median survival time of 3.36 months. 

Glioblastoma patients over the age of 60 years are often difficult to treat due to their 

reduced ability to cope with aggressive therapies (Arvold and Reardon, 2014). Median 

survival times for male and female glioblastoma patients were 5.88 and 7.98 months, 

respectively, but this difference was not statistically significant.  

MiR-20a and 92a-3p are expressed within the miR-17~92 cluster which comprises of a 

group of six miRNAs; miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR-92a-1, which 

are located on chromosome 13 and are transcribed together (Olive et al., 2010). In 

glioblastoma the 17~92 cluster is up-regulated and plays a role in apoptosis and 

proliferation. In this study, only two of the six miRNAs transcribed in this cluster were 

found to have altered expression, this suggests that the miRNAs within this cluster may 

be subject to, currently unknown, specific post-transcriptional regulation resulting in 

the varied expression profiles (Mendell, 2008). Five of the six miRNAs which make up 

this cluster were identified in the 32 miRNA panel in Section 4.2.4 however validation 

of the 32 miRNA indicated that the expression of miR-17, miR-19a and miR-19b was 
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not significantly different in the serum of glioblastoma patients. Furthermore, 

additional analysis of these miRNAs to determine false negatives again showed no 

significant difference in expression between glioblastoma patient serum and matched 

controls. MiRNAs can be subject to post-transcriptional regulation by selective 

processing to produce mature miRNAs, in this manner miRNA genes may be 

transcribed and partially processed to produce the pre-miRNA form but further 

cleavage and processing does not occur to produce the active mature miRNA which 

can go on to target mRNA (Obernosterer et al., 2006). It has been shown that for some 

miRNAs high levels of pre-miRNA can be detected in cells but little or no expression of 

the mature form is seen. These pre-miRNA appear to be localised in the nucleus 

suggesting that these miRNA genes are transcribed, processed into pre-miRNA but are 

not subsequently exported to the cytoplasm for further processing (Lee et al., 2008).  

Due to the location of miR-92a and miR-20a in the 17~92 cluster, expression of these 

two miRNAs in each individual patient sample was analysed to determine whether 

they were correlated. Expression of miR-92a and miR-20a was observed to have no 

correlation in both glioblastoma patient samples and non-cancerous control samples. 

This again suggests that although these miRNAs are transcribed together from the 

cluster, differential post-transcriptional regulation affects the expression of the mature 

miRNA forms. Conversely, miR-20a and 92a-3p may have correlated expression within 

the tissue of glioblastoma but this correlation may not extend to serum secretion, this 

could again be a result of selective exosomal packaging (Chen et al., 2012) which could 

result in differences in expression within the serum of these two miRNAs.  

In summary, data from this chapter have identified that miRNA expression is 

dysregulated in the serum of glioblastoma patients with age and gender differences in 

expression. Four miRNAs, miR-20a, miR-30c, miR-34a and miR-92a were identified and 

found to be significantly increased in the serum of glioblastoma patients which were 

validated in a larger patient cohort. In addition to being dysregulated in the serum of 

glioblastoma patients, miR-20a was also found to have prognostic potential, where a 

subset of patients exhibiting a greater than two fold increase in expression showed 

better survival than those with no change, which could be linked to an oligoneural 

precursor subtype of glioblastoma. Expression of miR-20a was found to be inversely 

correlated with age, with younger glioblastoma patients exhibiting the highest 
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expression and older patients aged over 60 years exhibiting the lowest. Further 

investigation of miR-92a, found to be expressed at a higher level in male glioblastoma 

serum sample, could provide information on possible gender susceptibility to 

glioblastoma. MiR-34a expression was increased in the serum of glioblastoma patients 

aged over 60 years. Further analysis showed that miR-34a expression was correlated 

with age in both control and glioblastoma patient serum, suggesting that a 

combination of age and the presence of the tumour led to the up-regulation of this 

miRNA in the serum of older glioblastoma patients. As miR-34a has previously been 

identified as a tumour suppressor down-regulated in glioblastoma tissue, the finding 

that it is up-regulated in the serum of glioblastoma patients may suggest an alternative 

source of miRNA biomarkers in the circulation, other than the tumour itself. This led to 

the next aim of this thesis to elucidate the origin of miRNA dysregulation in the serum 

of glioblastoma patients.  
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5.2 Results  
5.2.1 Identification of MicroRNA Biomarkers in Cell Lines Cultured in 10 % 

FBS 

 
Following identification of four potential miRNA biomarkers, miR-20a, miR-30c, miR-

34a and miR-92a in the serum of glioblastoma patients, U87MG and SVGp12 cells were 

cultured using the human serum cell culture model established in Chapter 3. The 

serum weaning study in Section 3.2.5 did not investigate the miRNA biomarkers 

validated in Section 4.2.5, therefore the serum weaning study was repeated to 

determine whether the serum biomarkers were expressed in the cell lines under 

standard culture conditions and to investigate the effects of serum weaning on 

expression. The investigation of serum miRNA biomarkers in immortalised cell lines 

provides a simplified model to help determine the origin of the miRNA biomarkers 

compared to in vivo systems in which there are alternative sources of miRNAs such as 

immune cells and cells from other tissues. As miRNAs are frequently part of positive 

feedback loops which promote further expression, the application of patient serum 

types in which each biomarker was up-regulated may affect the expression of the 

biomarker in recipient cells. Three of the four validated biomarkers identified in 

Section 4.2.5, miR-92a, miR-20a and miR-30c, have been found, in previous studies to 

be oncogenic (Mogilyansky and Rigoutsos, 2013, Quintavalle et al., 2012), therefore 

the release of these miRNAs in glioblastoma exosomes may also have a self-promoting 

function. To determine whether exosomes within the serum of glioblastoma patients 

could alter miRNA biomarker expression in recipient U87MG and SVGp12 cells, cells 

were weaned onto 10 % glioblastoma patient serum or 10 % control patient serum 

using new patient serum samples. Total RNA was extracted from within the cells 

following serum replacement to determine intracellular biomarker expression, and 

additionally exosomes were isolated from the spent media to determine extracellular 

biomarker expression. This would, in part, elucidate the effect of glioblastoma and 

control serum on recipient cell miRNA expression as well as changes in miRNA 

expression in secreted exosomes from the recipient cells themselves following culture 

in human serum.   

Initial analysis was performed to determine the expression of the biomarkers in pooled 

triplicate patient serum samples alone compared to U87MG and SVGp12 cells cultured 
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in FBS before serum weaning. Cells were then cultured in glioblastoma and control 

patient serum corresponding to the age and gender category in which they were found 

to be dysregulated (Sections 4.2.4 and 4.2.5) to determine whether the dysregulation 

of these miRNAs in serum could have an effect on intracellular miRNA expression in 

recipient cells. Cells were cultured in serum from patients aged over 60 years to 

determine the effect on expression of miR-34a, male patient serum for miR-92a, 

glioblastoma patient serum for miR-20a and 20-39 years glioblastoma patient serum 

for miR-30c.  

5.2.1.1 Expression of MiR-34a in 60+ Patient Serum Pools compared to 

U87MG and SVGp12 Cells Cultured in 10 % FBS  

 
Prior to serum replacement, miR-34a expression in a 60+ age glioblastoma patient 

serum pool and a 60+ age control patient serum pool to be used for weaning was 

compared to the intracellular expression of miR-34a in U87MG and SVGp12 cells and 

spent media containing 10 % FBS. Comparison of miR-34a expression in the two serum 

pools showed that miR-34a expression was not significantly different (p > 0.001) in the 

60+ age GBM patient serum pool compared to the 60+ age control patient serum pool 

(Figure 5.1). MiR-34a expression in both the 60+ age glioblastoma patient serum pool 

and the 60+ age control patient serum pool was not significantly different (p > 0.001) 

than intracellular miR-34a expression in U87MG and SVGp12 cells and spent media 

containing 10 % FBS (Figure 5.1). MiR-34a expression in U87MG cells cultured in 10 % 

FBS was not significantly different (p > 0.001) extracellularly in the spent media 

compared to intracellular expression (Figure 5.1).  Similarly, intracellular miR-34a 

expression in SVGp12 cells cultured in 10 % FBS was not significantly different (p > 

0.001) compared to extracellular expression in the spent media (Figure 5.1). 

Intracellular miR-34a expression in U87MG cells was not significantly different (p > 

0.001) to intracellular miR-34a expression in SVGp12 cells, both cultured in 10 % FBS 

(Figure 5.1). Extracellular miR-34a expression in U87MG cells cultured in 10 % FBS was 

also not significantly different to extracellular miR-34a expression in SVGp12 cells 

cultured in 10 % FBS (Figure 5.1).  
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Figure 5.1 Comparison of miR-34a expression in 60+ GBM patient serum pool and 60+ control patient serum pool. 

MiR-34a expression in cell lines cultured in 10 % FBS was significantly higher than expression in the 60+ patient 

serum pools. Data shown as mean of replicates (n = 3 per group) plus SD, analysed by one-way ANOVA with Tukey 

post-hoc test. Significance indicated between groups by a solid black line, ***p < 0.001. 

5.2.1.2 Expression of MiR-34a in U87MG and SVGp12 cells following Serum 

Replacement with 60+ Patient Serum Pools 

 
After establishing miR-34a expression in the 60+ age glioblastoma patient serum pool 

and 60+ control patient pool compared to U87MG and SVGp12 miR-34a expression 

when cultured in FBS, cells were weaned onto the 60+ age patient pools. The change in 

miR-34a expression following serum replacement was determined compared to cells 

cultured in FBS, all data were normalised using the cel-miR-39 spike in and then 

subsequently normalised to miR-34a expression in the corresponding serum pool. The 

normalisation of cell line expression to the corresponding serum pools ensured that 

expression of miR-34a produced by the cell themselves was determined. The culture of 

U87MG cells in both the 60+ age glioblastoma and 60+ age control patient serum pool 

led to a significant increase (p < 0.001) in intracellular miR-34a expression compared to 

those cultured in FBS (Figure 5.2). The increase in expression observed intracellularly in 

U87MG cells was not significantly different (p > 0.001) between those cultured in the 

*** 
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60+ glioblastoma patient serum and 60+ control patient serum (Figure 5.3). No 

significant change (p > 0.001) in miR-34a expression was observed extracellularly for 

U87MG cells cultured in either serum pool (Figure 5.2). The culture of SVGp12 cells in 

60+ patient serum did not significantly alter miR-34a expression either intracellularly 

or extracellularly compared to those cultured in FBS (Figure 5.2).  

 

 

Figure 5.2 Comparison of miR-34a expression in U87MG and SVGp12 cell lines following serum replacement with 

60+ patient serum pools. MiR-34a expression in U87MG cells cultured in 10 % 60+ GBM patient serum was 

significantly higher intracellularly compared to extracellular expression. Intracellular U87MG expression in 60+ GBM 

serum was significantly higher compared to intracellular SVGp12 or U87MG cells cultured in 10 % FBS. The same 

trend was observed in cells cultured in 10 % 60+ control patient serum. Data shown as mean of replicates (n = 3 per 

group) plus SD, analysed by two-way ANOVA with Tukey post-hoc test. Yellow bar represents miR-34a expression in 

U87MG and SVGp12 cells cultured in 10 % FBS set to a standard value of 1 from which the fold change of all other 

bars were calculated, all serum weaning data were normalised to miR-34a expression in the corresponding serum 

pool. Significance indicated between groups by a solid black line, ***p < 0.001. 
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Figure 5.3 Comparison of miR-34a expression of cells cultured in 10 % 60+ GBM patient and 10 % 60+ control 

patient serum pools. Intracellular miR-34a expression in U87MG cells was significantly higher when cultured in 

both 60+ patient pools compared to those cultured in 10 % FBS. No significant difference in intracellular U87MG 

miR-34a expression was observed between cells cultured in 10 % GBM patient serum and those cultured in 10 % 

control patient serum. No significant difference in expression was observed both intracellularly and extracellularly 

between the three serum conditions for SVGp12 cells. Data shown as mean of replicates (n = 3 per group), plus SD, 

analysed by two-way ANOVA with Tukey post-hoc test, all serum weaning data were normalised to miR-34a 

expression in the corresponding serum pool. Significance between groups indicated by a solid black line, ***p < 

0.001.  

5.2.1.3 Expression of MiR-92a in Male Patient Serum Pools compared to 

U87MG and SVGp12 Cells Cultured in 10 % FBS 

 
Prior to serum replacement, the expression of miR-92a in the male patient serum 

pools to be used for weaning was compared to the expression of U87MG and SVGp12 

cells cultured in 10 % FBS. Initial comparison of miR-92a expression in the two serum 

pools showed no significant difference in expression (p < 0.001) of miR-92a in the male 

glioblastoma serum pool compared to the male control serum pool (Figure 5.4). MiR-

92a expression was significantly lower (p < 0.001) in both male serum pools compared 

to intracellular miR-92a expression in U87MG and SVGp12 cells, and spent media 

containing 10 % FBS (Figure 5.4). Extracellular miR-92a expression in the spent media 

of U87MG cells cultured in 10 % FBS was significantly higher (p < 0.001) compared to 

intracellular U87MG miR-92a expression (Figure 5.4). Extracellular miR-92a expression 

in the spent media of U87MG cells cultured in 10 % FBS was not significantly different 

(p > 0.001) when compared to extracellular miR-92a expression of SVGp12 cells 

cultured in 10 % FBS (Figure 5.4).   

*** 
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Figure 5.4 Comparison of miR-92a expression in male glioblastoma serum pool and male control patient serum 

pool. MiR-92a expression in both male patient serum pools was significantly lower compared to U87MG and 

SVGp12 miR-92a expression when cultured in 10 % FBS. Extracellular U87MG miR-92a expression was significantly 

higher compared to intracellular U87MG expression and extracellular SVGp12 expression. Data shown as mean of 

replicates (n = 3 per group) plus SD, analysed by one-way ANOVA with Tukey post-hoc test. Significance indicated 

between groups by a solid black line, ***p < 0.001. 

5.2.1.4 Expression of MiR-92a in U87MG and SVGp12 cells following Serum 

Replacement with Male Patient Serum Pools  

 
After establishing miR-92a expression in the male glioblastoma patient serum pool and 

male control patient pool compared to intracellular expression in U87MG and SVGp12 

cells and spent media containing 10 % FBS, cells were weaned onto the male patient 

pools and the change in miR-92a expression was determined compared to cells 

cultured in FBS. The culture of U87MG cells in both male glioblastoma serum and male 

control serum pools resulted in no significant change (p > 0.001) in miR-92a expression 

either intracellularly or extracellularly (Figure 5.5). 

The culture of SVGp12 cells in the male glioblastoma serum pool resulted in a 

significant increase (p < 0.001) in intracellular miR-92a expression compared to 

extracellular miR-92a expression and SVGp12 cells cultured in FBS (Figure 5.5). The 

culture of SVGp12 cells in male control patient serum resulted no significant difference 
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of miR-92a intracellular expression (p < 0.001) compared to extracellular expression 

(Figure 5.5). When compared to SVGp12 cells cultured in FBS, intracellular and 

extracellular miR-92a expression of SVGp12 cells cultured in male control patient 

serum was not significantly different (p > 0.001, Figure 5.6).  

Comparison of the effect of the two patient serum pools on U87MG and SVGp12 miR-

92a expression showed no significant difference (p > 0.001) in miR-92a expression 

between U87MG cells cultured in male glioblastoma serum and those cultured male 

control serum (Figure 5.6). Intracellular miR-92a expression of SVGp12 cells was 

significantly higher (p < 0.001) in cells cultured in 10 % male glioblastoma patient 

serum compared to those cultured in 10 % control patient serum and 10 % FBS.  

Extracellular miR-92a expression in SVGp12 cells showed no significant difference (p > 

0.001) in expression between the three serum conditions (Figure 5.6).  
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Figure 5.5 Comparison of miR-92a expression in U87MG and SVGp12 cells following culture in 10 % male patient 

serum pools. MiR-92a expression was significantly higher intracellularly in SVGp12 cells cultured in 10 % male GBM 

serum compared to extracellular SVGp12 and intracellular U87MG miR-92a expression. Yellow bar represents miR-

92a expression in U87MG and SVGp12 cells cultured in 10 % FBS set to a standard value of 1 from which the fold 

change of all other bars were calculated, all serum weaning data were normalised to miR-92a expression in the 

corresponding serum pool. Significance indicated between groups by a solid black line, ***p < 0.001. 

 

Figure 5.6 Expression of miR-92a in cell lines following serum replacement. U87MG miR-92a expression was not 

significantly different between the three serum conditions. Intracellular miR-92a expression in SVGp12 cells 

cultured in 10 % male GBM serum was significantly higher compared to cells cultured in 10 % male control serum 

and 10 % FBS. No significant difference was observed in intracellular miR-92a expression in SVGp12 cells cultured in 

10 % male control patient serum and those cultured in 10 % FBS. Extracellular miR-92a expression in SVGp12 cells 

was not signficantly different between the three serum conditions. Data shown as mean of replicates (n = 3 per 

group), plus SD, analysed by two-way ANOVA with Bonferroni post-hoc test, all serum weaning data were 

normalised to miR-92a expression in the corresponding serum pool. Significance between groups indicated by a 

solid black line, ***p < 0.001. 

*** 
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5.2.1.5 Expression of MiR-20a in Glioblastoma Patient Serum compared to 

U87MG and SVGp12 Cells Cultured in 10 % FBS and following Serum 

Replacement 

 
Prior to serum replacement, miR-20a expression in the glioblastoma patient serum 

pool and the control patient serum pool to be used for weaning was compared to miR-

20a expression in U87MG and SVGp12 cells. MiR-20a expression was detected 

intracellularly in U87MG cells cultured in 10 % FBS only. MiR-20a expression was not 

significantly different (p > 0.001) in the control patient serum pool compared to 

intracellular U87MG miR-20a expression (Figure 5.7). MiR-20a expression in the 

glioblastoma patient serum pool exhibited no significant difference (p > 0.001) 

compared to miR-20a expression in U87MG cells cultured in 10 % FBS (Figure 5.7).  

The culture of U87MG cells in both glioblastoma patient serum and control patient 

serum showed no significant difference (p > 0.001) in intracellular miR-20a expression 

compared to U87MG cells cultured in FBS (Figure 5.8).   

 

Figure 5.7 MiR-20a expression in glioblastoma patient pooled serum and control patient pooled serum compared 

to intracellular U87MG miR-20a expression.  MiR-20a expression was not significantly different in the control 

patient serum pool compared to intracellular U87MG expression. MiR-20a expression in the glioblastoma patient 

serum pool exhibited no significant difference in expression compared to U87MG cells or control patient serum 

pool. Data shown as mean of replicates (n = 3 per group) plus SD analysed by Kruskal-Wallis one way ANOVA with 

Dunn’s post-hoc test. Significance indicated between groups by a solid black line, p > 0.05.    
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Figure 5.8 Intracellular miR-20a expression in U87MG cells following culture in 10 % GBM patient and control 

patient serum pools. Intracellular miR-20a expression was not significantly different between U87MG cells cultured 

in glioblastoma patient serum or control patient serum or compared to those cultured in FBS. Data shown as mean 

of replicates (n = 3 per group) plus SD, all serum weaning data were normalised to miR-20a expression in the 

corresponding serum pool. Data were analysed by Kruskal-Wallis one-way ANOVA with Dunn’s post-hoc test, p > 

0.05. 

5.2.1.7 Expression of MiR-30c in 20-39 Glioblastoma Patient Serum 

compared to U87MG and SVGp12 Cells Cultured in 10 % FBS and following 

Serum Replacement  

 
Prior to serum replacement, miR-30c expression in the 20-39 glioblastoma patient 

serum pool and the 20-39 control patient serum pool to be used for weaning was 

compared to miR-30c expression in U87MG and SVGp12 cells. MiR-30c expression was 

detected intracellularly in U87MG cells cultured in 10 % FBS only. MiR-30c expression 

was not significantly different (p > 0.001) in the 20-39 glioblastoma patient serum pool 

compared to U87MG expression (Figure 5.9). Expression of miR-30c in the 20-39 

control patient serum pool was not significantly different (p > 0.001) to miR-30c 

expression in U87MG cells (Figure 5.9). Intracellular expression of U87MG cells 

cultured in 20-39 glioblastoma patient serum exhibited a higher expression of miR-30c 

expression compared to those cultured in FBS (Figure 5.10). U87MG cells cultured in 

20-39 control patient serum exhibited no significant change (p > 0.01) in expression 

compared to those cultured in FBS (Figure 5.10).  
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Figure 5.9 MiR-30c expression in 20-39 glioblastoma patient pooled serum and 20-39 control patient pooled 

serum compared to intracellular U87MG miR-30c expression. MiR-30c expression was not significantly different in 

the 20-39 glioblastoma patient serum pool compared to 20-39 control pool expression and intracellular U87MG 

cultured in 10 % FBS. MiR-30c expression in the 20-39 control patient serum pool exhibited no significant difference 

in expression compared to U87MG cells cultured in 10 % FBS. Data shown as mean of replicates (n = 3 per group) 

plus SD analysed by Kruskal-Wallis one way ANOVA with Dunn’s post-hoc test, p > 0.001.    

 

Figure 5.10 Intracellular miR-30c expression in U87MG cells following culture in 10 % 20-39 patient serum pools. 

Intracellular miR-30c expression was not significantly different in U87MG cells cultured in 20-39 glioblastoma 

patient serum compared to those cultured in 10 % 20-39 control patient serum and 10 % FBS. MiR-30c expression 

was not significantly different in U87MG cells cultured in 20-39 control patient serum compared to those cultured in 

10 % FBS. Data shown as mean of replicates (n = 3 per group) plus SD, analysed by Kruskal-Wallis one-way ANOVA 

with Dunns post-hoc test, all serum weaning data were normalised to miR-30c expression in the corresponding 

serum pool, p > 0.01.  
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5.2.2 MicroRNA Expression in Glioblastoma Tissue  

 
Data from Section 5.2.1 demonstrated that some of the miRNAs within the biomarker 

panel may originate from the tissue itself due to the high intracellular expression of 

these miRNAs in vitro. To further determine whether miRNAs present within the 

circulation originate from the glioblastoma itself, the expression of miRNAs was 

measured in tumour tissue samples. As the incidence of glioblastoma is most prevalent 

in individuals over the age of 60 years and three of the four biomarkers validated in 

Section 4.2.5 are all present in the serum of glioblastoma patients over the age of 60 

years, tissue samples were obtained from patients of this age group. Age-matched 

tissue samples from one male and one female patient were obtained and analysed 

separately to determine whether there were any gender differences in tissue miRNA 

expression as observed in serum.  

Analysis of the 84 miRNAs in the brain cancer panel identified 28 miRNAs that were 

highly expressed in the male tissue (Figure 5.11A). MiR-124a showed the highest level 

of expression in male tissue with a 6.04 fold increase, and 17-5p, 181b-5p, 182-5p, 

183-5p and 184 exhibited more than a five-fold change in expression. MiR-146b-5p 

and 9-5p had a greater than four-fold change in expression and miR-19b-3p, 203a, 

30b-5p, 30c-5p and 7-5p had a greater than three-fold change in expression. The 

remaining miRNAs exhibited at least a two-fold increase in expression in the male 

tissue. Ten miRNAs showed reduced expression in male glioblastoma tissue (Figure 

5.11B), miR-23a-3p showed the greatest decrease in expression of 0.06 fold, the next 

two miRNAs with the greatest decrease in expression were miR-15b-5p and miR-21-5p 

with a 0.17 and 0.18 fold decrease, respectively. Three of the five miRNAs identified in 

Section 4.2.4 were expressed in male tissue, miR-30c, miR-92a and miR-150. 

Expression of miR-92a showed a 2.12 fold increase in expression in the tissue of the 

male glioblastoma patient compared to age matched control tissue and miR-30c and 

miR-150 showed a 3.14 fold and 2.00 fold increase in expression, respectively (Figure 

5.13A).  

Five miRNAs showed a high level of expression in the female glioblastoma tissue 

(Figure 5.12A), all five miRNAs exhibited a greater than two-fold increase in expression 

with miR-184 having the greatest increase in expression. 25 miRNAs showed reduced 
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expression in female glioblastoma tissue with miR-130a-3p having the greatest 

decrease in expression of 0.06 fold (Figure 5.12B). Two of the four validated serum 

biomarkers, miR-92a and miR-30c, were detected in the female tissue. MiR-92a and 

miR-30c were both observed to have reduced expression in the female tissue by a fold 

change of 0.10 and 0.14 respectively (Figure 5.12B). MiRNAs 185-5p and 184 were up-

regulated in both male and female samples, both male and female showed a similar 

fold increase of 2.39 and 2.36 fold for miR-185-5p, however miR-184 had a greater 

increase in expression of 5.76 fold in the male sample compared to 2.50 in the female 

sample. MiR-130a-3p, 21-5p and 23a-3p were all down-regulated in both male and 

female samples. MiR-130a-3p had a greater decrease in fold change in the female 

sample of 0.06 fold compared to 0.26 fold whereas 21-5p and 23a-3p had a greater 

decrease in expression in the male sample of 0.18 and 0.06 compared to the female 

sample expression of 0.40 and 0.28 fold.     
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Figure 5.11 Fold Change of miRNAs in 60+ male glioblastoma patient tissue. A) 28 miRNAs exhibited an increase in 

expression in glioblastoma tissue obtained from a patient aged over 60 years (n=1), miR-124-3p showed the highest 

expression compared to matched control tissue. B) 10 miRNAs exhibited reduced expression in glioblastoma tissue 

obtained from a male patient aged over 60 years (n=1), miR-23a-3p showed the greatest decrease in expression 

compared to matched control tissue.   
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Figure 5.12 Fold Change of miRNAs in 60+ female glioblastoma patient tissue. A) Four miRNAs showed an 

increased expression in the tissue of a female glioblastoma patient aged over 60 years (n=1), miR-184 showed the 

greatest increase in expression compared to matched control tissue. B) 25 miRNAs exhibited reduced expression in 

the tissue of a female glioblastoma patient aged over 60 years (n=1). MiR-130a-3p showed the greatest decrease in 

expression compared to matched control tissue.  
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5.2.3 MicroRNA Expression in TCGA  

 
Following identification of four miRNAs with significant altered expression in the sera 

of glioblastoma patients, microarray data obtained from the TCGA was analysed by 

Josie Hayes from the Leeds Institute of Molecular Medicine to identify whether the 

expression of the miRNA panel correlated with miRNA expression in tissue in a larger 

cohort of 558 patients which could be grouped by age and gender. The microarray 

data was analysed to determine the expression of the miRNAs in tissue, age and 

gender differences, and prognostic potential. As it has not been previously shown to 

have a role in glioblastoma, tissue expression of miR-150 was also investigated to 

determine whether this miRNA is dysregulated in glioblastoma.  

MiR-34a expression was significantly higher (p < 0.0001) in the tissue of glioblastoma 

patients (Table 5.1) and expression was correlated with age (r = 0.23, p < 0.0001), with 

older patients exhibiting higher expression (Figure 5.15A). Higher expression of miR-

34a was associated with a poorer prognosis (p < 0.05) compared to individuals with a 

low expression (Figure 5.15B). Patients with a higher expression of miR-34a had a 

median survival time of 13.3 months and patients with a low expression having a 

median survival time of 13.9 months. Analysis of miR-34a expression based on gender 

showed no significant difference (p >0.05) in miR-34a expression between male and 

female groups (Figure 5.15C).  

MiR-92a was significantly up-regulated (p < 0.0001) in the tissue of glioblastoma 

patients compared to non-cancerous patients (Table 5.1). Expression was not 

correlated with age (r = -0.15, p < 0.0001), (Figure 5.16A). Patients with a higher 

expression of tissue miR-92a did not exhibit a significant difference (p > 0.05) in 

median survival time compared to those without (Figure 5.16B). Patients with high 

expression of miR-92a had a median survival time of 14.4 months and patients with 

low expression of miR-92a had a median survival of 12.9 months. Analysis of miR-92a 

based on gender exhibited no significant difference (p > 0.05) in expression of miR-92a 

in tissue between male and female patients (Figure 5.16C).  

MiR-20a was significantly up-regulated (p < 0.0001) in the tissue of glioblastoma 

patients (Table 5.1), furthermore, expression was inversely correlated with age (r = -

0.15, p < 0.0001) with older patients exhibiting a lower expression of miR-20a (Figure 
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5.17A). Higher expression of miR-20a in the tissue of glioblastoma patients was 

associated with a better prognosis (Figure 5.17B). Patients with a higher expression of 

miR-20a had a median survival of 15.3 months and patients with a low expression of 

miR-20a had a median survival of 12.6 months. Analysis of miR-20a expression 

grouped by gender showed no significant difference (p > 0.05) in expression between 

male and female groups (Figure 5.17C).  

MiR-20a and 92a are located within the genome in a cluster of miRNAs which are 

transcribed together therefore expression of these two miRNAs in each individual 

patient was analysed to determine whether expression was correlated. Analysis of 

patient miR-92a and miR-20a expression showed a high correlation (r = 0.46, p < 

0.0001) in expression for these two miRNAs (Figure 5.17D). 

Analysis of miR-30c and miR-150 in patient tissue found no significant difference (p > 

0.05) in expression between glioblastoma and control patients (Table 5.1). 

Furthermore, no difference in expression was observed between age groups for miR-

30c and miR-150 (r = -0.02 and -0.03 respectively, p > 0.05) or genders (Figures 5.18A 

and B and 5.19A and B). Survival analysis of miR-30c and miR-150 also showed no 

association with prognosis (p > 0.05).  

Table 5.1 Log fold change expression of serum miRNA biomarkers in glioblastoma tissue obtained from TCGA 
analysed by Josie Hayes.  

MiRNA Log fold Change  p value 

miR-34a-5p 1.30 Increased 5.3 x10-4 

miR-92a-3p 1.21 Increased 5.6 x10-9 

miR-20a-5p 1.37 Increased 6.3 x10-7 

miR-30c-5p 0.301 No change 0.24 

miR-150-5p 0.031 No change 0.87 
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Figure 5.13 Analysis of miR-34a expression in glioblastoma tissue using the TCGA dataset.  A) Expression of miR-

34a in glioblastoma tissue was correlated with age determined by Pearson’s correlation r = 0.23 ****p < 0.0001. B) 

Patients with a low expression of miR-34a exhibited a better prognosis than those with an up-regulation 

determined by log-rank above and below the median *p < 0.05. C) No gender difference in tissue miR-34a 

expression was observed, p > 0.05. High and low miRNA expression was determined as above and below the 

median. Analysis and figures produced by Josie Hayes (Leeds Institute of Molecular Medicine). 
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Figure 5.14 Analysis of miR-92a expression in glioblastoma patient tissue using the TCGA dataset. A) Expression of 

tissue miR-92a was not correlated with age determined by Pearson’s correlation. r = -0.15, p < 0.0001. B) Patients 

with a higher expression of miR-92a did not exhibit a significantly better prognosis than those with a low expression 

by log-rank above and below the median, p > 0.05. C) No gender difference in tissue miR-92a expression was 

observed, p > 0.05. High and low miRNA expression was determined as above and below the median. Analysis and 

figures produced by Josie Hayes (Leeds Institute of Molecular Medicine).        
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Figure 5.15 Analysis of tissue miR-20a expression using the TCGA dataset. A) Expression of tissue miR-20a was not correlated with age determined by Pearson’s correlation. r = -0.15, ****p < 0.0001 

B) No significant difference in tissue miR-20a expression was observed between genders p > 0.05. C) Patients with a higher expression of miR-20a exhibited a better prognosis compared to those with 

a low expression determined by log-rank above and below the median, ****p < 0.0001 D) Expression of miR-92a and miR-20a was correlated in tissue determined by Pearson’s correlation. r = 0.46, 

****p < 0.0001. High and low miRNA expression was determined as above and below the median. Analysis and figures produced by Josie Hayes (Leeds Institute of Molecular Medicine). 
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Figure 5.16  Analysis miR-150 expression in glioblastoma patient tissue using the TCGA dataset. A) Expression of 

tissue miR-150 was not correlated with age of glioblastoma patients determined by Pearson’s correlation. r = -0.03, 

p > 0.05. B) No significant difference in miR-150 was observed between genders, p > 0.05. Analysis and figures 

produced by Josie Hayes (Leeds Institute of Molecular Medicine). 
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Figure 5.17 Analysis of miR-30c expression in glioblastoma patient tissue using the TCGA dataset. A) MiR-30c 

expression was not significantly correlated with age determined by Pearson’s correlation. r = -0.02, p > 0.05. B) 

Expression of miR-30c was not significantly different between genders, p > 0.05. Analysis and figures produced by 

Josie Hayes (Leeds Institute of Molecular Medicine). 
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5.2.4 Expression of Serum Biomarkers in Matched Tissue  

 

Following miScript analysis of miRNA expression in tissue and analysis of the four 

miRNA biomarkers tissue expression in the TCGA dataset, further studies were 

performed to determine the expression of the five biomarkers in patient tissue 

compared to matched serum samples. Matched tissue samples were not available for 

the 20-39 patient group therefore correlation between serum and tissue expression of 

miR-30c was not performed.   

MiR-34a was found to be up-regulated in the serum of glioblastoma patients over the 

age of 60 years in Sections 4.2.4 and 4.2.5. MiR-34a is a known tumour suppressor and 

is down-regulated in glioblastoma tissue (Okada et al., 2014). The expression of miR-

34a was determined in matched tissue and serum samples obtained from four 

patients, to determine the difference in expression between the sample types in order 

to elucidate whether patients used in this study also demonstrated reduced expression 

of miR-34a in the tissue as reported in previous studies and an up-regulation of miR-

34a in the serum as observed in Sections 4.2.4 and 4.2.5, or alternatively whether miR-

34a is similarly expressed in the tissue as observed in the TCGA data in Section 5.2.3. 

MiR-34a expression was higher in the serum of four glioblastoma patients over the age 

of 60 years compared to expression within the tissue obtained from the same patient 

(Figure 5.18).   

In Sections 4.2.4 and 4.2.5 miR-92a expression was higher in the serum of male 

glioblastoma patients. Analysis of miR-92a expression in three matched serum and 

tissue samples showed a significantly lower expression of miR-92a in the serum of 

male glioblastoma patients compared to the expression of miR-92a in matched tissue 

samples (Figure 5.19).  

MiR-20a expression was higher in the serum of a sub-group of glioblastoma patients in 

Sections 4.2.4 and 4.2.5. Comparison of miR-20a expression in matched serum and 

tissue samples showed no significant difference in expression between the two sample 

types (Figure 5.20).  



174 
 

 

Figure 5.18 Expression of miR-34a in matched serum and tissue samples. Expression of miR-34a was higher in the 

serum of glioblastoma patients over the age of 60 years compared to matched tissue samples obtained from the 

same patient. Data shown as mean of four samples with SD, with the 60+ control tissue set at a standard value of 1,  

data analysed by Mann-Whitney U test, p = < 0.05.  

 

 

Figure 5.19 Expression of miR-92a in matched male glioblastoma patient serum and tissue samples.  Expression of 

miR-92a was significantly lower in the serum of male glioblastoma patients compared to expression in matched 

tissue samples. Data shown as mean of triplicate samples plus SD, analysed by Mann-Whitney U test, p < 0.05.  

* 

* 
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Figure 5.20 Comparison of miR-20a expression in matched serum and tissue samples from glioblastoma patients. 

Analysis of miR-20a expression in matched samples showed no significant difference in expression between serum 

and tissue samples. Data shown as mean of 5 samples plus SD, analysed by Mann-Whitney U test, p > 0.05.  

5.2.5 In Situ Hybridisation of miRNA Biomarker Probes  

 
Glioblastoma is composed of a group of heterogenous cells, differing in miRNA 

expression (Singh et al., 2012). To determine the localisation and population of cells 

within glioblastoma which may express the miRNA biomarkers identified within the 

serum and to determine any correlation in tissue expression between the TCGA and 

qPCR analysis in previous sections, in situ hybridization (ISH) of tissue sections was 

performed. Furthermore, the invasive nature of glioblastoma and indistinct tumour 

margins allows for the identification of miRNA expression in neighbouring non-

cancerous cells that may be present on the sections. Identification of the localisation of 

miR-34a expression in particular could help to determine whether the relative high 

expression of this miRNA in the serum is due to secretion by neighbouring non-

cancerous cells as an anti-proliferative signal.   Due to the sensitive nature of the ISH 

protocol and optimisation required, three miRNA biomarkers were selected from the 

panel for investigation, miR-20a, miR-34a and miR-92a. MiR-30c was not included 

based on the non-significant tissue expression in the TCGA data in Section 5.2.2.   
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Tissue sections were selected from patients whose serum samples were used in 

Section 4.2.4 and miRNA expression of matched tissue samples was determined using 

qRT-PCR and fold change compared to serum biomarker expression for comparison 

with data obtained from ISH. Tissue sections were obtained from 12 patients, two 

male and female patients for each age group and tissue lysates were obtained for five 

of the patients for qPCR analysis. Optimisation of the ISH protocol was performed 

using the U6 small nucleolar RNA (snRNA), an endogenously expressed RNA, and miR-

21, a miRNA with high expression in glioblastoma (Figure 5.21).  U6 snRNA and miR-21 

probes were incubated overnight at both 4 °C and 37 °C, to determine the optimum 

temperature for probe incubation. Positive results were observed for both positive 

control probes at 4 ° C and 37 °C. Following these results a final temperature of 37 °C 

was selected for ISH analysis of target miRNA.  A scrambled miRNA probe was also 

used during optimisation studies which showed negative results at both temperatures.  

Following optimisation of probe temperature, incubation times for the anti-DIG AP 

antibody and NBT-BCIP substrate were optimised. Sections were incubated for one 

hour each with anti-DIG AP and NBT-BCIP, two hours anti-DIG AP and one hour NBT-

BCIP and two hours each with anti-DIG AP and NBT-BCIP. Incubation of sections for 

one hour with anti-DIG AP and one with NBT-BCIP showed positive staining for the U6 

positive control probe and negative staining for the scrambled probe however, the 

miR-34a, miR-92a and miR-20a probes produced weak signal (Figure 5.22). Incubation 

for two hours with anti-DIG AP and one hour NBT-BCIP produced signal with the U6 

positive control probes and the target miRNA probes and was negative for the 

scrambled probe (Figure 5.23). Incubation for two hours with both anti-DIG AP and 

NBT-BCIP was performed to determine whether the signal strength of the miRNA 

targets could be improved however non-specific probe binding was observed (Figure 

5.24).    

Following optimisation of the ISH protocol, analysis of tissue sections selected from 

patients used in the serum studies in Chapter 4 were performed. All tissue sections 

showed positive signal for the U6 snRNA positive control (Figures 5.22 and 5.23) and 

negative signal with the scrambled probe (Figures 5.24 and 5.25). BTNW 1336, 

obtained from a female 60+ glioblastoma patient showed extensive necrosis in the 

tissue section characterised by the lack of nuclear fast red counter staining due to a 
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reduced number of nuclei and non-specific probe signal. Patient tissue sections probed 

with the scrambled negative control all showed no signal (Figures 5.24 and 5.25). 
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Figure 5.21 Optimisation of probe hybridisation temperature.  Positive signals were obtained for both the miR-21 and U6 snRNA positive control probes and negative signals for the scrambled probe 

at both 4 ° C and 37 ° C.  Main images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 

MiR-21 Positive Control  U6 snRNA Positive Control  Scrambled Negative Control  

4 °C 

37 °C 
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Figure 5.22 Optimisation of ISH Protocol - One hour antibody and NBT-BCIP incubation. Incubation of tissue sections with antibody for one hour at 37 ºC  followed by incubation with NBT-BCIP for 

one hour at 37 ºC  exhibited positive U6 signal and negative scrambled probe control and weak signal for the target miRNA probes. Main images x 10 magnification, inset x 100 magnification. Scale 

bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 

MiR-20a  

U6 snRNA Positive Control  Scrambled Negative 

Control  

MiR-34a  MiR-92a  
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Figure 5.23 Optimisation of ISH protocol using one hour antibody incubation and two hours NBT-BCIP incubation.One hour incubation with antibody at 37 ºC and two hours incubation with NBT-

BCIP at 37 ºC resulted in positive U6 signal and negative scrambled probe signal and positive target miRNA staining. Main images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm, 

inset 1 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 

MiR-20a  

U6 snRNA Positive Control  Scrambled Negative Control  

MiR-34a  MiR-92a  
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Figure 5.24 Optimisation of ISH protocol with two hours antibody and NBT-BCIP incubation.  Incubation of tissue sections for two hours each at 37 ºC with antibody and NBT-BCIP substrate resulted 

in extensive non-specific staining for all probes. Main images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – nuclear fast red 

counterstain. 

MiR-20a  

U6 snRNA Positive Control  Scrambled Negative Control  

MiR-34a  MiR-92a  
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ISH of miR-20a on female glioblastoma patients showed positive signal for three of the 

five viable tissue sections (Figure 5.29A). One section from each of the three female 

glioblastoma age groups exhibited a positive signal, BTNW 429, BTNW 871 and BTNW 

1186. Expression of miR-20a in female glioblastoma patient tissue from the 20-39 and 

40-59 age groups appeared to be uniform across the majority of the section, with 

staining mainly localised to the cytoplasm of cells (Figure 5.29A). Expression of miR-20a 

in the female 60+ patient tissue section also displayed signal in the cytoplasm of cells 

but also relatively strong signal in the nucleus also. Expression of miR-20a determined 

by qPCR for BTNW 429 and BTNW 1186 showed that miR-20a expression in the tissue 

lysate of these two patients was not significantly different (p > 0.05) to that of the 

matched serum samples and positive ISH signals were obtained for BTNW 429 and 

BTNW 1186 (Figure 5.29B). As matched tissue lysate was not available for any of the 

female tissue sections which displayed a negative ISH signal, miR-20a expression was 

not able to be determined using qPCR.  

Four of the six tissue sections obtained from male glioblastoma patients showed 

positive signal for the miR-20a probe, BTNW 850, BTNW 816, BTNW 758 and BTNW 

1078 (Figure 5.30A). One section from both the 20-39, BTNW 850, and 60+ age groups, 

BTNW 1078, showed positive signal and both sections from the 40-59 age group 

displayed positive signal. Three of the four positive tissue sections, BTNW 850, BTNW 

758 and BTNW 1078, exhibited both nuclear and cytoplasmic signal, however BTNW 

816, a male glioblastoma patient aged between 40 and 59 years, displayed cytoplasmic 

signal with no nuclear staining (Figure 5.30A). Expression of miR-20a determined by 

qPCR of tissue lysates showed a significantly higher (p < 0.01) expression of miR-20a in 

the tissue of BTNW 816 compared to serum expression and no significant difference (p 

> 0.05) in expression of miR-20a in matched tissue lysate and serum samples from 

BTNW 1078 and 1019 (Figure 5.30B). BTNW 816 displayed localised ISH signal rather 

than uniform expression across the tissue section whereas BTNW 1019 and 1078 both 

displayed uniform cytoplasmic and nuclear staining across the tissue section (Figure 

5.30B).  

ISH of the miR-34a probe in female glioblastoma patients displayed negative signal for 

the 20-39 age group (Figure 5.31A). The female 40-59 tissue sections displayed positive 

signal for both tissue sections and the viable female 60+ patient tissue section, BTNW 
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1186, displayed positive signal also which appeared to be stronger than that of the 40-

59 age group sections (Figure 5.31A). Positive staining for miR-34a was uniform across 

the section with both cytoplasmic and nuclear signal of a similar strength (Figure 

5.31A). Expression analysis of miR-34a by qPCR for BTNW 429 showed an absence of 

miR-34a expression in the tissue lysate and ISH for the BTNW 429 was also negative 

(Figure 5.31B). Expression of miR-34a determined by qPCR for BTNW 1186 showed a 

significantly lower expression (p < 0.001) of miR-34a in the tissue sample compared to 

the serum and miR-34a ISH for BTNW 1186 displayed a weak positive signal (Figure 

5.31B).   

Mir-34a ISH for male glioblastoma patient tissue sections showed positive signal for 

four of the six sections (Figure 5.32A). BTNW 850, a male glioblastoma patient aged 

between 20 and 39 years, displayed positive signal. Both male glioblastoma patients in 

the 40-59 age group and one male 60+ glioblastoma patient, BTNW 1019, exhibited 

positive signal with the miR-34a probe (Figure 5.32A). Two of the four positive 

sections, BTNW 850 and BTNW 785, showed strong nuclear signal for miR-34a 

compared to the cytoplasmic staining. BTNW 816 showed positive cytoplasmic staining 

around blood vessels with no nuclear signal. MiR-34a ISH for BTNW 816, BTNW 1078 

and BTNW 1019 all displayed a weak positive signal.   (Figure 5.32A). Expression of 

miR-34a for matched male tissue lysate samples determined by qPCR showed 

significantly lower (p < 0.01 and < 0.05) expression of miR-34a compared to serum 

miR-34a expression for all three patients (Figure 5.32B).  

ISH of miR-92a for female glioblastoma patients showed negative signal for all but two 

of the tissue sections, BTNW 1186 and BTNW 743 (Figure 5.33A). BTNW 1186 

displayed a positive miR-92a ISH signal however tissue lysate miR-92a expression 

determined by qPCR exhibited a significantly lower expression of miR-92a compared to 

serum expression (Figure 5.33B). MiR-92a ISH for BTNW 429 showed a negative signal 

for this miRNA and tissue lysate expression of miR-92a determined by qPCR exhibited a 

significantly lower expression of miR-92a compared to serum expression (Figure 5.33A 

and B).  

ISH of miR-92a for male glioblastoma patients exhibited positive staining for four 

patients BTNW 448, BTNW 850, BTNW 758 and BTNW 1078 (Figure 5.34A). BTNW 758 
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displayed positive cytoplasmic miR-92a signal, BTNW 850 and BTNW 1078 displayed 

both positive cytoplasmic and nuclear staining (Figure 5.34A). Expression analysis of 

miR-92a by qPCR showed significant down-regulation of miR-92a in tissue lysate 

samples compared to serum samples for BTNW 816, BTNW 1078 and BTNW 1019 

(Figure 5.34B).  
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Figure 5.25 ISH of U6 snRNA positive control in female glioblastoma patient tissue sections. All six female patient tissue sections displayed positive signal for the U6 snRNA positive control probe. 

BTNW 1336 showed extensive necrosis within the tissue section resulting in poor signal. Main images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA 

target, red signal – nuclear fast red counterstain. 
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Figure 5.26 ISH of U6 snRNA positive control in male glioblastoma patient tissue sections. All six male patient tissue sections displayed positive signal for the U6 snRNA positive control probe. Main 

images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm, inset 1µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 
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Male 20-39 Male 40-59 Male 60+ 
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Figure 5.27 ISH of scrambled negative control probe on female glioblastoma patients. All female glioblastoma patient tissue sections showed no probe signal for the negative control scrambled 

probe. BTNW 1336 showed extensive necrosis within the tissue section resulting in poor signal.  Main images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm. Blue signal – miRNA 

target, red signal – nuclear fast red counterstain. 
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Figure 5.28 ISH of scrambled negative control probe on male glioblastoma patients. All male glioblastoma patient tissue sections showed no probe signal for the negative control scrambled probe. 

Main images x 10 magnification, inset x 100 magnification. Scale bars – 10 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 
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Figure 5.29 MiR-20a ISH of female glioblastoma patient tissue sections and qPCR of matched frozen tissue samples. A) Positive signal for miR-20a was obtained for three of the five viable female 

tissue sections in each of the three age groups. MiR-20a signal was observed to be distributed both in the nucleus and cytoplasm of cells within the sections. B) Comparison of tissue and serum miR-

20a expression  determined by qPCR demonstrated no signficant difference in miR-20a expression between matched tissue lysate and serum samples for BTNW 429 and 1186 who also demonstrated 

positive miR-20a ISH signals. Data shown as mean of replicates (n = 3) plus SD, analysed by Mann-Whitney U test, p > 0.05. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – 

nuclear fast red counterstain. 
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Figure 5.30 MiR-20a ISH of male glioblastoma patient tissue sections and qPCR data of matched frozen tissue samples. A) Positive signal of miR-20a was observed for four of the six tissue sections, 

miR-20a signal was observed to be strongest in the nucleus of cells in three of the sections however cytoplasmic staining was also observed, BTNW 816 displayed cytoplasmic staining of miR-20a only. 

B) Comparison of ISH and qPCR miR-20a expression data showed no significant difference in expression of miR-20a for two of the three matched tissue lysate samples compared to matched serum 

samples. BTNW 816 showed a significantly higher expression of miR-20a in the tissue lysate compared to matched serum.  Data shown as mean of replicates (n = 3) plus SD, analysed by Mann-

Whitney U test. Significance between groups indicated by a solid black line, **p < 0.01. Scale bars – 10 µm, 1 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 
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Figure 5.31 MiR-34a ISH of female glioblastoma patient tissue sections and qPCR data from matched frozen tissue samples. A) Positive signals for miR-34a were obtained for three of the viable 

female tissue sections, BTNW 743, BTNW 871 and BTNW 1186. MiR-34a ISH signal showed strong nuclear staining and weak cytoplasmic staining. B) Comparison of ISH and qPCR data showed that 

BTNW 1186 tissue lysate miR-34a expression was significantly lower compared to matched serum expression, BTNW 1186 showed a weak miR-34a ISH signal. MiR-34a was not detected in the 

matched tissue lysate sample for BTNW 429 and ISH miR-34a signal for this patient was negative. Data shown as mean of replicates (n = 3) plus SD, analysed by Mann-Whitney U test. Significance 

between groups indicated by a solid black line, ***p < 0.001. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain. 
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Figure 5.32 MiR-34a ISH of male glioblastoma patient tissue sections and qPCR data for matched frozen tissue samples. A) Positive signals were obtained for five of the six male tissue sections. MiR-

34a was observed to be enriched in the nucleus of cells demonstrated by a strong signal and a weaker cytoplasmic signal. B) Comparison of miR-34a ISH and qPCR expression showed a down-

regulation of miR-34a expression in tissue lysate samples for all three patients compared to matched serum samples. Data shown as mean of replicates (n = 3) plus SD, analysed by Mann-Whitney U 

test. Significance indicated between groups by solid black line, *p < 0.05, **p < 0.01. Scale bars – 10 µm, inset 1 µm.  Blue signal – miRNA target, red signal – nuclear fast red counterstain. 
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Figure 5.33 MiR-92a ISH of female glioblastoma patient tissue sections and qPCR data from matched frozen tissue samples. A) A positive miR-92a signal was observed for two of the five viable 

female tissue sections, BTNW 1186 and BTNW 743 with the remaining four displaying negative signals. Positive staining for BTNW 1186 was enriched in the nucleus of cells within the section. B) 

Comparison of ISH and qPCR data for miR-92a expression showed a down-regulation of miR-92a in the tissue lysate sample compared to matched serum and signal for BTNW 429 ISH was negative. 

Tissue lysate miR-92a expression was down-regulated compared to the serum of BTNW 1186 which displayed a positive ISH signal. Data shown as mean of replicates (n = 3) plus SD, analysed by 

Mann-Whitney U test. Significance indicated between groups by a solid black line, ***p < 0.001. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – nuclear fast red counterstain.  
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Figure 5.34 MiR-92a ISH of male glioblastoma patient tissue sections and qPCR data from matched frozen tissue samples. A) Positive miR-92a ISH signals were observed for four of the six male 

tissue sections BTNW 448, BTNW 850, BTNW 758 and BTNW 1078, with nuclear enrichment in three of the four positive sections except BTNW 758. B) Comparison of ISH and qPCR miR-92a 

expression showed signficantly lower expression in tissue lysate miR-92a expression compared to matched serum samples in all three patients.  Data shown as mean of replicates (n = 3), plus SD, 

analysed by Mann-Whitney U test. Significance between groups indicated by a solid black line, *p < 0.05, ***p < 0.001. Scale bars – 10 µm, inset 1 µm. Blue signal – miRNA target, red signal – nuclear 

fast red counterstain. 
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5.2.6 Expression of Serum Biomarkers in Cerebrospinal Fluid 

 
The use of serum as a relatively non-invasive test for glioblastoma biomarkers is 

attractive however the proximity of cerebrospinal fluid to the location of glial tumours 

may provide a more accurate representation of glioblastoma miRNA expression. 

Expression of the serum miRNA biomarkers identified in Section 4.2.4, in cerebrospinal 

fluid (CSF), from four glioblastoma patients and six patients with other neurological 

disorders (Table 5.2), was measured to determine whether there were similarities with 

serum miRNA expression. If expression of the serum miRNAs was similar it may 

suggest that CSF could be a more useful and accurate means of diagnosing and 

predicting prognosis for glioblastoma patients. Although found to be not significantly 

altered in expression in the validation study, miR-150 was included in the CSF study to 

determine whether expression may be significantly altered in an alternative sample 

type.  

Table 5.2 Neurological disorders of patient CSF samples utilised as controls. 

Patient Number Neurological Disorder 

1208 Dermoid Cyst 

1289 Normal Pressure Hydrocephalus 

1293 Dermoid Cyst 

1210 Hydrocephalus 

1234 Normal Pressure Hydrocephalus 

1238 Normal Pressure Hydrocephalus 

 

MiR-20a and miR-92a were detected in the CSF of glioblastoma patients however, miR-

30c, miR-34a and miR-150 were undetected. MiR-20a showed higher expression in the 

CSF of glioblastoma patients aged between 40 and 39 years and reduced expression in 

glioblastoma patients aged over 60 years (Figure 5.32). CSF samples from glioblastoma 

patients aged between 20 and 39 years were not available for this study. MiR-92a 

expression was significantly higher (p < 0.001) in the CSF of male glioblastoma patients 

compared to sex matched controls (Figure 5.33).  
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Figure 5.35 Expression of miR-20a in the cerebrospinal fluid of glioblastoma patients grouped by age. CSF from 

glioblastoma patients aged between 40 and 59 years exhibited a higher expression of miR-20a compared to CSF 

obtained from glioblastoma patients over the age of 60 years and age matched controls. There was no significant 

difference in miR-20a expression between glioblastoma patients over the age of 60 years and age matched controls. 

Data shown as mean of replicates (n = 3 per group) plus SD, analysed by one way ANOVA with Tukey post-hoc test. 

Significance between groups indicated by a solid black line, ***p < 0.001. 

 

 

Figure 5.36 Expression of miR-92a in the cerebrospinal fluid of glioblastoma patients grouped by gender. MiR-92a 

expression was significantly higher in the CSF of male glioblastoma patients compared to gender matched controls. 

Data shown as mean of replicates (n = 3 per group) plus SD, analysed by unpaired student’s t-test, ***p < 0.001.  

 

*** 

*** 

*** 
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5.2.7 MicroRNA Expression of Lymphocytes  

 
To further determine whether the miRNA biomarkers detected within the serum of 

glioblastoma patients originated from a source other than the glioblastoma 

microenvironment, the expression of miR-20a, 30c, 34a and 92a was measured in 

lymphocytes obtained from glioblastoma patients. The buffy coat containing 

lymphocytes was collected from fresh blood samples from four glioblastoma patients 

from the Brain Tumour North West tissue bank upon diagnosis and analysed using 

qPCR. Due to the unavailability of non-cancerous control blood samples three control 

patients, two low-grade glioma and one gliosarcoma were used for this study. As a 

result of the small sample size, patients were not grouped by age or gender for 

analysis. Analysis of the four serum miRNA biomarkers in lymphocytes showed no 

significant difference (p > 0.05) in expression between glioblastoma patients and 

control patients (Figure 5.34).  

 

Figure 5.37 Expression of serum miRNA biomarkers in lymphocytes. Expression of the four serum miRNA 

biomarkers was not significantly different in lymphocytes obtained from glioblastoma patients compared to those 

obtained from control patients. Data shown as mean of replicates (n = 4 glioblastoma patients, n = 3 control 

patients) analysed by Mann-Whitney U test, p > 0.05.  

MiR-20a  MiR-30c  

MiR-34a  MiR-92a  
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5.3 Discussion  

 
Following the identification and validation of four miRNA biomarkers in the serum of 

glioblastoma patients, the human serum cell culture model developed in Chapter 3 

was used to investigate the origin of the serum miRNA biomarkers and investigate the 

effect of patient serum on the expression of miRNA biomarkers in U87MG and SVGp12 

cells.  Initial studies were performed to compare the expression of the miRNA 

biomarkers in pools of serum samples from glioblastoma and control patients to the 

expression of the miRNAs in cell lines cultured in 10 % FBS. Expression of the miRNA 

biomarkers in the glioblastoma and control serum pools were compared to ensure that 

the initial expression of the miRNAs in the serum reflected the expression determined 

in Section 4.2.4 and 4.2.5. Subsequent studies were performed to determine the effect 

of replacing FBS with patient serum on the biomarker expression in the cell lines.  

MiR-34a expression was not significantly different in the 60+ glioblastoma patient 

serum pool compared to the 60+ control patient serum pool. MiR-34a expression in 

60+ glioblastoma patient and 60+ control patient serum pools was significantly lower 

compared to miR-34a expression in both U87MG and SVGp12 cell lines cultured in 10 

% FBS. This could be as a result of the lower expression of miRNA observed in the 

serum of patients compared to tissue expression (Skog et al., 2008). Comparison of the 

60+ glioblastoma serum pool to U87MG cells cultured in FBS showed no significant 

difference between intracellular and extracellular expression. MiR-34a expression in 

the 60+ glioblastoma patient pool showed the greatest significant decrease compared 

to the spent media of U87MG cells. This significant decrease was also observed 

between the 60+ glioblastoma pool and intracellular U87MG expression but was not as 

large. This suggests that miR-34a expression in U87MG cells cultured in 10 % FBS is 

significantly higher in exosomes within the media compared to miR-34a expression 

within the cells. This is similar to the high expression of miR-34a observed in the serum 

in Section 4.2.4 and 4.2.5 in this thesis and the down-regulation of miR-34a in 

glioblastoma tissue reported by other studies (Gao et al., 2013, Genovese et al., 2012, 

Li et al., 2011a). MiR-34a expression in the 60+ glioblastoma patient serum pool was 

significantly lower than SVGp12 expression extracellularly. No significant difference 

was observed between intracellular and extracellular SVGp12 expression cultured in 10 

% FBS, suggesting that miR-34a expression is not significantly different between 
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exosomes in the media and expression within SVGp12 cells. MiR-34a expression in the 

60+ glioblastoma patient serum pool was significantly lower compared to intracellular 

SVGp12 expression than intracellular U87MG expression. This suggests that 

intracellular miR-34a expression in U87MG cells is lower than miR-34a expression in 

SVGp12 cells. This is again in accordance with previous reports of miR-34a down-

regulation in the tissue of glioblastoma patients (Li et al., 2011a, Li et al., 2009).  

When cultured in 60+ glioblastoma patient serum, intracellular miR-34a expression in 

U87MG cells was significantly higher compared to U87MG cells cultured in 10 % FBS. 

MiR-34a expression in U87MG cells intracellularly was significantly higher compared to 

extracellular U87MG expression and SVGp12 expression. Extracellular U87MG miR-34a 

expression and SVGp12 miR-34a expression, intracellular and extracellular was not 

significantly different when cultured in 10 % 60+ glioblastoma serum compared to 

culture in 10 % FBS. This trend was also observed in cells cultured in 10 % 60+ control 

patient serum and comparison of intracellular U87MG miR-34a expression showed no 

significant difference in expression between cells cultured in 60+ glioblastoma patient 

serum and 60+ control patient serum.  

U87MG expresses wild-type p53 and miR-34a is a transcriptional target of p53 and is 

part of a positive feedback loop which results in up-regulation of miR-34a (Okada et 

al., 2014). The increase in miR-34a expression in U87MG cells cultured in patient 

serum may be due to an increase in miR-34a taken up by U87MG cells from the patient 

serum resulting in a cumulative increase in expression of this miRNA compared to 

U87MG cells cultured in FBS (Okada et al., 2014). Expression of miR-34a in SVGp12 

cells however, was not significantly different between those cultured in the 60+ 

patient serum pools and those cultured in FBS. SVGp12 cells also express wild-type p53 

(Henriksen et al., 2014b), therefore if the up-regulation of miR-34a in U87MG cells was 

a result of the positive feedback loop between miR-34a and p53, a similar increase 

would be expected in SVGp12 cells. Furthermore the intracellular increase in miR-34a 

expression in U87MG cells was observed in cells cultured in both 60+ glioblastoma 

patient serum and 60+ control patient serum, and the increase was not significantly 

different between the serum pools. As miR-34a expression was determined to be 

higher in the 60+ glioblastoma patient serum pool than the 60+ control patient serum 

pool, a greater increase in U87MG cells culture in the glioblastoma pool would be 
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expected if the increase was related to the positive feedback loop, therefore 

alternative factors are likely to be the cause of the increase in expression that was 

observed.  

Comparison of miR-92a expression in pooled male glioblastoma serum and pooled 

male control serum showed that miR-92a expression was significantly higher in male 

glioblastoma serum compared to male control patient serum as observed in Sections 

4.2.4 and 4.2.5. MiR-92a expression in both male patient serum pools was significantly 

lower compared to miR-92a expression in U87MG and SVGp12 cells cultured in 10 % 

FBS. Again, this is likely to be due to the lower expression of miRNA in exosomes within 

the circulation compared to tissue (Skog et al., 2008). MiR-92a expression in the male 

control serum pool compared to intracellular SVGp12 expression showed the most 

significant difference in expression than extracellular SVGp12 expression and 

intracellular U87MG expression. This suggests that intracellular SVGp12 miR-92a 

expression is higher than that of exosomes in the media of SVGp12 cells as well as 

U87MG cells.  

MiR-92a expression of U87MG cells cultured in 10 % male glioblastoma serum and 10 

% male control serum showed no significant difference compared to those cultured in 

10 % FBS. Intracellular miR-92a expression of SVGp12 cells cultured in 10 % male 

glioblastoma serum was significantly higher compared to those cultured in 10 % FBS. 

Intracellular miR-92a expression of SVGp12 cells cultured in 10 % male control patient 

serum showed no significant difference in expression compared to FBS. This suggests 

that exosomes containing a higher expression of miR-92a in male glioblastoma patient 

serum could be taken up by non-cancerous cells causing an increase in intracellular 

miR-92a. MiR-92a has been shown to target CDH1, a transmembrane glycoprotein 

which promotes cell-cell adhesion of epithelial cells the loss of which is a key hallmark 

of the epithelial-mesenchymal transition (Ding, 2014). Increased miR-92a expression in 

recipient non-cancerous cells could down-regulate expression of CDH1 reducing cell-

cell adhesion and promoting cell motility and invasiveness (Ding, 2014), thereby 

promoting glioblastoma growth and invasion.   

MiR-20a and 30c were detected intracellularly alone in U87MG cells cultured in 10 % 

FBS only. The absence of expression of these two miRNAs in SVGp12 cells both 
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intracellularly and extracellularly may be due to these miRNAs not being expressed by 

this particular cell line or being expressed below the limit of detection by qPCR. The 

lack of U87MG extracellular expression of these two miRNAs may suggest that these 

particular miRNAs are not exported from U87MG cells cultured in standard FBS 

conditions which may be due to the selectivity of exosomal packaging (Chen et al., 

2012).   

Comparison of miR-20a expression in glioblastoma patient and control patient serum 

pools showed expression was significantly higher in the glioblastoma serum pool. No 

significant difference in expression between miR-20a expression in glioblastoma 

patient serum compared to U87MG cells cultured in 10 % FBS. MiR-20a expression in 

control patient serum was significantly lower compared to U87MG cells cultured in 10 

% FBS. As miR-20a was highly expressed in the serum of glioblastoma patients and is 

up-regulated in glioblastoma patient tissue (Srinivasan et al., 2011), this suggests miR-

20a expression in U87MG cells is similarly up-regulated to miR-20a expression in the 

serum of glioblastoma patients and therefore expresses miR-20a at a higher level than 

control patient serum.  

U87MG cells cultured in 10 % glioblastoma patient serum and 10 % control patient 

serum showed no significant difference in miR-20a expression compared to those 

cultured in 10 % FBS. This suggests that human serum does not affect miR-20a 

expression in U87MG cells.  

Comparison of miR-30c expression in 20-39 glioblastoma patients and 20-39 control 

patients showed miR-30c was significantly lower in the glioblastoma patient serum 

pool compared to the control patient serum pool as observed in Sections 4.2.4 and 

4.2.5. MiR-30c expression in the 20-39 glioblastoma patient serum pool was 

significantly lower compared to U87MG cells cultured in 10 % FBS. MiR-30c has been 

previously found to be up-regulated in TRAIL-resistant gliomas and down-regulated in 

TRAIL-sensitive gliomas (Quintavalle et al., 2012). The expression of miR-30c in the 

U87MG cell line has not previously been reported however a previous study 

investigating the effect of TRAIL on glioma cell lines demonstrated U87MG to be 

resistant to TRAIL treatment, suggesting that U87MG is a TRAIL-resistant cell line (Kim 

et al., 2004) which as a result, may express miR-30c at a higher level.  
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The culture of U87MG cells in 10 % 20-39 glioblastoma patient serum resulted in an 

up-regulation in expression of miR-30c compared to those cultured in 10 % FBS. No 

significant difference in miR-30c expression was observed between U87MG cells 

cultured in 10 % 20-39 control patient serum and 10 % FBS. As miR-30c was reduced in 

20-39 glioblastoma patient serum, a high level of expression in U87MG cells cultured in 

glioblastoma serum is unlikely to be due to a positive feedback mechanism and may be 

due to the presence of alternative factors within the serum which may promote the 

expression of miR-30c. 

Initial identification of miRNA expression in tissue samples obtained from glioblastoma 

patients over the age of 60 years showed that of the five serum biomarkers identified 

in Section 4.2.4, three were detected. In male 60+ glioblastoma tissue miR-92a and 

miR-30c showed relatively high expression whereas in female 60+ glioblastoma tissue 

miR-92a showed lower levels of expression. MiR-30c has previously been observed to 

be up-regulated in TRAIL-resistant glioblastomas (Quintavalle et al., 2012). The gender 

difference in male and female tissue miR-92a expression in Section 5.2.1 is similar to 

that observed in Section 4.2.4 in the serum data. MiR-150 was expressed in male 60+ 

glioblastoma tissue alone, exhibiting a higher level of expression compared to age and 

sex matched control tissue. MiR-150 was not detected in the serum of glioblastoma 

patients over the age of 60 years (Section 4.2.4), further investigation of tissue profiles 

in the additional age groups would allow a comparison of miR-150 expression by age in 

glioblastoma tissue, which could further permit elucidation of tissue expression of this 

miRNA compared to serum expression. The role of miR-150-5p in glioblastoma has not 

been investigated in previous studies, however miR-150* is reported to be down-

regulated in grade II-IV glioma serum samples (Yang et al., 2013a). MiR-20a was not 

detected in patient tissue, which may be due to the inverse correlation of miR-20a 

expression and age, identified in Section 4.2.4 and also observed in the TCGA dataset 

in Section 5.2.2. Mir-34a was not detected in the tissue of glioblastoma patients over 

the age of 60 years, and yet miR-34a was detected in the serum of glioblastoma 

patients in this age group in Section 4.2.4 however miR-34a has previously been shown 

to be down-regulated in glioblastoma tissue (Yin et al., 2013) which may attribute to 

the absence of miR-34a in the tissue samples. Further studies investigating the 

expression of the three biomarkers in glioblastoma tissue from patients aged between 
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20 and 39 years and 40-59 years would provide a more complete analysis of serum 

miRNA biomarker expression in glioblastoma tissue.   

Further analysis of tissue miRNA expression using microarray data from the TCGA 

identified all four validated serum miRNA biomarkers to be expressed in glioblastoma 

tissue. Contrary to published data, miR-34a was detected in the tissue of glioblastoma 

patients and the level of expression was correlated with age. The high expression of 

miR-34a in tissue analysed in the TCGA is in contrast to other studies which have 

identified miR-34a as being down-regulated in glioblastoma tissue thus hindering its 

tumour suppressive functions (Gao et al., 2013). The correlation of miR-34a expression 

and age in the tissue data is similar to the observed correlation of serum miR-34a 

expression and age in this study (Section 4.2.4) as well as in previous studies (Li et al., 

2011b, Sawada et al., 2014). Patients with a higher expression of miR-34a were found 

to have a worse prognosis than those with a low expression of miR-34a a previous 

study investigating miR-34a expression and prognosis in grade III and grade IV gliomas 

demonstrated that patients with a high expression had a better prognosis than those 

with a low expression (Gao et al., 2013), this is in contrast to the TCGA data analysed in 

this thesis. Differences in prognosis based on miR-34a between these two studies may 

be due to the size of the patient groups analysed, 558 from the TCGA dataset in 

contrast to 79 patients analysed by Gao et al. (2013) however the improved survival of 

patients observed in the TCGA dataset in Section 5.2.2 with a reduced expression of 

miR-34a does not correlate with the role of this miRNA as a tumour suppressor, as the 

up-regulation of a tumour suppressor would suggest an improved prognosis. A 

previous study of the role of miR-34a in a Kras-induced mouse lung cancer model 

demonstrated that miR-34a down-regulation alone was not sufficient to promote an 

oncogenic effect rather, the combination of miR-34a down-regulation and altered p53 

expression strongly promotes tumourigenesis, suggesting the p53-miR-34a positive 

feedback loop is an important feature in tumourigenesis (Okada et al., 2014). Patients 

with an up-regulation of miR-34a may therefore have wild-type p53 status which could 

contribute to a better prognosis. However another study utilising TCGA data to 

investigate the role of miR-34a expression in glioblastoma also identified patients with 

a low expression of miR-34a as having better prognosis than those with a high 

expression which was further confirmed with microarray analysis (Genovese et al., 
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2012). Furthermore, the study by Genovese et. al. demonstrated that miR-34a down-

regulation was most frequently associated with the proneural glioblastoma subtype, 

which displays a better prognosis than other glioblastoma subtypes. The glioblastoma 

subtypes of the patients whose samples were used in this thesis were unknown, 

therefore further investigation utilising samples whose subtype is known would 

identify whether the miRNA biomarkers in this thesis are subtype specific.  

MiR-92a was up-regulated in the tissue of glioblastoma patients in the TCGA dataset, 

but was not correlated with age. MiR-92a has previously been reported to be up-

regulated in glioblastoma tissue (Niu et al., 2012). However, no significant difference in 

miR-92a expression was observed between genders in glioblastoma tissue in contrast 

to the gender difference observed in the serum data in Chapter 4. MiR-92a was also 

up-regulated in the male frozen tissue sample in Section 5.2.1, but was down-

regulated in the female tissue sample. The differences in expression between the 

TCGA data and the data obtained in Section 5.2.1 as well as 4.2.2 may be due to 

differences in methods as microarray data and qRT-PCR expression data can often 

differ (Pritchard et al., 2012a). The small sample size of frozen tissue used in this study 

and the large sample size of the TCGA dataset, however, suggests that the TCGA data 

can be interpreted with more confidence. On the other hand, miRNA microarray data 

often requires validation by qRT-PCR (Morey et al., 2006). The high expression of miR-

92a in glioblastoma tissue of both male and female patients suggests that the 

differences in serum miR-92a expression observed in Section 4.2.4 may be due to 

gender differences in exosomal packaging and release. Patients with a higher 

expression of miR-92a had a better prognosis than those with a lower expression. 

Similar to miR-34a TCGA survival data, miR-92a, an oncomiR which supresses 

apoptosis, thereby exhibiting pro-tumourigenic effects (Niu et al., 2012), therefore the 

better prognosis observed with an up-regulation of miR-92a does not conform to its 

tumourigenic role. 

MiR-20a was also relatively high in the tissue of glioblastoma patients and, as observed 

in the serum data (Section 4.2.4), expression was inversely correlated with age. The 

inverse correlation with age for miR-20a has previously been reported in a number of 

replicative cell aging models (Hackl et al., 2010). Patients with a higher expression of 

miR-20a were found to have a better median survival than those with a down-
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regulation as seen in the serum. A previous study utilising TCGA data also identified 

miR-20a as being highly expressed in glioblastoma and also to be correlated with a 

better prognosis (Srinivasan et al., 2011). The TCGA data in Section 5.2.2 and the 

serum data in Section 4.2.4 showed a similar trend in miR-20a expression and 

prognosis, suggesting that the profile of this miRNA in the serum closely reflects that of 

glioblastoma tissue.   

Furthermore, analysis of correlation in the TCGA dataset in Section 5.2.2 between miR-

20a and miR-92a expression in the tissue of glioblastoma patients showed that 

expression of these two miRNAs was significantly correlated. The correlation of 

expression between these two miRNAs is likely due to their location in the same 

cluster, the 17~92 cluster of miRNAs located within the non-protein coding gene 

MIR17HG, which is transcribed together (Hackl et al., 2010).  

Analysis of miR-30c and miR-150 tissue expression in the TCGA dataset showed no 

significant change in expression for either miRNA in glioblastoma patients. 

Furthermore miR-30c and miR-150 displayed no gender or age related differences in 

expression and had no association with survival of glioblastoma patients.  As 

mentioned previously miR-150-5p dysregulation has not been associated with 

glioblastoma to date (Yang et al., 2013a).  

Analysis of tissue and serum miRNA biomarker expression of patients used in this 

current study was performed to determine whether tissue miRNA expression 

correlated with serum expression. Expression of miR-34a in the serum of 60+ 

glioblastoma patients was significantly higher compared to miR-34a expression in the 

tissue. As previous studies have identified miR-34a to be down-regulated in the tissue 

of glioblastoma patients (Gao et al., 2013) and serum data obtained in Section 4.2.4 

showed a high expression of miR-34a in the serum of glioblastoma patients, the trend 

of higher serum miR-34a expression in Section 5.2.3 confirms the serum data obtained 

in this study and the tissue data obtained in other studies. As miRNA expression in the 

circulation has been found to be lower than miRNA expression in donor cells (Skog et 

al., 2008), the observation that miR-34a is expressed at a higher level in serum 

compared to glioblastoma tissue suggests that either miR-34a is actively secreted at a 

high level from glioblastoma or is secreted from an alternative source.  
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Expression of miR-92a in the serum of male glioblastoma patients was reduced 

compared to tissue expression. MiR-92a is known to be up-regulated in the tissue of 

glioblastoma patients (Niu et al., 2012), which is reflected in its high expression in the 

serum of male glioblastoma patients in Section 4.2.4. The lower expression of miR-92a 

in the serum compared to tissue is again likely to be due to the general lower 

expression of miRNA in the circulation compared to tissue as mentioned previously 

(Skog et al., 2008). Expression of miR-20a in matched serum and tissue samples was 

not significantly different, suggesting that expression of miR-20a in serum is similar to 

that in the tissue of glioblastoma patients as observed previously in the serum data 

Section 4.2.4 and the TCGA data in Section 5.2.2.  

The localisation of the miRNA serum biomarkers in glioblastoma tissue was 

determined using ISH. Three of the five miRNA biomarkers were selected for 

investigation using ISH. ISH provides a visual representation of miRNA expression in 

tissue sections as qualitative data, qPCR analysis of tissue miRNA expression was also 

performed in parallel to the ISH study to provide quantitative data and validate the ISH 

data. As patient tissue samples were limited, only five matched patient tissue lysate 

and tissue sections were used in the ISH study meaning ISH data for a small sample of 

the patient cohort was compared to the qPCR data, however those analysed by both 

ISH and qPCR could provide some information on the correlation between the 

localisation of the miRNA biomarkers in the tissue sections and expression of the 

miRNAs in the tissue determined by qPCR. Optimisation of the probe hybridisation 

temperature exhibited positive signal for both miR-21 and U6 snRNA positive controls 

and negative staining for the scrambled probe at both temperatures. A final 

hybridisation temperature of 37 ° C was selected as a higher temperature reduces the 

extent of non-specific binding of the probes to similar sequences (Nielsen, 2012).  

In Situ analysis of miR-20a in female and male glioblastoma patient tissue sections 

displayed both positive and negative staining for the cohort. Differences in miR-20a 

expression between the glioblastoma patient tissue sections is similar to that observed 

for serum miR-20a expression in which up-regulation of miR-20a was observed for a 

sub-group of the patient cohort who were also observed to have a better prognosis 

than those without an up-regulation in miR-20a expression. This may be due to 

differences in miRNA expression between different molecular subtypes of glioblastoma 
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(Tang et al., 2013). Comparison of tissue lysate and tissue section miR-20a expression 

showed similar expression of miR-20a in the tissue lysate when compared to tissue 

section miR-20a expression. MiR-20a ISH signal was uniform across the majority of the 

patient sections, exhibiting both cytoplasmic and nuclear expression. Patients 

exhibiting cytoplasmic and nuclear staining of miR-20a expression in the sections 

exhibited similar ΔCt values of miR-20a in tissue lysate and serum miR-20a expression. 

BTNW 816 frozen tissue miR-20a expression was observed to be lower than serum 

miR-20a expression. Furthermore, ISH miR-20a expression for this patient was 

observed to be restricted to the nucleus of cells within the section. The localisation of 

miR-20a in the nucleus of BTNW 816 suggests miR-20a expression is enriched in the 

nucleus which has been observed for a number of miRNAs previously (Roberts, 2014). 

The combination of both nuclear and cytoplasmic expression of miR-20a in the 

remaining patient sections may attribute to the higher tissue expression determined 

by qPCR compared to the tissue expression of BTNW 816.  

In Situ analysis of miR-34a in male and female glioblastoma patient tissue sections 

showed a correlation between expression and age similar to that observed in the 

serum of glioblastoma patients in Section 4.2.8.  Comparison of frozen tissue and 

serum miR-34a expression exhibited a lower expression of miR-34a in the tissue of 

glioblastoma patients compared to matched serum. This confirms previous findings of 

a reduced expression of miR-34a in glioblastoma tissue in other studies as well as in 

this thesis in Section 5.2.3 (Gao et al., 2013, Li et al., 2009). Patients with a down-

regulation in frozen tissue miR-34a expression compared to serum also showed weak 

or negative miR-34a signal in the tissue sections, showing a correlation between ISH 

and qPCR miR-34a expression. BTNW 850 a glioblastoma patient aged between 20 and 

39 years exhibited a positive miR-34a signal in the tissue section, this patient 

glioblastoma may exhibit wild-type p53 status, which targets miR-34a and promotes its 

expression in the tissue of glioblastoma patients (Okada et al., 2014), which would 

therefore account for the positive signal observed.  

In Situ analysis of miR-92a in female glioblastoma patients exhibited no staining for all 

sections excluding BTNW 743 and BTNW 1186. ISH and qPCR data for BTNW 429 

showed contrasting results, ISH for this patient showed a negative signal for miR-92a in 

the tissue section however miR-92a tissue expression determined by qPCR exhibited 
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an up-regulation in miR-92a expression compared to the matched serum sample. This 

may be due to the section utilised for ISH being taken from around the glioblastoma, 

thereby containing non-cancerous cells with a different miR-92a expression. MiR-92a 

expression in tissue sections of male glioblastoma tissue sections showed positive 

staining for all but one of the patients, suggesting that miR-92a is up-regulated in the 

tissue of male glioblastoma patients. MiR-92a has previously been found to be up-

regulated in the tissue of glioblastoma patients (Niu et al., 2012) as well as in the 

serum of male glioblastoma patients shown in Section 4.2.4.  Both male and female 

patients with a positive miR-92a ISH signal displayed a down-regulation of tissue miR-

92a expression compared to matched serum by qPCR, this suggests patients with 

tissue miR-92a expression have a higher expression of miR-92a in the serum.  

ISH analysis of miR-92a and in particular miR-20a localisation displayed strong nuclear 

expression. All three miRNAs showed both nuclear and cytoplasmic signal in the tissue 

sections of patients, previous analysis of miRNA localisation intracellularly has found 

that the majority of mature miRNAs are distributed in both nuclear and cytoplasmic 

compartments (Roberts, 2014). A study of rat primary cortical neurons identified a 

significant enrichment of mature miR-92a in the nucleus (Khudayberdiev et al., 2013), 

as observed in Section 5.2.3.  

Recently, the presence of miRNAs in the cerebrospinal fluid of glioblastoma patients 

has been reported (Teplyuk et al., 2012, Baraniskin et al., 2012). The presence of the 

BBB, a highly selective barrier, leads to a restricted composition of cerebrospinal fluid, 

therefore the detection of miRNAs in this biofluid may be more specific to 

glioblastoma and provide a more accurate biomarker profile of the tumour due to a 

lower level of miRNA released from other non-cancerous cell types. The miRNA profile 

of cerebrospinal fluid was investigated as a comparison to serum as a source of 

biomarkers. Total RNA obtained from cerebrospinal fluid samples following extraction 

was markedly lower than that of serum (Appendix 5). Following identification and 

validation of miRNA biomarkers in the serum, these markers were measured in 

cerebrospinal fluid. MiR-30c, miR-34a and miR-150 were not detected in the 

cerebrospinal fluid of glioblastoma patients however miR-92a and 20a were found to 

be expressed. Due to the limited availability of cerebrospinal fluid samples, no samples 

from the 20-39 age group were analysed for this study, however expression of miR-20a 
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was up-regulated in the cerebrospinal fluid of glioblastoma patients aged between 40 

and 59 years compared to those aged over 60 years and patients without glioblastoma, 

this trend was also observed in the serum of glioblastoma patients. MiR-20a was found 

to be down-regulated in the cerebrospinal fluid of glioblastoma patients aged over 60 

years compared to those without glioblastoma. MiR-92a was up-regulated in the 

cerebrospinal fluid of male glioblastoma patients and down-regulated in the 

cerebrospinal fluid of female glioblastoma patients, this trend was also observed in the 

serum of glioblastoma patients.  

The detection of two of the three serum miRNA biomarkers in the cerebrospinal fluid 

of glioblastoma patients suggests that this biofluid could also be used as a source of 

biomarkers. MiR-34a however was not detected in the cerebrospinal fluid of 

glioblastoma patients, which could have been due to the low yield of RNA obtained 

from these samples or alternatively miR-34a may not originate from the glioblastoma 

which correlates with previous studies (Gao et al., 2013). The use of a larger biomarker 

panel for glioblastoma would provide a more accurate representation of disease state, 

therefore serum miRNA, in this instance, would provide the best source of biomarkers. 

To further investigate the origin of the four serum biomarkers in the serum of 

glioblastoma patients, lymphocytes isolated from the buffy coat of glioblastoma 

patient blood samples were analysed for expression of the miRNA biomarkers. 

Expression of all four miRNA biomarkers was not significantly different in glioblastoma 

patient lymphocytes compared to control patient serum. This suggests that the change 

in expression in the biomarkers detected in the serum is not related to an alteration in 

expression in lymphocytes. The small sample size however, did not permit analysis of 

miRNA biomarkers in patient lymphocytes grouped by age and gender, which could 

have provided a more in depth analysis of miRNA expression in lymphocytes. 

Furthermore, the use of control lymphocytes from patients with other neoplastic brain 

diseases could have also affected the data obtained. Detection of the miRNA 

biomarkers in the serum utilised serum from control patients with no diagnosed 

neoplasm and the expression of the miRNA biomarkers was not investigated for 

specificity for glioblastoma alone. The miRNAs identified in the serum therefore, may 

also display a similar dysregulation in other glioma types and grades as well as other 

brain neoplasms. Further work utilising a larger patient cohort and control samples 
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obtained from non-neoplastic patients grouped by age and gender could therefore 

provide a more accurate description of miRNA biomarker expression in lymphocytes in 

glioblastoma patients.  

Data from Chapter 5 have shown differences in correlation between serum and tissue 

miRNA biomarker expression. MiR-20a exhibited a similar expression between serum 

and tissue samples in the human serum cell culture model in Section 5.2.1, TCGA data 

in Section 5.2.2, qPCR serum and tissue expression comparison in Section 5.2.3 and 

from comparison of ISH data and qPCR tissue data in Section 5.2.4. Furthermore 

correlation between age and miR-20a expression and prognosis was observed in the 

TCGA dataset as previously seen in serum data in Section 4.2.4. TCGA data, qPCR and 

ISH analysis all identified miR-20a expression trends to be closely similar between 

serum and tissue samples. This suggests that the expression of miR-20a in the serum 

closely reflects the expression in glioblastoma tissue, therefore circulating miR-20a is 

likely to originate from the glioblastoma itself.  Expression of miR-34a was reduced in 

the tissue compared to serum in Section 5.2.3 and 5.2.4 as observed in Section 4.2.4 

however, TCGA expression data did not correlate with glioblastoma tissue miR-34a 

expression in the qPCR and ISH data. MiR-34a was not expressed in the cerebrospinal 

fluid of glioblastoma patients and results from lymphocyte expression were 

inconclusive. Taken together, the origin of miR-34a in the serum of glioblastoma 

patients is still unknown. MiR-92a expression was significantly higher in glioblastoma 

tissue in the TCGA dataset analysis, matched serum and tissue samples and ISH. The 

gender difference observed in Chapter 4 in the serum however, was not observed for 

glioblastoma tissue in this chapter. This suggests that although miR-92a may originate 

from the tumour, gender differences in exosomal packaging and release may have led 

to the higher detection observed in male glioblastoma serum samples.   
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6.1 Summary 

This thesis aimed to profile the serum miRNA expression of glioblastoma patients and 

identify a panel of dysregulated miRNAs which could be used for the diagnosis of 

glioblastoma.  A human serum cell culture model was developed to investigate the 

effects of glioblastoma and non-cancerous human serum on miRNA expression within 

the glioblastoma cell line U87MG and the non-cancerous astrocyte cell line SVGp12. 

Following investigation of human serum effects in cell culture, profiling of serum from 

glioblastoma patients identified a number of dysregulated miRNAs which, following 

validation, led to a panel of four miRNA biomarkers which could potentially be used for 

diagnosis of glioblastoma. It was further demonstrated that miR-20a may also have the 

potential to be a prognostic biomarker, likely to be associated with the oligoneural 

glioblastoma subtype (Kim et al., 2011). To further understand the miRNA biomarker 

panel identified, studies were performed in order to elucidate the origin of these 

miRNAs in relation to the presence of the glioblastoma and it was demonstrated that 

some of the miRNAs from this panel may originate from the glioblastoma itself and 

other miRNAs in the panel may originate from alternative sources such as cells of the 

immune system. Ultimately, these studies have identified a miRNA biomarker panel 

which could improve or enhance current diagnostic techniques for glioblastoma as well 

as further our understanding of how dysregulation of miRNAs may lead to 

glioblastoma progression, malignancy or prognosis.      

6.2 Development of a human serum cell culture model for investigation 

of miRNA expression  

 
Current research into the expression and targets of miRNAs for disease in vitro 

employs immortalised human cell lines cultured in medium containing a supplement of 

10 % FBS. Whilst this provides a good starting point for in vitro studies, the use of 

serum obtained from a separate species is likely to affect the data obtained from such 

studies. The foetal origin of FBS means it is rich in growth factors and hormones which 

promote the growth of cells. Although it is known that FBS contains growth promoting 

components, the exact composition is unknown and some components have not been 

identified or the effect on cell lines is unknown (Brunner et al., 2010). Batch to batch 

variability in FBS composition is also a limitation on studies utilising cultured cells 

(Witzeneder et al., 2013). The first aim of this thesis was to develop a cell culture 
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model using human serum from patients both with and without glioblastoma and to 

investigate the characteristics of U87MG and SVGp12 cells in this model.  

The culture of U87MG and SVGP12 cells in human serum in Chapter 3 resulted in 

changes in rate of proliferation, morphology and miRNA expression. This suggested 

that the serum type used does have an effect on the characteristics of a cell line and 

subsequently the data obtained. Whilst the use of a human serum cell culture model 

may be more closely representative of in vivo conditions, the use of immortalised cell 

lines themselves may also influence the data obtained from in vitro studies. Analysis of 

miRNA profiles of U87MG and SVGp12 cells cultured in standard 10 % FBS conditions 

identified a number of miRNAs whose expression did not match that of glioblastoma 

tissue in vivo. Prolonged culture of these cell lines and the process of immortalisation 

introduces mutations and chromosomal aberrations that are not representative of the 

tissue source (Li et al., 2008), therefore whilst the human serum model provides a 

closer representation of glioblastoma in vivo, data must still be interpreted with 

caution and further studies must be performed using primary cell lines and tissue to 

validate findings.  

The culture of U87MG and SVGp12 cells in the human serum model was found to alter 

the intrinsic cellular expression of miRNAs as well as the secreted extracellular miRNA 

when compared to cells cultured in FBS. The alteration of intrinsic miRNA expression 

was not always found to be correlated with extracellular expression and vice versa. 

This suggests that the process of miRNA packaging and release is a regulated process 

that is not solely dependent on the expression levels of a particular miRNA within cells. 

Whilst still not wholly understood, the packaging of miRNAs into exosomes and 

subsequent release into the extracellular environment is known to be a selective 

process (Hu et al., 2012). This suggests that miRNAs which are released into the 

circulation have a specific role extracellularly. The selective release of miRNAs from 

glioblastoma can alter the tumour microenvironment promoting growth, invasion and 

angiogenesis (Li et al., 2013). The measurement of such miRNAs, therefore, offers a 

good source of biomarkers which could provide information about an individual’s 

disease for personalised treatment. It has been previously shown that FBS itself 

contains miRNAs of a bovine origin packaged within exosomes (Shelke et al., 2014) 

which could potentially share sequence similarity with the human miRNAs analysed in 
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Chapter 3. The use of FBS as a control therefore, from which changes in miRNA 

expression were measured, prevented expression analysis of both bovine and human 

miRNAs. To further improve the reliability of the studies performed in Chapter 3 using 

the human serum cell culture model exosome depleted FBS could have been used for 

culture (Shelke et al., 2014), thereby eliminating the presence of any miRNAs other 

than those present in the human patient serum. The human serum cell culture model 

developed in Chapter 3 therefore provides a novel in vitro model which more closely 

represents in vivo.  

6.3 Identification and Validation of Serum MiRNA Biomarkers   

 
The primary aim of this thesis was to identify miRNAs in the serum of glioblastoma 

patients which could be used as biomarkers to improve diagnosis and treatment 

decisions. Data from Chapter 3 indicated differences in composition between serum 

from glioblastoma patients and non-cancerous control patient serum. From these 

data, Chapter 4 aimed to elucidate whether one component of serum, miRNA, differed 

between glioblastoma patient and control patient serum and whether this could be 

used to identify miRNA biomarkers for glioblastoma. Whilst many studies have 

investigated the identification of circulating miRNA biomarkers, few have considered 

the effects of gender and age on miRNA expression. One such previous study utilised 

the TCGA dataset to determine race and gender specific miRNAs which could be 

associated with the prognosis of glioblastoma patients (Delfino et al., 2011). Delfino et 

al. identified 19 miRNAs with gender, race and therapy associations with glioblastoma 

survival.  

This thesis, therefore, aimed to identify miRNA biomarkers within patients grouped by 

aged and gender, to provide biomarkers with a greater specificity initially for diagnosis 

but also for prognostic purposes. Selection of age groups was based on the study by 

Crocetti et al., (2012) who grouped epidemiological data by the age groups of 20-39, 

40-59 and over the age of 60 years. 

To further improve the validity of the miRNA biomarkers identified in this thesis, initial 

identification was performed using a small patient cohort, further confirmed using a 

larger patient sample set and subsequently validated using an independent patient 

cohort the size of which was determined using power analysis. Power analysis provides 
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a confidence level that statistically significant differences in expression of miRNA 

between groups will be detected by the study if one exists, and ensures the sample 

number is large enough to detect such a difference (Suresh and Chandrashekara, 

2012). In this study, the expected difference, also known as effect size (Suresh and 

Chandrashekara, 2012), was a fold change of one for each miRNA, therefore the power 

analysis determined the sample size required to detect a difference of one fold change 

between the glioblastoma and control patient cohorts. The minimum power required 

for a study is 80 % power (Suresh and Chandrashekara, 2012), therefore the 

appropriate sample size for each miRNA was selected to provide 80 % power. For 

miRNAs which required a small sample number for 80 % power, more samples were 

included to increase the power to 90 % and thereby increase confidence in statistical 

significance, therefore validation of miR-34a and miR-20a provided 90 % power.  

Initial miRNA identification was performed using the miScript brain cancer array panel 

containing 84 miRNAs with a known role in brain cancers, including glioma. Whilst this 

provided a large number of miRNAs as a starting pool for biomarker identification, the 

use of this array did not permit the identification of novel miRNAs with unknown roles 

in brain cancer. Further studies using alternative methods such as the employment of 

cDNA libraries from size fractionated small RNA (Berezikov et al., 2006) or microarrays 

(Liu et al., 2008) could be utilised to identify novel miRNAs in the serum of 

glioblastoma patients and expand the biomarker panel. Although the miScript brain 

cancer panel allowed profiling of a large set of miRNAs, only one sample could be 

analysed per 96 well plate hence due to the cost of the miScript panels, only a cohort 

of three glioblastoma patients per group with a limited number of control patients 

could be analysed using this method. Further analysis of dysregulated miRNAs in a 

larger patient cohort utilised the NCode first strand cDNA synthesis kit and goTaq SYBR 

green master mix which provided a lower cost method for miRNA expression analysis 

and therefore permitted analysis of larger patient cohorts. The miScript and NCode 

methods use the same principal for the reverse transcription and qRT-PCR of miRNAs. 

Prior to reverse transcription, poly(A) polymerase was used to add a poly(A) tail onto 

the miRNA (Benes and Castoldi, 2010). A universal reverse primer and a forward 

primer specific to the target miRNA was subsequently used for qPCR (Benes and 

Castoldi, 2010). Both miScript and NCode use the SYBR green detection method to 



216 
 

perform relative quantification and the cel-miR-39 spike in was used in both instances 

for normalisation (Kroh et al., 2010). Currently there is no universally agreed 

endogenous control for circulating miRNA qRT-PCR normalization. Analysis of tissue 

miRNA expression normally utilises the U6 snRNA endogenous control. A number of 

controls have been proposed and are utilised for circulating miRNA expression studies 

however, other studies investigating the nature of expression of some of these 

endogenous controls have found altered expression in diseased states. To effectively 

normalise qPCR data for miRNA expression in this thesis, the Cel-miR-39 spike in was 

utilised. With no mammalian homologue, the use of the cel-miR-39 spike in permitted 

confidence in no in vivo related variability and could be additionally used to determine 

efficiency of the RNA extraction process (Kroh et al., 2010). Maintaining the same 

methods for detection, relative quantification and normalisation of miRNA ensured 

minimal bias between data generated from the profiling and validation studies.  

The primary method of miRNA detection utilised in this thesis was qRT-PCR, 

quatification of miRNAs using this method presents some unique challenges compared 

to the quantification of mRNA. The small size of miRNAs and GC content provides 

challenges in primer design, requiring primers which include the whole mature miRNA 

sequence to obtain an appropriate Tm between 55 °C and 65 °C (Benes and Castoldi, 

2010).  

MiRNAs which are to be used as biomarkers must have little variation in expression 

between patients to ensure good sensitivity and specificity to prevent false-positive or 

false-negative results which could subsequently delay correct diagnosis or affect the 

choice of treatment strategies (Diamandis, 2010).   Following serum profiling using the 

initial miScript miRNA panel, changes in expression in glioblastoma patient serum were 

analysed for significance to identify potential biomarkers for validation studies. In the 

patient cohort used for identification of biomarkers a number of the non-significant 

miRNAs were observed to vary in fold change expression between individual 

glioblastoma patient samples. As certain miRNAs were not significantly different from 

the control patient serum as a result of high variation, they were therefore deemed 

unsuitable for use as biomarkers. From the initial panel, there were however three 

miRNAs found to be significantly different in glioblastoma patient serum compared to 

control patient serum. MiR-34a was found to be up-regulated in the serum of 
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glioblastoma patients over the age of 60 years. MiR-92a was found to be up-regulated 

in the serum of male glioblastoma patients and miR-20a was found to be up-regulated 

in a subset of glioblastoma patients however further studies would need to be 

performed to confirm this finding. The identification of age and gender specific miRNA 

dysregulation in this study further supports the use of matched samples and patient 

grouping by age to identify specific miRNAs for different patient cohorts, which 

without grouping could be identified as not significantly dysregulated.  

MiR-34a was found to be up-regulated in the serum of glioblastoma patients over the 

age of 60 years compared to age matched controls.  MiR-34a expression has previously 

been shown to be correlated with age (Li et al., 2011b, Sawada et al., 2014). As the fold 

change difference of this miRNA was determined using age matched control samples, 

this indicated that the increase of miR-34a expression was not solely due to the age of 

the patients but also due to the presence of the glioblastoma. MiRNA-34a is a 

transcriptional target of p53 which, upon expression, mediates a number of 

downstream effects including cell cycle arrest and apoptosis by post-transcriptional 

mRNA targeting in a context-dependent manner (Table 6.1) (Okada et al., 2014). 

Expression of miR-34a and p53 is part of a positive feedback loop in which miR-34a 

targets Mdm4, a negative regulator of p53, promoting p53 activity and thereby 

expression of miR-34a (Okada et al., 2014).  

Table 6.1 Targets of miR-34a and subsequent effects. 

Target  Effect    Reference  

CDK4/6 Cell cycle arrest  (He et al., 2007) 

Cyclin D1/E2 Cell cycle arrest  (He et al., 2007, Sun et al., 2008) 

c-Met Cell cycle arrest  (He et al., 2007) 

Myc Apoptosis  (Wei et al., 2008) 

Bcl-2 Apoptosis (Sun et al., 2008) 

YY1  Migration and proliferation. (Yin et al., 2013) 

Notch-1/Notch-2  Proliferation  (Li et al., 2009, Li et al., 2011a) 

PDGFRA Tumourigenesis  (Genovese et al., 2012) 

Smad4 Tumourigenesis (Genovese et al., 2012) 
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MiR-92a expression was higher in the serum of male glioblastoma patients compared 

to gender matched controls. MiR-92a is a protumourigenic miRNA, known to be up-

regulated in glioblastoma tissue and which targets the proapoptotic Bcl-2-like protein 

11 (BIM), thereby exhibiting anti-apoptotic effects (Niu et al., 2012). Furthermore, 

overexpression of miR-92a has been linked to angiogenesis. MiR-92a is part of the 

17~92 cluster of miRNAs which produces a single primary transcript containing all six 

miRNAs which make up the cluster (Olive et al., 2010). The 17~92 cluster is a direct 

transcriptional target of c-Myc, N-Myc, E2F1 and E2F3 (Olive et al., 2010). Also known 

as ‘oncomiR 1’, the 17~92 cluster is well studied and its role in a number of cancer 

types has been previously identified, however the roles and targets of the specific 

miRNAs which make up this cluster have yet to be elucidated fully (Olive et al., 2010). 

The over-expression of this cluster in gliomas is characterised by high expression levels 

of mature miR-17 and miR-20a, however the remaining miRNAs in this cluster are not 

found to be up-regulated, suggesting alternative post-transcriptional processing which 

have not yet been fully elucidated (Lages et al., 2011). The 17~92 cluster has a 

homologous cluster on the X chromosome, which contains miR-92a-2, which is 

identical in sequence to miR-92a-1, located in the 17~92 cluster and also targets BIM 

(Olive et al., 2010). As discussed in Section 4.3, X-chromosome inactivation (XCI) in 

females could potentially explain why the up-regulation of miR-92a was observed 

solely in the serum of male glioblastoma patients. Alternatively, the up-regulation of 

miR-92a in the serum of male glioblastoma patients could be a result of an immune 

response towards the presence of the glioblastoma (Ohyashiki et al., 2011), although 

why this immune response is gender specific is unknown. Up-regulation of the 17~92 

cluster in gliomas is usually characterised by higher expression of miR-17 and miR-20a, 

however miR-17 was not observed to be dysregulated in glioblastoma patient serum. 

The increase of miR-92a expression in male glioblastoma patients observed in this 

study may be a result of over-expression of miR-92a-2, located in the homologous 

cluster on the X chromosome (Olive et al., 2010). 

In this thesis, miR-20a was increased in a subset of glioblastoma patients compared to 

non-cancerous controls in the identification cohort but not the validation cohort. MiR-

20a is another miRNA which makes up the 17~92 cluster and plays a role in cell cycle 

regulation and apoptosis by targeting E2F1. Although miR-20a is located in the same 
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cluster as miR-92a, the cluster can be grouped into four different families based on the 

homology of the seed sequence. MiR-92a and miR-20a do not share seed sequence 

homology and therefore are not grouped into the same family (Mogilyansky and 

Rigoutsos, 2013), which may account for differences in expression profiles, with miR-

20a being up-regulated in a subset of glioblastoma patients and miR-92a observed to 

be up-regulated in male glioblastoma patients only.  

The difference in miR-20a expression between glioblastoma patients could be a result 

of glioblastoma subtypes which differ in gene, protein and miRNA expression (Mischel 

et al., 2003, Tang et al., 2013). MiR-20a over-expression has been identified previously 

in the pro-neural glioblastoma subtype. Further work investigating miR-20a expression 

in the serum and tissue grouped by glioblastoma subtypes could elucidate differences 

in expression which may explain the difference in expression observed in this thesis.  

Higher expression of miR-20a in the serum of glioblastoma patients was found to be 

correlated with better prognosis compared to those who showed no change in 

expression compared to matched controls. Previous studies of miR-20a in glioblastoma 

tissue have found that an up-regulation of miR-20a is linked to improved prognosis 

most likely to be related to the targets of this miRNA, E2F1 and cyclin D1 (Srinivasan et 

al., 2011) which have both previously been linked to improved prognosis (Liu et al., 

2011, Sallinen et al., 1999). The miR-20a target E2F1, is a cell cycle regulator which 

controls the G1/S checkpoint of the cell cycle and targets cell cycle, DNA replication 

and apoptotic genes (Esquela-Kerscher and Slack, 2006). E2F1 is also part of a positive-

feedback loop with MYC, which transcriptionally targets both the 17~92 cluster and 

E2F1 itself. Up-regulation of MYC, therefore, promotes over-expression of E2F1 which 

subsequently promotes further MYC expression leading to hyperproliferation. MYC is 

an oncogenic protein, frequently mutated or amplified in cancer and can promote both 

cell proliferation and apoptosis. MYC has been observed to be over-expressed in the 

majority of glioblastomas (Annibali et al., 2014). The up-regulation of miR-20a and 

miR-17, which is also encoded by the 17~92 cluster, inhibits the translation of E2F1 

mRNA thereby interrupting the positive-feedback loop between E2F1 and MYC and 

subsequently reducing the cell-proliferative effects of MYC (Esquela-Kerscher and 

Slack, 2006). A previous study by Alonso et al. (2005) identified E2F1 as a prognostic 

factor for glioblastoma patients. Analysis of 61 glioma tissue samples found those with 
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a lower expression of E2F1 exhibited a better survival than those with an over-

expression (Alonso et al., 2005). Glioblastoma tissue samples obtained from long-term 

survivors, defined as surviving 2 or more years after diagnosis, also displayed a lower 

expression of E2F1. The combination of miR-20a up-regulation and subsequent down-

regulation of E2F1 may therefore contribute to a better prognostic outlook compared 

to patients with no change in miR-20a expression (Alonso et al., 2005). Research has 

found that E2F1 has contradicting effects in different cancer types, with the ability to 

act as both a tumour suppressor and an oncogenic factor however, in regards to 

gliomas E2F1 is considered to be oncogenic (Alonso et al., 2008) and therefore the up-

regulation of miR-20a and inhibition of E2F1 translation is likely to be tumour 

suppressive in this context.   

The difference in miR-20a expression between glioblastoma patients observed in this 

study could be likely due to difference in patient glioblastoma subtype. Whilst this 

difference was detected for miR-20a, no similar trends were observed for the 

remaining biomarkers. Current diagnostic techniques identify certain genetic markers, 

EGFRvIII, IDH1 and NF1, which have been associated with particular subtypes (Verhaak 

et al., 2010), however identification of an individual’s glioblastoma subtype is not 

currently standard protocol during diagnosis. The cohort utilised in this study 

therefore, may not include the full range of glioblastoma subtypes which could have 

led to subtype specific expression patterns of the remaining biomarkers not being 

detected in this thesis. Further work establishing a panel of glioblastoma serum 

samples from all glioblastoma subtypes and analysis of differences in miRNA biomarker 

expression between these subtypes could further improve the sensitivity of the 

biomarker panel. This could subsequently provide information on a patient’s subtype 

at diagnosis therefore improving treatment strategies.    

6.4 Determination of circulating miRNA biomarker origin  

 
Whilst the four serum miRNA biomarkers validated in Section 4.2.5 provided a panel 

which could be utilised in the diagnosis and prediction of prognosis for glioblastoma 

patients, further investigation to elucidate the pathophysiological origin of secreted 

biomarkers provided a further understanding of the cause and effect of glioblastoma 

on circulating miRNA expression.   
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The methods utilised for determining biomarker origin included qRT-PCR, TCGA 

dataset analysis and in situ hybridisation. All three methods were used to determine 

miRNA expression however each method provided an independent aspect on 

biomarker origin. Analysis of miRNA expression in glioblastoma tissue using qRT-PCR 

provided matched data for the patients whose serum was utilised for biomarker 

identification in this thesis. The use of matched samples provided an accurate, patient 

specific illustration of miRNA expression both in the circulation of the patients and 

within the glioblastoma itself.  Analysis of glioblastoma tissue miRNA expression using 

the TCGA dataset provided a much larger patient cohort than could have been 

realistically analysed in this thesis and the large sample number added statistical 

robustness to the findings. In situ analysis of matched tissue sections to patient tissue 

lysate permitted determination of the localisation of the individual markers within the 

glioblastoma which, combined with qRT-PCR data of patient tissue, provided a more in 

depth analysis of miRNA expression in subsets of cells found within the heterogenous 

glioblastoma tissue.  

In situ analysis of miRNA expression in glioblastoma tissue sections permits 

observation of specific cell types or locations of miRNA expression within the 

glioblastoma which would not be so readily performed using qRT-PCR or microarray 

analysis due to the diffuse nature of glioblastoma. Successful in situ hybridisation is 

reliant on a number of variables which can affect signal strength, including extent of 

fixation of the sections and the age of the sections. It has been previously found that 

the length of fixation of a section can reduce signal strength and require a longer 

protease digestion step to provide an adequate probe signal (Thompson et al., 2007). 

On the other hand, prolonged protease digestion can lead to poor tissue morphology 

and equally reduced signal (Thompson et al., 2007). Differences in the extent of 

fixation may explain why signal strength for certain sections utilised in Chapter 5 

varied for example for the U6 positive control, however the in situ data obtained may 

still be used to determine the localisation of the miRNAs within the tumour and the 

additional analysis of miRNA tissue expression using qRT-PCR provided quantitative 

data on miRNA expression.         

Following validation of the four serum biomarkers, analysis of expression was 

performed in cerebrospinal fluid (CSF). Due to the close proximity of CSF to the brain 
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and the spinal cord, the presence of a glioma within the CNS results in the alteration of 

CSF composition.  The abundance of certain substances alters as a result of: humoral 

responses (Tainsky, 2009); breakdown of structures within the CSF, such as the blood-

brain barrier (BBB) (de Bont et al., 2006); or as a result of up-regulated production and 

secretion by the glioma cells themselves (Niclou et al., 2010). The presence of miRNAs 

in the cerebrospinal fluid of glioma patients has initiated studies into the potential of 

CSF as a source of biomarkers. Although cerebrospinal fluid is not routinely obtained 

from patients with glioma (Baraniskin et al., 2011), the proximity of cerebrospinal fluid 

to gliomas and its isolation from general circulation means it could potentially provide 

a more specific and accurate miRNA profile in comparison to serum (Teplyuk et al., 

2012).  

A number of previous studies have been performed investigating the use CSF as a 

miRNA biomarker source for glioblastoma (Baraniskin et al., 2012, Teplyuk et al., 

2012). Four biomarkers were identified in this thesis in the serum of glioblastoma 

patients however only two were detected in the CSF, which suggested that for this 

particular panel of miRNAs, serum was the more useful biofluid for detection. Previous 

studies investigating miRNAs as biomarkers in CSF for glioma have also identified a 

limited number of miRNAs which are significantly dysregulated in the CSF of glioma 

patients. Baraniskin et al., (2011) identified two miRNAs, miR-15b and miR-21, with 

altered expression in CSF and Teplyuk et al., (2012) also identified two miRNAs, miR-

10b and miR-21, with significant altered expression in glioma CSF. Serum as a biofluid 

for miRNA expression therefore, can provide a larger panel of miRNAs for a more 

accurate diagnosis of glioblastoma.   

As CSF is part of a closed system in the CNS, with a highly selective barrier, alternative 

sources of miRNAs are less frequent and would provide a more specific miRNA panel 

which would be likely to originate from the glioblastoma itself. Alternative miRNA 

sources present within the serum which may be affected by the presence of the 

neoplasm, such as immune cells, could convey a picture of the glioblastoma, and 

additionally responses of other systems in the body could provide information on an 

individual’s disease, prognosis and their response to treatment. The less invasive 

nature of serum collection compared to CSF collection also provides a clinical 

advantage for serum biomarkers over CSF. Lumbar punctures are not routine for 
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glioblastoma diagnosis and would therefore be an additional diagnostic test and the 

collection of CSF during surgery would negate the use of the biomarker panel for 

earlier and improved diagnosis.  

One of the major limitations of determining the origin of the miRNA biomarkers in this 

thesis was the lack of available matched samples for analysis which therefore resulted 

in a limited number of samples. Whilst the data in Chapter 5 can be used to elucidate 

the origin of miRNA expression differences between serum and tissue, further work 

using a greater number of matched sample sets would provide a more robust dataset.   

6.5 Theoretical Application of MiRNA Biomarkers  

 
The identification of four serum miRNAs with altered expression in glioblastoma 

patients could provide a panel which for both diagnosis and prognosis of glioblastoma. 

Extensive further studies however would be required to validate these miRNAs as 

biomarkers. Theoretically, female patients over the age of 60 years would be tested for 

miR-34a and miR-20a up-regulation, those with an up-regulation in both of these 

miRNAs would be diagnosed with glioblastoma. Further analysis of miR-20a expression 

would determine whether these patients were predicted to have a good prognosis 

thereby assisting in treatment decisions. Female patients aged between 20 and 59 

years would be tested for up-regulation of miR-20a, those with an up-regulation would 

be suspected of having glioblastoma. Those with a down-regulation or no change in 

miR-20a expression would require further tests to confirm a diagnosis of glioblastoma. 

Female patients aged between 20 and 39 years would also be tested for a down-

regulation in miR-30c, which in combination with an up-regulation of miR-20a, would 

suggest a diagnosis of glioblastoma. The diagnosis of glioblastoma from one miRNA 

however may result in an incorrect diagnosis and therefore miRNA expression would 

need to be used in conjunction with standard diagnostic techniques.  

Male patients over the age of 60 years would be tested for miR-34a and miR-92a up-

regulation which would result in a diagnosis of glioblastoma. Further determination of 

miR-20a expression would predict the prognosis of these patients. Male patients aged 

between 20 and 59 years would be diagnosed based on miR-92a expression and 

prognosis predicted by miR-20a. Male patients aged between 20 and 39 years would 

also be tested for a down-regulation in miR-30c, a down-regulation of this miRNA with 
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an up-regulation of both miR-20a and miR-92a would suggest a diagnosis of 

glioblastoma.  

The use of miR-20a as a prognostic indicator would improve treatment decisions for 

individual glioblastoma patients. Patients predicted to have a poor prognosis would 

require aggressive therapy such as a higher and more frequent dosage of 

chemotherapy and radiotherapy from the beginning of their treatment. Those with a 

better prognosis could be treated with therapies at a lower, less frequent dosage  with 

less side effects initially and more aggressive treatment following progression, 

improving the quality of life for these patients during treatment. A recent study 

highlighted a link between miR-20a expression and temozolomide resistance of 

glioblastoma (Wei et al., 2015). Treatment of the U251 glioblastoma cell lines and 

xenografts with a miR-20a mimic led to temozolomide resistance (Wei et al., 2015). If a 

similar mechanism is present in vivo in glioblastoma, patients with an up-regulation of 

miR-20a could be treated with alternative chemotherapeutic agents such as the 

alkylating agent cisplatin or the VEGF monoclonal antibody, bevacizumab (Neagu et al., 

2015).  

Whilst these diagnostic pathways using the miRNA biomarker panel would be useful 

for glioblastoma patients, additional studies are still required to further validate the 

use of this panel as biomarkers before they could be applied in a clinical setting. It has 

been previously found that a number of variables can affect the expression of miRNAs 

in the circulation including, diet, drug treatments and the presence of other diseases 

(Mathers et al., 2010). Patients with glioblastoma are often prescribed steroids such as 

dexamethasone to treat cerebral oedema (Sur et al., 2005), and anti-epileptic drugs 

(van Breemen et al., 2009) in addition to chemotherapeutics. Other treatments may 

also affect the expression of the miRNA biomarkers in the serum of patients, therefore 

further studies investigating the effect of steroids and anti-epileptic drugs on miRNA 

expression could be performed.  

For this panel to be effective as a diagnostic panel for glioblastoma, the effect of 

variables such as those mentioned should be investigated to ensure that expression is 

not significantly altered which could lead to incorrect diagnosis. Furthermore, 

alterations of the miRNA biomarker panel expression during the course of treatment 
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could also be investigated to determine whether the expression of these miRNAs alters 

during progression of the glioblastoma and could potentially be used to predict 

recurrence.    
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Figure 6.1 Theoretical application of the female miRNA biomarker diagnostic and prognostic pathway. Female patients between the age of 20 and 39 years suspected of having glioblastoma would 

be tested for miR-30c decreased expression and miR-20a increased expression. Female patients aged between 40 and 59 years would be tested for miR-20a increased expression. Female patients 

over the age of 60 years would be tested for miR-34a increased expression. All patients following a diagnosis of glioblastoma would be tested for miR-20a increased expression to determine 

prognosis.  
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Figure 6.2 Theoretical application of the male miRNA biomarker diagnostic and prognostic pathway. All male patients suspected of having glioblastoma would be tested for miR-92a increased 

expression. Male patients between the age of 20 and 39 years would also be tested for decreased miR-30c expression and increased miR-20a expression. Male patients over the age of 60 years would 

also be tested for miR-34a increased expression. Following diagnosis all patients would be tested for miR-20a expression to determine prognosis.  
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Following the identification of the role of miRNAs in aberrant signalling within cancer, 

including glioblastoma, an area of miRNA research has begun to investigate the 

targeting of particular miRNAs as a novel method of treatment. The use of miRNA 

mimics, to restore expression of a tumour suppressor miRNAs, and miRNA inhibitors or 

sponges, to down-regulate an ‘oncomiR’ has been researched in order to develop new 

treatments for cancer. A miR-34a mimic has recently been advanced to Phase I clinical 

trials for the treatment of liver cancer in which miR-34a is down-regulated (Bouchie, 

2013). The delivery of MRX34, the miR-34a mimic, restores endogenous expression 

levels of miR-34a, reinstating the tumour suppressor effect of this miRNA in the p53 

pathway (Bouchie, 2013). The miRNA biomarkers identified in this thesis could be 

further studied as targets for the treatment of glioblastoma, miR-30c, up-regulated in 

TRAIL-resistant glioblastomas, could be targeted using a miRNA inhibitor to down-

regulate expression and in conjunction with TRAIL therapy could reduce resistance of 

the tumour to this treatment method.  

6.6 Limitations and Future Work  

 
The primary aim of this thesis was to identify miRNA biomarkers for glioblastoma. To 

further improve the specificity of any miRNA biomarkers discovered in this study, 

patients were grouped by both age and gender. Although this improved the specificity 

of miRNA biomarkers, the number of variables accounted for, both genders and three 

age groups, restricted the number of samples studied for each group. Limiting sample 

number in each group therefore could have resulted in false positives or false 

negatives, and a smaller number of significant miRNAs which could have been 

identified. Further work investigating either age or gender separately would increase 

the sample size in each group and therefore the potential for the identification of a 

larger number of biomarkers.  

Utilising patient samples also provided a limitation for this work in respect to sample 

availability. Due to the incidence of GBM being highest in patients over the age of 60 

years; the number of samples from patients aged between 20 and 39 years was 

limited. This meant that analysis of miRNA expression in this age group was limited. In 

addition to this, the availability of matched tissue and serum samples also restricted 

the comparison of circulating and tissue miRNA expression resulting in data which 
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should be interpreted with caution. Future work utilising larger patient cohorts could 

provide more robust data on the miRNA biomarkers identified in this thesis.  

Section 5.2.1 aimed to identify the effect of human serum on cell line miRNA 

biomarker expression. Although this provided insight into the effect of serum 

components on miRNA expression, it could not definitively be concluded that the 

miRNAs within the serum itself had cause this effect. Future work transfecting miRNA 

sponges and mimics could identify whether the miRNA biomarkers within human 

serum could affect their own expression intracellularly.  

In Section 5.2.6, the expression of serum miRNA biomarkers was measured in CSF 

samples from glioblastoma patients. This provided insight into the differences in 

expression of these particular miRNA in different sample types. To determine whether 

CSF could be utilised as a source of biomarkers for diagnosis and prognosis however, 

further work could be carried utilising the 84 miRNA panel to identify CSF miRNA 

biomarkers that may be different to those in the serum.   

Differences in miRNA expression between GBM patients such as miR-20a expression 

was theorised to be as a result of GBM subtypes. To further validate this hypothesis 

future work utilising GBM samples grouped by subtypes could be performed to 

identify sub-type specific miRNA biomarkers.  

6.7 Conclusions  

 
Since the discovery of tumour derived exosomes containing miRNA in the circulation of 

patients, the identification of miRNA biomarkers for the diagnosis and prognosis of a 

range of cancer types has been of great interest for the improvement of current 

diagnostic techniques and subsequently overall treatment of the disease. The primary 

aim of this thesis was to identify a panel of gender and age specific circulatory miRNAs 

within the serum for the diagnosis of glioblastoma and to predict prognosis.  Four 

miRNA biomarkers were identified and validated for the diagnosis of glioblastoma, 

with one miRNA, miR-20a, showing significant prognostic potential.  

Additional to the primary aim, a human serum cell line model was developed to 

provide an improved in vitro method for investigation of miRNA expression. This model 

was utilised in further studies to determine the origin of the serum miRNA biomarkers 
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in addition to analysis of TCGA data and in situ hybridisation. Future studies utilising 

short-term primary glioblastoma cell lines could further improve the human serum cell 

culture model and the representation of an in vivo system.  

Further to the identification of four serum miRNA biomarkers, investigation into the 

source of the biomarkers suggested that not all the miRNAs in the panel originate from 

the glioblastoma itself. As well as glioblastoma tissue as a source of serum miRNAs, 

lymphocytes were also investigated as a source. Although an initial study was 

performed, the small sample size did not permit robust data to conclude whether cells 

of the immune system secrete the miRNA biomarkers. Further work utilising a larger 

sample set would provide more information on miRNA expression in lymphocytes. The 

investigation of alternative sources of miRNA biomarkers provides a greater 

understanding of the underlying pathophysiology of glioblastoma and could highlight 

novel treatment targets.  

The serum miRNA biomarker panel identified in this thesis has the potential to provide 

a relatively non-invasive diagnostic test for glioblastoma. Further to the diagnostic 

ability of this panel, miR-20a provides a prognostic indicator. Future work elucidating 

difference in miRNA biomarker expression in glioblastoma subtypes could also provide 

a more detailed picture of an individual’s glioblastoma, including likely mutations and 

likelihood of recurrence. This would further improve treatment strategies and the 

management of a patient’s neoplasm which could potentially improve median survival 

times and patient outcome.   
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Hypothesis and Study Aim  

Working Hypothesis: Can changes in the composition of cerebrospinal fluid, blood or serum be 

used to form a panel of biomarkers for the prediction of glioma progression. 

(i). Main aim:  The main aim of this study is to identify and isolate components of cerebrospinal 

fluid, blood and serum, from adult and paediatric glioma patients which are related to aspects of 

tumour progression, prognosis, diagnosis, likelihood of recurrence, and response to therapy. In 

addition, tissue samples will be utilised to compare the differences in components between the 

sample types.  

(ii). Specific aims:  

1. To identify potential components of each fluid type that could be used as biomarkers through a 

literature search. 

2. To optimise the growth of glioma cell lines in serum by identifying the optimum concentration 

of serum to be used and comparing the growth affects of human serum and bovine serum by using 

cell culture methods. 

3.  To compare differences in phenotype between glioma cell lines grown in human serum and 

bovine serum using immunocytochemistry. 

4. To isolate and quantify the abundance of specific microRNA/proteins, from glioma 

cerebrospinal fluid, blood, serum and tissue samples, identified from the literature search to form 

a biomarker panel.   

5. To perform intervention studies altering the abundance of the identified biomarkers to confirm 

an effect on cell phenotype and behaviour.  

6. To analyse the data statistically and present them as a PhD thesis.  
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Plan of Project  

(number of cases  including samples from other banks) 

Proposed programme of work 

(a) In vitro cell culture  

 

1. Basic Cell Culture  

One glioma cell line will be used for this work, U87MG grade IV glioblastoma cell line. 

One non-cancerous SVGP12 astrocyte cell line will also be used. Growth curves will be 

made for each cell line and characterisation of the cells will be performed to confirm they 

are the appropriate cells.   

 

2. Weaning of cells off bovine serum:  
Human obtained from adult glioma patients and patients without glioma will be used for 

optimisation. Glioma cell lines grown in medium supplemented with bovine serum will be 

weaned off the serum by decreasing the concentration of bovine serum and replacing it with 

equal amounts of human serum, gradually increasing the concentration of human serum to 

replace the full concentration of bovine serum.  

 

3. Culture of cells in human serum:  
Glioma and non-cancerous cell lines will be cultured in human serum, growth curves will be 

performed to compare the rate of growth to cell lines cultured in normal cell culture 

conditions (10% foetal bovine serum (FBS)).  

 

4. Comparison of cell culture in different serum conditions:  

Glioma and non-cancerous cell lines will be weaned off FBS and onto human serum.  

The cells will be incubated with the different serum and then characterised using 

immunocytochemistry. Changes in cell expression and phenotype will be investigated using 

fluorescent markers and confocal microscopy.   

 

5. Comparison of cell culture with different human serum samples:  

Cells will be cultured with different human serum samples from patients with varying age 

and gender and immunocytochemistry will be used to determine whether the characteristics 

of the sample affect the phenotype of the cell. 

 

(b) MicroRNA and Protein Isolation and Quantification  

 

1. Pilot studies of microRNA/protein extraction and quantification: 

Pilot studies for method development will be performed to determine the optimum technique 

for the isolation, extraction and quantification of microRNAs and proteins. Method 

development will make use of methods used in related literature and practical development 

using PCR and western blotting. A single microRNA/protein will be chosen to focus on 

method development.  

 

2. MicroRNA/Protein Isolation and quantification of abundance: 

Using the method developed, specific microRNAs and proteins will be isolated and 

quantified from a range of serum/whole blood/tissue/cerebrospinal fluid samples to 

determine differences between age, gender, cancerous and non-cancerous states. The results 
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will be analysed and used to form a panel of biomarkers that could potentially be used to 

gain information about glioma diagnosis and prognosis.  

 

(c) Intervention Studies  

 

1. Alteration in the abundance of biomarker panel:  

Cell lines will be incubated with patient samples and subsequently each potential biomarker 

will be isolated and removed from the sample to determine any changes in phenotype and 

cell characteristics using immunocytochemistry and confocal microscopy.  

 

Experimental Methodology for A1 and A2 only (see proposed programme of study above) 

Serum Replacement Study  

This study will investigate the effect of different serum conditions on the microRNA expression of 

SVGP12 and U87MG cell lines. Studies have shown that cells in culture secrete lipoprotein 

microvesicles containing microRNAs which can be isolated from the medium and measured using 

qRT-PCR. U87MG and SVGP12 cell lines will be cultured in T25 flasks and weaned off the standard 

cell culture serum (10% foetal bovine serum) and onto either, non-cancerous human serum 

(sigma), human serum from glioma patients or serum free medium. The glioma serum will be 

obtained from three glioma patients and pooled for use.  

Protocol  

Medium was aspirated from the T25 flask and washed with PBS.  

1ml of trypsin was added and incubated for five minutes.  

1ml of medium containing new serum concentration was added and 1ml of cell suspension was 

removed.  

The cell suspension was added to fresh T25 flask and 4ml of medium containing new serum 

concentration was also added.  

The cells were incubated for 48 hours and then passaged, increasing concentration each time. The 

concentration of serum was increased in intervals which were: 0%, 3%, 5%, 7%, 10%, of total 

medium volume for the human serum and glioma serum and 25%, 50%, 75% and 100% serum free 

medium, as shown in Table 1.  
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After 72 hour incubation with the final concentration, 1ml of spent medium was collected and 

centrifuged to remove cells.  

Total RNA including microRNAs were isolated from the media, reverse transcribed and abundance 

measured using qRT-PCR, with each serum condition being run in duplicate.  

Table 1. Human Non-Cancerous Serum and Human Glioma Serum 

Replacement Serum Concentration Composition  

0%  600 µl FBS, 5400 µl medium 

3% 180µl human serum, 420µl FBS, 5400µl 

medium 

5% 300 µl human serum, 300 µl FBS, 5400 µl 

medium 

7% 420 µl human serum, 180 µl FBS, 5400 µl 

medium 

10% 600 µl human serum, 5400 µl medium 

 

Serum Free Medium 

Serum Free Medium Concentration Composition 

0% 6000µl medium supplemented with 10% FBS 

25% 1500µl serum free medium, 4500µl medium with 

10% FBS 

50% 3000µl serum free medium, 3000µl medium 

supplemented with 10% FBS 

75% 4500µl serum free medium, 1500µl medium 

supplemented with 10% FBS  

100% 6000µl serum free medium 
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Tissue Required – Please indicate whether you require paraffin embedded tissue, fresh frozen 

tissue, cellular component of blood, plasma or serum and how many samples you require.   

Please indicate if all samples are required at the start of the project or if further applications for 

samples will be made in the light of initial findings. 

Tissue, serum, cerebrospinal fluid and whole blood needed throughout the project.  

For further information please contact: 

BTNW Tissue Bank:  Prof T Dawson email: Timothy.Dawson@lthtr.nhs.uk 

Walton Research Tissue Bank: Dr C Walker email: carol.walker@thewaltoncentre.nhs.uk 

Please email completed applications to: 

BTNW Tissue Bank:  Prof T Dawson  email: Timothy.Dawson@lthtr.nhs.uk  

Walton Research Tissue Bank: Dr C Walker email: carol.walker@thewaltoncentre.nhs.uk 

Or to both for joint applications to both banks 

For BTNW or WRTB use only: 

Date Application Received 08/06/2012 

Application Number 1206 

Project Title Identification of Biomarkers for Glioma 

Progression 

Date sent to BTNW/WRTB Review Panel 18/06/12 

Names of Reviewers 

 

Prof C H G Davis, Dr Tracy Warr, Prof R W Lee 

 

 

 

 

Decision of BTNW/WRTB Committees Approve 

Date: 19/06/2012 

mailto:Timothy.Dawson@lthtr.nhs.uk
mailto:carol.walker@thewaltoncentre.nhs.uk
mailto:Timothy.Dawson@lthtr.nhs.uk
mailto:carol.walker@thewaltoncentre.nhs.uk
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Appendix 2: Determination of nanodrop accuracy in measuring Total 

RNA samples.  

 

RNA Standard 

Concentration 

(ng/µl) 

Nanodrop Concentration (ng/µl) 

1 2 3 

1000 1008.3 1004.3 1009.7 

100 102.7 103.5 102.9 

10 9.7 10.0 10.0 

5 4.8 4.9 4.9 

1 -0.2 0.1 -0.3 

0.1 -0.5 -0.9 -1.0 
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Appendix 3: Non-significant biomarkers from identification panel 

 

 

 

 

 

  

MiR-486-5p 
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MiR-451-5p 
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 MiR-328-5p 
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MiR-320-5p 



 
 

Page 260 

 

 

 

MiR-181b-5p 
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MiR-25-5p 
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Appendix 4:Reanalysis of non-significant miRNAs 

 

MiR-17-5p 
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MiR-19-5p 
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MiR-29c-3p 
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MiR-101-5p 
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Appendix 5: Comparison of CSF and Serum Total RNA Concentration 

 

CSF Sample Disease  Concentration (ng/µl) 

1223 GBM 13.9 

1195 GBM 18.4 

1301 GBM 16.0 

1300 GBM 58.8 

1208 Dermoid Cyst  17.0 

1289 NPH 24.3 

1293 Dermoid Cyst 68.6 

1210 Hydrocephalus 19.7 

1234 NPH 44.9 

1238 NPH 29.5 

 

Serum Sample Disease  Concentration (ng/µl) 

413 GBM 197.2 

927 GBM 1548.1 

907 GBM 1034.8 

611 GBM 254.9 

373 GBM  667.8 

1395 Control 1031.8 

575 Control  1109.7 

594 Control  303.9 

591 Control  342.0 

1527 Control  865.6 
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Appendix 6: Example QPCR Data 

 

  

    AVG Delta(Ct)  Standard Deviation 

  

Control 
Group Group 1 

Control 
Group Group 1 

A01 hsa-let-7b-5p -1.480625 -2.088233 0.590399 1.617479 

A02 hsa-miR-101-3p 2.905075 1.6818 1.644836 0.63808 

A03 hsa-miR-106b-5p 1.550925 1.471767 0.362923 0.741415 

A04 hsa-miR-107 4.668825 3.3974 1.267312 1.34556 

A05 hsa-miR-10b-5p 4.120325 2.897633 0.715486 1.66676 

A06 hsa-miR-124-3p 2.984525 2.1625 1.612239 1.523499 

A07 hsa-miR-125a-5p 0.291125 -0.3831 0.394247 0.538157 

A08 hsa-miR-125b-5p -1.901625 -2.219967 0.802248 0.406676 

A09 hsa-miR-127-5p 4.668825 3.3974 1.267312 1.34556 

A10 hsa-miR-128-3p 2.564625 1.649867 1.222482 1.275635 

A11 hsa-miR-129-5p 4.668825 3.3974 1.267312 1.34556 

A12 hsa-miR-130a-3p 2.114975 2.737067 0.299071 0.743141 

B01 hsa-miR-130b-3p 3.695825 2.905733 0.547195 2.102322 

B02 hsa-miR-132-3p 4.346725 3.077233 1.72283 0.876806 

B03 hsa-miR-133a-3p 4.668825 3.3974 1.267312 1.34556 

B04 hsa-miR-133b 4.668825 3.3974 1.267312 1.34556 

B05 hsa-miR-137 4.668825 3.3974 1.267312 1.34556 

B06 hsa-miR-138-5p 4.668825 2.759333 1.267312 0.948673 

B07 hsa-miR-141-3p 4.314625 3.3974 1.768227 1.34556 

B08 hsa-miR-144-3p 1.849125 2.183267 0.247098 0.510937 

B09 hsa-miR-146a-5p 4.110575 2.726767 0.477827 0.547367 

B10 hsa-miR-146b-5p 3.270975 2.7242 2.140943 0.741592 

B11 hsa-miR-148a-3p 3.045075 2.047667 1.029017 1.573276 

B12 hsa-miR-149-5p 4.397825 3.3974 1.650564 1.34556 

C01 hsa-miR-150-5p 3.491775 3.3974 0.805076 1.34556 
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C02 hsa-miR-153-3p 4.668825 3.3974 1.267312 1.34556 

C03 hsa-miR-15a-5p 4.668825 2.2387 1.267312 0.203821 

C04 hsa-miR-15b-5p 4.206375 1.9101 1.433129 0.829889 

C05 hsa-miR-16-5p -0.146875 -0.8589 0.320284 0.346535 

C06 hsa-miR-17-5p 2.380775 2.101833 0.675747 0.019412 

C07 hsa-miR-17-3p 4.668825 3.3974 1.267312 1.34556 

C08 hsa-miR-181a-5p 3.841725 1.279333 0.097616 2.053895 

C09 hsa-miR-181b-5p 2.256025 0.359 0.844887 1.05938 

C10 hsa-miR-182-5p 4.668825 3.3974 1.267312 1.34556 

C11 hsa-miR-183-5p 4.668825 3.3974 1.267312 1.34556 

C12 hsa-miR-184 4.668825 3.3974 1.267312 1.34556 

D01 hsa-miR-185-5p 4.668825 3.3153 1.267312 1.218508 

D02 hsa-miR-187-3p 4.668825 3.3974 1.267312 1.34556 

D03 hsa-miR-18a-5p 4.668825 3.284033 1.267312 1.171039 

D04 hsa-miR-190a-5p 4.668825 3.300033 1.267312 1.195259 

D05 hsa-miR-191-5p 3.451725 1.734733 1.415239 1.201328 

D06 hsa-miR-19a-3p 3.210775 2.417433 3.329306 2.209216 

D07 hsa-miR-19b-3p 3.435525 2.5718 3.011462 1.429178 

D08 hsa-miR-200a-3p 4.668825 3.3974 1.267312 1.34556 

D09 hsa-miR-203a-3p 4.668825 3.3974 1.267312 1.34556 

D10 hsa-miR-20a-5p 1.056925 0.738933 0.384843 0.70272 

D11 hsa-miR-21-5p -4.043175 -4.647733 0.073362 0.41495 

D12 hsa-miR-210-3p 4.668825 3.116033 1.267312 1.088886 

E01 hsa-miR-216a-5p 4.668825 3.3974 1.267312 1.34556 

E02 hsa-miR-217 4.668825 3.3974 1.267312 1.34556 

E03 hsa-miR-218-5p 4.668825 3.3974 1.267312 1.34556 

E04 hsa-miR-221-3p 0.363775 -0.834467 0.622219 0.735687 

E05 hsa-miR-222-3p 4.426125 2.5094 1.610542 2.125015 

E06 hsa-miR-222-5p 4.668825 3.3974 1.267312 1.34556 

E07 hsa-miR-23a-3p 0.066775 -1.370467 0.9308 0.689693 

E08 hsa-miR-23b-3p 1.695125 0.4042 1.203248 0.934103 
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E09 hsa-miR-24-3p -1.931725 -0.702233 1.343043 0.856061 

E10 hsa-miR-25-3p 2.189375 0.9708 1.525053 1.488279 

E11 hsa-miR-26a-5p -2.527275 -4.055067 1.259675 1.472554 

E12 hsa-miR-27a-3p 0.404025 -0.87 0.5298 0.899326 

F01 hsa-miR-296-5p 4.668825 3.301467 1.267312 1.369241 

F02 hsa-miR-29a-3p 0.336375 -0.657867 0.207854 0.78976 

F03 hsa-miR-29b-3p 3.177925 0.857533 0.986732 1.746567 

F04 hsa-miR-29c-3p 0.083475 -1.229533 0.511769 0.812761 

F05 hsa-miR-30b-5p 2.338725 0.958 0.658776 1.168934 

F06 hsa-miR-30c-5p 1.653375 0.1685 1.312921 1.141486 

F07 hsa-miR-31-5p 4.272925 2.557567 0.707425 1.34549 

F08 hsa-miR-320a 1.691325 0.1932 1.083323 1.11365 

F09 hsa-miR-323a-5p 4.631125 3.172367 1.213996 1.007027 

F10 hsa-miR-324-5p 4.401375 2.9899 0.889081 1.346387 

F11 hsa-miR-326 4.668825 3.3974 1.267312 1.34556 

F12 hsa-miR-328-3p 0.525925 -2.1129 2.135922 2.011041 

G01 hsa-miR-331-5p 4.668825 3.3974 1.267312 1.34556 

G02 hsa-miR-335-5p 4.668825 3.171833 1.267312 1.006269 

G03 hsa-miR-34a-5p 4.650075 2.415867 1.293829 1.312732 

G04 hsa-miR-425-5p 4.293275 2.688 0.736204 1.895129 

G05 hsa-miR-451a -1.348675 -1.716733 0.480019 1.65848 

G06 hsa-miR-486-5p 2.868275 1.164033 0.997834 1.434588 

G07 hsa-miR-7-5p 4.516975 2.764467 1.052564 0.587371 

G08 hsa-miR-9-5p -1.104375 -3.2088 1.255857 1.81362 

G09 hsa-miR-9-3p 1.304375 -0.432267 0.608784 1.489972 

G10 hsa-miR-92a-3p 0.492525 -1.591867 0.246533 0.912989 

G11 hsa-miR-93-5p 3.606575 2.3882 0.234936 1.104773 

G12 hsa-miR-96-5p 4.668825 3.100533 1.267312 1.479333 

 

 


