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Summary

Killer immunoglobulin-like receptors (KIRs) interact with human leucocyte
antigen (HLA) class I ligands and play a key role in the regulation and
activation of NK cells. The functional importance of KIR–HLA interactions
has been demonstrated for a number of chronic viral infections, but to date
only a few studies have been performed in the context of acute self-limited
viral infections. During our investigation of CD81 T cell responses to a
conserved HLA-B57-restricted epitope derived from dengue virus (DENV)
non-structural protein-1 (NS1), we observed substantial binding of the
tetrameric complex to non-T/non-B lymphocytes in peripheral blood
mononuclear cells (PBMC) from a long-standing clinical cohort in
Thailand. We confirmed binding of the NS1 tetramer to CD56dim NK cells,
which are known to express KIRs. Using depletion studies and KIR-
transfected cell lines, we demonstrated further that the NS1 tetramer bound
the inhibitory receptor KIR3DL1. Phenotypical analysis of PBMC from
HLA-B571 subjects with acute DENV infection revealed marked activation
of NS1 tetramer-binding natural killer (NK) cells around the time of
defervescence in subjects with severe dengue disease. Collectively, our
findings indicate that subsets of NK cells are activated relatively late in the
course of acute DENV illness and reveal a possible role for specific KIR–
HLA interactions in the modulation of disease outcomes.
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Introduction

Killer immunoglobulin-like receptors (KIRs) are expressed
predominantly on natural killer (NK) cells and interact
with specific human leucocyte antigen (HLA) class I
ligands to transduce inhibitory or activating signals [1].
One of the best-characterized and highly polymorphic
members of the KIR family is the inhibitory receptor
KIR3DL1, which is present in> 90% of the human popula-
tion and has at least 62 allotypes [2]. Interactions between
KIR3DL1 and the HLA-Bw4 motif act to maintain natural
killer (NK) cell inhibition. However, the down-regulation
of major histocompatibility complex (MHC) class I mole-
cules that often follows viral infection or cellular transfor-
mation alleviates NK cell inhibition via KIR3DL1, leading
to proinflammatory cytokine release and cytolytic activity.
A role for KIR3DL1 in the control of chronic viral infec-
tions has been proposed on the basis of associations with
disease outcome in HIV-infected individuals [3–8]. These
studies suggest that both MHC class I and KIR genotypes
may contribute to protection in the context of HLA-B57.
Moreover, KIRs that interact with HLA-C have been linked
epidemiologically to the development of liver disease in
hepatitis C virus (HCV)-infected patients and protection
from HCV infection in a cohort of intravenous drug users
[9]. In contrast, the role of KIR-HLA interactions in acute
self-limited viral infections remains largely unexplored.

Dengue virus (DENV) is a member of the flavivirus fam-
ily comprising at least four distinct serotypes. Transmitted
by the mosquitoAedes aegypti, DENV is endemic in the
tropics/subtropics and causes an acute febrile illness known
as dengue fever (DF). However, a small percentage of indi-
viduals experience a more severe syndrome known as den-
gue haemorrhagic fever (DHF). The key features of DHF
are plasma leakage and a bleeding tendency, which develop
as the fever subsides with clearance of viraemia [10,11].
Although both viral and host-specific factors probably
influence clinical outcome, prospective cohort studies have
identified secondary infection with a heterologous DENV
serotype as a major risk factor for DHF [12]. At the mecha-
nistic level, pre-existing antibodies [13], memory T cell
responses [12,14] and certain HLA genotypes [15–18] have
all been linked with more severe dengue illness.

A number of reports describe associations between HLA
class I genotypes and dengue disease severity [15–18]. In
one earlier study, extended HLA region haplotypes includ-
ing tumour necrosis factor (TNF), lymphotoxin alpha
(LTA) and lymphotoxin beta (LTB), together with specific
combinations of class I and class II alleles, were associated
strongly with DHF during secondary DENV infection. Var-
ious aspects of disease outcome after DENV exposure have
also been linked to functionally defined HLA class I super-
types [19], as well as the MHC class I-related chains A/B
(MICA/B) [20–22]. These latter proteins are up-regulated
in stressed cells and interact with NKG2D, an activating

receptor on NK cells. More recently, two small genetic stud-
ies evaluated associations between KIR–ligand pairs and
susceptibility to dengue in Gabon and Southern Brazil
[23,24]. Petitdemangeet al. found no evidence of a role for
KIR genotypes in patients infected with DENV-2. In con-
trast, Beltrameet al. detected an association between cer-
tain KIR genes and their cognate HLA ligands in the
context of infection with DENV-3. Differences in popula-
tion origin and the infecting DENV serotype may explain
these disparate results. Other studies have noted NK cell
activation during acute DENV infection. In particular,
Azeredoet al. linked early activation of NK cells with mild
DENV disease [25], whereas Greenet al. found increased
frequencies of NK cells expressing CD69 in children who
developed DHF compared to those with attenuated disease
[26]. The mechanisms by which NK cells contribute to
immune protection and immunopathogenesis in DENV
infection therefore require further elucidation [27,28].

We recently characterized antigen-specific CD81 T cells
directed against a highly conserved HLA-B57-restricted epi-
tope derived from DENV non-structural protein-1 (NS1)
[29]. In the present study, we examined binding of the cor-
responding B57-NS126–34tetramer (NS1 TET) to enriched
NK cell populations from samples obtained prior to, during
and up to 1 year after the critical phase of illness (around
the time of defervescence) in HLA-B571 subjects from a
clinical cohort in Thailand. Using KIR3DL11 healthy donor
peripheral blood mononuclear cells (PBMC), we confirmed
that the NS1 TET bound mainly to CD56dim NK cells,
which are known to express KIRs [30]. We then demon-
strated that the NS1 TET bound KIR3DL1. To determine
whether there was an association between NK cell activation
and dengue disease severity, we analysed PBMC from our
HLA-B571 cohort and found marked activation of NS1
TET1 NK-enriched cells at the critical phase of illness in
patients who developed DHF. Our results define a specific
interaction between the inhibitory receptor KIR3DL1 and a
DENV-derived CD81 T cell epitope with potential relevance
to the immunopathogenesis of dengue disease.

Materials and methods

Study subjects and blood samples

The study design for patient recruitment and collection of
blood samples has been reported in detail elsewhere
[11,43–45]. Briefly, the enrolled subjects were Thai children
aged 6 months to 15 years with acute febrile illnesses
(< 72 h) diagnosed as DF or DHF according to World
Health Organization (WHO) guidelines [46]. Serology and
virus isolation were used to confirm acute DENV infection,
and primary and secondary infections were distinguished
on the basis of serological responses [11]. For donors under-
going a secondary infection, it was not possible to deter-
mine the previous infecting serotype(s). Blood samples were
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obtained daily during acute illness, once during early conva-
lescence and at various intervals during late convalescence.
PBMC were isolated by density gradient centrifugation, cry-
opreserved and stored at2 708C. Samples were numbered
relative to the day of defervescence (designated fever day 0).
Serological HLA class I typing was performed as described
previously using peripheral blood from immune Thai
donors at the Department of Transfusion Medicine, Siriraj
Hospital [15,44]. Written informed consent was obtained
from each subject and/or his/her parent/guardian prior to
study participation. The study was approved by the Institu-
tional Review Boards of the Thai Ministry of Public Health,
the Office of the US Army Surgeon General and the Univer-
sity of Massachusetts Medical School (UMMS). For control
purposes, PBMC were obtained with informed consent from
healthy HLA-B571 dengue-na �ve volunteers aged> 18 years
under approval granted by the UMMS Institutional Review
Board.

Peptide-MHC tetramers

Peptide-MHC tetramers (pMHC TETs) were either
obtained from the NIAID Tetramer Core Facility or gener-
ated in-house as described previously [47]. The following
conjugates were used in this study: A2-E213–221 TET-
allophycocyanin (APC), B57-LF9 TET-phycoerythrin (PE),
B57-NS126–34TET-PE, B57-NS126–34TET-APC, B57-TW10n
TET-PE and B57-TW10n TET-APC.

Flow cytometry

As described previously [29], cryopreserved PBMC from
Thai subjects were thawed and washed in RPMI before rest-
ing in RPMI/10% fetal bovine serum (FBS) for 2 h at 378C.
Cells were then washed in phosphate-buffered saline (PBS)
and stained with 1ml of prediluted (1 : 80) LIVE/DEADVR

Green (Molecular Probes, Invitrogen, Waltham, MA, USA).
After washing in fluorescence activated cell sorter (FACS)
buffer (PBS/2% FBS/0�1% sodium azide), cells were incu-
bated with 0�5–2ml pMHC TET (1mg/ml with respect to the
monomeric component) for 20 min at 48C. Pretitrated
monoclonal antibodies specific for CD3, CD8, CD14,
CD19, CD28 or CD56, CD38, CD45RA, CD57, CD69,
CD71 and CCR7 were then added for a further 30 min at
48C. Monoclonal antibodies specific for CD3, CD14, CD16,
CD19, CD56, CD69 and KIR3DL1 were used in a separate
panel to identify NK cells. For NS1 TET staining of PBMC
from healthy individuals, 13 107 cells from KIR3DL11

subjects were washed in PBS and stained with LIVE/DEADVR

Green. After washing in FACS buffer, cells were incubated
with 2 ml pMHC TET or a KIR3DL1-specific monoclonal
antibody for 20 min at 48C. Pretitrated monoclonal anti-
bodies specific for CD3, CD14, CD16, CD19, CD56,
CD161, NKp30, NKp46 and NKG2D were then added for a
further 30 min at 48C. In all experiments, cells were washed
and fixed with BD Stabilizing FixativeTM (BD Biosciences,

San Jose, CA, USA). Data were collected using a FACSAriaTM

flow cytometer (BD Biosciences) and analysed with FlowJo
version 10 (TreeStar Inc., Ashland, OR, USA). Details of all
monoclonal antibodies used in this study are presented in
Supporting information, Table S1.

KIR3DL11 NK cell depletion and NS1 tetramer
staining

PBMC were isolated from KIR3DL11 healthy subjects using
standard density gradient centrifugation and depleted of
KIR3DL11 cells via magnetic bead separation (Miltenyi
Biotec, San Diego, CA, USA). KIR3DL1-depleted PBMC
were washed in FACS buffer and incubated with NS1 TET
for 50 min at 48C. After a further wash in FACS buffer, cells
were fixed with 100ml of prediluted (1 : 4) BD Cytofix (BD
Biosciences) and kept at 48C until acquisition. Flow cyto-
metric data were collected and analysed as described above.

Binding of pMHC tetramers to KIR3DL1-transfected
cell lines

Detailed analyses of KIR3DL1-transfected lines were
performed as reported elsewhere [33]. Briefly, human
embryonic kidney (HEK) 293 cells were transfected with
FLAG-tagged constructs of KIR3DL1*001, *005 or *015.
An anti-FLAG monoclonal antibody was used to verify
KIR3DL1 expression. Transfected cells were preincubated
with 10mg/ml of the blocking monoclonal antibody DX9 or
control immunoglobulin (Ig)G, then stained with 0�25 ml
of the NS1 TETor the well-described LF9 TET, representing
a self-derived peptide complexed with HLA-B57 that binds
KIR3DL1 [48].

Statistical analysis

Comparisons between groups were conducted using the
Mann–Whitney rank sum test for non-normally distrib-
uted variables. All statistical analyses were performed using
GraphPad Prism (GraphPad Software, San Diego, CA,
USA).

Results

Binding of the NS1 TET to CD8– cells in PBMC
from dengue patients

In a study of CD81 T cell responses to the HLA-B57-
restricted epitope NS126–34 (HTWTEQYKF) [29], we
observed binding of the corresponding tetrameric antigen
complex (NS1 TET) to CD8– cells. As monocytes and B
cells were eliminated by our gating strategy, we speculated
that the NS1 TET bound a subset of NK cells. Furthermore,
we hypothesized that the NS1 TET bound KIR3DL1 on NK
cells, given the extensive literature describing HLA-B57-
restricted HIV-derived peptide ligands for this inhibitory

Dengue KIR3DL1 interactions
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receptor [5–7,31,32]. Initially, we used the NS1 TET to
stain PBMC obtained at a convalescent time-point from
two HLA-B571 donors in our clinical cohort. The flow
cytometric gating strategy is shown in Supporting informa-
tion, Fig. S1a. In parallel, we used a variant B57-Gag240–249

tetramer (TW10n TET) based on a CD81 T cell escape
sequence (TSNLQEQIGW) of the wild-type HIV-derived
epitope that abrogates HLA-B57 binding to KIR3DL1*001
[6]. We observed substantial binding of CD82 cells to

the NS1 TET with minimal binding to the TW10n TET
(Fig. 1a,b).

Next, we tested PBMC obtained at multiple time-points
during and after acute DENV infection from 11 HLA-B571

children, two with primary and nine with secondary
DENV infection (Table 1). As our staining panel for clinical
samples was developed to phenotype CD81 T cells and did
not include NK cell-specific markers, we first confirmed
that live lymphocytes excluding monocytes, T and B cells
were predominantly NK cells. We used convalescent
samples for this purpose and found that> 70% of the
CD3–CD8–CD14–CD19– population comprised CD561

NK cells in the majority of donors (Supporting informa-
tion, Fig. S1b); these cells are referred to hereafter as the
‘NK-enriched’ population. Although a significant propor-
tion of NK cells can express CD8, these were excluded from
our study to ensure the elimination of all T cells. This was
considered important because CD3 down-regulation dur-
ing acute illness complicated the identification of T cells
based solely on this marker. Evaluating the frequency of
NS1 TET1 CD8– cells in PBMC from the HLA-B571 Thai
cohort, we were able to detect NS1 TET1 NK-enriched cells
at all time-points tested in all donors (n5 10;n5 5 DF,n
5 5 DHF) (Fig. 1c). The frequencies of these NS1 TET1

NK-enriched cells varied over time (Fig. 1c).
To confirm binding of the NS1 TET to NK cells, we used

a staining panel with NK lineage-specific markers (Fig.
2a,d) to analyse KIR3DL11 PBMC from healthy donors
and convalescent PBMC from Thai cohort subjects (Fig.
2b,c). A fluorescence minus one control excluding the NS1
TET, parallel staining with the TW10n TET and KIR3DL1
antibody labelling were used to aid gate placement for the
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Fig. 1.Binding of the NS1 tetramer (TET) to non-CD8 cells in
peripheral blood mononuclear cells (PBMC) from Thai children
with dengue. (a,b) Using flow cytometry, frequencies of NS1 TET1

(a) and TW10n TET1 (b) CD3–CD8–CD14–CD19– [natural killer
(NK)-enriched] cells in PBMC from donors CHD01-018 and
KPP94-041 at the 1-year time-point. (c) Kinetics of NS1 TET1

frequencies among NK-enriched cells during acute dengue illness
and convalescence. Fever day 0 indicates the day of defervescence.
Symbols distinguish subjects with primary (n5 2, grey symbols)
versussecondary (n5 8, black symbols) dengue virus (DENV)
infections and lines distinguish those with dengue fever (DF) (n5 5,
black line)versusdengue haemorrhagic fever (DHF) (n5 5,
dashed line).

Table 1. Clinical, virological and immunogenetic profiles of human
leucocyte antigen (HLA)-B571 Thai study subjects.

Donor Serology* Serotype† Diagnosis‡ KIR3DL1§ KIR3DS1

CHD95-039 P DENV-1 DF 01502 1
CHD06-029 P DENV-3 DF 01502,

01502
2

CHD05-023 S DENV-1 DF 01502 1
CHD01-018 S DENV-2 DF 020 1
KPP94-037 S DENV-2 DF 01502,

01502
2

KPP94-041 S DENV-1 DHF-3 00501 2
CHD02-073 S DENV-1 DHF 00501 2
CHD01-058 S DENV-2 DHF-1 01502 1
CHD01-050 S DENV-2 DHF-3 01502 2
CHD00-054 S Unknown DHF-2 00701 1
CHD06-092 S DENV-4 DHF-2 00701,

01502
1

*Primary (P) versussecondary (S) infection as determined by
immunoglobulin (Ig)M/IgG ratios [11]. †Of current infection.
Unknown5 could not be determined.‡According to WHO guide-
lines 1997; DF5 dengue fever; DHF5 dengue haemorrhagic fever
(grades 1–3).§KIR3DL1 subtyping.
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accurate identification of NS1 TET1 NK cells. We observed
NS1 TET1 NK cell populations in all donors at variable
frequencies and degrees of separation. Moreover, the NS1
TET bound mainly to CD56dim NK cells, which are known
to express KIRs [30]. Given that NK cells are highly hetero-
geneous, we next determined whether NS1 TET1 NK cells
differed phenotypically from the total NK cell population.
We found that NS1 TET1 NK cells resembled typical NK
cells, in that they expressed CD161, NKp30, NKp46 and
NKG2D (Fig. 2d). Thus, the NS1 TET bound archetypal
CD56dim NK cells.

Binding of the NS1 TET to KIR3DL1

We speculated that binding of the NS1 TET to NK cells was
mediated via the inhibitory receptor KIR3DL1. To test this
possibility, we used a magnetic separation protocol to
deplete PBMC of KIR3DL11 cells and compared NS1 TET
binding in parallel experiments with non-depleted PBMC
(Fig. 3a,b). We found that depletion of KIR3DL11 cells
reduced NS1 TET binding by 66%, suggesting a specific
interaction between these proteins on the NK cell surface.
To confirm binding of the NS1 TET to KIR3DL1 directly,
we used distinct KIR3DL1-transfected cell lines individu-
ally expressing the allotypes *001, *005 and *015, which
represent the three major lineages of this inhibitory recep-
tor [2]. We observed significant binding of the NS1 TET to
all three KIR3DL1 allotypes in these experiments. As
expected, HLA-B57 tetramers folded with the self-peptide
LF9 (LSSPVTKSF) also bound all three allotypes of
KIR3DL1 (Fig. 3c–f) [33]. Moreover, pretreatment with a
KIR3DL1-specific monoclonal antibody (DX9) blocked the
binding of both tetramers to KIR3DL1 (Fig. 3c–f). Collec-
tively, these data indicate that the NS1 TET binds KIR3DL1
on the surface of NK cells.

Peak expression of CD38 on NS1 TET1 NK-enriched
cells occurs around fever day 0 and correlates with
disease severity

To determine whether NS1 TET1 and total NK cells were
activated during acute infection in HLA-B571 subjects
(n5 2 DF 18, n5 3 DF 28, n5 5 DHF 28), we assessed the
expression of CD38, CD69 and CD71 on NK-enriched pop-
ulations in PBMC samples collected prior to, during and
after the critical phase of DENV illness. The flow cytometric
gating strategy used to identify NK-enriched populations in
these experiments is shown in Fig. 4a. Representative stain-
ings for CD69 and CD71 expression on PBMC obtained at
an acute and convalescent time-point from a subject with
DHF are shown in Fig. 4b,c. We found that CD69 expres-
sion was mildly elevated early in disease, but remained rela-
tively high at convalescent time-points in patients with DF
and DHF (Fig. 4d). In addition, CD69 expression on NS1
TET1 NK cells in individual donors was similar to the
expression of CD69 on total NK-enriched cells. Peak CD71
expression occurred at fever day 0 on NS1 TET1 and total
NK cells in many donors, but the differences were not statis-
tically significant between patients with DF and DHF. Mean
CD71 expression at acute time-points was significantly
higher in the NS1 TET1 NK cell population compared to
total NK cells (P< 0�01; Fig. 4e).

Next, we examined CD38 expression on NK-enriched
cell populations in this HLA-B571 cohort. We found that
CD38 expression was highly elevated on NK cells in PBMC
during acute illness, but decreased during early convales-
cence and remained present on up to 40% of NK-enriched
cells 1 year after infection (Fig. 5a). More careful
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examination revealed that CD38 expression segregated
clearly into CD38hi and CD38low populations on NK-
enriched cells at acute time-points. Figure 5b shows CD38
expression on NK-enriched cells at fever day1 1 and fever
day 1 180 in a representative donor. Frequencies of
CD38low cells followed the same pattern as CD69 expres-
sion on NK cells, with elevations early during infection that
remained high even during convalescence (Fig. 5c). How-
ever, a different pattern was observed for CD38hi cells in
both the NS1 TET1 and total NK cell populations, with
low frequencies early during acute infection becoming ele-
vated between fever day 0 and fever day1 1, then returning
to baseline at 1 year post-infection (Fig. 5d). The peak fre-
quency of CD38hi cells was observed on fever days 0 and
1 1 for both the total NK-enriched and NS1 TET1 NK cell
populations. Strikingly, very high frequencies of CD38hi

NS1 TET1 and total NK cells were observed uniquely in

patients with DHF (P5 0�0571 compared to patients with
DF).

As our original gating strategy excluded CD3–CD81 cells
in the NK-enriched population, we further evaluated the
expression of CD38, CD69 and CD71 using an inclusive
approach (Supporting information, Fig. S2). Activation
levels of NK-enriched populations assessed using these
markers were similar in the presence or absence of
CD3–CD81 cells. In addition, we used a quantitative poly-
merase chain reaction (PCR) to measure viraemia levels
during early clinical illness in nine of the 11 HLA-B571

subjects. As expected, plasma virus loads were high in all
donors prior to defervesence and dropped significantly as
the fever dissipated (Supporting information, Fig. S3).
However, no statistically significant correlations were
detected between viraemia levels and CD38hi NK cell fre-
quencies (data not shown).
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Expression of KIR3DL1 on NK cells in PBMC from
the HLA-B571 Thai cohort

To extend these findings, we examined KIR3DL1 expres-
sion on NK cells in PBMC from our Thai cohort using the
KIR3DL1-specific antibody DX9. Expression levels of
KIR3DL1 are known to vary between donors [4,30,34], and
differential expression of inhibitory KIRs can impact NK
cell function significantly [35]. We found substantial fre-
quencies of KIR3DL11 CD561 NK cells in nine of nine
donors tested (Fig. 6a). The frequency of KIR3DL1 on NK
cells varied from 3�5 to 15%, which is consistent with fre-
quencies reported elsewhere [34]. PBMC were not available
from two subjects, but genotypical studies indicated that
both were KIR3DL11 . The intensity of KIR3DL1 expres-
sion varied among donors, with mean fluorescence inten-
sity (MFI) values ranging across an order of magnitude
(881–7094). However, the sample size was too small to
draw any conclusions regarding associations between
KIR3DL1 expression, KIR3DL1 subtyping and dengue dis-
ease severity (Fig. 6a and Table 1).

Finally, we measured CD69 expression to assess NK cell
activation in a limited number of PBMC samples obtained

at fever day 0 (6 1 day) and fever day1 180. Consistent
with the results presented above, we found high frequencies
of KIR3DL11 CD691 NK cells during acute infection (Fig.
6b,c). At the same time, overall KIR3DL11 CD561 NK cell
frequencies remained stable (data not shown). Collectively,
these data indicate that NK cells are activated in HLA-
B571 individuals during the critical phase of illness.

Discussion

In this study, we demonstrate binding of the NK cell-
expressed inhibitory receptor KIR3DL1 to an HLA-B57-
restricted DENV NS1-derived peptide that also serves as a
CD81 T cell epitope. Directex-vivostaining of primary
human NK cells was observed with the corresponding
pMHC tetramer in peripheral blood samples isolated from
Thai children during and after acute DENV infection.
Moreover, NS1 TET1 and total NK cells were activated to
express CD38 during the critical phase of DENV illness
only in HLA-B571 patients with DHF, suggesting that NK
cell subsets may contribute to the immunopathogenesis of
dengue disease. This phenotypical analysis provides the
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first indication of a role for KIR–HLA interactions in an
acute self-limited viral infection and suggests that innate
immune receptors may determine the outcome of DENV
infection alongside traditional adaptive responses [12,14].

Interactions between MHC class I molecules and NK
cell-expressed KIRs have been associated with both benefi-
cial and detrimental outcomes in various chronic viral
infections [9] and with the development of autoimmune
diseases [36]. Several studies have shown that certain KIR
alleles and HLA-B loci strongly influence the rate of pro-
gression to AIDS in HIV-infected individuals and implicate
NK cells mechanistically as key determinants of viraemic
control [3]. The interaction between HLA-B57 and
KIR3DL1 has been studied extensively in this context. For
example, Faddaet al. showed that naturally occurring sin-
gle amino acid escape mutations in HLA-B57-restricted
HIV-derived CD81 T cell epitopes could abolish KIR3DL1
binding completely [6,33]. Similarly, the interaction
between B57-NS126–34and KIR3DL1 may represent a novel
strategy by which DENV evades NK cell-mediated immu-
nity. Functional studies are in progress to address this pos-
sibility. Polyfunctional assays with HLA-B571 NK sensitive
targets are critical to determine whether the DENV NS1
peptide can modulate NK cell function and are an active
area of research in the laboratory.

In longitudinal phenotypical analyses, we found that
CD69 expression on NK-enriched cells was elevated early

during acute infection. In contrast, CD711 and CD38hi NK
cells were rare at this time-point and became more prevalent
later, with peak frequencies around fever day 0 in several
donors. The emergence of abundant CD38hi NK cells coin-
cided with peak CD81 T cell activation in this cohort and
the critical period for plasma leakage and thrombocytopenia
in patients with DHF [29]. Moreover, CD38hi expression on
NK-enriched cells differed substantially between patients
with mild (DF) and severe (DHF) dengue disease. These dis-
tinct activation patterns may preclude the identification of
clinically relevant biomarkers in acute DENV infection.

The late activation of NK cells could be a consequence of
the cytokine storm associated with DHF. In this scenario,
NS1 TET1 (and therefore KIR3DL11 ) NK cells might be
driven to expand preferentially in HLA-B571 hosts due to
more efficient licensing. Alternatively, NS1 TET1 cells may
represent a subset of NK cells that are restrained early in
infection due to interactions between B57-NS126–34 and
KIR3DL1. As flaviviruses are known to up-regulate MHC
class I [37], we propose that the increased expression of
HLA-B57 on target cells early in infection augments NS1
peptide presentation during the acute viraemic phase, thus
enhancing KIR3DL1 interactions and maintaining NK cell
inhibition. As viral titres fall and MHC class I expression
returns to normal during defervescence, B57-NS126–34lev-
els will also wane and allow ‘retuned’ NK cells to respond
vigorously.

5·94

KPP94-037

CHD05-023 CHD01-050 KPP94-041 CHD01-058

CHD06-092

DONOR:
CHD02-073

KIR3DL1

CHD01-018 CHD06-029

3·54 5·51 13·1 11·2

11·37·99 8·54 15·0

C
D

56

(b)

(a)

(c)

0

20

40

60

80
Fever Day 0 Fever Day +180

Fev
er

 D
ay

 -1
-+

1

Fev
er

 D
ay

 +
18

0

Hea
lth

y d
on

or

105

104

103

0

105

104

103

0

105

104

103

0

105

104

103

0

105

104

103

0

105

104

103

0

105

104

103

0

105

104

103

0

105

104

103

0

1051041030 1051041030 1051041030 1051041030

1051041030 1051041030 1051041030 1051041030 1051041030

41·6
105

104

103

0

10-3

57·8 95·0 4·49

10510410310-3 0

K
IR

3D
L1

CD69

K
IR

3D
L1

+
 C

D
69

+
 N

K
 c

el
ls

10510410310-3 0

P=0·0003

Fig. 6.KIR3DL1 staining of natural killer
(NK) cells in peripheral blood
mononuclear cells (PBMC) from Thai
study cohort subjects. (a) Frequencies of
KIR3DL11 NK cells in PBMC obtained
from Thai study subjects 2–3 years after
dengue virus (DENV) infection. PBMC
were gated on CD561 and/or CD161 NK
cells. Dot-plots show CD56 versus
KIR3DL1 staining. (b) Representative flow
cytometry plots depicting CD69 versus
KIR3DL1 expression on NK cell
populations at fever day 0 and fever day
1 180 from a subject with dengue
haemorrhagic fever (DHF). (c)
Frequencies of KIR3DL11 CD691 NK cell
populations (n5 9) during acute dengue
illness and convalescence.

Dengue KIR3DL1 interactions

VC 2015 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons on behalf of British Society of
Immunology, Clinical and Experimental Immunology, 183: 419–430

427



Despite collection over a 15-year time-period, we were
only able to enrol a total of 15 HLA-B571 donors due to
the low frequency of this allele in Thailand. This limitation
impacted the power of our study and the differences in
CD38hi expression did not quite achieve statistical signifi-
cance (P 5 0�0571). In addition, the relative rarity of HLA-
B*57 may confine the clinical relevance of DENV NS126–34

in the Thai population. The fact that not all HLA-B571

KIR3DL11 individuals develop DHF suggests the involve-
ment of additional regulatory loops [38]. Given the
stochastic expression of KIRs, different individuals will
co-express different combinations of inhibitory and acti-
vating receptors within the KIR3DL11 NK cell subset. This
constellation of receptor/ligand interactions will probably
contribute to differential effects on NK cell function. In
addition, elevated levels of cytokines known to be up-
regulated in patients with dengue will almost certainly
influence the quality of NK cell and T cell responses. It is
notable in this respect that the DENV envelope (E) protein
interacts directly with the NK cell activating receptor
NKp44 [39].

As with most clinical studies of dengue, the delay
between initial viral infection and presentation to the clinic
or hospital prevented a very early assessment of NK cell
activation in this cohort. A rapid NK cell response that
leads to pathogen elimination may reduce the levels of anti-
gen available for presentation, thereby potentially impair-
ing the development of memory T cell populations.
Indeed, NK cells have been implicated in the regulation of
T cell immunity during viral infections, purportedly acting
to prevent pathological responses by attenuating T cell acti-
vation in the presence of high viral loads [40–42]. In this
study, we found delayed activation of NK cells in HLA-
B571 KIR3DL11 donors, which could hamper the develop-
ment of protective memory T cell responses to DENV. This
regulatory activity of NK cells could explain the modest
CD81 T cell responses directed against this highly con-
served NS1 epitope in secondary DENV infections [29].

In conclusion, our findings suggest that NK cell subsets
play a role in the development of adverse immune
responses associated with DHF in the context of HLA-B57.
Further studies are warranted to identify determinative
KIR–HLA interactions in other acute self-limited viral
infections.
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Supporting information

Additional Supporting information may be found in the
online version of this article at the publisher’s web-site:

Fig. S1. Frequencies of natural killer (NK) cells in the
CD3–CD8–CD14–CD19– gate. (a) Gating strategy to iden-
tify CD3–CD8–CD14–CD19– cells. Cells were first selected
within the lymphocyte gate as defined by forward- and
side-scatter profiles. Singlets were then identified and live
CD3–CD14–CD19– cells were selected in a dump (LIVE/
DEADVR Green with aCD14 and aCD19) versusCD3
bivariate plot. CD8– cells were gated within this popula-
tion. (b) Frequencies of CD561 and/or CD161 NK cells
in peripheral blood mononuclear cells (PBMCs) collected

from Thai cohort subjects 2 years after acute dengue virus
(DENV) infection. Plots are gated on live
CD3–CD8–CD14–CD19– cells.
Fig. S2. Activation of NS1 TET1 and total natural killer
(NK) cells over the course of acute dengue illness.
Kinetics of CD69 (a), CD71 (b), total CD38 (c), CD38low
(d) and CD38hi (e) expression on NS1 TET1 and total
NK cells during acute dengue illness and convalescence.
The average frequencies of CD691 , CD711 , total CD381 ,
CD38low, and CD38hi total NK-enriched cells are shown
using a solid red line for subjects with dengue fever (DF)
and a dashed red line for subjects with dengue haemor-
rhagic fever (DHF). Symbols distinguish subjects with
primary (n5 2, grey symbols) versus secondary (n5 8,
black symbols) dengue virus (DENV) infections and lines
distinguish those with DF (n5 5, black line)versusDHF
(n5 5, dashed line).
Fig. S3. Magnitude of dengue virus (DENV) viraemia by
day of illness. Levels of DENV genome equivalent (GE)
cDNA (copies/ml) were determined in serial plasma sam-
ples from human leucocyte antigen (HLA)-B571 patients.
Symbols denote individual subjects and lines distinguish
those with dengue fever (DF) (n5 4, black line)versus
dengue haemorrhagic fever (DHF) (n5 5, dashed line).
Table S1. Antibodies used for flow cytometry studies.
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