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Abstract 

By virtue of their non-toxic nature and their attractive photoluminescence (PL) 

properties, Carbon-dots (or C-dots) represent an emerging class of environmentally 

benign multifunctional materials. They exhibit excitation-dependent emission and 

demonstrate colloidal and structural stability. As a result, C-dots are promising 

candidates for a wide spectrum of applications.  

In this work, C-dots were produced from thermal treatment of citric acid in the presence 

of ethanolamine, and, in another approach, from crude biomass pyrolysis based on 

previously published methods. The former produced self-passivated C-dots, with high 

quantum yield and colloidal stability, whilst the latter produced considerably lower 

quantum yield, although both materials displayed self-quenching effects in the solid-

state. In contrast, hybrid nanopowders based SiO2, TiO2 and Laponite, in a weight 

ratio of 1:150, were able to suppress these self-quenching effects. The powders were 

tested under a fluorescence microscope and it was found that not only the entire 

material became illuminated, but also displayed colour-tuneability, or excitation 

dependent emission, as the powders assumed distinct colours when exposed to 

different wavelength excitation sources. 

The hybrid powders were tested as fingerprint developers. To this end, fingerprints 

were deposited on a variety surfaces - glass slide, large metal spatula and a plastic 

foil from a soda bottle. The drink foil was selected due its strongly coloured background 

and to simulate a more casual scenario. It was concluded that the as-prepared 

powders had the necessary flowability to be used as fingerprint recovery powders, and 

their ability to produce well-resolved fingerprints was confirmed by Automated 

Fingerprint Identification System (AFIS, identifies fingerprints minutiae) results when 

compared to a commercial forensic powder.  

Carbogenically coated silica nanohybrids (C-SiO2), prepared by pyrolysis of polymer 

coated SiO2, were also shown to exhibit advantages in recovering latent fingerprints. 

Owing to their core/shell nature, they were able to inhibit C-dots quenching 

predisposition, while maintaining their colour-tuneability.  
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The use of these nanohybrid systems would assist with contrast, for instance, when 

surfaces are multi-coloured. Their colour-tuneabiity would allow forensic experts to 

apply one type of powder, and then adjust it to achieve optimum contrast between the 

fingerprint and the surface, regardless of how strongly coloured or even fluorescent it 

is. This would allow forensic experts not to have to carry several powders to crime 

scenes and even minimize the amount of fingerprint evidence lost due to an inefficient 

development procedure. 

An alternative application suggested for the C-SiO2 nanohybrids is as anti-counterfeit 

tools. Colour-tuneable nano-assemblies, were obtained when suspensions with pH 

lower than 7 were precipitated (tagged) in different surfaces. The way these nanotags 

assemble has been demonstrated to happen randomly, and their patterns can be 

highly influenceable by changing the pH, concentration of the initial solution and even 

the surface used for the deposition. These colour-tuneable nanotags are cost-efficient, 

easy to prepare and less toxic alternatives to the quantum dots and rare-earth 

nanocrystals which have been suggested thus far.  

In addition, it has been demonstrated that C-dots can be prepared in situ in polymers 

matrices. Fluorescent polymers are of particular interest for a variety of fields like 

sensoring, biomedical applications and optoelectronics. However, methodology to 

produce these materials are still in general complex, expensive and frequently involve 

the use of toxic materials. The in situ preparation here established shows that C-dots 

can be synthesized inside polymers matrix by melt-mixing with a carbon-rich 

precursor, without producing any significant effect on polymers’ crystallinity. Moreover, 

by using a N-rich carbon precursor, the C-dots’ prepared showed high fluorescence 

intensity in the solid-state. Due to the distinct characteristics of the polymers used 

(polyethylene – highly water insoluble, and high MW, and polyethylene glycol – high 

water solubility, and low MW), the method here presented suggests that this protocol 

can be followed to obtain different types fluorescent polymers. 

Briefly, new applications for C-dots nanoparticles are demonstrated. By following 

various bottom-up approaches and using various carbon-rich precursors, C-dots-

based materials with distinct properties have been prepared and their applications 

have been evidenced in fingerprint recovery, anticounterfeit purposes, and as 

fluorescence sources to be formed in situ in polymeric matrices.  
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1 Introduction 

1.1 Aims and objectives 

• To synthesize different types of carbogenic nanoparticles with unique 

fluorescent properties, by following distinct experimental procedures; 

• To apply the prepared fluorescent nanopowders to the recovery of latent 

fingerprints; 

• To develop Silica/C-dots core-shell systems for the development of 

fluorescent nanotags for anti-counterfeit purposes; 

• To develop a simple protocol for inducing fluorescent properties to readily 

available polymers. 

 

1.2 Fluorescent materials overview 

Fluorescent materials are nowadays considered vital for optoelectronics, sensoring, 

bioimaging, among many other fields1. Fluorescence occurs when an electron is 

excited, and upon its return to the ground state, a photon is emitted, most typically, 

within the UV and NIR wavelength region. Materials’ fluorescence properties are thus 

defined by a range of parameters that are intrinsic to them, such as: emission intensity, 

excitation and emission wavelengths, emission anisotropy (where light is emitted by a 

fluorophore with varying intensities over different axes of polarization), and 

photoluminescence lifetime (a measure of the averaged time excited electrons take to 

return to the ground state). The different values these parameters may assume are 

what affords them such a versatility within science and society.1 

The list of available fluorescent materials is immense, but the most typically 

investigated can be classified as: organic fluorophores (or dyes)2, lanthanide 

chelates3, fluorescent nanoparticles1 and fluorescent macromolecular systems (e.g. 

fluorescent polymers4 and proteins2). Through organic synthesis, a number of organic 

dyes have been synthesized, and they benefit from high quantum yields (fraction of 

the excited electrons that return to the ground state and emit light, QY) 5 in the UV-Vis 

range, highly tuneable chemical design, and thus have found use in several fields 

(pictures on the right of Figure 1-1)6.  
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Figure 1-1 – Examples of some of the most common organic dyes, their emission spectra and 
representative applications: a) cyanine, used by some brands to make fluorescent shoes, b) fluorescein, 
employed by opticians for better illumination during eye tests, and c) Rhodamine 6G, for cell imaging. 
Adapted from Ref. 7–9. 

 

Fluorescein, for instance, is currently one of the most used organic dyes (Figure 1-1 

b). Its fluorescence properties are highly pH-dependent - it occurs as a cation, anion 

and neutral forms in aqueous solution. As demonstrated in Figure 1-2 a, fluorescein 

shows two main absorption peaks in acidic (pH = 2) and basic solutions (pH = 10), at 

437 nm and 490 nm, respectively. As the pH decreases, the absorption is 
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progressively shifted from one to the other, and the emission intensity is reduced 

(Figure 1-2 b). Fluorescein’s highest QY recorded, measured against a standard 

glycogen solution, has been calculated to be 93%8,10 for its anionic species (in basic 

solution). The reason for this higher QY has been attributed to the more rigid form of 

the anionic species (Figure 1-2 c), which reduces the amount of relaxation through 

bonding vibrations (lower energy and typically non-emissive transitions)8. 

 

 

Figure 1-2 – a) UV-Vis absorption spectra and b) emission spectra of fluorescein in aqueous solutions at 
different pH, and c) evolution of fluorescein from the cationic form (left) to anionic (middle) and dianionic 
(right) form, with increasing pH. Adapted from Ref. 8. 

 

There are, however, certain limitations that organic dyes tend to display, most 

significantly: low photostability – making them susceptible to hostile environments, 

narrow excitation bands, small Stokes shifts (plots on the left of Figure 1-1), and short 

fluorescence lifetimes5. Furthermore, they have very low QYs in the Infra-red region, 

which is a particularly disadvantage for in vivo studies, since the human body is 

invisible to this type of radiation.1 
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Quantum-dots (QDs), semiconductor nanocrystals (typically ranging from ~ 2 – 10 nm) 

composed of elements from groups II/VI and III/V, are a class of fluorescent 

nanomaterials that has gained momentum in the field. QDs display heavily size-

dependent optical properties - smaller particles emit at lower wavelengths, with higher 

energy levels, and larger particles emit at higher wavelengths with lower energies 

associated (Figure 1-3 a). This effect is known as Quantum Confinement, and only 

takes place in the nanoscale 1,11,12. As the crystal radius of the QDs (or in other words, 

the size of the nanoparticles) decreases and the Bohr-exciton radius remains constant 

(e.g. 5.6 nm for CdSe nanoparticles13), the band gap increases. This results on more 

energetic transitions and thus, a shift in visible emission, from near-IR to near UV 14, 

Figure 1-3 b. Furthermore, these nanoparticles display high photostability in a range 

of solvents, broad excitation bands, high molar extinction coefficients (ε), and have 

been prepared with a variety of surface chemistry designs1. Some examples of QDs 

include cadmium selenide (CdSe), cadmium telluride (CdTe), lead selenide (PbSe), 

zinc sulphide (ZnS), gallium nitride (GaN), indium arsenide (InAs), among many 

others, and each has a specific size-dependent range of emission wavelengths, as 

demonstrated in Figure 1-3 c. 

 

 

Figure 1-3 – a) Solutions of Cadmium-based quantum dots exposed to UV radiation, showing different 
emission colours depending on the nanoparticles size, b) schematic illustration of the Quantum 
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confinement effects of QDs and consequent change in the emitted colour and c) scale representation of 
the range of wavelength covered by the emission of different types of QDs. Adapted from Ref. 15–18. 

 

More recently, quantum dots experienced a rise in their popularity owing to a series of 

international brands using them for improved display technologies. The greatest asset 

they bring to Light-Emitting Diodes displays (LED) are their tuneable band gap which 

affords more vibrant and wider range of colours. In these systems, a charge injection 

occurs, an electron and a hole are formed and migrate along a charge transport layer 

creating an exciton on the QDs layer. The exciton is then recombined and releases 

the photon which emits light in the form of the desired colour13. 

Due to QDs fluorescence properties, it is possible to better study their cytotoxicity. 

Considering the wider range of emission wavelengths of the Cadmium-based quantum 

dots, it comes as no surprise that these have become of primary importance to 

researchers all over the world1. In Figure 1-4 a, the effect in the metabolic activity 

(which directly relates to cell survival rate), of Cd-based QDs with various surface 

chemistry, is demonstrated. In this experiment, a negative control (CTRL), where cell’s 

metabolic activity was studied with no interferents, and two positive controls, 

consisting of cells injected with different amounts of Cd2+ (0.5 µM and 1 µM), were 

used. This allowed, initially, a correlation between the decrease in the metabolic 

activity and the presence of certain types of quantum dots (Figure 1-4 a), which was 

then attributed to an increase in the cellular uptake (both intra- and extracellularly) of 

Cd2+ (Figure 1-4 b). 

 

 

Figure 1-4 – a) Impact of different QDs in the metabolic activity of human cells, and b) the extracellular and 
intracellular concentration of Cd2+ after exposure to the different types of QDs and functional groups (Ctrl 
– control; Functional groups: Cys- cysteine; MPA – 3-mercaptopropionic acid; NAC – N-acetyl-L-cysteine). 
Adapted from Ref. 19. 
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This effect is attributed to the fact that QDs are known to be susceptible to 

photooxidation in cells, under aerobic conditions. Potentially, this may lead to the 

formation of superoxides (O2-), through electron transfer from the free Cd2+ (in the case 

of Cd-based QDs) or excited quantum dots, to the O2 molecules, and other reactive 

oxygen species (ROS), since the excited QDs can form the higher energy and reactive 

form of singlet oxygen19. Furthermore, the unpaired hole can induce cleavage 

decomposition of the nanoparticles’ outer surface19, which may result in the 

intracellular release of heavy metals. Strategies to overcome this have mostly focused 

on the attachment of biocompatible functional groups or polymer chains to the 

quantum dots surface. By analysing Figure 1-4, it is clear that the unprotected CdTe 

QDs, independently of the functional groups attached, tend generate higher quantities 

of Cd2+ and have greater impact in the cells’ metabolic activity. However, the ZnS-

covered CdSe QDs, potentially due to the protection of the outer shell, seem to 

generate minor amounts of Cd2+ and have therefore, negligible impact on the 

metabolic activity19. Similarly, Acuña et al.20, demonstrated that by Ni-surface-

passivating ZnSe/ZnS core/shell QDs, the cell viability could be maintained at 100% 

up to concentrations as high as 500 µg/mL, whilst undoped QDs showed a loss in cell 

viability of ~ 20% at concentrations of 200 µg/mL (Figure 1-5). 

 

 

Figure 1-5 – Cell viability (%) after exposure of undoped (grey bars) and Ni-doped (black bars) ZnSe/ZnS 
core/shell QDs at different concentrations. Adapted from 20. 
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Dubertret et al.21, suggested the use of incapsulated ZnS-over-coated CdSe quantum 

dots in poly(ethylene glycol) (PEG)-based micelles, with the nanohybrids sizes ranging 

from 10-15 nm (Figure 1-6 a), and the quantum yield was measured at 24%. These 

nanoparticles were found to be able to penetrate the nuclei of frogs’ embryos and it 

was possible to monitor their growth, as seen in Figure 1-6 b, c and d. 

Other types of QDs have been suggested which display significantly less toxicity, for 

instance, Si-based QDs. Even though bulk Si displays optimum electron conductivity 

it shows no photoluminescence (PL) properties. However due to quantum confinement 

effects, Si can be used for QDs preparation and display similar PL properties22. Of 

particular interest is the fact that, even when they decompose, they form silicic acid 

which is a molecule of biological importance and shows inherent biodegrability23,24. 

Nevertheless, it is still not clear the full extent of toxicity effects of quantum dots and 

more conclusive studies in the field are needed25. For that reason, nanomaterial 

scientists have focused on bringing new alternatives with potentially less harmful 

effects.  

 

Figure 1-6 – a) TEM image of CdSe QDs incapsulated in PEG-based micelles (size ranges from 10-15 nm), 
b) intra- and c)/d) extracellular imaging of frogs’ embryos in different stages of development. Adapted from 
Ref. 21. 
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1.3 Carbon Dots 

The rapid emergence of carbon-based nanoparticles (typically referred to as carbon-

dots or C-dots) is in no small part due to their low toxicity and PL properties that rival 

those of QDs. Depending on their structure, they can be classified as graphene 

quantum dots (hereafter referred to as GQDs) or amorphous carbon nanodots. They 

brought new possibilities to the nanomaterials science, as they pose as biocompatible, 

cost-efficient and easily processed alternatives to the mainly heavy metal-based 

quantum dots.  

 

1.3.1 Graphene Quantum Dots 

GQDs are fragments of graphene sheets small enough to display quantum 

confinement effects – typically with sizes below 20 nm26. Rather than quasi-spherical 

particles, like C-dots, they can be formed by 1 to 10 fractioned graphene layers and 

have a predominant zigzag edge structure27,28. Bulk graphene displays zero band gap 

and charge carriers have at the band edges effective masses of 0, consequently 

having infinite exciton Bohr radius. Due to their reduced sized, GQDs display quantum 

confinement effects which, contrarily to graphene sheets, result on photoluminescent 

materials.29 

GQDs can be synthesized using top-down methods, which consist of cleavage of 

graphene-based structures. On the other hand, bottom-up approaches focus on the 

synthesis of the GQDs from molecules with aromatic structures. Even though these 

tend to be more complex procedures, they allow for better size and morphology control 

26,30. 

In the following section, some of the most common/significant methods for the 

synthesis of GQD will be reviewed. 

 

1.3.1.1 Top-down routes 

Top-down synthetic approaches for the preparation of GQDs benefit from cheap 

procedures for the cleavage of readily available bulk materials, like graphite. Most 
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methods rely initially on the oxidation of the graphite sheets to graphite oxide (GO) 

sheets, typically through a modified Hummers method31, while differing on the strategy 

followed to produce the GQDs from the GO sheets32. Briefly, the Hummers method 

consists of oxidation of the graphene layers by mixing with sulfuric acid, sodium nitrate 

and potassium permanganate, which then creates epoxy, hydroxyl and carbonyl 

groups. These result on defects sites on the GO sheets, susceptible to being 

successively attacked and cleaved into forming smaller fragments (Figure 1-7), until 

dimensions smaller than the Bohr radius are achieved and GQDs are obtained. Hence, 

theoretically, any carbogenic materials with aromatic sp2 carbons can be used as 

starting materials, such as carbon nanotubes33, carbon black34 and carbon fibres35. 

 

 

Figure 1-7 – Schematic illustration of the cleavage of oxidized graphene sheets on the susceptible carbonyl 
groups resulting on fragmented graphene sheets, after hydrothermal treatment. Adapted from 36. 

 

One of the most common methods followed is the electrochemical peeling of GQDs 

from graphite rods, CNTs or coal, as starting materials 33,37–40. In a typical procedure37, 

a graphite rod is used as the working electrode, a Pt mesh used as the counter 

electrode, Ag/AgCl as a reference electrode and a PBS buffer (pH = 7) as the 

electrolyte (Figure 1-8 a). A potential is applied at 0.1 V/s cycled between the range of 

-3.0 to 3.0 V. A schematic representation of the extraction of GQDs through this 

method is illustrated in Figure 1-8 b.  

Electrochemical exfoliation of graphite rods, as Lu et. al.40 described, affords highly 

stable water dispersions of GQDs and with high reaction yields. The authors reduced 

GQDs with hydrazide, resulting in particles with a size distribution between 4 and 10 

nm. Raman spectroscopy (Figure 1-9 a) of these nanoparticles showed a relatively 
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small index of disordered carbon: a ratio of the characteristic D band (1337 cm-1, 

attributed to amorphous carbon defects) over the G band (1595 cm-1, associated with 

sp2 bonded carbon) of ID/IG = 0.91. This suggests graphitic interplanar vibrations on 

the GQDs with some other defects arising from smaller fractions of disordered carbon. 

X-ray diffraction (XRD) patterns (Figure 1-9 b) show a broad peak at 25°, with a Miller 

index of (002), and it is ascribed to the thinness and the presence of disordered carbon 

in some of GQDs layers. 

 

 

Figure 1-8 – Schematic representation of a) the electrochemical apparatus for the exfoliation of the b) 
immobilized GQDs (or CNCs as referred to by the authors) on graphite oxide. Adapted from Ref. 37. 
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Figure 1-9 – a) Raman spectrum of the GQDs showing D and G bands, b) XRD patterns of pristine graphite 
and GQDs. Adapted from Ref. 40. 

 

Another strategy frequently pursued, due to its simplicity and cost-efficiency, is the 

hydrothermal cutting of graphitic structures. Pan et al.36 were one of the first research 

groups to report the hydrothermal treatment of graphene sheets, for the preparation 

of GQDs with sizes under 10 nm. Albeit simple, the method involved too many steps, 

as it required graphite oxide to be thermally reduced to graphene sheets, followed by 

oxidation of the graphene sheets with concentrated H2SO4/HNO3, and then, finally the 

hydrothermal treatment (200°C) that affords the GQDs. The suggested mechanism for 

the formation of the GQDs, was based on the known break down of CNTs into tubes 

of smaller dimensions, or “unzipping” and fractioning into nanoribbons at low pH41. 

Briefly, in acidic media, epoxy groups are formed linearly along carbon lattices which 

causes the breaking of C-C bonds. Given the unstable nature of the epoxy groups, 

they are further oxidized into epoxy pairs and finally into the more stable carbonyl 

functional groups. These remain after GQDs formation and are what impart them with 

remarkable water stability.  

A later report by the same research group42, demonstrated the importance of 

temperature in the size of the as-synthesized GQDs. Higher temperatures (600°C), 

produced nanoparticles with smaller sizes and narrower size distribution: 1.5 nm to 5 

nm compared to the previously obtained 2 to 16 nm (Figure 1-10 a and c). However, 

this was achieved at the expenses of the graphitic structure of the GQDs as 

demonstrated by Raman spectroscopy, showing a higher index of disordered carbon, 

ID/IG = 1.47 against the previous 1.26 (Figure 1-10 b and d). 
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Figure 1-10 – GQDs particle size distribution for hydrothermal treatment of graphite oxide at – a) 200°C and 
c) at 600°C, during the thermal reduction process, b) and d) Raman spectroscopy for respective 
temperatures showing the effect on the graphitic structure of the GQDs (GS: graphene sheets). Adapted 
from Ref. 36,42. 

 

Shen et al.43 developed a system where they initially undertook the oxidation of GO 

sheets with HNO3, followed by treatment of the GQDs precursor with PEG1500N and 

then a final reduction by hydrazine hydrate to obtain the GQDs. Furthermore, the same 

research group presented an improved version of this method44 where GO sheets are 

reduced to GQDs in an aqueous HNO3 solution, and the carboxylic groups generated 

on their surface serve as active sites for esterification with the hydroxyl groups on 

PEG. These systems were tested as photoelectrodes and showed promising photon-

to-electron conversion capability, particularly when compared to bare GQDs. 

Dong et al.34, on the other hand, developed a method for the production of GQDs from 

carbon black CX-72. This was a particularly attractive method due to the abundance 

of the starting material. These materials consist of 30 nm sized spherical graphite 

aggregates which can be broken down, by oxidation with HNO3, to produce GQDs1 
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with a considerably high reaction yield (48%). After centrifugation, a fraction of the 

material sedimented, which required further treatment with HCl, and resulted in a 

second material GQDs2 (reaction yield = 9%). The two types of GQDs afforded by this 

method: GQDs1, with average size of 15 nm and an average topographic height of 0.5 

nm, suggesting a single layer of graphene; and GQDs2, with an average particle size 

of 18 nm and topographic height of 1-3 nm, which indicates nanoparticles consisting 

of 2 – 6 layers of graphene fragments (Figure 1-11 a and b, respectively). The 

deconvolution of the C1s peak of the GQDs, obtained by X-ray photoelectron 

spectroscopy (XPS), show presence of the sp2 C=C bonds, C-O bonds and carboxylic 

groups (O=C-OH), at binding energies of 284 eV, 286 eV and 288 eV, respectively for 

both systems (Figure 1-11 c). It is noteworthy, that the counts for the oxygen-

containing groups and results from elemental analysis indicate a higher content of 

oxygen for GQDs1, (GQDs1Oxy = 54.3% > GQDs2Oxy = 44.8%).  The authors suggest 

this may be the reason behind the greater interlayer spacing of GQDs1 found by XRD 

(Figure 1-11 d). 
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Figure 1-11 – a) and b) atomic force microscopy images of GQDs1 and GQDs2, respectively (insets showing 
height distribution), c) XPS C1s peak deconvolution and d) XRD patterns comparing the two systems. 
Adapted from Ref. 34. 

 

In one particularly distinct method, GQDs are formed from the cage opening of 

fullerenes (C60) mediated by a Ru-catalysed reaction. The underlying mechanism 

takes advantages of the attractive forces between the Ru crystals and the C60, leading 

the opening of the C60 cages, followed by a temperature step, resulting on the GQDs 

with different shapes - triangular and hexagonal shaped GQDs, when exposed to ~ 

450°C and 550°C, respectively (Figure 1-12). 
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Figure 1-12 – a) Schematic representation of the C60 cage opening catalysed by Ru crystals, resulting on 
the temperature-dependent differently shaped GQDs, and b) scanning tunnel microscopy images of the 
triangular and hexagonal shaped GQDs. Adapted from Ref. 45. 

 

Fullerenes have been known to display PL properties for some time (Catalan, 1993). 

There was initially some debate on whether the reported fluorescence of fullerenes 

arises from the presence of impurities, since the excitation and absorption spectra 

reported in the literature frequently did not mimic each other (Cite a few of the previous 

papers cited on Catalan, 1993). Catalan et al. demonstrated that fullerenes C60 and 

C70 dispersed in cyclohexane at room temperature display excitation spectra 

correlating to their corresponding absorption spectra. More recently, fluoroalkyl-doped 

fullerenes, were suggested as alternatives to graphene quantum dots. Their main 

advantage is that they are less prone to multi-layer stacking, which allows for better 

defined dimensions and morphology of this nanoparticles (Castro, 2013). However, 

their quantum yields are considerably low compared to C-dots, as well as displaying 

significantly small Stokes-shifts. Nonetheless, as the fullerenes cage opening study 

suggested they can, thus be of substantial importance not only as precursors for C-

dots, but also to understand C-dots photoluminescent properties.  

 

 

1.3.1.2 Bottom-up routes 

The synthetic strategy behind bottom-up routes rely on the use of polycyclic aromatic 

compounds in their structure to synthesize GQDs26. 
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In one procedure, GQDs with the larger number of conjugated carbons reported (130-

170) were prepared through oxidative condensation reactions of polyphenylene 

dendritic precursors46. The GQDs were then stabilized by attaching bulky 2,4,6-trialkyl 

phenyl groups on their edges, which prevented self-aggregation due to an energy-

minimized conformation assumed. 

Liu et al.47 suggested an alternative approach where they used unsubstituted hexa-

peri-hexabenzocoronene (HBC) as the carbon precursor for the synthesis of GQDS. 

The preparation of the GQDs involved the carbonization of the HBC precursor, 

followed by oxidation, surface passivation with PEG1500N and a final reduction with 

hydrazine. A schematic representation of the overall synthetic procedure can be seen 

in Figure 1-13 a. TEM images (Figure 1-13 b) indicated that this method afforded well-

defined large nanoparticles (diameters of ~ 60 nm) and AFM topography images 

showed 2-3 nm thick layers GQDs with disk-like shape (Figure 1-13 c). 

 

 

Figure 1-13 – a) Schematic illustration of the preparation strategy of GQDs from HBC precursor, b) TEM 
image of the as-prepared GQDs and c) AFM images and topographic heights. Adapted from Ref. 47. 
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1.3.2 Amorphous Carbon Dots 

Amorphous C-dots are typically formed by bottom-up approaches (e.g. by 

hydrothermal treatment48–50, microwave pyrolysis51–53, etc) of carbon-rich precursors, 

and are the most attractive due to their typical facile and fast methodology54. Some of 

the approaches involved the use of renewable materials like grass55, candle soot56, 

soy milk57, orange juice50, among many others. Further steps frequently consist of 

surface passivation with strong acids, to make them more water-soluble or 

functionalization with amine groups, which was found to enhance their PL properties58. 

Zhu et al.52 developed a fast and facile method of synthesizing C-dots, by microwave 

pyrolysis of PEG and a saccharide (Figure 1-14 a). The authors suggested that longer 

pyrolysis times would generate larger C-dots, resulting on a red-shift of the 

fluorescence emission. The method afforded C-dots with narrow size distribution (2.75 

+/- 0.45 nm), and FTIR spectrum showed mainly C-OH, C-H and C=O stretching 

vibrations (Figure 1-14 b). Jaiswal and coworkers51 further explored this and prepared 

C-dots by microwave caramelization of PEG, which afforded nanoparticles with 3.5 – 

5.5 nm. HRTEM and XRD analysis of the as-prepared C-dots suggest highly 

disordered carbon, as no lattice fringes were discernible, and the XRD peak at 4.1 Å 

is attributed to non-graphitic and highly disordered carbon structures (Figure 1-15 a 

and b, respectively). 
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Figure 1-14 – a) Synthetic route to produce C-dots from microwave pyrolysis of PEG and a saccharide, and 
b) FTIR spectrum of the as-prepared C-dots. Adapted from Ref. 52. 

 

 

Figure 1-15 – C-dots derived from microwave pyrolysis of PEG: a) TEM image (inset HRTEM image), b) XRD 
pattern. Adapted from Ref. 51. 

 

a 

b 
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In another report, Liu et al.59 demonstrated an alternative route for the mediated 

synthesis of C-dots. The authors used surfactant-modified silica nanoparticles as 

carriers for the localized growth of C-dots (Figure 1-16). After a pyrolysis step (2h at 

900°C in argon atmosphere), the C-dots SiO2 composites were then removed by 

etching in basic solution (2 M NaOH aqueous solution), the C-dots were oxidized in 3 

M HNO3, and finally PEG was added as passivation agent through ultrasonication. 

 

 

Figure 1-16 – Schematic illustration for the silica-mediated C-dots preparation. Adapted from Ref. 59. 

 

1.3.2.1 Heteroatoms 

One of the most attractive features of amorphous C-dots, when compared to GQDs, 

is the possibility of adding several heteroatoms to C-dots surface, either during their 

synthesis or by functionalization, resulting on different defect sites and the possibility 

for enhanced PL properties.  

In a representative example, Zhu et al.57 synthesized N-rich C-dots (13 – 40 nm) by 

hydrothermal treatment of soy milk. The authors described that by following this green 

route, C-dots synthesis, surface passivation and N-doping occurs simultaneously. The 

high N content, was evidenced by XPS, which showed mainly carbon, oxygen, 

nitrogen and minor amounts of P (Figure 1-17 a). Deconvolution of the C1s peak 

(Figure 1-17 b) showed four extra peaks 284.5, 285.6, 286.6, and 287.9 eV, ascribed 

to C–C, C–N, C–O, and C=N/C=O, respectively. 
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Figure 1-17 – a) XPS peaks of C-dots obtained by hydrothermal treatment of soy milk and b) deconvolution 
of the C1s peaks. Adapted from Ref. 57. 

 

P- and N-rich C-dots (~ 9 nm) were synthesized through a one-step microwave 

pyrolysis of phytic acid (high phosphorous content) and ethylenediamine60 (Figure 

1-18). These C-dots showed a red-shift in their fluorescence and were successfully 

used as bio labels for C6 cells. 

 

Figure 1-18 – Illustration of strategy for the preparation of P,N-rich C-dots through microwave pyrolysis. 
Adapted from Ref. 60. 

 

In one particularly interesting report, Sun and coworkers61 used hair fibres for the 

synthesis of S- and N-doped C-dots (2-10 nm). In a typical procedure, human hair 

fibres were mixed with concentrated H2SO4 and were ultrasonicated for 30 minutes. 

The authors reported that increasing temperatures would generate higher percentage 

of heteroatoms, while ensuing smaller C-dots’ sizes. XPS spectra (Figure 1-19 a) 

showed mainly C and O, but also smaller peaks for S and N, whereas C1s peak 

deconvolution exhibited the typical peaks for undoped C-dots and C-S and C-N peaks 
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at 285.3 and 286 eV, respectively (Figure 1-19b). Furthermore, deconvolution of the 

N1s peaks, indicated the presence of pyridinic and pyrrole N (≡N-, and -NH-, 

respectively), whilst S2p peak deconvolution suggest the presence of thiopene (C-S) 

and Sulphates or sulphonates (C-SOx). 

 

 

Figure 1-19 – a) XPS spectra of C-dots obtained from pyrolysis of hair fibres and b), c) and d) deconvolution 
of the C1s, N1s and S2p peaks, respectively. Adapted from Ref. 61. 

 

Zhou et al.62 demonstrated the preparation of Cl-doped C-dots (3 – 5 nm) which could 

be then functionalized with other halogens and that this affected their PL properties. 

The synthetic procedure (Figure 1-20) relied on the solvo-thermal reaction of carbon 

tetrachloride and quinol, and further treatment with BR2 and I2 to obtain the Br-C-dots 

and I-C-dots respectively. Furthermore, the authors suggested this could be an 

alternative method for N-doped C-dots stabilization/modification, as the halogens 

could be easily substituted when thermally treated with ethylenediamine. 
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Figure 1-20 – Schematic illustration of the synthetic procedure for the preparation of halogenated-doped 
C-dots, and N-substitution of the halogens to form N-doped C-dots (X2: Br2 or I2). Adapted from Ref. 62. 

 

1.3.3 Photoluminescence properties 

Regardless of their structural differences, C-dots in general display some similarities 

in terms of photoluminescence behaviour. C-dots show a strong and broad absorption 

band in the UV region, that extends to the visible region. The two most typical peaks 

appear at ~ 270 nm and ~ 350 nm (Figure 1-21 a), which are usually ascribed to the 

aromatic C-C bonds’ π- π* transitions and C=O bonds’ n- π* transitions, respectively 

63,64. 

Arguably, the most important C-dots’ asset is their PL properties, and is the main 

reason why they have attracted so much interest of late. It is then of great importance 

to have a solid understanding of C-dots PL mechanism in order to take full advantage 

of their extensive range of potential applications. C-dots display wide emission peaks 

and large stoke shifts, which when compared to organic dyes present as a clear 

advantage over background fluorescence suppressing65. One particularly unique 

property C-dots show, independent of the synthetic route used, is the emission peaks 

shifting as a consequence of varying excitation wavelengths (excitation-dependent 

emission Figure 1-21 b). Even though a consensus is still to be reached regarding the 

exact reason behind this phenomenon, most authors agree that it arises from a variety 

of effects, namely excitons, oxygen-containing functional groups, emissive traps, 
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quantum confinement effects, edge and zigzag effects (the latter being more 

associated with GQDs)30,32,65.  

 

 

Figure 1-21 – a) Typical absorption (black) and excitation (red) spectra of C-dots showing the π- π* (C-C) 
and n- π* (C=O) transitions, and b) emission spectra of C-dots showing the excitation-dependent emission 
(inset shows normalized emission spectra). Adapted from Ref. 64. 

 

1.3.3.1 Quantum confinement effects 

Even though C-dots PL properties cannot be entirely explained by QCE there are 

already a few reports demonstrating that certain types of C-dots may display size 

tuneable fluorescence. QCE in QDs occurs when their dimensions are smaller than 

those of their exciton Bohr radius66. Theoretical calculations showed that the band gap 

is at a maximum on benzene-like GQDs (C6) at 7 eV, where as it decreases to 2 eV 

for GQDs containing around 20 aromatic rings67. Due to their typical smaller sizes, this 

tend to mean that C-dots show blue PL emission, however this can be tuned by 

adjusting the number of π-conjugated domains65. 

In an early report, Liu et al.56 demonstrated that C-dots (< 2 nm) derived from candle 

soot oxidation (HNO3) followed by neutralization, could be separated into different 

fractions of fluorescent material by polyacrylamide gel electrophoresis (PAGE), as 

seen in Figure 1-22 a. The fact that the fastest fraction of the material (and potentially 

with smaller dimensions) showed the shortest wavelength emission maximum and, 

consequently, the higher energetic transition, and vice-versa (Figure 1-22 b), suggests 

that these C-dots display size-dependent PL properties.  
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Figure 1-22 – a) Separation of the candle soot derived C-dots by electrophoresis, under white light (left) 
and UV light (right, fastest fraction magnified) and b) emission spectra for each of the separated fractions. 
Adapted from Ref. 56. 

 

Li et al68 investigated this effect and demonstrated that GQDs (1.2 – 3.8 nm) prepared 

by a one-step alkali-assisted electrochemical exfoliation of graphite rods displayed 

size-dependent effects on the PL properties (Figure 1-23 a and b). Particles with 

greater dimensions showed a red-shift in their emission spectra (Figure 1-23 c). 

Theoretical calculations suggested a relationship between the luminescence and band 

gap on the GQDs. From Figure 1-23 d, it is clear the dependence of the number of 

graphene fragments (and thus size of the clusters) on the HOMO-LUMO band gap, as 

with the increase of the fragments’ number, a decrease occurs on the band gap 

resulting on lower energetic electronic transitions. 
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Figure 1-23 – GQDs derived from alkali-assisted electrochemical oxidation of graphite rods after size 
separation by column chromatography, under a) white light and b) UV light, c) emission spectra of the 
separated GQDs at maximum excitation wavelength (arrows indicate to which sample belongs each 
emission spectrum) and d) the pronounced effect of particle size on the PL properties of GQDs. Adapted 
from Ref. 68. 

 

Notably, graphene oxide sheets display PL properties which when deconvoluted show 

two main contributions (Ip1 and Ip2 in Figure 1-24 a). By reducing GO, rather than 

expanding the existing sp2 domains, the authors suggest that the removal of the 

oxygen atoms displaced from the π-conjugated domains occurs preferentially. This 

leads to the formation of smaller sp2 islands (Figure 1-24 d), which emit at lower 

wavelengths, and could therefore be explained by QCE, as the gradual reduction of 

the GO induces an increase in the number of smaller islands and in Ip2 intensity (Figure 

1-24 a, b and c). 
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Figure 1-24 – Emission spectra of the GO with different reduction times: a) 0 min, b) 75 min, c) 180 min, 
showing the gradual change between the two fluorescence contributions, and d) schematic representation 
of the gradual formation of the sp2 islands depending on reduction. Adapted from Ref. 69,70. 

 

1.3.3.2 Surface/edge state in C-dots 

When graphene sheets are cut into smaller fragments, edges are created. Theses 

edges can be classified as either zigzag edges or arm-chair edges (Figure 1-25). The 

format of theses edges is what impart remarkable electronic and PL properties to 

GQDs. Predominantly, GQDs contain zigzag edges, due to the presence of non-

bonding π-electron states (edge states), which is absent in the armchair edges, and 

plays an important role in the GQDs properties65,71. Furthermore, zigzag edges display 

predominantly carbene site in the triplet ground state form, which typically show higher 
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HOMO-LUMO gaps, than the most predominantly singlet ground state on the armchair 

edges27. 

 

 

Figure 1-25 – Schematic representation of the zigzag edge (left) and armchair edge (right) structures. 

 

Pan et al.36 investigated the importance of the carbene groups with the triplet ground 

states on their edge sites. GQDs (9.6 nm), formed by hydrothermal cutting of 

graphene, were significantly quenched in acidic solution (pH = 1), due to the 

protonation of the edge sites (Figure 1-26 b). The authors verified that this was a 

reversible effect, as when returning alkali conditions (pH = 13) the fluorescence was 

“unquenched” (Figure 1-26 d). The presence of the triplet carbenes was proved by PL 

excitation spectra (Figure 1-26 c) where two peaks are visible at 257 nm and 320 nm. 

If it was a singlet ground state carbene, then the only peak visible would be at 257 nm, 

since it is attributed to transitions from σ-orbitals on the HOMO to the LUMO and 

singlet carbenes have the π-orbitals unoccupied. Hence, the carbene has an electron 

in the σ-orbitals and on the π-orbitals on the HOMO which are responsible for the 

transitions seen on Figure 1-26 a, and the two peaks on the absorption spectra. 

Furthermore, Lin et al72 developed GQDs from CNTs and graphite flakes with different 

sizes (9.6 nm and 20 nm, respectively) with identical optical properties. The zigzag 

structure was evident from AFM and bright-field HRTEM, which, in addition to the 

changing dimensions of the nanoparticles and constant optical properties, suggests 

that predominant parameter for this GQDs are the zigzag edges and triplet ground 

states, over QCE. 
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Figure 1-26 – a) Typical electronic transitions of carbene with triplet ground states on zigzag edges, 
showing the σ-orbitals and π-orbitals on the HOMO to the LUMO, b) schematic representation of the 
reversibility of the protonation of the triplet carbenes (full and empty circles represent σ-electrons and π-
electrons, respectively) on the GQDs obtained by hydrothermally cut graphene sheets, c) PL excitation 
(black) and emission spectra of the as-prepared GQDs (inset shows solution fluorescence under UV 
radiation) and d) quenching effects of the protonation of the as-prepared GQDs. Adapted from Ref. 36. 

 

Even though amorphous C-dots do not display the same edge site effects as GQDs, 

they tend to display several functional groups on their surface with various energy 

levels, which result in different emissive traps. A denser surface modification on C-

dots results on a red-shift of the emission, as emissive traps tend to dominate 

amorphous C-dots core’s PL65. The need for surface modification can be explained by 

the susceptibility of the confined photon-generated electron and hole pairs. Hence, 
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passivation agents protect these sites and maintain/improve the PL properties of C-

dots30.  

The most typical surface state in C-dots is oxidation-based surface modification, as it 

has been demonstrated throughout literature that, on a first instance, researchers 

focused on the functionalization with heavily oxygen-containing molecules51,65,73,74. 

For example, C-dots (~5 nm) produced from laser ablation of a carbon target, 

functionalized with PEG1500N, afforded stable particles and prevented the aggregation 

of the initially unfunctionalized C-dots which displayed no fluorescence (Figure 1-27). 

Furthermore, they established that other organic molecules could be used as 

passivation agents, such as poly(propionylethylene imine - co -ethyleneimine) (PPEI-

EI), and similar results were obtained, proving that the PL mechanism mainly stems 

surface emissive traps74. 

 

 

Figure 1-27 – Schematic representation of C-dots functionalization with PEG-based molecules, and 
resulting fluorescence from surface energy traps. Adapted from Ref. 74. 

 

Liu et al.56 argued that C-dots (< 2 nm) obtained from candle soot oxidation showed 

fraction separation by electrophoresis, due to the different sizes the particles 

displayed. However, another possibility to explain this separation, would be the 

different degree of surface state oxidation65. Interestingly, a series of studies on the 

oxidation of C-dots surface seem to suggest that higher degree of oxidation induces a 

red shift on the PL emission, whereas a reduction of these oxidized surface states 

induce a blue shift. For instance, Bao et al.75 demonstrated that electrochemically 

produced C-dots (2.2 – 3 nm) could have their PL tuned from blue to green, depending 

on the degree of surface oxidation (Figure 1-28), induced by a change in the applied 

potential. It is noteworthy that, even though the size of the nanoparticles changed, the 
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resultant PL occurred in an opposite way to that of expected for QCE (smaller particles 

emitted at longer wavelengths, and vice versa), proving that the change in PL was 

resultant from change in the surface oxidation state. 

 

Figure 1-28 – Red-shift in the PL Imax from blue gradually to green, induced by a change of applied potential 
of a) 0.5V, b) 1.5V and c) 2.5V. Adapted from Ref. 75. 

 

On the other hand, Zheng and coworkers76 demonstrated that the reverse could also 

be achieved. C-dots (~3 nm) prepared by oxidation (HNO3) of a carbon precursor, thus 

with a high degree of oxidation, showed green luminescence, but when reduced with 

sodium borohydride displayed a blue-shift in their PL emission (Figure 1-29). In an 

attempt to explain this phenomenon, Richards et al.77 suggested that C-dots display 

multiple fluorophore units attached to their cores and oxygen-based defect sites where 

emissive traps are located. They demonstrated that in highly oxidized surface states 

the emissive traps are predominant, showing a single emission level, whereas in the 

reduced surface state most C-dots display various levels of excited states. 

Furthermore, the authors suggested that PL emission occurs between these two levels 

in the oxidized state, as the highly-absorbing oxidised sites transfer the photons to the 

lower emissive energy levels. Contrarily, in the reduced state the multiple, but lower, 
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energy levels are often bare and get easily removed or blocked. This would explain 

the need for surface passivation – to prevent the removal/blocking of these more 

susceptible lower emissive levels. 

 

 

Figure 1-29 – Illustration of the reversible change in the PL emission from green to blue due to the reduction 
of the C-dots surface. Adapted from Ref. 76. 

 

1.3.3.3 Quantum yield 

The quantum yield of C-dots has been quite variable, depending on the synthetic route 

used. The first reports in the field with unfunctionalized C-dots, displayed considerably 

low quantum yields (1.6%73 and 1.9%56). Surface passivation has been reported to 

afford C-dots with considerably higher QY. For example, GQDs (13 nm) prepared by 

hydrothermal treatment of GO sheets displayed QY of 13.1%, while their PEG 

functionalized counterparts afforded QY as high as 28%44. In a comparison between 

passivation agents, Sun et al.74 confirmed that PEG produced higher QY than PPEI-

EI (by 6%) when attached to C-dots (~5 nm) produced by laser ablation. Remarkably, 

the PPEI-EI could be removed from C-dots’ surface, and if PEG was attached an 

increase in the QY would still be observed. 

It has been demonstrated that the introduction of amine-rich functional groups to C-

dots surface also produces a positive effect on C-dots QY 78,79. Tetsuka et al.78 
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established that the fluorescence of GQDs could be tuned from violet to yellow (Figure 

1-30 a and b), depending on the concentration of the amine and hydrothermal process 

temperature (QY = 19 – 40 %). The higher QY here was attributed to the reduced 

number of non-radiative relaxation electron-hole centres, such as epoxide groups. 

 

 

Figure 1-30 – a) Pictures of UV-irradiated C-dots solutions functionalized with different initial 
concentrations of an amine-rich precursor, b) showing a progressive red-shift in their PL emission spectra. 
Adapted from Ref. 78. 

 

Krysmann et al.58 suggested that by adding amine-containing surface passivation 

agents to the hydrothermal treatment of a carbogenic precursors, it would result in the 

simultaneous surface passivation and enhancement of QY. The authors argued that 

this was a direct consequence of the presence of two fluorescent species – C-dots 

and a temperature-susceptible organic fluorophore. Increasing temperatures during 

the hydrothermal treatment would result on an increase of C-dots/fluorophore ratio 

(Figure 1-31 a and b), and a quantum yield reduction would be observed (from QY = 

50% at 180°C, to QY = 15% at 230°C), until a point where the fluorophore would be 

degraded and the fluorescence would arise mainly from C-dots contribution (Figure 

1-31 c). 
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Figure 1-31 – a) PL emission spectra of the fluorophore produced at 180°C and b) PL emission spectra of 
the C-dots produced at 300°C, showing the excitation independent and excitation dependent emission, 
respectively, and c) schematic illustration of the progressive degradation of the fluorophore and 
consequent formation of C-dots, and contrast between their fluorescence intensities. Adapted from Ref. 
58.  

 

1.3.3.4 Upconversion photoluminescence 

More recently, it has been reported that anti-Stokes electronic transitions may occur 

in some types of C-dots. This happens when energy released during PL emission is 

higher that the energy absorbed initially by an electron. Shen et al.43 reported that 

surface passivated GQDs (13.3 nm) prepared by hydrazine hydrate reduction of GO 

sheets, would emit PL at lower wavelengths (Vis) when excited at the NIR region of 

the spectrum (Figure 1-32 a). The authors argue that this is only possible on GQDs 

with zigzag edge structures, since it requires the excitation of π-electrons and their 

return to a σ-orbital in the HOMO. Thus, the energy involved in the excitation (πHOMO-
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πLUMO) would be lower than the involved in the emission (πLUMO-σHOMO), as seen in 

Figure 1-32 b. 

 

 

Figure 1-32 – a) Upconversion PL emission of GQDs showing the emission of light in the visible range 
while excited in the NIR region, (inset shows the energy (in eV) involved in PL emission as a function of 
the energy in the excitation) and b) proposed mechanism for the Stokes PL emission (a) and (b) and for 
anti-Stokes PL emission (c) and (d). Adapted from Ref. 43. 

 

Another mechanism where upconversion may take place is when two low-energy 

photons are absorbed, and an electro transitions to an excited state, and upon 

returning to the ground state emits more energetic radiation. The general mechanism 

for two-photon absorption is depicted in Figure 1-33. 

Pan et al.80 reported that C-dots (2.9 nm) prepared from microwave pyrolysis of 

glutathione in formamide displayed two-photon absorption and upconversion emission 

when irradiated with a 850 nm wavelength source. When excited with an 850-nm laser, 

even with different laser powers, a fixed emission in the visible range occurs (~ 680 

nm), proving the upconversion nature of these nanoparticles. 

 



54 

 

 

Figure 1-33 – Schematic illustrations comparing the mechanisms for single photon absorption (or 
excitation) and two-photon absorption, and respective emissions. Adapted from Ref. 79. 

 

There are, however, some claims that second-order diffraction of light (λ/2), from 

monochromators in spectrophotometres, could also produce similar effects, making it 

necessary for new and better characterization methods to be developed before this 

effect can be fully explored and understood 65. 

 

1.3.3.5 Electrochemiluminescence 

Electrochemiluminescence (ECL) involves the generation of excited-states by 

applying a current, and the consequent the emission of light by relaxation to the ground 

state. These are well known to occur in lanthanide metal complexes, polycyclic 

aromatic compounds and QDs semiconductors 81. Zheng et al.37 were one of the first 

research groups to report that GQDs possessed ECL. GQDs (~ 2 nm) produced from 

electrochemical exfoliation of a graphite rod showed ECL emission when applied a 

potential within the range of -1.5 V and 1.8 V. The authors suggested that ECL 

emission arises from electron transfer annihilation of positively and negatively charged 

species (R•+ and R•-, respectively) forming an excited-state on C-dots (R*), as depicted 

in Figure 1-34 a. The greater intensity of the cathodic ECL (Figure 1-34 b), when 

compared to the anodic ECL, suggest that the R•+ species are more stable than their 

counterparts. Furthermore, the authors evidenced the potential of this method as a 

sensoring technique, since, when S2O8
2- was added to the solution, a dramatic change 

in the ECL occurred, as demonstrated in Figure 1-34 c. 
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Figure 1-34 – a) Schematic representation of the ECL mechanism compared with the PL mechanism for the 
same C-dots, b) ECL emission of C-dots showing the emission of light at a cathodic (R•+) and anodic (R•-) 

ECL (𝛎 = 0.1V/s), and c) ECL response of C-dots in the presence (red) and absence (blue) of 1mM S2O8
2-. 

Adapted from Ref. 37. 

 

1.3.4 Toxicity 

There is an increasing concern about certain harms nanomaterials might pose to 

human health. Due to their important potential in the biomedical sciences, C-dots 

toxicity has been extensively studied and a brief overview will be discussed in the 

following section. 

Ray et al.82 demonstrated that C-dots (12.5 nm) obtained from nitric acid oxidation of 

candle soot could readily pass through cell’s membrane without any need for further 

functionalization. Cytotoxicity was assessed using MTT (a colorimetric test for 

metabolic activity) and Trypan Blue (cell viability test by exclusion) assays, HepG2 

cells were exposed to 0.1-1 mg/mL of C-dots solutions for 24 hours, then absorbance 

was measured at 550 nm. Results obtained showed minimal cell death at 

concentrations needed - reports suggest that 50 – 500 µg/mL83–85 are sufficient for 

bioimaging studies (Figure 1-35 a). 
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GQDs (~7 nm) prepared from electrolysis of a graphite rod, against a Pt wire counter 

electrode, were also tested for biocompability40. It was concluded that GQDs had no 

significant effect on cell viability even when exposed during prolonged periods of time 

and at greater concentrations than those needed (Figure 1-35 b). 

 

 

Figure 1-35 – Cell survival rate when exposed for 24h to solutions of C-dots synthesized from a) candle 
soot and b) electrochemically produced GQDs. Adapted from Ref. 82 and 86, respectively. 

 

Yang et al.87 concluded that after 4 weeks of exposure to PEG passivated C-dots (5 

nm) (intravenously administrated), mice showed no health problems. Furthermore, 

when organs were collected, low accumulations of C-dots were found on liver and 

spleen, but displayed no abnormalities or necrosis. C-dots produced from hair fibres 

(7.5 nm)61 were introduced into HeLa cells for fluorescence microscopy studies. The 

authors used concentrations of 200 g/mL and reported that at these concentrations 

the cells survival rate was ca. 85%. 

More recently, Hua and coworkers88 prepared C-dots (2.7 nm) from bacteria 

hydrothermal carbonization and reported that the obtained C-dots selectively stained 

dead cells (Figure 1-36 a), due to their high electronegativity (zeta potential of ζ = -42 

mV). Additionally, when compared to a commonly used marker cells – propidium 

iodide (PI), it produced considerably less effect on the cell viability, as seen in Figure 

1-36 b. The authors suggested this to be the ideal method for cell live/dead 

differentiation. 

500 1000 

Concentration (µg/mL) 

a b 
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Figure 1-36 – a) Effect of the incubation time of a 200 µg/mL solution of bacteria-derived C-dots on dead 
(black) and live bacteria staining, and b) cell viability after incubation with C-dots and PI marker on bacteria 
and yeast. Adapted from Ref. 88. 

 

1.3.5 Applications 

1.3.5.1 Bioimaging 

Quantum-dots and organic dyes are still the most used materials for bioimaging 

purposes mainly due to their high QY. Nevertheless, organic dyes still display 

photostability-related issues as well as not showing (or showing limited) emission in 

the NIR region, which is becoming of high interest for bioimaging applications. QDs, 

on the other hand, have showed great potential due to their size-tuneability 

fluorescence and two-photon/Upconversion emission. Even though other types of 

QDs have been developed, Cd-based QDs are still the most attractive89 due to their 

optimum QYs and broad excitation bands. These however pose as highly toxic 

materials and their application is still under debate, particularly for in vivo studies. 

C-dots, owing to their benign nature, simple preparation protocols and wide range of 

available materials, have emerged as natural alternatives for the above materials. Sun 

et al.90 were one of the first groups to report the use of PPEI-EI surface passivated C-

dots (~5 nm) produced by laser-ablation of a carbon target with two-photon excitation 

in the NIR region, for cancer cells targeting for in vitro studies. When excited in this 

region (λexc = 800 nm), the C-dots displayed luminescence in the visible region which 

allowed for the microscopy analysis of the cancer cells without background 

interference. The authors suggested that, due to the surface functionalization with 
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PPEI-EI, the C-dots were able to penetrate the cells and illuminate both the cell 

membranes and the cytoplasm (Figure 1-37), showing great labelling efficiency. 

 

 

Figure 1-37 – Microscopy images of the two-photon luminescence of PPEI-EI surface-passivated C-dots 
obtained by laser ablation of a carbon target, showing illumination of both the cell membrane and 
cytoplasm. Adapted from Ref. 90. 

 

Yang et al.87 confirmed C-dots potential for in vivo studies (Figure 1-38). C-dots (~ 

5nm) prepared by laser ablation encapsulated in a ZnS shell functionalized with 

PEG1500N, were injected into mice through subcutaneous, intradermal and intravenous 

routes. ZnS-undoped C-dots were also tested. However, these showed significantly 

lower luminescence in vivo when compared to ZnS-doped C-dots, which is in line with 

reports for this type of C-dots behaviour in solution91. The authors evidenced that even 

though nanoparticles are known to accumulate in the liver, which may lead to hepatic 

failures, C-dots accumulated more significantly on kidneys (providing a secretion 

pathway), and only very low amounts of C-dots reached the liver. This was attributed 

to the presence of PEG and proved the biocompability of the as-prepared C-dots. 

 



59 

 

 

Figure 1-38 – C-dots prepared from laser ablation, intravenously injected in mice: a, a’ and a”) bright field 
images, b, b’ and b”) fluorescence images, and c, c’ and c”) colour coded images. a, b and c) show general 
distribution of C-dots in mice’s body, a’, b’ and c’) show the dissected kidneys images, and a”, b” and c”) 
show dissected liver images. Adapted from Ref. 87. 

 

1.3.5.2 Energy harvesting 

C-dots have been demonstrated as potential sensitizers in solar cells, mostly arising 

from their photon-to-electron conversion potential. Due to their broad absorption 

bands, they can absorb a higher range of the spectrum of sun radiation, and therefore, 

potentially, improve the power conversion efficiencies of solar cells.  

Yan and coworkers92 tested GQDs (13.5 nm, 168 π-conjugated carbon atoms) formed 

by all-organic synthesis, as solar cell sensitizers. They reported that the as-prepared 

GQDs displayed ε values considerably higher than those of commonly used for these 

applications (e.g. Ru complexes). Furthermore, these GQDs displayed a broad energy 
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absorption bands for (900 nm), which further supported the suitability of these 

materials for energy harvesting. GQDs were then deposited on a TiO2 film and were 

tested as solar cell sensitizers, and it was noticed that the open-circuit current and fill 

factors were comparable to those typically obtained by the Ru-sensitized cells, proving 

the potential these materials hold. Nevertheless, a lower current density was reported, 

which was attributed to the low affinity between GQDs and TiO2 layer, evidencing the 

further need for development in the field. 

 

1.3.5.3 Sensoring 

Another field they show promise in is as nano-sensors. Due to their large surface area 

and functionalization compatibility nature, these C-dots may be “tailored” specifically 

to target the molecule of interest. In this particular field, they have been successfully 

employed for the detection of different types of analytes like metal ions (Hg II 49, Fe III 

93, Pb II 94, Cu II 95), small molecules and other biomolecules of interest (melamine96, 

glucose97, dopamine98 and ascorbic acid99). 

In a typical procedure, Li et al.100 suggested the use of C-dots (~9 nm) prepared from 

pyrolytic treatment of citric acid for the selective detection of 2,4,6-trinitrophenol (TNP). 

Even though TNP is extensively used in the chemical industry as an intermediate for 

the production of dyes, pesticides and pharmaceuticals101, it is their use in the 

manufacture of explosives that is of particular concern. The authors demonstrated that 

these C-dots were selectively (and significantly) quenched in the presence of TNP 

(Figure 1-39 a). They argued that the mechanism behind the fluorescence quenching 

is based on the energy transfer between the PL emission of the C-dots and the 

absorption of the TNPs, since the latter displayed a broad absorption band that 

extended towards C-dots emission region (450 nm). The remarkable selectivity of this 

method was evidence when similar analogues (and other analytes) were concluded to 

not have any relevant effects on the C-dots fluorescence (Figure 1-39 b). 
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Figure 1-39 – a) Effect of increasing amounts of TNP in an aqueous solution of C-dots derived by citric acid 
pyrolysis (insets show the initial linearity of the quenching effects and consequent saturation at higher 
concentrations) and b) the selectivity of the as-prepared C-dots in the presence of other analytes. Adapted 
from Ref. 100. 

 

 

 

1.4 Conclusion 

It has been evidenced the importance of fluorescent materials on a variety of scientific 

fields. Organic dyes, due to their high quantum yields, well understood chemical 

composition and structure, remain at the centre of biomedical related applications such 

as bioimaging and drug control release. On the other hand, Quantum dots have 

recently raised some concerns over their cytoxicity, particularly Cadmium-based 

quantum dots, but they have found important uses, most significantly, in dye solar 

cells, light-emitting devices and nanosensors12. 

Since their emergence, C-dots have attracted significant research efforts. Owing to 

their ease of preparation and remarkable optical and electronical properties, it comes 

as no surprise they are considered nanomaterials with great potential. C-dots, with 

their low toxicity composition, high quantum yields and high photostability, are 

suggested to be of prime importance for bioimaging for both in vitro and in vivo studies.  

C-dots with amorphous structure may be prepared following simple methods 

(hydrothermal treatment, microwave pyrolysis) using readily available carbon sources, 

such as soy milk, grass, citric acid, human hair fibres, among many others. 

Conversely, C-dots displaying graphitic structure, typically from the fractioning of 



62 

 

graphene-based materials (e.g. graphite and CNTs), display a tuneable band gap, 

according to the number of benzene rings present in their structure. 

In terms of PL properties, C-dots typically display strong blue to green emission 

colours but there have also been reports which demonstrate the preparation of C-dots 

with longer wavelength emission such as yellow, orange and red. There are some 

similarities between QDs and C-dots PL properties, for instance on quantum 

confinement effects (QCE). However, it is not always the case that C-dots emission 

colours change according to their size as QDs do, and thus their PL properties cannot 

be as easily explained as QDs. Another difference, when comparing to the traditional 

QDs, is that C-dots present much wider peaks which is attributed to the more 

inhomogeneous composition of C-dots. 

Additionally, surface/edges states of C-dots are also an important parameter to 

consider in C-dots fluorescence. With respect to GQDs, the predominant edge 

structure is the zigzag edge, facilitates the occurrence of emissive sites on their edges, 

due to the existence of carbene ions. On the other hand, amorphous C-dots usually 

display more possibilities in terms of surface chemistry, for instance, different 

heteroatoms may be added to their surface which may displace C-dots emission. 

Furthermore, different degrees of oxidation also produce shifts in fluorescence 

(oxidation produces red-shifts, and reduction produce blue-shifts).  

An increasing number of reports have provided evidence that C-dots display 

Upconversion properties, introducing NIR analysis at considerable safer and simpler 

procedures when compared to their counterparts (QDs and upconverted rare-earth 

nanocrystals). These properties show great promise for bioimaging due to the 

possibility of reducing background interference. Since the human body is invisible to 

IR radiation, and these C-dots would emit at lower wavelengths (typically in the green 

region), it opens new possibilities in bio-labelling, controlled drug release, cell tissue 

recovery monitoring, etc. Their broad absorption bands also allow for a larger use of 

the range of sun’s radiation spectrum and thus have been widely suggested as 

efficient materials for solar cells. Even though reports thus far have only been able to 

fall short of QDs and other dye-sensitized solar cells, theoretically, they are expected 

to afford solar cells with much higher energy conversion efficiencies. 
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2 Experimental section 

Name Reagents Treatment Comments 

aC-dots Citric Acid, Ethanolamine Pyrolysis Hybrid powders consist of 

aC-dots physically mixed 

with different white 

powders (Laponite clay, 

Silica and Titania). 

bC-dots Grass, HNO3,  Pyrolysis, Oxidation Low fluorescence 

intensity in the powder 

form. 

C-SiO2 Silica (Ludox), C-18 

silane, Ethylene diamine 

Pyrolysis, Oxidation Powders obtained were 

fluorescent without the 

need to further disperse 

in other matrices, and 

formed aggregate 

producing fractal motives. 

In situ prepared C-dots on 

readily available 

polymers 

PE and PEG as polymeric 

matrices; Ethanolamine 

as C-dots precursor. 

Melt-mixing and Thermal 

treatment (lower 

temperatures used) 

Polymers obtained were 

fluorescent in the solid 

state, and when 

dispersed (in the case of 

PEG) 

 

 

2.1 C-dots nanopowders for fingerprint development purposes 

2.1.1 C-dots derived from citric acid and ethanolamine pyrolysis (aC-dots)  

The methodology used for C-dots synthesis has been previously reported in Ref. 1. 

Pyrolysis of citric acid (CA, purchased from Thermo Fisher Scientific) and 

ethanolamine (EA, ≥98% purchased from Sigma-Aldrich) on a 1:3 molar ratio, was 

performed at 180°C under reflux for 30 minutes, and for another 30 minutes at 230° 

without reflux to remove the water molecules formed in the previous step. Successive 

dialyses were performed, in order to remove impurities, through a SnakeSkin 
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membrane (3.5 kDa cut-off, purchased from Thermo Fisher Scientific) against distilled 

water. Both apparatus can be seen in Figure 2-1.  

 

 

Figure 2-1 – a) Pyrolysis apparatus used for citric acid and ethanolamine pyrolysis (condenser is removed 
after 1h30), and b) aC-dots purification through dialysis on a snakeskin against water. 

 

As C-dots are, in general, highly susceptible to self-quenching phenomena, solutions 

were diluted. This can prevent particle to particle interaction during sublimation, and 

then left for 3-4 days until samples were completely dried. The obtained solution was 

freeze dried to be used as fingerprint powder. 

 

2.1.2 C-dots derived from crude biomass pyrolysis (bC-dots) 

The methodology consists of thoroughly blending fresh grass and diluting it in a 

minimum quantity of water, and then keeping it in a furnace for 4h at 300°C 2. The next 

step was to oxidize the material obtained after grass pyrolysis (Figure 2-2), to make it 

more hydrophilic and break down larger clusters. This is achieved by adding 3 M of 

HNO3 (70%, purchased from Sigma Aldrich) and reflux it at 100°C, until a light brown 

product is obtained. The resultant material was then filtered through a filter paper 

(Whatman no. 41 porosity of 20 µm) on a Buchner funnel under vacuum, to remove 

the larger clusters. The obtained product was dialyzed in a SnakeSkin with a molecular 

a b 
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weight cut-off of 3.5 kDa, against deionized water to remove the excess of HNO3. The 

final product was freeze-dried. 

 

 

Figure 2-2 - Material obtained after grass pyrolysis. 

 

2.1.3 Hybrid nano-powders 

For fingerprint development purposes, silicon dioxide (SiO2), titanium dioxide (TiO2) or 

Laponite (Lap) clay were dispersed in an aC-dots solution (c-dots 1:150 weight ratio 

of white powders) and left in an ultrasonic bath for an hour to investigate if there were 

any interactions between the different components. Such a low ratio was used to 

understand the full depth of the potential of C-dots for solid fluorescence applications. 

2.1.4 Characterization 

2.1.4.1 Fluorescence analysis 

Fluorescence analysis – a measure of the intensity in arbitrary units (a.u.) of the light 

emitted by an excited electron upon its relaxation to the ground state3, was conducted 

on a Horiba Fluoromax® spectrofluorometer. It is known that C-dots display quenching 

effects at high concentrations and thus, intensity as a function of concentration was 

analysed for several concentrations at an excitation wavelength of 380 nm. 

For the excitation-dependent emission, samples were analysed under excitation 

wavelengths between 290-500 nm, with 30 nm increments. 

Solid-state fluorescence was also conducted on the hybrid powders. To this end, a 

sample holder was attached to the fluorometer. The sample holder was positioned at 

a 30º angle from the incident beam, to prevent the excitation signal from the machine 
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to be recorded and potentially damage the detector. Excitation wavelengths of 370 

nm, 430 nm and 500 nm were used, and the emission was recorded on the range of 

400-700 nm. 

2.1.4.2 Fingerprint methodology 

The researcher’s index finger was rubbed on the forehead to get a mixture of both 

eccrine and sebaceous glands. This would generate a realistic fingerprint, as a mixture 

of components will be left behind in a real case scenario4.  

A series of fingermarks were deposited on microscope glass slides to assess the 

quality of the powders obtained (aC-dots:Lap; aC-dots:TiO2; aC-dots:SiO2), and were 

applied using a forensic squirrel-hair brush. Then, they were analysed under a Zeiss® 

Axio Scope A1 fluorescent microscope. A commercial white fingerprint powder (WFP, 

purchased from Tetra Scene of Crime) was also used to reveal fingerprints as a control 

test. A metal spatula and a drink foil (Dr Pepper) were tested as alternative deposition 

surfaces. 

Fingerprints were analysed in Automated Fingerprint Identification System (AFIS) 

software, to count the number of minutiae details that could be identified.  

 

 

2.2 Carbogenically-coated silica nanoparticles for anti-counterfeit applications 

2.2.1 Synthetic procedure 

For the synthesis of the nanohybrid system, carbonised silica nanoparticles (C-SiO2), 

3 ml of colloidal silica nanoparticles (Ludox HS 30, purchased from Sigma-Aldrich) 

with an average diameter of 18 nm were reacted with 3g of Dimethyloctadecyl[3-

(trimethoxysilyl)propyl]ammonium chloride (C-18 silane, purchased from Sigma-

Aldrich), in acidic media - 1 ml of 1M HCl (37%, purchased from Sigma Aldrich) at 60 

°C for 10 min. The dispersion was neutralized using a 0.1 M NaOH solution, was left 

for 24h at room temperature and dialyzed against deionized water using a SnakeSkin 

dialysis tubing membrane (3,5 kDa molecular weight cut-off, purchased from Thermo 

Fisher Scientific). TGA analysis (refer to section “Characterization” for more details on 

the parameters used) suggested that the surface-modified silica nanoparticles have 
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roughly 34 wt% organic content and helped determine the carbonization temperature. 

Thus, the nanoparticles were pyrolyzed in a furnace at 250oC for 3h and a dark powder 

was obtained. The powder was then subjected to surface oxidation, via treatment with 

3M HNO3 at 100oC, and further dialyzed against water. The C-SiO2 were then treated 

with excess of ethylene diamine (Sigma-Aldrich) at 80oC for 1h followed by another 

purification step through dialysis. 

 

2.2.2 Characterization 

2.2.2.1 TGA characterization  

Thermogravimetric analysis – the study of the mass changes occurring in a material 

due to controlled temperature changes5, was performed using a Mettler Toledo TGA 

1 STAR system, under nitrogen atmosphere and at a heating rate of 10oC/min, until a 

maximum temperature of 500°C was reached.  

 

2.2.2.2 Elemental analysis 

Elemental analysis for the elements C, H, N and S were conducted on a Flash 2000 

CHNS-O Analyzer. The equipment was calibrated using a bypass - non-measurable 

sample with minor amounts of C-SiO2 just to “clean” from possible contaminants; two 

standard runs - methionine was chosen as it had the likeliest similar elements 

percentage; and, two runs of the same standard as unknown sample – to check for 

the equipment’s calibration efficiency. Finally, each sample was measured in 

duplicates and obtained percentages were averaged. 

 

2.2.2.3 FTIR 

Fourier Transform Infra-Red spectra – analysis of the vibrational modes of a material’s 

functional groups6, were recorded using a Nicolet IR2000 spectrophotometer. A total 

amount of 32 scans were run within a range of 3000-700 cm-1 and with a resolution of 

8 cm-1. The vibrational modes of functional groups of the as-prepared nanoparticles 

were investigated. 
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2.2.2.4 Photoluminescence spectra 

Fluorescence analysis was conducted on a Horiba Fluoromax spectrofluorometer. For 

the excitation-dependent emission, samples were analysed under different excitation 

wavelengths, between 290-500 nm, with 30 nm increments and a slit of 2 nm. 

 

2.2.2.5 TEM 

Transmission Electron Microscopy photographs were obtained with a FEI T12 Spirit 

operated at 120 kV. A droplet of a dilute suspension (0.05mg/mL in water) was 

deposited on a carbon coated copper grid (Agar Scientific, USA) and air-dried. 

 

2.2.2.6 SEM 

Scanning Electron Microscopy photographs were taken of the microstructure of the 

nanotags generated on 6 mm Carbon Conductive SEM tabs (purchased from PELCO 

TabsTM), using a FEI Quanta 200 electron microscope. 

 

2.2.2.7 Fluorescence imaging 

The fluorescence microscopy images were obtained using a Zeiss Axio Scope A1 

microscope equipped with band-pass filters. Three excitation wavelengths were used 

with 350, 395 and 590 nm. 

 

2.2.2.8 Dynamic light scattering 

Dynamic light scattering is the technique which analyses the random motion (Brownian 

motion) of particles in a solvent (usually water)7. 

The hydrodynamic diameter – the diameter of an equivalent hard sphere which 

diffuses at the same speed as the particle being measured, of C-SiO2 of the 

nanoparticles were measured on well-filtered suspensions (Nylon membrane filters 
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with porosity 0.45 µm) using a Malvern Zetasizer Nano-ZS (Malvern Instruments, 

England) package which includes a 4 mW He–Ne laser operating at λ=633 nm. 

 

2.2.2.9 Fingerprint deposition and development 

Procedure followed as described in section 2.1.4.2. 

 

2.2.2.10 Nanotags development 

For the nanotags preparation, C-SiO2 aqueous solutions of different pH values were 

left to air-dry in glass slides and in a polymeric substrate. For the investigation of the 

temperature effect on the nanotags, a marked pattern was subjected to 100°C for 

~24h. 

 

2.3 In situ preparation of C-dots in polymers matrices 

For the polymer in-situ preparation of C-dots, 1 wt% of ethanolamine (≥98% purchased 

from Sigma-Aldrich) was added to two different polymers, polyethylene (MW 35k, 

purchased from Sigma-Aldrich) and polyethylene glycol (MW 1k, purchased from 

Sigma-Aldrich), and were heated up in two steps in a heating/stirring plate: initially at 

a temperature below the boiling point of the ethanolamine (b.p.EA 170°C) and above 

the melting point of the polymer (m.p.PE 90°C, m.p.PEG 37°C) for the amine to react, 

and at a temperature above the ethanolamine boiling point (at 180˚C), to remove all 

unreacted ethanolamine (each taking 30 minutes). The polymers were then left to 

recrystallize at room temperature, as shown in Figure 2-3. Control samples were also 

prepared - by processing the polymers the same way as before, but without adding 

the amine. 
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Figure 2-3 – Representative example of the as obtained polymers (EA-treated PEG). 

 

 

2.3.1 Characterization 

2.3.1.1 Photoluminescence spectra 

Photoluminescence spectra of aqueous dispersion of C-dots under different excitation 

wavelengths were recorded at room temperature using a Horiba Jobin Yvon 

FluoroMax-4 spectrofluorometer.  

For solid-state measurements, no extraction was made from the polymers. 

 

2.3.1.2 XRD 

X-ray diffraction – a technique used for the identification of a crystalline structure of a 

material8, measurements were performed on a Bruker D2 Phaser coupled with a 

LYNXEYE 1-dimentional detector which suppresses the sample fluorescence. The 

diffractometer generates X-rays at 30kV/10mA, and uses a copper tube producing X-

rays at λ=1.54Å.  

 

2.3.1.3 DSC 

Differential scanning calorimetry – a technique that measures the enthalpy changes 

involved in thermal transitions (e.g. melting and crystallization)9, analysis was 

conducted on a TA DSC Q2000. Samples of, approximately, 15 mg were sealed inside 
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aluminium pans, and each run consisted of a heat/cool/heat temperature ramps, 

ranging from 0°C to 80°C and 160°C for PEG and PE, respectively. 
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3 New types of hybrid nanopowders for fingerprint purposes 

3.1 Introduction 

 

From the available forensic physical evidence, fingerprints remain at the centre of 

individual identification. Even with DNA techniques experiencing greater advances in 

the last decades, fingerprints are still the only piece of evidence able to establish 

identity between identical twins.1,2 

Fingerprint is the mark left behind by the friction of ridges, present in the fingers skin, 

on a given surface. There are several factors that influence the composition of the 

fingerprint (e.g. individual characteristics, nature of the surface and environmental 

conditions) but its major components are water and fatty substances 1–3. The organic 

compounds are mainly originated on the epidermis, secretory glands in the dermis and 

with external contaminants. Subsequently, with the ageing of the fingerprint, water 

evaporates and the fingerprint becomes more hydrophobic.3 

Occasionally, fingers may be contaminated with paint, ink or even blood, leaving a 

visible fingerprint. However, finger marks are frequently produced only by the natural 

secretions of the skin making it hard for crime scene investigators to detect or analyse 

them solely under natural light. This makes it essential to find the best procedures in 

order to develop and enhance these prints. 

The identification of individuals by this physical evidence relies on an exclusive 

combination of different details (minutiae) comprised on the same fingerprint. The 

whole pattern is considered to have three levels of details: 

• Level 1 – This is the largest level and can be identified macroscopically. It is 

the simplest way to distinguish between fingerprints, and thus be classified as: 

loops (subdivided into right or left depending on the delta position – level 2 

detail), whorls and arches (classified as plain or tented). Figure 3-1 a, b and c 

show the different examples on this level of details; 

• Level 2 – This level consists of every change that occurs on the ridges of 

fingerprints. It is thought to exist about 150 different details and their exclusive 

distribution over the global fingerprint is the reason behind their individuality. 



83 

 

Some examples of these details include deltas, lakes, ridge ends, bifurcations 

and dots, (Figure 3-1 d) 

• Level 3 – Involves mainly sweat pores (Figure 3-1 e) and is usually 

disregarded from analysis as it is only detected by chemical procedures. 

 

 

Figure 3-1 – Illustrative examples of: first level of classification of fingerprints – a) loop, b) whorl and c) 
arch, d) second level of details usually detected, and e) third level - sweat pores. Adapted from Ref. 4. 

 

 

To reveal fingerprints, chemical or physical procedures can be used. Chemical 

reactions, like ninhydrin reagent or cyanoacrylate fuming, develop better shaped 

fingerprints, but typically demand time-consuming, toxic and expensive procedures2. 

Physical developers (mostly powders) on the other hand, provide experts with an 

effective, ready to use technique in crime scenes, and that is why they are more 

commonly employed.  

Nanomaterials have great potential to be used as fingerprint powders. Their size not 

only facilitates better defined fingerprints, but also, given their optical properties, 

widens the range of surfaces fingerprints can be developed on. In addition, it gives 

them the potential to be used as more than just identification tools. 

a b c 

d e 
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3.1.1 History of fingerprints’ recovery 

The use of fingerprints in crime resolution was first applied on the second half of the 

nineteenth century, and became well established in criminal investigations procedures 

5. The initial reported methods for latent fingerprint revelation were reagent-based. 

Silver nitrate (1877) and iodine vapours (1891) were the main solvents used, and had 

the advantage of being suitable for porous surfaces (like paper) and also non-porous 

surfaces6. Iodine vapours are still used by some labs in present forensic investigations.  

The use of powders in the development of latent fingerprints only came later. This 

method relies on the physical affinity between finely divided material and the fatty 

components and the solution left by the skin ridges. The smaller the particles, the 

better the powder will adhere, producing a better resolved fingerprint, while at the 

same time, it is also important that the powder does not chemically interact with the 

surface 1,2. 

Sir Edward Henry suggested the use of mercury-based powders1. The main problems 

about these were that mercury powders withheld several health hazards were 

withdrawn during the second half of the twentieth century.  

Nowadays, there are a variety of powders that can be applied in different surfaces. 

The use of fingerprint powders has become such a routine procedure that the Home 

Office (UK), has developed a guideline for their application7. For smooth surfaces, 

aluminium flake and magnetic powders are recommended, as well as brass, black 

granular and magneta flake powders. Even though flake powders are more sensitive 

than granular powders, experts prefer to use nonmagnetic since they are easier to 

apply. On other surfaces, however, an efficient and generic procedure has not yet 

been found and there are not many powders that can be successfully employed. For 

dark surfaces white magnetic powders are suggested, and, contrariwise, for coloured 

surfaces black magnetic is recommended.  

Since early stages, researchers understood that PL properties could be used to 

enhance contrast in fingerprint recovery. The use of cyanoacrylate ester fuming 8–10, 

ninhydrin-treated zinc chloride 11 and ninhydrin samples treated with NBD chloride (7-

chloro-4-nitrobenzo-2-oxa-1,3-diazole) 12 were some of the first approaches with the 

aim to use luminescence to reveal fingerprint. Even though some of these methods 
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are still used, fluorogenic agents like NBD, have the problem of not being stable and 

sometimes producing background interfering luminescence 13. 

Fluorescent physical treatments (fluorescent dusting powders) were also considered 

for fingerprint enhancement. The first attempts, in late 1980s, were powders mainly 

composed of transition metals. However, these materials were only applicable on 

smooth surfaces, and so presented limitations 13. The next approaches tested were 

with lanthanide-based powders. These compounds presented great advantages, such 

as large stoke shifts, long luminescence lifetime and forming differently fluorescent 

products when different ligands are used1. Europium (Eu3+) and Terbium (Tb3+) are 

the most common ions used in fingerprint development, which emit red and green 

fluorescence, respectively, and absorb in ultraviolet region of the spectrum 11,14,15. This 

large difference between absorption and emission bands makes it easier to eliminate 

background fluorescence interference 16. 

Recently, new types of fluorescent nanopowders have been tested to enhance the 

rate of recoverable fingerprints in a crime scene, such as quantum dots (QDs)16. QDs 

are largely known for their fluorescent properties. Some of the benefits of this 

nanoparticles are that they have wide excitation spectra,  are not as sensitive to 

photobleaching as other organic fluorophores, display improved selectivity and high 

fluorescent quantum yields 16–19. A large number of works that have been published 

focus on the use of CdTe 19–21 and CdS 22,23 based QDs. All these research groups 

demonstrated that quantum dots are useful in fingerprint development, giving the 

marks strong contrast and good resolution. Nevertheless, there have been some 

concerns about the cytotoxic effects of these compounds, particularly the Cd-based 

quantum dots 17,23. 

 

3.2 Carbon-dots based nanopowders 

3.2.1 aC-dots 

By systematically adjusting the pyrolysis conditions of carbon-rich precursors, 

nanoparticles with different properties are obtained. Following this procedure (Section 

2.1), self-passivation of C-dots is achieved, as they are readily dispersible in water. At 

180ºC, it has been concluded that an aC-dots precursor would be synthesized 
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showing high quantum yield (~50%). Further experiments characterized this 

fluorescent precursor (Figure 3-2 a) as displaying a maximum emission intensity at 

~460 nm when excited at 375 nm. Higher temperatures would decompose these 

molecules and gradually form aC-dots. At 230ºC, aC-dots and the organic precursor 

reached equilibrium, hence the temperature chosen for the reaction – in order to have 

both fluorescent contributions. The temperature also affects the size of the obtained 

materials. TEM images (Figure 3-2 b and c) show that at 230°C NP’s are 20 nm 

whereas at 300°C particles possess sizes of roughly 10nm, which is consistent with 

C-dots reports derived from pyrolytic routes24. 

 

 

Figure 3-2– a) Proposed reaction for the formation of the fluorescent precursor at 180ºC, b) and c) TEM 
images of aC-dots produced by pyrolysis of CAEA at 230°C and 300°C, respectively. Adapted from Ref. 24. 

 

If a too high concentration were to be used, variable results would be obtained as self-

quenching phenomena occurs (particle-to-particle interactions), thus it was necessary 

to find that pre-saturation concentration. To that end, a series of concentrations were 

analysed on a spectrofluorometer at a fixed excitation wavelength of 380nm. 

Concentrations used were 2.5, 5, 10, 15, 25 and 50µg/mL, and results obtained can 

be seen in Figure 3-3 . 

 

b c 

a 
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Figure 3-3 – Emission intensity at 465nm of different concentration of aC-dots solutions, under 380nm 
excitation. 

 

Considering the results obtained in Figure 3-3, a 13 µg/mL sample of aC-dots was 

prepared and their UV absorbance and fluorescence properties were analysed. C-dots 

show a typical broad absorption in the UV region, with a tail which extends to the 

visible region, as can be seen in Figure 3-4. The peak at 250 nm is frequently ascribed 

to aromatic C-C bonds π- π* transitions and the broad peak at ~375 nm is attributed 

to C=O bonds n- π* transitions25. 

By analysing Figure 3-5, it is possible to distinguish two phenomena occurring: the 

contribution of the fluorophore producing a fixed wavelength emission at ~460nm (exc. 

wavelengths of 290 nm, 320 nm, 350 nm and 380 nm – black line on Figure 3-5), and 

an excitation-dependent emission at higher wavelengths. 
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Figure 3-4 – UV-Vis absorption spectrum of aC-dots. 

 

 

Figure 3-5 – PL emission spectra of aC-dots aqueous solution under different excitation wavelengths. 

 

In Figure 3-6, it is possible to see the excitation-dependent emission phenomenon, as 

C-dots solutions fluorescence changes when interacting with different wavelength 

sources. 
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Figure 3-6 – Comparison between solutions of aC-dots, bC-dots, and water (from left to right) under 
different fluorescent lights: purple, cyan blue and green (from top to bottom). 

 

Nanoparticles have a known tendency to form clusters in the micrometre scale, 

therefore C-dots powders didn’t have any fluorescence under UV-light after freeze-

drying the previously fluorescent solution (Figure 3-7). 

 

Figure 3-7 – aC-dots powder and aC-dots solution under a) white light, and under b) UV light. 

 

3.2.2 bC-dots 

Oxidation is an important step for the synthesis of bC-dots, as these procedures tend 

to generate rather larger particles with weak PL emission and limited water solubility. 

Refluxing under strong acid, tends to break these clusters and form polar groups26, 

resulting in spherical particles of around 30 nm (Figure 3-8 a and b).  
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Figure 3-8 – TEM images of bC-dots with different magnifications. Adapted from Ref. 27. 

 

By analysing the fluorescence spectra (Figure 3-9) the excitation-dependent emission 

is maintained, however, there is no longer the fixed high intensity emission peak 

characteristic to the fluorophore (λmax = ~460 nm). This is known to influence these 

nanoparticles’ overall fluorescence, and thus when investigated in a fluorescence 

microscope it was noticeable a decrease in the fluorescence intensity.  

 

 

Figure 3-9 – Fluorescence spectra of bC-dots aqueous solution under different excitation wavelengths. 

 

a b 
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As fluorescence was considerable lower in bC-dots, due to the absence of fluorophore, 

they were not considered for fingerprint recovery experiments. 

 

3.2.3 Hybrid powders 

The fact that C-dots powder do not show optimal solid-state fluorescent properties has 

been already reported 28,29 and has been mainly attributed to particle-particle re-

absorption effects. To overcome this, the possibility of diluting C-dots powders in 

different materials, and thus preserve their fluorescence properties, was assessed. At 

low weight percentages, C-dots quenching effects would be suppressed, as particle-

to-particle interactions would be minimized. 

The addition of the white powders, SiO2 and Lap, had no significant influence on the 

aC-dots emission spectra (Figure 3-10 and Figure 3-11). TiO2, on the other hand, is 

known to have optical properties (common ingredient in sunscreens to absorb UV 

radiation), so a difference in the emission spectra was expected, Figure 3-10 c, and 

Figure 3-11 (green line). UV-Vis spectra showed that the major optical properties were 

mainly from C-dots contribution, as no significant changes were observed before and 

after the addition of Laponite and SiO2 (Figure 3-12 a and b, respectively). aC-

dots/TiO2, however, displayed a more intense peak at ~340nm (Figure 3-12 c), which 

is known to be a TiO2 contribution30. 
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Figure 3-10 – aC-dots/SiO2 (a), aC-dots/Lap (b) and aC-dots/TiO2 (c) in a 1:150 weight ratio of C-dots  in 
white powder fluorescence spectra under different excitation wavelengths. 

 

 

Figure 3-11 – Fluorescence spectra of aC-dots, aC-dots/SiO2, aC-dots/TIO2 and aC-dots/Lap, showing no 
significant influence after the addition of other powders (apart from TiO2). Excitation wavelength used was 
380nm. 

a b 

c 
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Figure 3-12 – UV-Vis absorption spectra of aC-dots/Lap (a), aC-dots/SiO2 (b) and aC-dots/TiO2 (c). 

 

The hybrid powders obtained after freeze-drying (Figure 3-13) were investigated on a 

fluorescent microscope and showed excitation-dependent properties (Figure 3-14). 

Solid-state analysis (Figure 3-15) supported the fact that these powders were 

successfully imparted with fluorescence properties, even with minimal amounts of C-

dots (1:150 weight ratio). 

 

 

  

Figure 3-13 – Powders obtained after freeze-drying: a) aC-dots/SiO2, b) aC-dots/TiO2 and c) aC-
dots/Laponite. 

a b 

c 

a b c IV 
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Figure 3-14 – aC-dots: -SiO2, - Lap, - TiO2 investigated in a fluorescent microscope with different excitation 
sources.  

 

 

Figure 3-15 - Solid-state emission spectra of aC-dots/SiO2 (a) and aC-dots/Lap (b) under different excitation 
wavelengths. 
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3.2.4 Fingerprints recovery 

Fingerprints were successfully developed with good resolution for the powder 

formulations. The excitation-dependent properties of C-dots also rendered a multi-

coloured fingerprint when excited with different wavelength lasers (Figure 3-16 and 

Figure 3-17). 

 

Figure 3-16 – a) Fingerprint on a glass slide developed with aC-dots/SiO2, and b), c) and d) on a fluorescent 
microscope (100x magnification) under different excitation lights. 

 

 

Figure 3-17 – a) Fingerprint on a glass slide developed with aC-dots/Lap, and b), c) and d) on a fluorescent 
microscope (100x magnification) under different excitation lights. 

 

The main benefit from the above formulations is that this procedure would, 

theoretically, work with most powders, as long as they do not absorb radiation, like 

TiO2. To further test this assumption, a mixture of a commercial white fingerprint 

powder (WFP) and aC-dots/Lap (~0.3% of C-dots) was used to recover fingerprints in 

a glass slide. It was proved that C-dots can be used as top-up materials with 

a b 
c 

d 

a b c 

d 
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conventional fingerprint powders, as the addition of low quantities was enough to 

“illuminate” the entire material (Figure 3-18).  

 

 

Figure 3-18 – a) Fingerprint on a glass slide developed with aC-dots/Lap and WFP, and b), c) and d) on a 
fluorescent microscope (100x magnification) under different excitation lights. 

 

The number of level 2  details identified (details index in Table 1) was used as the 

parameter to assess the quality of the developed powders. AFIS results showed that 

both aC-dots/SiO2 and aC-dots/Lap were able to successfully reveal fingerprints as 

the details recovered were on the same level of the commercial WFP (Table 1).  

 

a b c 

d 
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Table 1 – Fingerprints developed with the different powders formulations and respective AFIS results with 
details count (glass surface was used). 

Fingerprint developed Powder composition Details Index 

 

White fingerprint 

powder (commercial) 

65 

 

aC-dots/Lap 66 

 

aC-dots/SiO2 71 

 

aC-dots/SiO2 + WFP 59 

 

Laponite (no c-dots)                 45 
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To test the versatility of the prepared hybrid powders, fingerprints were deposited on 

different surfaces. In Figure 3-19 is depicted a fingerprint that was successfully 

revealed on a metal surface. Fluorescent magnified pictures show a clearly defined 

bifurcation, one of the many minutiae that can help to identify an individual in forensic 

investigations.  

 

 

 

Figure 3-19 – a) Fingerprint deposited on a metal surface developed with aC-dots/Laponite, and b), c) and 
d) under different excitation wavelengths. 

 

Another surface tested was a soft drink foil (Dr Pepper bottle foil). The bottle used was 

selected as it had a multi-coloured pattern and showed a strongly coloured 

background. With the as-prepared hybrid powders, under white and green light it is 

not possible to discern the ridges from the background (Figure 3-20 b and e, 

respectively), whereas with UV and blue light well resolved features can be seen 

(Figure 3-20 c and d). In addition, a fingerprint on the same surface was revealed with 

white fingerprint powder and it wasn’t possible to distinguish it from the background 

when exposed to white or fluorescent lights (Figure 3-21). 

 

a 
b c 

d 
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Figure 3-20 – a) Fingerprint deposited on a bottle drink foil developed with aC-dots/SiO2, magnified 100x 
under white light (b), and b), c) and d) different fluorescent lights. 

 

 

Figure 3-21 – a) Fingerprint deposited on a bottle drink foil developed with white fingerprint commercial 
powder, b) magnified 100x under white light, and b), c) and d) different fluorescent lights. 

 

3.3 C-SiO2 

The main advantage of these powders is that they don’t need any further treatment or 

dispersion as the incorporation of C-dots on the Silica nanoparticles’ surface allowed 

for the prevention of particle-to-particle interactions and, consequent, fluorescence 

quenching. After freeze-drying, these powders were tested as fingerprint physical 

developers in different surfaces like a standard computer mouse, rough plastic surface 

and metal surface (Figure 3-22 b, c and d, respectively) and showed good contrast 

and resolution for forensic investigation standards. Furthermore, a direct assessment 

a 

b ac 

d e 

a 
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obtained from a split mark comparison between a latent mark developed with C-SiO2 

and with an Instant White Fingerprint Powder (commercial) (Figure 3-22 a) revealed 

that the former affords clearer and more resolved fingerprints which is further 

supported by AFIS analysis. Figure 3-23 shows a minutia count of 73 for the C-SiO2 

which was even higher than that of a commonly used fingerprint powder (same as 

used in previous chapter, WFP).  

 

 

Figure 3-22 – a) Split fingerprint on glass slides developed with C-SiO2 (left) and White fingerprint powder 
(right), and fingerprints developed on a variety of surfaces: b) computer mouse (under UV light), c) 
deposited on a rough plastic surface (white light) and d) deposited on a metal surface (white light). 

 

 

 

Figure 3-23 - AFIS analysis of a fingerprint developed with a) C-SiO2 nanoparticles and b) commercial WFP 
showing 73 and 65 minutiae, respectively. 

 

These nano-powders have also been noted to preserve the colour tuneable properties 

of C-dots which may be important for strongly coloured or multi-patterned surfaces. In 

Figure 3-24 a series of microscopic pictures were photoshoped together in order to 

a b c d 

a b 
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give a better idea of how these powders behave when excited under different 

wavelength lasers. A diverse range of minutiae may be identified from those 

microscopic images (e.g. bifurcations, ridge ending, pores…) which further 

demonstrates the enhanced resolution of these nanopowders.  

Due to their large Stokes-shifts and colour tuneability, these powders may prove to be 

an important tool on suppressing any problems that would arise from colourful, shiny 

or even fluorescent backgrounds. Figure 3-25 is a demonstration of this property, as 

a green fluorescent background was chosen as the substrate and when exposed to a 

green light (445 nm) a lower resolution fingerprint was obtained but incidentally under 

UV light a considerably better resolved fingerprint was revealed. 

 

 

Figure 3-24 – Fluorescent microscopy images of a fingerprint developed with the C-SiO2 nanopowders.  

350 nm 395 nm 

590 nm 
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Figure 3-25 – Comparison between the C-SiO2 (upper images) and a commercial instant white fingerprint 
powder on a glass slide investigated on a crime lite imager. 

 

3.4 Conclusion 

In summary, it has been demonstrated for the first time the use of C-dots to recover 

latent fingerprints. Environmentally benign, low toxicity and cheap synthetic routes 

were used to prepare C-dots from carbon rich precursors (Citric acid and crude 

biomass). The presence of amines (ethanolamine and urea) during pyrolysis proved 

to be essential for having nanoparticles with higher quantum yields, when compared 

to grass derived C-dots. However, as C-dots tend to display quenching effects when 

in solid-state, they were dispersed into other nanopowders (SiO2, TiO2 and Laponite 

clay), in a 1:150 ratio. This would keep C-dots as PL cores and provide with the 

necessary flowabilty to be used as fingerprint developers. 

In terms of the C-SiO2 nanopowders, these showed similar results when compared to 

the other here suggested formulations, with the added advantage that no further 

dilution in white powders is required, since the silica nanoparticles prevent the 

quenching effects arising from C-dots’ particle-to-particle interactions. 
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Fingerprints were recovered on surfaces with different characteristics, namely glass 

slides, metal surfaces, soda bottle foil, plastic and rough surfaces, showing the 

versatile nature of these nanohybrids.  Not only did they work as standard fingerprint 

powders (AFIS results were similar to a commercial fingerprint powder), but their PL 

properties also showed great potential. Even with minor amounts of carbogenic 

nanoparticles, the hybrid powders rendered colour-tuneable fingerprints, which is of 

great contrast importance, particularly in the case of multi-coloured or strongly 

coloured surfaces. As a result, C-dots allow forensic investigators to carry only one 

powder to a crime scene, and once applied they can take any colour it’s needed for 

better distinction from the background, whereas with other powders if the most suitable 

one is not applied first, the fingerprint is already compromised.  



104 

 

3.5 References 

1. Sodhi, G. S. S. & Kaur, J. Powder method for detecting latent fingerprints: A 

review. Forensic Sci. Int. 120, 172–76 (2001). 

2. Wilshire, B. Advances in fingerprint detection. Endeavour 9327, 12–15 (1996). 

3. Girod, A., Ramotowski, R. & Weyermann, C. Composition of fingermark 

residue: a qualitative and quantitative review. Forensic Sci. Int. 223, 10–24 (2012). 

4. Godsey, M. The wrongful convictions blog (Access date: 10/03/16). 

5. Thomas, G. et al. The physics of fingerprints and their detection. J. Phys. E. 11, 

722–31 (1978). 

6. Knowles, A. M. Aspects of physicochemical methods for the detection of latent 

fingerprints. J. physics. E, Sci. instruments 11, 713–21 (1978). 

7. Bandey, H. Fingerprint powders guidelines. Home Off. Sci. Dev. Branch 09/07, 

1–4 (2007). 

8. Menzel, E. R., Burt, J. A., Sinor, T., Tubach-Ley, W. B. & Jordan, K. J. Laser 

Detection of Latent Fingerprints: Treatment with Glue Containing Cyanoacrylate Ester. 

J. Forensic Sci. 28, 307–17 (1983). 

9. Karlinszky, L. & Harkai, G. Detection of Latent Fingerprints: Application of 

Cyanoacrylate for the inside of Cars. Forensic Sci. Int. 46, 29–30 (1990). 

10. Kobus, H. J., Warrener, R. N. & Stoilovic, M. Two simple staining procedures 

which improve the contrast and ridge detail of fingerprints developed with ‘Super 

Glue’(cyanoacrylate ester). Forensic Sci. Int. 23, 233–40 (1983). 

11. Herod, D. W. & Menzel, E. R. Laser detection of latent fingerprints: ninhydrin 

followed by zinc chloride. J. Forensic Sci. 27, 513–18 (1982). 

12. Salares, V. R., Eves, C. R. & Carey, P. R. On the detection of fingerprints by 

laser excited luminescence. Forensic Sci. Int. 14, 229–37 (1979). 

13. Lee, H. C. & Gaensslen, R. E. Advances in Fingerprint Technology. (CRC 

Press, 2001). 

14. Parnell, A. J. Lanthanide Luminescence and its Applications in Forensic 

Science. 1994, (The University of Waikato, 2011). 



105 

 

15. Saif, M. Synthesis of down conversion, high luminescent nano-phosphor 

materials based on new developed Ln3+:Y2Zr2O7/SiO2 for latent fingerprint 

application. J. Lumin. 135, 187–95 (2013). 

16. Menzel, E. R. Recent advances in photoluminescence detection of fingerprints. 

Sci. World J. 1, 498–509 (2001). 

17. Gao, F. et al. Application of core–shell-structured CdTe@SiO2 quantum dots 

synthesized via a facile solution method for improving latent fingerprint detection. J. 

Nanoparticle Res. 14, 1-11 (2012). 

18. Becue, A., Moret, S., Champod, C. & Margot, P. Use of quantum dots in 

aqueous solution to detect blood fingermarks on non-porous surfaces. Forensic Sci. 

Int. 191, 36–41 (2009). 

19. Yu, X. et al. Application of mercaptosuccinic acid capped CdTe quantum dots 

for latent fingermark development. Forensic Sci. Int. 231, 125–30 (2013). 

20. Cai, K., Yang, R., Wang, Y., Yu, X. & Liu, J. Super fast detection of latent 

fingerprints with water soluble CdTe quantum dots. Forensic Sci. Int. 226, 240–43 

(2013). 

21. Liu, J., Shi, Z., Yu, Y., Yang, R. & Zuo, S. Water-soluble multicolored 

fluorescent CdTe quantum dots: Synthesis and application for fingerprint developing. 

J. Colloid Interface Sci. 342, 278–82 (2010). 

 

22. Algarra, M. et al. CdS nanocomposites assembled in porous phosphate 

heterostructures for fingerprint detection. Opt. Mater. (Amst). 33, 893–98 (2011). 

23. Dilag, J., Kobus, H. & Ellis, A. V. CdS/polymer nanocomposites synthesized via 

surface initiated RAFT polymerization for the fluorescent detection of latent 

fingermarks. Trends Anal. Chem. 228, 105–14 (2013). 

24. Krysmann, M. J., Kelarakis, A., Dallas, P. & Giannelis, E. P. Formation 

mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. 

Am. Chem. Soc. 134, 747–50 (2012). 



106 

 

25. Zhu, S. et al. The photoluminescence mechanism in carbon dots (graphene 

quantum dots, carbon nanodots, and polymer dots): current state and future 

perspective. Nano Res. 8, 355–81 (2015). 

26. Kelarakis, A. From highly graphitic to amorphous carbon dots: A critical review. 

MRS Energy Sustain. 1, 1–15 (2014). 

27. Krysmann, M. J., Kelarakis, A. & Giannelis, E. P. Photoluminescent carbogenic 

nanoparticles directly derived from crude biomass. Green Chem. 14, 3141–45 (2012). 

28. Qu, S., Wang, X., Lu, Q., Liu, X. & Wang, L. A biocompatible fluorescent ink 

based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. Engl. 

51, 12215–18 (2012). 

29. Zhu, S. et al. Highly photoluminescent carbon dots for multicolor patterning, 

sensors, and bioimaging. Angew. Chemie - Int. Ed. 52, 3953–57 (2013). 

30. Yang, G., Jiang, Z., Shi, H., Xiao, T. & Yan, Z. Preparation of highly visible-light 

active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301–09 (2010). 

 

 

 

 

 

 

 



107 

 

4 Carbogenically-coated silica nanoparticles and their anti-counterfeit 

applications 

4.1 Introduction 

4.1.1 Anti-counterfeit research background 

Counterfeiting, the act of making an exact or partial imitation of something valuable 

with the intent to deceive or defraud, is a crime that affects all the different fields of 

industry and, inevitably, has a severe effect in the global economy1,2. According to the 

Worlds Customs Organization around 6% of global goods are potentially counterfeit1. 

This criminal act can have an impact in research sectors, impeding the progress of 

society, but also in art and pharmaceutical industry2. The latter can be of particular 

concern considering that it’s not always the case of a complete replication of drugs, 

but also changing their chemistry and/or diluting it which can lead to serious health 

problems. In a study conducted recently, it was estimated that about 15% of drugs 

currently sold in the world are counterfeit and that in developing countries figures may 

be as high as 50% of total drugs sold. 2–4 

The current most reliable strategies for the detection of counterfeited drugs follow a 

combination of two methods: colourimetric essays and analytical techniques, such as 

high-pressure liquid chromatography (HPLC), mass spectrometry (MS), nuclear 

magnetic resonance (NMR), etc. Colourimetric tests, are also known as screening 

tests due to their fast and qualitative nature. They tend to be cheap, portable and easy 

to apply and read. However, they are usually only able to inform on whether, or not, a 

specific moiety or compound is present, which firstly: may lead to numerous false 

negatives/positives; and secondly: does not provide information regarding the quantity 

of active ingredient, which is one of the most common types of tampering in 

counterfeited drugs. It comes as no surprise then, that samples being investigated, 

need to be further analysed on more powerful and informative techniques. Analytical 

techniques tend to leave little margin for error and have extremely low limits of 

detection, but their operation requires far more proficient personnel, tend to have 

higher costs of running and maintenance, and ultimately are rendered unviable for 

routine tests, which drastically decrease the number of assessed products.5,6 
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It is then essential the design of new, time-efficient methodologies that are able to 

certify the authenticity of original products, without prohibitive costs and by using toxic-

free materials. Several research groups have tried to provide the means to solve these 

issues, with some of the most significant examples being computer-based hologram 

graphics7,8, which is based on the recognition of computer generated graphics, Laser 

Surface Authentication9, which analyses the pattern of naturally-occurring 

imperfections of papers through laser speckle in order to give an authentication means 

without having to make any further modification to the surface; and radio frequency 

identification (RFID)10, the use of radio frequency waves for the automatic identification 

of objects. However, these are frequently not robust enough or far too expensive, and 

thus research efforts have focused on presenting more reliable approaches to this 

problem.  

As with many other fields, nanomaterials allowed for a new dimension of tools. On one 

study, conducted by Demirok et al.11, a nanowire-based barcode was created using a 

ternary alloy composed of Ni, In and Zn. The superimposing character of the 

nanowires created a multi-layered pattern which increased the level of complexity of 

the system. The decoding of this system is performed using a multi-readout approach, 

which consists of X-ray fluorescence analysis, square-wave voltammetry and vibrating 

sample magnetometry, as shown in Figure 4-1, thus allowing for a very specific 

fingerprinting of the images created. The main problem with this method was the high 

complexity and costs involved with these techniques.  
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Quantum-dots have also been suggested as alternatives due to their high quantum 

yields and stable fluorescence. Lu et al.12 suggested the use of polyethyleneimine 

branched quantum dots to create rewritable fluorescent patterns that could be used 

as memory chips for security purposes. The authors demonstrated that these systems 

could be used for anti-counterfeit purposes and that in the dark they maintained about 

60% of their original fluorescence after 30 days of being prepared. Additionally, by 

tuning the size of the quantum dots, they created a two coloured (red and green) binary 

code that could be used as chips for securely encoded messages (Figure 4-2 a). 

Nevertheless, these nanoparticles show high susceptibility to photo-oxidation which 

lead to the fluorescent being reduced to zero after only 5 days under room light, as 

demonstrated in Figure 4-2 b. Alternatively, Sun and co-workers13 developed printable 

oils containing ZnO quantum dots with lanthanum enhanced fluorescence. The 

incorporation of La allowed for an impressive improvement in the quantum yield (from 

30% to 78%) and displayed a versatile range of application methods, such as dip-pen 

writing, screen-printing, gravure/letter-press printing, etc.  

 

Figure 4-1 – Illustration of the multi-readout method for the unique identification of the ternary 
alloys nanowires. Reprinted from Ref. 11. 
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Figure 4-2 – a) Binary code encrypted message using quantum dots and b) comparison of behaviour of 
these nanoparticles over time under room light and in a dark room. Adapted from Ref. 12. 

 

More recently, trends in the field have focused particularly on exploring the 

upconversion properties of rare-earth nanocrystals. These nanomaterials have the 

peculiarity of behaving against the Stokes Shift rule13 (and hence the name Anti-

Stokes shift), meaning they emit radiation at shorter wavelengths than they absorb. 

More specifically, these nanocrystals have the ability to absorb radiation in the IR 

region and emit in the visible region of the spectrum. Meruga et al.14 demonstrated 

how this can be particularly useful for anti-counterfeit applications. By using Yb3+/Er3+ 

and Yb3+/Tm3+ doped β-NaYF4 nanoparticles-based gels, they were able to develop a 

printable ink to then create invisible quick response (QR) codes. When exposed to IR 

radiation the QR code would be revealed in a green colour (visible radiation), as seen 

in Figure 4-3 a and b, which then could be recognized by a mobile device application. 

Furthermore, they were able to conceal letters of a different colour inside the QR code 

(Figure 4-3 c), by using the second combination of rare-earth elements which showed 

longer transitions and therefore higher energy of radiation (blue-coloured emission). 

a 

b 



111 

 

 

Figure 4-3 – a) Upconverted QR code in a transparent tape, b) the same tape in a piece of paper and c) 
shows the higher degree of complexity that can be achieved by using different types of nanoparticles 
within the same code. Adapted from Ref. 14. 

 

4.1.2 C-dots as potential anti-counterfeit tools 

With C-dots benign nature and cheap and easy preparation, they pose as natural 

alternatives to the above described methods, and thus their potential as anti-

counterfeit tools will be assessed in this chapter. However, considering the inherent 

problems of the self-quenching C-dots, the strategy employed was to dilute them in 

other nanoparticles. Since silica/C-dots optical interactions were already investigated 

in a physical mixture (Chapter 3), and no considerable effect was noticed on their 

optical properties, silica was chosen as the other one of the components. The fact that 

silica nanoparticles display optical transparency suggests potential as a great platform 

to be combined with the distinguished C-dots fluorescence properties.  

Even though silica nanoparticles may not be the most versatile tool per se, their 

composition allows for a rather tuneable environment which opened the way for them 

to become one of most important minerals currently in use in the nanomaterials field. 

This in practice meant they found the most widespread range of applications in 

science, most significantly in photovoltaic cells15–19, surface coatings20–25, nano-

sensoring26–31, controlled drug delivery32–36 and bioimaging37–41. 

 

4.1.3 C-dots/Silica nanohybrids 

Silica can be conjugated with different types of nanoparticles with the aim to preserve 

or even enhance its intrinsic fluorescent properties. C-dots, by displaying optimum 



112 

 

optical properties, a non-toxic character and a wide array of surface functionalities, 

emerged as the natural replacement for all the other types of nanoparticles.  

Due to C-dots’ low toxicity, they have found use in biological applications34. Several 

studies took advantage of the self-assemble properties of precursors like 3-

Aminopropyl)triethoxysilane (APTES) to integrate the highly fluorescent C-dots into a 

Silica nanoparticles’ cores, thus creating Core-Shell nano-hybrid systems. In one of 

these works42, the synthesis of these nanoparticles allowed for the sensitive and 

selective detection of Cu2+ ions in rats’ brain. The sensing mechanism for the detection 

of Cu2+ ions in rats’ brain is depicted in Figure 4-4. The interactions between the metal 

ions and the N and O atoms on C-dots surface, as well as the negatively charged 

Silica nanoparticles surface, would induce a quenching on the C-dots fluorescence 

which could be visually noticed. This system allowed for in vivo analysis of these ions 

without the risk for chronic toxicity that usually arises from the use of quantum dots, 

one of the best current alternatives available. Burns et al.43, on the other hand, 

suggested the use of these nanohybrids for near-infrared (NIR) detection of tumours. 

Since the human body is “transparent” to radiation from this region of the spectrum43, 

it is considered optimum for bioimaging without background interference. This 

research group also found that functionalizing the nanoparticles with neutral organic 

coating facilitated their urinary excretion. Figure 4-5 shows the C-dots/Silica 

nanoparticles bioaccumulation in rats’ kidneys, and that these nanoparticles have low 

lifetimes in the rats’ organism, as 60-70% of the nanoparticles are excreted after 48h 

depending on the nanoparticles size. Their bioimaging potential is substantial, which 

can be mainly attributed to their biostability, biocompatibility and high quantum yields.  

 

 

 

Figure 4-4 – Schematics for the sensing of Cu2+ in rats’ brain using silica/C-dots nanohybrids. 
Adapted from Ref. 42. 
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Chromium (VI) is one of the most carcinogenic, teratogenic, mutagenic and therefore 

it is of high interest to be able to target these metal ions44. Liu and his research group44 

demonstrated the use of carbon dot-silica nanohybrids to eliminate Cr (VI), a common 

effluent pollutant from industrial discharges. The C-dots/Silica nano-hybrid were 

prepared by co-hydrolysis and condensation of amine-silane functionalized carbon 

dots and then conjugation with Tetraethyl orthosilicate (TEOS). The integration of C-

dots in the mesoporous structure of Silica allowed for an increase in the fluorescence 

lifetime, as well as an increase in the visible light absorption, which in turn lead to an 

entrapment of the Cr (VI) ions and their photo-reduction to the far less toxic species 

Cr (III) (Figure 4-6). 

 

a b 

Figure 4-5 – a) In vivo imaging of the silica/C-dots nanoparticles, showing that these accumulate mostly 
in the kidneys, and b) the excretion times of the 3.3 nm and 6 nm nanoparticles. Adapted from Ref. 43. 
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4.2 Carbogenically coated silica nanoparticles 

The synthetic procedure relied on the treatment of the silica nanoparticles with a C-18 

silane and then this systems pyrolysis to create C-dots on the silica’s surface. 

 

Figure 4-7 – TGA thermograph of the surface treated silica nanoparticles before carbonization. 

 

Thermogravimetric analysis (TGA) prior to the carbonization step proves the presence 

of high organic content (34%) on the surface of the functionalized silica nanoparticles 

(Figure 4-7). This demonstrates that the surface of the nanoparticles was successfully 

and heavily coated with silane polymer and the existence of active sites for the 

Figure 4-6 – Schematic depiction of the fluorescence sensing mechanism for the detection and 
reduction of the Cr (VI) species. Adapted from Ref 44. 
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carbonization into C-dots. Elemental analysis thus received of the synthesized C-SiO2 

(post-carbonization) shows a high percentage of C, H and N on the C-SiO2 surface 

(26, 4 and 5% respectively) and, as expected, no S was present.  

The FTIR spectra (Figure 4-8) of the silica nanoparticles and carbonized silica 

nanoparticles show strong peaks at 1070 cm-1 corresponding to Si-O-Si anti-

symmetric stretching vibrations (υas), whereas the peak at 790 cm-1 relates to Si-O 

symmetric stretching vibrations (υs). Furthermore, the carbonized silica nanoparticles 

show a broad peak at 1380 cm-1, which correspond to the vibrational stretch of C-H 

groups, at 1550 cm-1 and 1658 cm-1, attributed to the anti-symmetric and symmetric 

stretching vibrations of N-C=O, respectively, and finally two peaks at 2850 cm-1 and 

2920 cm-1, which are assigned to the symmetric and anti-symmetric stretching 

vibration of sp2 C-H. These results confirm that the nanoparticle’s surface is highly 

populated with several functional groups45,46. 
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Figure 4-8 – FTIR spectra of the colloidal SiO2 and C-SiO2 (υs and υas stand for symmetric and 
anti-symmetric stretching vibrations, respectively). 
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Transmission electron microscopy (TEM) and atomic force microscopy (AFM) show 

an average size of 22±2 nm (Figure 4-9). Moreover, the measurement of the 

hydrodynamic radius of the as-prepared nanoparticles demonstrated that they form 

stable colloidal solutions within the ranges of pH 10.2 (initial pH) to pH 9 which is 

consistent with the existence of surface functionalities produced from the 

oxidation/amine treatment. When acidified, however, agglomerates started forming, 

Figure 4-10, and some particles precipitated.  

 

 

 

Figure 4-9 – a) TEM image and b) AFM images of C-SiO2 nanoparticles, showing an average size of 22 ±2 
nm. 
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Figure 4-10 – Hydrodynamic diameter of 0.1wt% C-SiO2 in water as a function of pH. 

 

The production of C-dots was proved by fluorescence analysis. The C-SiO2 

nanoparticles showed the C-dots’ characteristic excitation-dependent emission 

(Figure 4-11) with a broad wavelength region of emission. Even though it does not 

exist yet one widely accepted fluorescence mechanism, most authors agree that it 

arises from surface defects and the conjugated π-domains 47,48 (refer to chapter 1 for 

more detailed PL analysis of C-dots). 

 

Figure 4-11 – Fluorescence spectra of C-SiO2 aqueous solution under different excitation wavelengths. 
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For the nanotags preparation for anti-counterfeit purposes, C-SiO2 solutions were 

acidified to different pH and were left to evaporate at room temperature. These 

nanoparticles produced motives with uniquely shaped patterns, resembling fractal 

structures, which ca be used as anti-counterfeit tools. These motives were analysed 

in a fluorescence microscope and were found to show the same excitation-dependent 

fluorescence behaviour as the C-SiO2 aqueous suspensions. Not only do these 

motives conformation change consistently with every deposition (Figure 4-12) but also 

have their structured modified when subjected to different conditions (e.g. pH, 

concentration, substrate of deposition, etc) as depicted in Figure 4-13, Figure 4-14 

and Figure 4-15. Therefore, adding to these properties, the fact that they display ease 

of preparation, relatively cheap and non-toxic nature, and since they are virtually 

impossible to replicate, it makes them potential assets as anti-counterfeits tools. In 

order to assess their resistance, C-SiO2 nanotags were submitted to high 

temperatures (100°C for several hours) and no considerable effects were noticed in 

the motives (Figure 4-16), and so it’s possible to conclude that they are temperature-

resistant materials. This resistance is most likely related to the fact that these 

nanomaterials do not possess organic or polymeric molecules in their structure. SEM 

images (Figure 4-17) revealed the advanced structural complexity of the motives 

formed by these nano-hybrids. 

 

 

Figure 4-12 - Fluorescence microscopy images (under three excitation wavelengths) of air-dried aqueous 
dispersions of C-SiO2 at pH 7. 
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Figure 4-13 – Fluorescent microscopy images of the nanotags: a) deposited in glass and illuminated under 
different excitation wavelengths, b) deposited in glass from a more concentrated suspension and c) 
deposited on a polymeric surface. 

 

 

 

Figure 4-14 – Fluorescence microscopy images (under three excitation wavelengths) of air-dried aqueous 
dispersions of C-SiO2 with pH 10, indicating the absence of structured PL motives, in strong contrast to 
the behaviour observed when in solution of pH 7. 
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Figure 4-15 - Fluorescence microscopy images (under three excitation wavelengths) of air-dried aqueous 
dispersions of C-SiO2 at pH 2. 

  

 

 

 

Figure 4-16 – Fluorescence microscopy images (under three different excitation wavelengths) of self-
assembled motives of C-SiO2 generated on a glass surface a) before and b) after being heated to 100°C for 
several hours. 

a 

b 
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Figure 4-17 – SEM images of the motives formed at pH 7 under different magnifications. 

 

 

 

 

4.3 Conclusion 

It has been demonstrated the use of carbogenically coated Silica nanoparticles for the 

production of nanotags for anti-counterfeit purposes. These materials show the unique 

excitation-dependence fluorescence of C-dots, along with the stability of silica cores.  

The silica nanoparticles susceptibility to pH changes allowed for the development of 

the excitation-dependent nanotags. By reducing the pH, the C-SiO2 aqueous 

suspensions produce fractal structures, which after evaporation leave behind non-

replicable, multi-coloured, temperature-resistant motives that can be used for anti-

counterfeit purposes. In combination with a relatively simple software it could be used 

similarly to QR code readers, making it an extremely portable solution. In addition, 

these nano-hybrids pose as cheaper, non-toxic and more complex alternatives to the 

recently emerging suggested methods like dye-doped nanomaterials or upconverting 

nanocrystals. 
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5 In Situ preparation of C-dots in polymers matrix 

 

5.1 Introduction 

Fluorescent materials have gained a central importance in several fields of science 

and have thus been subjected to extensive research in the past few decades. Due to 

their varied chemical and mechanical properties, polymers are ideal materials to 

impart with fluorescence. So far, fluorescent polymers have been demonstrated as 

potential tools for optoelectronics, chemical sensing and bioimaging applications1. 

Polymer-based fluorescent materials display unique advantages when compared to 

other materials (particularly, to the most commonly employed alternatives – small 

organic fluorophores), such as photo- and structural-stability, electronic 

communication/amplification through the polymer backbone, greater binding efficiency 

and recognition selectivity, and ultimately, they are easier to turn into devices (e.g. 

sensing films).1,2 Within this section, a greater focus will be given to fluorescent 

conjugated polymers and nanocomposites, due to the similarities with the systems 

presented in this chapter (fluorescent nanocomposites). 

 

 

5.1.1 Conjugated polymers 

Within the class of fluorescent polymers, one of particular interest are the conjugated 

polymers. These are materials that benefit from having alternating sp2 and sp carbons 

along it’s backbone, creating valence bands (filled with electrons) and conducting 

bands (electron-free), resulting on semiconducting materials3. They have found use in 

numerous scientific fields, namely sensoring, bioimaging and electronic and light-

emitting devices2,4. Some of the most common examples of conjugated polymers can 

be seen in Figure 5-1. 
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Figure 5-1 – Representation of some of the most common conjugated polymers. Adapted from Ref. 5. 

 

Kim et al.6 described how the inherently conductive properties of poly(p-phenylene 

ethynylene), or PPE, could be used for the sensitive and specific detection of K+ ions. 

The authors explored the well-known sandwich complex induced by these metal 

cations. They reported that the resulting crosslinking between the PPE units, with the 

K+ ions as the contact points between layers (Figure 5-2 a), produced a red-shift (from 

434 to 459nm) in the UV absorbance, consistent with the π-stacking aggregates of 

PPE, as well as a general quenching in the fluorescence intensity and a red-shift in 

the Imax at high concentration (Figure 5-2 b). Moreover, the authors demonstrated that 

these effects were specific to K+ ions, as both Na+ and Li+ ions produced no significant 

quenching to the polymers fluorescence. 
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Figure 5-2 – a) Schematic representation of the “sandwich” stacking of PPE chains with K+ ions as 
crosslinking agents, and b) emission spectra of this system, when in presence of increasing concentration 
of K+. Adapted from Ref. 6. 

 

Miyata et al.7 suggested the use of a π-conjugated organoboron polymer for the 

detection of fluoride ions. This work is of particular interest since sensors tend to target 

metal cations and, in this case, anions (F-) are targeted. These ions are usually 

associated with chemical and nuclear weapons’ manufacture, and thus their detection 

is of relevance for national security agencies. The mechanism of detection relied on 

the fluorine atoms coordinating the boron atoms on the polymer backbone and the 

resulting change in the hybridization of the boron from sp2 to sp3, resulting on a 

quenching in the polymer’s fluorescence.  

Moreover, fluorophores may be added to conjugated polymers to enhance their optical 

properties, either to its backbone, by alternating highly electronic conducting 

monomers (e.g. benzene, acetylene and PPV) with fluorophore derivative ligands, 

such as coumarin, terpyridine or quinoline 8–10; or to their side chains by functionalizing 

polymers with similar fluorophore derivatives11–13. In both cases, these systems 

present clear advantages since the fluorescent dyes are covalently bonded to the 

polymers, making them resistant to hostile environments, like for bioimaging purposes 

where they might be decomposed otherwise1.  

Interestingly, Kim et al.14 reported a fluoride sensor based on the amplifying 

fluorescence response of a conjugated polymer. The authors described that by using 

PPE with a coumarin derivative attached to the sidechains, the system would become 

highly sensitive to the fluoride ions, since a fluoride-induced lactonization of the 

derivative would originate the coumarin fluorophore. The mechanism behind F- 
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detection, Figure 5-3, can be explained with the presence of a conduction band 

(sidechains - coumarin derivative) and a valence band (backbone – PPE). When a 

photon is absorbed by the valence band, it creates an exciton which migrates along 

the backbone, until it absorbs an excited electron back, which, if it is originated from a 

fluorine-modified sidechain (coumarin), it will emit an enhanced fluorescence 

response, due to the fluorophore being more fluorescent than its derivative. 

 

 

Figure 5-3 – Schematic illustration of the underlying mechanism for the sensitive detection of fluoride ions 
using the conjugated polymer system based on PPE-coumarin derivative. Adapted from Ref. 14. 

 

Nonetheless, it is also the case that these materials display low solubility in water, and 

even though this might be overcome by the attachment of different functional groups, 

this will add even more steps to already an extensive and complex procedure. 

 

5.1.2 Nanocomposites 

Another approach frequently pursued is the combination of polymers with 

nanoparticles to create nanocomposite systems. They display an organic phase 

(polymers) and an inorganic phase (silica, Au or Ag nanoparticles, etc.), and are able 

to maintain the advantages of both systems. Due to the broad use of nanocomposites 

definition found in the literature, all systems containing an inorganic and organic phase 
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will be considered as composites. Silica mesoporous materials are the most commonly 

used as inorganic phase, as they display large surface areas, well-defined porosity, 

ease of preparation and recyclability1. Nanoparticles are generally known to have good 

electron conductivity and, due to their large surface area/volume ratio, they can be 

tuned with signal units to perform with high selectivity and sensitivity, an important 

feature in the sensoring field15.  

One of the most common purposes of the nanocomposites is the development of more 

stable nanoparticles dispersions. To this end, several polymers have been grafted into 

nanoparticles’ surface, in order to induce higher affinity between the surface and the 

solvent or polymers’ matrices16. Hong and co-authors17 demonstrated that bare ZnO 

nanoparticles precipitated completely after 4h, whereas polystyrene (PS)-grafted ZnO 

afforded more stable solutions in acetone. Other examples include TiO2-g-poly(methyl 

methacrylate, MMA) in tetrahydrofuran (THF)18, Al2O3-g-polystyrene/polyacrylamide 

(PS/PAAM) in THF and acetone19, respectively, Fe2O4- and TiO2-g-PS in several 

organic solvents20. 

Another application studied for nanocomposite materials is the enhancement of the 

mechanical properties of polymers. Hashimoto et al.21 investigated the effect of adding 

silanated TiO2 to  high density polyethylene (HDPE) and how this would be useful for 

bone repair applications. It was found that this nanocomposite material had its Young’s 

modulus and bending yield strength increased from 65 MPa to 10 GPa and from 

49MPa to 7.5GPa, respectively, showing a dramatic increase in the mechanical 

properties. Mechanistically, it was concluded that the silane functional groups were 

the bridging agents between TiO2 nanoparticles and the HDPE polymer, as 

demonstrated in Figure 5-4.  
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Figure 5-4 – Suggested adhesion mechanism for the silane-functionalized TiO2 and HDPE. Adapted from 
Ref. 21. 

 

5.1.2.1 Fluorescent nanocomposites 

Owing to their size, nanoparticles may display unique optical properties, and are 

generally more robust than their counterparts, organic dyes. However, they have a 

known tendency to form aggregates and thus require further stabilization16. One way 

to achieve this is functionalize them with polymeric materials, in nanocomposite 

systems. 

Waldron et al.22 suggested the use of PbSe QDs impregnated in an epoxy polymer 

matrix (Angstrom Bond AB9093). The authors reported a significant QY decrease 

(from 55% to 26%) when compared to the same type of QDs in organic solvents, such 

as toluene and hexane, which they attributed to the oxidation of QDs and the loss of 

protective ligands during incorporation in the polymer matrix. Nonetheless, when 

compared to similar QDs dispersed in different polymers matrices (e.g. PMMA), they 

showed an improvement in quantum yield of ~ 10%, which the authors claim to be 

highest recorded QY for QDs-based solid devices. These systems are particularly 

advantageous for luminescent solar concentrators owing to their wide absorption 

bands and structural stability. 

Sarkar et al.23 developed a “turn-on” Zn(II)-sensor based on a mesoporous silica 

nanocomposite. The mesoporous silica is functionalized with 3-

aminopropyltriethoxysilane (3-APTES) and covalently grafted with 4-methyl-2,6-
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diformyl phenol, a chromophore. This nanocomposite had the peculiarity of displaying 

enhanced fluorescence intensity upon the titration with Zn (II) ions (Figure 5-5 a), 

whilst when other cations were present no relevant effect in the fluorescence was 

noted (Figure 5-5 b). 

Chen et al.24 investigated the effect of gold nanoparticles on a Rhodamine-derivative 

dye PL properties. This research group prepared a nanocomposite system based on 

a gold core, coated with a PVP film and a dye-incorporated silica shell (Figure 5-6 a, 

b and c) was used. The incorporation of the Au cores proved to have a significant 

increase on the system’s fluorescence intensity (Figure 5-6 d), by a factor of 9.6. The 

authors suggested that these nanocomposite systems are of great importance to 

understand the mechanisms of metal enhanced fluorescence. 

 

 

Figure 5-5 – a) Emission spectra of the mesoporous silica/silane/chromophore nanocomposite system, 
showing an increase in the fluorescence intensity upon titration with Zn (II) (inset shows fluorescence 
intensity as a function of Zn2+ ions concentration) and b) the effect of different metal cations in this 
system’s fluorescence intensity. Adapted from Ref. 23. 
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Figure 5-6 – Schematic representation of the several layers of the nanocomposite with a) Au core, b) 
addition of a PVP layer, c) coating with a Silica Shell doped with a Rhodamine-derivative dye, and d) 
comparison of the fluorescence intensity in the absence (black line) and presence (red line) of the Au core. 
Adapted from Ref. 24. 

 

5.1.3 C-dots and polymers 

Carbon-dots (or C-dots) have emerged in the past decade as the potential alternatives 

for nearly all the other fluorescent materials. They pose as non-toxic nanoparticles, 

with high quantum yields, and even unique fluorescent effects such as excitation-

dependent emission26. Moreover, it has been demonstrated that they may be prepared 

strictly following environmentally benign methods and chemicals27,28.  

Coincidently, the use of polymers and C-dots have converged and risen as a trend in 

the materials science field29. Polymers may be used as a carbon-source for the 

preparation of C-dots, as surface passivators and doping agents, or as an integral part 

of nanocomposite systems29. In the following subsections, a brief literature review of 

such methods will be reviewed. 

 

5.1.3.1 Polymers as carbon-rich precursors 

Owing to their high percentage of carbon content, polymers have found an important 

role as carbon-rich sources for C-dots preparation. Their macromolecular structures 

usually are broken down and crosslinked into forming C-dots30. Both synthetic and 

natural polymers may be used for this end. 

Konwar et al. 31 reported that when a chitosan hydrogel is heated up in a microwave, 

C-dots with narrow and sharp PL peaks are obtained. Additionally, lignin, a natural 

polymer with high percentage of –OH groups, can also be used for C-dots preparation, 
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as Chen et al.32 demonstrated. In this work, by using a strong oxidizing agent (H2O2), 

OH• radical groups are formed that can then break down the carbon-carbon bonds of 

the polymer to form C-dots. This method rendered C-dots with a size distribution of 2-

10 nm (Figure 5-7 a) and graphitic structure (lattice spacing of 0.21 nm), and proved 

useful for bioimaging purposes (Figure 5-7 b). 

 

Figure 5-7 – a) TEM images of the C-dots obtained by hydrothermal treatment of lignin, and b) their 
application for labelling of HeLa cells. Adapted from Ref. 32. 

 

Synthetic polymers, on the other hand, allow for more versatile approaches in C-dots 

preparation. As a good example of this, Liu et al.33 used silica nanoparticles 

functionalized with a triblock co-polymer F127 as carriers for further polymerization of 

resols on their surface and then formation of C-dots through pyrolysis. The silica 

carriers here have a dual effect on the process, as they act as anchors and substrate 

for the polymerization and prevent the C-dots nanoparticles from aggregating. Some 

other synthetic polymers used include polyethylene glycol34, PMA-EDY35, and several 

1-4-addition polymers36. 

 

5.1.3.2 Polymers as passivating agents 

C-dots are known to have defect sites on their surface susceptible to their 

environment, which, may result on quenching their optical properties and limit their 

range of applications. One way to prevent this is to attach functional groups to C-dots’ 

surface, and thus render more stable nanoparticles. The generation of carboxyl, 

carbonyl and hydroxyl groups is an efficient strategy to block quenching, but it is when 

this is coupled with doping atoms, like N, S, Si and P, that the highest quantum yields 
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are achieved37. Wang and coworkers38 reported the simultaneous passivation and N-

doping of C-dots with a amine-terminated PEG (Figure 5-8). This method afforded C-

dots with quantum yield of 60%, and was one of the first reports to rival with the Cd-

based quantum dots QYs. 

 

 

Figure 5-8 – Schematic illustration of the amine-terminated PEG surface passivated C-dots. Adapted from 
Ref. 38. 

 

5.1.3.3 C-dots/Polymer nanocomposites 

Due to their toxic-free nature, C-dots pose as the natural choice for nanocomposite 

systems. Most authors have focused on dispersing already synthesized C-dots in the 

polymers’ matrix, or on adding C-dots to the polymerization process. Even if it is a 

fairly simple approach, it has been shown to have the potential to be of use in the fields 

of bioimaging and controlled drug release monitoring purposes39, but also as a nano-

sensor platform for the detection of a wide range of analytes of interest, such as heavy 

metals40, mycotoxins41 or environmental pollutants42. For instance, Gogoi et al.40 

described a method where they prepared a solid sensing platform based on C-dots 

incorporated in an agarose gel, for the detection of heavy metals, such as Cr6+, Cu2+, 

Fe3+, Pb2+ and Mn2+. The detection mechanism relied on the fact that the presence 

heavy metals affected the UV-Vis reflectance of the gels. Additionally, it was found 

that the gels also acted as filter membranes for the same heavy metals, and when C-

dots were present in the system, the absorbing properties were greatly enhanced, after 

only 24h of being submerged in the contaminated solutions (Figure 5-9). 
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Figure 5-9 – a) The suggested mechanism for the detection of heavy metals, and b) comparison between 
the filtering capabilities of the Agarose gel, and agarose gel/C-dots nanocomposite system for heavy 
metals. Reprinted from Ref. 40. 

 

Furthermore, Bhunia et al.43 suggested the simultaneous preparation of C-dots and 

PDMS polymerization to create fluorescent films. The authors described that by using 

different C-dots precursors they were able to prepare films which emitted different 

colours within the visible range when excited under UV radiation, as depicted in Figure 

5-10. This method shows clear advantages when compared to simply melt mixing the 

C-dots in the polymers, as it prevents the particle to particle interactions. Nonetheless 

it involves more complex procedures and the use of toxic solvents, such as THF, and 

the polymerization process may be affected by the presence of different functional 

groups in the surroundings. 

 

Figure 5-10 – Schematic representation of the preparation of the C-dot films, and the resulting fluorescent 
colours under UV radiation when different precursors are used. Adapted from Ref. 43. 
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5.2 In situ preparation of C-dots in polymers matrix 

For the in situ preparation of C-dots in polymer matrices, minor amounts of 

ethanolamine (EA) were added to PE and PEG - in a weight ratio of 1 wt% (10 mg of 

EA/ 1 g of polymer) through melt-mixing. Polymers processed similarly, but without 

ethanolamine, were also prepared. For a complete protocol description please refer to 

section 2.3. 

When investigated under a UV light, the EA-treated PE fluorescence became evident 

when compared with PE and similarly processed PE (without the amine), as 

demonstrated in Figure 5-11 a, b and c. EA-treated PEG also showed fluorescence 

when exposed to UV radiation (Figure 5-12 a), and when excited with different lasers 

was able to produce images with different colours (Figure 5-12 b, c and d). 

The polymers were then analysed on a spectrofluorometer. When excited with 

different wavelength radiation, the EA-treated PE and PEG polymers showed an 

excitation-dependent behaviour (Figure 5-13 a and b), usually attributed to C-dots26,30. 

Furthermore, it was noticed that the fluorescence arose specifically from the EA 

treatment, as similarly processed polymers which were not treated with the amine 

(Figure 5-13 a and b, left plots) showed virtually no fluorescence intensity.  

 

 

Figure 5-11 – Images of a) PE, b) processed PE (no EA treatment) and c) PEEA when exposed to an UV 
light. 
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Figure 5-12 –Staining of a glass slide with EA-treated PEG a) under UV light and b), c) and d) investigated 
on a fluorescence microscopy under different excitation wavelengths. 

 

 

 

 

 

Figure 5-13 – Solid-state fluorescence spectra of a) EA-treated PE and b) EA-treated PEG, when excited 
with different wavelengths lasers (fluorescence spectra of the similarly processed polymers but without 
the EA treatment are shown on the left side of each plot).  

 

Figure 5-14 illustrates the strategies followed to isolate the fluorescent material from 

the polymer. For PE, and considering its high-water insolubility, 1 g of the EA-treated 

PE was left vigorously stirring overnight, to try to remove the particles closer to the 
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surface of the polymer, and then was filtered out to remove the polymer. For PEG, 

given that this polymer is soluble in water and it has low molecular weight (MW = 1000 

g/mol), 1 g of the EA-treated PEG was dissolved in water, and then PEG was dialyzed 

using a snakeskin membrane with a molecular weight cut-off of 3.5kDa. It was noticed 

that the fluorescent material stayed inside the membrane, which excludes the 

possibility of it arising from the presence of low molecular weight fluorophores. 

Figure 5-15 shows a comparison between the different PEG-related samples. PEG 

(black line) has several characteristic peaks at 3482 cm-1, 2883 cm-1, 1464 cm-1, 1107 

cm-1 and 528 cm-1, which are usually ascribed to O-H stretching, C-H bending, C-O 

stretching and O-H out-of-plane bending, respectively 44–46. The EA-treated PEG (blue 

line) showed the same peaks, which may be due to the very low percentage of EA 

added (1%). The isolated C-dots (red line) also show very similar FTIR spectrum and 

this suggests a highly PEGylated surface.  

The extracted C-dots from the PE matrix (Figure 5-16) show a FTIR spectrum which 

resembles more those of traditional C-dots, with peaks at 3324 cm-1, 1642 cm-1, 1399 

cm-1 and 1056 cm-1, typically ascribed to O-H stretching, C-H stretching, N-C=O 

symmetrical and anti-symmetrical stretching, C-H bending and C-O stretching, 

respectively 47–49. Conversely, PE FTIR shows only C-H bond stretching (at 2915 and 

2848 cm-1, for symmetrical and anti-symmetrical, respectively), bending (1466 cm-1) 

and rocking deformation (719 cm-1). 
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Figure 5-14 – Schematic illustration of the strategies employed to isolate the fluorescence particles from 
within the polymers’ matrix. For PEG, a Snakeskin dialysis membrane with a molecular weight cut-off larger 
than that of the polymer’s and smaller than the C-dots was used, in order to remove the polymer and keep 
the nanoparticles inside the membrane. Since PE is not soluble in water, the nanocomposites were 
thoroughly washed with distilled water to disperse nanoparticles closer to the surface of the polymers, 
and the latter were then removed by filtration. 

 

 

Figure 5-15 – FTIR spectra of PEG 1000 (black), EA-treated PEG (blue) and C-dots isolated from the polymer 
matrix (red). 
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Figure 5-16 – FTIR spectrum of PE (black) and C-dots extracted from PE polymer (red). 

 

The solutions fluorescence was analysed on a spectrofluorometer, without any further 

purification, and emission was recorded when samples were irradiated with different 

wavelength excitation lasers. For both polymers, the solutions fluorescence spectra 

showed excitation-dependent emission (Figure 5-17 a and b), similarly to the solid 

state. The fact that these fluorescent particles display high solubility and stability in 

water and excitation-dependent emission strongly suggests that these nanoparticles 

are in fact C-dots, and hence demonstrates that these nanoparticles may be prepared 

in situ without the need for any extra solvents. 

 

 

Figure 5-17 – Liquid-state fluorescence spectra of PE (a) and PEG-isolated C-dots, and comparison with 
processed polymers without the amine treatment, (right and left plots, respectively). 
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X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) of the as-

prepared nanocomposites were analysed to investigate on how the C-dots may affect 

these polymers’ crystallinity. In Figure 5-18 is shown the diffraction pattern of 

processed and C-dots/PE nanocomposites. It is clear that the orthorhombic structure 

of polyethylene is maintained after EA treatment, as it displays the characteristic peaks 

at 2ϴ = 21° and 24°, which corresponds to the [100] and [200] Bragg reflections 50,51, 

with interplanar spacing of d = 1.7 and 1.5 nm, respectively. Being a semi-crystalline 

polymer, the hump at lower angles of the diffraction pattern can be attributed to 

scattering from the amorphous portion of polyethylene structure52, which is calculated 

to be 60% for both the processed and C-dots-PE . Polyethylene glycol shows a single 

peak at 2ϴ = 19.4°, which corresponds to an interplanar spacing of d = 1.8 nm, and 

shows an amorphous structure possibly due to its low mw (Figure 5-19). 

 

 

Figure 5-18 – X-ray diffraction patterns of processed PE polymers a) without EA-treatment and b) with EA 
treatment. 

 

a b 
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Figure 5-19 - X-ray diffraction patterns of processed PEG polymers without and after the EA treatment. 

 

Each polymer was then exposed to temperatures above their annealing point to erase 

their thermal history. From the second heating curves from DSC data , it is possible to 

conclude that neither the processing at high temperatures (Figure 5-20 a and c), nor 

the EA treatment (Figure 5-20 b and d), produced any significant effects on the 

polymers’ crystallization behaviour, since in both cases the melting point decreased 

less than 1˚C, and the enthalpy change was less than 2 and 1 J/g for PE and PEG 

respectively. These values are in agreement with previous reports for similar 

polymers53,54. 

a b 
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Figure 5-20 – Second heating curves for a) and b) PE and c) and d) PEG, and comparison between polymers 
after being processed (a and c) and after being EA-treated (b and d). 

 

The main reason behind the choice of these two polymers relate to their different 

nature (molecular weight and water solubility) and frequent applications. PE, for 

example, is one the of most common plastics in use today. To prevent its persistence 

in the environment, it can be recycled by means of extrusion at high temperatures55,56. 

Several materials may be added to the recycling polymers during extrusion, 

designated as downstream feeding, which may include liquid feed. Even though this 

might be better suited for twin screw extruders, if the liquid is mixed with fractions of 

the polymer before extrusion, it might also be possible for single screw extruders57. 

Hence, in principle, the method reported here would be compatible with the recycling 

process for this type of polymers. Moreover, it was noticed that by adding increasing 

amounts of the carbon-rich precursor to PE, the solid-state fluorescence was greatly 

enhanced until a plateau was reached at around 5 wt%, as demonstrated in Figure 

5-21. 
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Figure 5-21 – Solid state fluorescence spectra of C-dots extracted from PE matrix with increasing initial 
weight percentage of EA. 

 

Even, though, PEG has not had such impact in consumer products, it is considered 

an important polymer from a biomedical research point of view. For instance, reports 

have suggested the use of PEG for controlled drug release58 and monitoring, to which 

fluorophores may be added. This allows for a better understanding of the whole drug 

release process. However, these fluorophores are usually susceptible to decomposing 

in hostile environments, and usually involve using to other nanoparticles and their 

associated hazardous risks. We suggest that C-dots may be incorporated in the PEG 

matrix without affecting its water solubility. Since most applications take advantage of 

this water solubility, the effect of EA’s initial concentration in the liquid state 

fluorescence was further investigated. Figure 5-22 shows that, similarly to PE, an 

increase in the intensity occurs with increasing weight percentage of EA up to a point 

where a plateau is reached around 5 wt%. 
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Figure 5-22 – Liquid state fluorescence spectra of C-dots isolated from PEG matrix with increasing initial 
weight percentage of EA. 

 

5.3 Conclusion 

In conclusion, we report a simple, cost-effective, versatile and non-toxic strategy for 

the in-situ preparation of C-dots in different polymers. This method imparted 

polyethylene and polyethylene glycol with these nanoparticles multi-coloured emission 

both in the liquid and solid states. By using ethanolamine as the C-dots precursor, 

through a melt mixing process, solvents are avoided altogether. The results here 

presented suggest that this protocol may be suitable as an “add-on” during recycling 

of polymers as the only conditions required (mixing and high temperatures) are already 

part of the extrusion procedure. EA, as a liquid may also be added to the extruder, 

which would facilitate the recycled polymers to find new types of applications. 

Furthermore, increasing amounts of precursor also afforded enhanced fluorescence 

in the polymers (up to a 5 wt% of EA, where a plateau is reached). For polymers 

soluble in water, it is suggested that their optical properties would allow for better 

monitoring of controlled drug release and for bioimaging applications. 

Due to the different nature of the polymers tested – molecular weight of PE = 35kDa, 

against 1kDa of PEG, and PEG being highly soluble in water and PE not being soluble 

at all; the results here presented suggest that this method may be used for the in-situ 

preparation of C-dots on a wider range of polymers. 
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6 Summary and Outlook 

 

In this thesis, it has been suggested novel applications for C-dots. They pose as toxic-

free alternatives to other types of nanomaterials, such as QDs. Their PL properties are 

clearly one of their greatest assets and, so far, no other materials have been found to 

behave similarly. 

For instance, in the field of fingerprint recovery, there is still a lack for a single method 

(or type of powder) that can be applied to different crime scene scenarios. Forensic 

experts are then required to carry several fingerprint powder pots into crime scenes. 

Furthermore, should a fingerprint be developed with the “wrong” powder, or not 

sufficient contrast be achieved, that would result in a piece of evidence being lost. By 

using C-dots based nanopowders, not only they maintain the necessary flowability for 

well resolved fingerprints (as proved by AFIS results), fingerprint experts would be 

able to tune the powder colours in order to achieve best contrast, just by adjusting the 

excitation wavelength of the laser source. Additionally, it has been shown that C-dots 

may be diluted in other non-UV absorptive powders, which suggests that they could 

be used as additives to fingerprint powders already in use in forensic practices. Future 

work could involve the preparation of C-dots with different types of functional groups 

on their surface. For instance, by testing other types of white fingerprint powders, 

currently used in forensic investigations, may help improve the resolution obtained 

with the C-dots hybrid nanopowders. Furthermore, the attachment of hydrophobic 

functional groups could provide even better resolved fingerprints due to adhesion to 

the fatty acids on the fingerprints 

Another forensic application explored here was the use of C-dots-based materials as 

anti-counterfeit tools. Counterfeit is one of the crimes with greatest economic impact 

in current society. Most methods suggested require complex, costly and often-times 

toxic reagents and make their final application as anti-counterfeit tools unviable. 

Carbogenically coated silica (C-SiO2) have been demonstrated to produce toxic-free, 

cost-efficient and highly complex patterns which are here suggested to be efficient 

tools for anti-counterfeit purposes. Since the patterns are easily prepared they may be 

deposited in different surfaces, which could prove to be convenient for authentication 
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in a wide variety of products. Moreover, they showed no effects when exposed to high 

temperatures, and the patterns were maintained intact. The excitation-dependent 

emission of C-dots was also verified which afforded these nanotags another level of 

complexity. Next steps would involve a more interdisciplinary approach, as the 

development of software recognition systems would render this a more reliable 

approach. Due to the visual characteristics of the nanotags, we believe that they could 

be informatically “translated” to a binary code system, which would afford their reading 

and recognition easier, faster and potentially portable. Moreover, if fluorophores were 

to be added to the Silica/C-dots core-shell suspensions, it may provide another level 

of complexity at a specific wavelength (fluorophore λemission), as it could make these 

pattern even more difficult to replicate. 

The in situ preparation of C-dots proved to be a versatile approach to induce PL in 

different polymer matrices. Current methods to do this require the use of costly 

materials, like conjugated polymers or extensive procedures. Here we suggested the 

use of ethanolamine as the carbon-rich precursor, and the in situ preparation of C-

dots by melt mixing in polymers matrices. PE, as one of the most used polymers for 

common household plastics, has a significant impact in the environment, and thus its 

recycling is of high importance. In principle, the results here described suggest that 

this methodology would be compatible with this polymers recycling. Ethanolamine 

could be added to the extrusion process in very low ratios (1 wt%) and fluorescent 

polymers could be obtained at reduced costs, which would afford them new 

applications. On the other hand, PEG is considered an important polymer for 

biomedical research and is frequently used as surface passivator for nanoparticles 

and other fluorescent materials to afford them more biocompatible. This simplet 

approach has been demonstrated to achieve both with reduced costs and toxicity: to 

form the fluorescent pegylated nanoparticles. We suggest here that this method could 

be potentially employed to induce fluorescence to other matrices (not only polymers 

but, for instance, clays as well), so future work would involve the use of different 

materials to test the full potential of this procedure. 
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