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Abstract

Recently, the survival signature has been presented as a summary of the structure

function which is su�cient for computation of common reliability metrics and has

the crucial advantage that it can be applied to systems with components whose

failure times are not exchangeable. The survival signature provides a huge reduc-

tion in required information, e.g. for its storage, compared to the full structure

function, its implementation to larger systems is still di�cult in a purely analyt-

ical manner and simulations may be required to derive the reliability metrics of

interest. Hence, the main question addressed in this paper is whether or not the

survival signature provides su�cient information for e�cient simulation to derive

the system’s failure time distribution. We answer this question in the a�rmative

by presenting two algorithms for survival signature-based simulation. In addition,

we present a third simulation algorithm that can be used in case of repairable com-

ponents. It turns out that these algorithms are very e�cient, beyond the initial

advantage of requiring only the survival signature to be available, instead of the

full structure function.

Keywords: Reliability Analysis; Survival Signature; Monte Carlo Method;

Complex Systems; Multi state components.

1. Introduction

The study of the reliability of complex systems, particularly systems with a

structure that cannot be sequentially reduced by considering alternative series

and parallel subsystems, is a topic subject which has attracted much attention in
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the literature and which is of obvious importance in many application areas [1].5

Traditionally, the reliability analysis of systems is performed adopting di↵erent

well-known tools such as reliability block diagrams, fault tree and success tree

methods, failure mode and e↵ect analysis, and master logic diagrams [2]. The main

limitation of these traditional approaches for applicability to large complex systems

is due to the complex and tedious calculations for finding minimal path sets and10

cut sets. For instance, for a system with m components 2m combinations of

component states must be specified, which is impossible for most practical systems

and networks. Instead, if the systems components can be divided into groups with

exchangeable failure times, the survival signature is su�cient to derive the systems

failure time distribution given the components failure time distributions.15

In addition, when the information about the system is not perfect, for example

leading to imprecise probabilities being required to quantify the uncertainties, it

is even more di�cult to apply those methods.

In recent years, the system signature has been recognized as a useful tool to

quantify the reliability of systems consisting of independent and identically dis-20

tributed (iid) or exchangeable components with respect to their random failure

times [3, 4], we say that such systems only have ‘components of one type’. The

system signature enables full separation of the system structure from the compo-

nent probabilistic failure time distribution when deriving the system failure time

distribution. However, attempting to generalize the system signature to systems25

with more than one component type is not really possible as it requires the compu-

tation of the probabilities of di↵erent orderings of order statistics of the di↵erent

failure time distributions involved [5], which tends to be intractable.

In order to overcome the limitations of the system signature, Coolen and

Coolen-Maturi [5, 6] presented the survival signature, which has the same merits30

as the system signature for systems consisting of a single type of components, but

it is also an e↵ective tool for analysing complex systems consisting of multiple

component types. Therefore, the survival signature is a useful tool for reliability

quantification for complex systems and networks because it only needs to be calcu-

lated once providing a massive reduction of the computational cost required by the35

analysis. Recently, Coolen et al. [7] presented non-parametric predictive inference

for system reliability using the survival signature, and Aslett et al. [8] did similarly

within the Bayesian framework of statistics. Feng et al. [9] developed an analytical

method to calculate the survival function of systems with uncertainty about pa-

rameters of assumed component failure time distributions. These methods are all40

useful, but may become less practical for larger complex systems. System survival

signature can also be derived from subsystems’ survival signatures, if these are in
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series-parallel configurations [7]. Recently, Reed presented and e�cient computa-

tional approach for computing exact system and survival signatures of large and

complex systems [10]. The survival signature together with the provided simula-45

tion algorithms provides a generalized tool for realistic quantification of system

reliability.

Parameter uncertainties and imprecisions are generally epistemic in nature due

to the lack of knowledge or data, or the unknown relationship between components

(e.g., poor understanding of accident initiating events or coupled physics phenom-50

ena, lack of data to characterise experiment processes, random errors in measuring

and analytic devices), all of them make it di�cult to characterize probabilistically

the failure time of components. Since the reliability and performance of systems

are directly a↵ected by uncertainties and imprecisions, a quantitative assessment

of uncertainty is widely recognized as an important task in practical engineering55

[11, 12].

Simulation approaches are used to investigate large and complex systems and

for obtaining numerical solutions where analytical solutions are not available. In

particular, simulation methods allow to consider explicitly the e↵ect of uncertainty

and imprecision on the system under investigation providing a powerful tool for60

risk analysis which allows better decision making under uncertainty. Simulation

method can be used to e.g. identify problems before implementation, evaluate

ideas and identify ine�ciencies, understand why observed events occur.

The use of simulation methods for system reliability has many attractive fea-

tures. Generally, it can be used for the sensitivity analysis of multi-criteria decision65

model [13], optimize models with rare events [14] and perform multi-attribute de-

cision making [15]. Most of the current simulation methods are based on Monte

Carlo simulation and structure function. By generating the state evolution of each

component, the structure function is computed to determine the state of the sys-

tem. The structure function is in a boolean format and can only be used to identify70

a specific output of the system. More structure functions can be used to match

all the possible status of the system at the cost of increasing the complexity of the

analysis (see e.g. [16]). Several methods are available for the reliability analysis

of complex system based on structural function (see e.g. [17, 4, 18]). However, we

envisage a scenario, particularly for large systems, where the full system structure75

information (or structure function, min paths sets etc.) is not available but only

the survival signature that represents a summary of the structure function. In

particular, for very large scale systems and networks, storing only the survival

signature and not the entire structure function is clearly advantageous.

In this paper, we will show that the survival signature is su�cient for basic80
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reliability inferences (e.g. determining the system reliability function) which can be

used for further inferences and decision support. E�cient simulation approaches

are proposed to estimate the reliability of systems based on survival signature. The

method is particularly useful when the probability term of the survival function (as

shown later in the Eq. 2 representing the probability of the components working85

at specific time), cannot easily be derived analytically but the failure times for the

exchangeable components can nevertheless be sampled through simulation.

The proposed simulation approaches are generally applicable to any system

configuration. In addition, it allows to consider di↵erent representation of the un-

certainties including system multi-state components (i.e. repairable components).90

The numerical implementation of the proposed approaches is based on two open

source packages: the R package “ReliabilityTheory” [19, 20] adopted to calculate

the survival signature and OpenCossan [21, 22] a Matlab toolbox for uncertainty

quantification and reliability analysis used to simulate the system evolution. The

applicability and e�ciency of the proposed approaches are demonstrated by solv-95

ing numerical examples.

This paper is organized as follows. Section 2 presents a brief overview of the

survival signature and the related system survival function. Survival signature-

based simulation methods for system reliability are presented in Section 3. In

Section 4, the applicability and performance of the proposed approaches is shown100

by analysing four numerical examples. Finally Section 5 closes the paper with

conclusions.

2. Survival Signature

Suppose there is one system consisting of m components. Let the state vector

of components be x = (x1, x2, ..., xm) 2 {0, 1}m with xi = 1 if the ith component105

is in working state and xi = 0 if not. � = �(x) : {0, 1}m ! {0, 1} defines the

system structure function, i.e., the system status based on all possible x. � is 1 if

the system functions for state vector x and 0 if not.

Now consider a system with K � 2 types of M components, with mk indicating

the number of components of each type and
PK

k=1 mk = M . It is assumed that the110

failure times of the components of the same type are independently and identically

distributed (iid) or exchangeable. Note that this is usually understood as implying

that the components are ‘exchangeable’, e.g. produced by the same manufacturer.

However, the assumed exchangeability of their failure times also implies a similarity

of the tasks the components of the same type perform in the system, e.g. if similar115

components function at di↵erent stress levels their failure time distributions are

likely not to be the same and hence for the reliability analysis using the survival

signature such components would be considered to be of di↵erent types. The
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components of the same type can be grouped together because of the random

ordering of the components in the state vector, which leads to a state vector can be120

written as x = (x1
, x

2
, ..., x

K), with x

k = (xk
1 , x

k
2 , ..., x

k
mk

) representing the states

of the components of type k. Coolen and Coolen-Mature [5] introduced the survival

signature for such a system, denoted by �(l1, l2, ..., lK), with lk = 0, 1, ...,mk for

k = 1, 2, ...,K, which is defined to be the probability that the system functions

given that lk of its mk components of type k work, for each k 2 {1, 2, ...,K}.125

There are
�
mk

lk

�
state vectors x

k with precisely lk components x

k
i equal to 1, so

with
Pmk

i=1 x
k
i = lk (k = 1, 2, ...,K), and Sl1,l2,...,lK denote the set of all state

vectors for the whole system.

Assume that the random failure times of components of the di↵erent types are

fully independent, and in addition the components are exchangeable within the130

same component types, then the survival signature is equal to:

�(l1, ..., lK) =

"
KY

k=1

✓
mk

lk

◆�1
#
⇥

X

x2Sl1,l2,...,lK

�(x), (1)

where Ck(t) 2 {0, 1, ...,mk} is the number of k components working at time t. The

survival function of the system with K types of components can be expressed as

[5]:

P (TS > t) =
m1X

l1=0

...

mKX

lK=0

�(l1, ..., lK)P (
K\

k=1

{Ck(t) = lk}) (2)

If one can assume that the components of the same type have a known CDF, Fk(t)135

for type k, and that the failure times of di↵erent component types are independent,

then these expressions are simplified using [5]:

P (
K\

k=1

{Ck(t) = lk}) =
KY

k=1

P (Ck(t) = lk) =
KY

k=1

✓
mk

lk

◆
[Fk(t)]

mk�lk [1� Fk(t)]
lk

(3)

Equation (2) separates the structure of the system from the failure time distri-

bution of its components, which is the main advantage of the survival signature,

which it shares with the system signature. The survival signature only needs to140

be calculated once for any system, which is similar to the system signature for

systems with only single type of components. The survival signature is closely

related with system signature. For a special case of a system with only one type

(K = 1) of components, the survival signature and the system signature [3] are

directly linked to each other through a simple equation, however, the latter cannot145
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be easily generalized for systems with multiple types (K � 2) of components [5].

This implies that all attractive properties of the system signature also hold

for the method using the survival signature. The survival signature is easy to

apply for systems with multiple types of components, and one could argue it

is much easier to interpret than the system signature. In addition, the quite150

simple survival signature (in particular for large systems with only relatively few

di↵erent component types) and its monotonicity for coherent systems provide clear

advantages to work towards approximations of the system reliability metrics. This

does not limit the applicability of the survival signature to non-coherent systems

(for example, electric distribution network or part of the electronic equipment155

of safety features). In such cases, the analysis of system with imprecision in the

component failure time requires a full “double loop” approach as detailed in Section

3.4.

3. Simulation Methods

Exact analytical solution can be obtained from Eq. 2 and Eq. 3. However,160

analytical solutions are restricted to particular cases (e.g. system with component

failure time following exponential distribution and not repairable components).

Instead, simulation methods can be applied to study and analyse any systems

without introducing simplifications or unjustified assumptions.

The survival signature presented in the previous section can be adopted in a165

Monte Carlo based simulation method to estimate the system reliability in a simple

and e�cient way. A possible system evolution is simulated by generating random

events (i.e. the random transition such as failure times of the system components)

and then estimating the status of the system based on the survival signature

(Equation 3). Then, counting the occurrence number of a specific condition (e.g.170

counting how many times the system is in working status), it is possible to estimate

the reliability of the system. In this section, three Monte Carlo simulation methods

adopting the survival signature are presented. The Algorithms 1 and 2 are used to

estimate the reliability of non-repairable systems while Algorithm 3 can be applied

for repairable systems and multi-state components as well.175

3.1. Algorithm 1

The first simulation method is based on the realizations of failure events of the

system’s components. For each failure event the status of the system is generated

based on the probability that the system is working knowing that a specific number

of components are working. Such probability is given by the survival signature180

as defined in Equation (1). The survival signature is computed only once before

starting the Monte Carlo simulation for instance using the approach presented in

[10]. Suppose there is a system with C components, K component types and mk
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components of type k. Hence, C =
PK

k=1 mk. We assume that components of type

k have the same failure time distribution and that there is no repair opportunity185

for the components. The reliability of the system can be estimated adopting the

following procedure:

Step 0. Initialise variables and counters (i.e. V r);

Step 1. Sample the failure times for each component, fi, for i = 1, 2, . . . , C. The

failure time of a component of type k is obtained by sampling from the190

corresponding CDF Fk;

Step 2. Order the sequence of failure times ti  ti+1 for i = 1, 2, . . . ,M . Hence, t1
represents the first failure of a system component, t2 represents the second

failure and so on;

Step 3. At each failure time, it is easy to calculate the number of components195

working for each component type: Ck(ti);

Step 4. Evaluate the survival signature which applies immediately after the cor-

responding failure indicated as �ti ⌘ �(C1(ti), C2(ti), . . . , CK(ti));

Step 5. Drawn from a Bernoulli distribution with probability 1 � �t1 the system

status X1 at time t1, if X1 = 1 the system fails;200

Step 6. If the system does not fail at t1, then consider t2. The probability that

the system functions at time t2 is �t2/�t1 = q2, given that it has survived

at time t1. So the system failure at time t2, X2, is drawn from a Bernoulli

distribution with the probability 1� q2;

Step 7. Repeat Step 6 to process other failure times: Set i = i+ 1 .205

Step 8. Store the status of the system over the time, as follows: V r(j) = V r(j) +

1 8j : j · dt < tf where tf is the system failure time and dt represents

the discretisation time.

The above procedure is repeated for N samples and the estimate of the survival

function is obtained by averaging the vector collecting the status of the system210

over the number samples: P (Ts > t) ⇡ V r(t)
N .

This method simulates one system failure time in each run (Steps 1-7). It

should be noted that with the assumption that the system fails if no component

functions, this implies that there is an i

⇤, less than or equal to C, such that qi⇤ = 0.

Hence the system fails certainly at this ti⇤ if it has not failed before.215

A pseudo-algorithms of the simulation method is shown in Algorithm 1.

3.2. Algorithm 2

It is possible to estimate the system reliability without the necessity to sample

the system status at each component failure time. The idea is to interpret the

survival signature as a normalised “production capability” of the system defined220
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by the Equation (1). For instance, if all the components are working, the system

output is 1. If all components are in failure status, the system output is 0. Hence,

instead of sampling the system state at each failure time, the survival signature is

evaluated to collect the “production level of the system”, i.e. the survival signature

is evaluated immediately after each sampled component failure time and collected225

in proper counters. This can be obtained adopting the Algorithm 2 derived from

the approach proposed by one of the authors used to estimated the production

availability of an o↵shore installation requiring the derivation of the complete

status of the system (based on the structural function and cut-sets) [16]. Here,

a novel algorithm is proposed to estimate the reliability adopting the survival230

signature and hence avoiding the tedious calculation of all the system status.

The reliability of the system can be estimated modifying the Steps 5-7 of the

Algorithm 1 as follows:

Step 5’. Compute the production level of the system by evaluating the survival

signature at each time of interest �ti . The probability that the system235

survives time t1 is �t1 ;

Step 6’. Collect the value of the survival signature in the vector V r representing

the survival function as follows: V r(j) = V r(j) + �ti 8j : j · dt < ti

where dt represents the discretization time.

The above procedure is repeated for N samples and the reliability of the system is240

computed by averaging the values of the survival signature: P (Ts > t) ⇡ 1
N V r(t).

The uses of the survival signature makes this approach extremely e�cient since

it does not require to sample the system output at each component transition

time (i.e. component failures). For each Monte Carlo simulation, this method

generates a random grid of time points at which to evaluate the survival signature245

representing the survival probability of the system at those times. Finally, the

survival function is obtained by directly averaging the survival signature over the

time.

A pseudo-algorithms of the simulation method for non-repairable components

is shown in Algorithm 2 and the flow chart of the simulation methods proposed250

for estimate the reliability of non-repairable systems is shown in Figure 1a.

Algorithm 2 follows the productivity idea, which gives each run a possible

survival function while Algorithm 1 gives a single system failure time in each

run. Therefore, Algorithm 1 is useful for inference where one explicitly wants the

simulated system failure times, whilst Algorithm 2 is e�cient for inference on the255

system survival function.

It can be shown that the variance of the survival function estimator at each
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Compute Survival Signature Φ

Sample component failure times

Update 
component status Ck

Start N Monte Carlo simulations

Process next time
i=i+1

System
working?

Collect system status
 (1s from 0 to ti)

Process failure time ti

Collect "production level" 
Φ(C1,C2, ..., Ck) for ti-1 to ti
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Sample system status 
Bernoulli distribution

Algorithm 1 Algorithm 2

Yes

No

Yes

Process next 
sample

Yes

Compute survival function

(a) Flow Chart of the Algorithms 1-2.

Compute Survival Signature Φ

Sample components transition times (Vt)

Update 
component status Ck

Start N Monte Carlo simulations

is ti smaller than
the mission time?

Identify smallest transition time
ti=min(Vt ) and component j

Collect "production level" 
Φ(C1,C2, ..., Ck) for ti-1 to ti

Algorithm 3

Yes

Process next 
sample

Sample next transition time 
for component j: Vt(j)

Compute the survival function

Yes

(b) Flow Chart of the Algorithm 3.

Figure 1: Flow Chart of the proposed algorithms.

time of interest obeys to the following formula [23]:

V ar[V r(t)] ⇡ 1

N

⇣
V r

2(t)� V r(t)
2
⌘

(4)

where N represents the number of samples and V r

2(t) the mean of the square

values of the survival function at time t and V r(t)
2
the square of the mean values

of the survival function at time t. Also, in Equation (4) it is common to substi-

tute N � 1 in place of N although the correction is negligible because N � 1.260

The Algorithm 2 tends to lead to better estimates of the system reliability when

compared to Algorithm 1, as detailed in Section 4.1 and shown in Figure 5.

3.3. Algorithm 3

Algorithm 2 can easily be extended to analysing systems with multi-state com-

ponents such as repairable systems. Assume that there are jk possible transitions265

for the components of type k. The probability of going from state s = l to state

s

0 = m in given by pklm = Pr(Xk = m | Xk = l). Let Fkl =
P

m Pr(Xk = m |
Xk = l) = Pr(· | Xk =; ) represents the CDF of the component of type k to exit

from its state l, i.e. to undergo a transition leading to a state m 6= l.

Let assume for the moment that there is only one possible transition to exit270

from the state s = l. For instance, a component in working status s = 1 can fail and

entering in the state s0 = 2; the component in the state s = 2 can only be repaired

and returning in the status s

0 = 1. Hence, pk21 = Pr(Xk = 2 | Xk = 1) = pk2

9



represents the probability of failure for component k, pk12 = pk1 the probability

of repair. The Monte Carlo simulation is performed as follows.275

Step 0. Initialise variables (i.e. told = 0) and counters (i.e. V t);

Step 1. Sample the transition times ti for i = 1, 2, . . . , C for each component

of the system from the corresponding CDF, Fkl, and stored in a vector

V t = {t1, t2, . . . , tM}, set told = 0;

Step 2. Identify the first transition time, i.e. min(V t) and the corresponding280

component z. Hence, t1 represents the first transition of the system, t2
the second transition and so on;

Step 3. At each transition time ti, calculate the number of components in work-

ing status (i.e. Cti = (C1, C2, . . . , CK)). The corresponding “production

level” �ti is obtained by evaluating the survival signature for the number285

of components in working status;

Step 4. Collect the value of the survival signature at time ti, �ti , in a counter V r

representing the survival function as follows: V r(j) = V r(j) + �ti 8j :

told  j · dt < min(V t).

Step 5. Set told = min(V t) and sample the new status of the component z from290

the probability mass function P (s = m) =
Fklm(ti)
Fkl(ti)

;

Step 6. Update the vector of transition time V t by sampling the next transition

time t

0
z of the component z of type k in status m from Fkm. Hence:

V t(z) = tz + t

0
z;

Step 7. If min(V t) < TF (i.e. the final time), return to point 2.295

The above steps are repeated for N samples and the survival function obtained by

averaging the vector V r over the number of samples. The flow chart of the pro-

posed algorithm is shown in Figure 1b and the pseudo-code is shown in Algorithm

3.

3.4. Reliability analysis of systems with imprecision300

Reliability analysis of complex systems requires the probabilistic characteri-

zation of all the possible component transitions. This usually requires a large

data-set that is not always available. In fact, it might not be possible to unequiv-

ocally characterize some component transitions due to lack of data or ambiguity.

To avoid the inclusion of subjective knowledge or experts opinions, the impre-305

cision and vagueness of the data can be treated by using concepts of imprecise

probabilities.

Imprecise probability combines probabilistic and set theoretical components

in a unified construct (see e.g. [24, 25, 26]). It allows a rational treatment of

the information of possibly di↵erent forms without ignoring significant informa-310

tion, and without introducing unwarranted assumptions. For instance, if only few

10



data points are available it might be di�cult to identify the parameters and the

form of a distribution [27]. An unknown value of a (deterministic) parameter is

often modelled using a uniform distribution based on the principle of maximum

entropy should be model as interval and not as distribution [28, 29]. In the analy-315

sis, imprecise probabilities combine, without mixing, randomness and imprecision.

Randomness and imprecisions are considered simultaneously but viewed separately

at any time during the analysis and in the results. The probabilistic analysis is

carried out conditional on the elements from the sets, which leads eventually to

sets of probabilistic results, see e.g. [30, 31, 32, 33]).320

Considering the imprecision in the component parameters will lead to bounds

of survival function of the systems and it can therefore be seen as a conservative

analysis, in the sense that it does not make any additional hypothesis with regard

to the available information. In some instances analytical methods will not be ap-

propriate means to analyse a system. Again, simulation methods based on survival

signature can be adopted to study systems considering parameter imprecision. A

naive approach consists in adopting a double loop sampling where the outer loop

is used to sample realization in the epistemic space. In other words, each real-

ization in the epistemic space defines a new probabilistic model that needs to be

solved adopting the simulation methods proposed above. Then the envelop of the

system reliability is identified. However, since almost all the systems are coherent

(system is coherent if each component is relevant, and the structure function is

non decreasing), it is only necessary to compute the system reliability twice, using

the lower and upper bounds for all the parameters, respectively. As shown in Refs.

[7] and [9] assuming the components can not be repaired or replaced, the lower

bound of the survival function can be computed as follows:

STS
(t) = P (TS > t) =

m1X

l1=0

...

mKX

lK=0

�(l1, ..., lK)
KY

k=1

D(Ck(t) = lk) (5)

where Ck(t) denotes the number of k components working at time t, and

D(Ck(t) = lk) = P (Ck(t)  lk)� P (Ck(t)  lk � 1). (6)

While the corresponding upper bound of the survival function is:

STS (t) = P (TS > t) =
m1X

l1=0

...

mKX

lk=0

�(l1, ..., lK)
KY

k=1

D(Ck(t) = lk) (7)
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Figure 2: Bridge system with two types of components. The numbers inside the boxes indicate

the component type. The numbers above the boxes indicate the component indices.

Table 1: Survival signature of the bridge system of Figure 2

l1 l2 �(l1, l2)
0 [0, 1, 2, 3] 0
[1, 2] [0, 1] 0
1 2 1/9
1 3 1/3
2 2 4/9
2 3 2/3
3 [0, 1, 2, 3] 1

where

D(Ck(t) = lk) = P (Ck(t)  lk)� P (Ck(t)  lk � 1). (8)

4. Numerical Examples

4.1. Bridge system with not repairable components

The purpose of this numerical example is to verify the proposed algorithms

since for this simple problem analytical solutions are available. The system con-

figuration is represented in Figure 2 , k = 1, 2. The bridge system comprises of325

six components, which belonging to two types. It has no series section or parallel

section which can enable simplification. The survival signature can easily be com-

puted either manually or using the R-package ReliabilityTheory [19]. The values of

the survival signature are reported in Table 1 where l1 and l2 indicate the number

of working component of type k = 1 and k = 2, respectively and �(l1, l2) is the330

survival signature of the bridge system. In this example the failure times of both

component type 1 and 2 are obeying to exponential distributions with parameters

�1 = 0.8 and �2 = 1.5, respectively, i.e. the components have a constant mean

time to fail. It is also assumed that the component once failed can not be repaired.

The survival function of the bridge system is then calculated by means of the

Algorithms 1 and 2. The resulting functions are then compared with the analytical
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Figure 3: Survival function of the bridge system calculated by two simulation methods and

analytical method, respectively.

solution. The survival function can be obtained from Equations (3) and (2):

P (TS > t) =
3X

l1=0

3X

l2=0

�(l1, l2)

✓
3

l1

◆
[1� e

�0.8t]3�l1 [e�0.8t]l1⇥

✓
3

l2

◆
[1� e

�1.5t]3�l2 [e�1.5t]l2 (9)

The results of the reliability analysis are shown in Figure 3, which shows a perfect335

agreement of the simulation methods with the analytical solution. The Monte

Carlo simulation has been performed using N = 5000 samples and a discretisation

time dt = 0.0015. The discretization time is only required to collect the numerical

results (i.e. survival function) although the simulation of the system is continuous

with respect to the time. Figure 4 shows an example of system evolution as a340

function of time with associate number of working component Ck. In order to

show the e�ciency of the proposed algorithm, the evolution of the variance of

the estimators as a function of number of samples has been computed and shown

in Figure 5. Algorithm 2 shows a smaller variance compared to Algorithm 1, in

particular when small sample sizes are used.345

The bridge system is also analysed in presence of imprecision on the parameters

of the failure distribution time. In this case it is assumed that the parameters of

the component failure time are not known precisely. The bounds of the parameter

distributions are �1 = [0.4, 1.2] and �2 = [1.3, 2.1]. The bounds of the survival

functions are computed by means of the Algorithms 1 and 2. Since this system350
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Figure 4: Realization of the number of working component Ck as a function of time.
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Figure 5: Variance of the estimator of the survival function.

is a coherent system, only two numerical simulations are required, i.e. the lower

bound of the survival function is computed using the lower bounds of the param-

eter distribution and the upper bound is obtained adopting the upper bounds of

the paramters �1 and �2. The results are then compared to the analytical solution

adopting the method presented in [9]. The results of the simulation have been fur-355

ther verified by estimating the survival function adopting a double loop approach.

The double loop sampling involves two layers of sampling: the outer loop, called

the parameter loop, samples values from the set of distribution parameters; while

the inner loop computes the survival function stating for the system knowing the

precise probability distribution functions. Then, the lower and upper bounds of360

the survival function have been computed at each time of interest. The double

loop Monte Carlo analysis has been performed using N = 5000 samples for the
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Figure 6: Bounds of the survival function of the bridge system calculated by means of the Algo-

rithm 1 and 2 using bounds of the distribution parameter (Simulation Extreme) and compared

with analytical solutions and the double loop approach.

inner loop and 1000 samples for the parameter loop. The results are collected in

a counter using a discretisation time step dt = 0.0015.

The results of the simulation considering imprecision are reported in Figure 6365

showing a perfect agreement with the analytical solutions.

4.2. Bridge system with repairable components

In this example the components of the bridge system shown in Figure 2 are

considered repairable. Hence, the components can be in two di↵erent states: work-

ing (s = 1) and not-working (s = 2). Two cases are analysed considering di↵erent370

distributions for the repair times as shown in Table 2. Analytical solutions are

Table 2: Parameters of repairable components in the bridge system. State 1: Working, State 2:

Not-working.

C. type (k) Transition (s) Distribution Parameters
CASE A

1 1! 2 Exponential (�) (0.8)
1 2! 1 Weibull (scale,shape) (0.9, 1.2)
2 1! 2 Exponential (�) (1.5)
2 2! 1 Weibull (scale,shape) (1.3, 1.8)

CASE B
1 1! 2 Exponential (�) (0.8)
1 2! 1 Uniform (min,max) (0.2, 0.6)
2 1! 2 Exponential (�) (1.5)
2 2! 1 Uniform (min,max) (0.1, 0.2)

not available for analysing repairable systems and the system can only be analysed

by adopting simulation methods such as the Algorithm 3. The estimated survival

function P (TS > t) is shown in Figures 8 and 10 for the CASE A and B, respec-
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tively. An example of the evolution of the system is represented in Figure 7. The375

survival function reach a stationary level that depends on the ratio between the

mean failure time and mean repair time.

X1
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X3

time

X6
X5

t1 t2 ti

(3,3) (3,2) (1,2) (0,2)C (2,1)

tF
Figure 7: Realization of the number of working component Ck as a function of time.
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Figure 8: CASE A: Survival function of the bridge system with repairable components calculated

by means of the Algorithm 3 and a simulation method based on structure function.

It is important to notice that the proposed approach (Algorithm 3) does not

require the introduction of additional component types to analyse a system with

repairable components. In order to verify the correctness of Algorithm 3 which380

is based on survival signature, the results have been compared with the solution

of simulation method based on the structural function. The minimum path sets

of the Bridge system shown in Figure 2 are [1,2,3], [1,2,5,6], [1,3,4,5] and [1,4,6].

N = 5000 samples have been used to estimate the reliability of the system and the

results shown in Figures 8 and 10 are in perfect agreement with the results obtained385

using Algorithm 3. Figures 9 and 11 compare the variance of the estimator as a
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Figure 9: CASE A: Variance of the estimator for the bridge system with repairable components

calculated by means of the Algorithm 3 and a simulation method based on structure function.

0 1 2 3 4 5
Time

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

Bridge System with repairable components: CASE B

Survival Signature
Structure Function

Figure 10: CASE B: Survival function of the bridge system with repairable components calculated

by means of the Algorithm 3 and a simulation method based on structure function.

function of the number of samples adopting the Algorithm 3 based on survival

signature and Monte Carlo method based on structural function.

4.3. Grey System

In order to illustrate the e�ciency and the applicability of the proposed sim-390

ulation approaches a complex system composed by 8 components of 5 types is

analysed. The component failure types and distribution parameters are shown in

Table 3, again a↵ected by imprecision. In addition, it is assumed that the exact

configuration of part of the system is unknown as shown in Figure 12, i.e. it might

be composed by an additional component of type 1 or two components of type 2395

connected in parallel. However, the system can still be described using the sur-

vival signature although a↵ected by imprecision [6]. This has the advantages of

more realistic reflections of uncertainty on system functioning and the proposed
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Figure 11: CASE B: Variance of the estimator with repairable components calculated by means

of the Algorithm 3 and a simulation method based on structure function.

Figure 12: Grey system composed by eight components of 5 types with imprecision of the exact

system configuration.

simulation methods are also directly applicable . Table B.7 shows the imprecise

structural signature. For instance, if 2 components of type 1 and 1 component of400

type 3 are working the system can be either in a failing state or working with a

probability of 0.5 (if the unknown part of the system is composed by an additional

component of type 1). Since the system in Figure 12 is a coherent system, Al-

gorithm 2 is used to estimated the bounds of the survival function by collecting

the bound values (i.e. intervals) of the survival signature during the Monte Carlo405

simulation. In other words, the failure times of the components are sampled using

the bounds of the failure time distribution as shown in the previous Section. In

addition, in the Step 5’ of Algorithm 2, the values of the survival signatures �ti

and �ti are evaluated and in the Step 6’ their values collected in two counters

V r(t) = V r(t)+�ti and V r(j) = V r(j)+�ti , 8j : j ·dt < ti. Hence, no additional410

Monte Carlo simulation are required to estimate the bounds of the survival func-

tion (the system reliability). If the component failure times are not a↵ected by
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Table 3: Components failure types and distribution parameters for system of Fig.12

Component type Distribution Parameters
1 Weibull (scale,shape) ([1.6, 1.8], [3.3, 3.9])
2 Exponential (�) ([2.1, 2.5])
3 Weibull (scale,shape) ([3.1, 3.3], [2.3, 2.7])
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Figure 13: Upper and lower bounds of survival function for the system in Fig 12.

imprecision, only one Monte Carlo simulation would have been required to analyse

the system with imprecision in the survival signature. In principle, Algorithm 1

can also be used for the estimation of the reliability bounds although it requires415

some modifications in the sampling of the system status.

The upper and lower bounds of survival function for the system with impreci-

sion both in the survival signature and on the component distribution parameters

are shown in Figure 13. The simulations have been performed using 5000 sam-

ples. This example shows the flexibility and the applicability of the simulation420

approaches proposed for the analysing of a systems a↵ected by imprecision where

no analytical solutions are available.

4.4. Complex System

In order to illustrate the e�ciency and the applicability of the proposed simu-

lation approaches, a complex system composed by 14 repairable components of 6425

di↵erent types is analysed. The reliability block diagram of the system is shown

in Figure 14 and the parameters of the components are reported in Table 4. The

survival signature of this system can be referred in Appendix B.

First, the system is analysed without considering the repairs (i.e. transition

2 ! 1 is not allowed). Hence, the reliability of the system can be estimated430

adopting the proposed Algorithms 1 and 2. The results are shown in Figure 15

and Figure 16 for the case of non-repairable components with precise parameters

and with imprecise parameters, respectively.

In case of repairable components or component with more than 1 allowed tran-
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Figure 14: Reliability block diagram of the 16 component system.
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Figure 15: Survival function of the complex system calculated by Algorithms 1 and 2 and com-

pared with analytical solution

.

sition, Algorithm 3 needs to be used. The proposed approach is generally applica-435

ble and allows to estimate the reliability of complex system based on the survival

function. Figure 17 shows the survival function for the case of repairable compo-

nents. The black line shows the results when the parameters of the failure and

repair distributions are precisely known.

When imprecisions are considered within repairable system, the bounds of the440

survival function can be estimated by means of only two simulations as shown in

Figure 6. These analyses require the calculation of the cumulative distribution

function (CDF) bounds for component failure and repair, which are expressed as

[F , F ] and [R,R] respectively. Then, the lower bound of the survival function

is estimated by considering the upper bound of the failure distributions and the445

lower bound for the repair distributions (F ,R) while the upper bound is obtained

adopting the lower bound for the failure distribution and the upper bound for the

repair distribution (F ,R). The interval of the survival function can be seen in

Figure 17.
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Figure 16: Bounds of survival function of the system with imprecision.
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Figure 17: Survival function of the repairable complex system with imprecise and precise param-
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Table 4: Components failure (transition 1 ! 2) and repair (transition 2 ! 1) data for each

component type of the complex system.

Component Transition Distribution Precise Imprecise
type (k) (s) parameters parameters
1 1! 2 Exponential

(�)
(2.3) ([2.1, 2.5])

1 2! 1 Uniform
(min,max)

(0.4, 0.6) ([0.3, 0.5], [0.5, 0.7])

2 1! 2 Exponential
(�)

(1.2) ([0.9, 1.4])

2 2! 1 Uniform
(min,max)

(0.9, 1.1) ([0.8, 1.0], [1.0,1.2])

3 1! 2 Weibull
(scale,shape)

(1.7, 3.6) ([1.6, 1.8], [3.3, 3.9])

3 2! 1 Uniform (0.6, 0.8) ([0.5, 0.7], [0.7, 0.9])
4 1! 2 Lognormal

(µ,�)
(1.5, 2.6) ([1.3, 1.8], [2.3, 2.9])

4 2! 1 Uniform
(min,max)

(1.0, 1.2) ([0.9, 1.1], [1.1, 1.3])

5 1! 2 Weibull
(scale,shape)

(3.2, 2.5) ([3.1, 3.3], [2.3, 2.7])

5 2! 1 Uniform
(min,max)

(1.2, 1.4) ([1.1, 1.3], [1.3, 1.5])

6 1! 2 Gamma
(scale,shape)

(3.1, 1.5) ([2.9, 3.3], [1.3, 1.8])

6 2! 1 Uniform
(min,max)

(1.1, 1.3) ([1.0, 1.2], [1.2, 1.4])

In terms of computational e↵ort of the analysis, the calculation of the survival450

signature of the complex system using the R-package ReliabilityTheory requires

only a few seconds on a common desktop computer.

The performance for very large numbers of components is an important topic

for future research where it is important to separate computation of survival sig-

nature from the simulation of the system. The first part can already be done455

for quite substantial systems using the approach proposed in [10, 34] but which

remains also a topic for research. The simulation of the system given the survival

signature is almost independent on the number of components. In fact, the only

parts of the simulation approach that scale with the number of components are

the Steps 1 and 2 of the algorithm. In these steps the failure time of components460

is sampled and then sorted. However, the computational cost of this part is negli-

gible (fraction of seconds) up to million of components as shown in Figure 18. The

figure shows the computational cost of sampling the failure time of components
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Figure 18: Scalability of the simulation algorithm with respect the number of components (Steps

1 and 2 only).

from exponential distribution (Step 1 of the Algorithm) and then sorting all the

sampled times (Step 2). Steps 3-7 depend on the reliability of the components465

and the time of interest (Tf ) and scale linearly with the number of failures oc-

curring before the time of interest. Clearly the total simulation time depends on

the number of samples used. For the examples presented, the proposed simulation

methods allow to estimate the survival function in less than 20 seconds using 5000

samples on a common desktop.470

5. Conclusions

The survival signature has been shown to be a practical method for performing

reliability analysis of complex systems with multiple component types. However,

analytical methods are applicable only in few cases or adopting di↵erent levels of

simplifications and assumptions.475

In this paper, e�cient simulation methods have been proposed for system relia-

bility analysis. The methods proposed are based on survival signature, which need

to be computed only once making the analysis very e�cient. The proposed simula-

tion methods are generally applicable and they can be used to analyse realistic and

complex systems with non-repairable and repairable components. Recently, a case480

has been made for allowing the structure function for system reliability to be a,

possibly imprecise, probability instead of a deterministic binary function [6]. This

has advantages of more realistic reflections of uncertainty on system functioning

and opens many interesting research questions. Such more general probabilistic

structure functions can also be used in the survival signature in a straightforward485
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manner, hence the simulation methods presented in this paper can also directly

be applied.

The feasibility and e↵ectiveness of the presented approaches have been illus-

trated with two numerical examples, the results indicate that simulation methods

based on survival signature are e�cient for analysing reliability on complex sys-490

tems.
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Appendix A. Algorithms

The Algorithms 1-3 of the proposed methods are shown in this appendix. In the Algorithms

the letter V is used to represent vectors while the letter M represents matrices. The symbol ⇠
is used represents sampling from given distribution.

Appendix B. Survival Signature500

The tables in this appendix show the survival signature of the complex system of Figure 14.

The rows with survival signature values equal to either 1 or 0 have been omitted.
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Algorithm 1

Require: N: Num. of simulations; dt : Discretisation time; Fk: CDF failure
times, V c = [m1,m2, . . . ,mk]: Number of components per type; Nt number of
discretisation steps,
Set Vr(1:Nt)=0 . Initialise counter
Set C=sum(Vc) . Compute total number of components
Set � = Survival signature . Compute the survival signature
for n = 1 : N do . loop over number of samples

for k = 1 : K do . loop over number of component type
for j = 1 : mk do . loop over number of components

Mf(j, k) ⇠ Fk . Sample failure time component j of type k

end for

end for

[V t, V i] = sort(Mf) . Reorder transition times (V t)
. Return component index vector (V i)

�Old = 1 . Initialize variables
for m = 1 : C do . loop over number of components

V c(V i(m)) = V c(V i(m))� 1 . Update number working components
�Now = �(V c)
q  �Now/�Old

if rand(1) < q then . system working
�Old = �New

else

for all j : j · dt < V i(m) do
V r(m) = V r(m) + 1 . Update counter

end for

Break . Process next sample
end if

end for

V r = V r/N . Normalise counter
end for
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Algorithm 2

Require: N: Num. of simulations; dt : Discretisation time; Fk: CDF failure
times, V c = [m1,m2, . . . ,mk]: Number of components per type; Nt number of
discretisation steps,
Set Vr(1:Nt)=0 . Initialise counter
Set C=sum(Vc) . Compute total number of components
Set � = Survival signature . Compute the survival signature
for n = 1 : N do . loop over number of samples

for k = 1 : K do . loop over number of component type
for j = 1 : mk do . loop over number of components

Mf(j, k) ⇠ Fk . Sample failure time component j of type k

end for

end for

[V t, V i] = sort(Mf) . Reorder transition times (V t)
. Return component index vector (V i)

z = 1 . Initialize index
for m = 1 : C do . loop over number of components

V c(V i(m)) = V c(V i(m))� 1 . Update number working components
while z · dt  V t(m) do

V r(z) = V r(z) + �(V c) . Update counter
z = z + 1 . Update index

end while

end for

V r = V r/N . Normalise counter
end for
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Algorithm 3

Require: N: Num. of simulations; dt : Discretisation time; Fk: CDF failure
times, V c = [m1,m2, . . . ,mk]: Number of components per type; Nt number of
discretisation steps,
Set Vr(1:Nt)=0 . Initialise counter
Set C=sum(Vc) . Compute total number of components
Set � = Survival signature . Compute the survival signature
Set Vs = Initial component Status . System initial conditions
for n = 1 : N do . loop over number of samples

for i = 1 : C do . loop over number of components
V t(i) ⇠ Fkl . Sample transition time component z of type k in state l

end for

u = 1 . Initialise counter
while min(V t)  Nt ⇤ dt do

[tz, z] = min(V t) . Identify first system transition tz

. and corresponding component index z

Identify component type k of the component z
while u · dt  V j do

V r(u) = V r(u) + �(V k) . Update counter
u u+ 1 . Update index

end while

if V s(z) is working then

V c(k) = V c(k)� 1 . Update component counter
Set V s(z) NOT working . Update component status

else

V c(k) = V c(k) + 1 . Update component counter
Set V s(z) working . Update component status

end if

Set V t(z) ⇠ Fkl . Sample new transition time component z
. of type k in the state l = V j(z)

end while

end for

V r = V r/N . Normalise counter
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Table B.5: Survival signature of a complex system in Figure 14; rows with �(l1, l2, l3, l4, l5, l6) =
0 and �(l1, l2, l3, l4, l5, l6) = 1 are omitted

l1 l2 l3 l4 l5 l6 �(l1, l2, l3, l4, l5, l6)
3 1 0 [0,1] [0,1] 1 1/20
3 1 0 1 1 0 1/20
3 1 1 0 [0,1] 1 1/20
3 1 1 1 0 1 1/20
3 1 2 [0,1] 0 1 1/20
3 1 2 0 1 0 1/20
3 1 1 [0,1] 1 1 1/10
3 1 1 1 1 0 1/10
3 1 2 0 1 1 1/10
3 1 2 1 1 [0,1] 1/10
3 2 0 0 [0,1] 1 1/10
3 2 0 1 0 1 1/10
3 2 0 1 1 [0,1] 1/10
3 2 1 [0,1] 0 1 1/10
3 2 1 0 1 0 1/10
3 2 2 [0,1] 0 1 1/10
3 2 2 0 1 0 1/10
3 3 0 [0,1] [0,1] 1 3/20
3 3 0 1 1 0 3/20
3 3 [1,2] [0,1] 0 1 3/20
3 3 1 0 1 0 3/20
3 3 2 0 1 0 3/20
3 4 0 [0,1] [0,1] 1 1/5
3 4 0 1 1 0 1/5
3 4 [1,2] [0,1] 0 1 1/5
3 4 1 0 1 0 1/5
3 4 2 0 1 0 1/5
4 1 0 [0,1] [0,1] 1 1/5
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Table B.6: Survival signature of a complex system in Figure 14; rows with �(l1, l2, l3, l4, l5, l6) =
0 and �(l1, l2, l3, l4, l5, l6) = 1 are omitted

l1 l2 l3 l4 l5 l6 �(l1, l2, l3, l4, l5, l6)
4 1 0 1 1 0 1/5
4 1 [1,2] [0,1] 0 1 1/5
4 1 1 0 1 0 1/5
4 1 2 0 1 0 1/5
3 2 [1,2] [0,1] 1 1 4/15
3 2 1 1 1 0 4/15
3 2 2 1 1 0 4/15
4 2 [0,1,2] [0,1] 0 1 11/30
4 2 0 0 1 1 11/30
4 2 0 1 1 [0,1] 11/30
4 2 1 0 1 0 11/30
4 2 2 0 1 0 11/30
3 [3,4] 1 [0,1] 1 1 2/5
3 3 1 1 1 0 2/5
3 3 2 0 1 1 2/5
3 3 2 1 1 [0,1] 2/5
3 4 1 1 1 0 2/5
3 4 2 [0,1] 1 1 2/5
3 4 2 1 1 0 2/5
4 1 [1,2] [0,1] 1 1 2/5
4 1 [1,2] 1 1 0 2/5
4 3 0 [0,1] [0,1] 1 1/2
4 3 0 1 1 0 1/2
4 3 [1,2] [0,1] 0 1 1/2
4 3 1 0 1 0 1/2
4 3 2 0 1 0 1/2
5 1 0 [0,1] [0,1] 1 1/2
5 1 0 1 1 0 1/2
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Table B.7: Imprecise survival signature of the system of Fig.12, �(l1, l2, l3) = 0 and �(l1, l2, l3) =
1 for both lower and upper bounds are omitted.

l1 l2 l3 [�(l1, l2, l3)]
1 1 1 [1/8,1/8]
1 1 2 [1/4,1/4]
1 2 1 [1/5,1/4]
1 2 2 [3/7,1/2]
1 3 1 [1/4,3/8]
1 3 2 [1/2,1/2]
1 4 1 [1/4,1/2]
1 4 2 [1/2,1/2]
2 0 1 [0,1/2]
2 0 2 [0,1]
2 1 1 [1/4,3/4]
2 1 2 [1/2,1]
2 2 1 [1/2,1]
2 3 1 [3/4,1]

Table B.8: Survival signature of a complex system in Figure 14; rows with �(l1, l2, l3, l4, l5, l6) =
0 and �(l1, l2, l3, l4, l5, l6) = 1 are omitted

l1 l2 l3 l4 l5 l6 �(l1, l2, l3, l4, l5, l6)
5 1 [1,2] [0,1] 0 1 1/2
5 1 1 0 1 0 1/2
5 1 2 0 1 0 1/2
4 4 0 [0,1] [0,1] 1 3/5
4 4 0 1 1 0 3/5
4 4 [1,2] [0,1] 0 1 3/5
4 4 1 0 1 0 3/5
4 4 2 0 1 0 3/5
4 2 [1,2] [0,1] 1 1 2/3
4 2 1 1 1 0 2/3
4 2 2 1 1 0 2/3
4 3 [1,2] [0,1] 1 1 4/5
4 3 1 1 1 0 4/5
4 3 2 1 1 0 4/5
4 4 [1,2] [0,1] 1 1 4/5
4 4 1 1 1 0 4/5
4 4 2 1 1 0 4/5
5 2 0 [0,1] [0,1] 1 5/6
5 2 0 1 1 0 5/6
5 2 [1,2] [0,1] 0 1 5/6
5 2 [1,2] 0 1 0 5/6
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