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 

Abstract— The recent advances in ECG sensor devices 
provide opportunities for user self-managed auto-
diagnosis and monitoring services over the internet. This 
imposes the requirements for generic ECG classification 
methods that are inter-patient and device independent. In 
this paper, we present our work on using the densely 
connected convolutional neural network (DenseNet) and 
gated recurrent unit network (GRU) for addressing the 
inter-patient ECG classification problem. A deep learning 
model architecture is proposed and is evaluated using the 
MIT-BIH Arrhythmia and Supraventricular Databases. The 
results obtained show that without applying any 
complicated data pre-processing or feature engineering 
methods, both of our models have considerably 
outperformed the state-of-the-art performance for 
supraventricular (SVEB) and ventricular (VEB) arrhythmia 
classifications on the unseen testing dataset (with the F1 
score improved from 51.08 to 61.25 for SVEB detection 
and from 88.59 to 89.75 for VEB detection respectively). As 
no patient-specific or device-specific information is used 
at the training stage in this work, it can be considered as a 
more generic approach for dealing with scenarios in which 
varieties of ECG signals are collected from different 
patients using different types of sensor devices. 

 
Index Terms— ECG Classification, Convolutional Neural 

Network, Recurrent Neural Network, Big Data, Deep Learning 

I. Introduction 

The Electrocardiogram (ECG) signal is a non-invasive 

screening tool that has been widely used for various 

cardiac abnormality detections. A careful inspection of ECG 

signal is essential for detect underlying heart conditions 

particularly in long-term recordings (usually over a period of 

24 hours). The recent advances in body sensor devices provide 

opportunities for user directed auto-diagnosis, self-monitoring 

and self-management services over the internet. There has 

been a significant increase in the number and variety of 

wearable ECG monitoring devices [1][2] in the last decade, 

which leads to the generation of massive volumes of inter-

patient/device ECG signals and cloud-based services[3] for 
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handling them. Such a trend imposes the requirements for true 

generic and data-driven ECG signal analysis methods and 

models (patient and device independent) to be developed.  

The analysis of ECG signals has been extensively researched 

over many decades [4][5][6][7][8]. Many attempts have been 

made for classifying abnormal ECG beats using various 

methods. Even though the existing efforts do contribute as 

firm foundations to the domain, the problem of inter-patient 

ECG signal classifications has not been addressed adequately. 

This is due to the largely varied morphological characteristics 

from patient to patient, different ECG hardware 

implementations, and the changing measuring conditions. 

Traditionally, a typical machine learning based approach for 

ECG signal classification consists of three main steps, namely, 

data pre-processing, feature extraction and classification. 

Following such a process, various noises and artefacts (i.e. 

baseline wondering, muscle contraction and powerline 

interferences) are eliminated first [9][10]. Then a set of hand-

crafted features are extracted from the pre-processed 

waveforms and are fed into the next classification stage. 

However, the time-varying dynamics and the morphological 

characteristics of ECG signals from different patients under 

different temporal and physical conditions make it difficult to 

extract useful features manually. For instance, even for an 

ECG waveform from a healthy subject, the shapes of QRS 

complex, P waves, and R–R intervals will not be the same 

from one beat to the other under different circumstances [11]. 

In fact, most researchers have chosen to use patient-specific 

data [7][9][15] at the training stage to ensure that classifiers 

are aware of the variances that exist in testing data, but not in 

the training data. This is reasonably understandable as it is 

almost impossible to hand-craft all features or to be confident 

enough that a set of pre-defined features can cover the full 

spectrum of any ECG signal.  

In this paper, we present our work on using the densely 

connected convolutional neural network (DenseNet) [14] and 

gated recurrent unit network (GRU) [15] with attention [16] 

mechanism for inter-patient ECG classification problem. This 

work aims to evaluate and verify a hypothesis: with a deep 

learning model-based approach, it is possible to achieve better 

ECG classification performance without using either feature 

extraction methods or patient/device-specific information. The 

main contributions of this work are: 

1. We developed a generic and feature-free deep learning 

model that outperforms the current state-of-the-art 

methods [7] [17] for inter-patient ECG classification.  

2. We show that without changing model architecture or 

parameters, the performance of this method remains 
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stable on different datasets with different properties, 

thus having better scalability and applicability.  

3. We also compared the proposed architecture with other 

architectures to show its effectiveness.   

The remainder of this paper is organised as follows. In section 

II, related work on ECG classification is surveyed and 

discussed, followed by a demonstration of our methodology in 

section III. Experiments, evaluation and results comparison 

are presented in section IV as well as some discussions. 

Conclusion and future work are given in section V. 

II. RELATED WORK 

A. Feature Engineering Based Approaches 

Before deep learning became applicable, feature extraction 

based methods have dominated the ECG signal recognition 

domain over several decades. Those methods include wave 

shape functions [17][18][19][20], wavelet-based feature 

extractions [21][22][23], frequency-based feature extraction 

[24] and statistical feature [25]. Methods used for classifying 

these extracted features include support vector machines [17] 

[26], decision trees [26], artificial neural networks [27], linear 

discriminants[17][18][20], self-organising maps with learning 

vector quantisation [28] and active learning framework [12].  

However, the success of such methods often relies on the 

outputs from the feature extraction stage. Many of these 

frameworks treat ECG signals as a sequence of stochastic 

patterns. Therefore, complex feature extraction process and 

high sampling rates are required. Even though, due to the large 

intra-class variation, the robustness of many existing ECG 

classification techniques remains limited. A major limitation 

of current approaches is that they are highly dependent on the 

pre-extracted features from the training dataset, and perform 

inadequately while dealing with unseen ECG records. In 

addition, extracting complex features in the frequency 

domains when combined with dimensionality reduction 

algorithms significantly upsurge the computational complexity 

of the overall process. Moreover, many classifiers have not 

performed well in case of inter-patient variations of the ECG 

signals, thereby demonstrating a common shortcoming of 

having an inconsistent performance while classifying a new 

patients ECG signal.  

B. Deep Learning Based Approaches 

The development of deep learning methods for feature 

learning[29] yields to automatic learning of good features 

from the raw input data. Typical deep learning architectures 

include deep belief networks (DBN)[30], stacked auto-encoder 

(SAE) [31] and convolutional neural networks (CNN)[32][33]. 

The success of applying deep learning in other domains, such 

as image recognition and language processing, has drawn the 

attention of ECG classification community. In the last few 

years, researchers have focused their efforts on using deep 

learning models for ECG signal analysis. 

In [34], researchers have developed algorithms based on 

Restricted Boltzmann Machine (RBM) for two-lead heartbeat 

classification where the RSM model helps mine the large set 

of unlabelled ECG beats in the heart healthcare monitoring 

applications. Similar work has been carried by [35] for 

automatic ECG feature extraction using Deep Belief Network. 

For the automatic ECG classification, researchers [26] have 

proposed using a combination of SVM and DBN, in which 

DBN is used for feature learning and SVM is then applied for 

the classification tasks using the learned features. With the 

same principle, Rahlal et al.[7] has used auto-encoders for 

feature learning. In this work, ECG data from several cardio 

databases have been utilised for effective ECG feature 

learning. The learned features are then applied for 

classification on unseen data.  

Along with the development of deep learning models, the 

more recent trend has been focused on using convolutional 

neural network models for direct ECG signal classification. In 

[36], a CNN based classification system was introduced for 

automatically learning feature representations from ECG data, 

hence eliminating the hand-crafted feature extraction stage. In 

another work [37], segmented ECGs are processed by an 

eleven-layer convolutional neural network that achieved 

maximum accuracy of 93.18%. Kiranyaz et al. [13] studied the 

patient-specific ECG monitoring system using three-layer 

CNN with only R-peak wave. They also result in good 

accuracy in the detection of supraventricular ectopic beats and 

ventricular ectopic beats. A deep residual neuron network [38] 

has been developed by [39], where a 34 layer deep CNN is 

applied directly, without adopting any complex pre-processing 

and feature engineering steps,  for classifying arrhythmia. The 

researchers have shown that this approach achieved 

cardiologist-level performance using a dataset that’s 500 times 

larger than others of its kinds. 

Despite the progress the ECG community has achieved, it is 

evident from the literature [27][13][6][17] that researchers 

have used a small number of selected patient-specific data that 

is usually in length between 2.5 minutes and 5 minutes for 

model training. Although this data is then excluded from the 

testing data for performance evaluation, the inclusion of them 

in the training stage largely reduces the variants that may be 

encountered in some real-world applications.  In other words, 

if we are expecting similar performance as reported in the 

literature when applying those methods to an application, 

patient-specific data needs to be collected for the 

“personalised models” training. While such a constraint may 

hold true in some of the medical setups (e.g. where 24 hours 

Holters are used and experts can partially label recordings),  in 

a free-living environment where each patient only produces 

very short ECG waveforms (e.g. users self-monitor themselves 

using body sensors for less than a few minutes [40]), this does 

not seem to be feasible. In addition, it is particularly difficult 

or even impossible to ask experts to manually label small 

chunks of data from all stored records when the volume of 

data becomes overwhelming. The research presented in this 

paper aims to present an effective approach to mitigating this 

problem. 

III. METHODOLOGY 

Giving the current landscape of literature, the hypophysis we 

hold for this work is that with careful study and a right 

architecture, a single deep learning model is capable of 

learning generic ECG waveform features, hence performing 

better on ECG classification tasks. The development of such a 

https://www.sciencedirect.com/topics/medicine-and-dentistry/electrocardiography
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model should require a minimal level of prior knowledge in 

the traditional feature engineering/signal processing domain 

thus providing a neater/simpler solution. For instance, we 

believe there is no need to carry R-peak detection or QRS 

complex identification (as many of the previous work have 

adopted as an essential step) since they are, in fact, features 

from the ECG signals.  

A. The Problem 

Generally, the abnormalities of the ECG signals mainly come 

from two aspects, namely the ill-shaped ECG beat 

morphology and the temporal variance between ECG beats as 

illustrated in Figure 1, where Fig 1.a shows regular sinus 

beats, Fig 1.b shows a premature beat (temporal variance 

between R peaks) and Fig 1.c shows ill-shaped QRS 

complexes (morphological variance). If a model is capable of 

handling both of the above cases, it needs to 1> contain a set 

of good enough features for reconstructing as many ECG 

waveforms (standard and ill-shaped) as possible; 2> have the 

ability for analysing sequential data.  In the realm of deep 

learning, there are two widely used networks, namely, 

convolutional neural network[32] and recurrent neural 

network [41] with the former focusing on feature extraction 

and the latter on sequence analysis.  

 
Figure 1: Examples of ECG Beats 

There has been some research either on using stacked/deep 

RNN [25][29] or on using deep CNN [8][42]  alone for ECG 

classification. It is difficult to evaluate whether these works 

have fully utilised the power of these models. For example, 

using stacked RNNs/LSTMs alone, it is based on the 

assumption that these stacked LSTM layers can extract good 

features. However, it is challenging for an LSTM layer to 

learn local features of input unless the model goes really deep 

and extensive, which ends up with almost infinite training 

time. In fact, the work presented in [42] has deployed wavelet 

sequence (WS) layers on top of the LSTM layers in their 

network architecture. These WS layers essentially are feature 

extraction layers with specific focuses on wavelet 

transformation. On the other hand, using CNN alone is 

effective in learning good local features (as well as the 

combinations of them). However, the time variance 

information is lost, and the performance of the model heavily 

replies on whether the model can reconstruct “close-enough” 

signals using features learnt. The work was done by Rajpurkar 

et al.[39] is precisely one of the kinds. With an extensive 

dataset and a deep architecture, a network surely has a better 

chance to learn good features and use them for classification 

without considering time variances. A possible bottleneck of 

using such approaches is that there may be a need to prepare a 

super-sized dataset to only use features for compensating the 

lost temporal information in the original inputs. Thus, it is 

natural to think of using a combination of both CNN and RNN 

for solving the ECG classification problem.  

B. The Model 

 

Figure 2: Model Architecture: a) Branched b) Stacked 

We have implemented a deep learning model as illustrated in 

Figure 2.a. The model, in brief, has a convolutional block for 

feature extraction, a recurrent network block for temporal 

variance analysis and Softmax layers for classification. Unlike 

a standard stacked architecture, as shown in Figure 2.b, our 

model has a branched-out structure after the convolutional 

block. One branch is built with recurrent layers followed by a 

Softmax layer, and another is directly wired to a Softmax 

layer. Outputs from both Softmax layers are then merged with 

equal weights as the final output of the model. Although there 

have been some other efforts on using CNN and recurrent 

network together[43], it is conjectured that the branched 

architecture will work better. 

For a stacked architecture, during the training process, the 

recurrent layers receive the full back-propagated errors. These 

errors are digested by them first before getting further 
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propagated to the dense blocks. After many steps of 

processing, the error gets smaller and smaller before they 

come out from the recurrent units. The recurrent layers only 

have local views and try to minimise those errors without 

considering how the minimisation will affect the lower dense 

block layers. This leads to a model with better optimised top 

layers but less optimised lower layers. In contrast, with our 

branched architecture, the errors are first split equally between 

the recurrent block and the convolutional block. Therefore, the 

lower convolutional block receives higher gradients values 

than that of a stacked architecture, and are trained more 

sufficiently. The trade-off, however, is the recurrent branch 

receive fewer gradient values comparing to the stacked one. 

Since for ECG classification, we equally care about temporal 

variance and morphological information of a signal, the 

branched architecture is favoured over another one. The 

primary model components and the details of each are 

explained below. 

1) Densely connected convolutional network block  

This component is used for extracting different levels of 

features from the input ECG signals. DenseNet is a special 

kind of convolutional neural network with direct connections 

from one layer to all its subsequent layers. In other words, a 

layer in DenseNet receives outputs from all its previous layers 

and “forwards” them to the next layer together with its own 

output. This property is beneficial for ECG signal 

classifications. ECG diagnosis normally involves uses of 

several key clinical features, e.g. R-R interval, P wave 

duration, QRS duration, S-T-U duration, by cardiologists.  

 
Figure 3: DenseNet Layer vs Normal CNN Layer 

With such an architecture, low and high-level features are 

combined (concatenated) together at each convolutional layer 

(as shown in Figure 3.a). In contrast, with a “vanilla” version 

of CNN, low-level features can only contribute to the final 

classification through several layers of transformation (as 

sown in Figure 3.b). Since we do not know what feature and at 

what level, has a positive impact on the final classification 

result, it is sensible to treat them in a flat manner, instead of 

using them hierarchically. For our work, we have used dense 

blocks each with 4 convolutional layers inside, followed by a 

transition layer.  

 
Figure 4: Internal Look of a Dense Block. All the values in this 

diagram are for demonstration purpose only. In the 24@8 

annotation, 24 is the filter number and 8 is the filter size used for that 

conv layer. The example growth rate used for this dense block is 12, 

which means the successive conv layer always has 12 more filters in 

addition to the concatenated filters from its last two layers. Taking 

the 3rd conv layer as an example, the concatenated filters are 60 from 

the last two layers. As the growth rate is 12, it has 70 filters in total.  

The growth rate does not apply to the last transition layer. For a 

compression rate of 0.8, it has 221 (276*0.8) filters.  

Figure 4 shows the internal look of a dense block. With such a 

structure, filters learnt from the previous layers are pushed 

towards to the end of the chain along with the new filters from 

the later layers. Outputs from each layer are batch normed[44], 

first for removing covariate shifts before they go into rectified 

linear units (ReLU) for activations. The transition layer (the 

last layer coloured in yellow in the diagram) plays a 

compression role to ensure the size of the network does not 

explode.  It takes activations from all the filters in a dense 

block and compresses them by using a smaller number of 

filters and pooling operations. 

2) Gated recurrent unit block with attention 

This component receives activations from the last dense block 

and analyses them sequentially for learning temporal features 

of the inputs. The key elements in this component are the 

gated recurrent network layers.  GRU can be considered as a 

variation of long-short-term-memory(LSTM) [45] because 

both are designed similarly and, in some cases, produce 

equally excellent results[15]. For this work, we choose GRU 

purely based on the consideration of training time. As the 

GRU does not introduce the forget gate, it reduces the 

computation time accordingly.  

 
Figure 5: Gated Recurrent Unit with Attention 

Inspired by the work from image recognition and the language 

translation domain, we also implemented the attention 

mechanism[16] for the GRU layer. The attention mechanism, 

in short, is to make the GRU layer focus on and learn (pay 

more attention) specific parts/features of the inputs and 

produce results accordingly. Taking the two abnormal ECG 

waves from Figure 1 as examples, when a standard GRU layer 
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sees them, every data point in the signal is analysed one by 

one sequentially, and the final state of the GRU is used for 

producing the final results. More specifically, the network 

only uses the final state of the GRU for its output as shown in 

Figure 5.a. An attention enabled GRU unit as shown in Figure 

5.b, instead, takes the sum of the weighted combination of all 

the GRU internal states and use it for final classification. 

Therefore, the most significant parts of the input (in our case, 

the ill-shaped waves) receives more updates at the network 

back-propagation stage.  

IV. EXPERIMENTS AND EVALUATION RESULTS 

A. Dataset 

To work with real device independent and inter-patient data, 

we chose to use ECG records from two open-source 

PhysioBank databases, namely the MIT-BIH Arrhythmia 

database and the MIT-BIH Supraventricular Arrhythmia 

database [46].  

1) The MIT-BIH Arrhythmia Database (mitdb) 

This database consists of a 48-half-hour long ECG recording 

from 47 patients. Each record is sampled at 360Hz and was 

interpreted, validated and annotated by at least two 

cardiologists. This dataset contains 23 recordings that were 

randomly selected from a set of 4000 ambulatory 24-hours 

ECGs and were collected from a mixed cohort of inpatients 

and outpatients at the medical centre. The other 25 recordings 

were selected from the same 4000 set which includes less 

common but clinically symbolic arrhythmias. Signals from 

mitdb have two channels, and we used data from the MLII[46] 

channel for generating our datasets. 

2) The MIT-BIH Supraventricular Arrhythmia database 

(svdb) 

This database includes 78 half-hour ECG recordings chosen to 

supplement the examples of supraventricular arrhythmias in 

the MIT-BIH Arrhythmia Database. Records in this database 

are all sampled at 128Hz and have two channels as well. 

ECG1 [46] channel is used in this work. 

3) Classes Mapping to AAMI Standard 

To compare the classification results with the state-of-the-art 

works, the preparation of dataset closely follows the 

recommendations of the Association for the Advancement of 

Medical Instrumentation (AAMI) [47] for class labelling and 

results in the presentation. More specifically, the AAMI 

standard defines five classes of interest: normal (N), 

ventricular (VEB), supraventricular (SVEB), fusion of normal 

and ventricular (F) and unknown beats (Q). Regardless of the 

class definition, this standard essentially recommends for 

performance evaluation of inter-patient scenario (i.e., training 

and test ECG beats are extracted from different patients). The 

ECG records from the MIT-BIH database for example, 

however, have 15 different beat types and therefore need to be 

mapped to these five classes accordingly. The beat type 

mappings between the AAMI recommended class types and 

MIT-BIH beat type are shown in Table 1.  

 

Table 1: Mapping the MIT-BIH Arrhythmia Database Heartbeat 

Types to the AAMI Heartbeat Classes[17] 

B. Data Pre-processing and Segmentation  

Baseline-wondering of all the ECG records is first removed 

using 200ms and 600ms median filter, followed by applying a 

uniform moving average with window size 7 for removing 

high-frequency powerline and muscle noises. Finally, to speed 

up the training process, all records are resampled from their 

original sample rate (360Hz for mitdb, 128Hz for svdb) to 

180Hz. 

To ensure the model to be trained with enough information of 

both temporal variance and morphological structures, we 

choose to use 10 seconds length data segmentation that 

contains at least 6 heartbeats (40 heartbeats per minute for the 

worst case scenario), as the input for our model. Training data 

segments are generated by taking 10 seconds data points from 

ECG records using their beat annotation indexes (shifted one 

by one from the beginning). The corresponding target data is 

encoded using the one-hot-encoding vector. The class label of 

target data is determined by the most occurred annotation in 

the corresponding training data segment. N annotations are 

excluded if annotations of other classes exist. 

In order to compare the performance of our work with the 

others’, data segments from a 22 patients subset (referred as 

DS1 later) is chosen as the first training set: DS1 = { 101, 

106,108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 

203, 205, 207, 208, 209, 215, 220, 223, 230}, while segments 

from another subset (referred as DST1) of 22 patients are 

chosen as the testing set: DST1 ={ 100, 103, 105, 111, 113, 

117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 

228, 231, 232, 233, 234}. The remaining 4 patient recordings 

from the mitdb are not considered as they are on pacemakers 

and are consisted of only paced, (unknown type) heartbeats. 

We also generated another training set DS2 and testing set 

DST2 that includes all the records from the svdb. As a result, 

we generated 51,912 samples from DS1, 92,724 samples from 

DS2 for training, and 50,900 samples from DST1, 94,130 

samples from DST2 for testing.  Table 2 shows the breakdown 

of the 5 classes of beat subtypes in the generated datasets. 

Training and testing datasets are standardised with a mean of 0 

and a standard deviation of 1 separately. 
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 N SVEB VEB F Q Total 

DS1 30,966 4,854 15,648 409 35 51,912 

DST1 29,980 4,225 15,373 1,251 71 50,900 

DS2 39,669 30,064 22,672 137 182 92,724 

DST2 48,690 22,997 22,329 17 97 94,130 

Total 149,305 62,140 76,022 1,814 385 289,666 

Table 2: Breakdown of Beat Subtypes in the Generated Dataset 

C. Evaluation Metrics, Model Parameters and Training 

The measurement metrics used for evaluating classification 

performance are as follows:  

Accuracy:  Acc = (TP+TN)/(T P+FP+TN+FN),  

Sensitivity: Sen = TP/(TP+FN),  

Specificity: Spe=TN/(FP+TN),  

Positive Predictivity: Ppr=TP /(FP+TP).  

The above four metrics are computed by the quantity of true 

positive (TP), false positive (FP), true negative (TN), and false 

negative (FN). F1 Score=2(Sen*Ppr) /(Sen+Ppr) is used as the 

combined metric for performance comparison.   

There are a few key model parameters that need to be set 

before model training. Some of them are chosen using specific 

clinical knowledge for ECG analysis, and some of them are set 

via parameter searching. Each of the four strategies is 

explained below:  

1. Filter/kernel size for convolutional layers: Filter size for the 

initial convolutional layer is set to 8 and remains 

unchanged in all convolutional layers. This is because, for 

our 180Hz sampled data segment, 8 data points represent 

44ms (5.6ms each data point) in time that is sufficiently 

small for composing most of the ECG features (e.g. QRS 

complexes normally have the shortest duration, around 

60ms).  

2. Number of convolutional layers in a dense block: Due to the 

concatenation operations required in the dense blocks, the 

first dimension (signal length) of adjacent layers have to be 

the same. Therefore, it is not possible to perform pooling 

operations inside a dense block, which means the stride size 

for each convolutional layer has to be exactly one. As a 

consequence, the depth of a dense block actually is 

determined by the filter size of the final convolutional layer 

inside it. Since a regular P-R interval from an ECG QRS 

complex has the largest value (around 120ms-200ms) 

amongst all the important ECG waves and intervals, for a 

single filter that can cover this, we need to make the size of 

it to 40 data samples. This, as a result, leads to a dense 

block with 5 convolutional layers (filter size 8 for the first 

layer and 40 for the last layer).  

3. Input length for the GRU layers:  Since GRU layers use 

outputs from the dense block components and use them for 

time variance analysis. It is rational to decide the input 

length for GRU layer first as this decision will affect how 

many dense blocks we will need on the top. For a 10 

seconds ECG segment, we know there are around 8-30 

QRS complexes. For the extreme case (28 QRS 

complexes), we will need 28 input features to cover the full 

length. The input length for the GRU layer is therefore set 

to 28. This also indicates that the output from the lower 

dense block has to be 28.  

4. Pool size and pool stride for transition layers: Because we 

are not able to perform pooling operations inside a dense 

block, it has to be done at the transition layer.  To reduce 

the sequence length from 1800 (180*10) to 30, we will 

need 6 pooling operations for the stride value of 2, so are 6 

transition layers and 6 dense blocks. Alternatively, we 

could have 4 pooling operations with the stride value of 4, 

which leads to 4 dense blocks and 4 transition layers. In 

order to determine the best stride value for all transition 

layers, we carried a simple parameter search experiment in 

which we used a small dataset (10% class-balanced data 

from DS1) for training models with all possible stride value 

ranging from 2 to 8 and used the F1 score for SVEB 

classification as the performance metric. The result shows 

that when we set the stride value to 2 in all transition layers, 

the model achieved the best performance at 51.23, whereas 

50.13 when the stride value is 4. We choose to use the latter 

one in our final model as giving the close performance, a 

larger stride value helps reduce the total model parameters.  

As we applied batch normalisation after each convolution 

layer, a small dropout value 0.25 is adopted for model 

regularisation. We train our model for 500 epochs with a batch 

size of 50 using an early stop monitor on validation loss with 

50-epochs patience. The optimiser we use is Adam[48] with 

an initial learning rate set to 5e-4. The training is carried on 

NVIDIA GTX 1080i GPUs and the average training time for 

each epoch of the full DS1 training set is around 230 seconds.  

Table 3 summarises the values of key model parameters used 

in this study. 
Parameter Values 

Filter size of conv layers: 8 

No. of filters & growth rate for conv layers: 48&24 

No. of conv layers in each dense block: 4 

No. of dense blocks: 4 

Transition layer pool size: 4 

Transition layer stride size: 4 

Transition layer compression rate: 0.8 

Input sequence length of GRU layer: 28 

Units of GRU layer: 64 

Dropout value: 0.25 

Mini-batch size:  50 

Initial learning rate: 5e-4 

Table 3: Values of Key Model Parameters 

D. Model Performance Evaluation 

To evaluate the performance of the proposed work, we 

compare the results of our work with existing methods that 

also comply with the AAMI standard. According to AAMI 

recommendations, the SVEB and VEB detections are 

considered separately. The performance evaluation results for  
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all our experiments are given in Table 4. The works [5][6][22] 

that have used a good number of annotated beats from the 

testing records for training purposes are not included in this 

study. Although those beats are not used in the testing stage, 

they do help the model learn patient or even record specific 

patterns thus leading to a better performance when given the 

rests of the “already seen” record.     

1) Performance Evaluation using mitdb Data 

To evaluate how training data size affects the model 

performance, the model is first trained with datasets of 

different sizes from DS1 and then evaluated using the full 

testing records DST1. Training data is randomly drawn from 

DS1 with balanced loads for all classes with a gradual size 

increase in the dataset. Performances of the model for 

different training data sizes are given in Figure 6. It can be 

seen that the overall performance of the model does increase 

along with the training data size except for the F class which is 

largely under-represented in DS1. The model achieved its best 

performance for SVEB and F classes (F1=65.49 for SVEB 

class and F1=60.73 for F class) with training datasets of size 

40946, whereas for Normal class and VEB class, the best 

performance is achieved with the full DS1 data (F1=90.54 for 

SVEB class and F1=89.75 for F class).  There is a noticeable 

performance drop on the chart for SVEB and F classes with 

full training data DST1. 

 

Figure 6: Classification Performances with Different Sizes of 

Training Data from DS1. The above performance figure for each data 

size is the aggregated mean of multiple testing results using non-

replacement data sampling. As the data size increases, when the 

required sample number of a class exceeds its maximum in DS1, the 

non-replacement sampling only applies to the rests of classes. This 

process is repeated until the data are fully sampled from the DS1 in a 

single go. 

Methods SVEB VEB 

T1:  Classification results using all training data in DS1 and all testing data DST1 (mitdb)  

Acc (%) Sen (%) Spe (%) Ppv (%) F1 Acc (%) Sen (%) Spe (%) Ppv (%) F1 

Chazel 

et al. [17] 

94.6 75.9 N/A 38.5 51.08 97.4 77.7 N/A 81.9 79.74 

Matthew 

et al. [49] 

93.4 75.12 N/A 32.84 45.7 93.51 76 N/A 49.97 65.13 

Matthew 

et al.[4] 

93.78 88.39 N/A 33.63 48.72 96.63 77.74 N/A 69.2 80.53 

Rahlal 

et al. [7] 

94.9 37.8 97.5 40.5 39.1 97.8 90.1 98.6 87.1 88.57 

Jiang 

 el al [27] 

96.6 50.6 98.8 67.9 57.99 98.1 86.6 99.3 93.3 89.82 

Ince 

el al.[21]  

96.1 62.1 98.5 56.7 59.28 97.6 83.4 98.1 87.4 85.21 

Raj et 

al.[39]* 

89.79 38.79 94.41 38.58 38.6 87.12 88.57 88.57 73.93 80.59 

Stacked* 93.82 72.99 95.71 60.61 66.23 90.08 89.57 90.30 79.98 84.50 

This work 93.61        62.70        96.40        61.21        61.94 93.71        91.25        94.77        88.30        89.75 

 T2:  Classification results using random training data in DS1&DS2  and  all testing data in DST1 (mitdb) 

This work 92.54 69.82 94.60 53.92 60.85 93.54 91.23 94.54 87.85 89.51 

 T3.a:  Classification results using the full mitdb (DS1+DST1) for training and  testing data in DST2 (svdb) 

Rahlal 

et al. [7] 
90.61 8.80 96.32 14.31 10.90 66.27 65.19 66.32 6.31 11.51 

This work 68.73 7.90 97.91 64.50 14.08 81.92                             86.81 80.33 58.82 70.13 

 T3.b:  Classification results using pre-trained model from T2  and  all testing data in DST2 (svdb) 

This work 88.54        71.29        94.12        79.66        75.24 92.17        79.96        95.96        86.03        82.89 

 T4:  Classification results  using pre-trained model from T2  and all testing data in DST1 & DST2 (mitdb+svdb) 

This work 88.99        69.35        94.38        77.20        73.07 91.71        81.80        95.93        89.52        85.49 

Table 4: Classification results in terms of SVEB and VEB using the testing records of MIT-BIH. 1) Work that is marked with * is implemented 

by us for comparison purposes as we are interested in them but cannot find literature that uses the same testing dataset. For instance, the 

original work in Raj et al. [46]* has used the PhysioNet/CiC Challenge 2017 dataset for testing. To evaluate the effectiveness of the model, we 

had to implement the model as described in the original paper and applied it to our testing dataset with a few parameter tunings. However, this 

should not de-value the author’s original work. Stacked* is the model shown in Figure 2.b and is fine-tuned using similar approaches applied 

to the branched architecture. 2) The two work that is greyed out has used 300 beats for each record from the testing set. 
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As shown in Table 4, for experiment T1, this proposed work 

(branched architecture) has achieved considerable 

performance improvement on SVEB detection. The F1 score is 

improved by almost 21% from 51.08 (the current state-of-the-

art) to 66.23/61.94 (stacked/branched). It also performs better 

on the VEB detection with (F1=89.75) than the current state-

of-the-art performance (F1=88.57). Even for the work [21][27] 

that have used beats from the testing data in their training, our 

model still outperforms on SVEB detection and with a very 

close performance on VEB detection (F1=89.75 vs F1=89.82). 

 

Figure 7: Classification Performances for 4 classes (Stacked vs 

Branched). 

It can be noticed that from the results, the stacked architecture 

achieved the highest score on SVEB detection with F1=66.23. 

However, if we look at the overall classification performances, 

clearly the branched architecture performs better.  From 

Figure 7, it can be seen that the stacked network is only more 

effective on SVEB detection, whereas it performs worse on N, 

VEB and F classes. This is consistent with the discussion in 

section III.2. 

2) Model Performance and Scalability Evaluation Using 

mitdb and svdb Data 

To verify the scalability of the model, additional training and 

testing of the model was conducted using both mitdb and svdb 

data.  

Experiment T2 aims to test that with a relatively larger, more 

balanced but heterogeneous dataset, whether there would be 

improvements in the model performance or not. Firstly, 5 new 

training datasets were constructed, each with the 51763 data 

via non-replacement sampling from DS1 (mitdb) and DS2 

(svdb). They represent better balanced datasets (N: 17,000, 

SVEB: 17,000, VEB: 17,000, F: 546, Q: 217)1. Following the 

first stage, the model with the best performance from T1 was 

re-trained using the new datasets and was tested using the 

DST1 dataset. The test result shows that the model averagely 

scored F1= 92.67 for N class, F1= 60.85 for SVEB class, F1= 

89.51 for VEB class and F1= 62.65 for F class. The results are 

similar to what the model achieved using the DS1 only dataset 

for training, with clear improvement on N and F class 

detection. Also, an interesting observation of this experiment 

is that given the model performances for SVEB and VEB 

classification remain consistent, this reveals that the mitdb and 

svdb data do share some common features.  

 
1 Unless otherwise stated, all the data in the new training datasets 

are resampled to 180Hz and re-standardised.  

In T3.a, we re-trained the model from T1 using the full mitdb 

data (DS1+DST1) and applied the final model to the DST2 

(svdb) testing data. In this experiment, the model has not seen 

any svdb data in training and can only use features learnt from 

the mitdb for classifications. Even for such an extreme case, it 

has successfully (comparing to the work presented in [7])  

scored  F1=70.13 for VEB detection. This can further prove 

that the model has learnt generic morphological features. 

Despite the fact that the SVEB detection result is also better 

than another work [7] (F1=14.08 vs F1=10.90), the low value 

indicates that the temporal variant information is very data 

dependent and cannot be easily generalised from a small 

dataset with varied properties. In T3.b, we tested the pre-

trained model from T2 using DST2 testing data. We use this 

experiment to simulate a practical scenario where a pre-trained 

model is used for classifying new data. The model 

performance was boosted to F1=75.24 for SVEB detection and 

F1=82.89 in this case.  

In the last experiment T4, the scalability of the model was 

investigated further via testing the pre-trained model from T2 

on classifying the full testing data from DST1 and DST2. The 

results (N: 92.70, SVEB: 73.07, VEB: 85.49, F: 59.85) are, in 

fact, very close to the weighted (based on the number of class 

samples in the testing data from each database) averages of T2 

and T3.b’s results. This suggests that the model’s performance 

and stability are not affected by the heterogeneities of different 

data sources, but are only dependent on whether such 

heterogeneities are represented sufficiently in the training 

data. 

E. Discussion 

Although from the experiments, the proposed architecture has 

been approved to deliver consistent performance, it is still 

interesting and necessary for us to understand what the model 

has learnt. To gain insight into the model, it is necessary to 

visualise the activations of the last Conv layer before the GRU 

layer, and the activations of the GRU layer after the attention 

mechanism is applied.  

Figure 9 shows the activations of a group of correctly 

classified and misclassified input signals. The high spikes in 

the activation map show what the model focus on when it sees 

the signal. For those correctly classified samples, we can see 

that both conv layer and GRU layer have the right focus (high 

spikes at the right position), while the GRU layer seems to be 

more detailed. For example, for the a.1 signal, we have two 

noticeable spikes in the conv layer activation map but four in 

the GRU’s one that covers the four ill-shaped beats in the 

input signal (S, V, V, V). This is similar to the a.2 case. 

However, for the a.3 case, the conv layer seems to be more 

sensible as it spikes both F beats whereas the GRU layer only 

flags the latter one with a more focused spike. It is also 

interesting to see both layers treat a.4 as an N record despite 

that it has a V shape noise in the middle. As for the 

misclassified sample, b.1, the conv layer successfully spikes it, 

but the GRU layer almost completely ignores it. For b.2, both 

layers focus at the right position but not with enough 

confidence (the spikes are not significant enough). b.3 is an 

interesting case, both layers spiked it successfully but 

considered it as V class. The F beat does look like a V beat as 

shown in a.2. However, the network manages to classify the 
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a.2 correctly which contains two similar shaped F beats. This 

requires further investigation and understanding of the 

network behaviour. The misclassification for b.4 is easy to 

understand. The last four beats, although annotated as normal 

beats, have different shapes as compared to the first two 

normal beats. Looking into the activation map, it is believed 

that some of the misclassifications can be improved via further 

parameter tuning, e.g. filter size in particular and larger 

network capacity. This will be the basis for future work.  

V. CONCLUSION AND FUTURE WORK 

As we are entering the cloud-enabled healthcare era, the 

development of automatic diagnosis/early warning services 

based on large volume but heterogeneous data sources has 

become the key to success.  

In this paper, we presented our work on using a branched deep 

learning model for inter-patient ECG classification problem. 

We discussed the model design rationale and justified out 

choices of each component. How the important parameters of 

the model are chosen is also explained. The experiments 

conducted show that this proposed model has achieved 

considerable performance improvement compared to the 

current state-of-the-art with good scalability. The experiment 

results also indicate that the model performance remains 

consistent across two heterogeneous data sources.  

To further extend this work, we will increase the depth of the 

network to test if the model can learn more generic features 

(features that are useful for any ECG dataset). We also plan to 

apply a similar approach to multi-label ECG classification 

problem. In this work, data segments are annotated using the 

maximum occurred annotations from the databases.  However, 

in reality, it is often to see records that contain multiple classes 

(as shown in Figure 8.a.1 and a.2). A model that is able to 

label all different types of classes accurately would 

undoubtedly help with the fast developing trend of cloud-

based healthcare services. 
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Figure 9: Visualisation of Layer Activations. The first row shows the input ECG signal. The second row shows layer activations of the last 

convolution layer before the GRU layer. The third row shows layer activations of the GRU layer. Each bin in the diagram represent the 

sum of activations for all filters/units that cover a specific local area in the original signal. Putting all them together, we are able to 

visualise the total activations from a layer for all different local areas in the input signal. In other words, a local area that receives more 

activations (high spikes in the figure) is considered more important by the network for the final classification. Note: As we have applied 

pooling operations in the model (input size gets reduced from 1800 to 28), the above activation map is re-constructed (from 28 back to 

1800) using un-pooling operations.  

 


