Adhesive capsulitis of the shoulder and diabetes: a meta-analysis of prevalence

Hani Zreik, N., Malik, R.A. and Charalambous, Charalambos P.
Available at http://clok.uclan.ac.uk/26358/

It is advisable to refer to the publisher’s version if you intend to cite from the work. 10.32098/mltj.01.2016.04

For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/
Adhesive capsulitis of the shoulder and diabetes: a meta-analysis of prevalence

Nasri Hani Zreik1
Rayaz A. Malik2,3
Charalambos P. Charalambous1,4,5

1 Department of Orthopaedics, Blackpool Victoria Hospital, Blackpool, UK
2 Weill Cornell Medical College, Doha, Qatar
3 Centre for Endocrinology & Diabetes, Institute of Human Development, University of Manchester, Manchester, UK
4 School of Medicine, University of Central Lancashire, Preston, UK
5 Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK

Corresponding author:
Charalambos P. Charalambous
Department of Orthopaedics, Blackpool Victoria Hospital
Whinney Heys Rd
Blackpool, Lancashire FY3 8NR, UK
Email: bcharalambos@hotmail.com

Summary

Background: adhesive capsulitis (AC) results in progressive painful restriction in range of movement and can reduce function and quality of life. Whilst it has been associated with diabetes mellitus (DM), there is considerable variation in the reported prevalence of AC in the diabetic population. The aim of this study is to determine through meta-analysis the prevalence of AC in DM and examine whether it is influenced by type of DM or insulin therapy. We also aim to further establish the prevalence of DM in patients presenting with AC.

Methods: we conducted a literature search for terms regarding AC and DM on Embase and Pubmed NCBI.

Results: of 5411 articles identified, 18 were selected. Meta-analysis showed that patients with DM were 5 (95% CI 3.2-7.7) times more likely than controls to have AC. The overall prevalence of AC in DM was estimated at 13.4% (95% CI 10.2-17.2%). Comparison of prevalence in patients on insulin vs other treatments showed no significant difference between the two. Meta-analysis estimated the prevalence of DM in AC at 30% (95% CI 24-37%).

Conclusion: to our knowledge this is the first meta-analysis to estimate the overall prevalence of diabetes in a population with AC. A high prevalence of AC exists in DM and equally a high prevalence of DM is present in AC. Screening for DM should be considered in patients presenting with AC.

KEY WORDS: idiopathic adhesive capsulitis, frozen shoulder, diabetes, prevalence.

Level of Evidence: Level III (meta-analysis).

Introduction

Adhesive capsulitis (AC) is a self-limiting condition. Patients typically present with an atraumatic history of progressive painful restriction in range of movement of the gleno-humeral joint. They exhibit a capsular pattern of restriction with external rotation being the most restricted followed by abduction in the plane of the scapula and then flexion. Codman in 1934 described a diagnostic criterion comprising of idiopathic onset, painful restriction of all gleno-humeral movements with limitation of flexion and external rotation with a normal radiograph. AC is more common in women with a peak age of onset of 56 years. It can have a variable duration but usually lasting between 1-3 years without intervention, and can impact on patients’ activities of daily living and reduce quality of life. Resolution may range from complete to varying degrees of limitation in shoulder movement.

Management of AC may be operative or non-operative, though the best management option remains controversial. In a survey of upper limb orthopaedic surgeons in the United Kingdom, those preferring non-operative management favoured physiotherapy, whereas those preferring operative intervention favoured arthroscopic arthrolsis. Preference of management was largely based on surgeon experience and training as opposed to strong scientific evidence.

Although the aetiology of AC remains unknown, several risk factors are associated with this condition. These include previous trauma, increasing age, female gender, dyslipidaemia, hypertension, thyroid dysfunction and diabetes mellitus (DM). Sung et al. in 2014 found a statistically significant association of idiopathic-
ic AC with hypercholesterolaemia and inflammatory lipoproteinaemias, though it was not possible to establish a cause-effect relationship.

The prevalence of AC in the general population is classically quoted as 2%, though it has been suggested that the real figure is closer to 0.75%\(^1\). However AC has a more variable prevalence in the diabetic population, in the reported literature.

Understanding prevalence rates of AC in DM, and DM in AC is important in guiding physicians and surgeons managing these conditions. It may guide research studies evaluating interventions in AC as to the inclusion of diabetic patients so as to reduce the risk of bias. Furthermore understanding the relationship between AC and DM may provide insights into the pathogenesis of AC.

In this study we review the available published literature, to estimate the prevalence of AC in DM and determine whether rates are influenced by DM type and treatment. We also aim to identify the prevalence of DM in AC.

Methodology

We conducted a literature search on 12\(^{th}\) February 2014 using Embase and Pubmed NCBI (National Centre of Biotechnology Information). The search terms used were 'frozen shoulder,' 'adhesive capsulitis AND shoulder'. In the search, there were no re-

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>N</th>
<th>Prevalence (Event Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidwai et al. 2013(^{20})</td>
<td>India</td>
<td>413</td>
<td>11% (in DM) p=0.001 (T2DM vs Controls)</td>
</tr>
<tr>
<td>Attar 2012(^{21})</td>
<td>Jeddah, Saudi Arabia</td>
<td>252</td>
<td>6.70%</td>
</tr>
<tr>
<td>Mathew et al. 2011(^{22})</td>
<td>India</td>
<td>310</td>
<td>16.45%</td>
</tr>
<tr>
<td>Ray et al. 2011(^{23})</td>
<td>Calcutta, India</td>
<td>100</td>
<td>18%</td>
</tr>
<tr>
<td>Dehghan et al. 2010(^{24})</td>
<td>Yazd, Iran</td>
<td>510</td>
<td>13.30% (in DM)</td>
</tr>
<tr>
<td>Gupta et al. 2008(^{25})</td>
<td>Udupi, India</td>
<td>233</td>
<td>29.61%</td>
</tr>
<tr>
<td>Aydeniz et al. 2008(^{26})</td>
<td>Turkey</td>
<td>203</td>
<td>14.7 (in DM) p=0.009 (T2DM vs non-DM)</td>
</tr>
<tr>
<td>Thomas et al. 2007(^{27})</td>
<td>Scotland</td>
<td>1067</td>
<td>4.4% p=0.005</td>
</tr>
<tr>
<td>Sarkar et al. 2003(^{28})</td>
<td>Kolkata, India</td>
<td>1660</td>
<td>17.9 (in DM) p<0.001 (DM vs non-DM)</td>
</tr>
<tr>
<td>Cagliero et al. 2002(^{29})</td>
<td>Massachusetts</td>
<td>300</td>
<td>12% (DM vs non-DM)</td>
</tr>
<tr>
<td>Arkkila et al. 1996(^{30})</td>
<td>Finland</td>
<td>425</td>
<td>14% Overall 10% T1DM 22% T2DM</td>
</tr>
<tr>
<td>Pal et al. 1986(^{31})</td>
<td>Newcastle, UK</td>
<td>184</td>
<td>19% (in DM)</td>
</tr>
<tr>
<td>Bridgman 1972(^{32})</td>
<td>London, UK</td>
<td>1400</td>
<td>10.8% (in DM) p<0.005 (DM vs non-DM)</td>
</tr>
</tbody>
</table>

Table 2. Summary of studies identifying DM in populations with AC.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>N</th>
<th>Prevalence (Event Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. 2013(^{33})</td>
<td>Australia</td>
<td>263</td>
<td>20% (in AC) p=0.005 (AC vs non-AC)</td>
</tr>
<tr>
<td>Tighe and Oakley 2008(^{34})</td>
<td>USA</td>
<td>88</td>
<td>38.6%</td>
</tr>
<tr>
<td>Milgrom et al. 2008(^{14})</td>
<td>Israel</td>
<td>224</td>
<td>29%</td>
</tr>
<tr>
<td>Rauoof et al. 2004(^{17})</td>
<td>Kashmir, India</td>
<td>100</td>
<td>27%</td>
</tr>
<tr>
<td>Withrington et al. 1985(^{35})</td>
<td>London, UK</td>
<td>60</td>
<td>40%</td>
</tr>
</tbody>
</table>
Statistical analysis

A random-effects model was used to perform meta-analysis. Confidence intervals (95%) and summary risk ratios were calculated. Heterogeneity was assessed using τ^2, I^2, Q and p values. The level of significance was fixed at $p<0.05$. The data was analysed using Comprehensive meta-analysis version 2 (Biostat; Englewood, New Jersey, USA).

Results

Our initial search identified 5411 articles of which 18 were included for analysis (Fig. 1). Table 1 identifies the prevalence of AC in diabetes and Table 2 demonstrates the prevalence of DM in AC.

Meta-analysis

Thirteen studies examined the prevalence of AC in DM and meta-analysis showed an overall prevalence of AC in diabetics of 13.4% (95% CI 10.2-17.2%, Q=130.4, df12, $p<0.001$, $I^2=90.8$, $\tau^2=0.27$) (Fig. 2). Funnel plot analysis did not show an obvious small study effect (Fig. 3).

Three studies compared AC prevalence in patients with T1DM and T2DM. Meta-analysis of AC prevalence showed no significant difference between T1DM and T2DM (5.8%, 95% CI 1.2-24.5 vs 12.4 95% CI 3-38.9, $Q=0.5$, $p=0.47$) (Fig. 4).

Two older studies compared AC prevalence in populations designated as having IDDM and NIDDM. Meta-analysis of AC prevalence showed no significant difference between IDDM and NIDDM (18.2%, 95% CI 10.6-29.3 vs. 11.8, 95% CI 6.9-19.6, $Q=1.3$, $p=0.26$) (Fig. 5). Similarly, meta-analysis of AC prevalence in patients on insulin treatment compared to NIDDM showed no significant difference (13.5%, 95% CI 8.3-21.3 vs. 12.3, 95% CI 5.9-23.6, $Q=0.05$, $p=0.8$) (Fig. 6).

Five studies compared AC prevalence in patients with DM compared to controls. The study by Sarkar et al. (2005) used patients attending a rheumatology clinic as controls and as many rheumatological conditions can produce shoulder pathology that may be mistaken for AC, we excluded this study from the analysis. Meta-analysis showed that patients with DM were five times more likely than controls (95% CI 3.2-7.7, $p<0.001$) to have AC (Fig. 7).

Five studies assessed the prevalence of DM in a population with AC and meta-analysis showed that the prevalence of diabetes in this population was 30% (95% CI 24-37%, $Q=10.4$, df4, $p=0.034$, $I^2=61.6$, $\tau^2=0.08$) (Fig. 8). Funnel plot analysis did not show an obvious small study effect (Fig. 9).

Discussion

Our meta-analysis demonstrates an overall mean prevalence of AC in DM of 13.4%. Conversely, the mean prevalence of DM in a population with AC was 30%. To our knowledge this is the first meta-analysis to estimate the overall prevalence of DM in a population with AC. In addition, we show that diabetic patients are 5 times more likely to develop AC compared to non-diabetic controls. Our analysis found no significant difference in the prevalence of AC between patients with T1DM and T2DM and also between patients on insulin therapy compared to oral hypoglycaemic agents. Yian et al. (2012) have previously shown no relationship between the prevalence of AC and glycaemic control.

AC is considered more severe and resistant to treatment in the diabetic population. In a recent study evaluating the outcomes of arthroscopic release in patients with AC, whilst 90% had excellent or good outcomes, the 10% who had fair outcomes, all had T1DM. Indeed, in a separate study, DM was associated with a worse modified Constant score and range of shoulder movements post arthroscopic release for AC. However, DM was not shown to be associated with a worse outcome following arthrographic distension for AC.

The underlying reasons in patients with DM for potentially worse outcomes and prolonged course in AC are complex. Boivin et al. looked at the properties of the Achilles tendon of diabetic mice. They identified a significant increase in tendon diameter, and significant decreases in stiffness and elastic modulus in tendons from diabetic mice compared to controls, suggesting that altered tissue properties may account for the observed resistance of diabetics to treatment. In addition, a consequence of visceral adiposity in DM is inflammation that occurs via several inflammatory mediators. Adipocytes secrete proteins and cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) resulting in overproduction of other pro-inflammatory cytokines, which in turn exacerbate inflammation. Adipocytes also release excess IL-13, which has been shown to result in hepatic fibrosis in mouse models and may thus contribute to synovial and connective tissue fibrosis. Chronic inflammation can lead to excessive accumulation of fatty tissue in the synovial membrane.
Frozen shoulder and diabetes: a meta-analysis of prevalence

Figure 1. Literature search results (PRISMA flowchart 2009).19

<table>
<thead>
<tr>
<th>Study name</th>
<th>Subgroup within study</th>
<th>Event rate</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Z-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidwai</td>
<td>unspecified</td>
<td>0.110</td>
<td>0.074</td>
<td>0.160</td>
<td>-9.480</td>
</tr>
<tr>
<td>Attar</td>
<td>unspecified</td>
<td>0.067</td>
<td>0.042</td>
<td>0.105</td>
<td>-10.453</td>
</tr>
<tr>
<td>Mathew</td>
<td>unspecified</td>
<td>0.165</td>
<td>0.127</td>
<td>0.210</td>
<td>-10.608</td>
</tr>
<tr>
<td>Ray</td>
<td>unspecified</td>
<td>0.180</td>
<td>0.116</td>
<td>0.268</td>
<td>-5.826</td>
</tr>
<tr>
<td>Dehghan</td>
<td>unspecified</td>
<td>0.133</td>
<td>0.087</td>
<td>0.197</td>
<td>-7.797</td>
</tr>
<tr>
<td>Gupta</td>
<td>unspecified</td>
<td>0.296</td>
<td>0.241</td>
<td>0.358</td>
<td>-6.034</td>
</tr>
<tr>
<td>Aydeniz</td>
<td>unspecified</td>
<td>0.147</td>
<td>0.091</td>
<td>0.230</td>
<td>-6.288</td>
</tr>
<tr>
<td>Thomas</td>
<td>Combined</td>
<td>0.044</td>
<td>0.031</td>
<td>0.060</td>
<td>-17.586</td>
</tr>
<tr>
<td>Sarkar</td>
<td>Combined</td>
<td>0.175</td>
<td>0.151</td>
<td>0.201</td>
<td>-17.293</td>
</tr>
<tr>
<td>Cagliero</td>
<td>unspecified</td>
<td>0.120</td>
<td>0.088</td>
<td>0.162</td>
<td>-11.214</td>
</tr>
<tr>
<td>Arkkila</td>
<td>Combined</td>
<td>0.141</td>
<td>0.111</td>
<td>0.178</td>
<td>-12.962</td>
</tr>
<tr>
<td>Pal</td>
<td>Combined</td>
<td>0.192</td>
<td>0.129</td>
<td>0.277</td>
<td>-5.903</td>
</tr>
<tr>
<td>Bridgman</td>
<td>Combined</td>
<td>0.107</td>
<td>0.088</td>
<td>0.131</td>
<td>-18.548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.134</td>
<td>0.102</td>
<td>0.172</td>
<td>-12.188</td>
</tr>
</tbody>
</table>

Figure 2. Meta-analysis of prevalence of AC in populations with DM. The ‘subgroup within study’ defines whether the study population was combined (T1DM and T2DM) or unspecified.
Table 1: Event Rate and 95% CI in Different Subgroups

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Subgroup</th>
<th>Event Rate</th>
<th>95% CI Lower Limit</th>
<th>95% CI Upper Limit</th>
<th>Z-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Type1</td>
<td>0.177</td>
<td>0.122</td>
<td>0.249</td>
<td>-6.965</td>
</tr>
<tr>
<td>Sarkar</td>
<td>Type1</td>
<td>0.001</td>
<td>0.000</td>
<td>0.017</td>
<td>-4.707</td>
</tr>
<tr>
<td>Arkkila</td>
<td>Type1</td>
<td>0.103</td>
<td>0.073</td>
<td>0.144</td>
<td>-11.222</td>
</tr>
<tr>
<td></td>
<td>Type1</td>
<td>0.058</td>
<td>0.012</td>
<td>0.245</td>
<td>-3.289</td>
</tr>
<tr>
<td>Thomas</td>
<td>Type2</td>
<td>0.014</td>
<td>0.007</td>
<td>0.027</td>
<td>-12.616</td>
</tr>
<tr>
<td>Sarkar</td>
<td>Type2</td>
<td>0.379</td>
<td>0.332</td>
<td>0.428</td>
<td>-4.761</td>
</tr>
<tr>
<td>Arkkila</td>
<td>Type2</td>
<td>0.224</td>
<td>0.161</td>
<td>0.302</td>
<td>-5.997</td>
</tr>
<tr>
<td></td>
<td>Type2</td>
<td>0.124</td>
<td>0.030</td>
<td>0.389</td>
<td>-2.544</td>
</tr>
</tbody>
</table>

Figure 3: Funnel Plot of Prevalence of AC in Populations with DM

Figure 3. Funnel plot of prevalence of AC in populations with DM.

Table 2: Event Rate and 95% CI in Different Subgroups

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Subgroup</th>
<th>Event Rate</th>
<th>95% CI Lower Limit</th>
<th>95% CI Upper Limit</th>
<th>Z-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pal</td>
<td>IDDM</td>
<td>0.204</td>
<td>0.113</td>
<td>0.339</td>
<td>-3.840</td>
</tr>
<tr>
<td>Bridgman</td>
<td>IDDM</td>
<td>0.168</td>
<td>0.121</td>
<td>0.229</td>
<td>-8.114</td>
</tr>
<tr>
<td>Bridgman</td>
<td>NIDDM</td>
<td>0.182</td>
<td>0.106</td>
<td>0.293</td>
<td>-4.708</td>
</tr>
<tr>
<td>Pal</td>
<td>NIDDM</td>
<td>0.183</td>
<td>0.104</td>
<td>0.301</td>
<td>-4.481</td>
</tr>
<tr>
<td>Bridgman</td>
<td>NIDDM</td>
<td>0.089</td>
<td>0.069</td>
<td>0.114</td>
<td>-16.438</td>
</tr>
<tr>
<td></td>
<td>NIDDM</td>
<td>0.118</td>
<td>0.069</td>
<td>0.196</td>
<td>-6.583</td>
</tr>
</tbody>
</table>

Figure 4: Meta-analysis of Prevalence of AC in Patients with T1DM and T2DM

Figure 4. Meta-analysis of prevalence of AC in patients with T1DM and T2DM.

Figure 5: Funnel Plot of Prevalence of AC in Populations with IDDM and NIDDM

Figure 5. Funnel plot of prevalence of AC in populations with DM.
Frozen shoulder and diabetes: a meta-analysis of prevalence

Figure 6. Meta-analysis of prevalence of AC in patients with DM on insulin therapy versus oral hypoglycaemic agents.

Figure 7. Meta-analysis of prevalence of AC in patients with DM versus non-diabetic controls.

Figure 8. Meta-analysis of prevalence of DM in populations presenting with AC.
collagen and other extracellular matrix components, which may result in destruction of normal tissue architecture. Production of free fatty acids (FFAs) from adipocytes also leads to up-regulation of pro-inflammatory mediators and thus overproduction of inflammatory cytokines. FFAs may also promote neutrophil survival and cause defective efferocytosis. Neutrophils secrete TNF-α and IL-6, which may result in insulin resistance. Resultant hyperglycaemia interferes with the inflammatory cascade and inhibits phagocytosis of bacteria and apoptotic cells. The combination of these factors could result in persistence of inflammation and limited disease resolution. AC is considered to be an inflammatory and fibrotic condition. In the early stages of AC synovial and capsular fibrosis may occur as a result of inflammation and hypervascular synovial proliferation, in part driven by increased expression of synovial vascular endothelial growth factor. Up-regulation of inflammatory mediators in the capsule have also been demonstrated. A study by Cho et al. demonstrated that acid sensing ion channels may play a role in the pathogenesis of AC by mediating inflammatory pain.

Snedeker and Gautieri reviewed collagen crosslinks in DM. They suggested that an increase in connective tissue stiffness in DM may be linked to non-enzymatic oxidative reactions between glucose and collagen resulting in the formation of advanced glycation end-products. Furthermore, in a recent review of hormones and tendinopathies, Oliva et al. concurred that advanced glycation end-products result in changes in the microstructural organization of collagen fibres. Alterations in the ultrastructure of collagen may thus result in changes in the biomechanical properties of tendons.

Our findings have important implications for clinical practice. They confirm the high prevalence and increased relative risk of AC in DM. This should increase the awareness of primary care providers and diabetologists to consider AC in patients presenting with shoulder symptoms. Earlier diagnosis with prompt referral and treatment may prevent progression to chronic, treatment resistant AC. In addition, rheumatologists and orthopaedic surgeons assessing patients with AC should enquire about a history of DM and if such a history is absent they should consider undertaking an assessment of HbA1c. The latter test is a simple blood test, which can enable patients to be stratified into those with normal glucose tolerance (HbA1c <5.7%), pre-diabetes (5.7-6.4%) and T2DM (HbA1c ≥ 6.5%).

Limitations

We acknowledge a limitation of our analysis was that only four studies compared patients with DM to control subjects and the majority of the studies did not assess the type of DM. Furthermore, several earlier studies made reference to IDDM and NIDDM, terms that are now obsolete. Despite this, our meta-analysis has allowed us to estimate the overall prevalence of AC in DM and DM in AC from the currently available literature. It also provides an impetus to undertake more detailed and larger analyses if we are to better manage this debilitating condition.

Conclusion

In conclusion, diabetologists, rheumatologists and orthopaedic surgeons should be aware of the high prevalence and increased relative risk of AC in DM.
Frozen shoulder and diabetes: a meta-analysis of prevalence

prevalence of DM in patients with AC and vice versa. Future studies assessing outcomes of interventions for AC should consider stratifying subjects into those with normal glucose tolerance, impaired glucose tolerance and T2DM based on HbA1c. This would provide meaningful insights into the effects of dysglycaemia and overall glycaemic control in relation to the development and outcomes of AC.

List of abbreviations:
- CI – confidence interval
- df – degrees of freedom
- DM – diabetes mellitus
- FFA – free fatty acid
- HbA1c – haemoglobin A1c
- IAC – idiopathic adhesive capsulitis
- IDDM – insulin dependent diabetes mellitus
- IL – interleukin
- (n or n) – number
- NCBI – National Centre of Biotechnology Information
- NIDDM – non-insulin dependent diabetes mellitus
- SD – standard deviation
- TNF – tumour necrosis factor
- T1DM – type 1 diabetes mellitus
- T2DM – type 2 diabetes mellitus

Conflict of interests

The Authors declare that they have no conflict of interests regarding the publication of this paper.

References

33. Wang K, Ho V, Hunter-Smith DJ, Beh PS, Smith KM, Weber AB. Risk factors in idiopathic adhesive capsulitis; a case con

