Interventions for eye movement disorders due to acquired brain injury

Rowe, Fiona J, Noonan, Carmel P, Garcia-Finana, Marta, Dodridge, Caroline S, Howard, Claire, Jarvis, Kathryn, MacDiarmid, Sonia L, Maan, Tallat, North, Lorraine and Rodgers, Helen

Available at http://clok.uclan.ac.uk/28249/

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1002/14651858.CD011290

For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/
Interventions for eye movement disorders due to acquired brain injury (Protocol)

Rowe FJ, Noonan CP, Garcia-Finana M, Dodridge CS, Howard C, Jarvis KA, MacDiarmid SL, Maan T, North L, Rodgers H

Rowe FJ, Noonan CP, Garcia-Finana M, Dodridge CS, Howard C, Jarvis KA, MacDiarmid SL, Maan T, North L, Rodgers H.
Interventions for eye movement disorders due to acquired brain injury.
DOI: 10.1002/14651858.CD011290.

www.cochranelibrary.com
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>BACKGROUND</td>
</tr>
<tr>
<td>OBJECTIVES</td>
</tr>
<tr>
<td>METHODS</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>REFERENCES</td>
</tr>
<tr>
<td>APPENDICES</td>
</tr>
<tr>
<td>CONTRIBUTIONS OF AUTHORS</td>
</tr>
<tr>
<td>DECLARATIONS OF INTEREST</td>
</tr>
<tr>
<td>SOURCES OF SUPPORT</td>
</tr>
</tbody>
</table>

Interventions for eye movement disorders due to acquired brain injury (Protocol) Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Interventions for eye movement disorders due to acquired brain injury

Fiona J Rowe1, Carmel P Noonan2, Marta Garcia-Finana3, Caroline S Dodridge4, Claire Howard5, Kathryn A Jarvis6, Sonia L MacDiarmid7, Tallat Maan8, Lorraine North9, Helen Rodgers10

1Department of Health Services Research, University of Liverpool, Liverpool, UK. 2Department of Ophthalmology, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK. 3Biostatistics, University of Liverpool, Liverpool, UK. 4Orthoptics, Oxford University Hospitals NHS Trust, Oxford, UK. 5Orthoptics, Salford Royal NHS Foundation Trust, Manchester, UK. 6Occupational Therapy, University of Liverpool, Liverpool, UK. 7Orthoptics, Wrightington Wigan and Leigh NHS Foundation Trust, Wigan, UK. 8Community Eye Service, Pennine Care NHS Foundation Trust, Ashton-under-Lyne, UK. 9Orthoptics, Frimley Park NHS Foundation Trust, Frimley, UK. 10Institute for Ageing and Health, Newcastle University, Newcastle, UK

Contact address: Fiona J Rowe, Department of Health Services Research, University of Liverpool, Whelan Building (1.10), Brownlow Hill, Liverpool, L69 3GB, UK. rowef@liverpool.ac.uk.

Editorial group: Cochrane Eyes and Vision Group.

Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Abstract

This is the protocol for a review and there is no abstract. The objectives are as follows:

The primary objective is to assess the effects of any intervention and determine the effect of timing of any intervention in the treatment of strabismus, gaze deficits and nystagmus due to acquired brain injury in order to align visual axes in primary and/or secondary gaze positions.

The secondary objectives will be to determine whether in patients with eye movement disorders due to acquired brain injury, at what time point or period, using the following interventions and comparators.

- Restitutive treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
- Substitutive treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
- Compensatory treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
- Pharmacological treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
Description of the condition

Acquired brain injury is brain damage caused by events caused after birth that result in permanent or temporary changes in cognition, physical, emotional and behavioural function. This may be due to trauma, surgery, stroke, brain tumour, infection, inflammation and ischaemia. Eye movement disorders following acquired brain injury may include strabismus, gaze deficits and nystagmus (Rowe 2003). In acquired brain injury, these eye movement disorders are caused by damage to the cranial nerves that supply the extra ocular muscles or to damage of the neurological areas that contribute to the control of eye movements (Pierrot-Deseilligny 2011). It is unknown what the incidence of visual problems is for acquired brain injury but estimates are available for certain types of acquired brain injury. For example, over half of stroke survivors have visual impairments (Freeman 1988), and up to 68% of stroke survivors with visual symptoms have eye movement disorders (Rowe 2009). These impact on daily life by causing a range of difficulties including inability to maintain normal ocular alignment or move the eyes appropriately (Jones 2006; Pedersen 1981; Rowe 2011a). Functional disabilities occur including loss of depth perception, reduced hand-eye coordination and reading impairment (MacIntosh 2003; Rowe 2011b), and these may impede the effectiveness of rehabilitation therapy in regaining mobility, activities of daily living and quality of life (Ciuffreda 2007; MacIntosh 2003).

The true incidence of eye movement disorders in acquired brain injury is unknown and the prevalence varies depending on the cause of brain injury and area of brain involved. Strabismus is a deviation of the ocular alignment where one eye turns and which may be intermittent or constant (Fowler 1996; Rowe 2010). Strabismus occurs in a number of forms including esotropia (in-turning deviation), exotropia (out-turning deviation) or less commonly, hypertropia (up-turning deviation), hypotropia (down-turning deviation) and cyclotropia (rotatory deviation). Gaze deficits include disorders of the eye movement systems which involve saccades (fast movements of the eyes), smooth pursuits (slow, tracking movements of the eyes), vergence (opposite movements of the eyes such as convergence where both eyes turn inwards symmetrically or divergence where both eyes turn outwards), cranial nerve palsies (impairment of III, IV or VI nerve function causing abnormal eye movement and strabismus in the affected eye), bilateral gaze palsies (impaired horizontal, vertical or combined movements in both eyes), unilateral gaze palsy (internuclear ophthalmoplegia, one and a half syndrome) and vestibulo-ocular and opto-kinetic reflexes (involuntary movements of the eyes in response to moving objects and movement of the head and body) (Pedersen 1981; Rowe 2011a; Rowe 2013a). Nystagmus is a condition in which there are frequent involuntary oscillations of the eyes that result in reduced visual function (Rowe 2008).

Description of the intervention

There are various treatments associated with strabismus, eye movement disorders and nystagmus. Primarily, treatment is directed at aligning the visual axes and improving the movement of the eyes. Treatments for eye movement disorders can be described as restitution, compensation, substitution or pharmacology (Kerkhoff 2000; Pollock 2011). Restorative interventions may include convergence training, pursuit training and saccade training. Compensative interventions may include training eye movements for reading, compensatory head posture or movements, use of eye blinks or colour cues and training in activities of daily living. Substitutive interventions may include prisms, eye patches, lens alteration, botulinum toxin and local anaesthetic injections, extra ocular muscle surgery, magnification and environmental modification. Pharmacological interventions may include prescription drugs such as baclofen, memantine and carbamazepine.

Timing of treatment is dependent on the type of treatment option. Treatment options that can be provided early after onset include prisms, eye patches, botulinum toxin, exercises/training programmes, magnifiers and compensatory head posture advice. Treatment options that are provided at later stages (due to a requirement of stable ocular measurements) include extra-ocular muscle surgery and pharmacological drugs.

Commencement of interventions can be at multiple time points. Where an individual is referred immediately following the occurrence of the eye movement disorder, interventions such as prisms or occlusive eye patches to alleviate or reduce visual symptoms can be provided straight away after diagnosis and appropriate measurement of the disorder. Early treatment is considered to occur within one week of onset of eye movement disorder. Where there is a delay in referral, individuals may subconsciously close one eye or turn their head in an attempt to compensate for their visual deficit. Furthermore, interventions such as botulinum toxin and extra-ocular muscle surgery may be appropriate at later time points.

How the intervention might work

Restitution

Restitution includes the biochemical events that help restore functional neural tissue through the reduction of oedema, absorption of blood, restoration of normal neuronal physiology, and restoration of axon transport (Pollock 2011). Treatments of positive fusional
amplitudes and stereopsis through repetition training of specific deficient functions, such as convergence insufficiency, have been reported as effective (Kerkhoff 2000). Restorative interventions will include those where there is direct training of the impaired function or repetitive stimulation of eye movement.

Compensation

Compensation aims to improve the mismatch between the patients’ skills and the demands placed on them by their environment, by teaching patients to compensate or adapt using a spared or intact function (Kerkhoff 1999; Kerkhoff 2000).

Substitution

Substitution involves adaptation of visual components that have been lost or disrupted through the use of optic devices, extraocular muscle surgery or environmental modifications (Kerkhoff 1999; Kerkhoff 2000).

Pharmacology

Pharmacology aims to improve visual functioning through alteration of biochemical and/or physiological effects in the body.

Why it is important to do this review

There are many forms of interventions for eye movement disorders that occur following acquired brain injury. Although the natural history of acquired brain injury differs dependent on the cause, the treatment of the resultant eye movement disorder is principally the same regardless of cause. Although the cause may recover or progress, the resultant eye movement disorder may persist and requires treatment to alleviate or reduce visual symptoms. We will consider all interventions for all types of eye movement disorders regardless of cause and evolution of eye movement disorder. We will extract data for improving, stable or deteriorating eye movement disorders. In the early stages, treatment may include conservative options such as eye patching or prisms which are used whilst the eye movement disorder is monitored until it improves or stabilises. Where eye movement disorders persist, further treatment options such as botulinum toxin or extra-ocular muscle surgery may then be considered.

There are multiple time points at which interventions for eye movement disorders that occur following acquired brain injury may be provided. The timing of provision of treatment for eye movement disorders differs for the various treatment options. In the early stages, treatment may include conservative options such as eye patching or prisms which are used whilst the eye movement disorder is monitored until it improves or stabilises. Where eye movement disorders persist, further treatment options such as botulinum toxin or extra-ocular muscle surgery may then be considered. There can be delays in referral of patients with acquired brain injury to eye care services and thus patients may not receive treatment early even though treatment options are available. This delay may impede general rehabilitation.

A recent systematic review on interventions for eye movement disorders in stroke found insufficient evidence to reach conclusions about the effectiveness of those interventions for this group of patients (Pollock 2011). There was an absence of relevant evidence with a recommendation for urgent high quality research. Furthermore, there is no consensus for what constitutes the optimum timing for commencing interventions for eye movement disorders due to stroke. Timing may vary dependent on the type of treatment being considered (e.g. eye patch versus extra-ocular muscle surgery) and/or the extent of visual symptoms (minimal versus severe impact on daily life). Because this review only concentrated on stroke populations, one recommendation was for a systematic review of interventions for eye movement disorders in patients with acquired brain injury in order to synthesise the current evidence base, to guide current practice and aid in the development of well-designed randomised controlled trials (RCTs). Other publications reporting efficacy and timing of interventions for eye movement disorders include populations with varied causes of brain damage such as tumours, inflammation, infection, stroke and metabolic causes.

Purpose

We propose to undertake a high-quality systematic review of the existing evidence base in order to determine the evidence for effectiveness and timing of any treatment or management approaches for all adult patients with acquired brain injury with eye movement disorders. This review will directly address the recommendations of the Cochrane systematic review on interventions for eye movement disorders in stroke (Pollock 2011), i.e. conduct a systematic review of interventions for eye movement disorders in patients with acquired brain injury in order to synthesise the current evidence base, and whether the timing of interventions for eye movement disorders has an impact on objective and subjective measures of ocular alignment and motility. This will guide current practice and aid in the development of well-designed RCTs which follow the U.K. Medical Research Council guidance on developing and evaluating complex interventions (Craig 2008).

OBJECTIVES

The primary objective is to assess the effects of any intervention and determine the effect of timing of any intervention in the treatment of strabismus, gaze deficits and nystagmus due to acquired brain injury in order to align visual axes in primary and/or secondary gaze positions.
The secondary objectives will be to determine whether in patients with eye movement disorders due to acquired brain injury, at what time point or period, using the following interventions and comparators.

- Restitutive treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
- Substitutive treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
- Compensatory treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.
- Pharmacological treatment is more effective than control, placebo, alternative treatment or no treatment in improving ocular alignment and/or motility.

METHODS

Criteria for considering studies for this review

Types of studies

We will include RCTs and quasi-RCTs.

Types of participants

We will include individuals with eye movement disorders due to acquired brain injury. The type of eye movement disorder may include III, IV, and VI cranial nerve palsy, reduced fixation, gaze holding, horizontal and/or vertical gaze palsy, internuclear ophthalmoplegia, one and a half syndrome, saccadic problems, smooth pursuit problems, strabismus, nystagmus, reduced convergence or divergence, conjugate deviation and skew deviation. The deviation of eye movement may be horizontal, vertical, torsional and the severity of eye movement disorder may be slight, small, moderate, marked, and paralysis, paresis; monococular, binocular.

We will accept studies that included participants based on symptoms which can be assumed to be present as a direct result of an eye movement disorder. Symptoms may include double vision, blurred vision, reading difficulty, wobbling or jumbled vision and excessive head movements. We will consider participants of all ages from studies of adults and children.

Types of interventions

We will include any intervention that aims to improve the defects of eye movement, or alleviating/reducing the visual symptoms associated with the disorder. We will classify interventions as restitution, compensation pharmacological or substitution. We will include any study that documented the timing (recorded as time period from the onset of eye movement disorder) of any intervention that aims to improve the defects of eye movement, or alleviating/reducing the visual symptoms associated with the disorder. We will classify timing as early or late intervention where early constitutes intervention within one month of eye movement disorder onset.

Types of outcome measures

Where possible, we will assess outcome as a dichotomous variable (yes/no) at the end of the intervention period and at a follow-up point (ideally a minimum of three months after the completion of the intervention and maximum of 12 months).

Primary outcomes

- Improvement in ocular motility measured by orthoptic assessments of reduction in the angle of deviation (within 10 prism dioptres of ortho) and/or extent of eye movement range (improvement of one or more grades of limitation ranging from 1 to 4), such that visual axes are aligned in primary and/or secondary gaze positions

Secondary outcomes

- Achievement of binocular single vision as assessed by cover test, motor fusional vergences and stereoacuity
- Reduction of, or alleviation of, patient-reported symptoms assessed by patient record notes or questionnaire
- Improvement in functional ability measured by validated measures such as activity of daily living questionnaires
- Adverse events
 - Intractable permanent diplopia, perforating injury, symptomatic over or under correction, death
 - Assessed by descriptive documentation
- Quality of life data
 - Any measure of patient or parent satisfaction relating to improvement in appearance or improvement to lifestyle

Search methods for identification of studies

Electronic searches

We will search the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Group Trials Register) (latest issue), Ovid MEDLINE,
Searching other resources

We will search the reference lists of included trials to identify any further studies and will check the references of review articles about vision after acquired brain injury. We will perform citation tracking using Web of Science Cited Reference Search for all included studies and will contact experts in the field - including authors of included trials, and excluded studies identified as possible preliminary or pilot work. We will also search reference material supplied by commercial companies who provide interventions aimed at restoration of eye movements.

We will handsearch the following resources from their inception to the current date at (http://pcwww.liv.ac.uk/~rowef/index_files/Page646.htm):

- British and Irish Orthoptic Journal
- Australian Orthoptic Journal
- Proceedings of the European Strabismological Association (ESA)
- International Strabismological Association (ISA)
- International Orthoptic Association (IOA)

Data collection and analysis

We will follow guidance in Chapter 7 of the Cochrane Handbook for Systematic Reviews of Interventions for data collection and Chapter 9 of the Cochrane Handbook for Systematic Reviews of Interventions for data analysis (Deeks 2011; Higgins 2011a), and also conform to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist (Moher 2009). The Cochrane Eye and Vision Group Trials Search Co-ordinator will run all the electronic searches, download references into bibliographic software, and remove duplicates. Two review authors will exclude any titles/abstracts which are obviously not related to acquired brain injury and vision. They will independently consider each of these titles/abstracts and exclude any studies where the intervention is not specifically aimed at improving the eye movement disorder or the patient's ability to cope with the eye movement disorder. We will resolve any disagreements through discussion. We will obtain the full papers for any studies included at this stage.

Selection of studies

Two review authors will independently apply the selection criteria, considering and documenting the type of studies, type of participants, intervention, comparison intervention, and the outcome measures. Each review author will classify each study as include or exclude. If there is disagreement between these two review authors, they will reach consensus through discussion involving a third review author.

We will list all excluded studies that included participants with eye movement disorders in the 'Characteristics of excluded studies' table with the reasons for exclusion. We will not list studies in the 'Characteristics of excluded studies' table that are excluded because they included participants that did not have eye movement disorders (i.e. visual neglect, age-related visual problems, or visual field loss), unless the two review authors agree that there is a clear reason to do so.

Data extraction and management

We will use a pre-designed data extraction form to record data from the included studies. Two review authors will independently document information found in the table in Appendix 14. If there are any discrepancies between data extracted by the two review authors, they will resolve these through discussion.

Assessment of risk of bias in included studies

We will follow the Cochrane Collaboration tool for assessing risk of bias for randomised trials as outlined in Chapter 8 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011b). We will assess sequence generation, allocation concealment, masking (blinding) of participants, personnel and outcome assessors, incomplete outcome data, selective outcome reporting and other sources of bias. We will judge each domain as "low risk of bias", "high risk of bias" or "unclear".
Measures of treatment effect

We will use the Cochrane Collaboration statistical software, Review Manager 2014, to carry out statistical analyses to determine the treatment and timing effect of restitutive, compensatory, substitutive and pharmacological interventions.

The outcome measures of angle of deviation, range of ocular movements and binocular vision measures versions comprise of either ordinal data from measurement scales (e.g. prism dioptries measurements), count data (e.g. movement grading scales of 1 to 4, -1 to -4), or continuous data (e.g. degree measurements). The threshold for reduction in angle of deviation is +/- 10 prism dioptries (5 degrees) of ortho and for reduction of ocular movements is +/-1 one grade. We will analyse these as continuous variables.

Where change (improvement) is reported for angle of deviation, range of ocular movements and binocular vision measures, we will analyse this as dichotomous data with yes/no for reports of improvement.

If reported outcomes have a scale which uses negative values (e.g. divergent ocular deviations recorded as “-“), we will multiply the reported values by -1, so that in all analyses the results are represented as positive values.

If studies report change values and the baseline value is available, we will use the Cochrane Collaboration statistical software, Review Manager 2014, to calculate the value at follow-up (change value - baseline value). If studies report change values and the baseline value is available, we will calculate the treatment effect using standardised mean differences (SMDs) and 95% CIs where studies used different data, we will calculate the treatment effect using standardised mean differences (SMDs) and 95% CIs where studies used different scales for the assessment of the same outcome. We will use mean differences (MDs) and 95% CIs where studies have all used the same method of measuring outcome.

Assessment of heterogeneity

We will check for heterogeneity by examining:
- characteristics of the study;
- forest plot of results of the studies;
- results of the Chi-squared test;
- results of the I^2 statistic.

We will determine heterogeneity using the I^2 statistic. We will consider I^2 greater than 50% as substantial heterogeneity. If I^2 is greater than 50%, we will explore the individual trial characteristics to identify potential sources of heterogeneity, using pre-planned subgroup analyses. If I^2 is less than or equal to 50%, we will used the fixed-effect model for our meta-analyses.

Unit of analysis issues

The above interventions will normally be applied at individual level. Some interventions (e.g. prisms for diplopia or field defect, monocular occlusion) are used to treat only one eye. In these instances, there is no unit of analysis issue as the unit of randomisation is the same as the unit of analysis. However, some interventions (e.g. scanning eye exercises, extra-ocular muscle surgery, pharmacological interventions) treat both eyes. In these instances we will report for the person through binocular measurements such as binocular visual acuity, binocular single vision and binocular visual field.

Assessment of reporting biases

We will assess reporting biases as detailed in the Assessment of risk of bias in included studies section. If 10 or more studies are included in analysis, we will use a funnel plot, examining for asymmetry in the assessment of reporting bias.

We will attempt to avoid reporting biases by using a comprehensive search strategy which includes searching for unpublished studies, and searching trials registers. We will carry out sensitivity analyses to explore the effect of publication type. We will evaluate studies for selective reporting of outcomes. Where there is an online protocol for the trial, we will obtain this and compare the reported study outcomes from the publication to the protocol.
Data synthesis
We will combine results to produce a single summary measure using a random-effects model unless there are few trials (three or less), in which case we will use a fixed-effect model. If there is substantial heterogeneity ($I^2 > 50\%$), we will not combine results, unless the effect estimates are all in the same direction. If we do not produce a single summary measure, we will do a narrative summary of the trial results. If multi-arm studies are included, we will ensure that the analysis of multiple intervention groups avoids arbitrary omission of relevant groups and double-counting of participants.

Subgroup analysis and investigation of heterogeneity
For effect of timing, we will compare the effect of interventions at different times points of early intervention (intervention given within one month of eye movement disorder onset) versus late intervention (intervention given after one month of eye movement disorder onset).
For effect of treatment, we will compare the interventions against each other as outlined above with the different types of treatment (restitutive, compensatory, substitutive and pharmacological) forming a framework for subgroup analysis.
If I^2 is greater than 50%, we will explore the individual trial characteristics to identify potential sources of heterogeneity, using pre-planned subgroup analyses. We intend to explore heterogeneity by subgroup analyses to investigate the effect on the primary outcome of:
- gender (male, female);
- type of acquired brain injury (trauma, surgery, stroke, brain tumour, infection, inflammation, ischaemia);
- side of brain injury (left, right, bilateral);
- type of eye movement disorder (III, IV & VI nerve palsy, reduced fixation/gaze holding, saccadic problems, smooth pursuit problems, strabismus, nystagmus, reduced convergence, conjugate deviation, skew deviation);
- deviation of eye movement (horizontal, vertical, torsional);
- severity of eye movement disorder (slight, small, moderate, marked, paralysis, paresis, monocular, binocular);
- type of treatment (e.g. for compensative interventions - saccadic eye movement, activities of daily living training; for substitutive interventions - prisms, patches, environmental modifications);
- variable timing of treatment (e.g. within one week of onset and upwards).

We will use an established method for subgroup analyses (Deeks 2001).

Sensitivity analysis
We intend to carry out sensitivity analyses to explore the effect of the following methodological features.
- Allocation concealment: we will re-analyse data, excluding trials with inadequate or unclear allocation concealment.
- Masking of outcome assessor: we will re-analyse data, excluding trials without or with unclear masking of outcome assessor.
- Missing outcome data: we will re-analyse data, excluding trials with inadequate or unclear methods of dealing with missing outcome data.
- Other bias: we will re-analyse data, exclude trials assessed to have other bias, or are unclear as to whether they have other bias.
- Publication type (peer-reviewed journal, conference abstract/proceedings, doctoral dissertation): we will re-analyse data including only those trials from peer-reviewed journals.

Methods for future updates
If trials become available in the future we will include them in this review using the methods for the primary review. We will update our systematic review every two years.

Summary of findings
We will include a 'Summary of findings' table according to recommendations described in Chapter 11 of the Cochrane Handbook for Systematic Reviews of Interventions (Schünemann 2011a). We will include results for one population group, indicate the intervention and the comparison intervention, include seven or fewer patient-important outcomes (e.g. symptoms, adverse events, quality of life), describe the outcomes (e.g. scale, scores, follow-up), indicate the number of participants and studies for each outcome, present at least one baseline risk for each dichotomous outcome (e.g. study population or median/medium risk) and baseline scores for continuous outcomes (if appropriate), summarise the intervention effect (if appropriate), and include a measure of the quality of the body of evidence (independent grading of evidence by two authors) as per the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines described in Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions (Schünemann 2011b).

ACKNOWLEDGEMENTS
The Cochrane Eyes and Vision Group (CEVG) will create and execute the electronic search strategies. We thank Catey Bunce, Tracey Shipman and Jennifer Evans for their comments and Anupa Shah, Managing Editor for CEVG for her assistance throughout the review process.
REFERENCES

Additional references

Ciuffreda 2007

Craig 2008

Deeks 2001

Deeks 2011

Fowler 1996

Freeman 1988

Glanville 2006

Higgins 2011a

Higgins 2011b

Jones 2006

Kerkhoff 1999

Kerkhoff 2000

Maclntosh 2003

Moher 2009

Pedersen 1981

Pierrot-Deseilligny 2011

Pollock 2011

Review Manager 2014 [Computer program]

Rowe 2003

Rowe 2008

Rowe 2009
Rowe 2010

Rowe 2011a

Rowe 2011b

Rowe 2013a

Rowe 2013b

Schünemann 2011a

Schünemann 2011b

* Indicates the major publication for the study

APPENDICES

Appendix 1. CENTRAL search strategy
#1 MeSH descriptor: [Brain Injuries] explode all trees
#2 brain near/2 injur*
#3 ABI or TBI or non TB
#4 #1 or #2 or #3
#5 MeSH descriptor: [Eye] explode all trees
#6 MeSH descriptor: [Visually Impaired Persons] explode all trees
#7 MeSH descriptor: [Ocular Physiological Processes] explode all trees
#8 MeSH descriptor: [Diagnostic Techniques, Ophthalmological] explode all trees
#9 MeSH descriptor: [Optometry] explode all trees
#10 MeSH descriptor: [Orthoptics] explode all trees
#11 MeSH descriptor: [Eye Diseases] this term only
#12 MeSH descriptor: [Vision Disorders] this term only
#13 MeSH descriptor: [Eye Manifestations] this term only
#14 MeSH descriptor: [Blindness] this term only
#15 MeSH descriptor: [Diplopia] explode all trees
#16 MeSH descriptor: [Vision, Binocular] this term only
#17 MeSH descriptor: [Vision, Monocular] this term only
#18 MeSH descriptor: [Visual Acuity] explode all trees
#19 MeSH descriptor: [Visual Fields] this term only
#20 MeSH descriptor: [Vision, Low] this term only
#21 MeSH descriptor: [Visual Field Tests] explode all trees
#22 MeSH descriptor: [Ophthalmology] this term only
#23 MeSH descriptor: [Vision Screening] this term only
#24 MeSH descriptor: [Eye Diseases, Hereditary] explode all trees
#25 MeSH descriptor: [Ocular Motility Disorders] explode all trees
Appendix 2. MEDLINE (OvidSP) search strategy

1. randomized controlled trial.pt.
2. (randomized or randomised).ab,ti.
3. placebo.ab,ti.
4. dt.fs.
5. randomly.ab,ti.
6. trial.ab,ti.
7. groups.ab,ti.
8. or/1-7
9. exp animals/
10. exp humans/
11. 9 not (9 and 10)
12. 8 not 11
13. exp brain injuries/
15. (ABI or TBI or non TBI).tw.
16. or/13-15
17. exp Eye/
18. exp Visually Impaired Persons/
19. exp Ocular Physiological Processes/
20. exp Diagnostic Techniques, Ophthalmological/
21. exp Optometry/
22. exp Orthoptics/
23. exp Eye Diseases/
24. exp Vision Disorders/
25. exp Eye Manifestations/
Appendix 3. EMBASE (OvidSP) search strategy

1. exp randomized controlled trial/
2. exp randomization/
3. exp double blind procedure/
4. exp single blind procedure/
5. random$.tw.
6. or/1-5
7. (animal or animal experiment).sh.
8. human.sh.
9. 7 and 8
10. 7 not 9
11. 6 not 10
12. exp clinical trial/

The search filter for trials at the beginning of the MEDLINE strategy is from the published paper by Glanville et al (Glanville 2006).
14. ((singl$ or doubl$ or trebl$ or tripl$) adj3 (blind$ or mask$)).tw.
15. exp placebo/
16. placebo$.tw.
17. random$.tw.
18. exp experimental design/
19. exp crossover procedure/
20. exp control group/
21. exp latin square design/
22. or/12-21
23. 22 not 10
24. 23 not 11
25. exp comparative study/
26. exp evaluation/
27. exp prospective study/
28. (control$ or prospectiv$ or volunteer$).tw.
29. or/25-28
30. 29 not 10
31. 30 not (11 or 23)
32. 11 or 24 or 31
33. exp brain injury/
34. (brain adj2 injur$).tw.
35. (ABI or TBI or non TBI).tw.
36. or/33-35
37. eye/
38. exp visual system function/
39. exp visual system examination/
40. optometry/
41. orthoptics/
42. eye disease/
43. exp visual disorder/
44. exp eye movement disorder/
45. exp visual impairment/
46. exp vision/
47. perimetry/
48. ophthalmology/
49. exp optic nerve disease/
50. exp cranial nerve/
51. (nystagmus or smooth pursuit or saccades or depth perception or stereopsis or gaze disorder$ or ophthalmol$ or optic nerve$).tw.
52. (gaze$ adj2 (deficit$ or palsy or disorder$)).tw.
53. (ocular adj2 (muscle$ or align$)).tw.
54. (esotropi$ or exotropi$ or hypertropi$ or hypotropi$ or cycloptropi$).tw.
55. (intranuclear ophthalmoplegia or parinaud's syndrome or weber's syndrome or skew deviation or conjugate deviation).tw.
56. ((visual$ or vision or eye or eyes or eyessight or sight) adj3 (problem$ or disorder$ or impair$ or disabil$ or loss or disease$ or defect$ or manifestation$ or screening or test$ or examination$)).tw.
57. (reading adj2 (difficult$ or impair$)).tw.
58. (hemianop$ or blindness or low vision or refractive errors or scotoma or diplopia or optometr$ or ocular or orthoptic$).tw.
59. (oscillopsia or visual tracking or fresnel prism$).tw.
60. ((III or IV or VI or third or fourth or sixth) adj3 nerve palsy).tw.
61. or/37-60
62. 36 and 61
63. 32 and 62
Appendix 4. CINAHL (EBSCO) search strategy

S56 S12 AND S55
S55 S16 AND S54
S54 S51 or S52 or S53
S53 S41 or S42 or S43 or S44 or S45 or S46 or S47 or S48 or S49 or S50 or S51
S52 S31 or S32 or S33 or S34 or S35 or S36 or S37 or S38 or S39 or S40
S51 S17 or S18 or S19 S20 or S21 or S22 or S23 or S24 or S25 or S26 or S27 or S28 or S29 or S30
S50 nerve palsy
S49 oscillopsia or visual tracking or fresnel prism*
S48 hemianop* or blindness or low vision or refractive errors or scotoma or diplopia or optometr* or ocular or orthoptic*
S47 reading N2 (difficult* or impair*)
S46 (visual* or vision or eye or eyes or eyesight or sight) N5 (problem* or disorder* or impair* or disabilit* or loss or disease* or defect* or manifestation* or screening or test* or examination*)
S45 intranuclear ophthalmoplegia or parinaud's syndrome or weber's syndrome or skew deviation or conjugate deviation
S44 exotropi* or exotropi* or hypertropi* or hypertropi* or cyclotropi*
S43 ocular N2 (muscle* or align*)
S42 gaze* N2 (deficit* or palsy or disorder*)
S41 nystagmus or smooth pursuit or saccades or depth perception or stereopsis or ophthalmol* or optic nerve
S40 (MH "Trochlear Nerve") OR (MH "Trochlear Nerve Diseases")
S39 (MH "Abducens Nerve Diseases+") OR (MM "Abducens Nerve")
S38 (MM "Refractive Errors+")
S37 (MH "Pupil Disorders+")
S36 (MH "Orbital Diseases+")
S35 (MH "Optic Nerve Diseases+")
S34 (MM "Ocular Motility Disorders")
S33 (MM "Eye Diseases, Hereditary")
S32 (MM "Ophthalmology")
S31 (MH "Vision Tests+")
S30 (MH "Visual Perception+")
S29 (MM "Visual Fields")
S28 (MH "Visual Acuity")
S27 (MH "Depth Perception")
S26 (MH "Vision, Subnormal")
S25 (MM "Diplopia")
S24 (MH "Blindness+")
S23 (MH "Eye Manifestations+")
S22 (MH "Vision Disorders+")
S21 (MH "Eye Diseases+")
S20 (MM "Optometry")
S19 (MH "Diagnosis, Eye+")
S18 (MH "Rehabilitation of Vision Impaired+")
S17 (MH "Eye+")
S16 S13 or S14 or S15
S15 ABI or TBI or non TBI
S14 brain N2 injur*
S13 (MH "Brain Injuries+")
S12 S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10 or S11
S11 TX allocat* random*
S10 (MM "Quantitative Studies")
S9 (MM "Placebos")
S8 TX placebo*
S7 TX random* allocat*

Interventions for eye movement disorders due to acquired brain injury (Protocol)

Copyright © 2014 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Appendix 5. AMED (OvidSP) search strategy

1. "Randomized controlled trials"/
2. prospective studies/
3. single blind method/
4. random$.tw.
5. placebo$.tw.
6. trial$.tw.
7. groups.tw.
8. ((singl$ or doubl$) adj3 (blind$ or mask$)).tw.
9. or/1-8
10. brain injuries/
12. (ABI or TBI or non TBI).tw.
13. or/10-12
14. eye/
15. Blindness/
16. Vision disorders/
17. Vision/
18. Ocular Motility Disorders/
19. Eye Movements/
20. Optic nerve/
21. Refractive Errors/
22. Cranial nerves/
23. (nystagmus or smooth pursuit or saccades or depth perception or stereopsis or gaze disorder$ or ophthalmol$ or optic nerve$).tw.
24. (gaze$ adj2 (deficit$ or palsy or disorder$)).tw.
25. (ocular adj2 (muscle$ or align$)).tw.
26. (esotropi$ or exotropi$ or hypertropi$ or hypotropi$ or cyclotropi$).tw.
27. (intranuclear ophthalmoplegia or parinaud’s syndrome or weber’s syndrome or skew deviation or conjugate deviation).tw.
28. ((visual$ or vision or eye or eyes or eyesight or sight) adj3 (problem$ or disorder$ or impair$ or disabilit$ or loss or disease$ or defect$ or manifestation$ or screening or test$ or examination$)).tw.
29. (reading adj2 (difficult$ or impair$)).tw.
30. (hemianop$ or blindness or low vision or refractive errors or scotoma or diplopia or optometr$ or ocular or orthoptic$).tw.
31. (oscillopsia or visual tracking or fresnel prism$).tw.
32. (((III or IV or VI or third or fourth or sixth) adj3 nerve palsy).tw.
33. or/14-33
34. 13 and 33
35. 9 and 34
Appendix 6. PsychINFO (OvidSP) search strategy

1. exp Treatment Effectiveness Evaluation/
2. exp Clinical Trials/
3. exp Placebo/
4. placebo$.tw.
5. randomly.tw.
6. randomi$ed.tw.
7. trial$.tw.
8. ((singl$ or doubl$ or trebl$ or tripl$) adj3 (blind$ or mask$ or dummy$)).tw.
9. (factorial$ or allocat$ or assign$ or volunteer$).tw.
10. (crossover$ or cross over$).tw.
11. (quasi adj (experimental or random$)).tw.
12. (control$ adj3 (trial$ or study or studies or group$)).tw.
13. or/1-12
14. exp Brain Damage/
15. exp Traumatic Brain Injury/
16. (ABI or TBI or non TB).tw.
17. exp Head Injuries/
18. or/14-17
19. exp Eye Disorders/
20. exp Eye Fixation/
21. exp "Pupil (Eye)"/
22. exp Vision Disorders/
23. exp Vision/
24. exp Blind/
25. exp Optometry/
26. exp Strabismus/
27. exp Amblyopia/
28. exp Binocular Vision/
29. exp Eye Convergence/
30. exp Color Perception/
31. exp Visual Acuity/
32. exp Visual Field/
33. exp Ophthalmology/
34. exp Ophthalmologic Examination/
35. exp Hemianopia/
36. exp Abducens Nerve/
37. exp Cranial Nerves/
38. (nystagmus or smooth pursuit or saccades or depth perception or stereopsis or gaze disorder$ or ophthalmol$ or optic nerve$).tw.
39. (gaze$ adj2 (deficit$ or palsy or disorder$)).tw.
40. (ocular adj2 (muscle$ or align$)).tw.
41. (esotropi$ or exotropi$ or hypertropi$ or hypotropi$ or cyclotropi$).tw.
42. (intranuclear ophthalmoplegia or parinaud’s syndrome or weber’s syndrome or skew deviation or conjugate deviation).tw.
43. ((visual$ or vision or eye or eyes or eyesight or sight) adj3 (problem$ or disorder$ or impair$ or disabilit$ or loss or disease$ or defect$ or manifestation$ or screening or test$ or examination$)).tw.
44. (reading adj2 (difficult$ or impair$)).tw.
45. (hemianop$ or blindness or low vision or refractive errors or scotoma or diplopia or optometr$ or ocular or orthoptic$).tw.
46. (oscillopsia or visual tracking or fresnel prism$).tw.
47. ((III or IV or VI or third or fourth or sixth) adj3 nerve palsy).tw.
48. or/19-47
49. 18 and 48
50. 13 and 49
Appendix 7. Dissertations and Theses (PQDT) database
Keywords (dissertation topic) = brain injury

Appendix 8. PsycBITE database
PsycBITE was searched using the following options from the search interface:
Neurological Group = Traumatic Brain Injury (TBI)/Head Injury
Method = Randomised Controlled Trials
Target area = Literacy/Numeracy OR Visual Field Loss OR Community Re-entry

Appendix 9. metaRegister of Controlled Trials search strategy
brain injury AND (vision or eye or ocular or nystagmus or strabismus or gaze or diplopia or reading)

Appendix 10. ClinicalTrials.gov search strategy
Brain Injury AND (Vision OR Eye OR Ocular OR Nystagmus OR Strabismus OR Gaze OR Diplopia OR Reading)

Appendix 11. Health Services Research Projects in Progress
(“Brain Injury” AND (Vision OR Eye OR Ocular OR Nystagmus OR Strabismus OR Gaze OR Diplopia OR Reading))

Appendix 12. National Eye Institute Clinical Studies Database
brain AND vision

Appendix 13. ICTRP search strategy
Brain Injury = Condition AND Vision OR Eye OR Ocular OR Nystagmus OR Strabismus OR Gaze OR Diplopia OR Reading = Intervention

Appendix 14. Standardised headings for included studies table

<table>
<thead>
<tr>
<th>Headings in table in RevMan</th>
<th>Proposed subheadings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Study design</td>
</tr>
<tr>
<td></td>
<td>● Parallel group RCT i.e. people randomised to treatment</td>
</tr>
<tr>
<td></td>
<td>● Paired eye or intra-individual RCT i.e. eyes randomised to treatment</td>
</tr>
<tr>
<td></td>
<td>● Cluster RCT i.e. communities randomised to treatment</td>
</tr>
<tr>
<td></td>
<td>● Cross-over RCT</td>
</tr>
<tr>
<td></td>
<td>● Other</td>
</tr>
<tr>
<td>Eyes</td>
<td>One eye included in study</td>
</tr>
<tr>
<td></td>
<td>○ Indicating how the eye was selected</td>
</tr>
<tr>
<td></td>
<td>● Two eyes included in study, both eyes received same treatment</td>
</tr>
</tbody>
</table>
Continued

- Indicating how data were analysed (best/worst/average/both and adjusted for within person correlation/both and not adjusted for within person correlation)
- Indicating if a mixture of one eye and two eyes were used
 - Two eyes included in study, eyes received different treatments (pair matched)
- Indicating if a correct pair-matched analysis was done

<table>
<thead>
<tr>
<th>Participants</th>
<th>Country</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of men</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnic group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eye movement disorders
- Description of the type of eye movement disorder (III, IV, and VI cranial nerve palsy, reduced fixation, gaze holding, gaze palsy, saccadic problems, smooth pursuit problems, strabismus, nystagmus, reduced convergence or divergence, conjugate deviation, skew deviation), the deviation of eye movement (horizontal, vertical, torsional), and the severity of eye movement disorder (slight, small, moderate, marked; paralysis, paresis; monocular, binocular)

Acquired brain injury
- Description of type of brain injury, natural history, side of brain injury

Interventions
- Intervention
- Comparator
- **We will provide a description of interventions given to each treatment group including, if relevant, the duration, intensity, frequency, or dose. We will classify the type of intervention as restitution, compensation, pharmacological or substitution, type of brain injury, type of eye movement disorder, and the type of control as no treatment, placebo, control, or standard care. We will document the professional background of the person providing the intervention (e.g. ophthalmologist, orthoptist)**
Outcomes

| Outcomes | List | We will document the primary and secondary outcomes relevant to this review as listed in the Types of outcome measures section. Specifically, we will document measurements showing change in angle of deviation and/or extent of eye movement range, measurement of binocular single vision, documentation of patient-reported symptoms, documentation of questionnaires and adverse events. If a study has used a number of different methods of measuring the same outcome (e.g. prisms and degrees for measurement of ocular deviation), we will note each method to be used for any subsequent analysis |

Notes

<table>
<thead>
<tr>
<th>Notes</th>
<th>Date conducted</th>
<th>Indicating specific dates of recruitment of participants mm/yr to mm/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sources of funding</td>
<td>Indicating any declarations of interest among the primary researchers</td>
</tr>
<tr>
<td></td>
<td>Declaration of interest</td>
<td>We will record any important confounding variables. If a study includes more than two intervention groups, we will also record the method of including these groups in any subsequent analysis</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

Fiona Rowe will lead this protocol, provide methodological expertise and write the protocol.

Carmel Noonan will act as a second reviewer and provide content expertise.

Sonia MacDiarmid, Kathryn Jarvis, Caroline Dodridge, Tallat Maan, Lorraine North, Marta Garcia-Finana, Claire Howard and Helen Rodgers will provide additional content expertise, will read and comment on final drafts of the protocol.

DECLARATIONS OF INTEREST

Fiona Rowe is an NIHR Research Fellow and has received funding from the NIHR to support research relating to visual problems after stroke (including this Cochrane Review).

The work presented here represents the view of the authors and not necessarily those of the funding bodies.
SOURCES OF SUPPORT

Internal sources

• No sources of support supplied

External sources

• National Institute for Health Research (NIHR), UK.
 NIHR have funded the research fellowship programme that encompasses this Review.
 Richard Wormald (Co-ordinating Editor for the Cochrane Eyes and Vision Group) acknowledges financial support for his Cochrane Eyes and Vision Group research sessions from the Department of Health through the award made by the NIHR to Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology for a Specialist Biomedical Research Centre for Ophthalmology. The views expressed in this publication are those of the authors and not necessarily those of the NIHR, NHS or the Department of Health.