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Abstract

Uncertainty estimation provides a quantitativeueabf the predictive performance of
a classification model based on its misclassifocatprobability. Low misclassification
probabilities are associated with a low degreenmfertainty, indicating high trustworthiness;
while high misclassification probabilities are asated with a high degree of uncertainty,
indicating a high susceptibility to generate ineatrclassification. Herein, misclassification
probability estimations based on uncertainty edimnaby bootstrap were developed for
classification models using discriminant analydisefpr discriminant analysis (LDA) and
guadratic discriminant analysis (QDA)] and suppwector machines (SVM). Principal
component analysis (PCA) was used as variable tieduechnique prior classification. Four
spectral datasets were tested (1 simulated andl3applications) for binary and ternary
classifications. Models with lower misclassificatiprobabilities were more stable when the
spectra were perturbed with white Gaussian noisdicating better robustness. Thus,
misclassification probability can be used as aniteacl figure of merit to assess model

robustness, providing a reliable metric to evaldlagepredictive performance of a classifier.

Keywords: Classification; Discriminant analysis; Figures ofenity Misclassification;

Support vector machines; Uncertainty



1. Introduction

Multivariate classification models are commonly poyed to segregate clusters
based on a supervised learning approach. Commdtmtydata are initially divided into
training and external validation sets, where thst fis used for model construction and the
latter to assess the model performance. The preglicapacity of classification models is
assessed by quality parameters also called “figafaserit”. The most used ones are the
accuracy (total number of samples correct claskifiensidering true and false negatives),
sensitivity (proportion of positivies correctly ikfied) and specificity (proportion of
negatives correctly identified) [1]. Additional figes of merit can also be estimated to
confirm the predictive performance of a classifimatmodel, such as precision (classifier
ability to avoid wrong predictions), F-score (oMemerformance of the model considering
imbalanced data), G-score (overall performancdefmhodel not accounting for class sizes),
area under the curve (AUC) of receiver operatingratieristic curves, positive and negative
prediction values, positive and negative likeliho@dios, and Youden’s index [1-5]. The
latter three are more commonly used for biomedapgllications, where the ratio of true and

false positives and negatives are an importanbfaotvards making clinical decisions.

However, none of these figures of merit bringsoinfation of the degree of
uncertainty in the classification model. Uncertgins always present in any analytical
measurement where a prior univariate or multivarrabdel is used to provide information of
the property being analysed. For being non-specifiorational spectroscopy techniques
generate thousands of data points for all chendoatponents that are susceptible to the
radiation source incident on the sample, creatingeiy complex array of data for each
sample analysed. To elucidate and extract infoonaif the chemical components present in
the spectrum, chemometric techniques are often ayra@l Multivariate calibration

techniques, such as principal component regreq$!@R) and partial least squares (PLS)



regression, are used for quantification applicajoand classification techniques, such as

discriminant analysis (DA) and support vector maeki (SVM), for qualitative applications

[6].

In spectroscopy applications, due to problemsotiinearity and ill-conditioned data,
variable reduction or selection techniques areno@mployed prior classification analysis.
Principal component analysis (PCA) is one of thesimpopular methods of variable
reduction, since it reduces all the spectral vdembnto a small number of principal
components accounting for the majority of the eorivariance in the data [7]. Since the
principal components are orthogonal to each otktie®, computation of inverse matrix

operations used in discriminant analysis are aedevith high accuracy.

Uncertainty estimation for calibration models igllWwknown [8, 9]. However, for
classification techniques, uncertainty estimati®rstill a new topic, so far mainly explored
for partial least squares discriminant analysisSHA) [10, 11]. Herein, we propose an
uncertainty estimation method based on bootstrap cidculation of misclassification
probabilities in linear discriminant analysis (LDAQuadratic discriminant analysis (QDA)
and SVM models applied to four different datasetisere the classification stability is also

evaluated by adding white Gaussian noise to thetspelata.

2. Experimental

2.1 Datasets

Four datasets were used for testing. Dataset donisposed of simulated spectra
generated using a normal distribution function.s€la contains 30 spectra with 301 variables
each, with mean ranging from 0.15 to 0.42 intensityts and standard deviation ranging

from 0.41 to 1.14 intensity units between sampldass 2 contains also 30 spectra with 301



variables each, with mean ranging from 0.19 to Or@&nsity units and standard deviation

ranging from 0.35 to 0.86 intensity units betweampels.

Dataset 2 is composed of 280 infrared (IR) speofrawo Cryptococcus fungi
specimens acquireda attenuated total reflection Fourier-transform anéd (ATR-FTIR)
spectroscopy. Class 1 contains 140 spectfargftococcus neoformans samples, and class 2
contains 140 spectra @fryptococcus gattii samples. Spectra were acquired in the range of
400-4000 crit with resolution of 4 cand 16 co-added scans using a Bruker VEXTER 70
FTIR spectrometer (Bruker Optics Ltd., UK). The cipg were pre-processed by cut in the
biofingerprint region (900-1800 ciy, followed by automatic weighted least square®lies
correction and normalisation to the Amide | peaB5( cni'). More information about this

dataset can be found in literature [12, 13].

Dataset 3 is composed of 240 IR spectra for tvasses of formalin-fixed paraffin-
embedded brain tissues measured using ATR-FTIRtre;seopy. Class 1 contains 140
spectra for normal brain tissue samples, and @assntains 100 spectra for glioblastoma
brain tissue samples. Spectra were acquired imathge of 400-4000 cthwith resolution of
8 cm* and 32 co-added scans using a Bruker Vector 27 Bpttrometer with a Helios
ATR attachement (Bruker Optics Ltd., UK). The spaatvere pre-processed by cut in the
biofingerprint region (900-1800 chy, followed by ruberband baseline correction and
normalisation to the Amide | peak (1650 ¢mThis dataset is public available as part of

IRootLab toolbox (http://trevisanj.qgithub.io/iroatl/) [14, 15] and more information about it

can be found in Gajjar et al. [16].

Dataset 4 is composed of 183 IR spectra sepanaite@ classes. Class 1 is composed
of 59 spectra of Syrian hamster embryo (SHE) cetlataminated with benzajpyrene

(B[a]P); class 2 is composed of 62 spectra of SHE cebstaminated with 3-



methylcholanthrene (3-MCA); and class 3 is compos#d62 spectra of SHE cells
contaminated with anthracene (Ant). Spectra weogliaed by using a Bruker TENSOR 27
spectrometer with a Helios ATR attachement (Brukiptics Ltd., UK). Spectra were
recorded in the range of 400-4000 tmith a resolution of 8 cth Pre-processing was
performed by cut in the biofingerprint region (90800 cni), rubberband baseline

correction and normalisation to the Amide | peaS(Lcm’). This dataset is public available

as part of IRootLab toolbox (http://trevisanj.qgithio/irootlab/) [14, 15]; further information

can be found in Trevisan et al. [17].
2.2 Software

Data analysis was performed within MATLAB R2014mvieonment (The
MathWorks, Inc., USA) using lab-made routines. precessing was performed using PLS
Toolbox 7.9.3 (Eigenvector Research, Inc., USAnflas were divided into training (70%)

and external validation (30%) sets using Kennaah&sample selection algorithm [18].
2.3 Classification techniques

Data were initially processed by PCA in ordereduce the number of variables and
solve ill-condition problems. PCA decomposes thgioal spectral matriX into scoresT),

loadings P) and residualsK) as follows [7]:
X=TPT+E (1)

The PCA scores were used as input variables #rctassification models (LDA,
QDA and SVM) with the number of principal comporerdelected by singular value
decomposition (SVD) [1, 7] and root mean squar®reaf cross-validation (RMSECV)
values obtained with cross-validated PCA [19]. Thwenulated explained variance was

calculated based on SVD as follows [1]:



X =USV™? )

dlag(S)

1)
V(%) = |5 Gae)

x 100 3)

wherev(%) is the explained varianc& andV are orthogonal matrices; aisdis a matrix

containing nonzero singular values on its diagonal.

The LDA (L;,) and QDA (;;) classification scores were calculated in a non-

Bayesian form as follows [20, 21]:
Lix = (% = X)) TChoo1ea (X — Xi) (4)
Qi = (x; — Xp) TC (% — Xy )

wherex; are the input variables for samplex, is the mean vector of cla&sCpqoieq IS the

pooled covariance matrix; an@, is the variance-covariance matrix of classC;, and

Cpoolea are estimated as follows:

1

Cr = Yk (xp — X)) (x; — Xy)T (6)

ng—1

1
Cpooled = ;legzlnkck (7)

wheren, is the number of samples of cldss is the total number of samples in the training

set; and is the number of classes.

SVM was applied to the PCA scores using a radialdbfunction (RBF) kernel [22].

The SVM classifier takes the form of [13]:

= sign(XN a;y,K (x;,2;) + b) (8)



wherer; is the classification response for sampl&’s, is the number of support vectors;
is the Lagrange multipliew; is the class membership (x1) of sam’pl&’(xi,zj) is the kernel

function; andb is the bias parameter.
2.4 Misclassification probability estimation

The uncertainty estimation was based on Boots2&h g random sampling method
with replacement that allows confidence intervasbe placed on the model predictions
based on uncertainties of the original data [1®je Pprocedure for calculating uncertainties
based on residual bootstrap was originally presehiede Almeida et al. [11] and adapted
herein for LDA, QDA and SVM-based models. For congmn, uncertainty propagation
estimate for SVM was calculated by differentiatmfnEq. 8 based on a previous uncertainty
estimation for RBF kernel in artificial neural netsks (ANN), assuming that noise only

affects the test sample [24]:

dK(XL',Zj)

N
dr =Y. a;
i=1 lyl dx,_

wherebly,, represents the uncertainty propagation of SVMaISiBF kernel.
For bootstrap uncertainty estimation, initiallgetresiduals for LDA, QDA or SVM
models are calculated using:

f

D
1-"7/,

f* =

(10)

where f* is the weighted model residudl;is the model residual; anf; is the pseudo-

degrees of freedom [24].is estimated for LDA, QDA or SVM models as:

f=y-y (11)



wherey is the reference class category for all sampled yas the model response for LDA

[S\’ = (Llf"'an)]; QDA [S\’ = (Qll""Qn)]; or SVM [S\’ = (7"1,"‘,7'71)].

Then, bootstrapping is applied by removing samplghose uncertainty is being
estimated by the model. A new response matfixs generated by replacing the remaining
values iny with the model predictegl. Then, a new random residual vedify,, is generated
by bootstrapping. The bootstrapping residfjgl,, is added to thg predicted, generating a

new response vectgr*:

y* =9+ f{;oot (12)

A new classification model is then created ugifigas reference categories. Finally, a
new residual vectof* is created by subtracting the bootstrapping ptedivalue** from

the model predicteg:
fr=y-y~ (13)

The confidence intervals are calculated for samiased on the residual vectot

For a 95% confidence interval, the lower bouag,{) and the upper bond,(,) are given by:
Clow = 0.25f" (14)
Cyp = 0.975f" (15)

For misclassification probability calculation, tbkassification categorigsare treated

as being normally distributed with mean equay tand standard deviation = 1/4 (C1ow -

Cup)- The probability that sampleis classk=1, denoted’, ;, is equivalent to the probability
thaty; is lower than the threshold value that separéteslassesy, ung- P1; iS given by the

cumulative distribution function for the normal gisution [10]:



Py = P(Ji < Ypouna) = %[1 + erf (yb%;t_yl)] (16)

Similarly, the probability that sampleis classk=2, denoted?,;, is equal tol — P, ;.
The misclassification probability of samplgm,;, is therefore determined based on the

classification of sampléas:
mp’i = Pl_yi (17)

The m, values range from O (no misclassification probghilto 1 (maximum
misclassification probability). Values above 0.5 dicate higher probability of
misclassification. A graphical flowchart illustnatj the processing steps for misclassification
probability calculation for PCA-LDA, PCA-QDA and PESVM models is depicted in

Figure 1.

[Insert Figure 1 here]

3. Results and discussion

Datasets 1-4 were analysed in order to estimagentisclassification probability
associated with the trustworthiness and robustoésisree classification algorithms: PCA-
LDA, PCA-QDA and PCA-SVM. Pre-processed spectrehwitean and standard-deviation

for these datasets are depicted in Figure 2.
[Insert Figure 2 here]

Dataset 1 is composed of simulated spectra (FigayeAlthough this dataset has no
chemical meaning, simulated data are commonly wsed primary source to evaluate
discriminatory performance of classification algoms [1]. PCA was applied to the data and

10 PCs were selected according to SVD and RMSEQMesgFigure 3a and b) (cumulative

10



variance of 97.2%). PCA-LDA did not show a goodsslcation, with an accuracy of
44.4%. The average misclassification rate for #& set was equal to 0.520. This high
misclassification probability indicates a large aegof uncertainty for the PCA-LDA model,
which is confirmed by the high misclassificatiorolpability ¢n, > 0.5). On the other hand,
by applying a QDA classifier, the classificationrfpemance improved substantially. The
accuracy in the external validation set was fouh@&9% with average misclassification
probability of 0.113. QDA performance was supetla@n the one found by LDA due to the
difference variance structures of class 1 and 2evadenced in the standard-deviation in
Figure 2a. LDA assumes classes having similar me€astructures, using a pooled
covariance model. In contrast, QDA assumes clakaesg different variance structures,
which improves considerably its performance overAL®hen this condition happens [20,

21]. Additional figures of merit are depicted inbla 1.
[Insert Figure 3 here]
[Insert Table 1 here]

SVM was applied to the PCA scores by means of BS¥M generating also a good
prediction response (accuracy = 94.4%). AlthougVSitting and prediction are better than
QDA in terms of accuracy, sensitivity and spedyiciits average misclassification
probability is slightly highery, = 0.152). A robustness test was then performeddayng
white Gaussian noise to the spectra in 6 diffedentls of signal-to-noise ratio (S/N)
measured in decibels (dB). S/N values of 50 dBJB540 dB, 35 dB, 30 dB and 25 dB were
tested. As can be seen in Figure 4a, by addingnioithe spectra, the predictive performance
in terms of overall accuracy remained constantfGA-QDA and PCA-SVM models. For
PCA-LDA, the addition of noise at 25 dB improvee taccuracy to 50%. This phenomenon

could happen due to the poor-fitting of the LDA rmabdor dataset 1 (sensitivity and

11



specificity of 44.4%), since in this case the ma@siponse might not be entirely reliable on

the signal quality.
[Insert Figure 4 here]

For dataset 2 Qryptococcus fungi specimens), PCA-QDA also had a better
performance than PCA-LDA. According to Figure 2lass 1 has a clear higher variance for
the variables in the range of 900-1200 ctphosphodiester, polysaccharides, glycogen and
PO, symmetric stretching in DNA/RNA [26]) in comparisomith class 2. PCA-QDA
achieved perfect class segregation (accuracy = 1L,00blle PCA-LDA achieved fair results
with accuracy at 86.9%. All models were built usiBgPCs determined by SVD and
RMSECV values (Figure 3c and d) (cumulative var@anof 99.8%). Average
misclassification probabilities of 0.328 and 0.2&8re found for LDA and QDA models,
respectively; confirming the higher trustworthinesfsPCA-QDA over PCA-LDA for this
dataset (Table 1). PCA-SVM also achieved good ifieaton results, with an accuracy of
97.6% in the external validation set. However, derage misclassification probability was
found at 0.500, which indicates that this modehas stable. The negative predictive value
(NPV) for PCA-SVM indicates that the presence o§ctassification is present only in the
negative samplesC(yptococcus neoformans), a possible overfitting sign. Robustness was
again evaluated by adding white Gaussian nois@daspectra set. The PCA-QDA was the
only model that remained stable with noise, while btther two models (PCA-LDA and
PCA-SVM) had an accentuated decrement of accurtiey &/N of 40 dB (Figure 4b). As
expected by the misclassification probabilitiesuesl the performance of PCA-SVM when
the spectra were perturbated by noise was evenewthian using PCA-LDA, since its

accuracy dropped to 50% at 25 dB.

12



Dataset 3 is composed of IR spectra of normalnbtissue samples (class 1) and
glioblastoma brain tissue samples (class 2) (Fi@ae Both classes seem to have similar
spectral profiles and standard-deviations. PCA-Sdlaésified the data with 100% accuracy
(misclassification probability of 0.244) using 1C$selected by SVD and RMSECYV values
(Figure 3e and f) (cumulative variance of 99.4%)e Becond best classification performance
was found using PCA-QDA (accuracy = 88.9%, misd@asdion probability of 0.276) and,
for last, PCA-LDA (accuracy = 68.1, misclassificati probability of 0.319). The three
models are stable until S/N 35 dB, but after tremfy all the classifiers tend to lose their
classification performance converging to accurack$4.2% (PCA-LDA), 58.3% (PCA-

QDA) and 62.5% (PCA-SVM) at 25 dB (Figure 3c).

Dataset 4 is composed of 3 classes of samplesuneebby ATR-FTIR. The average
spectra with standard-deviation for class 1 (SHHEs agontaminated with B{]P), class 2
(SHE cells contaminated with 3-MCA) and class 3 ES¢¢lls contaminated with Ant) are
depicted in Figure 2d. The variance among the etasseem to be evenly distributed,
according to the similar standard-deviation obsgrve Figure 2d. PCA-LDA was applied
using 10 PCs selected by SVD and RMSECYV valuesu(Ei§g and h) (cumulative variance
of 98.9%), generating an overall accuracy of 91(&%erage misclassification probability =
0.260). This model had the best classification gretince in comparison with PCA-QDA
and PCA-SVM, which seem to be overfitted accordmthe small sensitivity and specificity
values observed between the classes (Table 1). QA-achieved an overall accuracy of
75.0% (average misclassification probability of 818 and PCA-SVM with an overall
accuracy of 90.4% (average misclassification proialof 0.406). By applying noise to the
data (Figure 4d), the model performance for PCA-Li2fained constant until 35 dB, then
quickly dropped afterwards. For PCA-SVM, the mod&lintained overall accuracy around

90% until 40 dB, followed by a quickly dropping 3% dB; and for PCA-QDA, the overall

13



accuracy decreased steadily until 25 dB. At 25 dB,models converged to the same

accuracy of 57%.

The mean misclassification probability and undetyapropagation estimate based on
Eq. 9 for SVM models are compared in Figure 4. Apomential trend is observed between
the two parameters (Figure 4a), where the uncéytgiropagation is proportional to the
misclassification probability. A linear relationphbetween the two parameters is depicted in
Figure 4b by the application of a natural logarithmction, where an %of 0.971 is found:;
indicating that the classification uncertainty byokstrap behaves similar to that one found

using RBF functions [24].
[Insert Figure 5 here]
4. Conclusion

Misclassification probabilities were determined RCA-LDA, PCA-QDA and PCA-
SVM models applied to 4 different datasets (1 sated and 4 real data). Uncertainty
estimations were calculated by bootstrapping ineorid obtain confidence intervals for
misclassification probability calculations, presshtherein as a new quality parameter to
indicate model trustworthiness for these three sdiass. A correlation between the
misclassification probability and model robustness observed by adding white Gaussian
noise to the spectral datasets, in which modeld Wigher misclassification probabilities
were more susceptible to error. Therefore, the lassdication probability can be used as a
new figure of merit to assess model quality in sifEsation applications, containing

information of the model uncertainty and being alsed to evaluate model robustness.
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Captionsfor Figures

Figure 1. Flowchart illustrating data processing steps forsafaissification probability

calculation.D; stands for pseudo-degrees of freedom.

Figure 2. Mean and standard-deviation (shaded area) for dggsdt 1, (b) dataset 2, (c)

dataset 3, and (d) dataset 4.

Figure 3: Singular value decomposition (SVD) for (a) datakefc) dataset 2, (e) dataset 3
and (g) dataset4; root mean square error of crakdation (RMSECV) of PCA for (b)
dataset 1, (d) dataset 2, (f) dataset 3 and (lgsdatd varying the number of principal

components (PCs).

Figure 4. Overall accuracy in percentage for PCA-LDA, PCA-QBAd PCA-SVM models
in (a) dataset 1, (b) dataset 2, (c) dataset J@ndataset 4, by adding white Gaussian noise
to the spectra datasets in the following levelsighal-to-noise ratio: 50 dB, 45 dB, 40 dB, 35

dB, 30 dB and 25 dB.

Figure 5: (a) Mean misclassification probability using bootstkepsus norm of uncertainty
propagation coefficientsbfy,,) calculated for SVM models with the training sagwplof
datasets 1-4; an() mean misclassification probability using bootstnagssus natural
logarithm of the norm of uncertainty propagatiorefficients b.y,,) calculated for SVM

models with the training samples of datasets linédl equationy = 13.3x + 1.13).
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Table 1. Figures of merit calculated for the external vdiola set in datasets 1-4. PPV

stands for positive predictive value, NPV for negatpredictive value, YOU for Youden’s

index, andn,, stands for average misclassification probability.

Dataset 1 Accuracy Sensitivity Specificity PPV~ NPVYOU m,
PCA-LDA 44.4% 44.4% 44.4% 44.49%44.4% -11.1% 0.520
PCA-QDA 88.9% 77.8% 100% 100% 81.8% 77.8% 0.113
PCA-SVM 94.4% 88.9% 100% 100% 90.0% 88.9%  0.152
Dataset 2

PCA-LDA 86.9% 97.6% 76.2% 80.4997.0% 73.8%  0.328
PCA-QDA 100% 100% 100% 100% 100% 100% 0.212
PCA-SVM 97.6% 95.2% 100% 100% 95.5% 95.2%  0.500
Dataset 3

PCA-LDA 68.1% 80.0% 59.5% 58.5980.6% 39.5%  0.319
PCA-QDA 88.9% 90.0% 88.1% 84.4992.5% 78.1% 0.276
PCA-SVM 100% 100% 100% 100% 100% 100% 0.244
Dataset 4

PCA-LDA

Class 1 94.6% 94.7% 94.4% 97.3%89.5% 89.2%  0.265
Class 2 89.3% 83.8% 100% 100% 76.0% 83.8%  0.217
Class 3 89.3% 91.9% 84.2% 91.9%4.2% 76.1%  0.299
PCA-QDA

Class 1 76.8% 100% 27.8% 74.5%00% 27.8%  0.500
Class 2 73.2% 100% 21.1% 71.29%00% 21.1% 0.434
Class 3 75.0% 62.2% 100% 100% 57.6% 62.2% 0.217
PCA-SVM

Class 1 98.2% 97.4% 100% 100% 94.7% 97.4%  0.447
Class 2 100% 100% 100% 100% 100% 100% 0.468
Class 3 73.2% 59.5% 100% 100% 55.9% 59.5% 0.303
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Highlights:

» Misclassification probability calculation based on bootstrapping for classification
 PCA-LDA, PCA-QDA and PCA-SVM models evaluated
» Four datasets (1 smulated and 3 real applications) tested

» Themisclassification probability correlates with model robustness



