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ABSTRACT (250 words) 1 

Autism Spectrum Disorder (ASD) is a highly prevalent developmental disorder 2 

characterized by deficits in communication and social interaction and in 3 

stereotyped or repetitive behaviors.  Besides the classical behavioral dyad, 4 

several comorbidities are frequently present in patients with ASD, such as 5 

anxiety, epilepsy, sleep disturbances and gastrointestinal tract dysfunctions. 6 

Although the etiology of ASD remains unclear, there is supporting evidence for 7 

the involvement of both genetic and environmental factors. Valproic acid (VPA) 8 

is an anticonvulsant and mood stabilizer that, when used during the gestational 9 

period, increases the risk of ASD in the offspring. The animal model of autism by 10 

prenatal exposure to VPA shows construct and face validity, since several 11 

changes seen in subjects with autism are also observed in the VPA animal model. 12 

Neuroimmune alterations are common both in autistic individuals and in animal 13 

models of autism. In addition, exposure to pathogens during the pregnancy is a 14 

known risk factor for ASD, and maternal immune activation can lead to autistic-15 

like features in animals. Thus, immunological alterations in pregnancy could 16 

affect the developing embryo, since immune molecules can pass through the 17 

placental barrier. Here, we summarize important alterations in inflammatory 18 

markers, such cytokines and chemokines in patients with ASD and in the VPA 19 

animal model.  20 

 21 

Keywords (3–9 key words): ASD, neuroimmune, cytokine, animal model, 22 

valproic acid 23 
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INTRODUCTION 1 

 Since the first descriptions, in the early 1940’s by Leo Kanner and Hans 2 

Asperger, new data has been shared to the scientific community about Autism 3 

Spectrum Disorder (ASD) [1]. Currently, ASD is diagnosed by changes in two 4 

behavioral domains: a) communication and social interaction impairments in 5 

multiple contexts, including deficits in social reciprocity, non-verbal 6 

communication used for social interaction and in skills to initiate, maintain and 7 

understand relationships; and b) Repetitive behaviors, restricted and stereotyped 8 

activities [2]. 9 

There is no clinical marker or quantitative examination in peripheral tissues 10 

that can be used for an early diagnosis of this disorder [3]. Even though there are 11 

many well accepted surveys for behavioral diagnosis, ASD is a highly complex 12 

and heterogeneous disorder, presenting distinct manifestations, in which two 13 

individuals hardly share the same set of symptoms [4,5]. The large heterogeneity 14 

of the symptoms could potentially be explained by individual differences, for 15 

example in the immune system. Alterations in cytokines levels are common in 16 

autistic individuals, with a frequent observation of elevated levels of pro 17 

inflammatory cytokines [6,7].  18 

Genome-wide association studies (GWAS) have already described 19 

interesting relations between immune system disruptions and neurological 20 

disorders like autism and schizophrenia [8]. Specifically in ASD, an interesting 21 

example is the dysregulated genes reported, as IL-1β and IL-12, both involved in 22 

cytokine-cytokine receptor interaction [9]. One study relating ASD and 23 

neuroimmune genetic disruption shows an alteration on glutamate receptor 24 
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metabotropic 5 (GRM5) single nucleotide polymorphisms (SNPs) [10], which is 1 

not exactly a neuroimmunological alteration, but this gene is highly expressed in 2 

many neuronal regions implicated in ASD, besides acting on synaptic plasticity, 3 

modulating innate immunity and microglia activation. When occurs a GRM5-4 

positive allosteric modulation, several negative behaviors described in ASD are 5 

rescued, including stereotypies [10]. Taken together, the evidences showing 6 

genes interaction and ASD diagnosis demonstrate important genetic contribution 7 

in neuroimmunological imbalance in ASD. However, despite the data cited above, 8 

no gene was identified as an important actor in triggering this disorder. 9 

According to the most recent epidemiological survey conducted in United 10 

States, the current incidence of ASD is 1:68 [11]. Although the etiology of ASD 11 

remains unknown, it is hypothesized that the onset of this disorder depends on 12 

the interplay between genetic and environmental factors. Epidemiological 13 

observations suggest that exposure to teratogens - especially in the first trimester 14 

of pregnancy - could be closely related to ASD development. An important 15 

example is the prenatal exposure to valproic acid (VPA) [12,13]. 16 

Valproic acid (VPA) and VPA animal model 17 

The compound VPA is a drug widely used as an anticonvulsant and mood 18 

stabilizer in the treatment of epilepsy and bipolar disorder [13,14]. Although VPA 19 

is well tolerated and safe in adults, there is evidence of its teratogenicity [14]. 20 

Clinical studies over the years have shown that intrauterine exposure to VPA is 21 

associated with birth defects, cognitive impairments, and increased risk of autism 22 

[13]. In recent years, animal studies have investigated the anatomical, behavioral, 23 
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molecular, immunological and physiological outcomes related to exposure to 1 

VPA [13].  2 

Epidemiological observations demonstrate a strong correlation between 3 

prenatal exposure to VPA and ASD [15–18]. Based on these observations, an 4 

animal model for study of autism prenatally induced by VPA was established [19–5 

21]. Behavioral studies show that exposure to VPA in rats and mice leads to 6 

several autistic-like behaviors in male offspring, including social behavior deficits, 7 

increased repetitive behaviors, and communication deficits similar to those found 8 

in ASD subjects [19–23], pointing out the animal model’s translationality, as the 9 

diagnosis of ASD is given through behavioral evaluation.  10 

Since current diagnostic criteria for ASD are exclusively clinical and 11 

resulted from behavioral analyses, the study of ASD in humans prior to the onset 12 

of symptoms becomes a very challenging task. Animal models provide the 13 

opportunity for analyzing the developmental changes that can trigger ASD-like 14 

features [24,25]. They provide the possibility to study and manipulate biological 15 

pathways for understanding and even preventing or reversing the appearance of 16 

the morphological, functional and behavioral alterations found in ASD. In addition, 17 

studies with animals can reveal some new important factors involved in the 18 

etiology of this disorder. 19 

Histone-deacetylases inhibitors (HDACi) and neuroimmune alterations 20 

Autism and many other psychiatric disorders, like schizophrenia, bipolar 21 

disorder and major depression present not only susceptibility to environmental 22 

risk factors, but also a high genetic influence [26,27]. In the last years, there is 23 
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growing evidence indicating that epigenetic alterations may have an important 1 

role in several psychiatric disorders.  2 

Epigenetic regulation includes long-term changes, as DNA methylation, 3 

and short-term changes, as modifications in histone proteins associated with 4 

DNA [28]. Histones are small basic proteins that act as spools around which DNA 5 

winds, regulating the packaging of DNA and allowing or inhibiting gene 6 

expression.  When the histone is acetylated by histone acetyltransferases 7 

(HATs), this local alteration leads to chromatin decondensation, promoting gene 8 

expression by the activation of the transcription machinery. On the other hand, 9 

histone deacetylation - mediated by histone deacetylases (HDACs), results in 10 

inhibition of transcription promoting a controlled gene expression  [28,29].  11 

Substantial epigenetic alterations were found in the regulatory regions of 12 

many candidate genes for ASD, such as GABAergic genes, GAD67, Reelin, 13 

Oxytocin receptor, BDNF, showing that the epigenetic component in ASD has 14 

been widely studied [26]. The histone post-translational modifications, as 15 

acetylation and methylation, play a key role in the gene expression regulation 16 

[30]. These characteristics are crucial for important biological processes like the 17 

action of immune system, in which HDACs modulate gene expression of toll-like 18 

receptors and interferon signaling pathways [31].  19 

The HDAC inhibitors drugs play an important role in immune context. 20 

Studies showed an increased transcription of the major histocompatibility 21 

complex (MHC) class II, located in the tumor cell surface in mouse and humans 22 

[32], indicating an interesting effect on several immune cells. It leads to less 23 

viability of T CD4 cells and decreases the production of pro-inflammatory 24 
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cytokines, making the T CD8 cells increase the secretion of pro-inflammatory 1 

cytokines, modulating the activity of natural killer (NK), as well in cells and Treg 2 

cells [33].  3 

Hence, several drugs used as antidepressants and mood stabilizer are 4 

characterized as HDAC inhibitors class. Valproate, a well-known HDAC inhibitor 5 

drug, induces important delays in the neuronal maturation [34], already described 6 

in ASD [35]. Moreover, VPA prenatal exposure alters the postnatal histone 3 (H3) 7 

acetylation levels in cerebellum  [36], stimulates glial cell proliferation in the 8 

developing rat brain [37] and also induces changes in acetylation levels in 9 

astrocytes of hippocampus and cortex in cell culture, more than other 10 

antidepressants and mood stabilizer [38]. These unique effects of VPA, 11 

especially in comparison to similar HDAC inhibitor drugs, indicate that the VPA 12 

molecule might have exclusive properties which are still unclear, although some 13 

evidence indicates a possible VPA binding in the catalytic center of HDACs [39]. 14 

Those epigenetics alterations occur before the well described neuroimmune 15 

alterations, and, thus, epigenetics mechanisms may be involved in the immune 16 

disturbance [36]. These data highlight the role of the valproic acid and HDAC 17 

inhibitors as epigenetic modulators that could be underpinning the immunological 18 

alteration, as well as the neurological outcomes, in psychiatric disorders.   19 

The intimate relationship between central nervous system and immune 20 

system 21 

 For a long time, immune and central nervous systems were considered 22 

compartments that operate separately and independently. However, recent 23 

studies demonstrate an active communication between these two systems, 24 
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modulating bi-directly each other with neurotransmitters and neuromodulators in 1 

periphery. In addition, in a landmark study, lymphatic vessels were discovered in 2 

central nervous system, putting in check the current view of the brain as an 3 

“immune privileged site” and raising new possibilities for the crosstalk between 4 

brain and immune system [40]. Anatomically the central nervous system (CNS) 5 

is bathed by the cerebrospinal fluid (CSF) and surrounded by the meninges, 6 

which contain lymphatic and blood vessels [41]. The brain parenchyma is 7 

separated from the circulating blood by a blood-brain barrier (BBB), which 8 

prevents the entry of pathogens, circulating immune cells, and other substances 9 

from the blood. 10 

 The BBB is defined as a semipermeable membrane that separates the 11 

circulating blood from the brain and extracellular fluid in the central nervous 12 

system [42]. CNS blood vessels interact with different peripheral and brain-13 

resident immune cell populations, as perivascular macrophages and microglial 14 

cells, respectively. The BBB is formed by the concerted action of endothelial and 15 

glial cells. During development, at embryonic day 10 (E10), initial clues for 16 

angiogenesis lead to the early properties of BBB in CNS by activation of the 17 

Wnt/b-Catenin canonical pathway [43–45]. There is no consensus about the 18 

exact time when the BBB is fully formed [46]. Nevertheless, at E15, pericytes, 19 

which have crucial roles in BBB formation and maintenance, begin to interact 20 

intimately with endothelial cells (EC) in the capillary walls [47]. In postnatal life, 21 

endothelial cells from brain capillaries are covered up by mature pericytes, 22 

sharing their basement membrane with endothelial cells  [48]. Moreover, the 23 

astrocytes project cellular terminations called “end feet” toward the capillaries, 24 

providing the outer layer of the BBB. Pericytes and astrocytes also secrete 25 
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proteins involved in extracellular matrix formation and deposition of the basement 1 

membrane [48,49].  2 

 The presence of this limiting barrier allows the CNS to control and fine tune 3 

the flow of a variety of molecules from periphery, regulating its permeability to 4 

seek homeostasis. In CNS physiology,  there are extensive vessels where 5 

monocytes, granulocytes and dendritic cells circulate [50]. In addition, the brain 6 

parenchyma is populated with microglia, resident-cells from the immune lineage 7 

that play crucial roles in brain surveillance and response against multiple types 8 

of damage. Studies with rodents showed that, during neurodevelopment, specific 9 

monocytes emerge at E7 and infiltrate the CNS at E9.5 as pre-macrophages, 10 

expressing the chemotactic factor CX3C chemokine-receptor 1 (CRXCR1) [50]. 11 

The presence of cytokines as interleukin-1 beta (IL-1β) and tumor growth factor 12 

beta (TGF-β) allows the differentiation of pre-macrophages in early microglia at 13 

E14.5, which then generate mature microglia at P14. In fact, TGF-β seems to be 14 

crucial for microglial specification in CNS [51,52].  15 

 Microglial cells are capable to interact with almost all cell types in the CNS 16 

modulating cell maturation during development and promoting tissue repair and 17 

homeostasis. Moreover, in postnatal life, microglia play crucial roles in sensing 18 

perturbations in encephalic environment, actively responding to even minor 19 

pathological changes in CNS [53,54] by altering their shape and gene expression 20 

profile. The term “microglial activation” has been considered as a shift from a 21 

“resting” stage to an “activated” state when disturbance of tissue homeostasis is 22 

detected or upon experimental stimulation. However, this term implies the 23 

understanding of an “inactivated” phenotype when brain tissue is not facing any 24 
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changes in homeostasis. In fact, microglial cells are never inactive, showing 1 

highly dynamic surveillance functions in CNS [50,55,56]. Many authors are 2 

suggesting to rename this surveillance state of microglial cells to “surveying 3 

microglia”, instead of “resting microglia”  [50]. These cells can shift from their 4 

“surveying” or “resting” state to “activated” or “alerted” state when facing chances 5 

in CNS homeostasis, as infections recognized by toll-like receptors [57], cell 6 

damage or trauma.  Recent studies have demonstrated that the 7 

lipopolysaccharide (LPS) exposure downregulates the transcriptional factor Sal-8 

like protein 1 (SALL1) and promotes several alterations in microglial identity, with 9 

a concomitant upregulation of genes associated to other resident macrophages, 10 

indicating that SALL1 might be important for maintenance of microglial identity in 11 

response to immune challenge [50,58]. Once activated, microglial cells can 12 

commit to different phenotypes called “reactive”, having a large functional and 13 

molecular diversity. These changes in microglia profile are correlated with the 14 

type of challenge faced by the CNS. They can shift to a pro-inflammatory state 15 

also called “M1 phenotype” [59] presenting highly phagocytic and neurotoxic 16 

activities and releasing pro-inflammatory chemokines and cytokines in response 17 

to an immune challenge, such as a microorganism invasion [60] or the presence 18 

of pro inflammatory signals [61–63]. Once the immune stimulator is controlled, 19 

microglial cells are able to shift to a more neuroprotective profile called “M2 20 

phenotype” which involves anti-inflammatory responses [59,64]. Nonetheless, 21 

the activated pro-inflammatory profile can progress in pathological conditions. 22 

Although the immune challenge and the brain environment are responsible for 23 

the early microglial responses, signals from CNS resident and infiltrating immune 24 

cells can shape reactive profiles of microglial cells and play important roles in 25 
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many brain diseases [65–69]. All these stimuli could direct microglia’s fate to 1 

alternative states, including microglial cell death, but there’s still scarce 2 

information about the course of microglial activation, their reversibility to the 3 

surveying state [70] or the preservation of molecular memory of previous stimuli. 4 

Moreover, cells that infiltrate from the blood and differentiated into microglia could 5 

also return to the periphery [65,71].  6 

 There is a low basal entry of immune cells from blood periphery into the 7 

CNS in normal conditions. Studies have shown that, although microglial cells play 8 

major roles in brain surveillance, the perivascular macrophages represent a 9 

crucial immune regulator and sensor of perturbations in CNS and periphery. 10 

These cells are derived from bone marrow and are intimately associated with the 11 

bloodstream since they reside between endothelial cells and astrocyte’s end feet 12 

[72–74]. This privileged location of perivascular macrophages allow them to 13 

simultaneously monitor the blood and the brain interstitial fluid, providing a fine 14 

control of brain homeostasis and BBB integrity [72,75]. Although macrophages 15 

display different locations, they can perform specific roles in these 16 

microenvironments. In addition to perivascular space, macrophages can be 17 

located within choroid plexus and meningeal space. In choroid plexus, which is 18 

considered the major site of CNS immune surveillance, there are tissue-resident 19 

macrophages called epiplexus cells disposed alongside the fourth ventricle with 20 

dendritic cells (DC), monocytes and mast cells [76,77]. Referred by many authors 21 

as the “immune regulatory gate”, the choroid plexus is capable to induce specific 22 

immune responses and allows cell migration between blood and CSF [78,79]. 23 

The meningeal macrophages are positioned in the subdural meninges and act as 24 

sentinel cells for damage and infection in brain tissue, surveying the 25 
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cerebrospinal fluid (CSF) and the extracellular lumen of meningeal blood vessels 1 

[80,81]. Thus, macrophages play critical roles in CNS surveillance, homeostasis 2 

and disease. Nonetheless, there is a variety of other immune cell types in the 3 

brain environment. In physiological condition, studies have observed the 4 

presence of monocytes in meningeal spaces, although more evidence is still 5 

needed [82]. Granulocytes (neutrophils, mast cells, eosinophils, and basophils) 6 

can be found in meningeal spaces with mast cells also present in brain 7 

parenchyma [72,83]. These cells are highly phagocytic and play important roles 8 

in response to brain infections and tissue damage [72,84,85]. Dendritic cells (DC), 9 

the main antigen-presenting cells in periphery, can also be found in CNS. They 10 

are located in the choroid plexus, meningeal space, and are specially abundant 11 

in lymphatic vessels in meninges [86–88]. The presence around these vessels 12 

suggests important roles for DC in inflammatory diseases and brain infections 13 

[40].  14 

 During inflammatory condition, there is extensive infiltration of immune 15 

cells in the CNS.  The barriers that regulate cellular entry are the blood-brain 16 

barrier (BBB) within the CNS parenchyma, and the blood-cerebrospinal fluid 17 

(blood-CSF) barrier within the choroid plexus” [89]. When brain homeostasis is 18 

compromised, immune cells can infiltrate from the periphery to the brain 19 

parenchyma due to the elevation in BBB permeability. This is generally observed 20 

and investigated in the context of a pathological CNS inflammatory response [90–21 

92]. Under pathological conditions, microglia activation can lead to BBB 22 

disruption, allowing a substantial cellular infiltrate and amplifying the inflammatory 23 

response [93,94]. One of the key mediators in these processes is the release of 24 

cytokines and chemokines by periphery and brain-resident immune cells. This 25 
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novel view of the immune system as an active player in brain function is modifying 1 

our current view of neuropsychiatric disorders. Immune alterations are now seen 2 

as central for the pathophysiology of many brain diseases and further 3 

understanding of this neuroimmune axis can result in new therapies and 4 

diagnostic tools.  5 

Neuroimmune alterations in ASD: from patients to the VPA animal model  6 

In the last decade, the immune system has caught the attention of 7 

neuroscientists for the interplay between neurons and immune mediators, not 8 

only in disease, but also in the homeostasis of the brain. In the past, the central 9 

nervous system was called “an immune-privileged region”, once the blood brain 10 

barrier controls the cross talking between brain and the periphery. However, 11 

recent findings demonstrated that this privilege is not related to the absence of 12 

immune modulation in brain activity and homeostasis, but a time-dependent 13 

specific modulation in many regions during brain development [95]. Immune cells 14 

and immune molecules, such as cytokines and chemokines, can modulate 15 

cognitive, emotional and behavioral processes, triggering different responses in 16 

neuronal and glial cells [96]. Cytokines are small signaling-molecules acting as 17 

mediators of communication between immune cells. Their roles include 18 

stimulation and regulation of cell development, maturation and response against 19 

immune challenges [97,98]. Chemokines can be characterized as a vast group 20 

of 8-10 kDa molecules from the super family of cytokines that induce chemotaxis 21 

of immune cells. Once bound in their receptor, the complex chemokine-receptor 22 

can activate signaling cascades that induce immune cell trafficking to the target 23 

area. Also, this complex plays important roles as molecular signal in crosstalk 24 
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among neuronal and glial cells and immune resident cells in nervous system, as 1 

microglia [99,100]. Since chemokines are capable to target different types of 2 

receptor, they can modulate different cell processes, including cell adhesion, 3 

proliferation, phagocytosis, apoptosis, angiogenesis, cytokine secretion and T 4 

cell activation [101]. 5 

Lymphocytes are cells capable of recognizing any foreign antigens 6 

displayed by antigen-presenting cells, constituting the main cells of adaptive 7 

immunity [102]. Lymphocytes respond by proliferating and differentiating in 8 

effector cells, whose function is the elimination of the pathogen and creation of 9 

an immunological memory [103]. When naïve CD4+ T cells encounter specific 10 

antigens, they can differentiate into a range of effector subgroups. Several 11 

transcription factors are individually required for T-cell differentiation, generating 12 

a specific lineage that express characteristic cytokines. That is, once specific 13 

transcription factors are activated, they promote differentiation of naïve T cells, 14 

which differentiate into specific immunological responses: Th1, Th2 and Th17. In 15 

the presence of IFN-γ and IL-12, Signal transducer and activator of transcription 16 

(STAT) 1 and STAT4 signal for the expression of the transcription factor T box 17 

expressed in T cells (T-bet) and promotes response Th1. On the other hand, Th2 18 

cell commitment occurs when IL-4 and STAT6 increase expression of GATA-19 

binding protein (GATA3) transcription factor. The presence of TGF-β associated 20 

with IL-6 signaling via STAT3 generating the expression of retinoid-related 21 

orphan receptor (RORγt) transcription factor, results in the differentiation of Th17 22 

cells. Also, TGF-β, with IL-2 signaling via STAT5 is known to generate, at least 23 

in vitro, inducible Treg cells, which express Foxp3 transcription factor (See Figure 24 

1) [104].  25 
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The modulation of cytokine levels can alter significantly the brain 1 

physiology and behavior. Recent studies highlight a link between immune 2 

dysfunction and behavioral impairments [105]. For example, the relation between 3 

IL-6 and several altered behaviors has already been established in the literature 4 

[106–108]. Signs of neuroinflammation and altered inflammatory response are 5 

seen in ASD subjects throughout life [109]. Therefore, some authors hypothesize 6 

that the neuroimmune disturbances could be causal for ASD [110]. Below, we will 7 

detail the main neuroimmunological findings (summarized in Tables 1 and 2) in 8 

ASD subjects and in VPA animal model of autism: 9 

IL-1β 10 

IL-1β is a cytokine produced by fibroblasts, monocytes, tissue 11 

macrophages, dendritic cells (DCs), B lymphocytes, epithelial cells, and natural 12 

killer (NK) cells [111] that promotes inflammation by indirectly stimulating 13 

lymphocyte function and activating macrophages [112,113]. IL-1β has the ability 14 

to increase the expression of adhesion molecules such as  VCAM-1 and ICAM-15 

1, supporting the infiltration of inflammatory cells from the circulation into the 16 

tissue and resulting in chronic IL-1-induced inflammation [112,113]. IL-1β 17 

stimulates expression of inflammatory mediators and induces T-helper type 17 18 

(Th17) response. Furthermore it can also play important roles as a mediator of 19 

the anti-inflammatory response [112,113]. 20 

Both elevation and reduction in IL-1β levels have already been reported in 21 

ASD subjects. Increased levels of IL-1β were found in plasma [114,115], serum 22 

[116,117], and peripheral blood mononuclear cells (PBMCs) [118–120] whereas 23 

decreased levels were described in neonatal dried blood samples (n-DBSS) 24 
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[121]. In VPA animal model, IL-1β was increased in hippocampus [122,123], in 1 

LPS-exposed hippocampus [109] and in whole brain homogenate [124].   2 

Increased levels of this cytokine are associated with increased stereotypy [120], 3 

one of the main characteristics of ASD. 4 

IL-2 5 

Interleukin-2 has an important role in controlling the survival of immature 6 

and mature T cells [125] and is mainly secreted by CD8+ and CD4+ T cells after 7 

recognition of the antigen and co-stimulators [111]. IL-2 is the most important 8 

cytokine for promoting the clonal expansion of antigen-activated T cells [126]. 9 

The only report in ASD is a reduction of IL-2 levels in neonatal dried blood 10 

samples (n-DBSS) [121].  11 

IL-4 12 

IL-4 is the main cytokine of Th2 response and is primarily produced by T 13 

cells and mast cells. IL-4 promotes proliferation of B cells and cytotoxic T cells 14 

and stimulates IgG and IgE production [97], besides stimulating leukocytes 15 

recruitment and promoting the expression of adhesion molecules [127]. 16 

Increased levels of this cytokine were associated with greater impairments in non-17 

verbal communication [120]. In ASD subjects, reduced level of IL-4 in n-DBSS 18 

[121] and elevated levels in amniotic fluid [128] have been reported. 19 

IL-5 20 

IL-5 is a cytokine produced by T cells that acts as an activator of 21 

eosinophils [129]. IL-5 promotes eosinophil proliferation and maturation, 22 
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stimulating IgA and IgM production [97]. In ASD patients, a decrease in IL-5 in n-1 

DBSS [121] and an increase in plasma samples [115] were described.  2 

IL-6 3 

The main source of IL-6 are T-helper cells, macrophages and fibroblasts. 4 

IL-6 targets activated B-cells and plasma cells, promoting differentiation into 5 

plasma cells and IgG production [97]. IL-6 is also involved in induction of Th17 6 

response and has a dual profile pro- and anti-inflammatory [112,113]. Studies 7 

have demonstrated essential involvement of IL-6 in triggering core symptoms 8 

related to pro-inflammatory response in autistic model of maternal immune 9 

activation (MIA) [130]. 10 

Increased levels of IL-6 are associated with increased stereotypy in ASD 11 

[120], impaired cognitive abilities, abnormal anxiety and decreased social 12 

interactions [107]. Here, we review the main findings about IL-6 levels in ASD: IL-13 

6 is elevated in brain tissue (cerebellum, frontal cortex and anterior cingulated 14 

gyrus) [7,131,132], and in serum and PBMC [116–120], while it is reduced in 15 

plasma and n-DBSS [114,121]. In the VPA animal model of autism, higher levels 16 

of IL-6 were reported in hippocampus [123], hippocampus and spleen after LPS 17 

challenge [109] and whole brain homogenate [124]. 18 

IL-8 19 

Interleukin-8 is a chemoattractant cytokine produced mainly by 20 

macrophages that specifically targets neutrophils, promoting their activation 21 

[133]. So, its major functions result from its chemotactic and pro-inflammatory 22 

activities [97]. Elevated levels of this cytokine were associated with increased 23 
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hyperactivity, stereotypy, and lethargy [120]. Higher levels of IL-8 was described 1 

in frontal cortex [132], plasma [115], cerebrospinal fluid (CSF) [134], PBMCs [120] 2 

and n-DBSS [121] of ASD subjects. 3 

IL-10 4 

This cytokine can be produced by several cellular types including DCs, 5 

macrophages, mast cells, NK cells, eosinophils, neutrophils and B cells [135], 6 

and is able to regulate growth and/or differentiation of B cells, NK cells, cytotoxic 7 

and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and 8 

endothelial cells, exerting a primarily anti-inflammatory activity [97,135]. IL-10 is 9 

important to fine tune the immune response against invading pathogens, 10 

maintaining the homeostatic state [135]. In ASD patients, increased levels to IL-11 

10 were found in anterior cingulated gyrus and amniotic fluid [128,134], while IL-12 

10 levels is decreased in PBMCs [96]. 13 

IL-12 14 

IL-12 is produced by T cell and acts in naïve T-cells and NK cells, 15 

activating them [97], and inducing IFNγ production, which is critical for the 16 

induction of Th1 cells [136]. Plasma, PBMCs and serum of ASD subjects show 17 

higher levels of IL-12 [115,117,120] whereas n-DBSS show lower IL-12 levels 18 

[121]. Increased IL-12 levels were associated with increased stereotypy and 19 

lethargy in ASD patients [120]. 20 

IL-13 21 
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Similarly to IL-4, IL-13 is involved in type-2 immunity and is produced by 1 

T-cells. However, basophils, eosinophils and NK cells can also produce IL-13 2 

[137]. The only report in autistic patients shows increased plasma levels of IL-13  3 

[115]. 4 

IL-17 5 

Interleukin-17 has an important role in immunity against intra and 6 

extracellular pathogens [138]. IL-17-producing cells including natural killer T cells 7 

and innate lymphoid cells play crucial roles in inflammation-associated diseases, 8 

such as infection, autoimmunity and tumors [139]. Also was described the effector 9 

role of IL-17a in onset of offspring behavioral abnormalities of mothers MIA-10 

induced, showing the important crosstalk between the neuroinflammatory state 11 

and behavioral manifestations [140]. Increase levels of IL-17 have been reported 12 

in plasma and serum [115,141] of patients with ASD. 13 

IL-23 14 

Considered a pro-inflammatory cytokine essential for the differentiation of 15 

Th17 lymphocytes [142], IL-23 is produced by macrophages, dendritic cells, 16 

keratinocytes and other antigen-presenting cells after recognition of 17 

microorganisms [143]. IL-23 is critically involved in autoimmune diseases 18 

responses [144]. In autistic patients, elevated IL-23 levels in serum samples were 19 

reported [117]. 20 

TNF-α 21 
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The tumor necrosis factor alpha (TNFα) is an endotoxin-induced serum 1 

factor promoting phagocyte cell activation [97], whose main targets and 2 

producers are macrophages. TNFα is in higher levels both in patients (frontal 3 

cortex [132], PBMC [96,118,119,145], serum [117] and amniotic fluid [128]) and 4 

in the VPA animal model of autism (hippocampus and spleen responding to LPS 5 

[109] and whole brain tissue [124]).  6 

IFN-γ 7 

Interferon-γ (IFN-γ) plays an important role in host defense against 8 

intracellular pathogens. It is produced by NK T cells, CD8+ T cells, and T-helper 9 

1 (Th1) CD4+ T cells and its functions include supporting Th1 differentiation [146], 10 

and macrophage activation and increasing neutrophil and monocyte function [97]. 11 

Patients with ASD have increased levels of IFN-γ in frontal cortex [132], plasma 12 

[147], CSF [134] and PBMC [96] and reduced levels in n-DBSS [121]. 13 

TGFβ1 14 

TGF-β is primarily secreted by T cells and B cells, and acts in activated T 15 

and B cells. The major function of this cytokine is to inhibit hematopoiesis  and T 16 

and B cell proliferation [97]. Higher levels to TGFβ1 were reported in anterior 17 

cingulated gyrus and CSF [134] of ASD subjects.  18 

MCP-1  19 

Monocyte Chemoattractant Protein-1 (MCP-1) or C-C chemokine ligand 2 20 

(CCL2) signals to cells that contain the specific CCR2 receptor, stimulating their 21 

migration to sites where CCL2 is produced and facilitating the amplification of 22 
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neuroinflammation [148]. Higher levels of MCP-1 were observed in plasma [149], 1 

CSF [134] and amniotic fluid [128] of autistic subjects. Increased levels in plasma 2 

were associated with greater impairments in visual reception, fine motor skills 3 

and expressive language [149]. 4 

GM-CSF  5 

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is produced 6 

by T cells, macrophages and fibroblasts and targets stem cells. Its major function 7 

is to stimulate production of granulocyte, monocyte and eosinophils [97]. 8 

Diminished levels of GM-CSF were described in n-DBSS of ASD pediatric 9 

subjects [121].  10 

G-CSF 11 

The main source of granulocyte colony-stimulating factor (G-CSF) are 12 

fibroblasts and endothelial cells and its targets are stem cells in the bone marrow. 13 

G-CSF has a hematopoietic function and stimulates granulocyte production [97]. 14 

Higher levels of this cytokine were described in plasma of autistic patients [114].  15 

EGF 16 

Epidermal growth factor (EGF) is a small chemoattractant peptide 17 

produced by activated T cells that is involved with wound healing by attracting 18 

fibroblasts and epithelial cells [114]. Higher levels of this chemokine were 19 

reported in  plasma samples from autistic patients [114].  20 

RANTES  21 
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Regulated on Activation, Normal T-cell Expressed and Secreted 1 

(RANTES) chemokine or CCL5 is involved in immune cell transport to the 2 

inflammation site, promoting polarization towards an Th1 response [150]. Higher 3 

levels were associated with increased severity of lethargy, stereotypy and 4 

hyperactivity [149] in ASD patients. 5 

Eotaxin 6 

The CC chemokine eotaxin/CCL11 is known to bind to the receptor CCR3 7 

on eosinophils and Th2-type lymphocytes [151]. Increased levels of Eotaxin were 8 

associated with increased severity of lethargy, stereotypy and hyperactivity in 9 

ASD subjects [149]. 10 

Final considerations 11 

 Autistic Spectrum Disorder has a high prevalence and a growing incidence 12 

over the last few years. This has driven investments in public health and 13 

mobilized researchers and health professionals worldwide.  There has been a 14 

significant progress in ASD research since the disorder was first described, but 15 

to date, its etiology remains unclear. An interesting hypothesis is that 16 

dysregulation of neuroimmune communication is involved in the onset of ASD. In 17 

this review, we summarized the main neuroimmune alterations found both in ASD 18 

subjects and in the VPA animal model of autism. Noticeably, several changes in 19 

the VPA model reflect the alterations found in patients with ASD (Figure 2). 20 

Animal models that present face and construct validity, such as the VPA model, 21 

can be an effective tool for the investigation of pathways and tissue alterations 22 

involved with the pathogenesis of ASD.  23 
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Table 1. Main cytokines with altered levels in autism subjects 

DSM Severity 
Described 
comorbidities 

Age 
(years) 

Source Outcome Analysis method Reference 

ASD ND ND neonatal amniotic fluid ↑ MCP-1, IL-4, IL-10, TNF-α and TNF-β Flow cytometry [128] 

ASD ND ND neonatal n-DBSS 
↓ IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-
12, GM-CSF, IFN-γ 
↑ sIL-6Rα, IL-8 

Flow cytometry [121] 

ASD (DSM-IV) 
Mild, moderate and 
Severe 

ND 2-21 Serum ↑ IL-1, IL-6, IL-12, IL-23, TNF-α ELISA [117] 

ASD (DSM-5) ND ND 3-11 PBMCs 
↓ CD4+, FOXP3+,  T cells 
↓ mRNA and protein expression FoxP3 
↑ Tbet, ↑ STAT3, ↑ GATA3 

Flow cytometry, PCR 
and Western Blotting 

[152] 

ASD (DSM-5) ND ND 3-11 PBMCs ↑ ROR-yt in CD4 
PCR and Western 
Blotting 

[152] 

ASD (DSM-
IIIR/DSM-IV) 

ND GI issues 2-16 
Duodenal Lamina 
Propria 

↑ CD3+/TNFα+ 
↓ CD3+/IL-10+ 

Flow cytometry [153] 

ASD (DSM-
IIIR/DSM-IV) 

ND GI issues 2-16 Epithelium 
↑ CD3+/TNFα+ 
↓ CD3+/IL-10+ 

Flow cytometry [153] 

ASD (DSM-IV) ND ND 1-17 PBMCs ↑ TNF-α ELISA [145] 

ASD (DSM-IV) ND GI issues 4-15 PBMCs 
↑ TNF-α, IFN-γ 
↓ IL-10 

Flow cytometry [96] 

ASD (DSM-IV) 
Severe (nonverbal 
adult pacients) 

ND 18-44  Serum ↑ IL-1β, IL-6 ELISA [116] 
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ASD (DSM-IV) ND ND 2.9-4.3  PBMCs ↑ IL-1β, IL-6, IL-8, IL-12 p40 
Multiplexing bead 
immunoassays 

[120] 

ASD (DSM-IV) ND ND 2-14 PBMCs ↑ TNF-α, TNFRI, TNFRII, IL-6, IL-1β ELISA [119] 

ASD (DSM-IV) ND ND 2.2-5 PBMCs ↑ 1L-1β, IL-6, TNF-α Flow citometry [154] 

ASD (DSM-IV) ND ND 5-44  
post mortem brain 
tissue 

↑ IL-6, IL10, TGFβ1 (anterior cingulated 
gyrus) 

Human cytokine array 
kits 

[7] 

ASD (DSM-IV) ND ND 5-44  CSF ↑ IFNγ, TGFβ2, IL-8, MCP1 
Human cytokine array 
kits 

[7] 

ASD (DSM-IV) ND ND 4-37  
post mortem brain 
tissue 

↑ IFNγ, IL-6, IL-8, TNF-α (frontal cortex) 
Multiplex Bead 
Immunoassays 

[132] 

ASD (DSM-IV) ND ND 4-14  
post mortem brain 
tissue 

↑ IL-6 (cerebellum) Immunohistochemistry [131] 

ASD (DSM-IV) ND ND 7-15  Plasma 
↑ IL-1β, IL-1RA, IL-5, IL-8, IL-12 (p70), 
IL-13, IL-17 

ELISA [115] 

ASD (DSM-IV) ND ND 3-4.5 Plasma ↑ MCP-1, RANTES, Eotaxin 
Multiplexing bead 
immunoassays 

[149] 

ASD (DSM-IV) ND ND 4.7-10.1  Plasma ↑ IFN-γ ELISA [147] 

ASD (DSM-IV) 
Mild to moderate 
and Severe 

ND 6-11 Serum 
↑ IL-17A (proportional increase to 
severity of autism) 

ELISA [141] 

ASD (DSM-IV) ND ND 5-10 Plasma 
↑ IL-1a 
↓ IL-6, G-CSF, EGF 

ELISA [114] 

DSM: Diagnostic and Statistical Manual of Mental Disorders; CSF: cerebrospinal fluid; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; IL: 
interleukin; ND: not described; n-DBSS: neonatal dried blood samples; PBMC: peripheral blood mononuclear cells; PCR: polymerase chain reaction; TNF: 

tumor necrosis factor. 
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 Table 2. Main cytokines with altered levels in the valproic acid animal model of autism 

Animal Dosage 
Embryonic 

day 
Administration 

via 
Source Age Outcome 

Analysis 
method 

References 

BALB/c 600 mg/Kg E11 Subcutaneous 
Dorsal 
hippocampus 

P28 ↑ IL-1β PCR [122] 

BALB/c 
400 mg/Kg and 
600 mg/Kg 

E12.5 Subcutaneous Spleen 
8-10 
weeks 

Only VPA did not onset inflammatory 
response, but showed exacerbated 
response to a LPS challenge: ↑  IL-1β, IL-6 
and TNF-α expression  

PCR [109] 

BALB/c 
400 mg/Kg and 
600 mg/Kg 

E12.5 Subcutaneous 
Hippocampus/
Cerebellum 

8-10 
weeks 

↑ IL-6 and TNF-α expression  in VPA 
animals exposed to a LPS challenge 

PCR [109] 

Wistar 600 mg/Kg E12.5 Intraperitoneal Hippocampus P40 ↑ IL-6, ↑ IL-1β ELISA [123] 

Wistar 800 mg/Kg E12.5 Gavage Whole brain P21 ↑ IL-1β, IL-6, TNF-α ELISA [124] 

IL: interleukin; PCR: polymerase chain reaction. 
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Legend of figures 

 

Figure 1. Th1, Th2, Th17 commitment lineage from naïve CD4+ T cells. The main functions of each immune response and the signature 

cytokine are highlighted in the boxes. APC: antigen-presenting cell; NK: natural killer cell; T-bet: T box expressed in T cells; GATA: GATA-

binding protein; ROR: Retinoid-related orphan receptor; IL: Interleukin; IFN: Interferon; TGF: Transforming growth factor. 

 

Figure 2. Main results of cytokines altered both in ASD subjects and in VPA animal model. At the interface of the columns and rows are 

shown the common findings both to humans and to animal model in different biological sources. The references are already cited in Table 1. 
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Figure 1. Th1, Th2, Th17 commitment lineage from naïve CD4+ T cells.  
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Figure 2. Main results of cytokines altered both in ASD subjects and in VPA animal model. 


