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Abstract

Binary modelling techniques and frequency analysis have been applied to the Kepler photometric

observations of KIC4544587 to determine information about the orbital characteristics, individual

components and tidal interactions. The system contains an early A-type δ Scuti variable, which

pulsates in both pressure and gravity modes, and a late F- to early G-type star, which is possi-

bly a solar-like oscillator. The Wilson-Devinney code was used to model the Quarter 3.2 data and

phoebe was used to model the Quarter 7 data; the results of these two methods were then compared.

Using phoebe the rate of apsidal advance was determined to be 0.0001179(1)radd−1, which gives

145.9(1)yr for a complete precession.

Subsequently the binary model light curve was subtracted from the original data and frequency

analysis was performed on the residuals. Fifteen frequencies were identified that are harmonics of

the orbital period, 9 of which are in the g mode regime and 6 in the p mode regime. It was concluded

that these frequencies are not an artifact of the model fit and thus are a signature of tidal resonance.

It was also determined that many of the frequencies in the p mode regime are separated from the two

dominant p modes by a multiple of the orbital frequency; six of the identified modes demonstrate this

separation to an accuracy of 3 σ. As they are not orbital harmonics, the origin of these frequencies

remains unknown. Currently we know of no other star demonstrating these characteristics.
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1 Introduction

In stellar astrophysics binary systems are considered fundamental to our understanding of the stellar

structure and evolution of single stars. As more than 50% of all stars are known to be in multiple

systems (Pigulski, 2006), an important aspect of binary star analysis is the understanding of binary

stars themselves. Through the analysis of binary systems we can not only unveil information about the

masses and structure of the individual components and determine distances, but we can also investigate

phenomena that occur due to the binarity of a system. These include: mass transfer between the stellar

components, which can lead to novae and recurrent novae and consequently enable the investigation of

binary systems as the progenitors of type Ia supernovae; the study of x-ray binaries; the formation of

common envelopes; and even the eventual merging of stellar components to form an individual star.

Another interesting physical phenomenon that occurs in binary systems is the exchange between

the system’s orbital and rotational angular momentum. This generates an increase in the orbital

angular momentum of the system, which causes the stellar orbit to increase in size whilst decreasing the

rotational velocity of the stellar components. Eventually, the binary system enters a minimum energy

configuration where the stars are in a circular orbit and the duration of a single orbit is equal to that

of a complete stellar rotation: the orbit is synchronous. Consequently, it has been observed, by Abt &

Hudson (1971), that A stars in short period binaries have slower rotation than their single counterparts.

The energy dissipation mechanism that causes this reduction in rotational angular momentum, as

the stars tend towards pseudo-synchronous and eventually synchronous rotation, has been attributed

to two processes. For low mass stars with convective outer envelopes it is theorised that the coupling of

the tidal flows and the turbulent eddies in the convective stellar surface layer cause the dissipation of

energy within the system (Zahn, 1977). For high mass stars with radiative outer envelopes Zahn (1975)

hypothesised that oscillations are generated in the outer envelope due to the variation in gravitational

field causing energy to dissipate. This is known as radiative damping.

The theory of radiative damping suggests that through the generation of dynamic tides on the stellar

surface the energy of a system and thus stellar rotation rates are reduced. These dynamic tides are theo-

rised to be periodic oscillations with buoyancy acting as the restoring force, as hypothesised by Cowling

(1941) for the non-dissipative case. The oscillation modes are determined by natural eigenfrequencies

inherent to the star, specifically the star’s intrinsic properties as a gravity (g) mode oscillator (where the

restoring force is buoyancy). Subsequently, if a resonance occurs between a natural eigenfrequency of a

star and a tidal forcing frequency of the binary system, the oscillation amplitudes can be significantly

amplified.

Almost 40 years after Zahn (1975) proposed the theory of radiative damping, only a small number of

cases exist that demonstrate resonant excitation. Thus there is only a limited amount of direct evidence

for the existence of dynamic tides as an energy dissipation mechanism. The motivation of this work is

the investigation and potential confirmation of resonantly excited pulsations in the revolutionary Kepler

photometric observations of KIC4544587.

1.1 Binary Systems

The Vogt-Russell Theorem states that the structure and evolution of a star may be determined through

knowledge of the initial mass and chemical composition alone (Vogt, 1926). It is through the analysis
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of binary star systems that this and other information about stellar bodies can be precisely acquired.

Consequently, binary systems form the fundamental building blocks upon which we base our current

understanding of stellar astrophysics.

The mass of a star can range from ∼0.08 M⊙, the lowest mass where hydrogen fusion can occur, to

∼120 M⊙, the Eddington limit (Eddington, 1930), which is the limiting mass where a stellar component

is theoretically able to remain in radiative equilibrium. On the other hand, from observations of the

R136 cluster it has been inferred from the effective temperatures of the stellar components that many

stars have masses greater than 150 M⊙ (Crowther et al., 2010). It is only through the dynamics of

binary systems that precise masses can be directly measured, without any assumptions other than

Newtonian dynamics. Moreover, with a spectroscopically detectable companion, the masses of the

stellar components can be determined to an accuracy of ∼ 3%. The most recent catalogue of stellar

masses that have been accurately determined from binary systems was generated by Torres et al. (2010)

where the masses have been obtained for 190 stars to an accuracy of 3% or better. Such an accurate

understanding of stellar masses is imperative for the advancement of stellar models. Furthermore, it

enables the rejection of models by virtue of incorrect physical assumptions alone, a feature that is not

typical in astronomy.

Fig. 1 depicts a radial velocity curve from which the masses of the stellar components can be deter-

mined. The criteria for the Torres et al. (2010) catalogue are that the observed radial velocity curves

must have more than 25 points with a real uncertainty of less than 1 km s−1. Consequently, this well

defined radial velocity curve requires more data points before reaching the standard required by Torres

et al. (2010) which have been adopted after those specified by Andersen (1991). It is also worth noting

that the masses of binary components can be determined using alternative methods that do not require

radial velocities. However, such assessments require the combination of the angular orbital separa-

tion with parallax or spectroscopic information, which adds significantly to the uncertainty involved

(Andersen, 1991).

If the line of sight is aligned with the orbital plane, such that the star is eclipsing, we are also able

to determine the radii of the stellar components to an accuracy of ∼3%. This is done by analysing the

light curve using binary modelling techniques. To determine the radii to such remarkable accuracies,

knowledge of the eccentricity, argument of periastron, temperature and luminosity ratios must be accu-

rately acquired through photometry and spectroscopy. Furthermore, the rate of apsidal advance may

also be required if it is large enough to have an impact on the determination of the radii.

From the values obtained, a tight correlation between mass and luminosity has been determined

(Andersen, 1991). Equally, there is a strong correlation between mass, radius and log g, from which

log g values can be obtained to an accuracy greater than that currently obtained through spectroscopy.

Temperatures are not accurately determined using these parameters as the main-sequence mass for a

star can vary by up to 40 % for a given temperature (Torres et al., 2010).

Empirical formulae have been generated, by Torres et al. (2010), as a consequence of these correla-

tions, which allow for the determination of the mass and radius of a single star through the knowledge of

its effective temperature, luminosity and metallicity (values that can be obtained through spectroscopy):
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Figure 1: A double lined radial velocity curve of KIC 3749404, a binary with a spectroscopically detectable com-
panion. The black dots represent the more massive, primary component, and the circles represent the secondary.
Despite the fact that this radial velocity curve is well defined, it does not contain enough data points, as specified
by Torres et al. (2010), to determine the mass to an accuracy of 3%.

log M = 1.56(6) + 1.38(3)X + 0.42(3)X2 + 1.1(2)X3 − 0.14(1)(log g)2

+0.019(2)(log g)3 + 0.10(1)[Fe/H]
(1)

log R = 2.44(4) + 0.66(2)X + 0.17(3)X2 + 0.7(1)X3 − 0.214(7)(log g)2

+0.023(1)(log g)3 + 0.041(8)[Fe/H]
(2)

where X = log Teff - 4.1 and the values in the parentheses are the uncertainties in the final digit. The

uncertainties associated with these values, estimated from the scatter in the correlations, are 6.4% and

3.2% for the masses and radii respectively.

The knowledge of empirical values to such a high accuracy enables us to probe the interactions

between stars and their environments, and further understand internal processes such as nucleosynthesis.

Moreover, as the components of a binary system form simultaneously and from the same material, they

are identical in both metallicity and age, and thus they provide an ideal laboratory for probing stellar

evolution, enabling the development of stellar evolution theory pertaining to the effect of metallicity on

evolutionary phase.

1.2 Delta Scuti Stars

The classical instability strip is an area on the Hertzsprung-Russell Diagram within which the majority

of stars pulsate. Pulsation is primarily via the κ mechanism, which occurs when heat is trapped inside

the star due to the presence of an ionisation layer. The opacity of the ionization zone causes the
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star to swell. The heat is released when the zone becomes ionised, which causes the star to return to

equilibrium and the zone to return to its original state of ionisation; the process is then repeated. The

instability strip is bounded by a red and blue edge, beyond which the stars cease to pulsate via this

mechanism; beyond the blue edge the stars still pulsate via the κ mechanism, but as a consequence of

their Fe ionisation zone. Pamyatnykh (1999) determined that the blue edge of the instability strip was

constrained by the helium opacity bump, and later Houdek (2000) discovered that the red edge was

determined by convection.

Delta Scuti stars form an integral part of the instability strip, spanning all stages of evolution from

pre-main sequence to approximately 2 magnitudes above the main sequence (Rodŕıguez & Breger, 2001),

which can be seen in Fig. 2. Their luminosities range from 0.6 < log(L/ L⊙) < 2.0 corresponding to an

effective temperature range of 3.8 < log(T/T⊙)< 3.95 (Buzasi et al., 2005). They oscillate in radial and

non-radial modes in both p and low order g modes with observed periods ranging from 0.012 d to 0.35 d

(Amado et al., 2004; Pamyatnykh, 2000).

Delta Scuti stars have a mass range between 1.5 and 2.5 M⊙ (Lefèvre et al., 2009). At approximately

2 M⊙ there is a transitional phase; stars that are more massive have radiative outer envelopes whereas

stars that are less massive have convective outer envelopes. Furthermore, stars of approximately 1.5 M⊙

develop a convective core (Aerts et al., 2010). Thus these critical phases occur within the range of

masses encompassed by δ Scuti stars. Consequently, the asteroseismic investigation of δ Scuti stars

could eventually unveil fundamental information pertaining to the physical processes that govern these

transitions. For example, the depth of the convective envelope of a star can be determined through the

frequency of the modes present (as a consequence of the variation in sound speed) this in turn can be

related to the mass and age of the star. Furthermore, the existence of p mode oscillations and g mode

oscillations and their relative time scales is related to the orientation of the convective and radiative

zones present in a star.

Due to limited observing capabilities, the first δ Scuti stars observed had relatively high amplitudes

(on the order of 0.1 mag (Fath, 1940)), with modes that appeared unstable. However, following a review

of many δ Scuti stars, Kurtz (1980) argued that the apparent variability was due to the superposition

of many modes, which was later found to be correct. Delta Scuti stars were then divided into categories

according to their variability. These included high amplitude δ Scuti (HADS) stars, which make up

∼ 0.3% of all δ Scuti stars (where the criterion is ∆ mv > 0.3) (Lee et al., 2008) and low amplitude δ

Scuti (LADS) stars.

Initially HADS stars were defined as δ Scuti stars that pulsated in the fundamental radial mode only

and LADS stars as those that pulsate in both radial and non-radial modes. HADS stars are now known

to have dominant pulsations in two radial modes: a combination of two from the fundamental mode,

first and second harmonic (Aerts et al., 2010). With respect to other δ Scuti stars, HADS demonstrate

generally slow rotation rates (v sin i ≤ 30 kms−1). Thus it is believed that HADS are primarily

immediate post main sequence stars (Petersen & Christensen-Dalsgaard, 1996). Consequently the slow

rotation rate is attributed to the decrease in angular momentum which is caused by the post main

sequence increase in envelope size. Mathias et al. (1997) later showed that HADS stars also pulsate in

non-radial modes; however, with respect to the dominant radial modes, these pulsations were observed

to have very weak amplitudes.

Prior to the revision of their classification criteria by Grigahcène et al. (2010a), δ Scuti stars were
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Figure 2: A pulsational H-R diagram. The δ Scuti stars can be found on the intersection between the main
sequence and the instability strip. From Aerts et al. (2010).

believed to form approximately 50 per cent of all the main sequence stars in the classical instability strip

(Breger, 2000). However, with the implementation of advanced instruments such as Kepler (Gilliland

et al., 2010), MOST (Walker et al., 2003) and CoRoT (Baglin et al., 2006), many hybrid δ Scuti and γ

Dor stars have been observed; thus new classification criteria, containing γ Dor–δ Scuti and δ Scuti–γ

Dor hybrid stars have been introduced (Grigahcène et al., 2010a). Gamma Dor stars are defined as stars

with main sequence temperatures of 3.83 < log (T/T⊙) <3.88 that pulsate in high order gravity modes

through convective blocking (Guzik et al., 2000); their pulsation periods are predominantly on the order

of 1 d (Grigahcène et al., 2010b). Following this revision, through the characterisation of 234 stars, the

percentage of δ Scuti stars on the main sequence has now been approximated to 27% (Grigahcène et al.,

2010a).

In the new classification system δ Scuti stars are defined as stars within the aforementioned tem-

perature range, with predominant frequencies in the frequency domain greater than 5 d−1; with lower

frequencies having relatively low amplitudes (Grigahcène et al., 2010b). However, the κ mechanism is

the primary driving mechanism of their pulsations, it is suggested by Antoci et al. (2011) that δ Scuti

stars may also pulsate with stochastically excited modes.
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1.3 Binary Systems with δ Scuti Components

In a study of 119 A0–A9 stars 35± 5 per cent were found to be in multiple systems (Abt, 2009). However,

only 22 per cent of the δ Scuti stars catalogued are known to be multiple stars (Rodŕıguez & Breger,

2001). In binary systems the rotational velocity of each stellar component tends towards a velocity that

is synchronous with the orbital period. As synchronous velocity generally implies a surface velocity

of less than 120 km s−1 (although this is dependent on the orbital period and radius of the star), the

turbulence in the outer stellar envelope is significantly low; hence only a small amount of meridional

mixing occurs. This allows diffusion to take place, which has been suggested to prevent pulsation

through composition effects and stratification (although, equally, the lack of pulsation could enable

diffusion to occur more readily) (Breger, 1970). Thus it has previously been assumed that multiplicity

indirectly inhibits pulsation. On the other hand, there are several cases, including HD174884 (Maceroni

et al., 2009), HD177863 (Willems & Aerts, 2002), and the more recent, extreme case of KOI–54 (Welsh

et al., 2011) that demonstrate how multiplicity can not only alter, but increase pulsation amplitudes.

Therefore it is also plausible that this difference is due to our inability to identify δ Scuti stars in

multiple systems.

Irrespective of the number of δ Scuti multiple systems known, the combination of stellar parameters

that can be gleaned from the multiplicity of a system, with the numerous modes of a δ Scuti star,

make these objects extremely valuable. Through the use of binary modelling techniques and pulsation

analysis, an array of information is available. This includes information pertaining to the internal stellar

structure and rotation, and direct measurements of stellar masses, distances and radii. Currently, the

thorough asteroseismic analysis of δ Scuti stars is rarely achieved due to the large number of oscillatory

modes present in most of these objects. However, with the continuation of work in this field, it is

expected that an increasing number of these intriguing objects will be solved in the foreseeable future.

1.4 Tidal Interactions

In a binary system, if the components are in relatively close proximity to one another, the gravitational

forces between the two components can provoke tidal interactions; these are analogous to the lunar tides

generated on the Earth. Moreover, if the binary is eccentric as seen in Fig. 3, the tides generated become

misaligned with respect to their instantaneous equipotential shapes (Hut, 1980). This generates torque

between the two components which causes an exchange of angular momentum between the orbital and

stellar rotations, and further causes the system’s energy to dissipate.

Tidal interactions eventually lead to one of two outcomes: the stars spiral towards each other and

eventually merge or a circularized, synchronous orbit is achieved (Hut, 1980). A synchronous orbit is

defined as an orbit where the rotational and orbital velocities are equal and the equatorial planes of the

stellar components are aligned with the orbital plane. It has been shown statistically by Torres et al.

(2010) that the time for circularisation to occur is dependent on the radii of the stars, relative to the

radius of the orbit, and also that circularisation occurs on a shorter time scale for stars with convective

envelopes. Consequently, in a sample of 95 detached binaries, there were no eccentric binaries with a

period less than 1.5 d (Torres et al., 2010).

One important aspect of tidal interactions, as demonstrated by Cowling (1938) and Sterne (1939),

is that through the determination of the rate of apsidal advance, the constant k2 can be identified:

6



Figure 3: An eccentric binary orbit. Due to the eccentricity of the orbit, the distance between the two stars,
denoted by the radius vector, varies with time. Consequently, the gravitational forces acting on the components
vary as a function of phase.

ǫ =

(

R1

r

)5 m2

m1

2π

Porb
k215f(e2) (3)

where ǫ is the ratio of the period of the orbit to the rotation of the line of apsides, k2 is the numerical

constant dependent on the density distribution of the stellar component, Porb is the orbital period, r

is the radius of the orbit and R1 is the radius of the primary and m1 and m2 are the masses of the

primary and secondary components respectively, e is the eccentricity and

f(e2) = (i − e2)−5

(

1 +
3

2
e2 +

1

8
e4

)

(4)

k2 contains information about the central density of the stellar component and is also known as the

dimensionless apsidal motion constant. Moreover, through the study of tidal interactions an understand-

ing of the dynamics and energy dissipation mechanisms of binary systems, and how varying conditions

determine a system’s end state may be obtained.

The modelling of tidal interactions is currently computed using several different methods. One

method, the equilibrium tide model (Darwin, 1880; Hut, 1980), generates the distorted stellar shapes

by assuming that the gravitational-centrifugal potential of the system remains in equilibrium throughout

the orbit. Overlaying this aspect of the model are considerations of the surface torque, specifically that

which occurs due to the lag between the tidal bulges and the axis joining the centres of the two stars,

and how this torque generates energy dissipation.

Another method is called the dynamical tide approach (Zahn, 1975; Fabian et al., 1975; Press &

Teukolsky, 1977), where the stellar components are defined as oscillators. In an eccentric system, each

component exerts a varying gravitational force on its companion. As these forces vary with orbital

phase, the forcing frequencies generated are harmonics of the orbital frequency; some of which are likely

to resonate with the star’s natural eigenfrequencies. Furthermore, the stellar shape deforms significantly

during periastron, which further modifies the star’s normal modes. In such modelling efforts acoustic

modes, gravity modes and inertial modes (where the restoring force is the Coriolis force and is usually

only applicable to fast rotators) are included. Through these considerations the energy dissipation of
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Figure 4: Left panel (a): A ray diagram to demonstrate the propagation of p mode sound waves through the
solar interior. The line passing through the center is indicative of a radial mode and lines of decreasing depth
demonstrate the behaviour of modes with increasing l values. Right panel (b): A ray diagram to demonstrate the
propagation of g mode sound waves through the solar interior. Due to the convective outer layer of the sun, the
g modes do not penetrate to the surface; this is not true of δ Scuti stars where the outer envelope is radiative.
From Cunha et al. (2007)

the system can be effectively analysed.

These methods rely on a priori information and assumptions. Advances are currently being made

towards generating models on first principles alone. For example, Moreno et al. (2011) have generated a

model where the surface layers of the stellar components are thin deformable layers, which are subject to

gravitational, Coriolis and centrifugal forces, gas pressure and viscous forces. The improvement of our

understanding of such interactions from direct observation is crucial to the advancement of knowledge

in this area.

1.5 Asteroseismology

Asteroseismology is the study of stellar pulsations, analogous to seismology, the study of earthquakes.

It is a technique that can be applied to intrinsically pulsating stars as a method of probing the stellar

interior. There are two main types of waves generated by pulsating stars: acoustic waves, also known

as p modes, where the restoring force is pressure, and gravity modes, or g modes, where the restoring

force is buoyancy (Aerts et al., 2010). As these waves pass through the stellar interior, depending on

the degree of the mode (a quantity related to spherical harmonics), the wave will be contained within a

certain region of the star, the acoustic cavity (see Fig. 4). If the wave is not damped before it reaches the

stellar surface, it will be visible to the observer as a fluctuation in both luminosity and radial velocity,

presenting vital information about the region in which it is contained.

As the sound passes through the star, in an adiabatic case, the speed is determined by the pressure,

p, and the density ρ:

c =

√

Γ1p

ρ
(5)
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where Γ1 is one of the adiabatic exponents. Assuming the star is an ideal gas, this equation can also

be written in the form:

c =

√

Γ1kBT

µmu
(6)

where kB is Boltzmann’s constant, µ is the mean molecular weight and mu is the atomic mass unit.

From these equations we can see that the sound speed within the stellar cavity has a dependency on

pressure and density and consequently on temperature and chemical composition (Aerts et al., 2010).

Figure 5: The spherical polar coordinate system. ρ, θ and φ are the radial distance, co-latitude and longitude
respectively. From www.mathforum.org

As stars pulsate in three orthogonal directions, and in most cases can be considered spherical,

they are best defined by a spherical polar coordinate system where ρ, θ and φ are the radial distance,

co-latitude and longitude respectively (see Fig. 5) . As θ is measured from the pole, it defines the

pulsation pole or preferred axis. When considering a spherically symmetric star, the displacement due

to pulsations is specified by the following spherical harmonic equations:

ξρ(ρ, θ, φ, t) = a(ρ)Y m
l (θ, φ)exp(−i2πνt) (7)

ξθ(ρ, θ, φ, t) = b(ρ)
∂Y m

l (θ, φ)

∂θ
exp(−i2πνt) (8)

ξφ(ρ, θ, φ, t) =
b(ρ)

sinθ

∂Y m
l (θ, φ)

∂φ
exp(−i2πνt) (9)

where ξρ, ξθ, ξφ are the displacements, a(ρ) and b(ρ) are the amplitudes, ν is the oscillation frequency

and Ym
l(θ,φ) are the spherical harmonics given by:

Y m
l (θ, φ) = (−1)m

√

2l + 1(l − m)!

4π(l + m)!
Pm

l (cosθ)exp(imφ) (10)
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and Pm
l(cosθ) are Legendre polynomials given by:

Pm
l (cosθ) =

1

2ll!
(1 − cos2 θ)m/2 dl+m

dcosl+mθ
(cos2 θ − 1)l (11)

The number of radial nodes, n and is called the overtone of the mode, l is the degree of the mode

and specifies the number of surface nodes, and m is the azimuthal order and specifies how many of the

surface modes are lines of longitude. The values of m range from -l to +l which in turn generate 2l + 1

modes (Aerts et al., 2010). The frequency of a mode depends on the sound travel time, thus the lower

degree l modes penetrate more deeply and have lower frequencies. Furthermore, modes where m 6= 0

are travelling waves where positive values of m are prograde and negative values of m are retrograde

modes with respect to the rotation of the star.

Radial modes have the value l = 0. If a δ Scuti star pulsates simultaneously in the fundamental

(n = 0) and first overtone (n =1) radial modes, they can be identified by their period ratio of 0.77. This

is a consequence of the sound speed variations as a function of temperature and chemical composition.

For Cepheid variables, the observed ratio is less (0.71) due to their differing evolutionary states and

hence interior structure and composition.

These variations can be detected as a change in the total observed flux or as a shift in the stellar

spectrum caused by the expansion and contraction of the star. Through the equations of stellar structure

and spherical harmonics, the period and amplitude of these fluctuations can be modelled to further

understand the stellar interior.

1.6 Tidally Induced Pulsations

When two stellar components are in a binary system with an eccentric orbit, the interactions between

the two components are variable dependent on phase. In some cases such interactions can cause the

star or stars to oscillate. These oscillations are the result of the natural free eigenfrequencies of the star

(theorised to be gravity modes of spherical degree l = 2) resonating with the dynamic tides (Aerts &

Harmanec, 2004). The signatures of these interactions are frequencies that are multiples (harmonics)

of the orbital frequency.

Further evidence of resonant pulsations is a second oscillation mode separated from such a harmonic

by the rotational frequency of the star (Aerts & Harmanec, 2004). From a purely geometrical point

of view, the occurrence of frequencies separated by the rotational frequency of a star happens because

the pulsations occur in a reference frame (which can be defined by spherical polar co-ordinates r’,θ’,φ’)

that is rotating with respect to our own inertial frame of reference (which can be defined by spherical

polar co-ordinates r, θ,φ). The two frames of reference are related by the following expression:

(r′, θ′, φ′) = (r, θ, φ − Ωt) (12)

where Ω is the angular velocity and t is time. As the pulsation displacement vector depends on cos(mφ’

- ω0t) in our inertial frame of reference it therefore depends on cos(mφ - ωmt) where ωm = ω0 + mΩ

and m is the azimuthal order of the mode (Aerts et al., 2010). In reality, these values deviate from the

absolute values due to the Coriolis force and surface convection currents. However, it can be seen that

for any true mode where m≥ 1, rotational splitting will occur in multiplets in accordance with m. If
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such a multiplet occurs where one of the dominant peaks is an orbital harmonic, this is evidence that

the frequency is indeed a true pulsation and not a result of data manipulation (for example a bad model

fit).

It has been suggested by Reed & Brondel (2005) that it is possible for tidal interactions to exert

a greater force on the stellar components than the Coriolis force. In such a case the pulsation axis

of the star is expected to be directed towards its binary companion, not along the axis of rotation as

generally assumed. This theory is called the Tidal Locking Hypothesis and is a result of the minimum

energy formation being assumed by the system. This arrangement has not yet been observed, although

a similar situation exists with rapidly oscillating Ap (roAp) stars where the pulsation axis is aligned

with the magnetic field of the stellar component (Kurtz, 1982). The identifier for tidal locking is a

frequency spectrum containing multiplets separated by the orbital frequency. Other implications for

binaries with tidally excited modes include the possibility of determining the orbital inclination from

the shape of the stellar light curve. Kumar et al. (1995) demonstrated how variations in inclination

generate specific signatures in the light curve, which can be attributed to the l= 2 mode.

It has also been acknowledged that objects with tidally resonant pulsations may no longer be

described by the classical apsidal motion formula (see eq. 3). Quataert et al. (1995) demonstrated that

in the case of modes where the ratio of the pulsation frequency and the orbital frequency is less than

7, deviation from the classical apsidal motion formula occurs; such phenomena are now being observed

on a regular basis with the high precision data obtained by satellites such as Kepler.

1.7 Kepler Mission

The Kepler satellite (Borucki et al., 2010; Gilliland et al., 2010), with its highly precise photometric CCD,

is generating observations unparalleled in detail and subsequently giving greater insight into the study of

stellar structure through the use of asteroseismology. The primary objective of the Kepler mission is the

identification and classification of planets through the transit method (Gilliland et al., 2010). However,

the instrumentation required for such observations is highly applicable to the field of asteroseismology.

Attributes, such as a stable platform, that enable extended observations, and a precision of 1 part

per million make the Kepler observations quintessential for the advancement of asteroseismology. A

dynamic range of over a factor of 10 000 in apparent brightness, in addition to a 105 deg2 field of view,

give Kepler an unprecedented advantage for achieving the best quality asteroseismic data. Moreover,

the ability to generate short cadence data of approximately 1 min, allows for the detailed photometric

analysis of pulsating stars across the H-R diagram.

The Kepler satellite, which is depicted in Fig. 6, has a 1.4-m primary mirror (Kjeldsen et al., 2010)

and is in an Earth trailing heliocentric orbit. It has 41 fully functional CCDs (originally 42), with

2 000× 1 000 pixels each 4× 4 arcseconds, which can observe up to 150 000 stars at any given time. The

telescope points towards the constellations Cygnus and Lyra in an orientation that avoids the brightest

stars, which would saturate the CCD pixels. Data are transmitted to Earth once a month via the Deep

Space Network to the Mission Operations Centre (Jenkins et al., 2010). Upon the culmination of each

quarter the space craft performs a roll to realign the solar panels and CCDs in the correct orientation.

During this period the Kepler satellite does not acquire data yet still obtains an extraordinarily high

duty cycle in comparison to other observational techniques.
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Figure 6: A schematic drawing of the Kepler Space Craft. Here you can see the position of the solar arrays which
require realignment once per quarter of a Kepler orbit. The photometer is directed towards the constellations
Cygnus and Lyra. From www.astro.wisc.edu.

The Kepler data are disseminated to several groups to be examined for planetary transits, astero-

seismic purposes, binary star science, spots and flares. The purpose of the Kepler Asteroseismic Science

Consortium (hereafter KASC) is the asteroseismic investigation of objects identified by Kepler. Fur-

thermore, the main objectives, as specified in the KASC documents, are: the determination of the radii

and masses of stars that host planets; to distinguish between main sequence and evolved stars with host

planets; and the general asteroseismic investigation of stellar parameters.

The data provided by the Kepler Asteroseismic Science Operations Center (hereafter KASOC),

which are run by KASC, are time stamped with Truncated Barycentric Julian date, which is Barycen-

tric Julian date - 2400000. Temperatures are provided for each object, which are determined through

photometry using SDSS, 2MASS and KeplerCam on the 48-inch telescope at the Whipple Observatory

on Mount Hopkins, Arizona (Latham et al., 2005). RA and Dec, and estimates of log g, radius, metallic-

ities and magnitudes of the objects are also provided with each data set, combined with a contamination

estimate, which indicates the amount of contaminant light that is incident from other objects in the

mask.
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2 Observations of KIC 4544587

KIC 4544587 is an eccentric (e = 0.28375± 0.00005), short-period binary system of magnitude Kp = 10.8

(were Kp stands for the Kepler band pass magnitude). The Kepler band pass, which is essentially a

white light broadband filter, includes the the g-r-i-z filter sequence consistent with the Sloan Digital

Sky Survey. KIC4544587 is in the constellation Lyra at a distance of approximately 1.7 kpc; other

identifiers for this object can be found in Table 1. The primary component is an early A star that is

within the δ Scuti instability strip and the secondary component is an early G star, which is likely to be

a solar type oscillator, although no solar-like oscillations have been identified in our data. It is also likely

that the primary component is a metallic-lined, Am star, presuming that through tidal interactions the

equatorial rotation rate is vequ < 120 km s−1, which is slow enough for diffusion to occur (Abt, 2009).

Figure 7: The total observed Kepler, short cadence light curve from Quarter 3.2.

Primarily this object was selected as a likely candidate for tidally enhanced pulsations due to the

close proximity of the components (∼ 8 R⊙) at periastron. When considering the radius of each stellar

component, this suggests that the distance between the stellar surfaces at periastron is ∼ 5 R⊙. Secondly,

as the system contains a δ Scuti star, KIC 4544587 is rich in asteroseismic information. KIC 4544587 also

has interesting orbital characteristics, which include a hump in the Kepler photometric light curve after

secondary minimum that is due to stellar distortion and reflection effects. Such a feature is indicative

of an eccentric binary with its components in close proximity to each other (Maceroni et al., 2009).

The Kepler photometric observations of KIC4544587 consist of both long cadence (hereafter LC)

data, during Quarters 0, 1 and 6, and short cadence (hereafter SC) data during Quarters 3.2 and 7
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Table 1: Other identifiers and basic data for KIC4544587. The Kepler magnitude (Kp) specified is derived from

the Kepler broadband filter.

Identifiers

TYC 3124-1348-1

GSC 03124-01348

2MASS J19033272+3941003

Observable Information

RA (2000) 19:03:32.7274

Dec (2000) +39:41:00.314

V 10.8

B 10.89

Kp 10.80

Table 2: Information on the data acquired for each Quarter. The long cadence data (LC) corresponds to a

sampling rate of 29.4244min and short cadence data (SC) to a sampling rate of 58.8488 s.

Quarter Cadence Number of data points Duty cycle

0 LC 476 99.5%

1 LC 1 639 98.1%

3.2 SC 44 000 99.5%

6 LC 4 397 97.2%

7 SC 128 830 98.9%

(see Table 2). A Quarter is defined as a quarter of a complete, 372.5 d, Kepler orbit around the Sun

(Kjeldsen et al., 2010). LC data correspond to a sampling rate of 29.4244 min and SC data to a sampling

rate of 58.8488 s. For both formats 6.02 s exposures are co-added on board; this occurs 270 times to

form an LC data point and 9 times to form an SC data point (Caldwell et al., 2010); the data are

then time-stamped with Truncated Barycentric Julian Date (Gilliland et al., 2010). The observations

of KIC 4544587 span from 2009 May to 2011 May and comprise 179 342 data points. Of these 476, 1 639

and 4 397 LC data points were obtained in Quarters 0, 1 and 6 respectively and 44 000 and 128 830 SC

data points in Quarters 3.2 and 7. Fig. 7 depicts the Quarter 3.2 SC light curve and Fig. 8 is an enlarged

section demonstrating the ellipsoidal and pulsational variability intrinsic to the system.

From the total data set 1569 points were removed as outliers, of which 214 data points were removed

from Quarter 3.2 and 1207 from Quarter 7. These outliers were selected by eye as the intrinsic varia-

tions in the data significantly reduce the effectiveness of automated sigma clipping. Cosmic rays and

brightening events known as Argabrightening, named after the discoverer, V. Argabright (Van Cleve,

2009), are the dominant cause of outliers. Small gaps in the data are also present due to safe mode

events and spacecraft rolls. These effects, however, are minimal, which can be seen by the high duty

cycle that was obtained for each Quarter independently (see Table 2). For Quarter 3.2 the raw flux data,

converted into relative magnitudes, were used during the data analysis. The instrumental effects were

removed from the data using an 8th order polynomial as discussed in § 4.4.1. For Quarter 7 the raw flux
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data were used during analysis, which were detrended using sigclip as discussed in §4.5.1.

Figure 8: An amplified image of a section of the Kepler short cadence light curve. Here the dominant pulsation
modes and the hump between primary and secondary minima are clearly visible. (The first of these is centred on
17.5 BJD - 2455120).

The contamination value for KIC 4544587, specified by the Kepler Asteroseismic Science Operations

Center (KASOC), is estimated to be 0.019, where 0 implies no contamination and 1 implies complete

contamination of the CCD mask. This contamination value suggests that 98.1 per cent of the total

light observed is intrinsic to KIC 4544587. Even though the value of 0.019 is low, it is still possible

that variability from an external source could affect the flux and hence the frequency spectrum of

KIC 4544587. However, we see no evidence for this in the Kepler light curve or frequency spectrum.

(Future spectroscopic observations will attempt to confirm this).
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3 Identification of the Orbital Period

Period analysis was performed to identify the orbital period of the KIC 4544587. An initial estimate was

obtained by applying period04 (Lenz & Breger, 2004) to the SC data from Quarter 3.2 only. period04

applies a Fourier transform to the data and uses least squares fitting to ensure the amplitudes and phases

are calculated simultaneously. Further analysis was then performed on the total data set using the phase

dispersion minimisation (PDM) technique (Stellingwerf, 1978). A complete discussion of the application

of PDM to the data and the results obtained can be found in § 3.1.

Subsequently, to test the PDM software, jktebop (Southworth et al., 2004a; Southworth, 2008)

was applied to the SC data of Quarter 3.2 and Quarter 7. jktebop is based on the ebop light curve

modelling program, where ebop is an acronym for ‘Eclipsing Binary Orbit Program’ (Etzel, 1981;

Popper, 1984). ebop has been updated by Southworth et al. (2004a), formally known as John Kevin

Taylor, who subsequently added his initials, JKT, as a prefix. For Quarters 3.2 and 7 the period found

using jktebop agreed with that found using the PDM technique to an accuracy of 4σ. Following

further analysis an inconsistency between the two data sets was attributed to apsidal motion, which is

discussed in § 4.5.3. jktebop was well-suited to this task as it is extremely efficient at analysing large

quantities of precise data on account of its low numerical noise. Using jktebop, for Quarter 3.2 we

obtained an orbital ephemeris of:

MinI = BJD 2455124.885160(5)+2.1891084(11) × E

and for Quarter 7 we obtained an orbital ephemeris of:

MinI = BJD 2455124.85280(6)+2.1891134(44) × E

where MinI corresponds to the time of primary minimum and the values in the parentheses give the

1 σ uncertainty in the previous digits. This demonstrates that although the periods are the same to an

accuracy of 1 σ, the true difference has generated an off set in the zero points.

3.1 Phase Dispersion Minimisation

Phase dispersion minimisation (PDM) is a method used for finding the period of data when the data

are not evenly sampled, have large gaps or are non-sinusoidal, such as binary light curves (Stellingwerf,

1978). As KIC4544587 was not selected to be observed during Quarters 2 or 5, gaps in the data

occur during these times. Further gaps also appear in the data set due to safe mode events and the

transmission of data at the end of each quarter. Moreover, the features in the data are not specifically

sinusoidal, and hence PDM is highly suited to finding the orbital period of KIC4544587. I created

a piece of software after Stellingwerf (1978) to find the orbital period of KIC 4544587, for which the

details are as follows. When applying the PDM technique to the total data set, to avoid weighting by

the number of data points, all SC data were converted to LC. The PDM technique was then repeated

on the SC data of Quarters 3.2 and 7 separately.

To generate the period using PDM, initially the variance is calculated for the whole data set:

σ2 =

∑

(xi − x̄)2

N − 1
(13)

where x is the magnitude at each time point t and N is the number of values (where i= 1, N).
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Figure 9: A graph demonstrating Θ as a function of period using 100 bins and a precision of 0.0001 on the
Quarter 7 data. Statistically 2.1891± 0.00005d is the most significant period in the data between 1 d and 4 d.

Following this Θ, which is the ratio of the variance of the phase binned data to the variance of the

total data set, was calculated for the range of periods that is specified by the user. Starting with the

shortest period in the range, the data are converted from the time domain to the phase domain:

φi = ti/Π − [ti/Π] (14)

where φ is the phase, t is the time, Π is the period and the square brackets denote the integer part of

the value. The data are then arranged in ascending order of phase and separated into bins. The number

of bins is specified by the user and is denoted M . The variance of the binned data, s2J where (j = 1, M),

is then calculated for each bin using eq. 13.

The variance of all M samples can then be calculated for the given period by:

s2 =

∑

(nj − 1)s2
j

∑

nj − M
(15)

where the variance of each bin gives a measure of the scatter around the mean light curve. The value

s2 is a measure of the bin variance for the overall data set. Theta is then calculated, where Θ is the

ratio of the variance of the total data set to the variance of the binned data arranged by phase:

Θ = s2/σ2 (16)

This process is repeated for all periods within the specified range incremented by the user-specified

precision. The value for Θ will be approximately equal to 1 when Π is not a correct period. As a
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Table 3: The period, frequency and corresponding Θ values generated by the phase dispersion minimisation

software. The various values have been generated by altering the bin size and precision value, the precision value

used was 0.0000001. The slight difference between the values is consistent with that found with jktebop and

thus is attributed to apsidal motion. The uncertainty in the period is ± 5 following the final digit specified and

in the uncertainty in the frequency is ± 1 following the final digit specified.

Quarter Bins Period (d) Frequency (d−1) Θ

Q 3 150 2.1891142 0.45680577 0.011427

Q 7 300 2.1891122 0.45680618 0.005365

Complete data set 150 2.1891101 0.45680661 0.032712

significant period is approached there is a reduction in the value of Θ, this can pertain to a real peak,

harmonic or alias. The minimum value of Θ corresponds to the most significant period (see Fig. 9).

As the data sets are large, only the theta test is required to calculate the significance of the peak

(Stellingwerf, 2010). Furthermore, the F test, which is a standard test for comparing statistical models, is

no longer considered appropriate for statistical application to PDM. This is because the phase dispersion

minimization technique does not closely follow the F distribution (also known as the Fisher-Snedecor

distribution) because the two variables, s and σ, are not independent, and thus is not sensitive to it

(Schwarzenberg-Czerny, 1989).

The method for deriving s and hence Θ is such that if the number of bins, M, is greater than the

number of data points per bin, nj, then Θ becomes negative. Subsequently, in Table 3, the maximum

number of bins is 150 for Quarter 3.2 and for the total data set in long cadence, where as for Quarter 7

it is increased to 300 due to the increased number of data points.

It is evident from the Θ values that 2.18911± 0.00005 d−1 is a correct value for the period for

both the Quarter 3.2 data and the Quarter 7 data. However, to a greater level of significance the

values are not consistent with each other. The discrepancy between the Quarter 3.2 and Quarter 7

values is (1.04± 0.07)× 10−6, which although small, was significant enough to further investigate the

possibility of apsidal motion. If the system is undergoing apsidal motion we would expect a change in

the anomalous period, which is the time elapsed between consecutive primary eclipses; essentially what

the PDM method is measuring. In a system that demonstrates apsidal motion the anomalous period is

not equal to the true period as both eclipses are moving relative to each other, and so neither is fixed

with respect to a single orbit. Further discussion on apsidal motion and the anomalous period can be

found is § 4.5.3.
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4 Binary Modelling

The purpose of binary modelling is to generate a set of fundamental parameters through the consid-

eration of photometric and radial velocity curves. The binary modelling programs currently available

require initial estimates of specific binary parameters from which a model is generated. These pa-

rameters can include: theoretically defined values such as albedos and gravity brightening exponents;

spectroscopically determined values including temperature, log g and metallicity; and photometrically

determined values such as relative flux values and relative radii.

Tightly constrained parameters, such as those observationally or theoretically determined, are held

fixed during the fitting process as this reduces the number of free parameters and hence the number of

dimensions in parameter space. The modelling program then alters the fitted parameters simultaneously

to generate a model that is consistent with the observed data. The three modelling programs considered

here are jktebop (Southworth et al., 2004a; Southworth, 2008; Etzel, 1981; Popper, 1984), the Wilson-

Devinney code (Wilson & Devinney, 1971; Wilson, 1979; Wilson & Van Hamme, 2004) and phoebe

(Prša & Zwitter, 2005); where phoebe is based on the Wilson-Devinney code but contains several

improvements as discussed in §4.5.

The analysis of a photometric light curve alone will not generate accurate values of the fundamental

parameters. This is for two reasons: there is not enough information in a photometric light curve to

determine absolute properties (for example the absolute radii and the semi-major axis); and there is a

degeneracy that occurs due to the correlations between the parameters. For example, the potential of

the secondary is highly correlated with the mass ratio and both the potentials are highly correlated with

the inclination. Moreover, there is not enough information in a photometric light curve to determine

the absolute dimensions of the orbital dynamics. For this reason it is highly advantageous to combine

photometric data with spectroscopic data in the form of radial velocity curves, although this does

not guarantee that the global minimum will be identified. Currently the analysis of KIC4544587 is

dependent on photometric data only. However, future work will include the analysis of this object using

both light and radial velocity curves.

In an attempt to avoid local minima and to estimate errors correctly, two options are available:

once a solution is reached the parameters should be perturbed by a user defined value (commonly 10%)

to identify the parameter correlations (a method known as parameter kicking); and by implementing

heuristic scanning such as a Monte Carlo simulation (hereafter MC). Using both these methods the most

likely parameter values can be identified with the corresponding statistical error estimates. Currently

only the formal errors have been calculated for KIC4544587. However, future work will include the

identification of the uncertainties involved using a combination of MC and parameter kicking.

The SC data of Quarter 3.2 and Quarter 7, were used in the subsequent modelling and mode iden-

tification of KIC 4544587. The SC data have the advantage of increased time resolution which enables

the identification of the p mode pulsations that are present in this object. As the Kepler data are

released on a quarterly basis, the data of Quarter 7 are only a recent addition to the total data set

and consequently the analysis is incomplete. However, the Quarter 3.2 data were obtained prior to the

commencement of this project and so have undergone thorough analysis.

All data were used, ranging from Quarter 0 to Quarter 7 in the determination of the rate of apsidal

advance. The rate of apsidal advance is a measure of the precession of the line of apsides as a function
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of time. The increased time coverage was necessary to tightly constrain this effect (see § 4.5.3).

4.1 Binary model parameters

The current binary modelling programs are based on Roche lobe geometry. Within this geometry each

stellar component is classified as a point mass with an instantaneous equipotential surface. The shape of

the surface of each component is defined by the potentials of the primary and secondary components and

the centrifugal force of the binary system. The potentials are a combination of the gravitational forces

and the pressure gradient, as a function of radius (Prša, 2005). The Roche model assumes that each

stellar component is a rigid body that rotates uniformly about its axis and that any perturbations to the

equipotential shape, such as oscillations, are negligible (for this reason the pulsations are prewhitened,

prior to the generation of a final model, as discussed in § 4.3.2).

Each of the binary modelling parameters not only has a definition, but also a set of considerations

that need to be acknowledged when modelling a binary system. Fundamentally these parameters are

as follows (although it is often the case that a combination of parameters is used for implementation

purposes):

Potentials

The potentials of the stars are dimensionless quantities that define the shape and characteristics of

each star within the Roche model. Wilson (1979) adapted Kopal’s Law, which defines the potentials of

the stellar components, to include the instantaneous separation, thus enabling the determination of the

varying potentials at each phase for an eccentric, asynchronous orbit:

Ω =
1

r
+ q

[

1√
d2 − 2λdr + r2

− λr

d2

]

+
1

2
F 2(q + 1)r2(1 − ν2) (17)

where Ω is the potential of the stellar component at a particular phase, r is the radius relative to the

semi-major axis, q is the mass ratio of the system, d is the instantaneous separation, F is the stellar

angular rotation rate relative to the orbital rotation and λ and ν are the direction cosines which evolve

from the use of spherical coordinates: x= r sin θ cos φ= λ r and z = r cos θ = ν r.

The potential is used as a proxy for the inverse radius. Considerations towards the physical nature

of this parameter must be made, since if the potential is too large then the physical equivalent is a star

with a hole in the back. Also, small potentials are indicative of a component undergoing Roche overflow

generating either a semi-detached or over-contact system. Furthermore the potential of the secondary

star is derived from the potential of the primary, as a function of the mass ratio (through an inversion

of eq 17). For this reason the mass ratio and potentials are highly correlated and so should not be fitted

simultaneously.

Mass Ratio

There is not a large amount of information pertaining to the mass ratio in a photometric light curve.

The masses of the components are evident at quarter phases as ellipsoidal variations and periastron

brightenings, and during ingress and egress if the components are heavily distorted, for example in a

semi-detached or over-contact binary system. This is because the stellar distortion, which is evident

in the light curve during ingress and egress, depends on the radii of the components (as a function of
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the semi-major axis), the mass ratio, the instantaneous separation and the synchronicity parameter.

Consequently, in a system that demonstrates extreme ellipsoidal variations, by fitting the mass ratio

and potentials the photometric mass ratio can be acquired.

The most pertinent way to determine the mass of the two stellar components is through double-lined

spectra: with accurate radial velocity curves, the mass of the components of a stellar system can be

obtained to an accuracy of 1% (Torres et al., 2010).

Temperature

As it is a directly measurable quantity through observed spectra; the effective temperature is incor-

porated into the modelling process. Even though the individual temperatures of the stellar components

cannot be uniquely identified using the light curve alone, the temperature ratio is tightly constrained.

If the temperature is coupled with the luminosity, the luminosity of the secondary component is deter-

mined from the temperature ratio. This is done using the Stefan-Boltzmann law:

L ∝ R2T 4 (18)

where L is the stellar luminosity, R is the radius and T is the effective temperature. The effective

temperature is a global parameter, but as the temperature of a star is not uniform over the stellar surface,

gravity brightening and limb darkening laws are incorporated to obtain the local surface luminosity as

a function of temperature.

Luminosity

The luminosities of the stellar components are not tightly constrained during the modelling process

(unless the photometric light curve is in multiple pass bands), however, the ratio of the stellar surface

brightnesses is very well constrained by the ratio of the depths of the eclipses. Furthermore, for a total,

flat bottomed eclipse, the ratio of the light lost to the light remaining equals the ratio of the luminosity of

the smaller to the larger star. Within the WD code the light contributions of the primary and secondary

components, HLUM and CLUM (called so due to the hot and cold star identities that originally defined

the stellar components), are arbitrary, based on the input light curve. These parameters determine the

level and scale of the synthetic model light curve. The luminosity over the complete stellar surface is

specified as 4π times the flux per steradian.

Gravity Brightening

Gravity brightening occurs when the rotation and tidal deformation of a star causes it to deviate

from spherical shape into an oblate spheroid. The oblateness generates a variation in brightness due to

the varying gravitational acceleration across the stellar surface:

F ∝ Fpole

(

g

gpole

)β

(19)

where F is the flux, g is the gravitational acceleration and β is the gravity brightening exponent. As

the star rotates, the stellar poles experience a greater amount of gravitational acceleration, leading to

an increase in the local temperature, whereas at the equator the surface extends away from the star and
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thus becomes cooler. The values for β have been derived theoretically for stars in radiative equilibrium

by von Zeipel (1924) for the radiative case (β = 1) and empirically by Lucy (1967) for the convective

case (β = 0.32).

Limb-Darkening Coefficients

Limb-darkening describes the apparent brightness variation across the stellar surface from centre

to limb. As we observe the edge of the stellar disk, although our line of sight penetrates to the same

optical depth, it does not penetrate to the same geometric depth as at the centre. For this reason the

stellar surface appears brighter at the centre than at the edges (see Fig. 10).

Figure 10: An image of the Sun that demonstrates the variation of the light from center to limb due to limb
darkening. The observations were performed by the Solar and Heliospheric Observatory satellite, 2003 Oct. 28.
From www.britannica.com

The effect of limb darkening on local surface brightness is incorporated into the modelling process

to describe the variation of light as a function of distance from the centre of the stellar disk. The

standard function that describes this intensity transition is the linear function (see eq. 20). However,

this function has been adapted into a square root (Klinglesmith & Sobieski, 1970) function (see eq. 21),

which is applicable to stars of Teff > 9000 K and a logarithmic (Diaz-Cordoves & Gimenez, 1992) function

(see eq. 22), which is applicable to stars of Teff < 9000 K when observing in the optical (Prša, 2005):

L(ϕ) = 1 − xλ + xλ cos ϕ (20)

L(ϕ) = 1 − xλ + xλ cos ϕ − yλ(1 −√
cos ϕ) (21)

L(ϕ) = 1 − xλ + xλ cos ϕ − yλ cos ϕ log(cos ϕ) (22)
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where L(ϕ) is the luminosity as a function of position expressed in terms of the luminosity at the centre

of the stellar disk and xλ and yλ are wavelength dependent limb darkening coefficients.

log g

The gravitational acceleration experienced by a test particle at the stellar surface is expressed by

the global parameter g. log g is specified in cgs units and is a proxy for the size of the star, thus it does

not include consideration of variations that occur on the micro scale. log g is an observed parameter

and can be identified in the shape of spectral lines. log g∼ 4.0 and log g∼ 2.5 are values indicative of a

main sequence star and red giant respectively.

Albedo

The albedo is a measure of the light incident from the companion star that is re-radiated away from

the stellar surface. Consequently, a star with a fully radiative envelope has an albedo of 1.0 (Eddington,

1926; Milne, 1926) which equates to 100% of the light being radiated away. For a star with a convective

surface, however, approximately 50% of the emergent light is reabsorbed, thus the theoretical value for

the albedo is between 0.4 and 0.5 (Ruciński, 1969), the uncertainty of which is due to the uncertainty

in the mixing length scale factor. The most prominent effect of the albedo can be seen on the shoulders

of the minima.

Claret (2001) determined that the upper temperature limit, where a star’s envelope should be

defined as convective for the purpose of the albedo and gravity brightening exponent, is ∼6300 K. This

is because at this temperature the convective envelope is thin enough that it does not play an important

role in these effects. However, Claret (2001) also suggests that, with the advent of improved observations

using satellites, the uncertainty in the albedo is likely to pose a problem.

Multiple Reflection

Reflection effects are considered globally through the albedo parameter. However, within some

modelling programs, such as WD and phoebe, multiple reflection effects are considered. This function

determines how the reflection (re-radiation) of heat from one star affects the temperature distribution

on its companion; this becomes highly important for hot dense stars such as subdwarf B stars and white

dwarfs where a multiple number of reflections need to be considered. These effects occur on small scales

and are most prominent on the area of the star that is directed towards its companion and hence are

not defined by the albedo alone.

Time of Primary Minimum and Phase Zero

The traditional definition for the time of primary minimum and zero phase is the time where the

primary star (defined as the hotter star) is being eclipsed by the secondary star. For a system in a

circular orbit or system where the longitude of periastron is equal to π/2 rad, the time of superior

conjunction also coincides with phase zero. However, due to apsidal motion, it is often required that

phase zero is defined separately from the time of superior conjunction for an eccentric system. In this

case the time of phase zero is defined as the far intersection of the line of sight along a node that is

central to the ellipse of the orbit (see Fig. 11).

23



Figure 11: An image demonstrating the orbital plane of the primary star. Here you can see the relation of
phase zero and time of primary minimum. Phase zero is the far intersection of the line of sight along the node
that is central to the primary orbit and time of primary minimum occurs when the primary star is at superior
conjunction. From phoebe Scientific Reference (Prša & Zwitter, 2005).

Phase Shift

The phase shift is the separation from the time of primary minimum to zero phase. This value is

incorporated for convenience, as it is often preferable to specify the zero point in time as the time of

primary minimum. Thus, the phase shift signifies the separation between primary minimum and the

time of zero phase in terms of phase.

Period

The sidereal period of a binary system is the time of one complete orbit from phase zero to phase

zero (where phase zero is defined separately from the time of superior conjunction as specified above).

If the traditional phase zero were considered here, in an eccentric binary system the period would be

equivalent to the anomalous period which is discussed in section §4.5.3. The anomalous period varies

with time as the line of apsides processes around the orbit causing the eclipse phases to vary with

respect to each other.

Semi-Major Axis

The major axis is defined as the line that passes through the two foci of the ellipse and is the longest

axis of an elliptical orbit. (This reduces to the orbital diameter for a circular system.) The semi-major

axis (a) is half this quantity. When modelling radial velocity curves, by setting the inclination (i) to

90◦, a sin i and hence a can be accurately obtained. By then determining the inclination of the orbit

through modelling, an accurate estimate of a may be acquired that is consistent with the orbital shape.

Argument of Periastron

The argument of periastron, ω, is the angle from the ascending node to the point of periastron (the

point of closest approach). The line of nodes is the intersection between the plane of the orbit and
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the tangential plane of the sky, and the ascending node is where the primary component passes from

negative to positive inclination with respect to the tangential plane (see Fig. 12).

Figure 12: An image demonstrating the various parameters that define the orbital dynamics of a binary star
system. The argument of periastron (or periapsis as specified here) is the angle measured from the ascending
node to the point of periastron. From www.uvs-model.com

The radial eccentricity projection and the tangential eccentricity projection are described by a

combination of the eccentricity and the argument of periastron. The ratio of the primary and secondary

eclipse widths is determined by the tangential eccentricity projection, e cos ω. The radial eccentricity

projection, e sin ω, determines the phase separation between the two eclipses and the shape of the

eclipses (Prša & Zwitter, 2005).

Inclination

The inclination of a system refers to its orientation of the orbit with respect to the plane of the sky.

At 90◦ the orbit is perpendicular to the plane of the sky and at 0◦ the orbit lies in the plane of the sky.

If an orbit is at any angle other than 0◦ it has an ascending and descending node.

Eccentricity

All close binary systems tend towards either a synchronous circular orbit, or the two components

eventually merge (Hut, 1981). However, as this is a generally slow process, many binary orbits are

eccentric. Eccentricity has multiple influencing factors on the computation of the stellar parameters.

Primarily it determines the magnitude of the variation of the gravitational forces exerted on each stellar

component as a function of time. This has many consequences including: the requirement of a factor

that denotes the instantaneous separation when calculating the potentials and hence shapes of the stellar

components; the occurrence of a phase shift between zero phase and primary conjunction - although

this can be zero when the line of apsides coincides with the line of sight (Kallrath, 2009); effects on

the rotational synchronicity of the stellar components leading to tidal interactions (see § 5.2) and hence

apsidal motion; and it determines the width of the minimum that is closest to apastron in the light

curve.
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4.2 JKTEBOP

ebop (Eclipsing Binary Orbit Program) is a binary modelling program that was created by Etzel (Etzel,

1981; Popper, 1984) based on models by Nelson (Nelson & Davis, 1972). It incorporates linear least

squares fitting to model stellar light curves. This is done by calculating the intensity ratio at the

centre of each stellar disk and approximating it to flux values using limb-darkening coefficients. From

the best-fit model the stellar parameters are initially derived for spherical components. These values

are then perturbed to allow for oblateness (Popper & Etzel, 1981). Due to the approximation that

the stars are spheroids, ebop is only applicable to detached systems where the individual components

are approximately spherical, which encompasses all stars of oblateness less than 0.04 (Popper & Etzel,

1981). The analytical nature of ebop makes it extremely efficient at analysing large quantities of precise

data on account of its low numerical noise caused by inconsistencies in precision.

jktebop is an updated version of ebop that incorporates the Levenberg-Marquardt minimization

algorithm to perform a linear least squares fit to the data (Southworth et al., 2005). Furthermore,

the ebop program has been modified to solve for both the sum and ratio of the radii of the stellar

components and to perform automatic iterations. In each case the units are defined in a dimensionless

manner and so do not depend on knowing the distance of the star.

4.2.1 Implementation of JKTEBOP to KIC4544587

As jktebop only allows for a maximum oblateness of 4%, it was not able to model the ellipsoidal

nature of KIC4544587. For this reason the residuals of the fit contain a large hump pertaining to the

ellipsoidal variability in the system after secondary minimum. This can be seen in Fig. 13.

As stated in § 3, jktebop was initially used to determine the orbital ephemeris of the system.

However, it was also incorporated into the modelling process to acquire initial estimates for the system’s

parameters for Quarter 3.2. Information from the KASOC website that accompanies the Kepler data,

values generated using Kepler’s third law (assuming a circular orbit), and approximate estimates based

on the aforementioned information were used as input parameters for jktebop (see Table 4). From these

approximate values jktebop generated a fit to the data. The output parameters, listed in Table 4, were

then incorporated into the modelling process using WD. All the values were directly transferable with

the exception of the surface brightness ratio, e cosω and e sinω.

The WD code uses two separate parameters to define the light contributions of the two stellar

components. Consequently, the surface brightness ratio generated by jktebop was used as a guide

when manually creating an initial synthetic model using WD. A value for the eccentricity was also

generated by jktebop, which required no initial estimate. From this value (e = 0.281 with no formal

errors given) the longitude of periastron was calculated to be ω = 325.21◦ using the value of e sin ω.

The errors specified are the formal errors (Gaussian errors approximated by the WD code) and are

not indicative of the true uncertainty in the values as they do not account for correlations between

parameters.

As previously mentioned, jktebop was initially incorporated into the modelling process to iden-

tify the orbital ephemeris of the system. However, whilst jktebop’s rapid modelling technique was

favourable for this task, the pronounced stellar distortion of KIC 4544587 goes beyond the limitations

of this program. For this reason the WD code was used to further constrain the stellar parameters and
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Figure 13: The phased data from Quarter 3.2 (black) and the model fit (red) from jktebop. The residuals are
displayed below the data, offset by 0.8 magnitudes and amplified by 10 for clarity.

arrive at a better fit.

4.3 Wilson and Devinney

The first version of the WD (Wilson & Devinney, 1971) code superseded previous binary modelling

codes, such as the Russell model (Russell & Merrill, 1952), with a more direct treatment of reflection

effects and an improved approach to gravity brightening. In 1976 Wilson & Sofia (1976) incorporated

the ability to analyse radial velocities into the code. The code was further improved in 1979 to include

binary eccentricity, non-synchronous rotation and the ability to fit light curves and radial velocities

simultaneously (Wilson, 1979). The WD code uses a differential corrections algorithm to arrive at an

optimal set of parameters that characterize the binary light curve.

The approach of the WD code is to combine the flux of discrete surface elements over the distorted

stellar model, and to equate this to the observed flux. The number of surface elements on each stellar

component is defined by two input parameters, N and NL, which signify the number of latitudinal

and longitudinal divisions per hemisphere respectively (typical values range from 30–80 divisions per

hemisphere but computational time increases linearly with the number of segments). An accurate

account of the observed flux is obtained with the incorporation of effects such as limb darkening, gravity

brightening, multiple reflection effects and the simple treatment of reflection using an inverse square

law. In addition, horizon effects, which describe the treatment of the stellar boundary as seen by the
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Table 4: The initial estimates used and subsequent values generated by jktebop that were later incorporated
in the modelling process using WD. The uncertainty specified is the one sigma uncertainty in the final digit as
generated by jktebop and is the formal error; hence it does not account for correlations between the parameters
and is not indicative of the true uncertainty in the values.

Parameter Initial Estimate jktebop Uncertainty

Surface brightness ratio 0.7 0.7212 0.0024
Orbital inclination(◦) 88 88.271 0.011
e cosω 0.23 0.23114 0.00001
e sinω 0.00 -0.16054 0.00032
Mass ratio 0.9 0.821 0.001
Orbital period (d) 2.18911 2.1891084 0.00000115
Epoch of primary minimum (BJD) 2455138.02 2455138.019814 0.000006

hypothetical observer, and eclipse effects, which describe how this boundary changes during eclipse, are

considered in order to obtain the final parameter values for the stellar components.

4.3.1 Binning the data

As the WD code is only able to compute up to 9000 data points at any given time, it was necessary to

bin the data prior to input. Furthermore, binning the data significantly reduces the computational time

required by the WD code to generate a fit to the data, which is extensive, especially for an eccentric

system such as KIC 4544587. The binning program used was created by Southworth et al. (2004b) and

is designed to phase bin the data into the user specified number of bins. For the short cadence data of

Quarter 3.2 the light curve was folded using the previously identified period, and binned into 500 data

points using a constant step of ∆φ= 0.002.

4.3.2 Constraining the Model using WD

When modelling the data, the initial inputs were a combination of the information provided by KASOC

(as a supplement to the Kepler data), values derived from this information and those generated by

jktebop (as discussed in § 4.2.1 and listed in Table 4). As we do not yet have spectral data for this

object, the temperatures of the stars are not tightly constrained. Consequently, the single temperature

provided by KASOC (8255 K), which is a summation of the temperatures of the two stars (as a function

of radius), was utilised as the starting value for the primary component in the modelling process.

KASOC also provided a single log g value (log g = 4.0), which was assumed for both components.

Prior to utilizing the differential corrections function of the WD program, an initial model was

created. This was done by manually adjusting the stellar parameters to generate a synthetic model.

Following this the values of the stellar light contributions, potentials, inclination and temperatures were

adjusted to generate an approximately correct synthetic model that could be further constrained with

the differential corrections minimiser. Once an initial model had been generated, the WD differential

corrections algorithm was applied to the data in an iterative process. I further enhanced the minimising

abilities of the WD code by utilizing a wrapper, jktwd, created by Southworth et al. (2011), which

generates automatic iterations and hence vastly reduces computational expense.
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Table 5: Fixed parameters and coefficients for the WD best fit model to the Kepler light curve for Quarter 3.2.
Here the primary and secondary stars are labeled as A and B respectively. The rotation is specified as a ratio
of the stellar to orbital rotation and the numerical accuracy is defined to be the number of lateral (N) and
longitudinal (NL) surface elements per hemisphere for each star.

Parameter WD Specified Values
Names

Third light EL3 0.0
log g (A) Logg1 4.0
log g (B) Logg2 4.0
Rotation (A) Frot(A) 1.0
Rotation (B) Frot(B) 1.0
Numerical accuracy (A) N1 60
Numerical accuracy (B) N2 40
Numerical accuracy (A) N1L 30
Numerical accuracy (B) N2L 20

4.4 Multiple Iterations

When modelling a binary system with one or more pulsating components, multiple iterations are re-

quired. The method used involves subtracting the computed model from the original observed data,

subsequent frequency analysis of the observed minus computed data (residuals), and finally, the removal

of the pulsation frequencies from the original, detrended data. That which remains is a light curve pre-

dominantly free of pulsations for successive binary modelling. This enables the orbital characteristics to

be modelled correctly without interference from the stellar pulsations. Furthermore, the Roche model

assumes that any perturbations are negligible with respect to the instantaneous equipotential shape

of the stellar components. On one hand the pulsations of KIC4544587 are relatively small, although

they still have a substantial affect on the light curve. Thus it was required that the pulsations were

prewhitened so that an accurate model could be obtained. For each iteration care was taken to ensure

that eclipse information was not excessively removed from the light curve. This was done by comparing

eclipse depths before and after the subtraction of the pulsation frequencies.

Initially a mode was incorporated that places no constraints on the computation of the stellar

parameters so that the pulsations could be fully separated from the light curve. For the final iteration the

luminosities and temperatures of the stellar components were coupled so that the model obeyed Stefan-

Boltzmann’s law. Three iterations were needed for modelling KIC4544587, with further iterations

having negligible effect determined by the values altering by less than their uncertainties. The fixed

and free parameters, and their corresponding values for Quarter 3.2 can be found in Tables 5 and 6

respectively.

Fig. 14 demonstrates the theoretical model and residuals obtained for the third iteration. On one

hand a direct comparison cannot be made because only one iteration was performed using jktebop;

however, compared to the model of Fig. 13, two points should be noted: primarily, in Fig. 14 the hump

in the light curve that occurs after secondary minimum has been fitted to the extent that it is not visible

in the residuals; and as the residuals are magnified by the same factor for Figs 13 and 14 (both have

been multiplied by ten), it can be seen that the fit to the eclipses has improved greatly.

There is still a small amount of residual pulsation information remaining in the observed light curve
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Table 6: Free parameters and coefficients for the best fit model to the Kepler light curve for Quarter 3.2. Here
the primary and secondary stars are labeled as A and B respectively. The uncertainty specified is the one sigma
uncertainty in the final digit, as generated by WD, and is the formal error; hence it does not account for the
correlation between the parameters and is not indicative of the true uncertainty in the values.

Parameter WD Specified Values
Names

Phase shift PSHIFT 0.082646(1)
Semi-major axis (R⊙) A 11.00000(2)
Orbital eccentricity ECCENTR 0.28375(5)
Longitude of periastron (◦) OMEGA0 324.444(7)
Orbital inclination INCLIN (◦) 88.24(7)
Mass ratio MASSRAT 0.47714(6)
Primary mean temperature (K) Teff(A) 8271(10)
Secondary mean temperature (K) Teff(B) 6354(3)
Potential (A) POT(A) 6.703(6)
Potential (B) POT(B) 5.006(9)
Bolometric albedo (A) ALB(A) 1.12(1)
Bolometric albedo (B) ALB(B) 0.431(1)
Linear limb darkening coeff. (A) LDU(A) 0.448(2)
Linear limb darkening coeff. (B) LDU(B) 0.454(3)
Relative light contribution HLUM 8.642(1)
Relative light contribution CLUM 4.5468(1)
Gravity brightening (A) GRAV(A) 1.064(1)
Gravity brightening (B) GRAV(B) 0.480(1)

Table 7: The fractional radii of the stellar components derived from the best fit model for Quarter 3.2, as
generated by the WD code.

Radius Primary Secondary

Pole 0.165180 0.141380
Point 0.167540 0.146400
Side 0.165730 0.142000
Back 0.167030 0.145250
WDLC mean 0.166029 0.142974
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during eclipse phase which can be attributed to a slight discrepancy between the model and the light

curve. There is also some residual pulsation during eclipse phase that occurs due to the change in

relative light contributions as one star passes in front of the other. This either increases or decreases

the observed amplitude of pulsation depending on the component that is being eclipsed. For this reason

the pulsations are not fully removed during eclipse phase. Further discussion of the treatment of the

residuals can be found in §5.

Figure 14: Observed light curve (black points) and theoretical model generated by the WD code (red line). The
residuals (black dots), which are multiplied by ten, are offset from the light curves by 1.0 magnitudes for clarity.

The parameters generated by the WD code are indicative of a system with two oblate components in

close proximity. The level of oblateness is demonstrated by the variation in fractional radii for the two

stellar components shown in Table 7. The parameters obtained suggest that the primary component

is within the δ Scuti instability strip and the secondary a possible solar-like oscillator. We cannot,

therefore, presume that only the primary component is pulsating. However, it is likely that only the

pulsations of the primary have been detected due to the low amplitude of solar-like pulsations Kjeldsen

& Bedding (2011). Neither component is a candidate for g mode pulsations independently. However,

as in the case of KOI–54 (Welsh et al., 2011), tidal interactions have induced strong g mode pulsations.

It is most likely that it is the primary component that is pulsating, although future spectroscopic

investigation will provide a more definitive answer.

4.4.1 Generation of Residuals

I wrote a piece of software that enabled the subtraction of the synthetic model from the original data.

The objective of this was to enable the analysis of the stellar pulsations in the light curve, without

influence from the binary features.

To achieve this the data were initially converted from the time domain to the phase domain. This
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was done by subtracting the user specified zero point in time (in Truncated Barycentric Julian Date)

from each data point, and dividing this value by the user specified period. The synthetic data were

then interpolated so that the number of computed data points was equal to the number of observed

data points for each phase. The synthetic model was then subtracted from the observed data, leaving

only the residuals. The data were then converted back into the time domain.

Figure 15: The residuals of the pulsation-free light curve after subtraction of the final, best-fit model
for Quarter 3.2. A minimal amount of residual eclipse information remains in the phased data; for this
reason the data points that lie within the eclipse phases were removed during pulsation analysis.

Subsequently, the instrumental trend was identified by fitting a low order polynomial to the residuals.

The polynomial generated was then removed from both the residuals and the original data set. The

polynomial selected for Quarter 3.2 was fifth order as, through the consideration of the detrended data,

this appeared to generate an optimal fit to the instrumental trend.

Frequency analysis was then performed on the data to identify the pulsation periods, as specified in

§ 5. The identified modes were then prewhitened from the original data. This provided a light curve that

was predominantly free of instrumental effects and pulsations, leaving only the binary characteristics.

This allows for a more concise model of the binary system to be generated.

Once a new model had been created, this was again subtracted from the original, detrended data.

Subsequently the process of determining the pulsation frequencies and amplitudes of the residuals was

repeated. Three iterations were undertaken until the root mean square of the residuals, when the

model was subtracted from the light curve with the pulsations removed, did not decrease with further

iterations to three decimal places (the accuracy demonstrated by the WD code). The residuals generated

through the subtraction of the final model from the pulsation-free light curve can be seen in Fig. 15. A

comparison between the detrended, original light curve and the light curve with the pulsations removed

was made after each iteration. This was to ensure that the pulsations were not being over-subtracted,
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which would be highlighted by alterations in the depths of the eclipses.

4.5 PHOEBE

Despite the fact the Wilson-Devinney code has played a vital role in the determination of the binary char-

acteristics of KIC 4544587 for Quarter 3.2, to model Quarter 7 including apsidal motion, phoebe (Prša

& Zwitter, 2005) was incorporated into the modelling process. phoebe is based on the Wilson-Devinney

code and provides an intuitive graphical user interface alongside many other improvements that make

phoebe increasingly applicable to the high quality, precise Kepler data. These include: temperature

determination through colour contrasting; uncertainty calculations through heuristical scanning algo-

rithms (which scan parameter space by generating results from multiple starting points to determine the

mean and standard deviation); the facility to phase-bin the data; updated filters for the various recent

space missions including Kepler; and the ability to work with an unlimited number of data points.

Figure 16: An image of the Quarter 7 residuals after subtraction of a model generated by phoebe. Here it can
be seen that the large scale variations, which are due to the discrepancies between the model and the data, are
increasing with time; although this could be due to an incorrect ephemeris, it is also indicative of apsidal motion.
The y-axis is in relative flux units and the x-axis is Truncated Barycentric Julian Date.

When modelling Quarter 7, the deviation of the minima from a fixed ephemeris was apparent in

the residuals; this is a signature of apsidal motion (see Fig. 16). It was also possible, however, that

the ephemeris of the data had not been correctly identified. For this reason the presence of apsidal

motion was confirmed through the identification of the anomalous period (see § 4.5.3). Following this

the rate of apsidal advance was identified using phoebe. As apsidal motion occurs on relatively short

time scales in KIC4544587, to achieve a high quality model that is applicable to the complete data set,

it was required that apsidal motion be incorporated into the model.
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4.5.1 Constraining the Model and Generation of Residuals using phoebe

As phoebe has an incorporated binning function, it was only required that the data be detrended

prior to the modelling process. This was done using sigclip, which performs automated sigma clipping

to determine a Legendre polynomial of user-specified order to fit the data. The method incorporated

involved applying sigclip to the data using a threshold of 0.05 sigma below the light curve and 5 sigma

above the light curve. This essentially eliminates the data points below the outer envelope of the

light curve, enabling a fit to the outer envelope alone (Prša, A., private communication). Through the

consideration, by eye, of orders 1–15, an 8th order Legendre polynomial was determined to be most

suitable for the removal of all instrumental trends.

Figure 17: Theoretical (red line) and observed (black points) light curves, generated by the Wilson-Devinney
code. The residuals (black dots), which are multiplied by ten, are offset from the light curves by 0.6 flux units
for clarity.

Following this a synthetic model of the Quarter 7 data was generated by manually adjusting the

initial input parameters, which were taken from the WD model for Quarter 3.2 (see Table 6). phoebe’s

graphical user interface made this process efficient and allowed for a more intuitive adjustment approach.

The method used when modelling the Quarter 7 data was to keep the luminosities and temperatures

coupled for the whole modelling process; for this reason only the temperatures required manual adjust-

ment as the luminosities were calculated as a function of temperature, normalised to the input light

curve.

Once an approximate model had been created, the differential corrections algorithm was incorpo-

rated to improve the orbital fit to the data. As with the Quarter 3.2 data, it was required that the

pulsations be prewhitened so that the orbital features could be tightly constrained. The values listed in

Tables 8 and 9 are the fitted parameters and those generated after the second iteration using phoebe

respectively. The values in Table 10 are the radii of the stellar components derived from the best fit

model using phoebe (which can be seen in Fig. 17). As the Kepler data of Quarter 7 were released

towards the later stages of this work, the complete analysis has not yet been undertaken and therefore

must be considered as preliminary. However, although subsequent iterations may have slightly improved
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Table 8: Fixed parameters and coefficients for the phoebe best fit model to the Kepler light curve for Quarter 7.
The rotation is specified as a ratio of stellar to orbital rotation and the fine grid raster is the number of surface
elements per quarter of the star at the equator and coarse grid raster is used to determine whether the stars are
eclipsing at a given phase.

Parameter Values

Third light 0.0
Primary rotation 1.0
Secondary rotation 1.0
Primary Bolometric albedo 1.0
Secondary Bolometric albedo 1.0
Primary gravity brightening 1.0
Secondary gravity brightening 1.0
Mass ratio 0.7
Primary fine grid raster 80
Secondary fine grid raster 80
Primary course grid raster 50
Secondary course grid raster 50

the values obtained for the orbital parameters, the increased number of iterations is far more important

for the frequency analysis for two reasons: only low amplitude pulsations will remain in the data, which

do not have a large effect on the binary modelling process; and as the data are phase binned prior

to modelling, all residual pulsation (that is not commensurate with the orbital period) will essentially

cancel. For this reason, however, the frequencies generated from the modelling of Quarter 7 are only

considered preliminary until further iterations have been generated.

When modelling with phoebe the theoretical values for the albedo and gravity brightening expo-

nents were held fixed. This was done to reduce the number of dimensions in phase space and thus

generate a more realistic model. As the temperature of the secondary component, as determined by

the WD code, is on the cusp between a radiative and convective envelope, the data were modelled with

theoretical values for both occurrences and the results compared. Specifically, the data were modelled

with the albedo and gravity brightening of the secondary component set to 0.5 and 0.32 respectively for

the convective outer envelope and for the radiative envelope both the albedo and gravity brightening

were set to 1.0. From the orbital fit it was determined that assuming a radiative envelope for both

components gave the best outcome. In Fig. 18 a mesh plot of the system can be seen which shows the

physical form of the parameters generated by phoebe.

4.5.2 The Synchronicity Parameter

As it is evident from the study of Quarter 7 that the line of apsides is moving with time, and as the orbit

is eccentric, it is also possible that the rotation of the stars is not pseudo-synchronous with the orbit.

Pseudo-synchronicity is the closest an eccentric binary can get to a synchronous orbit, as in an eccentric

orbit the components librate and so cannot be classed as fully synchronous. A quasi-synchronous orbit

was thus investigated. The formula to identify the rate of stellar rotation with respect to the orbital

rotation as specified by Hut (1981) is:
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Table 9: Free parameters and coefficients for the best fit model to the Kepler light curve for Quarter 7. The
uncertainty specified is the one sigma uncertainty in the final digit, as generated by phoebe, and is the formal
error; hence it does not account for the correlation between the parameters and is not indicative of the true
uncertainty in the values. The values for the limb darkening coefficients have been taken from the phoebe (2010)
limb darkening tables and so do not have accompanying errors. Furthermore, error estimates are not given with
the values for log g, although these will be calculated upon the determination of the final parameters.

Parameter Values

Phase shift 0.0766(1)
Semi-major axis (Rsun) 11.01044(2)
Orbital eccentricity 0.28315(9)
Argument of periastron (rad) 5.6892(5)
Orbital inclination◦ 87.82(1)
Primary mean temperature (K) 8172(1)
Secondary mean temperature (K) 7371(2)
Primary potential 6.928(4)
Secondary potential 6.576(4)
Orbital Period (d) 2.189116(1)
Apsidal Advance 0.0001178557(1)
Primary relative light contribution 8.824(6)
Secondary relative light contribution 4.227(3)
log g (Primary) 4.2333
log g (Secondary) 4.2268
Primary linear limb darkening coeff. 0.65367
Secondary linear limb darkening coeff. 0.66881
Primary non-linear limb darkening coeff. 0.28367
Secondary non-linear limb darkening coeff. 0.24226

Table 10: The fractional radii of the stellar components derived from the best fit model for Quarter 7, as generated
by phoebe code.

Radius Primary Secondary

Pole 0.1692 0.1426
Point 0.1729 0.1460
Side 0.1699 0.1431
Back 0.1729 0.1460
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Figure 18: A mesh plot of the synthetic model of KIC4544587 as generated by phoebe.

F =

√

1 + e

(1 − e)3
(23)

where F is the ratio of stellar to orbital rotation and e is the eccentricity of the system (e =0.28315(9)).

A quasi-synchronous orbit is an orbit where the rotation rate of the two components at periastron

are assumed to be consistent throughout the orbit. The value for the quasi-synchronous rotation rate

was found to be F = 1.87(1), where the error is demonstrated by the value in the parenthesis and has

been propagated from the formal error. This value was incorporated into the modelling process using

phoebe. It can be seen in Fig. 19 that incorporating this value into the modelling process created a dip

in the residual light curve after secondary minimum and did not generate an adequate fit. This suggests

that if the components are rotating at a rate close to the quasi-synchronous value, that there would be

a larger hump in the light curve after secondary minimum.

The orbital rotation rates were then fitted using phoebe with the already obtained model for

Quarter 7 and the quasi-synchronous values calculated as initial estimates. It was found that the rotation
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Figure 19: The residual data after subtraction of a model generated by phoebe with quasi-synchronous
rotation incorporated. It can be seen that there is a dip in the residuals between secondary and primary
eclipse, this has been generated by the incorporation of F = 1.87(1) as the value for pseudo-synchronous
rotation. Furthermore, the fit generated to the eclipses is not ideal when incorporating this value (for
reference, see Fig. 15 which depicts the residuals of the best fit model generated by WD for Quarter 3.2).

rates increased from the specified values using this method, but that the fit to the data did not improve.

The starting values were then reduced to a value between quasi- and pseudo-synchronous (1.4) and

finally fitted from a starting value of 1.0, which implies pseudo-synchronous rotation. For each iteration

the synchronicity parameters for both stars increased with the application of the differential corrections

method; however, the fit to the data appeared to deteriorate. As the best fit to the data was generated

through assuming pseudo-synchronous rotation, it is likely that KIC 4544587 is approaching pseudo-

synchronicity; for this reason the synchronicity parameters were reduced to 1.0, which was maintained

for the remaining light curve modelling.

4.5.3 Apsidal Motion

Apsidal motion is the motion of the elliptical orbit about the centre of mass. As the orbit precesses, the

line of apsides and hence longitude of periastron also advances with time. The longitude of periastron

is a quantity that is measurable, and so its motion with time can also be measured; assuming that the

motion is detectable over the duration of the data set. Furthermore, the motion of the line of apsides

causes the phase of primary and secondary eclipse to move with respect to each other.

Following the initial indicators that the orbit of KIC4544587 is undergoing apsidal motion, as seen

in the residuals of Quarter 7 (see Fig. 16) and the difference in orbital periods obtained using PDM and

ephemerides generated using jktebop for Quarters 3.2 and 7, conclusive evidence of apsidal motion

was sought. This was identified by phasing the total data set by a period which held the primary
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Figure 20: Two images of the total, LC data set, phased by a period of 2.189096d and amplified to show
left panel: the primary eclipse, and right panel: the secondary eclipse. The frequency selected represents the
anomalous period of the data set. By selecting the anomalous period the primary eclipse remains fixed at the
same phase whereas the secondary eclipse becomes smeared due to the motion of the line of apsides. The y-axis
is measured in relative flux units.

eclipse in a fixed position, but generated a smearing effect with the secondary eclipse, as seen in Fig. 20.

This period is known as the anomalous period and is the time elapsed from primary eclipse to primary

eclipse. Thus it does not account for the motion of the eclipses within the orbit due to the motion of

the line of apsides. Consequently, the anomalous period is not the sidereal period of the orbit. The

anomalous period was identified, by eye, as 2.189096 d. This was done by adjusting the orbital frequency

to arrive at the lightcurve in Fig. 20 where one eclipse is well defined in phase space and the other is

smeared. Despite the fact the determination is not precise, the identification of an anomalous period

demonstrates that the system is undergoing apsidal advance.

Subsequently, to determine an initial estimate of the advance of periastron a section of data con-

taining a complete orbit was removed from the beginning of the data set and the end of the data set.

These data were then modelled individually by maintaining the previously determined parameters, but

allowing the longitude of periastron and phase shift to be fitted. Once a fit had been obtained, the value

of the longitude of periastron was recorded. For the first orbit in the data set, where primary minimum

occurs at BJD =2454954.1469(5), the periastron longitude was determined to be 5.6601(2) rad. For

the final orbit, where primary minimum occurs at BJD = 2455551.7513(2), the longitude of periastron

was identified as 5.7052(2) rad. This generated an approximate value for the advance of periastron of

dω/dt= (7.546±0.0005)× 10−5 rad d−1.

This value was subsequently incorporated into the modelling of the complete data set, where the data

from Quarters 3.2 and 7 were converted into LC. Initially, to constrain the estimate further, segments of

data that were approximately twenty orbits apart were modelled. This was done by adjusting the rate

of apsidal advance (with slight adjustments to the period once the fit was almost constrained). The

luminosity was also fitted as this parameter requires recalculation every time a new data set is added.

The period was adjusted so that the true period could be identified as opposed to the anomalous

period. The rate of apsidal advance was found to be 0.0001179(1) rad d−1, which gives 145.9(1) yr for

one complete precession.
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4.6 Comparison of Quarter 3.2 and Quarter 7 Results

When modelling the Quarter 3.2 data, prior to the final fit, the WD code was applied in such a way that

the binary system was modelled without constraining the relation between luminosity and temperature.

Whilst the temperatures can be calculated later, other parameters that are a function of temperature,

such as gravity brightening and limb darkening, are not consistently defined. We incorporated this

method primarily as the inherent pulsations in KIC4544587 posed an issue when generating an initial

fit to the data. Conversely, when using phoebe we imposed the constraint between the temperatures

and luminosities constantly throughout the fitting process in order to yield a more consistent treatment

of temperature dependent values.

There are contradictory beliefs as to whether it is acceptable to approach modelling using this

technique. As the pulsations of KIC 4544587 are affecting the shape of the light curve, it is unrealistic

to assume that an accurate binary model can initially be achieved. For this reason it can be argued that

it is advantageous to fit a model that generates the smallest residuals in the initial modelling stages.

This enables the majority of the frequency information to be removed, thus allowing further modelling

with a mode that incorporates the Stefan-Boltzmann law through the application of Kurucz model

atmospheres (in the case of detached systems for WD; mode 2).

It is also arguable, however, that subtracting an initial unphysical model will inject anomalous

information into the data and hence end in a fit that is inaccurate. The alternative is therefore to

generate an initial fit that follows the Stefan-Boltzmann law, although this may also be an incorrect fit

as it is still fitting the pulsations inherent in the system. For this reason the initial binary fit generated

for Quarter 3.2 was done with the former method and the second binary fit generated for Quarter 7 was

done with the latter method and the results compared.

Due to the rotation of the Kepler CCD, the two data sets of Quarter 3.2 and Quarter 7 have been

taken using the same CCD pixels, which is advantageous as it will reduce any discrepancies caused by

instrumental effects. Furthermore, as phoebe is based on WD, a comparison of the results can be made

with only minimal considerations to the modelling programs themselves (with the largest difference

being the implementation of the Kepler photometric pass band). There are, however, several differences

in the methods used that inhibit a direct comparison of the two sets of data, all of which are discussed

below.

When modelling the data without the temperatures coupled, using WD, it was found that the initial

orbital fit was more tightly constrained. This was determined by the smaller discrepancy between the

model and observations, during eclipse phase, for WD (± 0.003 relative magnitudes) than for phoebe

(±0.005 relative flux units). However, this can be partially attributed to the use of relative flux with

phoebe and relative magnitudes for WD, although in relation to the inherent pulsations, there was

less residual eclipse information in the WD generated residuals. Furthermore, this discrepancy could

also have occurred as a direct consequence of maintaining the Stefan-Boltzmann law throughout the

fitting process with phoebe and not with WD. Hence, although the fit generated with phoebe was

not as well constrained, it is possible that it is a more realistic fit to the data. The true temperatures

of the components will be determined with the acquisition of spectroscopic data, and consequently the

preferable method will be identified.

Other differences between the analysis of the two data sets are: the albedos and limb darkening
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exponents were fitted with WD but not with phoebe; the data were converted into magnitudes for use

with WD but not with phoebe; the data sets are different lengths; and apsidal motion was incorporated

into the modelling process with phoebe. Furthermore, different pass bands were utilised for the two

quarters, for Quarter 7 the Kepler mean pass band was used with phoebe, whereas for Quarter 3.2,

using WD, the Cousins R band was used (as the Kepler pass band was not available). It is expected

that from this difference alone a ∼10% discrepancy will occur in the results.

An obvious difference between the results of the two methods is that the WD program, through

the fitting of the temperatures, albedos and gravity brightening exponents, generated values that are

suggestive of a secondary with a convective outer envelope. Whereas, when modelling with phoebe,

the albedos and gravity brightening exponent were not fitted; rather the theoretical values for both a

radiative and convective outer envelope were applied to the secondary component and the fits compared.

Using this method it was found that the best fit to the data was achieved when assuming that the

secondary component has a radiative outer envelope (or that the convective envelope is negligible).

Furthermore, the temperatures of the two stellar components were both fitted in each of the mod-

elling attempts (although only one temperature was fitted at a time to avoid correlation issues). While

the temperature of the primary star only differs by 100 K for the two data sets, the temperature of

the secondary differs by 1000 K. It is expected that this discrepancy is the cause of the variation in

the albedos and gravity brightening exponents, especially since the temperature determined by WD

(6354 K) is on the cusp between a radiative and convective envelope, as defined by Claret (2001). The

spectroscopic temperatures of the two components are not currently available, however, it will be very

interesting to ascertain which of these results is closer to the observed quantities.

The gravity brightening exponents generated using WD were 1.064(1) and 0.480(1) and the values

for the albedo were 1.12(1) and 0.431(1) for the primary and secondary stars respectively, where the

values in the parenthesis demonstrate the formal error in the last digit. Primarily it can be seen that

both values for the primary component are greater than 1.0 (the theoretical value adopted for the gravity

brightening exponents and albedos of the primary and secondary when using phoebe) and thus are

unphysical when considering the formal errors. However, the formal errors are a gross underestimation

of the errors involved as the correlations between parameters and uncertainty related to the input

parameters (such as temperature) are not considered. For the secondary component the value generated

for the albedo is smaller than the theoretical value for convective envelopes (0.5) and much smaller than

the theoretical value for radiative envelopes (1.0). The value for the gravity brightening exponent of the

secondary is in between the theoretical value for a convective (0.32) and radiative (1.0) outer envelope

and thus is the most realistic value generated of these parameters. Although the values generated for

the albedos and gravity brightening exponents are not all physical and differ from those obtained using

phoebe, it was found that the orbital fit substantially improved when allowing these parameters to

be fitted. This was also found by Southworth et al. (2011) when using WD to model Kepler data

(KIC 10661783); although the albedo of the primary component was found to be 2.69± 0.012 which is

significantly larger and more unrealistic than that found here. The significance of this is that there

appears to be a consistent discrepancy, as suggested by Claret (2001), between the theoretical values

for the albedos and the highly precise Kepler observations.

The values generated by WD for the luminosities of the primary and secondary components are

8.642(2) and 4.35468(1) respectively, and those generated by phoebe are 8.824(6) and 4.227(3) (all in
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arbitrary units normalised to the light curve). Consequently, for WD, the ratio of the light contributions

is 1.90067(4), whereas for phoebe the ratio is 2.0879(7). The difference between the two ratios is large,

especially when considering that the luminosity ratio is well defined in the light curve. This suggests that

the different approaches have had a large impact on the luminosities and thus temperatures during the

modelling processes, although these differences could also have arisen from the use of different programs

(where a 10% discrepancy can be attributed to the different pass bands alone), data or because a local

minimum has been located instead of the global minimum.

When fitting the data using WD, the linear limb darkening method was incorporated. However, with

phoebe, the logarithmic law was adopted. It was found that the fit was not ideal when incorporating

either of these laws, as remnant eclipse information still remained in the shoulders of the minima

irrespective of the law incorporated. The linear law was incorporated when using WD as it appeared to

give the best fit. The logarithmic law was incorporated for use with phoebe as this is theoretically the

the most applicable law for use in systems with Teff < 9000 K (Prša & Zwitter, 2005). It appears that,

due to the precise nature of the Kepler data, the assumption that the limb darkening can be defined by

these laws is no longer applicable.

The log g value provided by KASOC for KIC4544587 was log g= 4.0. This single estimate was held

fixed for both components when modelling with WD. However, when using phoebe the values for log g

are estimated by phoebe as a function of stellar temperature and potential for each individual compo-

nent. The values determined by phoebe were log g= 4.23 for the primary and secondary components

(where no formal errors are given). The difference in values between those obtained by WD and phoebe

are likely to have affected the outcome of the modelling process. However, when considering the frac-

tional radii of the stellar components, the secondary component has approximately the same values

for the two data sets, whereas, the fractional radius of the primary is larger in the model generated

by phoebe (see Tables 7 and 10). As both components have the same values for log g, within their

respective models, it appears that the variation in log g values did not have a large effect on the values

of the radii and subsequently the models themselves.

When using phoebe, due to the obvious apsidal motion present in Quarter 7 alone, the rate of

apsidal advance was also fitted in the modelling process. This was performed after a model fit had

been generated to the binned data of Quarter 7. The incorporation of apsidal advance into the model

only had an effect on the phase shift, which decreased from 0.0774(2) to 0.0766(1), and the period,

which increased from 2.189112(2) to 2.189116(1). Therefore the determination of apsidal motion did

not influence the outcome of the remaining model parameters and thus did not contribute to any other

discrepancies.
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5 Frequency analysis

As a pulsating star expands and contracts, the sound waves that pass through it carry vital information

about the stellar interior. These sound waves penetrate to different depths and provide information

about the temperature, density and chemical composition of the cavity in which they are contained.

Through the analysis of these modes, information pertaining to the stellar interior such as structure,

rotation and transitional regions can be determined thought asteroseismic modelling. Furthermore, by

looking for frequency patterns and spacings, information about tidal interactions can be inferred.

5.1 Identification of Pulsation Frequencies

Two programs were used for the identification of frequencies in the light curve residuals of KIC 4544587.

These were period04 (Lenz & Breger, 2004) and a Fourier transform program used in conjunction with a

least squares program, both created by Kurtz (1985). The former of the two has a graphical user interface

and allows for the frequency range and time step to be specified and subsequently performs a least

squares fit to determine the amplitudes and phases of all the identified frequencies simultaneously. The

latter of the two programs has the advantage of allowing for the removal of the determined frequencies

from any data set, not just that from that which they were determined. This enables the removal of the

frequencies, which were generated from the residuals, from the original, detrended light curve. Tests

have confirmed that both programs generate the same results and so the use of two programs is due to

their ease of use for the various applications.

Following the first iteration the frequencies in the residual data were identified. To avoid the

identification of frequencies that were remnants of the orbital fitting process, the data were masked

prior to analysis. This was done by generating a computer program that converts the data from the

time domain into the phase domain and removes data points at specified phase ranges. The phase ranges

selected for the removal of data points were: 0.942–0.057 and 0.605–0.690. These ranges were identified

by eye and denote primary and secondary minima respectively. Once the data during eclipse phase had

been removed the remaining data were converted data back into Truncated Barycentric Julian Date.

The frequencies identified for the final iteration of Quarter 3.2 can be seen in Table 11.

One of the difficulties that arose was the determination of the noise level. It was decided that,

although there were many frequencies remaining, only frequencies greater than 20 µmag (twice the

∼ 10 µmag noise level) would be removed. When identifying the peaks using the Period04, it was

apparent that two peaks were not resolved. This was demonstrated by the increased uncertainty in

the amplitude with respect to the standard amplitude error of the data set (the uncertainty in the

amplitude is not related to the phase, frequency, or amplitude of the individual peak, but rather is a

function of the noise level). Unresolved peaks can be problematic when performing a least squares fit

as it is possible that the amplitudes of unresolved frequencies will increase dramatically in an attempt

to account for the discrepancy in the resolution. This did not occur with the two unresolved peaks

identified as the amplitudes remained approximately the same (for a descrepancy the expected increase

would be orders of magnitude) and so they were prewhitened from the data set.

Further issues were encountered when fifteen harmonics of the orbital frequency were identified in

the residuals (highlighted in red in Table 11), as this can be a sign of a bad orbital fit to the data. If a bad

fit is generated, the imprint it leaves on the residual data will repeat each orbital phase. Consequently,
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Table 11: The identified pulsation frequencies and their corresponding amplitudes and phases for Quarter 3.2.
The values highlighted in red are orbital harmonics to an accuracy of 3 σ or greater. The values in parenthesis
give the 1σ uncertainty in the previous digit. The uncertainty in the amplitude is 0.0017mmag.

Designation Frequency Amplitude Phase
(d−1) (mmag)

ν1 = 3νorb 1.37009(8) 0.772 0.5169(7)
f2 2.01268(5) 0.576 0.8696(5)
ν3 = νorb 0.45614(5) 0.523 0.7221(5)
f4 3.4689(2) 0.386 0.892(2)
ν5 = 4νorb 1.8279(1) 0.370 0.757(9)
ν6 = 2νorb 0.9139(2) 0.351 0.988(2)
ν7 = 7νorb 3.1975(8) 0.310 0.529(7)
ν8 48.0174(1) 0.285 0.9868(9)
ν9 41.3701(1) 0.253 0.652(1)
ν10 = 97νorb 44.3067(2) 0.201 0.985(1)
ν11 44.8477(2) 0.195 0.395(1)
ν12 = 5νorb 2.2824(8) 0.161 0.6770(7)
ν13 46.1929(2) 0.153 0.815(2)
ν14 1.6015(6) 0.130 0.850(5)
ν15 39.5423(3) 0.118 0.985(2)
ν16 44.8178(3) 0.111 0.953(2)
ν17 46.5791(4) 0.085 0.917(3)
ν18 38.2272(4) 0.079 0.549(3)
ν19 43.4460(4) 0.079 0.981(3)
ν20 = 98νorb 44.7595(5) 0.065 0.959(4)
ν21 = 8νorb 3.6537(8) 0.063 0.569(7)
ν22 47.9358(3) 0.052 0.509(3)
ν23 48.0590(7) 0.050 0.611(6)
ν24 47.9408(4) 0.049 0.739(4)
ν25 = 10νorb 4.5746(9) 0.046 0.979(8)
ν26 40.0533(6) 0.045 0.492(5)
ν27 = 97νorb 44.3600(10) 0.045 0.904(9)
ν28 = 95νorb 43.3928(10) 0.042 0.589(9)
ν29 = 105νorb 47.9825(1) 0.042 0.127(1)
ν30 5.4802(7) 0.041 0.181(6)
ν31 44.9360(10) 0.041 0.735(9)
ν32 1.6315(7) 0.040 0.468(6)
ν33 46.75720(6) 0.040 0.4760(5)
ν34 47.11179(7) 0.038 0.9925(6)
ν35 1.5748(11) 0.038 0.667(9)
ν36 46.6740(8) 0.038 0.268(7)
ν37 47.5896(1) 0.035 0.819(1)
ν38 5.0240(8) 0.033 0.515(7)
ν39 41.4234(3) 0.033 0.136(3)
ν40 39.9785(3) 0.032 0.128(3)
ν41 = 101νorb 46.1229(9) 0.032 0.326(8)
ν42 42.9999(3) 0.032 0.201(3)
ν43 43.26790(9) 0.031 0.8796(8)
ν44 43.4826(5) 0.031 0.136(4)
ν45 0.1065(8) 0.030 0.108(7)
ν46 0.1731(8) 0.029 0.316(7)
ν47 = 9νorb 4.1118(10) 0.025 0.407(9)
ν48 0.6576(9) 0.024 0.067(9)
ν49 3.0114(8) 0.020 0.689(7)
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Figure 21: Top panel: A Fourier transform of the masked Quarter 3.2 residual data (green) and the masked
Quarter 7 residual data (blue). The Quarter 7 data have been converted into relative magnitudes to ensure a
fair comparison. Bottom panel: A Fourier transform of the masked Quarter 3.2 residual data (green) and the
Quarter 3.2 original data with the eclipses masked (pink). The amplitude has been extended only to 1.0mmag so
that the details can be seen in the relevant areas.

a significant peak that is a multiple of the orbital frequency will occur in the Fourier transform due to

the remnant orbital information. Initially only the frequencies that were not orbital harmonics were

removed from the light curve. This light curve was subsequently modelled to further improve the orbital

fit. However, this left visible oscillations in the data. For this reason all frequencies including harmonics

were removed from the data. Further discussion on the implications of this can be found in § 5.2

On the final iteration the frequencies were analysed extensively by assessing each one individually. As

the residuals were masked to remove any residual modelling effects each true frequency had an increased

amount of window pattern than would otherwise have been present. Consequently, the likeliness of cross

talk between the frequencies was increased. For this reason care was taken in extracting the frequencies

as the false identification of modes could generate an unrealistic asteroseismic stellar model. The

frequencies were subtracted individually and for each frequency the effect on the Fourier transform was

considered. The removal of each frequency did not affect the amplitude of the remaining or previously

identified peaks in a significant way.
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The top panel of Fig. 21 displays the Fourier transforms for the masked data of Quarter 3.2 and

the masked data of Quarter 7, converted into relative magnitudes. The two Fourier transforms were

generated independently from two different data sets, and modelled using slightly different approaches.

However, it can be seen that the prominent peaks for both data sets lie at the same frequencies. This

can further be seen through the comparison of the wavelet analysis graphs in §5.3. Furthermore, it is

worth noting that the frequency analysis performed on Quarter 7 is only in the preliminary stages as

only the initial model has been subtracted from the data. The reason for this is that the Kepler data

is distributed on a quarterly basis and the Quarter 7 data was has only recently been acquired.

In the bottom panel of Fig. 21 a Fourier transform of the Quarter 3.2 data is displayed for both the

masked residual data, and the unmodelled data with the eclipses masked. Primarily, this demonstrates

the amount of orbital information that has been removed from the light curve through modelling. It

is also evident that the p modes present in the light curve are not present due to a bad orbital fit.

The amplitude range has only been extended only to 1.0 mmag since, although the amplitudes of the

unmodelled data extend to amplitudes greater than 2.5 mmag, the relevant detail is more visible on this

scale.

5.1.1 Period-Density Relation

There is a strong relation between the period of a mode and the mean density of a star:

Q = P

√

ρ

ρ⊙
(24)

where Q is the pulsation constant, P is the period and ρ is the density. Through this relation an

empirical formula has been generated that enables the identification of the pulsation constant through

the determination of a star’s period, surface gravity, g, Bolometric magnitude, Mbol, and effective

temperature, T eff :

logQ = −log f + 0.5log g + 0.1Mbol + logTeff − 6.456 (25)

Through the knowledge of the pulsation constant, the radial overtone of a mode can be inferred.

The fundamental radial mode of a δ Scuti star has a pulsation constant value of Q= 0.033 and a

first overtone value of Q= 0.025 (Breger, 2000). Conversely, the expected period of a mode can also be

identified through the knowledge of the pulsation constant specific to that mode and the aforementioned

stellar values.

For KIC 4544587, eq. 25 was implemented using log g = 4.0, Mbol = 2.5, T eff =8271 K and Q= 0.033

from which the fundamental radial mode was calculated to be at ν =13.9± 2.5 d−1. There do not appear

to be any prominent modes at this value in the frequency spectrum. This suggests that the p modes

in the data are high overtone p modes. The uncertainties are estimated at 18% of the Q value, as

demonstrated by Breger (1990), and are a consequence of the approximated uncertainty in the observed

quantities.
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5.2 Indications of Tidal Interactions

An indicator of tidal interactions in binaries is a frequency or set of frequencies that are exact multiples

of the orbital frequency (orbital harmonics). Such pulsation frequencies signify that the gravitational

forces, generated by the tidal interactions of the binary system, have resonated with one of the natural

eigenfrequencies present in the star. In an eccentric binary system, the gravitational forces acting on the

components are time dependent due to the change in orbital separation; however, due to the dynamics

of binary systems, they are dependent on orbital phase (Moreno et al., 2011). This suggests that if the

orbital frequency, or integer multiple of the orbital frequency, is close enough to a natural mode of a

binary star, and the gravitational interaction between the binary components is strong enough; it is

possible for resonant modes to be excited.

During periastron passage the components of KIC4544587, according to the models generated, have

a surface-to-surface separation of 5 R⊙(∼8R⊙from centre-to-centre). Furthermore, the eccentricity of

the system is e = 0.28375± 0.000005 (where the value is taken from the Quarter 3.2 model and the error

is the formal error). The combination of these two aspects of KIC4544587, alongside the δ Scuti nature

of the primary component, make KIC4544587 a good candidate for tidal resonance.

Figure 22: A comparison between the Quarter 3.2 data with all the frequencies removed (red), and with all the
frequencies except the orbital harmonics removed (green). The residual features in the green light curve appear
to be pulsations, suggesting that the harmonic frequencies are indeed intrinsic to KIC4544587, and not generated
through an inadequate orbital fit. The y-axis is measured in relative magnitudes and the x-axis is measured in
Truncated Barycentric Julian Date (BJD - 2 400 000).

When analysing the residuals of KIC4544587, from Quarters 3.2, 15 frequencies that are multiples

of the orbital frequency were identified: nine g modes and six p modes. The data were masked to

reduce the possibility that this was caused by modelling issues, as specified in § 5.1. This marginally

decreased the amplitudes of the frequencies that are multiples of the orbital frequency, however, they

still remained prominent and well above the noise threshold. In Fig. 22, an enlarged image of one orbit
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within the Quarter 3.2 data can be seen with all the frequencies down to 20 µmag removed (red) and

with only the frequencies that are not orbital harmonics removed down to the same threshold (green).

As the signature of tidally excited modes is one or more frequencies that are multiples of the orbital

frequency, the apparent residual pulsation remaining in the green light curve is highly indicative of tidal

resonance. Future spectroscopic observations will allow the orbital fit to be more tightly constrained

and thus further strengthen this argument.

Figure 23: An image of the phase binned residuals of Quarter 7, following the first iteration with phoebe, with all
the p modes removed and the g modes that are not orbital harmonics removed. The frequencies were prewhitened
down to an amplitude of 20µmag, beyond which the frequencies could not be truly interpreted as real.

The frequency that is four times the orbital frequency is a prominent feature in the binned data

and generates an obvious dip in the light curve between secondary and primary minimum. This feature

recurs throughout the total data set (νorb = 1.8279(1)) and an explanation for its existence, other than

that it is pulsation, is currently unavailable. Thus we feel we have a clear case for a tidally excited mode

for this frequency specifically and hence it is likely that other frequencies are also generated through the

same mechanism.

The frequencies identified that are the orbital frequency and two times the orbital frequency are

not as easily attributed to tidal excitation. This is because, through masking the data there are gaps

generated in the data will likely have a strong signal at these frequencies. It is also more likely that an

imperfect fit to the data would generate peaks at such frequencies. Furthermore, peaks generated due

to ellipsoidal variations occur on the time scale half the orbital period. Although it is likely that the

model would fit any ellipsoidal variation that is present in the light curve this can not be thoroughly

assumed.

Fig. 23 shows the Quarter 7 residuals with all the p modes removed and the g modes that are not

orbital harmonics removed. This image further suggests, through the presence of what can only be

48



described as stellar oscillations in this residual data, that the harmonic frequencies are intrinsic to the

star and are not generated by data processing. Furthermore, as the data have been phase binned by

the orbital period, it can be clearly seen that these frequencies are strongly commensurate with the

orbital period. The image displayed shows the residuals after the first iteration with phoebe; for this

reason the eclipses have not been fitted completely as a consequence of all the pulsations being present

in the light curve during the modelling process. However, this further highlights that the removal of

frequencies and subsequent fitting did not inject this information into the light curve.

5.2.1 Frequency Separation Within the p Mode Regime

In KIC4544587 the pattern of frequencies in the range between 30 d−1 and 50 d−1 is similar in appearance

to those found in solar oscillators as there are multiple frequencies with equal separations as seen in

the asymptotic p mode regime (See Fig. 24). Antoci et al. (in press) have recently identified p mode

oscillations in a δ Scuti star that are within the asymptotic regime. Hence, further investigations were

required to determine whether the evident p mode pulsations in KIC4544487 are also in the asymptotic

regime where the frequencies can be quantified by the following expression:

νn,l ≈ ν0(n +
1

2
l + ǫ) + δν (26)

where ν is the p mode oscillation eigenfrequency, n and l are the overtone and degree of the mode, ǫ is a

small correction, δν is the small separation and ν0 is the large separation, which is related to the speed

of sound within the star and the radius of the star. Furthermore, δν is sensitive to the concentration of

mass in the core and hence the age of the stellar component (Aerts et al., 2010).

In KIC4544587 the average separation between the prominent frequencies in the p mode regime

was found to be ∼0.5 d−1. For a pulsations within the asymptotic regime to demonstrate such a small

separation, where usual values are on the order of ∼6 d−1 for a main sequence A star (Heller & Kawaler,

1988), the rotation period of the star would have to be ∼4 hrs. This exceeds breakup velocity and thus

rules out the possibility that these modes are within the asymptotic regime.

In Fig. 24 the dotted black lines are aligned with the dominant and second most dominant peaks

respectively, and are separated by the orbital frequency (ν = 0.456807 d−1). In each figure it can clearly

be seen that many modes surrounding one of the two dominant peaks are separated from that peak by

the orbital frequency; although it can also be seen that all frequencies in the p mode regime do not have

the same separation. A signature of the tidal locking hypothesis is a set of frequencies separated by the

orbital frequency. However, symmetric multiplets are expected which are formed as a consequence of

the stellar rotation, where as the frequencies observed do not demonstrate any obvious symmetry.

It is also worth noting that, unlike the case of KOI-54 where the resonant frequencies were 90 and

91 times the orbital frequency (Welsh et al., 2011), these frequencies are not orbital harmonics (with

the exception of ν = 44.3067(2) and ν = 44.7595(5)). Rather that (105.120635 ± 0.000002)× νorb and

(90.680309 ± 0.000003) × νorb are the most and second most prominent p mode frequencies respectively.

A list of values for all p mode frequencies can be seen in Table 12, which also includes both the frequency

and size of the separation from the prominent modes in terms of the orbital frequency. The values that

have a frequency separation from a dominant peak, equal to an integer multiple of the orbital frequency,

are highlighted in blue (for a detection greater than two sigma) and red (for a detection greater than
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Table 12: The p mode frequencies of Quarter 3.2 and the separation as a function of orbital period from the
two most dominant p modes (highlighted in green). The values highlighted in blue demonstrate the p modes
that are separated from one of the dominant modes by a multiple of the orbital frequency to an accuracy of over
two sigma; and the red values show those separated to an accuracy of greater than three sigma. The frequencies
divided by the orbital frequency are shown to demonstrate that the values being considered, with the exception of
ν = 44.3067(2) and ν =44.7595(5), are not orbital harmonics. The values in parenthesis give the 1σ uncertainty
in the previous digit. The uncertainty in the amplitude is 0.0017mmag

Frequency Separation Frequency Uncertainty Amplitude Phase
(d−1) /νorb (d −1)/νorb (d−1)/νorb (mmag)
In relation to the second most dominant p mode (ν = 41.370d−1)
38.2272(4) 6.8802(6) 83.68 0.000011 0.079 0.549(3)
39.5423(3) 4.0012(4) 86.56 0.000007 0.118 0.985(2)
39.9785(3) 3.0464(4) 87.52 0.000008 0.032 0.128(3)
40.0533(6) 2.8826(8) 87.68 0.000014 0.045 0.492(5)
41.3701(1) - 90.56 0.000003 0.253 0.652(1)
41.4234 (3) 0.1166(5) 90.68 0.000008 0.033 0.136(3)
In relation to the most dominant p mode (ν = 48.081d−1)
42.9999(3) 10.9839(4) 94.13 0.000007 0.032 0.201(3)
43.26790(9) 10.3972(1) 94.72 0.000002 0.031 0.8796(8)
43.3928 (10) 10.1239(14) 94.99 0.000023 0.042 0.589(9)
43.4460(4) 10.0073(6) 95.11 0.000009 0.079 0.981(3)
43.4826(5) 9.9271(67) 95.19 0.000109 0.031 0.136(4)
44.3067(2) 8.1232(2) 96.99 0.000004 0.201 0.985(1)
44.3600(10) 8.0065(14) 97.11 0.000022 0.045 0.904(9)
44.7595(5) 7.1319(7) 97.98 0.000011 0.065 0.959(4)
44.8178(3) 7.0044(4) 98.11 0.000006 0.111 0.953(2)
44.8477(2) 6.9388(2) 98.18 0.000004 0.195 0.395(1)
44.9360(10) 6.7456(14) 98.37 0.000022 0.041 0.735(9)
46.1229(9) 4.1472(13) 100.97 0.000021 0.032 0.326(8)
46.1929(2) 3.9942(3) 101.12 0.000004 0.153 0.815(2)
46.5791(4) 3.1487(5) 101.97 0.000008 0.085 0.917(3)
46.6740(8) 2.9410(11) 102.17 0.000017 0.038 0.268(7)
46.75720(6) 2.7587(1) 102.36 0.000001 0.040 0.4760(5)
47.11179(7) 1.9825(1) 103.13 0.000002 0.038 0.9925(6)
47.5896(1) 0.9366(2) 104.18 0.0002 0.035 0.819(1)
47.9358(3) 0.1786(5) 104.94 0.000007 0.052 0.509(3)
47.9408(4) 0.1676(6) 104.95 0.000009 0.049 0.739(4)
47.9825(1) 0.0765(2) 105.04 0.000002 0.042 0.127(1)
48.0174(1) - 105.12 0.000002 0.285 0.9868(9)
48.0590(7) 0.0911(10) 105.21 0.000014 0.050 0.611(6)
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Figure 24: Top panel: A Fourier transform of the masked Quarter 3.2 residual data (green) and the masked
Quarter 7 residual data (blue). The range of frequencies shown pertain to the p mode regime. The dashed black
lines are aligned with the most prominent p mode (ν = 48.0174(1)d−1) and are equally separated by the orbital
frequency (ν = 0.4568070± 0.0000005d−1). The Quarter 7 data has been converted into relative magnitudes to
make a fair comparison. Bottom panel: A Fourier transform of the masked Quarter 3.2 residual data (green)
and the masked Quarter 7 residual data (blue). The range of frequencies shown pertain to the p mode regime.
The dashed black lines are aligned with the second most prominent p mode (ν = 41.3701(1)d−1) and are equally
speared by the orbital frequency (ν =0.4568070± 0.0000005d−1). Again, the Quarter 7 data has been converted
into relative magnitudes to make a fair comparison.

three sigma). The two dominant peaks are highlighted in green. It is difficult to identify how this

separation could be related to an inadequate orbital fit as opposed to the intrinsic nature of the star.

This is further enhanced by the large number of three sigma detections surrounding the dominant peak.

Currently we do not understand these peaks, but intend to work with theoreticians to produce an

explanation in the future: this is a mystery!

5.3 Wavelet analysis

Wavelet analysis can be used to identify the stability of a frequency or frequencies, as a function of

time, across a complete data set. We used a wavelet analysis program created by White et al. (2011) to
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identify whether the modes found in KIC4544587 were indeed stable. Special consideration was placed

on frequencies that were harmonics of the orbital frequency and the p modes that are separated from a

dominant mode by the orbital frequency.

Figure 25: Upper panel: A wavelet analysis graph of data from Quarter 3.2 demonstrating the stability of the g
mode pulsations. Here you can see that the majority of the frequencies are stable over a twenty day period. The
scale on the time domain has been reduced from 30d to 20 d due to the unreliable nature of the edges of wavelet
analysis graphs. Lower panel: A wavelet analysis graph of data from Quarter 7 demonstrating the stability of the
g mode pulsations. Here you can see that the majority of the frequencies are stable over a thirty day period. The
scale on the time domain has been reduced to 30 d as the program is unable to read in the large number of data
points pertaining to a whole quarter, and the edges were removed due to the unreliable nature of the edges of the
wavelet analysis graphs. Orange is indicative of the highest amplitude peak and black of the lowest amplitude
peak within the identified range of frequencies, and the time is in Barycentric Julian Date - 2 400 000.

We used the residuals from Quarter 3.2 and Quarter 7, which were generated using the Wilson-

Devinney code and phoebe respectively. Initially the software reads in the data and requests input

parameters including frequency range, step size and Gaussian width. A section of data is then selected

and multiplied by a Gaussian of the specified width, to the data points within the time domain. A

Fourier transform is applied to this section of the data for the specified frequency range and specified

frequency resolution. The Gaussian is then shifted by the user specified time step and the process is

repeated. This generates a set of files containing the identified frequencies and their corresponding
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power for incrementing time values. The noise level for the data is also determined by performing a

Fourier transform on the frequency range specified by the user as an are that is free of pulsation. This is

used to determine the minimum power value in the data so that the colours can be scaled accordingly.

From these data files a graph is then generated, which displays time (in Truncated Barycentric

Julian Date) on the x-axis and frequency (d−1) on the y-axis. The various colours represent power and

hence the power of a frequency as a function of time can be identified (where black is the lowest and

orange is the highest amplitude peak).

Figure 26: Upper panel: A wavelet analysis graph of data from quarter 3.2 demonstrating the stability of the
prominent p mode pulsations. Here you can see that the majority of the frequencies are stable over a twenty day
period. The scale on the time domain has been reduced from 30d to 20d due to the unreliable nature of the edges
of the wavelet analysis graphs. Lower panel: A wavelet analysis graph of data from Quarter 7 demonstrating the
stability of the g mode pulsations. Here you can see that the majority of the frequencies are stable over a thirty
day period. The scale on the time domain has been reduced to 30 d as the program is unable to read in the large
number of data points pertaining to a whole quarter, and again the edges were removed due to the unreliable
nature of the edges of the wavelet analysis graphs. The time is in Barycentric Julian Date - 2 400 000 and orange
is indicative of the highest amplitude peak and black of the lowest amplitude peak within the identified range of
frequencies.

When determining the input values for the wavelet analysis there were some details that required

consideration. These include the width of the Gaussian with respect to the size of the total data set and
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the number of cycles encompassed within each Gaussian, for the modes within the range of frequencies

being considered, in the time domain. If the Gaussian was large with respect to the size of the data set

it would not show a large amount of variation as a function of time. If the Gaussian was too small then

the Fourier transform would suffer bad aliasing effects. It was found that a Gaussian width of 10 hr was

under-sampling the data to an extreme extent, which created a blob effect as opposed to a continuous

pattern. Furthermore, the edge effects became more prominent, again due to under-sampling caused

by the width of the Gaussian. It is worth noting that the edges of wavelet analysis graphs have been

removed as they do not contain reliable data.

The time step between successive Gaussians also had to be considered, as if this were too large

then the resolution of the graph in the time domain would be poor, conversely, a small time step is

highly expensive in computational time. The number of frequencies selected pertains to the number of

successive steps in the y-direction. For the wavelet graphs presented a frequency resolution of 1000 was

used, this corresponds to a resolution of 200 frequencies per increment of one cycle per day for the g

mode graphs (frequency range between 0–5 d−1) and 40 frequencies per increment of one cycle per day

for the p mode graphs, which cover a larger frequency range (frequency range between 30–50 d−1).

Fig. 25 demonstrate the amplitude of the g mode frequencies as a function of time. It can be seen that

the prominent peaks in the two quarters are different: in Quarter 3.2 the prominent mode is 1.37 d−1;

3 νorb and in Quarter 7 the prominent mode is the orbital frequency. It is possible that both frequencies,

or at lease the prominence them, could be attributed to an inadequate fit. However, the dominance

of the orbital frequency in Quarter 7 is more likely present due to the orbital characteristics than the

dominance of a frequency that is 3 νorb in Quarter 3.2. Primarily because the results of Quarter 7 are

only preliminary at this stage.

In Quarter 3.2 there appear to be multiple peaks at higher frequency range of the g mode region.

Most of the dominant modes present in both quarters appear stable over the duration of the quarter.

However, there appear to be several low amplitude peaks that are not stable. This could be due to events

intrinsic to the star such as mass loss. The subsequent thorough analysis of the Quarter 7 residuals will

enable a direct comparison of the two quarters and hence allow the determination of the stability of

these modes across the different quarters.

In Fig. 26 there are six prominent modes that are constant for the duration of each of the data

sets and consistent over the two data sets. The modes identified coincide with the 6 highest amplitude

peaks identified in the p mode range of the Fourier transform of the Quarter 3.2 residuals, which are:

48.0174(1) d−1, 41.3701(1) d−1,44.3067(2) d−1, 44.8477(2) d−1, 46.1929(2) d−1, 39.5423(3) d−1 (where

the value in the parentheses gives the one sigma uncertainty in the previous digit). Five of the six peaks

are those identified as forming the set of frequencies that are separated from the dominant p modes

by the orbital frequency. Moreover, while two are the dominant modes, from which the separation is

measured, a further two are separated by a multiple of the orbital frequency to an accuracy greater

than 3 σ with the third being well within the 2 σ threshold.
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6 Conclusions

The analysis of KIC4544587 has been undertaken to determine the binary characteristics of the system

and identify the pulsation frequencies inherent in the components. Quarter 3.2 SC data have been

modelled thoroughly using the WD code and frequency analysis has been performed on the residual

data. The Quarter 7 SC data have been modelled, using phoebe, to the extent that information can be

inferred about the binary characteristics and preliminary results have been obtained in the frequency

analysis. Future work will include the completion of the analysis of Quarter 7 and Quarter 8 with the

incorporation of spectroscopically defined values (effective temperature, log g and metallicities) and a

radial velocity curve in the the modelling process.

Initially the period of the binary system was found using the PDM technique (Stellingwerf, 1978).

This technique determines the period of the system by phase binning the data by a possible period

and comparing the variance of the binned data to the variance of the total data set. Using PDM the

period of Quarter 3.2 was found to be P= 2.1891142(5) d, Quarter 7 was found to be P= 2.1891122(5) d

and the period of the total data set was found to be P= 2.1891101(5) d. The periods concur to 6

significant figures, although the slight deviation in the values was an initial indication that the system

was undergoing apsidal advance at a rate that was significant with respect to the duration of the data

set.

jktebop was then applied to the Quarter 3.2 data to obtain initial parameter estimates for the sub-

sequent binary modelling and to further constrain the orbital ephemeris. Upon acquisition of the Quar-

ter 7 data, the ephemeris of Quarter 7 was also determined. The results generated for the ephemerides

were consistent with those generated using the PDM technique to 4σ. However, the zero points of the

two ephemerides did not concur with each other. This further suggested that the system is undergoing

apsidal advance at a rate that is noticeable over the time scale of the data obtained.

The orbital characteristics of the Quarter 3.2 data were then modelled using the WD code. Initially

no constraints were placed on the modelling so that a fit to the data with a minimal amount of residuals

could be achieved. Primarily this allowed an orbital fit to be generated without consideration of the

coupling of the temperatures and luminosities of the components. Once an initial orbital fit had been

generated, the model was subtracted from the data and frequency analysis was preformed on the residual

data. The identified frequencies were then prewhitened from the data allowing for a second iteration

where the orbital characteristics were modelled without interference from the pulsations. Finally, a third

iteration was undertaken which determined the orbital characteristics of KIC 4544587 and generated

a set of residuals upon which thorough frequency analysis was performed. On the third iteration

the temperatures and luminosities of the two components were coupled so that the temperatures and

luminosities, and thus model generated obeyed the Stefan-Boltzmann law.

For the Quarter 7 data the aforementioned process was repeated. However, phoebe was incorporated

into the modelling process and the temperatures and luminosities were coupled throughout the fitting

process. Although the analysis of Quarter 7 is not yet complete, information can still be inferred about

the different approaches from the binary modelling perspective as the final iteration has the largest

impact on the frequency analysis.

One of the most significant differences found between the two data sets was that the orbital results of

Quarter 3.2 are suggestive of a binary companion that is an early G star with a convective outer envelope
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and the orbital results of Quarter 7 are indicative of a late F star with a radiative outer envelope. It

is possible that this is a direct consequence of the different methods, specifically the coupling of the

temperatures and luminosities in the initial modelling stages. It is also possible, however, that a local

minimum was identified in one of the modelling approaches as opposed to the global minimum. The

acquisition of the temperatures through spectroscopy will enable the identification of the floors in

both approaches and further highlight the best approach. Consequently this will lead to an improved

understanding of the best approach to modelling binary systems that contain pulsation, which alter the

shape of the light curve.

The possibility of rotation other than pseudo-synchronous rotation was then investigated by altering

phoebe’s synchronicity parameter when modelling the Quarter 7 data. Using the formula defined by

Hut (1981), the quasi-synchronous rotation value for KIC4544587 was obtained (F= 1.87(1)). The

synchronicity parameter was held fixed and also fitted during the modelling process in an attempt to

constrain an improved orbital model. The quality of the fit to the data decreased on each occasion,

with the formation of a trough in the residuals between secondary and primary eclipse. Consequently

the synchronicity parameter was fixed at 1.0 for the remainder of the fitting process which is indicative

of a pseudo-synchronous system.

The apsidal advance of the system was then investigated. This was done initially by determining

the anomalous period of the complete data set, which was found to be ∼2.189096 d. The existence of an

anomalous period, where the secondary eclipse appears smeared whilst the primary eclipse is precisely

defined in phase space, demonstrated that the system is undergoing apsidal advance. Following this

the rate of apsidal advance was determined by modelling the data using phoebe. The rate of apsidal

advance was found to be 0.0001179(1) rad d−1, which gives 145.9(1) yr for one complete precession.

Future work will include the determination of the constant, k2, from which the ratio of the mean to

central density can be determined.

Frequency analysis was performed on Quarter 3.2 residuals and compared with preliminary results

from Quarter 7. Dominant modes were identified in the p mode regime and the g modes regime for

both quarters. The residuals were masked, by removing data points during the eclipse phases so that

any remnant orbital information was not incorporated into the frequency analysis. In the Quarter 3.2

data 15 frequencies were identified as harmonics of the orbital frequency, 9 of which are in the g mode

regime and 6 in the p modes regime. This is a signature of tidal resonance.

For a δ Scuti star, a pulsation constant of Q= 0.033 is indicative of the fundamental radial mode. Us-

ing the relation between period and density, the fundamental frequency of the A-type star in KIC4544587,

which we assume is the pulsating star (although future spectroscopic data will confirm this), has a fre-

quency of 13.9± 2.5 d−1. There are no frequencies in the residuals of Quarter 3.2 or Quarter 7 in this

region suggesting that the δ Scuti component of KIC4544587 does not pulsate in the fundamental radial

mode. Future collaboration with asteroseismic modelling teams will unveil the physical nature of the

frequencies identified in KIC 4544587.

In the p mode regime it was determined that many of the frequencies were separated from the the two

dominant p modes by multiples of the orbital frequency. Many of the frequencies (five with respect to

the dominant p mode) demonstrate this separation to an accuracy of 3 σ or greater. Furthermore, these

frequencies are not orbital harmonics. The origin of these frequencies is yet unknown: they are a mystery!

However, the wavelet analysis of these frequencies suggests that they are stable over Quarter 3.2 and
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Quarter 7. Future analysis will include working with theoreticians to develop a theory for the existence

of such pulsations, currently we know of no other star that demonstrates these characteristics.

Through the analysis of KIC4544587 we have identified frequencies that are signatures of tidal

resonance. On a preliminary basis, we have confirmed the existence of radiative damping with dynamic

tides through the identification of resonant pulsations. Subsequent spectroscopic data will confirm

these results leading to one of only a handful of observations demonstrating tidal resonance. Upon

acquisition of spectroscopic data, future work will involve incorporation of the spectra into our current

models following which the findings will be published.
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A Appendix

The following information has been included for reference purposes for myself or anyone wishing to use

the software discussed.

Fourier Transform: FTday

The program psd2010.for generates frequency, amplitude and phase information pertaining to the

highest peak in the Fourier transform (hereafter FT) each time it is run. Furthermore, it generates a file

containing the observed minus calculated data (the input data minus the frequencies calculated) and

a file containing the Fourier transform data. Previously known frequencies can be placed in the input

file which are prewhitened from the data prior to further analysis. This allows for an iterative process

whereby each time the maximum peak is located, it can be placed it in the input file and thus will be

prewhitened from the data prior to the identification of the next largest peak. The input file is called

FTday.com and contains the following:

• The first line contains the the directory of the psd2010.for file that needs to be amended accord-

ingly.

• The second line contains the name of the data file.

• The third line contains the zero point of the data (from which the phase is measured).

• The fourth line contains the number of frequencies contained in the file.

• All other lines(except the final two) contain the aforementioned frequencies that are pre-established,

with their amplitudes (in the same units as the input file) and phase.

• The second to final line contains the frequency range followed by the step value. The frequency

range is specified as a function of step value (i.e. 300 500 0.01 is 3 to 5 in steps of 0.01) where the

units are defined as 1/the time units of the input data.

• Then final line has a star to denote the end of the file

The output for this file can be printed to the screen or piped to a new file. It contains:

• T0: The zero point value entered in the executable file

• Faver: the average value of all the data points

• npts: the number of points

• difft(hrs): the total time in hrs

• sigma: The overall variation

• Frequency, amplitude and phase values, for the range of values specified in the executable file.

• The frequency, amplitude and phase of the maximum peak (separate from other lines)

• Frequency, amplitude and phase for all time step, as specified in the input file.

Furthermore, the two files containing the Fourier transform data and the observed minus computed

data, are fort.16 and fort.19 respectively.
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