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Abstract 

 Uncertainty estimation provides a quantitative value of the predictive performance of 

a classification model based on its misclassification probability. Low misclassification 

probabilities are associated with a low degree of uncertainty, indicating high trustworthiness; 

while high misclassification probabilities are associated with a high degree of uncertainty, 

indicating a high susceptibility to generate incorrect classification. Herein, misclassification 

probability estimations based on uncertainty estimation by bootstrap were developed for 

classification models using discriminant analysis [linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA)] and support vector machines (SVM). Principal 

component analysis (PCA) was used as variable reduction technique prior classification. Four 

spectral datasets were tested (1 simulated and 3 real applications) for binary and ternary 

classifications. Models with lower misclassification probabilities were more stable when the 

spectra were perturbed with white Gaussian noise, indicating better robustness. Thus, 

misclassification probability can be used as an additional figure of merit to assess model 

robustness, providing a reliable metric to evaluate the predictive performance of a classifier. 

 

Keywords: Classification; Discriminant analysis; Figures of merit; Misclassification; 

Support vector machines; Uncertainty 
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1. Introduction 

 Multivariate classification models are commonly employed to segregate clusters 

based on a supervised learning approach. Commonly, the data are initially divided into 

training and external validation sets, where the first is used for model construction and the 

latter to assess the model performance. The predictive capacity of classification models is 

assessed by quality parameters also called “figures of merit”. The most used ones are the 

accuracy (total number of samples correct classified considering true and false negatives), 

sensitivity (proportion of positivies correctly identified) and specificity (proportion of 

negatives correctly identified) [1]. Additional figures of merit can also be estimated to 

confirm the predictive performance of a classification model, such as precision (classifier 

ability to avoid wrong predictions), F-score (overall performance of the model considering 

imbalanced data), G-score (overall performance of the model not accounting for class sizes), 

area under the curve (AUC) of receiver operating characteristic curves, positive and negative 

prediction values, positive and negative likelihood ratios, and Youden’s index [1-5]. The 

latter three are more commonly used for biomedical applications, where the ratio of true and 

false positives and negatives are an important factor towards making clinical decisions. 

 However, none of these figures of merit brings information of the degree of 

uncertainty in the classification model. Uncertainty is always present in any analytical 

measurement where a prior univariate or multivariate model is used to provide information of 

the property being analysed. For being non-specific, vibrational spectroscopy techniques 

generate thousands of data points for all chemical components that are susceptible to the 

radiation source incident on the sample, creating a very complex array of data for each 

sample analysed. To elucidate and extract information of the chemical components present in 

the spectrum, chemometric techniques are often employed. Multivariate calibration 

techniques, such as principal component regression (PCR) and partial least squares (PLS) 
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regression, are used for quantification applications; and classification techniques, such as 

discriminant analysis (DA) and support vector machines (SVM), for qualitative applications 

[6]. 

 In spectroscopy applications, due to problems of collinearity and ill-conditioned data, 

variable reduction or selection techniques are often employed prior classification analysis. 

Principal component analysis (PCA) is one of the most popular methods of variable 

reduction, since it reduces all the spectral variables into a small number of principal 

components accounting for the majority of the original variance in the data [7]. Since the 

principal components are orthogonal to each other, the computation of inverse matrix 

operations used in discriminant analysis are achieved with high accuracy. 

 Uncertainty estimation for calibration models is well known [8, 9]. However, for 

classification techniques, uncertainty estimation is still a new topic, so far mainly explored 

for partial least squares discriminant analysis (PLS-DA) [10, 11]. Herein, we propose an 

uncertainty estimation method based on bootstrap for calculation of misclassification 

probabilities in linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) 

and SVM models applied to four different datasets, where the classification stability is also 

evaluated by adding white Gaussian noise to the spectral data. 

 

2. Experimental 

2.1 Datasets 

 Four datasets were used for testing. Dataset 1 is composed of simulated spectra 

generated using a normal distribution function. Class 1 contains 30 spectra with 301 variables 

each, with mean ranging from 0.15 to 0.42 intensity units and standard deviation ranging 

from 0.41 to 1.14 intensity units between samples. Class 2 contains also 30 spectra with 301 
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variables each, with mean ranging from 0.19 to 0.35 intensity units and standard deviation 

ranging from 0.35 to 0.86 intensity units between sampels. 

 Dataset 2 is composed of 280 infrared (IR) spectra of two Cryptococcus fungi 

specimens acquired via attenuated total reflection Fourier-transform infrared (ATR-FTIR) 

spectroscopy. Class 1 contains 140 spectra of Cryptococcus neoformans samples, and class 2 

contains 140 spectra of Cryptococcus gattii samples. Spectra were acquired in the range of 

400-4000 cm-1 with resolution of 4 cm-1 and 16 co-added scans using a Bruker VEXTER 70 

FTIR spectrometer (Bruker Optics Ltd., UK). The spectra were pre-processed by cut in the 

biofingerprint region (900-1800 cm-1), followed by automatic weighted least squares baseline 

correction and normalisation to the Amide I peak (1650 cm-1). More information about this 

dataset can be found in literature [12, 13]. 

 Dataset 3 is composed of 240 IR spectra for two classes of formalin-fixed paraffin-

embedded brain tissues measured using ATR-FTIR spectroscopy. Class 1 contains 140 

spectra for normal brain tissue samples, and class 2 contains 100 spectra for glioblastoma 

brain tissue samples. Spectra were acquired in the range of 400-4000 cm-1 with resolution of 

8 cm-1 and 32 co-added scans using a Bruker Vector 27 FTIR spectrometer with a Helios 

ATR attachement (Bruker Optics Ltd., UK). The spectra were pre-processed by cut in the 

biofingerprint region (900-1800 cm-1), followed by ruberband baseline correction and 

normalisation to the Amide I peak (1650 cm-1). This dataset is public available as part of 

IRootLab toolbox (http://trevisanj.github.io/irootlab/) [14, 15] and more information about it 

can be found in Gajjar et al. [16]. 

 Dataset 4 is composed of 183 IR spectra separated into 3 classes. Class 1 is composed 

of 59 spectra of Syrian hamster embryo (SHE) cells contaminated with benzo[a]pyrene 

(B[a]P); class 2 is composed of 62 spectra of SHE cells contaminated with 3-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 6 

methylcholanthrene (3-MCA); and class 3 is composed of 62 spectra of SHE cells 

contaminated with anthracene (Ant). Spectra were acquired by using a Bruker TENSOR 27 

spectrometer with a Helios ATR attachement (Bruker Optics Ltd., UK). Spectra were 

recorded in the range of 400-4000 cm-1 with a resolution of 8 cm-1. Pre-processing was 

performed by cut in the biofingerprint region (900-1800 cm-1), rubberband baseline 

correction and normalisation to the Amide I peak (1650 cm-1). This dataset is public available 

as part of IRootLab toolbox (http://trevisanj.github.io/irootlab/) [14, 15]; further information 

can be found in Trevisan et al. [17]. 

2.2 Software 

 Data analysis was performed within MATLAB R2014b environment (The 

MathWorks, Inc., USA) using lab-made routines. Pre-processing was performed using PLS 

Toolbox 7.9.3 (Eigenvector Research, Inc., USA). Samples were divided into training (70%) 

and external validation (30%) sets using Kennard-Stone sample selection algorithm [18]. 

2.3 Classification techniques 

 Data were initially processed by PCA in order to reduce the number of variables and 

solve ill-condition problems. PCA decomposes the original spectral matrix � into scores (�), 

loadings (�) and residuals (�) as follows [7]: 

� = ��� + �           (1) 

 The PCA scores were used as input variables for the classification models (LDA, 

QDA and SVM) with the number of principal components selected by singular value 

decomposition (SVD) [1, 7] and root mean square error of cross-validation (RMSECV) 

values obtained with cross-validated PCA [19]. The cumulated explained variance was 

calculated based on SVD as follows [1]: 
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� = �	
��           (2) 

v�%� = � �����	�∑�����	�� × 100         (3) 

where v�%� is the explained variance; � and 
 are orthogonal matrices; and 	 is a matrix 

containing nonzero singular values on its diagonal. 

The LDA (���) and QDA (���) classification scores were calculated in a non-

Bayesian form as follows [20, 21]: 

��� = ��� − �!���"#$$%&��� ��� − �!��        (4) 

��� = ��� − �!���"������ − �!��        (5) 

where �� are the input variables for sample '; �!� is the mean vector of class (;	"#$$%&� is the 

pooled covariance matrix; and "� is the variance-covariance matrix of class (. "� and 

"#$$%&� are estimated as follows: 

"� = �
*+��∑ ��� − �!����� − �!���*+�,�         (6) 

"#$$%&� = �
*∑ -�"�.�,�          (7) 

where -� is the number of samples of class (; - is the total number of samples in the training 

set; and / is the number of classes. 

 SVM was applied to the PCA scores using a radial basis function (RBF) kernel [22]. 

The SVM classifier takes the form of [13]: 

0� = sign5∑ 6�7�/5��, 9:; + <=>?�,� ;        (8) 
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where 0� is the classification response for sample '; @AB is the number of support vectors; 6� 
is the Lagrange multiplier; 7� is the class membership (±1) of sample '; /5��, 9:; is the kernel 

function; and < is the bias parameter. 

2.4 Misclassification probability estimation 

The uncertainty estimation was based on Bootstrap [23], a random sampling method 

with replacement that allows confidence intervals to be placed on the model predictions 

based on uncertainties of the original data [10]. The procedure for calculating uncertainties 

based on residual bootstrap was originally presented by de Almeida et al. [11] and adapted 

herein for LDA, QDA and SVM-based models. For comparison, uncertainty propagation 

estimate for SVM was calculated by differentiation of Eq. 8 based on a previous uncertainty 

estimation for RBF kernel in artificial neural networks (ANN), assuming that noise only 

affects the test sample [24]: 

d0 = ∑ 6�7� �.5DE,FG;�HE dI�=>?�,� = JKLM� dx       (9) 

where JKLM�  represents the uncertainty propagation of SVM using RBF kernel. 

 For bootstrap uncertainty estimation, initially, the residuals for LDA, QDA or SVM 

models are calculated using: 

N∗ = N
P��QR *S

           (10) 

where N∗ is the weighted model residual; N is the model residual; and TU is the pseudo-

degrees of freedom [25]. N is estimated for LDA, QDA or SVM models as: 

N = V − VW           (11) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 9 

where V is the reference class category for all samples; and VW is the model response for LDA 

[VW = ���,⋯ , �*�]; QDA [VW = ���,⋯ , �*�]; or SVM [VW = �0�, ⋯ , 0*�]. 

 Then, bootstrapping is applied by removing sample ' whose uncertainty is being 

estimated by the model. A new response matrix V∗ is generated by replacing the remaining 

values in V with the model predicted VW. Then, a new random residual vector NZ$$[∗  is generated 

by bootstrapping. The bootstrapping residual NZ$$[∗  is added to the VW predicted, generating a 

new response vector V∗∗: 

V∗∗ = VW + NZ$$[∗           (12) 

 A new classification model is then created using V∗∗ as reference categories. Finally, a 

new residual vector N\∗ is created by subtracting the bootstrapping predicted values VW∗∗  from 

the model predicted VW: 

N\∗ = VW − VW∗∗           (13) 

 The confidence intervals are calculated for sample ' based on the residual vector N\∗. 
For a 95% confidence interval, the lower bound (]%$^) and the upper bond (]_#) are given by: 

]%$^ = 0.25N\∗          (14) 

]_# = 0.975N\∗          (15) 

 For misclassification probability calculation, the classification categories V are treated 

as being normally distributed with mean equal to VW and standard deviation e = 1 4S 5]%$^ −
]_#;. The probability that sample ' is class k=1, denoted g�,�, is equivalent to the probability 

that 7W� is lower than the threshold value that separates the classes, 7Z$_h�. g�,� is given by the 

cumulative distribution function for the normal distribution [10]: 
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g�,� = g�7W� ≤ 7Z$_h�� = �
j �1 + erf nopqrst�oWE√jvE w�      (16) 

 Similarly, the probability that sample ' is class k=2, denoted gj,�, is equal to 1 − g�,�. 
The misclassification probability of sample ', xy,�, is therefore determined based on the 

classification of sample ' as: 

xy,� = g��oE           (17) 

 The xy values range from 0 (no misclassification probability) to 1 (maximum 

misclassification probability). Values above 0.5 indicate higher probability of 

misclassification. A graphical flowchart illustrating the processing steps for misclassification 

probability calculation for PCA-LDA, PCA-QDA and PCA-SVM models is depicted in 

Figure 1. 

[Insert Figure 1 here] 

 

3. Results and discussion 

 Datasets 1-4 were analysed in order to estimate the misclassification probability 

associated with the trustworthiness and robustness of three classification algorithms: PCA-

LDA, PCA-QDA and PCA-SVM. Pre-processed spectra with mean and standard-deviation 

for these datasets are depicted in Figure 2. 

[Insert Figure 2 here] 

 Dataset 1 is composed of simulated spectra (Figure 2a). Although this dataset has no 

chemical meaning, simulated data are commonly used as a primary source to evaluate 

discriminatory performance of classification algorithms [1]. PCA was applied to the data and 

10 PCs were selected according to SVD and RMSECV values (Figure 3a and b) (cumulative 
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variance of 97.2%). PCA-LDA did not show a good classification, with an accuracy of 

44.4%. The average misclassification rate for the test set was equal to 0.520. This high 

misclassification probability indicates a large degree of uncertainty for the PCA-LDA model, 

which is confirmed by the high misclassification probability (xy > 0.5). On the other hand, 

by applying a QDA classifier, the classification performance improved substantially. The 

accuracy in the external validation set was found at 88.9% with average misclassification 

probability of 0.113. QDA performance was superior than the one found by LDA due to the 

difference variance structures of class 1 and 2, as evidenced in the standard-deviation in 

Figure 2a. LDA assumes classes having similar variance structures, using a pooled 

covariance model. In contrast, QDA assumes classes having different variance structures, 

which improves considerably its performance over LDA when this condition happens [20, 

21]. Additional figures of merit are depicted in Table 1. 

[Insert Figure 3 here] 

[Insert Table 1 here] 

 SVM was applied to the PCA scores by means of PCA-SVM generating also a good 

prediction response (accuracy = 94.4%). Although SVM fitting and prediction are better than 

QDA in terms of accuracy, sensitivity and specificity; its average misclassification 

probability is slightly higher (xy = 0.152). A robustness test was then performed by adding 

white Gaussian noise to the spectra in 6 different levels of signal-to-noise ratio (S/N) 

measured in decibels (dB). S/N values of 50 dB, 45 dB, 40 dB, 35 dB, 30 dB and 25 dB were 

tested. As can be seen in Figure 4a, by adding noise to the spectra, the predictive performance 

in terms of overall accuracy remained constant for PCA-QDA and PCA-SVM models. For 

PCA-LDA, the addition of noise at 25 dB improved the accuracy to 50%. This phenomenon 

could happen due to the poor-fitting of the LDA model for dataset 1 (sensitivity and 
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specificity of 44.4%), since in this case the model response might not be entirely reliable on 

the signal quality. 

[Insert Figure 4 here] 

 For dataset 2 (Cryptococcus fungi specimens), PCA-QDA also had a better 

performance than PCA-LDA. According to Figure 2b, class 1 has a clear higher variance for 

the variables in the range of 900-1200 cm-1 (phosphodiester, polysaccharides, glycogen and 

PO2
- symmetric stretching in DNA/RNA [26]) in comparison with class 2. PCA-QDA 

achieved perfect class segregation (accuracy = 100%), while PCA-LDA achieved fair results 

with accuracy at 86.9%. All models were built using 8 PCs determined by SVD and 

RMSECV values (Figure 3c and d) (cumulative variance of 99.8%). Average 

misclassification probabilities of 0.328 and 0.212 were found for LDA and QDA models, 

respectively; confirming the higher trustworthiness of PCA-QDA over PCA-LDA for this 

dataset (Table 1). PCA-SVM also achieved good classification results, with an accuracy of 

97.6% in the external validation set. However, the average misclassification probability was 

found at 0.500, which indicates that this model is not stable. The negative predictive value 

(NPV) for PCA-SVM indicates that the presence of misclassification is present only in the 

negative samples (Cryptococcus neoformans), a possible overfitting sign. Robustness was 

again evaluated by adding white Gaussian noise to the spectra set. The PCA-QDA was the 

only model that remained stable with noise, while the other two models (PCA-LDA and 

PCA-SVM) had an accentuated decrement of accuracy after S/N of 40 dB (Figure 4b). As 

expected by the misclassification probabilities values, the performance of PCA-SVM when 

the spectra were perturbated by noise was even worse than using PCA-LDA, since its 

accuracy dropped to 50% at 25 dB. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 13

 Dataset 3 is composed of IR spectra of normal brain tissue samples (class 1) and 

glioblastoma brain tissue samples (class 2) (Figure 2c). Both classes seem to have similar 

spectral profiles and standard-deviations. PCA-SVM classified the data with 100% accuracy 

(misclassification probability of 0.244) using 10 PCs selected by SVD and RMSECV values 

(Figure 3e and f) (cumulative variance of 99.4%). The second best classification performance 

was found using PCA-QDA (accuracy = 88.9%, misclassification probability of 0.276) and, 

for last, PCA-LDA (accuracy = 68.1, misclassification probability of 0.319). The three 

models are stable until S/N 35 dB, but after this point, all the classifiers tend to lose their 

classification performance converging to accuracies of 54.2% (PCA-LDA), 58.3% (PCA-

QDA) and 62.5% (PCA-SVM) at 25 dB (Figure 3c). 

 Dataset 4 is composed of 3 classes of samples measured by ATR-FTIR. The average 

spectra with standard-deviation for class 1 (SHE cells contaminated with B[a]P), class 2 

(SHE cells contaminated with 3-MCA) and class 3 (SHE cells contaminated with Ant) are 

depicted in Figure 2d. The variance among the classes seem to be evenly distributed, 

according to the similar standard-deviation observed in Figure 2d. PCA-LDA was applied 

using 10 PCs selected by SVD and RMSECV values (Figure 3g and h) (cumulative variance 

of 98.9%), generating an overall accuracy of 91.1% (average misclassification probability = 

0.260). This model had the best classification performance in comparison with PCA-QDA 

and PCA-SVM, which seem to be overfitted according to the small sensitivity and specificity 

values observed between the classes (Table 1). PCA-QDA achieved an overall accuracy of 

75.0% (average misclassification probability of 0.384) and PCA-SVM with an overall 

accuracy of 90.4% (average misclassification probability of 0.406). By applying noise to the 

data (Figure 4d), the model performance for PCA-LDA remained constant until 35 dB, then 

quickly dropped afterwards. For PCA-SVM, the model maintained overall accuracy around 

90% until 40 dB, followed by a quickly dropping at 35 dB; and for PCA-QDA, the overall 
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accuracy decreased steadily until 25 dB. At 25 dB, all models converged to the same 

accuracy of 57%. 

 The mean misclassification probability and uncertainty propagation estimate based on 

Eq. 9 for SVM models are compared in Figure 4. An exponential trend is observed between 

the two parameters (Figure 4a), where the uncertainty propagation is proportional to the 

misclassification probability. A linear relationship between the two parameters is depicted in 

Figure 4b by the application of a natural logarithm function, where an R2 of 0.971 is found; 

indicating that the classification uncertainty by bootstrap behaves similar to that one found 

using RBF functions [24]. 

[Insert Figure 5 here] 

4. Conclusion 

 Misclassification probabilities were determined for PCA-LDA, PCA-QDA and PCA-

SVM models applied to 4 different datasets (1 simulated and 4 real data). Uncertainty 

estimations were calculated by bootstrapping in order to obtain confidence intervals for 

misclassification probability calculations, presented herein as a new quality parameter to 

indicate model trustworthiness for these three classifiers. A correlation between the 

misclassification probability and model robustness was observed by adding white Gaussian 

noise to the spectral datasets, in which models with higher misclassification probabilities 

were more susceptible to error. Therefore, the misclassification probability can be used as a 

new figure of merit to assess model quality in classification applications, containing 

information of the model uncertainty and being also used to evaluate model robustness. 
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Captions for Figures 

Figure 1: Flowchart illustrating data processing steps for misclassification probability 

calculation. TU stands for pseudo-degrees of freedom. 

Figure 2: Mean and standard-deviation (shaded area) for (a) dataset 1, (b) dataset 2, (c) 

dataset 3, and (d) dataset 4.  

Figure 3: Singular value decomposition (SVD) for (a) dataset 1, (c) dataset 2, (e) dataset 3 

and (g) dataset4; root mean square error of cross-validation (RMSECV) of PCA for (b) 

dataset 1, (d) dataset 2, (f) dataset 3 and (h) dataset 4 varying the number of principal 

components (PCs). 

Figure 4: Overall accuracy in percentage for PCA-LDA, PCA-QDA and PCA-SVM models 

in (a) dataset 1, (b) dataset 2, (c) dataset 3 and (d) dataset 4, by adding white Gaussian noise 

to the spectra datasets in the following levels of signal-to-noise ratio: 50 dB, 45 dB, 40 dB, 35 

dB, 30 dB and 25 dB. 

Figure 5: (a) Mean misclassification probability using bootstrap versus norm of uncertainty 

propagation coefficients (JKLM� ) calculated for SVM models with the training samples of 

datasets 1–4; and (b) mean misclassification probability using bootstrap versus natural 

logarithm of the norm of uncertainty propagation coefficients (JKLM� ) calculated for SVM 

models with the training samples of datasets 1–4 (linear equation: 7 = 13.3I + 1.13). 
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Table 1: Figures of merit calculated for the external validation set in datasets 1–4. PPV 

stands for positive predictive value, NPV for negative predictive value, YOU for Youden’s 

index, and xy stands for average misclassification probability. 

Dataset 1 Accuracy Sensitivity Specificity PPV  NPV  YOU xy 
PCA-LDA 44.4% 44.4% 44.4% 44.4% 44.4% -11.1% 0.520 
PCA-QDA 88.9% 77.8% 100% 100% 81.8% 77.8% 0.113 
PCA-SVM 94.4% 88.9% 100% 100% 90.0% 88.9% 0.152 
        
Dataset 2        
PCA-LDA 86.9% 97.6% 76.2% 80.4% 97.0% 73.8% 0.328 
PCA-QDA 100% 100% 100% 100% 100% 100% 0.212 
PCA-SVM 97.6% 95.2% 100% 100% 95.5% 95.2% 0.500 
        
Dataset 3        
PCA-LDA 68.1% 80.0% 59.5% 58.5% 80.6% 39.5% 0.319 
PCA-QDA 88.9% 90.0% 88.1% 84.4% 92.5% 78.1% 0.276 
PCA-SVM 100% 100% 100% 100% 100% 100% 0.244 
        
Dataset 4        
PCA-LDA         
Class 1 94.6% 94.7% 94.4% 97.3% 89.5% 89.2% 0.265 
Class 2 89.3% 83.8% 100% 100% 76.0% 83.8% 0.217 
Class 3 89.3% 91.9% 84.2% 91.9% 84.2% 76.1% 0.299 
PCA-QDA         
Class 1 76.8% 100% 27.8% 74.5% 100% 27.8% 0.500 
Class 2 73.2% 100% 21.1% 71.2% 100% 21.1% 0.434 
Class 3 75.0% 62.2% 100% 100% 57.6% 62.2% 0.217 
PCA-SVM         
Class 1 98.2% 97.4% 100% 100% 94.7% 97.4% 0.447 
Class 2 100% 100% 100% 100% 100% 100% 0.468 
Class 3 73.2% 59.5% 100% 100% 55.9% 59.5% 0.303 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Highlights: 

• Misclassification probability calculation based on bootstrapping for classification 

• PCA-LDA, PCA-QDA and PCA-SVM models evaluated 

• Four datasets (1 simulated and 3 real applications) tested 

• The misclassification probability correlates with model robustness  

 


