
[1] 
 

 

 

 

 

Hsp90 as a molecular  

target 

 

 

By 

Chinmay Munje 

 

 

A thesis submitted to the University of Central Lancashire 
in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

Month Year submitted 



[2] 
 

Declaration 

I declare that while registered as a candidate for this degree I have not been registered 

as a candidate for any other award from an academic institution.  The work present in 

this thesis, except where otherwise stated, is based on my own research and has not 

been submitted previously for any other award in this or any other University.   

 

Signed 

 

 

 

 

 

 

  



[3] 
 

Abstract 

Heat shock protein 90 (Hsp90), a highly conserved molecular chaperone, has been 

proposed to play a vital role in tumorigenesis. Hsp90 has two isoforms, of which 

Hsp90α is the major isoform of the Hsp90 complex and has an inducible expression 

profile. The molecular chaperone Hsp90α has been recognized in different cancers and 

it is implicated to play a role in cell cycle progression, apoptosis, regulates invasion, 

angiogenesis and metastasis. It is being recognized as a promising target in cancer 

treatment. Previous studies in our laboratory have demonstrated hsp90α expression in 

both primary glioma tissue and cell lines, but not in normal healthy brain tissues and 

cell lines. Enhanced chemosensitivity was observed upon specific inhibition of hsp90α 

expression by siRNA, suggesting that inhibiting hsp90α expression could possibly be a 

favourable therapeutic approach compared to conventional chemotherapies. In this 

novel study, Hsp90 was inhibited by either treatment with 17AAG or shRNA 

oligonucleotide targeting hsp90α (shhsp90α) in the U87-MG glioma cell line. The 

inhibition profile of Hsp90α was observed at the protein levels in control and treated 

cells by FACS analysis (quantitative) using a flow cytometer and Hsp90α ELISA kit. The 

results demonstrated a significant reduction of Hsp90α protein levels post treatment 

with 17AAG and shhsp90α. The activity of Hsp90α was assayed by quantifying the 

levels of Akt/PKB in the samples. Significant reductions (>50 %) of Akt/PKB levels were 

observed post hsp90α inhibition. Cell cycle analysis carried out reported S and G2 

phase arrest, post Hsp90 inhibition by either 17AAG or shhsp90α. Interestingly, it was 

reported that 17AAG shows a better silencing profile compared to shhsp90α.  

To analyse the downstream effects of Hsp90 inhibition and to determine the client 

proteins affected, proteomic analysis was performed. Proteomic analysis identified 

several proteins which were either upregulated/downregulated post Hsp90 inhibition. 

IPA analysis further identified “cancer” as the top network significantly transformed 

post Hsp90 inhibition. Upregulated proteins include Hsp70 family members, Hsp27 and 

gp96, thereby suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 

function post Hsp90 inhibition. Moreover, members of the glycolysis/glucogenesis 

pathway were also upregulated, demonstrating increased dependency on glycolysis for 
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energy supply by the treated glioma cells. Considering Hsp70 and its role in anti-

apoptosis, it was postulated that a combination therapy involving a multi-target 

approach could be carried out. Subsequently, inhibition of both Hsp90 and Hsp70 in 

U87-MG glioma cell line was carried out resulting in 60 % cell death along with S and 

G2 phase arrest. Thus, in the effective treatment of glioma, the inhibition of multiple 

targets needs to be taken into consideration. 

Conclusion: It can be thus concluded that, combination therapy involving silencing of 

Hsp90 and Hsp70 could be of possible significance in glioma therapy.  
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Molecular chaperone proteins are responsible for maintenance of the correct folding, 

stability and function of several proteins. Following environmental insults, the cells in 

most of the tissues increase the production of a small group of proteins, which are 

collectively labelled as “heat shock proteins” or stress proteins (Li and Srivastava, 

2004). 

These heat shock proteins were first reported by Ritossa in the 1960s (Ritossa, 1962). 

Since then, there have been speculations regarding their roles and their expression 

profiles. Previous studies have shown that these heat shock proteins (Hsp’s) are 

actually molecular chaperones (Whitesell and Lindquist, 2005). Under normal 

conditions, the Hsp’s assist in normal protein folding and protect the proteome from 

perils of misfolding and aggregation. Many Hsp’s form multichaperone complexes 

which operate as molecular chaperones binding several proteins, labelled as client 

proteins (Takayama et al., 2003). Chaperones regulate several aspects of the protein 

structure including: folding of proteins in the endoplasmic reticulum, mitochondrial 

and cytoplasmic transport of proteins, repair or degradation of proteins, control 

several regulatory proteins and the refolding of misfolded proteins (Neidle, 2007).  

Hsp’s are present in several cellular locations and each functions differently. The Hsp’s 

have been classified into families depending on their molecular weight (kDa) viz: 

Hsp90, Hsp70, Hsp60 and Hsp40 and Hsp27 (Li and Srivastava, 2004). 

Either in stress or during environmental insults, the expression of Hsp’s activates in 

tissues an adaptive response that enhances cell survival. However, in case of tumours, 

the increased chaperone expression is a reflection of efforts of malignant cells to 

maintain homeostasis (Takayama et al., 2003). Thus, Hsp’s allow tumour cells to 
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tolerate several inner alterations and moreover, help to tolerate mutations in 

important signalling molecules. This drives the cells towards oncogenesis. 

Consequently, Hsp’s can be aptly called biochemical buffers for the many genetic 

abrasions that are evident in most of the cancers (Sangster et al., 2004). 

The heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone present 

in eukaryotic cytosol and it has been proposed to play vital roles in tumorigenesis, 

maintenance of transformation and regulation of several key proteins involved in 

apoptosis, survival and growth pathways (Neckers, 2007). Hsp90 has been abundantly 

present both intracellularly and extracellularly in eukaryotic cells and has extensive 

influence in various cellular activities (Sreedhar et al., 2004; Richter and Buchner, 

2001). In normal cells, Hsp90 consist of 1-2 % of the total cellular protein content. 

However, in the incidence of cancer, the malignant cells produce a 2-3 fold increase in 

the level of Hsp90 (Wong and Houry, 2006). 

Hsp90 forms a multi-chaperone complex with various co-chaperones, in particular 

Hsp70, (Fig 1.1) and is involved in folding and maturation of several key proteins; some 

of which are involved in cancer progression (Kamal et al., 2003; Shervington et al., 

2008; Gupta, 1995). 

Several oncogenic proteins are dependent on Hsp90 since it plays a key role in the 

conformational maturation of proteins such as HER-2/ErbB2, Akt, Raf-1, BCR-ABL and 

mutated p53. Interstingly, most of the cancer cells are dependent on these oncogenic 

proteins (Kamal et al., 2003). 

The Hsp90 chaperone is a specialized chaperone as it targets several client proteins 

that are involved in various signal transduction pathways. Hsp90 substrates include 
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various transcription factors and protein kinases (Table 1.1). It is very distinct from 

other chaperones as it binds to substrate proteins which are in a near native state i.e. 

proteins that are at the last stage of folding. Hsp90 does not directly fold non-native 

proteins (Wong and Houry, 2006). 

 

Figure 1.1: Protein folding pathways involving Hsp90 and Hsp70 (Modified from Wegele et 
al., 2004). Protein folding pathways for nascent proteins involving Hsp90 and Hsp70 with the 
transfer of some of the proteins from Hsp70 to Hsp90. The proteins get actively folded by 
molecular chaperones Hsp90 and Hsp70, with Hsp70 acting as co-chaperone to Hsp90 by 
transferring near-native proteins to Hsp90 for correct folding. 
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Table 1.1:  Examples of Hsp90 client proteins (Adapted from Wegele et al., 2004; Goetz et al., 
2003).  

 

 

 

 

 

Proteins Client proteins 

1 Transcription factors and 

Polymerases 

Progesterone receptor 

 

Estrogen receptor 

  

Androgen receptor 

  

p53 mutant 

  

Hypoxia-inducible factor-1α 

   
  

Telomerase 

2 Signalling Proteins v-src, c-src 

  

c-Raf 

  

MEK 

  

Focal adhesion kinase (FAK) 

  

ErbB2 

  

Cdk4 

  

Epidermal growth factor receptor 

   
3 Kinases 3-Phosphoinositide-dependent kinase-1  

  

Akt  

  

Bcr-Abl  

  

Calmodulin-regulated eEF-2 kinase  

  

Casein kinase II  

  

Cdc2  

  

Cdk4  

  

Cdk6  

  

Cdk9  

  

c-Mos 

  

Her-2 
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1.  Transcription Factors and Polymerases: 

i. Mutated p53: p53 is a known tumour suppressor protein which acts 

within the nucleus to affect cell cycle arrest and apoptosis. In most of 

the cancers, this protein is absent or mutated. Most mutated forms of 

p53 require interaction with Hsp90 complex to retain activity of the 

mutated protein (Blagosklonny et al, 1996). 

ii. Steroid hormone receptors: Steroid hormone receptors are complexed 

with Hsp90 to maintain a conformation capable of binding hormones 

(Smith and Toft, 1993). 

iii. Hypoxia inducible factor-1α (HIF-1 α): HIF-1 α controls the genetic 

expression of several genes. The proteins of which play an important 

role in tumour growth. HIF-1 α is expressed as being bound to Hsp90 in 

several metastases and late stage tumours (Gradin et al., 1999). 

 

2. Signalling Proteins: 

i. Raf-1: Raf-1 is part of a conserved signal transduction pathway which 

transmits signals from tyrosine kinases in the cytosol and 

transmembrane, to mitogen activated protein kinases. Its association 

with Hsp90 complex and Hsp90N leads to the stabilization and 

inhibition of Raf-1’s proteasome dependent degradation (Schulte et al., 

1996). 

ii. v-src: Viral sarcoma protein (v-src) serves as a prototype of an oncogene 

family which is responsible to induce cellular transformation by non 
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regulated kinase activity. v-src is known to be complexed to Hsp90 

(Uehara et al., 1986). 

 

3.   Kinases: 

i. Her-2: Human Epidermal growth factor Receptor 2 (Her-2) is a receptor 

kinase that binds to Hsp90. It is overexpressed in several cancers 

including breast, prostrate, gastric and ovarian cancers (Veltri et al., 

1994). 

ii. Akt: Akt kinase plays a vital role in controlling pathways of proliferation 

and apoptosis. Akt has been implicated in cancer progression since it 

stimulates cell proliferation and suppresses apoptosis. In tumour cells 

the Akt activation is halted by ansamycin treatment. This is due to the 

occupancy of the Hsp90 pockets by ansamycin which results in the 

reduction of Akt half life and proteasomal degradation (Basso et al., 

2002; Basso et al., 2002). 

iii. BCR-ABL: The BCR-ABL fusion protein is an unregulated tyrosine kinase 

which is responsible for the chronic phase in chronic myelogenous 

leukaemia (Lugo et al., 1990). The chimeric BCR-ABL is present in the 

complex with Hsp90 (Nimmanapalli et al., 2001). 
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1.1 Hsp90 PROTEIN: 

The Hsp90 protein is a phosphorylated homodimer possessing two to three phosphate 

molecules covalently bonded to each monomer. It consists of three well defined 

domains, a highly conserved ATP binding domain at the N terminus (amino terminus), 

a middle domain that completes the ATPase site and which binds to several client 

proteins, and a C terminus (carboxyl terminus) dimerization domain. For the 

chaperoning activity of Hsp90, the binding and hydrolysis of ATP at this site is very 

important. Additionally, there is a second nucleotide binding site at the C terminus; 

however, it is not very well defined. (Richter and Buchner, 2006; Wong and Houry, 

2006; Goetz et al., 2003). 

Hsp90 interacts with various co-chaperones such as Hsp40, Hsp70 and several factors 

such as Hsp70/Hsp90 organizing protein (HOP) and prostaglandin E synthase 3 

(cytosolic) (p23). These co-chaperones regulate Hsp90 ATPase activity, assist in protein 

folding or function as a scaffold for Hsp90 complex (Wong and Houry, 2006).  

When ATP binds to the N terminal of Hsp90, it alters the conformational state and also 

affects the interactions with several client proteins and co-chaperones. During this 

ATPase cycle the three domains of Hsp90 move from an ATP-free open state to an ATP 

bound closed state (Fig 1.2). Several biochemical investigations have proved that, sets 

of conformational changes occur upon binding ATP, including the transient 

dimerization of N terminal domains and its association with the middle domain (Pearl 

and Prodromou, 2001). 
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Figure 1.2: The ATPase cycle of Hsp90 (Adapted from Richter and Buchner, 2006). 

The different stages of ATPase cycle of Hsp90 (a-d) wherein, a and b represents open 
conformation or inactive state whereas, c and d represents closed conformation or active 
state. The slow steps during the ATPase cycle are the conformational changes prior to ATP 
hydrolysis and are inhibited by Sti1 and/or Cdc37 and stimulated by Aha1. The co-chaperone 
p23/Sba1 binds to the active ATP complexed state and slows down ATP turnover.  

 

Previous studies in various tumour cell lines have suggested that Hsp90 could possibly 

be exclusively complexed with several co-chaperones in a state of high affinity for 

ATP/ADP. In normal tissues, Hsp90 could possibly exist in a latent, uncomplexed and 

low affinity state (Kamal et al., 2003). Thus, it is suggested that Hsp90 is present in 

equilibrium between a “latent” state with low chaperoning activity and an increased 

chaperoning activity “activated” state with the shift in equilibrium depending upon the 

level of stress (Fig 1.3). 
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Figure 1.3: Equilibrium between latent and activated state (Adapted from Chiosis and 
Neckers, 2006). 

The figure is a schematic representation of Hsp90 and its possible interactive partners 
which exists in equilibrium between the activated state and the latent state. The activated 
state is predominant in cancer cells while the latent state is predominant in normal cells. 
The activated state is regulated by the presence of several co-chaperones.  

 

1.2 Hsp90 ATPase ACTIVITY: 

As discussed earlier, hydrolysis of ATP is crucial for Hsp90 to function. Under normal 

conditions ATP binds in the N terminal pocket of Hsp90 by a weak bond. The ATPase 

activity is weak with ~ 0.3 ATP molecules hydrolyzed per minute at physiological 

temperature for yeast Hsp90. However, in humans it is detected in trace amounts with 

a Kcat of 0.089 ± 0.004 min-1 and a Km of 840 ± 60. It binds to the N terminal pocket in 

an unusually kinked conformation. The ribose unit and the adenosine ring are both 

buried deep in the binding pocket with the phosphate group pointing towards the 

surface, especially the γ phosphate (Wegele et al., 2004). 

Kinetic analysis has revealed that Hsp90 regions outside the ATP binding domain are 

important for the efficient hydrolysis. Thus, it can be assumed that once ATP is bound, 
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the N terminal domain interacts with other parts of the Hsp90 molecule.  Kinetic 

dissection of the ATPase mechanism has showed that the decisive state of the rate of 

hydrolysis is the slow conformational changes prior to hydrolysis and the rate is noted 

to be slow. These conformational changes help to lock in the ATP in the N terminal 

binding pocket and commit it to hydrolysis (Wegele et al., 2003). 

During the ATPase cycle, a weak dimerization site amidst the N terminal part of Hsp90 

becomes exposed. This leads to a transient dimerization of the N terminal domain. The 

hydrolysis of ATP leads to conformational changes in the protein, with two ATP 

molecules hydrolyzed, the N terminal domains causes’ one round of association-

dissociation. The dimeric nature of the Hsp90 is crucial not only for the hydrolyzing 

activity but also for the association of the N terminal domain through the ATPase cycle. 

This ensures maximum ATPase activity (Prodromou et al., 2000). 

1.3 Hsp90 SUPER-CHAPERONE: 

As mentioned previously, Hsp90 is required for the activity of several key regulators of 

apoptosis and through these associations the chaperone possibly leads to tumour cell 

survival. Survivin, a dual regulator of cell proliferation and cell death is overexpressed 

in most cancers. Survivin is known to be chaperoned by Hsp90 (Chiosis et al., 2004).  

Several client proteins such as Akt and Raf-1 are regulated by Hsp90 which in turn 

regulate several pathways leading to cancer. Additionally, Hsp90 binds to ribosome 

inactivating protein (RIP) and the kinase domain of inhibitor of nuclear factor kappa-B 

kinase (IKK) subunit α/β and thus, plays an anti-apoptotic role (Fig 1.4). Moreover, 

Hsp90 can suppress the tumour necrosis factor α (TNF- α) by preventing the cleavage 
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of BH3 interacting domain death agonist (Bid) which is a client protein involved in the 

apoptosis pathway (Chiosis et al., 2004). 

 

Figure 1.4: Hsp90 involved in apoptotic pathway (Adapted from Chiosis et al., 2004).  

Hsp90 regulates several proteins involved in both intrinsic and extrinsic apoptotic pathways.  

 

Additional to its mutation buffering and survival promoting roles, Hsp90 helps to 

maintain the transformed cells. A wide list of client proteins to Hsp90 has been 

discussed and most of these proteins play vital roles in cell cycle, growth and apoptosis 

(Fig 1.5). Inhibition of Hsp90 leads to the degradation of these client proteins via the 

ubiquitin proteasome pathway. This in succession leads to growth arrest and apoptosis 

in cancer cells (Neckers, 2007). 
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Figure 1.5: Hsp90 function (As modified from Neckers, 2007).  

Implications of Hsp90 function in each of the hallmarks of cancer.  

 

1.4 Hsp90 ISOFORMS: 

There are two major isoforms of Hsp90, namely Hsp90α and Hsp90β. Although, 

hsp90α and hsp90β have dissimilar nucleotide sequences (Fig 1.6), their protein 

products are similar with a sequence homology of 85%. Hsp90α is the major isoform 

and is induced whereas, Hsp90β is the minor isoform and is constitutively expressed. 

Studies have shown that Hsp90 isoforms α and β occurred by gene duplication roughly 

500 million years ago (Gupta, 1995). There is relatively high conservation observed 
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between these two isoforms. There is another isoform present, namely Hsp90N. 

Furthermore, Hsp90 analogues include heat shock protein 90kDa beta member 1 

(Grp94/gp96) in the endoplasmic reticulum and Hsp75/TRAP1 in the mitochondrial 

matrix (Neidle, 2007). The hsp90α and hsp90β have been mapped onto chromosome 

14q 32-33 and 12q24.2-q24.3, respectively. The nucleotide sequences of both genes 

are different in the 5’ and 3’ non-coding regions, the introns and the regulatory 5’ 

flanking sequences. All the Hsp90 isoforms have five highly conserved regions, three of 

which are in the N terminal domain and the other two are in the middle domain. These 

conserved sequences are referred to as “signature sequence”. (Sreedhar et al., 2004; 

Csermely et al., 1998; Shervington et al., 2008). 

 

Figure 1.6: The intron/exon structure of Hsp90 isoforms. (Adapted from www.ensembl.org) 

Hsp90α and Hsp90β have similar protein products however, their nucleotide sequences are 
dissimilar.  

 

Hsp90 is mainly a constitutive dimer (αα or ββ), however, monomers (α or β) or even 

heterodimers (αβ) exists (Sreedhar et al., 2004). This dimerization potential is due to 

the C terminal of the Hsp90. Additionally, there are regions within the amino acid 

http://www.ensembl.org/
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sequence of α and β isoform that differ; suggesting isoform specific functions 

(Whitesell and Lindquist, 2005; Csermely et al., 1998). 

Table 1.2: Differences in the function and expression of Hsp90 isoforms               
(Adapted from Sreedhar et al., 2004). 

Isoform Function Expression 

Status 

Hsp90α 

 

 

Hsp90β 

Growth promotion 

Cell cycle regulation 

Stress induced cytoprotection 

Early embryonic development 

Germ cell maturation 

Signal transduction 

Cellular transformation 

Induced 

 

 

Constitutive 

 

1.5 Hsp90, THE CANCER CHAPERONE: 

The structure of a protein determines its function and it is essential for proteins to 

maintain their specific structure in order to carry out their role(s) in the cell. These 

functions are achieved by molecular chaperones since they facilitate protein folding. 

The molecular chaperones binds to proteins and protects and control their three 

dimensional structure (Prodromou et al., 2000). As discussed earlier, Hsp90 plays a key 

role in the conformational maturation of various oncogenic proteins such as HER-

2/ErbB2, Akt, Raf-1, Bcr-Abl and mutated p53. Hsp90 interacts with such client 

proteins to form a multichaperone complex (Kamal et al., 2003). This molecular 

chaperone is normally over expressed in breast tumours, lung cancers, leukaemias, 

and Hodgkin’s disease (Ghobrial et al., 2005). It is also over expressed in B cell of non-
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Hodgkin lymphomas in comparison with normal B cells. Poor prognosis of breast 

cancer is usually associated with overexpression of Hsp90 and also Hsp70 (Yano et al., 

1996). Moreover, Hsp90 transcription is directly activated by the myelocytomatosis 

cellular proto-oncogene    (c-myc) in several tumour models. It has been depicted that 

Hsp90 has a role in facilitating the emergence of polymorphisms and mutations 

supporting the evolution of resistant clones (Neckers and Lee, 2003; Kamal et al., 2003; 

Nimmanapalli, et al., 2001).  

Furthermore, Hsp70 and Hsp90 have been identified as key regulators in the host’s 

immune system. The Hsp90 chaperoned proteins were cross presented upon major 

histocompatibility complex (MHC) class I molecules and an antigen specific cytotoxic T 

cell (CD8+ T) response was initiated in vitro in tumour mouse models. Such a cross 

presentation showed the transfer of exogenous peptides into the MHC class I pathway 

via an endosomal pathway and Hsp90 is responsible for cross presentation of tumour 

derived antigen peptides (Schmitt et al., 2007). 

1.6 GLIOMA and Hsp90: 

Glioma is a group of primary brain tumours of the cerebral hemisphere characterized 

into four types: astrocytoma, glioblastoma multiforme, oligodendroglioma and 

ependymomas. The grading of these malignant brain tumours is based on the WHO 

(World Health Organisation) classification system based on specific histological 

markers (Kleihues and Sobin, 2000). Gliomas originating from astrocytes, 

oligodendroglial and ependymal cells account for more than 70 % of all brain tumours 

while glioblastoma is the most frequent and malignant with a 65 % incidence rate 

(Ohgaki, 2005). 

http://en.wikipedia.org/wiki/Histocompatibility
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Astrocytoma is an important subtype of the glial tumours originating from the 

astrocytes. It is the most frequent form between the age of 40 and 60 years with males 

being more affected than females (Idowu et al., 2007). The survival period for 

astrocytoma is about 3 to 4 years. Diagnosis of astrocytoma can be carried out by 

obtaining tissue or can be inferred based on Magnetic Resonance Imaging (MRI). 

However, differentiation between grade ΙΙ and grade ΙΙΙ astrocytoma on the basis of 

these tests is difficult. They account for 10.3 % of all primary brain and central nervous 

system (CNS) tumours in the UK (http://www.cancerresearchuk.org/). Low grade 

astrocytomas usually grow slowly and are localised whereas high grade astrocytoma 

grow more rapidly and metastasize.  

Glioblastoma multiforme (GBM) is a highly malignant and most frequently occurring 

lethal form of brain cancer (Ohgaki, 2005). It rarely metastasizes or invades into brain 

tissue and is resistant to current therapies (Rich et al., 2005). GBM occurs in patients 

with a mean age of 54 years with males having higher incident rates similar to 

astrocytoma. Less than 10 % of the cases are found in children. The survival period is 

approximately 9-12 months (Carter et al., 2008). GBM is classified into two distinct 

subtypes that are histologically identical but develop through different genetic 

pathways, thus being two separate entities (Ohgaki, 2005; Kleihues and Sobin, 2000; 

Rich et al., 2005). Hence, there is a need for a genetic marker to distinguish between 

these subtypes. 

Oligodendroglioma are tumours of oligodendrocytes accounting for approximately    

10 % of primary intracranial tumours. They are most frequent amongst patients of age 

30 to 50 years of age. They usually show slow growth but sometimes may show 

http://www.cancerresearchuk.org/
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malignant changes that resemble glioblastoma multiforme. Incidence is more in males 

than females (Mork et al., 1985). Median survival period is 5 years.  

Oligodendroglioma is of several types such as: 

 Low grade oligodendroglioma 

 Anaplastic oligodendroglioma 

 Mixed oligodendroglioma – astrocytoma also termed as mixed glioma  

The pathogenesis of these glial tumours is still unknown (Engelhard et al., 2002). 

The current treatments available are surgery, radiotherapy and chemotherapy using 

drugs such as temozolomide (TMZ). In spite of recent advances, the prognosis and 

survival rates of patients with glioma are very poor 

(http://www.cancerresearchuk.org/). This calls for alternative targets to tackle glioma 

therapy.  

1.6.1 Hsp90 IN OUR LABORATORY: 

Previous studies within our laboratory have shown that hsp90α is expressed in both 

glioma tissue and in specific cell lines but was found to be absent in normal brain 

tissue and cell lines, indicating a possible role in sensitizing glioma cells to therapy by 

using anti-Hsp90α drugs. In the study, seven glioblastoma biopsy samples and a 

recurrent anaplastic ependymoma, together with three glioma cell lines, 1321N1,   

U87-MG and GOS-3, and controls including two normal brain tissues were analysed for 

hsp90α expression profiles (Shervington et al., 2008). Recent findings have shown that 

enhanced chemosensitivity is attained upon specific inhibition of hsp90α expression by 

siRNA, suggesting that inhibiting hsp90α expression by siRNA could possibly be a 

http://www.cancerresearchuk.org/
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favourable therapeutic approach compared to conventional chemotherapies as it is 

target specific and has reduced toxicity. Furthermore, a combination treatment of 

siRNA followed by TMZ (200-400 µM) after 48 hours was significantly more effective, 

suggesting it as a possible effective form of therapy (Cruickshanks et al., 2010). Given 

its functions as a molecular chaperone and its expression in gliomas, hsp90α may 

represent a promising target for the development of novel therapeutic strategies. 

1.7 Hsp90 INHIBITORS: 

Hsp90 is one of the most abundant molecular chaperones and it is expressed in several 

cancers, including glioma. It regulates several client proteins, some of which are even 

involved in cancer progression. Hence, the importance of blocking Hsp90 is being 

presently investigated.  

RNAi system involves the use of either small interfering RNA’s (siRNA’s) or short 

hairpin RNA (shRNA) [Further discussion regarding RNAi can be found in Chapter 3].  

Another approach to silence Hsp90 is by the application of Benzoquinone ansamycins. 

Benzoquinone ansamycins are antibiotics, characterized by linkage of quinone moiety 

to a planar macrocyclic ansa bridge structure (Fig 1.7). 
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Figure 1.7: Chemical structures of Hsp90 inhibitors (Adapted from Messaoudi et al., 2008). 

 The chemical structure of geldanamycin (GA), 17-allylamino-17-demethoxygeldanamycin     
(17-AAG), 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) and Radicicol 
(RA). 

 

Glendanamycin (GA) is the first prototype of the class of Bezoquinone ansamycins. It 

was purified from the broth of Streptomyces hygroscopicus (Solit and Rosen, 2006). 

Geldanamycin and herbimycin were initially identified as agents that revert 

transformation by v-src and demonstrate potent anti-tumour activity against human 

cancer cells and xenografts supposedly by directly inhibiting protein kinases. (Goetz et 

al., 2003).  

The Hsp90 ATP/ADP pocket is hydrophobic and nucleotide binding to this pocket leads 

to conformational changes which bring about several characteristic changes in the 

client proteins. It can either form an assembly which protects and stabilizes client 

proteins or can lead towards their degradation. Thus, nucleotide binding determines 

the half life of the client proteins (Goetz et al., 2003). Consequently, it was found that 

GA has no inhibitory effect on protein kinases, however, it reduces their active levels in 

the cells and upholds their degradation. Moreover, the direct target for GA is Hsp90, as 

it binds onto the N terminal domain wherein ATP usually binds, with the affinity of GA 
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for Hsp90 being about 500 fold higher than that of ATP (KD of 1.2) (Wegele et al., 

2004).  

Radicicol or monorden is an even more competitive inhibitor of ATP with a binding 

affinity of 19 nM. Radicicol is a fungal macrolactone which also binds to the N terminal 

domain (Messaoudi et al., 2008).  

Recent advances have led to synthesis and evaluation of 17AAG, a glendamycin 

analogue with an allyl amino group instead of the methoxy group in the 17 position 

(Fig 1.7). Preclinical studies have demonstrated that 17AAG works in a similar manner 

to that of glendanamycin but with a radically improved toxicity profile. 17AAG is 

currently in phase I trials as a single agent (Goetz et al., 2003; Neckers, 2002).  

Several small molecule inhibitors have been developed over the recent inhibiting 

Hsp90 function (Table 1.3 and Fig. 1.8). 
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Table 1.3:  Hsp90 binding drugs (Adapted from Whitesell and Lindquist, 2005). 

Binding Sites Chemical Class Selected Examples 

N terminal ATP-binding 

pocket 

Benzoquinone 

ansamycin 

GA, 17AAG, 17DMAG 

N terminal ATP-binding 

pocket 

Macrolide Radicicol and related 

oxime derivative. 

N terminal ATP-binding 

pocket 

Purine Scaffold pU24FC1 

 

N terminal ATP-binding 

pocket 

Pyrazole CCT018159 

N terminal ATP-binding 

pocket 

Hybrid Randamycin, GA 

dimer, GA 

testosterone, GA 

oestrogen 

C terminus Novioslycoumarin Novobiocin, 

coumermycin, cisplatin 

 

 

 

Figure 1.8: Fixation sites of several inhibitors in case of Hsp90 (Adapted from Didelot et al., 
2007). 

Schematic representation of Hsp90 protein and the various binding sites for several drugs. 

 

These Hsp90 inhibitors were used successfully in several cancer studies (Table 1.4). 
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A combination of the inhibitors along with cytotoxic, radiation and antiangiogenic 

agents can be used (Didelot et al., 2007). 

Table 1.4: Use of Hsp90 Inhibitors in cancers (Adapted from Neckers, 2002). 

 

Study of Hsp90 biology has been broadened by the use of Hsp90 inhibitors. These 

Hsp90 inhibitors induce degradation of Hsp90 client proteins, many of which play a 

central role in tumour initiation and progression.  

 

1.8 SUMMARY: 

Because of Hsp90α inducible expression profile and its presence in several cancers to 

include glioma, it has the potential as an alternative therapeutic target and the 

feasibility of targeting Hsp90 for cancer therapy is well supported:  

i. To begin with, Hsp90 is involved in the stabilization and maturation of a wide 

range of oncogenic client proteins vital for oncogenesis (Whitesell and 

Lindquist, 2005; Kamal et al., 2004; Powers and Workman, 2007), resulting in 

cancer cells predominantly dependent on Hsp90 function (Chiosis and Neckers, 

2006). 

Hsp90 inhibitors used to modify the response to standard chemotherapeutic agents 

 Used with taxol or doxorubicin in ErB2 or Akt over-expressing tumours 

(breast, ovarian, prostate and lung cancer) 

 Used with Gleevec in Bcr-Abl positive leukemias 
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ii. Furthermore, given the relatively harsh environmental conditions that exist in 

tumours such as: hypoxia, low pH and poor nutrition, could possibly destabilize 

proteins, thus rendering them even more dependent upon the activity of Hsp90 

(Solit and Chiosis, 2008). Contrastingly, Hsp90 comprises of 4-6% of total 

proteins in tumour cells as opposed to 1-2% in normal cells. This itself shows 

dependence of tumour cells on the Hsp90 protein (Chiosis and Neckers, 2006). 

iii. A further explanation of the high tumour selectivity of Hsp90 inhibitors comes 

from the fact that, in tumours Hsp90 primarily exists as a multi-chaperone 

complex with a very high affinity for both ATP and specific drugs, whilst in 

normal cells most of the Hsp90 present is in the latent/uncomplexed state 

(Chiosis and Neckers, 2006). Other reports have shown that Hsp90 isolated 

from tumour cells has approximately 100 fold greater binding affinity for         

17-AAG than Hsp90 derived from normal cells (Kamal et al., 2003). 

iv. A number of Hsp90 inhibitors such as 17-AAG, 17-DMAG, radicicol and purine 

scaffold inhibitors have shown tumour specific accumulation (Chiosis and 

Neckers, 2006). This selectivity could possibly be attributed to the properties of 

Hsp90 itself rather than the structural and/or physicochemical properties of a 

specific class of compounds. Though the mechanism of such tumour selectivity 

is not yet fully understood, Hsp90 has been validated as a potential target in 

cancer therapy (Solit and Chiosis, 2008). 

v. Finally, preclinical and clinical trials of a plethora of Hsp90 inhibitors are 

underway with some already showing promising results as a single agent 

and/or in combination with chemotherapy (Solit and Chiosis, 2008). 
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1.9 RESEARCH QUESTION: 

 Is it possible to take either a Molecular approach (shRNA) or Chemical 

approach (17AAG) in inhibiting Hsp90? 

 Which client proteins are affected downstream during these approaches?  

1.10 AIMS AND OBJECTIVES: 

Main Aim 

Hsp90α has been identified as a unique and a potential target in glioma therapy by 

previous findings within our laboratory. The main aim of the present research was to 

target Hsp90α using molecular and proteomic approches. 

Specific Aim 

1. To answer the research question  

2. To develop the technique of tissue culture using U87-MG cells and to use the 

cells for further studies. 

3. To treat cells with shRNA targeting hsp90α and 17AAG. 

4. To undertake proteomic studies (Applied Biomics, U.S.A) and a series of 

supplementary experiments.  

5. Cell cycle was performed upon silenced cells to study the effects of silencing. 

6. To investigate the effect of both 17AAG and KNK437 on cell viability in U87-MG 

cell lines. 

All the experiments involved an untreated cell sample as control.  

The novelty of the research involved looking into the involvement of Hsp90α in glioma 

and to design a pathway which could possibly bridge the gap in glioma studies. 
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Additionally, the study compared the molecular approach with chemical approaches of 

treating glioma.  
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MATERIALS AND METHODS 
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MATERIALS As listed in the relavant sections of Methods. 

METHODS 

2.1 CELL CULTURE: 

2.1.1 Cell Lines: 

Three glioma cell lines were primarily used, namely grade I astrocytoma, which 

expressed a mutant p53 (1321N1), grade II/III astrocytoma/ oligodendroglioma     

(GOS-3) and grade IV glioblastoma (U87-MG). 

The glioma cell lines purchased from the European Collection of Cell Cultures (ECACC) 

and the American Type Culture Collection (ATCC) were of human origin with no 

evidence of the presence of infectious viruses or toxic products. ECACC stated that 

they should be handled as recommend by the Advisory Committee on Dangerous 

Pathogens (ACDP) for Category 2 containment.  

All the cell lines were received as frozen ampoules in 1 ml plastic cryotubes which 

contained the cells present in a freezing medium which was an appropriate culture 

medium supplemented with 10 % Foetal bovine serum (FBS), 2 mM L-glutamine and  

10 % (v/v) Dimethylsulphoxide (DMSO).  

2.1.2 Media and Reagents: 

A complete medium for cell growth was prepared in sterile conditions for each cell 

line. The mediums were prepared according to ECACC/ATCC recommendations by the 

addition of specific supplements.  
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Table 2.1: Media and supplements used in cell culture in this study. 

 

Media were supplied in 500 ml aliquots and prepared for each cell line based on the 

ECACC/ATCC recommendations. In a 500 ml bottle of medium, 50 ml of FBS and 5 ml  

L-glutamine (200 mM) were aseptically added to achieve 10 % FBS and 2 mM                         

L-glutamine, respectively. Each medium was mixed and labelled with the date of 

preparation. This was stored at 4 ˚C for 2-4 weeks.  

To calculate the volumes of supplements added to the medium the following formula 

was used;  

Media Abbreviations Concentrations Addition 

supplements 

Dulbecco's 

Modified 

Eagle's 

Medium 

 

DMEM 

25 mM Hepes 

1.0 g/l glucose 1.0 mM 

sodium bicarbonate 

0.011 g/l phenol red 

10 % FBS 

2 mM L-glutamine 

Eagle's 

Minimum 

Essential 

Medium 

 

EMEM 

2.2 g/l sodium 

bicarbonate 

1 g/l glucose 

Earle’s salt 

0.0053 g/l phenol red 

10 % FBS 

2 mM L-glutamine 

1% Non essential amino 

acids 
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v=  b x c 

                      a 

  

where,   a = stock concentration  b= required final concentration  

c= final reaction volume v= required volume  

This formula has been used in all the calculations to resolve the volume and 

concentration of the reagents and chemicals used in this study. 
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Table 2.2: Reagents and chemicals used in this study for cell culture in this study.  

 

Reagents 

 

Suppliers 

 

Components 

 

Foetal bovine serum 

 

Gibco BRL,UK 

 

Heat inactivated foetal bovine serum 

 

Non essential amino acid 

 

Sigma, UK 

 

100 x Non essential amino acids 

 

L-glutamine 

 

Sigma, UK 

 

200 mM L-glutamine 

 

Phosphatase buffer saline 0.10 M 

 

Sigma, UK 

 

8 g/l Sodium chloride 

0.2 g/l Potassium chloride 

 

DMSO 

 

Sigma, UK 

 

Dimethyl sulfoxide 99.5 % 

 

Trypan blue (0.4%) 

 

Sigma, UK 

0.81 % Sodium chloride 

0.06 % Potassium phosphate dibasic 
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2.1.3 Resuscitation of frozen cells: 

Each medium was pre-warmed in a water bath at 37 ˚C before the frozen ampoules 

(containing the cells) were thawed. The following protocol was used as suggested by 

ECACC/ATCC: 

1. Cells were thawed at 37 ˚C in a water bath for 1-2 min. 

2. Cells were re-suspended into 2 ml medium in a centrifuge tube and an aliquot 

of 1 ml was added into two 25 cm2 flasks, labelled with the name of the cell 

line, passage number and date.  

3. Appropriate medium (5 ml) was added into each flask and then mixed 

manually by rocking the flask backward and forward.  

4. Cells were incubated at 37 ˚C with 5 % CO2 in filtered air. 

 

2.1.4 Subculture and Cell Library Maintenance: 

The cells were observed under a light microscope following overnight incubation. 

When a mono-layer growth of 70-80 % confluence was obtained the cells were 

scraped and subcultured as follows: 

1. The culture medium was removed and the cells were washed with                        

1 x phosphate buffer saline (PBS) pH 7.4 to remove any remaining culture 

medium.  

2. PBS (2-3 ml) was then added to the flask and the flask was scraped to remove 

any cells attached on the walls.  
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3. To ensure that all the cells were detached and floating, they were examined 

using a phase contrast microscope. The cells were then re-suspended in 2-3 ml 

of serum containing medium. 

4. A 20 μl suspension of the cells was collected in an eppendorf tube for cell 

counting and the remaining suspension was centrifuged at 100 xg for 5 min. 

Approximately 1-2 x 106 cells were re-suspended in a cell freezing medium 

(complete culture medium with 10 % DMSO) in 1 ml cryoprotective ampoules, 

labelled with cell line name, passage number and date. 

5. The ampoules were placed into a Mr Frosty passive freezer (Nalgene, UK) filled 

with isopropanol and stored at -80 ˚C overnight.  

6. Following overnight storage the ampoules were then transferred into liquid 

nitrogen.  

7. Cell information was kept in the data entry log book, specifying the position of 

storage in liquid nitrogen to ensure easy traceability at a later date for further 

use.  

Subculture: 

1. To maintain growth, the remaining cells were subcultured (approximately    

2 x104 cells/cm2) into a 75 cm2 flask. 

2. The flask was labelled with the cell line, passage number and date and 

incubated under standard culture conditions. 

3. Following overnight incubation, the cells were checked for a sub confluent 

growth. When this was achieved, the cells were scraped and subcultured. 
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4. Cells (1 x 106) were frozen for stock maintenance as explained earlier, whilst 

2  106 cells were frozen for mRNA isolation. 

5. These cells were stored as pellets at -80 ˚C without freezing medium. For 

slow growing cells, the medium was changed after every 48 hours to 

maintain sufficient nutrients for the cells. 

 

2.1.5 Cell Quantification: 

The 20 μl aliquot of cells was diluted by adding Tryphan Blue to identify the 

number of live (glowing cells) and dead cells (stained blue). A haemocytometer was 

prepared by attaching a cover slip using applied pressure to produce Newton’s 

refraction rings (Fig 2.1). Both sides of the chamber were filled with the stained cell 

suspension and the cells were counted by the use of a light microscope using 20 x 

magnification. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Loading the haemocytometer and the middle square which is used for cell 

counting. (http://www.uvm.edu/~wschaeff/BasicCulture1.html) 

http://www.uvm.edu/~wschaeff/BasicCulture1.html
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2.2 mRNA ISOLATION: 

Messenger RNA (mRNA) was isolated using the mRNA isolation kit (Roche-Diagnostics, 

Germany). This kit used a straight forward and efficient procedure for isolating mRNA. 

This method helped to directly isolate mRNA without preparing total RNA. It was a safe 

method since no aggressive organic reagents were used and the mRNA isolated from 

this kit was of highest purity. [Roche Applied Science (2009) mRNA isolation kit, Roche 

Diagnostics-Germany] 

The basis of the kit was that, the (A)+ tail of mRNA hybridized to a biotin-labelled 

oligo(dT)20 probe. Streptavidin-coated magnetic particles were then used to capture 

the biotinylated hybrids. A magnetic separator was then used to capture the magnetic 

particles. The fluid was removed by washing with PBS buffer and finally the mRNA was 

eluted from the particles by incubating with redistilled water. 

The mRNA was then isolated from 2 x 106 cells following the manufacturer’s protocol 

as shown in the schematic diagram (Fig 2.2). Table 2.3 showed the volumes of all 

reagents and buffers used in this study. 

 

 

 

 

 

 



[58] 
 

 

 

Figure 2.2: mRNA isolation using mRNA isolation kit (Adapted from Roche Diagnostics, UK). 

The (A)+ tail of mRNA isolated from the cells hybridizes with a biotin-labelled oligo(dT)20 probe, 

which was then captured by streptavidin-coated magnetic particles. A magnetic separator was 

then used to capture the magnetic particles. The fluid was removed by washing with PBS 

buffer and finally the mRNA was eluted from the particles by incubating with redistilled water. 
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Table 2.3: Volume of reagents and buffer (This table is a modified form adapted from mRNA 

Isolation Kit catalogue by Roche Applied Science). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mRNA isolation was carried out following the manufacturers protocol. In this study      

about 2 x 106 cells were used to isolate mRNA following the recommended protocol 

found in Table 2.4. 

 

 

Number of cells 2 x 106 

Volume of lysis buffer (bottle 1): cells/tissue 500 µl 

Volume of streptavidin magnetic particles (cup 2) 50 µl                                                             

(0.5 mg) 

Volume of lysis buffer (bottle 1) for preparation of 

streptavidin magnetic particles 

70 µl 

Volume oligo(dT)20 probe, biotin-labelled (cup 3) 0.5 µl 

Volume of washing buffer (bottle 4) 3 x 200 µl 

Volume of redistilled water (bottle 5) 10 µl 
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Table 2.4: Materials and reagents adjusted for the number of cells for mRNA isolation.               

The shaded column is the number of cells and volumes of reagents used for this 

investigation. 

 

 

 

Estimated number 

of cells 

 

1 x 108 

 

2 x 107 

 

1 x 107 

 

2 x 106 

 

2 x 105 

Volume of lysis 

buffer: cells 

15 ml 3 ml 1.5 ml 0.5 ml 0.1 ml 

Volume of 

streptavidin 

magnetic particles 

1.5 ml 300 µl 150 µl 50 µl 50 µl 

Volume of lysis 

buffer: streptavidin 

magnetic particle 

preparation 

2.5 ml 500 µl 250 µl 70 µl 70 µl 

Volume of Biotin-

labelled oligo(dT)20 

probe 

15 µl 3 µl 1.5 µl 0.5 µl 0.5 µl 

Volume of washing 

buffer 

3 x 2.5 ml 3 x 500 µl 3 x 250 µl 3 x 200 µl 3 x 200 µl 

Volume of 

molecular biology-

grade H2O 

250 µl 50 µl 25 µl 10 µl 5 µl 
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1. Cells were washed three times using ice cold PBS to remove excess medium. 

2. Lysis buffer (500 µl) was added and the cells were mechanically sheared six times 

using 21G needle. 

3. Streptavidin magnetic particles were prepared by thoroughly mixing and 

aliquoting 50 µl of streptavidin magnetic particles into a sterile Eppendorf tube. 

The streptavidin magnetic particles were separated from the storage buffer using 

the magnetic separator. Storage buffer was removed and discarded. 

4. The magnetic particles were washed once by emulsifying in 75 μl of lysis buffer 

and separated to remove the buffer. 

5. An aliquot 0.5 μl biotin labelled oligo (dT)20 was added to the lysate, mixed and 

transferred into the prepared magnetic particles. It was then mixed and 

incubated at 37 ˚C for 5 min. 

6. Following the incubation the lysate was separated from the magnetic particles 

using the magnetic separator and the lysate was then discarded.  

7. Magnetic particles were washed three times with a washing buffer provided 

quantitatively (3 x 200 μl). 

8. mRNA was eluted from the magnetic particles after the addition of 10 μl 

redistilled water and incubated at 65 ˚C for 2 min. 

9. mRNA was separated from the magnetic beads using the magnetic separator and 

collected and stored at -20 ˚C in RNAse free eppendorf tubes ready for 

quantification and analysis. The used magnetic particles were emulsified in the 

storage buffer at a concentration of 10 mg/ml for further use and stored               

at 4 ˚C. 
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2.3 QUANTIFICATION OF NUCLEIC ACID BY SPECTROPHOTOMETER: 

Spectrophotometry was used as a standard, fast and efficient method for determining 

quantity and the purity of mRNA (Thermospectronics, England). Optical density was 

applied at wavelengths of 260 nm and 280 nm to quantify isolated mRNA using gamma 

thermo Helios spectrophotometer (Thermospectronics, England). TAE (Tris Acetate 

Ethylenediaminetetraacetic acid) buffer was used as blank. mRNA (2 µl) was combined 

with 500 µl of 1X TAE buffer (400 mM Tris, 0.01 M EDTA; pH 8.3). The diluted sample 

was then measured using the spectrophotometer and the concentration determined 

at a wavelength of 260 nm. The standard formula used was: absorbance of one optical 

density (OD) = 50 μg/ml for dsDNA and 40 μg/ml for ssRNA. The purity of isolated 

nucleic acid was determined using the ratio of 260 nm to 280 nm. The presence of 

pure single-stranded (ss) RNA was indicated by a 1.8 – 2.0 ratio. 

The concentrations of the isolated mRNA samples were calculated as follows: 

A260 reading × 250 (dilution factor) × 40 (ssRNA) = Concentration (µg/ml) 

* Dilution factor = total volume/ aliquot measured. 

Total volume = volume added to cuvette = 500 µl 

Aliquot measured = volume of sample added = 2µl. Therefore, the dilution factor = 250                  

2.4 ANALYSIS OF NUCLEIC ACID ( RNA and DNA) BY AGAROSE GEL ELECTROPHORESIS: 

Alkaline and neutral agarose gels were used to analyse isolated mRNA and reverse 

transcription polymerase chain reaction (RT-PCR) amplions prepared at a 

concentration of 2% using 0.6 – 2 g agarose powder to obtain 30 - 100 ml of gel. 
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2.4.1 Alkaline (denatured) agarose gel electrophoresis for mRNA analysis: 

1. A gel of 2 % concentration was prepared by dissolving 0.6 g of agarose powder 

in 30 ml distilled water and heating it in a domestic microwave at maximum 

power (100 %) for 1-2 min. until a transparent molten solution was formed.   

2. The solution was cooled to 50 ˚C before adding 150 μl of sodium hydroxide 

(NaOH) and 60 μl ethylenediaminetetraacetic acid (EDTA) (from the stock 10 N 

NaOH and 0.5 M EDTA) to give 50 mM NaOH and 1 mM EDTA final 

concentrations.  

3. The solution was poured into the gel electrophoresis tray. A comb was placed 

and the gel was allowed to set for 30-45 min. 

4. The running buffer with a final concentration of 50 nM NaOH and 1 mM EDTA 

was prepared by adding 2.5 ml and 1 ml of 10 N NaOH and 0.5 M EDTA in one 

litre of distilled water. This was mixed and poured in the gel tank containing 

solidified gel. 

5. Samples were introduced in loading dye using 1:4 dilutions. 

6. The comb was removed from the gel and the samples were loaded. 

7.  The gel was electrophoresed at 60 volts (V) for approximately 1 hour before 

being stained in fresh 0.4 µg/ml ethidium bromide for approximately 10 min. 

and then destained in distilled H2O. 

8. GENE GENIUS bioimaging system (Syngene, UK), a fully automated gel 

documentation and analysis system was then used to analyse the gel. 
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2.4.2 Agarose gel electrophoresis for PCR amplicons: 

1. TAE buffer was diluted from a 10 x stock to make 1 x concentration by diluting 

1:10 with distilled water. 

2. 2 % concentration was made by dissolving 2 g agarose powder in 100 ml 1 x 

TAE 

3. A domestic microwave was used for dissolving the agarose at maximum power 

for 3-4 min.  

4. The solution was cooled to 50 ˚C and poured into the gel electrophoresis tray 

and the gel was allowed to set with the comb in place. After gel solidification,    

1 x TAE running buffer was transferred to the tank.   

5. The comb was removed and samples were loaded containing loading dye at a 

1: 4 dilution.  

6. A molecular marker of 100 bp was also loaded in order to identify the size of 

PCR product. The gel electrophoresis was carried out at 60 V for 2 hours.  

7. The gel was analysed using GENE GENIUS bioimaging system (Syngene, UK). 
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Table 2.5: Materials and reagents used for agarose gel electrophoresis in this study. 

 

 

 

Reagents 

 

Suppliers 

 

Preparation 

 

Working 

concentration 

Ultrapure agarose Gibco BRL, 

UK 

0.6 - 2 g Agarose 

30 - 100 ml 1 x TBE. Solubilized by 

boiling in a microwave for 3-4 min. 

2 % 

weight/volume 

10 x TBE (Ultrapure 

10 x Tris borate EDTA 

electrophoresis 

buffer) 

Sigma, UK 1 M Trizma base 

0.9 M 1 x Boric acid 

0.01 M EDTA 

Diluted to 1 x concentration with 

distilled water 

1 x 

Alkaline buffer BDH AnalaR, 

UK 

10 N  Sodium Hydroxide 

0.5 M Ethylenediaminetetra acetic acid 

1 x 

 

Gel loading dye Sigma, UK 0.25 % w/v Bromophenol blue 

0.25 % w/v Xylene cyanole 

40 % w/v Sucrose 

Supplied ready for use 4x 

concentration 

1:4 

sample:dye 

 

Ethidium bromide 

10 mg/ tablet 

Amresco, UK 10 mg Ethidium bromide 

10 ml Distilled water. Diluted to 0.5 

μg/ml  with distilled water 

1:20 

100 base pair (bp) 

molecular marker 

Sigma, UK  

100 μg supplied ready for use 

1 μg/ml 
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2.4.3 Agarose gel documentation and analysis: 

The Syngene gel analyser or Gene Genius (Syngene, Cambridge UK) was previously 

described as a comprehensive and fully automated system for all UV and white light 

fluorescence applications. The system along with the software Genesnap (Syngene, 

Cambridge UK) was used for all types of gel media, such as DNA, mRNA and PCR 

products stained with ethidium bromide. The bands presenting the DNA, mRNAs were 

observed, and molecular markers used to calculate the sizes were all documented in 

the system. 

Staining of agarose gel with ethidium bromide (Sigma, UK) was needed so as to analyse 

nucleic acids (mRNA) from electrophoresis. A stock solution was prepared with a tablet 

of 10 mg ethidium bromide dissolved in 10 ml of distilled water to obtain a final 

concentration of 1 mg ml-1. A staining working solution of 50 μg ml-1 was prepared by 

diluting 25 μl in 500 ml of distilled water. Syngene gel analyser was used after staining 

the gel for 15-30 min. 

 Since ethidium bromide was previously described as mutagenic and a suspected 

carcinogen, safety precautions were adopted to minimize risk to the user and the 

environment. A laboratory coat, gloves and safety goggles were worn during use of 

ethidium bromide and a special chamber located within the laminar hood was used to 

perform the process of staining. All gloves, pipette tips, and gels were disposed in 

special waste disposal containers for incineration. Staining solution was 

decontaminated using a charcoal filter funnel (Schleicher and Schuell Bioscience, UK). 

The funnel filter was disposed by incineration whilst the filtrate was poured down the 

drain with running water. 
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2.5 COMPLEMENTARY DNA SYNTHESIS (cDNA): 

mRNA was reverse transcribed using the First strand cDNA synthesis kit using AMV 

enzymes isolated from Avian Myeloblastosis Virus (Roche Diagnostic, Germany). AMV 

Reverse Transcriptase is the enzyme which synthesizes the new cDNA strand at the 3’-

end of the poly (A) - mRNA where oligo dT is used as a primer. RNAse contamination 

was minimized by using sterile vessels and pipette tips. The RNAse inhibitor and AMV 

reverse transcriptase were thawed on ice; all other solutions were thawed at room 

temperature and kept on ice after thawing. All reagents were vortexed and briefly 

centrifuged before carrying out the procedure. 

After calculating the mRNA concentration, the volume of mRNA required for the 

conversion to cDNA was determined using the formula shown below: 

 Volume of mRNA for its             =          Required concentration (100 ng ml-1)/  

 conversion to cDNA (µl)                         calculated mRNA concentration                                                                                                   

 

A master mix of 11.8 µl was prepared using the components as mentioned in Table 2.6. 
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Table 2.6: Reagents provided with the kit for cDNA synthesis. (Table adapted from 1st Strand 

cDNA synthesis Kit for RT-PCR (AMV) +  by Roche Applied Science, Germany) 

 

Reagents 

 

 

Volumes 

 

 

Final concentrations 

 

10 x Reaction Buffer 

 

2.0 µl 

 

1 mM 

 

25 mM  Magnesium 

chloride (MgCl2) 

 

4.0 µl 

 

5 mM 

 

Deoxynucleotide Mix 

 

2.0 µl 

 

1 mM 

 

Primer Oligo-p(dT)15 

 

2.0 µl 

 

0.04 A260 units (1.6 µg) 

 

RNAse inhibitor 

 

1.0 µl 

 

50 units 

 

AMV reverse transcriptase 

 

0.8 µl 

 

≥20 units 

 

          Sterile water variable         (depends on the quantity of mRNA added) 

 

RNA sample variable (depends on the concentration of isolated mRNA. 50 ng mRNA was 

added) 

 

Final volume for one sample =          20.0 µl 
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1. The master mixture was briefly vortexed and centrifuged in order to collect 

the sample from the bottom of the microfuge tube. 

2. Aliquots of 11.8 μl of the master mixture were added into the sterile 

microfuge tube. 

3. mRNA was added to give a final concentration of 100 ng per volume. 

4. Sterile water was added to give a final volume of 20 μl. 

5. The mixture was briefly vortexed, centrifuged at 100 xg and incubated at 25 

°C for 10 min. in order for the primer to anneal to the RNA. 

6. The mixture was further incubated at 42 °C for 60 min. where mRNA was 

reversed transcribed to cDNA resulting in the synthesis of cDNA. 

7. Following incubation, AMV Reverse Transcriptase was denatured by 

incubating the reaction at 99 °C for 5 min. and the cooled to 4 °C for 5 min. 

8. The sample was then stored at -20 °C prior to amplification. 

 

2.6 QUANTITIVE REAL TIME POLYMERASE CHAIN REACTION (qRT-PCR): 

Polymerase Chain Reaction (PCR) was previously described as a process which allowed 

logarithmic amplification of short DNA sequences (usually 100-600 bases) within a 

longer stretch of the double stranded DNA molecule. qRT-PCR allows very low copies 

of mRNA to be amplified (Roche Applied Science, Germany). 

The level of several gene expressions was calculated by using qRT-PCR using the 

LightCycler 2.0 system. (Roche Diagnostics, Germany) and LightCycler® FastStart DNA 

MasterPLUS SYBR Green I kit. The manufacturer’s instructions were carried out to 
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perform the experiment. A master mix was prepared using the reagents from the kit 

provided.  

Table 2.7: The composition and quantity of each reagent provided within the LightCycler® 
FastStart DNA MasterPLUS SYBR Green I kit. 
 

 

 

 

Table 2.8:  The quantities of reagents required for each RT-PCR reaction using those provided 
within the LightCycler® FastStart DNA MasterPLUS SYBR Green I kit. 
 

 

Reagents Quantity 

Molecμlar biology-grade H2O 12 µl 

PCR primer mix 2 µl 

Enzyme Master Mix 4 µl 

Single-stranded cDNA template 2 µl 

Reagents Reagent Compositions Quantity 

LightCycler® FastStart 

Enzyme (1a) 

FastStart Taq DNA Polymerase 1 vial 

LightCycler® FastStart 

Reaction Mix SYBR 

Green (1b) 

Reaction buffer, dNTP mix (with dUTP 

instead of dTTP), SYBR Green I dye and   

10 mM MgCl2 

3 vials 

H2O, PCR-grade RNase-free H2O 2 ml 
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The enzyme master mix was prepared by transferring 14 µl of enzyme into the vial of 

reaction mix (Table 2.7) 

1. The samples and reagents were kept on ice throughout the experiment. 

2. Each capillary had a 20 µl total reaction volume comprising 12 µl of molecular 

biology-grade H2O, 2 µl of 10 µM PCR primer mix, 4 µl of master mix and 2 µl of 

single-stranded cDNA template. 

3. A volume of 20 µl template-free (molecular biology-grade H2O substituted for 

cDNA) reaction mixture was also prepared as a negative control.   

4. Before qRT-PCR was carried out for each gene in the cell line under 

examination, the annealing temperature was optimised using genomic DNA 

from a control kit as listed in table 1 in the method section. 

The PCR protocol was: (See Table 2.9 below) 

1. It involved a hot-start induction with the FastStart Taq DNA polymerase 

enzyme activated by pre-incubating the reaction mixture to 95 oC for 10 min. 

2. The single-stranded cDNA template was then subjected to 35 amplification 

cycles composed of the following parameters:  

 Denaturation at 95 oC for 15 sec. 

 Annealing at the primer dependent temperature for 15 sec [63 oC for 

hsp90α and 56 oC for Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH)]. 

 Extension at 72 oC for 25 bp sec-1 (amplicon dependent) 
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At the end of each cycle the emitted fluorescence was measured in a single step to 

acquire quantification analysis data. A slope of 20 oC s-1 was maintained for heating 

and cooling purposes. 

 On completion of the 35th cycle the produced amplicon was prepared for melting 

curve analysis and hence, it was heated to 95 oC (denaturation) and then rapidly 

cooled to the previously used annealing temperature (+10 oC) for 40 sec. For the 

melting curve analysis the temperature was raised to 95 oC with a slope of 0.1 oC s-1 

and the emitted fluorescence was constantly measured. 

Finally, the generated amplicon was cooled to 40 oC for 30 sec and stored at 20 oC until 

required. 

Table 2.9: qRT-PCR conditions used as defaμlt conditions for all amplifications 

 

Analysis 

Modes 

 

Cycles 

 

Segments 

 

Target 

Temperatures 

(oC) 

 

Hold 

Times 

(min) 

 Pre-Incubation    

None 1  95 10 

 Amplification    

Quantification 35 Denaturation 95 1 

  Annealing variable 2 

  Extension 72 1 

   72 7 

 Cooling    

None 1  4 ∞ 
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2.7 ANALYSIS OF qRT-PCR PRODUCT:  

2.7.1 Agarose gel electrophoresis: 

The amplicons from the qRT-PCR reaction were run on a 2% (w/v) agarose gel. Aliquots 

(10 µl) of each amplicon was mixed with 2 µl of loading dye while, 5 µl of a 100 bp 

molecular weight marker was mixed with 2 µl loading dye. The samples along with the 

molecular weight marker were loaded onto the gel and electrophoresed at 60 V.  The 

banding patterns were visualised using a GENE GENIUS Bioimaging system, UK and 

Gensnap software. 

2.7.2 Quantification analysis of qRT-PCR: 

Copy numbers were used to express the absolute quantification of the target 

amplicon. In real time PCR a positive reaction was detected by the accumulation of a 

fluorescent signal. The number of cycles required for the fluorescent signal to cross the 

threshold was determined by the Ct (cycle threshold) value. Genomic DNA could be 

used as an external standard showing that 1 µg corresponded to 3.4 × 105 copies of a 

single gene (Wittwer et al., 2004). In our laboratory (Shervington et al., 2007; 

Mohammed, PhD Thesis, 2007), genomic DNA of known concentrations were used as a 

standard to amplify GAPDH gene using the LightCycler instrument.  The Ct served as a 

tool for calculating the quantity of the starting template in order to plot a standard 

curve to aid the determination the of copy number in unknown samples.  A standard 

curve was generated from five concentrations of genomic DNA in duplicate: 0.005, 

0.05, 0.5, 5 and 50 ng (known copy numbers) and their corresponding average Ct's (Fig 

2.3 and Table 2.10) were used to generate the copy number verses concentration. 

A.             
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B. 

 

 

 

 

Figure 2.3: Standards used to generate the copy numbers for each gene.  (A) LightCycler 
quantification curve generated using known concentration of genomic DNA was amplified, 
showing that the higher the concentration of DNA the lower the Ct values i.e. earlier the 
acquisition of florescence.  The negative control (Primer alone, NTC) shows no florescence 
acquisition until after 30 Ct (straight line).  (B) The standard generated from the crossing points 
indicating the relationship between Ct values and the copy numbers of the amplified genomic 
DNA using GAPDH reference gene (adapted from Mohammed, 2007). Data are mean ± 
standard deviation, n = 3. 
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Table 2.10: Genomic DNA corresponded to its average Ct values and equivalent copy 
number.  

 

The equation generated (y = -1.3124Ln(x) + 32.058) from this standard graph was 

rearranged to (=EXP ((Ct value-32.058)/-1.3124)) and used to determine copy numbers 

of the mRNA expression of all the genes used throughout this study. 

 

2.8 ANTIBODY INFORMATION: 

1) Hsp90α rat monoclonal antibody (PRIMARY) 

This antibody detected a 90 kDa protein, corresponding to the apparent molecular 

mass of Heat Shock Protein 90 Alpha (Hsp90α) on sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) immunoblots. Company suggested that 

it was specific for Hsp90alpha (Hsp86) and did not cross react with Hsp90 beta (Hsp84) 

(Cambridge Bioscience, UK). It immunoprecipitated with both free and complexed 

Hsp90. This antibody recognized lower molecular weight Hsp90α degradation 

Concentrations of Genomic DNA 

(ng) 

Average Ct Copy numbers 

0.005 30.15 1.7 

0.05 29.10 17 

0.5 26.42 170 

5 22.60 1700 

50 18.30 17000 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
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fragments as well as the intact protein and was therefore useful for monitoring 

proteolytic degradation of Hsp90α. 

Host Animal: Rat 

Antibody Isotype: IgG2a 

Species Reactivity: human, chicken 

Immunogen: Human Hsp90 purified from therapeutic orchiectomy specimens 

Applications: WB, IHC, Flow Cytometry 

Stored:  -20 0C 

2) Rabbit Anti-Rat IgG (H+L) (SECONDARY)  

Source: Pooled antisera from rabbit’s hyperimmunized with rat IgG. 

Cross Absorption: NA. 

Purification: Affinity chromatography on pooled rat IgG covalently linked to agarose. 

Specificity: Reacted with the heavy and light chains of rat IgG1, IgG2a, IgG2b and 

IgG2c, and with the light chains of rat IgM as demonstrated by ELISA and/or flow 

cytometry. 

WORKING DILUTIONS 

Immunofluorescence: Fluorescein isothiocyanate (FITC) conjugate ≤ 1 μg/106 cells 

Stored: 2-8 0C 

Both the antibodies were purchased from Cambridge Biosciences, UK. 
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2.9 Akt/PKB KINASE ACTIVITY ASSAY: 

Akt/PKB Kinase Activity Assay Kit (Non-radioactive, Assay Designs, UK) was used to 

quantify the activity of Akt/PKB in the cell samples. The kit was based on a solid phase 

enzyme linked immuno-absorbent assay (ELISA) utilizing a synthetic peptide as a 

substrate for PKB along with a polyclonal antibody which recognized the 

phosphorylated form of the substrate. In this assay, the substrate which was readily 

phosphorylated by PKB was pre-coated onto the wells of the PKB substrate microtitre 

plate. Prior to the sample analysis, a standard curve was plotted using the purified 

active PKB supplied (20 μg/ml).  

Following the addition of the samples to the appropriate wells, ATP was added to 

initiate the reaction. A phosphospecific substrate antibody was added to the well and 

which was specifically bound to the phosphorylated peptide substrate. Peroxidase 

conjugated secondary antibody was then added which was subsequently bound to the 

phosphospecific antibody. The assay was developed with tetramethylbenzidine 

substrate (TMB) and correspondingly, colour development observed was directly 

proportional to the PKB phosphotransferase activity. This colour development was 

quenched with acid stop solution and the intensity was measured in a microplate 

reader at 450 nm.  

 

 

 



[78] 
 

2.9.1 Standard Curve: 

1. The following components of the kit: PKB substrate microtitre plate, Antibody 

dilution buffer, Kinase assay dilution buffer, TMB substrate and Stop solution 2, 

were adjusted to room temperature. 

2. The desired number of wells from the PKB substrate microtitre plate was 

soaked with 50 μl of Kinase assay dilution buffer at room temperature for 10 

min. 

3. After carefully aspirating the liquid from each well, varying quantities of 

purified active PKB; 2.5, 5, 10, 20 and 40 ng were added to the appropriate 

wells of the PKB substrate microtitre plate. 

4. The reaction was initiated by adding 10 μl of diluted ATP to each well except 

the blank. 

5. The plate was then incubated for 60 min. at 30 oC in a rotating shaker set 

rotating 60 rpm.  

6. The reaction was stopped by emptying the content of the well and then 40 μl of 

phosphospecific substrate antibody was added to each well except the blank. 

7. The plate was then incubated for 60 min. at room temperature. 

8. The wells were washed four times with 100 μl wash buffer. 

9. A volume of 40 μl of diluted Anti-Rabbit IgG: HRP Conjugate was added to each 

well except the blank. 

10. After incubating the plate at room temperature for 30 min, the wells were 

washed four times with 100 μl 1 x wash buffer. 

11.  An aliqot of 60 μl of TMB substrate was then added to each well. 
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12. The plate was then incubated at room temperature for 30-60 min. The 

incubation time was determined according to the development of the colour. 

13. A volume of 20 μl of stop solution 2 was added to each well in a similar order to 

that of the TMB substrate. 

14. Absorbance was measured at 450 nm using a microtitre plate reader. 

15. The active PKB standard curve was plotted. 

 

2.9.2 Assay Procedure: 

1. The assay procedure was similar to the Standard Curve procedure (2.9.1), with 

a minor modification involving step 5 wherein, the microtitre plate was 

incubated for 90 min. at 30 0C in a rotating shaker at 0.6 xg. 

 

2.10 Hsp90α ELISA ASSAY: 

Assay Design’s (UK) Hsp90α ELISA kit provided a sensitive, swift and steadfast method 

to detect and quantify Hsp90α in cell lysates, tissue extracts and serum samples from 

human origin.  

Company recommended the kit to be specific for Hsp90α and involved a quantitative 

sandwich immunoassay. It used Hsp90α specific mouse monoclonal antibody pre-

coated on the wells of the provided Anti-Hsp90α plates to capture Hsp90α in the 

sample or the standard. The captured protein was then detected using an Hsp90α 

antibody conjugated with horseradish peroxidase (HRP). The assay was developed with 

TMB substrate and the colour development was proportional to the quantity of 

Hsp90α captured. Acidic stop solution was then added to the wells which develops the 
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endpoint colour. The intensity of the colour was then measured in a microtitire plate 

reader at 450 nm. 

1. The components of the kit: Anti-Hsp90α immunoassay plate, 20 x wash buffer, 

sample diluent, HRP conjugate diluent, TMB substrate and Stop Solution 2, 

were thawed until they achieve room temperature. 

2. Recombinant Hsp90α standard (0.0625 - 4 ng ml-1) and samples were prepared 

in sample diluent.  

3. A volume of 100 μl of the prepared standards and samples were added to wells 

of Anti-Hsp90α immunoassay plate and then incubated at room temperature 

for 60 min. 

4. The wells were washed 6 times using 1 x wash buffer. 

5. An aliqot of 100 μl of diluted HRP conjugate was then added to the wells of the 

immunoassay plate and later incubated at room temperature for 60 min. 

6. The wells were then washed 6 times with 1 x wash buffer. 

7. A volume of 100 μl of TMB substrate was added to each well and the 

immunoassay plate was left to incubate at room temperature for 20 min.  

8. An aliqot of 100 μl of Stop solution 2 was then added to each well in the same 

order that TMB substrate was added. 

9. The absorbance was measured at 450 nm and an Hsp90α standard curve was 

plotted. The Hsp90α concentrations of samples were then calculated using the 

equation of the graph. 
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2.11 CELL VIABILITY ASSAY: 

For cell viability assay, this study measured the levels of ATP in the cells using a 

luminescence assay kit as described below. 

1. Cell viability was assessed using Celltiter-Glo® Luminescent cell viability assay 

(Promega, UK) according to the manufacturer’s protocol. 

2. Cultured cells were plated in flat-bottom 96 well plate; control wells containing 

medium without cells were prepared to obtain a value for background 

luminescence. 

3. When the desired confluence was reached the test compound (drug) was 

added to the wells and incubated under standard cell culture conditions 

(varied according to experiment, usually 48 hours). 

4. The contents of the 96 well plates were equilibrated at room temperature for 

30 min. 

5. CellTitre-Glo reagent was prepared by transferring the appropriate volume of 

CellTitre-Glo buffer and CellTitre-Glo substrate (1:1). Depending on the number 

of wells used, the CellTitre-Glo reagent was mixed 1:1 with cell media. 

6. The contents of the 96 well plates were emptied and washed twice with PBS. 

7. A volume of 200 μl of the prepared mixture of CellTitre-Glo reagent and cell 

media (1:1) was added to the appropriate wells of the 96 well plate. 

8. The plate was then incubated at room temperature for 10 min. to allow 

stabilisation of the luminescent signal before the luminescent signal was 

detected using Tecan GENios Pro® (Tecan, Austria). 
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2.12 U87-MG CELL CYCLE ANALYSIS: 

Cell cycle analysis of the cells treated with either drugs or shRNA was carried out. This 

analysis was performed to determine the different stages of cell cycle affected in    

U87-MG cells post treatment. Table 2.11 illustrated the reagents and their 

concentrations used for cell cycle analysis. 

1. The cells (1 x 106 cells) were scraped and washed once with PBS (0.1M) and 

then centrifuged at 100 xg for 5 min. 

2. The supernatant was discarded and the cells were fixed by re-suspending them 

in 2 ml of 70 % ice cold ethanol which was added drop wise to the cell pellet to 

avoid clumping of the cells.  

3. The cell sample was then stored at -20 oC for a minimum of 24 hours. 

4. The fixed samples were centrifuged at 100 xg for 5 min. and the supernatant 

was discarded and the cells were washed once with PBS (0.1 M). 

5. The cells were re-suspended in PBS containing 50 g ml-1 of PI and 100 g ml-1 

of RNAse and incubated at 37 oC for 30 min. 

6. The stained samples were stored at 4 oC in the dark until subjected to flow 

cytometric analysis. 
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Table 2.11: Reagents and its concentration used for cell-cycle analysis 

Reagents Concentrations Suppliers 

PBS 0.1M Sigma, UK 

Ethanol 70% Fisher Scientific, UK 

PI 50 g ml-1 Sigma, UK 

RNAse 100 g ml-1 Sigma, UK 

 

2.13 FLOW CYTOMETRY:  

Flow cytometer was previously described as an instrument that helps to measure the 

properties of an individual cell. The cells were labelled with a particular antibody 

conjugated to a fluorochrome and by means of hydrodynamic focusing. Each cell was 

passed through a single or multiple beams of light. The emitted fluorescence (light 

scattering) gave knowledge about the cellular properties. Fluorescence measurements 

taken at different wavelengths provided quantitative and qualitative data about 

fluorochrome-labelled cell surface receptors or intracellular molecules within a cell 

(e.g. DNA and cytokines). 

 2.13.1 Sample preparation: (adopted from Abcam, UK; modified according to the       

experimental requirement) 

1. Untreated and treated cells (>1 x 106 cells) were collected by scraping. The cells 

were washed thrice with 0.1 % BSA made in (0.1 M) PBS.  
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2. After each wash the cells were centrifuged at 100 xg for 5 min. at 4 oC. The 

supernatant was carefully discarded with efforts to achieve a maximum 

number of cells for the analysis. 

3. The cells were permeabilised by incubating with 0.1 % of Triton-X made up in 

(0.1 M) PBS for 15 min. in the dark. This was followed by three washes with 0.1 

% BSA. 

4. Blocking solution [made up in 5 % serum in (0.1 M) PBS based on the animal in 

which the antibody was raised] was added to the cells and incubated for 30 

min. at 4 oC.  

5. After 30 min. the cells were centrifuged and the blocking solution was 

discarded. This was followed by the addition of the specific primary antibody 

[made up in 5 % serum with (0.1 M) PBS] for 30 min. 

6. The primary antibody was removed by washing thrice with 0.1 % BSA. The 

secondary antibody was then prepared in a similar fashion as the primary 

antibody and was added to the cell sample and incubated in the dark for 30 

min. 

7. Traces of secondary antibody were removed by washing thrice with 0.1 % BSA. 

8. Finally, the cells were re-suspended in 250 µl 0.1 % BSA and then filtered to 

remove clumps using a sterile filter for flow cytometric sample preparation. The 

samples were stored at 4 oC in the dark until analysed on the flow cytometer. 

9. The negative control was prepared by excluding the labelling with primary 

antibody. The rest of the treatment remained identical. 
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10. The cell sample and the reagents were kept on ice throughout the experiment 

to minimize cell death. Moreover, the samples were gently pipetted to achieve 

single cell suspension during each step. 

2.13.2 Data analysis 

The cells were gated selectively by eliminating cell debris or dead cells. For each 

sample a maximum of 10,000 events/sample was taken into consideration. Flow 

cytometric data were demonstrated by means of a density plot, contour diagrams and 

histograms. Throughout the studies, histogram graphs were used and which displayed 

relative fluorescence (single parameter) on the x-axis and the number of events on the 

y-axis. Figure 2.4 represented a typical histogram plot after flow cytometric analysis. A 

statistical view of the data could be achieved after acquiring 10,000 events/ sample to 

identify the exact number of positive cells in a given sample. 

 

Figure 2.4: A histogram graph demonstrating flow cytometric data 

[P1-negative control, P2- negative population of cells from sample and P3- positive population 
of the stained cells.  

(Modified from http://keck.bioimaging.wisc.edu/Neuro670/Introduction 
%20to%20Flow%20Cytometry.pdf)] 

P2 

P1 

P3 
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2.14 STATISTICAL ANALYSIS: 

Data have been analyzed using PASW package employing One-Sample Students T-test 

and Paired-Sample T-test.  A value of *p < 0.05 and **p < 0.001 was taken as 

significant. 
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Hsp90α SILENCING BY RNAi 
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3.1 INTRODUCTION: 

Cancer is a class of disease which is mainly characterized by aberrant changes in the 

sequence and/or expression of several genes (Rao et al., 2009). Over the past decades, 

researchers have been studying these changes at the genetic and protein level to find 

strategies to block or prevent the progression of tumours.  There are several sets of 

genes that are mutated in cancer which play a vital role in tumour progression and 

tumour cell stabilization (Rao et al., 2009). Numerous efforts to develop inhibitors 

against such genes and/or proteins have been investigated. RNA interference (RNAi) 

which inhibits transcription of particular gene(s) of interest has been underway with 

some of the small molecule inhibitors already undergoing clinical trials 

(www.cancerresearchuk.org). 

RNAi is a natural process by which expression of the gene of interest could be knocked 

down with high specificity and selectivity (Rao et al., 2009). This involves enzymatic 

cleavage of target mRNA which leads to a decrease in the corresponding protein. With 

the current advanced technology together with the extensive understanding of 

bioinformatics, investigators could possibly identify relevant bio molecular tumour 

networks for knockdown. Gene specific RNAi agents can potentially knockdown key 

abnormally over and/or constitutively expressed molecular targets selectively in each 

patient’s tumour in order to provide personalized tumour therapy. Additionally, these 

single agents can be combined with other small molecule inhibitors and be used in 

combination therapy for tumours (Rao et al., 2009). 
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3.1.1 RNA interference for cancer: 

The discovery of the evolutionary gene silencing mechanism was reported more than 

20 years ago (Stein and Cohen, 1988). RNAi is initiated by RNase Dicer which cleaves 

the double stranded RNA substrates into 21-25 nucleotide long RNA fragments (small 

interfering RNA/siRNA) (Fig 3.1).  These siRNA duplexes become incorporated into a 

protein complex called RNA induced silencing complex (RISC) (Fig 3.1). RISC is an 

enzyme which catalyses hundreds or thousands of RNAi in vivo and it uses the 

antisense strand of the siRNA to bind and degrade corresponding mRNA thus, causing 

gene silencing (Sharp and Zamore, 2000; Bernstein et al., 2001). A member of the 

Argonate family, Argonate 2 (Ago2) is the protein in RISC responsible for cleavage of 

the sense strand of the siRNA duplex and also the target mRNA (Rand et al., 2004; 

Matranga et al., 2005; Rand et al., 2005). 
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Figure 3.1: RNAi mechanism. (Adapted from Bumcrot et al., 2006)  

Long double stranded RNA (dsRNA) is cleaved by Dicer into siRNA (or synthetic siRNAs are 
added). These siRNAs bind to RISC where the strands are separated. The RISC complex with the 
antisense strand then binds to complementary mRNA sequences. mRNA is then cleaved by 
Ago2. 

There has been significant progress in RNAi therapeutics, initiating from the discovery 

of RNAi being mediated by double stranded RNA in C. elegans in 1998 (Fire et al., 

1998) and the use of synthetic siRNA’s to silence target genes in mammalian cell line 

systems in 2001 (Elbashir et al., 2001).  Several studies have demonstrated silencing of 

diseased genes by utilizing siRNA, with some studies showing promising in vivo results 

(Kumar et al., 2007; Dykxhoorn et al., 2006). 

In 2004, Soutschek et al. effectively silenced apolipoprotein apoB in mice by 

intravenously administering cholesterol conjugated siRNA duplexes. Three daily 

injections at a dose of 50 mg/kg resulted in silencing of the apoB mRNA in the liver and 

jejunum by 57 and 73 %, respectively (Soutschek et al., 2004). A study in human 
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prostate cancer xenograft model demonstrated the use of cardiolipin liposomes 

containing siRNA specific for Raf-1 to inhibit tumour growth (Pal et al., 2005). 

The effects of RNAi are mediated by two types of molecules viz., chemically 

synthesized double stranded small interfering RNA (siRNA) or vector based short 

hairpin RNA (shRNA). Studies have shown that active siRNA produced in vitro by T7 

RNA polymerase consisted of a hairpin structure which can be transcribed into cells by 

RNA polymerase III promoter on a plasmid construct (Yu et al., 2002; Miyagishi et al., 

2003). Although both siRNA and shRNA have similar functional outcomes, they are 

actually two fundamentally different molecules and hence, their molecular mode of 

action together with their interference pathways, off target effects, and applications, 

are also different (Rao et al., 2009).  

 

3.1.2 siRNA and shRNA: 

Post delivery siRNA is observed to translocate within 15 min. in the nucleus and then 

gradually increase its quantity in the cytoplasm up to 4 hours before reaching a steady 

state level. The siRNA mediated RNAi activity usually peaks around 24 hours post 

delivery with a gradual decrease within 48 hours (Jarve et al., 2007; Grunweller et al., 

2003). However, shRNA’s is synthesized within the nucleus of the cells and is then 

transported to the cytoplasm where it is incorporated into the RISC for activity (Cullen, 

2005). shRNA transcribed by the RNA polymerase II or III through the polymerase 

promoters on the expression cassette and the primary transcript form contains a 

hairpin like stem loop structure which is processed in the nucleus (Lee et al., 2003). 
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Inside the nucleus the complex containing RNase III enzyme Drosha and pasha protein 

(DGCR8), a double stranded RNA binding domain protein which measures the hairpin 

and permits the primary transcript to be processed into individual shRNA’s with a 2 

nucleotide 3’ overhang (Zhang et al., 2002). This processed transcript is called pre-

shRNA which is transported into the cytoplasm by exportin 5, a RA sarcoma-related 

nuclear protein guanosine-5'-triphosphate (Ran-GTP)-dependent mechanism (Lee et 

al., 2002; Cullen, 2004). Once inside the cytoplasm, the pre-shRNA is loaded to another 

RNase III complex containing the RNase III enzyme Dicer and RISC-loading complex 

subunit TARBP2 (TRBP/PACT), wherein, the loop of the pre-shRNA is processed to form 

a double stranded siRNA with 2 nucleotide 3’ overhangs (Yi et al., 2003; Lund et al., 

2004; Lee et al., 2004). This complex is then loaded to the RISC complex containing 

Ago2 protein as described previously. Once in the RISC complex, both siRNA and 

shRNA normally behave in a similar fashion (Fig 3.2).  

 



[93] 
 

 

Figure 3.2: siRNA and shRNA pathways. Adapted from http://www.sigmaaldrich.com/united-
kingdom.html. The siRNA/shRNA molecule is cleaved by Dicer resulting in 21 base pair double 
strand with 2 bp overhands. The siRNA strand then assembles with RISC which unwinds the 
duplex and dissociates sense strand. This results in an activated complex containing the anti-
sense strand. The RISC-siRNA complex then recognizes target mRNA sequence and brings 
about mRNA degradation once bound. This result is loss of translation and subsequent protein 
functions. 

 

RNA interference has rapidly become important in gene therapy since it enables the 

researcher to selectively target the gene of interest and knockdown its expression 

(Kumar et al., 2007; Xie et al., 2006). As previously described, the concept of antisense 

http://www.sigmaaldrich.com/united-kingdom.html
http://www.sigmaaldrich.com/united-kingdom.html
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oligonucelotides to regulate gene expression and its subsequent application in gene 

therapy for the treatment of tumours has been established for more than 20 years 

now (Stein et al., 1988). Preclinical st udies have confirmed the use of RNAi techniques 

for the treatment of cancers. In 2003, Sherr et al., successfully demonstrated the use 

of siRNA to silence bcr-abl oncogene which causes chronic myeloid leukemia (CML) in 

BCR-ABL positive cell lines and in primary cell lines from patients (Scherr et al., 2003). 

Synthetic siRNAs have been used by Martinez and colleagues to specifically silence 

mutated p53 in a population of cells expressing both mutated and wild type (WT) p53, 

resulting in a total restoration of WT p53 protein function (Martinez et al., 2002). 

Furthermore, a study in 2004 demonstrated the use of siRNAs to silence HER2; HER2 

gene is supposed to play vital role in oncogenesis of several tumours including breast, 

ovarian, colon and gastric tumours. Treatment of tumour cell lines with HER2 siRNA 

resulted in late arrest at the G (1)/S growth phase showing therapeutic importance 

(Choudhury et al., 2004). Moreover, Li et al., (2003) demonstrated the therapeutic 

potential in the treatment of hepatocellular carcinoma (HCC) by targeting 

overexpressed oncogenes such as cycline E with siRNAs targeted against it (Li et al., 

2003).  

Furthermore, in vivo studies involving the targeting of critical components for tumour 

cell growth (Li et al., 2003; Brummelkamp et al., 2002; Uchida et al., 2004) metastasis 

(Duxbury et al., 2004; Salisbury and Macaulay, 2003), angiogenesis (Takei et al., 2004) 

and chemoresistance (Singh et al., 2008; Nakahira et al., 2007) by siRNA have shown 

favourable usage of RNAi in the treatment of tumours. The silencing attained by siRNA 

is effective; however, it has certain disadvantages which are overcome by shRNA. 

Though siRNA’s are stable and its delivery to the cytoplasm is much easily attained as 



[95] 
 

opposed to the shRNA’s delivery into the nucleus, the shRNA hairpin is a better 

substrate to the dicer with improved RISC loading (Kim et al., 2005; Siolas et al., 2005). 

Furthermore, shRNA plasmids are amplified by transcription. siRNA’s on the other 

hand are not amplified intracellularly and also are more susceptible to metabolism 

(McAnuff et al., 2007). 

Some reports have further suggested that the loading efficiency of siRNA’s is 10 times 

lower than that of shRNA’s. Moreover, siRNA’s have higher degradation with less than 

1 % of siRNA remaining in the cell 48 hours post administration (Sano et al., 2008; 

Siolas et al., 2005; Vlassov et al., 2007). Interestingly, shRNA’s are more durable with 

them being continuously synthesized in the host cells. Considering the potency of both 

siRNA and shRNA, it has been reported by McAnuff et al., (2007) using a luciferase 

expression system that shRNA is 250 times more effective than siRNA on a molar basis 

(McAnuff et al., 2007).  

Siolas et al., (2005) developed identical siRNA and shRNA stands and targeted firefly 

luciferase gene in HeLa cells, resulting in shRNA effectively inhibiting the gene better 

than siRNA (Siolas et al., 2005). In another study undertaken in 2007, the internal 

ribosome entry site of the hepatitis C virus (HCV) was targeted by both shRNA and 

siRNA to inhibit the site driven gene expression in cultured cells resulting in shRNA 

being more potent than the corresponding siRNA (Vlassov et al., 2007). Recent studies 

have also shown shRNA’s to be effective in vivo (see Vorhies et al., 2007; Tong et al., 

2009). 

It has been reported that the 5’ end of shRNA oligonucelotides are less immunogenic 

than the 5’ ends of the siRNA oligonucelotides, thus it shows that shRNAs are less likely 



[96] 
 

to induce an inflammatory response as opposed to siRNAs. (Kim et al., 2005; Marques 

et al., 2006).  

 

 

Figure 3.3: A comparison between siRNA and shRNA. 

This figure summarises the advantages of using shRNA over siRNA. 

 

A recent study carried out within our laboratory has deduced the presence of the 

inducible Hsp90α expression in glioma cell lines and tissue and its absence in normal 

cells and tissues (Shervington et al., 2008). hsp90α was downregulated in glioma cell 
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lines using siRNA targeted against hsp90α and the sensitivity of the cells to 

chemotherapeutic agents was checked. Inhibition of hsp90α using siRNA could possibly 

be adopted as a favourable therapeutic approach compared to conventional therapies 

owing to its specificity and reduced toxicity and also due to the enhanced 

chemosensitivity attained (Cruickshanks et al., 2010). Based on these findings, this 

study, evaluates the use of shRNA as opposed to siRNA to silence hsp90α. 

The aim of this study hsp90α was silenced by using shRNA targeted against hsp90α. 

The silencing efficiency was validated by checking the mRNA level of hsp90α and 

GAPDH using qRT-PCR. Hsp90α ELISA assay was used to verify the level of Hsp90α 

expression. Additionally, the level of Akt/PKB kinase, which is a client protein to Hsp90, 

was also studied. Akt/PKB kinase is involved in the anti-apoptotic pathway however, in 

tumours, including glioma it stimulates cell proliferation and inhibits apoptosis, thus 

empowering the cancer cells the property of “immortality” (Basso et al., 2002). The Akt 

protein is directly regulated by Hsp90 as seen in Figure 3.4. 
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Figure 3.4: Interaction of Hsp90 protein with Akt/PKB kinase. Hsp90 shuttles Akt/PKB 
between phosphorylated (active) and dephosphorylated (inactive) states. 

 

3.2 BIOINFORMATICS: 

Bioinformatics is the computer-assisted mode of data management that helps us 

gather, analyze, and represent biological information in order to understand several 

processes involved in healthy and diseased states. The major research areas in which 

contribution of bioinformatics is significant are sequence analysis, genome annotation, 

computational evolutionary biology, prediction of protein structure, modelling 

biological systems and analysis of gene expression, protein expression and mutations 

in cancer (Fenstermacher, 2005). 
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The field of bioinformatics has evolved from molecular biology and the Human 

Genome Project. Several genome sequencing projects have recently been completed 

and the majority of human coding regions have been sequenced. Bioinformatics is an 

integral part of proteomic research. The recent developments and applications in 

proteomics have helped to easily access databases of genes and proteins. 

(Fenstermacher, 2005). 

In addition, the World Wide Web has become an essential feature to the world of 

bioinformatics, as it makes DNA, RNA and protein data available to users throughout 

the world through databases such as National Centre for Biotechnology Information 

(NCBI, Unigene), GenBank (USA), European Molecular Biology Laboratory (EMBL, 

Europe), (Fenstermacher, 2005). 

The location of hsp90α was found using public databases such as; 

1) GeneCards  

(http://genome-www.stanford.edu/genecards/index.shtml) 

2) NCBI 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide

&cmd=search&term). 

 

3.2.1 GENE mRNA SEQUENCE:  

The nucleotide sequence of the gene(s) of interest was obtained from NCBI. NCBI 

provides literature database, genomic database, sequence identification tools, protein 

structure tools and genome specific resources (http://www.ncbi.nlm.nih.gov/). NCBI 

provides with a detailed literature review, protein information and family information 

http://genome-www.stanford.edu/genecards/index.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=search&term
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleotide&cmd=search&term
http://www.ncbi.nlm.nih.gov/


[100] 
 

along with the sequence of the gene. The gene search was used to gather general 

family information, protein function and mode of action of the protein coded by the 

gene. The nucleotide search on NCBI yields specific nucleotide information along with 

exon information for specific genes. 

3.2.2 PRIMER DESIGN: 

For a successful PCR, the design of synthetic primers suitable for the initiation of the 

polymerase reaction with the highest yield of the specific amplicon in question is of 

great importance.  For RT-PCR, the primer should be approximately 20 nucleotides 

long and have a guanine/cytosine (G/C) and adenine/thymine (A/T) content similar to 

or higher than that of the sequence to be amplified.  They usually have a melting 

temperature between 55 and 65 oC.  For a primer which is 20 nucleotides long, this 

normally corresponds to 45-55 % GC content.  Although long primers are more 

specific, they have higher annealing temperatures but are less efficient because 

thermodynamically the annealing takes longer (Dieffenbach et al., 1993).   

Several softwares to choose the primers of specific gene are available; in this study we 

have used Primer3 plus to determine appropriate primers for the extraction and 

amplification of amplicons. The sequence obtained from NCBI was pasted into Primer3 

plus homepage (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi).  

The output file included a main set of left and right primers and several sets of 

alternate primers.  The output also indicated the alignment of the primers on the 

sequence, amplicon size, GC content and recommended annealing temperatures. 

http://www.nuncbrand.com/NAG/DP0021.htm#Dieffenbach CW, Lowe TMJ, Dveksler GS. (1993)
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
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The primers obtained were utilized in PCR processes for further experimental 

procedures. 

3.2.3 shRNA CONSTRUCT: 

Pre-designed shRNA oligonucleotides targeted against hsp90α were obtained from 

Origene, USA. The shRNA oligonucleotides were tested against glioma cell lines and 

the best construct of the four constructs was selected and used for the study. 

Furthermore, shRNA sequences were constructed against Hsp90α mRNA transcript 

sequence using ClustalW2 software. ClustalW2 software is a multiple sequence 

alignment programme used for both DNA and protein. It calculates the best match and 

aligns them (http://www.ebi.ac.uk/Tools/clustaw2/index.html). 

 

3.3 MATERIALS AND METHODS: 

In this study, 1321N1, GOS-3 and U87-MG cell lines were cultured as described in 

section 2.1 of chapter 2. mRNA was isolated using mRNA isolation kit (Roche 

Diagnostics, Germany) as described in section 2.2. The isolated mRNA was analysed 

using alkaline gel electrophoresis as explained in section 2.4. An amount of 100 ng of 

mRNA was then reverse transcribed to cDNA using cDNA synthesis kit (Roche, 

Diagnostics, Germany) as previously described in section 2.5. Quantitative real time 

PCR was performed to check the expression of hsp90α and GAPDH as described in 

section 2.6 using LightCycler 2.0 system (Roche Diagnostics Ltd, Germany), LightCycler® 

FastStart DNA MasterPLUS SYBR Green I and specific primers. PCR products were 

analysed using agarose gel electrophoresis as described in section 2.7. The Akt/PKB 

http://www.ebi.ac.uk/Tools/clustaw2/index.html
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kinase activity was assayed using Akt/PKB Kinase Activity Assay Kit (Assay Designs, UK) 

as described in section 2.9.  

3.3.1 Cell culture and shRNA treatment: 

 The HuSH shRNA gene-specific expression cassettes were prepared using synthetic 

oligonucleotides. These oligonucleotide sequences were computer designed for 

optimal suppression of gene expression and minimal off-target effects. All shRNA 

sequences were verified through DNA sequencing analysis. The HuSH shRNA gene-

specific expression cassettes were optimized to include both the termination signal for 

RNA Pol III and GC content to further improve the quality of the gene-specific shRNA 

expression vectors. Additionally, the shRNA expression cassette consisted of a 29 bp 

target gene specific sequence, a 7 bp loop, and another 29 bp reverse complementary 

sequence, all under the human U6 promoter. A termination sequence (TTTTTT) is 

located immediately downstream of the second 29 bp reverse complementary 

sequence to terminate the transcription by RNA Polymerase III. The gene-specific 

shRNA cassette was sequence-verified to ensure it was matched to the target gene. 
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Figure 3.5: pGFP-V-RS vector map. (Adapted from www.origene.com) 

 

Gene-specific shRNA transfection to glioma cell lines 

1. dH2O (50 μl) was added into each of the tubes containing shRNA expression 

plasmids. The tubes were then vortexed briefly to resuspend the DNA and to 

achieve a concentration of 100 ng μl-1. 

2. 1312N1, GOS-3 and U87-MG cells were plated into a 25 cm3 flask for human 

shRNA validation at 3 x 105 cells. The cells were allowed to grow overnight in a 

5 % CO2 incubator to achieve 50 % confluence. 

http://www.origene.com/
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3. The following reagents were combined in the prescribed order to achieve 

optimal results: 

a) Serum-free DMEM              100 μl 

b) MegaTran 1.0 Solution  3 μl 

c) shRNA expression plasmid DNA 1 μg 

a. shRNA stock = 100 ng μl-1 

b. Thus, for 1μg = 10 μl of shRNA. 

4. The contents were carefully added to the sterile tube and mixed gently. 

5. The tube containing the reagents was then incubated at room temperature for 

15-45 min. 

6. The DNA-MegaTran 1.0 mix was later directly added to the flasks containing the 

cells without the removal of the culture media. Gentle swirling of the flasks was 

carried out. 

7. Upon transfection, the media were not changed in the flasks until the cells 

were ready to be passaged. 

8. The transfected cells were passaged by scraping into a fresh flask containing 

growth medium and 0.5 - 1.0 μg ml-1 puromycin. 
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9. The cells were grown over a period and passaged when necessary, maintaining 

selection pressure by maintaining 0.5 - 1.0 μg ml-1 puromycin in the growth 

medium.  

10. After 1-2 weeks, most of the cells were killed by the antibiotic which indicated 

that they did not take up or had lost the plasmid with the puromycin resistant 

cassette. The cells that were growing in the puromycin containing medium had 

retained the HuSH plasmid which integrated into the genome of the targeted 

cells. 

11. The stably transfected cells were then grown in a selection medium for  an 

additional 1-2 passages and at this time the selection pressure of the 

puromycin was reduced to 0.2 μg μl-1.  

12. These cell populations were then used in experiments and/or stored under 

liquid nitrogen in growth medium with 10% DMSO for future use. 

 

3.3.2 Megatran: 

MegaTran 1.0 was specifically designed as a new non-lipid polymer transfection 

reagent and manufactured for large volume DNA transfection, including large scale 

protein production via transient transfection, high-throughput screening using cDNA 

arrays or shRNA libraries, etc. (www.origene.com) 

Advantages of using MegaTran; 

1. Superior transfection efficiency compared to leading transfection reagents.  

http://www.origene.com/
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2. Improved protein production via transient transfection.  

3. Reduced cytotoxicity.  

 

3.3.3 Puromycin: 

Puromycin (Calbiochem, UK) was dissolved in distilled water to provide a stock 

concentration of 25 mg/ml and then was further diluted in distilled water to achieve a 

final concentration of 2.5 μg/ml. To calculate the half maximal inhibitory concentration 

(IC50) of puromycin, varying concentrations of puromycin (0.2 – 1 μg/ml) were added 

to untreated cells and incubated for 48 hours in order to determine the cell viability (as 

described in section 2.11) for all the three cell lines.  

 

3.3.4 Statistical Analysis 

As described in Chapter 2.  
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3.4 RESULTS: 

 

3.4.1 Bioinformatics 

Upon bioinformatic analysis it was observed that hsp90α is located on chromosome 

14q32.33 (Fig 3.5).  

 

Figure 3.5:  Location of hsp90α denoted by red bar. (Taken from GeneCards) 

 

 

 

The above figure shows the typical location of hsp90α on chromosome 14q32.33. The 

location of hsp90α is denoted by the red bar in Figure 3.5. 

Further, a gene search on NCBI yielded information on hsp90α as seen in Figure 3.6. 
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Figure 3.6: Entrez gene database output on a gene search for hsp90α. (Taken from NCBI). 

 

The above figure shows a typical database output on a gene search for hsp90α on 

NCBI. 

A nucleotide search was also carried out using NCBI to obtain specific nucleotide 

information as seen in Figure 3.7. 
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Figure 3.7: Complete sequence of mRNA sequence of Hsp90α. (Taken from NCBI) 

 

 

The above figure shows a typical mRNA sequence for hsp90α taken from NCBI. 

 

 

 

 

 



[110] 
 

 

For qRT-PCR, primers for hsp90α and GAPDH were selected by using Primer3 Plus 

software. The sequence obtained from NCBI (Fig. 3.7) was pasted onto the Primer3 

Plus homepage and the output file generated a main set of left and right primers and 

several sets of alternate primers.  The output also indicated the alignment of the 

primers on the sequence, amplicon size, GC content and recommended annealing 

temperatures as seen in Figure 3.8. 

 

Figure 3.8: The output file of Primer3 Plus provides an independent set of left and right 
primer and also shows the alignment of the primer on the sequence. (Taken from Primer3 
Plus) 

 

The set of primers of the desired gene of interest were then used to measure the gene 

expression using qRT-PCR. 
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Table 3.1: The hsp90α and GAPDH primers [designed using Primer3 software and commercially synthesised by TIB MOLBIOL syntheselabor (Berlin, 
Germany)] used in qRT-PCR. 
 

 

* GC / AT rule: A method of calculating the primer annealing temperature using the formula: T = 2o (A + T) + 4o (G + C), where A, C, G and T represent 
the number of adenine, cytosine, guanine and thymine bases respectively in the primer sequence concerned.

 

Gene 

 

Primer Sequences 

 

Annealing Temperature (oC) 

Expected 

amplicon 

size 

(bp) 

  Primer3 TIB 

MOLBIOL 

GC / AT 

rule* 

Experimental 

temperature 

 

hsp90α Sense: 5’ – TCTGGAAGATCCCCAGACAC – 3’ 

Antisense: 5’ – AGTCATCCCTCAGCCAGAGA – 3’ 

60.00 

59.90 

55.40 

55.60 

62.00 

62.00 

63 189 

GAPDH Sense: 5' - GAGTCAACGGATTTGGTCGT - 3' 

Antisense: 5' - TTGATTTTGGAGGGATCTCG - 3' 

59.97 

60.01 

56.20 

54.80 

60.00 

58.00 

56 238 
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The shRNA oligonucleotides were blasted against Hsp90α mRNA transcript sequence 

using ClustalW2 software as seen in Figure 3.9. 

                       GACTGCGCAGGCGTGCTCACCTGGCGTGCTCCACCCGACTGGGCGTCCGCAGGCTCCTCC 60 

           --------------------------------------------------------                                                                       

           CCCGGGTGTGGCCTCCGGGCGGCATGGCTGCTTCCCAGGTGATGCCGGCTTCAGCTAGTG 120 

           -----------------------------------------------------------                                                                             

           GGGTCTAGTTGACCGTTCCGCAGCCGCCAGGGCCAGCGGAAAGCCGGTCAGGGGGAACCG 180 

           -----------------------------------------------------------                                                                             

           CGGCGGGGCTGGTGTCATGAGCCTGAGGTGAACTTGAGGGTGCCTCCTCAGCGGTCTCCC 240 

           ------------------------------------------------------------                                                                             

           GCCCTGCCCTGAGGGGCGCCGGGACCCCAAAGAGCGGAGGAAGAGCGCCACCCCGACGGC 300 

           ------------------------------------------------------------                                                                             

           CACCGCTTCGGAGCCAGCACGCGGGGTACCCTACGGGGAGCGCGGATGCCCCCGTGTTCG 360 

           ------------------------------------------------------------                                                                             

           GGCGGGGACGGCTCCACCCCTCCTGGGCCCTCCCTTCGGGACAGGGACTGTCCCGCCCAG 420 

           ------------------------------------------------------------                                                                             

           AGTGCTGAATACCCGCGCGACCGTCTGGATCCCCGCCCAGGAAGCCCCTCTGAAGCCTCC 480 

           ------------------------------------------------------------                                                                             

           TCGCCGCCGTTTCTGAGAAGCAGGGCACCTGTTAACTGGTACCAAGAAAAGGCCCAAGTG 540 

           ------------------------------------------------------------                                                                             

           TTTCTCTGGCATCTGATGGTGTCTGGATCCACCACTCTACTCTGTCTCTGGAAACAGCCC 600 

           ------------------------------------------------------------                                                                             

           TTCCACGTCTCTGCATTCCCTGTCACCGCGTCACTGGCCTTCAGACAGAGCCAAGGTGCA 660 

           ------------------------------------------------------------                                                                             

           GGGCAACACCTCTACAAGGATCTGCAGCCATTTATATTGCTTAGGCTACTGATGCCTGAG 720 

           ----------------------------------TATTGCTTAGGCTACTGATGCCTGAG  

                                              **************************                           

           GAAACCCAGACCCAAGACCAACCGATGGAGGAGGAGGAGGTTGAGACGTTCGCCTTTCAG 780 

           GAA--------------------------------------------------------- 

           *** shRNA construct 1                                                            

           GCAGAAATTGCCCAGTTGATGTCATTGATCATCAATACTTTCTACTCGAACAAAGAGATC 840 

           ------------------------------------------------------------                                                                             

           TTTCTGAGAGAGCTCATTTCAAATTCATCAGATGCATTGGACAAAATCCGGTATGAAAGC 900 

           ------------------------------------------------------------                                                                             

           TTGACAGATCCCAGTAAATTAGACTCTGGGAAAGAGCTGCATATTAACCTTATACCGAAC 960 

           ------------------------------------------------------------                                                                             

           AAACAAGATCGAACTCTCACTATTGTGGATACTGGAATTGGAATGACCAAGGCTGACTTG 1020 

           ------------------------------------------------------------                                                                             

           ATCAATAACCTTGGTACTATCGCCAAGTCTGGGACCAAAGCGTTCATGGAAGCTTTGCAG 1080 

           ------------------------------------------------------------                                                                             

           GCTGGTGCAGATATCTCTATGATTGGCCAGTTCGGTGTTGGTTTTTATTCTGCTTATTTG 1140 

           ------------------------------------------------------------                                                                             

           GTTGCTGAGAAAGTAACTGTGATCACCAAACATAACGATGATGAGCAGTACGCTTGGGAG 1200 

           ------------------------------------------------------------                                                                             

           TCCTCAGCAGGGGGATCATTCACAGTGAGGACAGACACAGGTGAACCTATGGGTCGTGGA 1260 

           ------------------------------------------------------------                                                                             

           ACAAAAGTTATCCTACACCTGAAAGAAGACCAAACTGAGTACTTGGAGGAACGAAGAATA 1320 

           ------------------------------------------------------------                                                                            

           AAGGAGATTGTGAAGAAACATTCTCAGTTTATTGGATATCCCATTACTCTTTTTGTGGAG 1380 

           ------------------------------------------------------------                                                                                                            

           AAGGAACGTGATAAAGAAGTAAGCGATGATGAGGCTGAAGAAAAGGAAGACAAAGAAGAA 1440 

           ------------------------------------------------------------                                                                       

           GAAAAAGAAAAAGAAGAGAAAGAGTCGGAAGACAAACCTGAAATTGAAGATGTTGGTTCT 1500 

           ------------------------------------------------------------                                                                             

           GATGAGGAAGAAGAAAAGAAGGATGGTGACAAGAAGAAGAAGAAGAAGATTAAGGAAAAG 1560 

           -----------------------------------------------------------                                                                             

           TACATCGATCAAGAAGAGCTCAACAAAACAAAGCCCATCTGGACCAGAAATCCCGACGAT 1620 

           ------------------------------------------------------------                                                                             

           ATTACTAATGAGGAGTACGGAGAATTCTATAAGAGCTTGACCAATGACTGGGAAGATCAC 1680 

           ------------------------------------------------------------                                                                             

           TTGGCAGTGAAGCATTTTTCAGTTGAAGGACAGTTGGAATTCAGAGCCCTTCTATTTGTC 1740 

           ------------------------------------------------------------                                                                             
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           CCACGACGTGCTCCTTTTGATCTGTTTGAAAACAGAAAGAAAAAGAACAACATCAAATTG 1800 

           ------------------------------------------------------------                                                                             

           TATGTACGCAGAGTTTTCATCATGGATAACTGTGAGGAGCTAATCCCTGAATATCTGAAC 1860 

           ------------------------------------------------------------                                                                             

           TTCATTAGAGGGGTGGTAGACTCGGAGGATCTCCCTCTAAACATATCCCGTGAGATGTTG 1920 

           ------------------------------------------------------------                                                                             

           CAACAAAGCAAAATTTTGAAAGTTATCAGGAAGAATTTGGTCAAAAAATGCTTAGAACTC 1980 

           ------------------------------------------------------------                                                                             

           TTTACTGAACTGGCGGAAGATAAAGAGAACTACAAGAAATTCTATGAGCAGTTCTCTAAA 2040 

           ------------------------------------------------------------                                                                             

           AACATAAAGCTTGGAATACACGAAGACTCTCAAAATCGGAAGAAGCTTTCAGAGCTGTTA 2100 

           ------------------------------------------------------------                                                                             

           AGGTACTACACATCTGCCTCTGGTGATGAGATGGTTTCTCTCAAGGACTACTGCACCAGA 2160 

           -------------------------------------CTCTCAAGGACTACTGCACCAGA  

                                               ***********************                        

           ATGAAGGAGAACCAGAAACATATCTATTATATCACAGGTGAGACCAAGGACCAGGTAGCT 2220 

           ATGAAG------------------------------------------------------ 

           ****** shRNA construct 2                                                             

           AACTCAGCCTTTGTGGAACGTCTTCGGAAACATGGCTTAGAAGTGATCTATATGATTGAG 2280 

           ------------------------------------------------------------                                                                            

           CCCATTGATGAGTACTGTGTCCAACAGCTGAAGGAATTTGAGGGGAAGACTTTAGTGTCA 2340 

           ------------------------------------------------------------                                                                            

           GTCACCAAAGAAGGCCTGGAACTTCCAGAGGATGAAGAAGAGAAAAAGAAGCAGGAAGAG 2400 

           ------------------------------------------------------------            

           AAAAAAACAAAGTTTGAGAACCTCTGCAAAATCATGAAAGACATATTGGAGAAAAAAGTT 2460 

           ------------------------------------------------------------                                                                               

           GAAAAGGTGGTTGTGTCAAACCGATTGGTGACATCTCCATGCTGTATTGTCACAAGCACA 2520 

           ------------------------------------------------------------                                                                             

           TATGGCTGGACAGCAAACATGGAGAGAATCATGAAAGCTCAAGCCCTAAGAGACAACTCA 2580 

           ------------------------------------------------------------                                                                             

           ACAATGGGTTACATGGCAGCAAAGAAACACCTGGAGATAAACCCTGACCATTCCATTATT 2640 

           ------------------------------------------------------------                                                                             

           GAGACCTTAAGGCAAAAGGCAGAGGCTGATAAGAACGACAAGTCTGTGAAGGATCTGGTC 2700 

           -----------------------GGCTGATAAGAACGACAAGTCTGTGAAGG-------- 

            shRNA construct 3     *****************************                                       

           ATCTTGCTTTATGAAACTGCGCTCCTGTCTTCTGGCTTCAGTCTGGAAGATCCCCAGACA 2760 

           ------------------------------------------------------------                                                                             

           CATGCTAACAGGATCTACAGGATGATCAAACTTGGTCTGGGTATTGATGAAGATGACCCT 2820 

           ------------------------------------------------------------                                                                             

           ACTGCTGATGATACCAGTGCTGCTGTAACTGAAGAAATGCCACCCCTTGAAGGAGATGAC 2880 



                                     shRNA construct 4  *************** 

           GACACATCACGCATGGAAGAAGTAGACTAATCTCTGGCTGAGGGATGACTTACCTGTTCA 2940 

           GACACATCACGCAT---------------------------------------------- 29 

           **************                                               

           GTACTCTACAATTCCTCTGATAATATATTTTCAAGGATGTTTTTCTTTATTTTTGTTAAT 3000 

           ------------------------------------------------------------                                                                             

           ATTAAAAAGTCTGTATGGCATGACAACTACTTTAAGGGGAAGATAAGATTTCTGTCTACT 3060 

           ------------------------------------------------------------                                                                             

           AAGTGATGCTGTGATACCTTAGGCACTAAAGCAGAGCTAGTAATGCTTTTTGAGTTTCAT 3120 

           ------------------------------------------------------------                                                                             

           GTTGGTTTATTTTCACAGATTGGGGTAACGTGCACTGTAAGACGTATGTAACATGATGTT 3180 

           ------------------------------------------------------------                                                                             

           AACTTTGTGGTCTAAAGTGTTTAGCTGTCAAGCCGGATGCCTAAGTAGACCAAATCTTGT 3240 

           ------------------------------------------------------------                                                                             

           TATTGAAGTGTTCTGAGCTGTATCTTGATGTTTAGAAAAGTATTCGTTACATCTTGTAGG 3300 

           ------------------------------------------------------------                                                                             

           ATCTACTTTTTGAACTTTTCATTCCCTGTAGTTGACAATTCTGCATGTACTAGTCCTCTA 3360 

           ------------------------------------------------------------                                                                             

           GAAATAGGTTAAACTGAAGCAACTTGATGGAAGGATCTCTCCACAGGGCTTGTTTTCCAA 3420 

          ------------------------------------------------------------                                                                             

          AGAAAAGTATTGTTTGGAGGAGCAAAGTTAAAAGCCTACCTAAGCATATCGTAAAGCTGT 3480 

          ------------------------------------------------------------                                                                             

          TCAAAAATAACTCAGACCCAGTCTTGTGGATGGAAATGTAGTGCTCGAGTCACATTCTGC 3540 

          ------------------------------------------------------------                                                                             

          TTAAAGTTGTAACAAATACAGATGAGTTAAAAGATATTGTGTGACAGTGTCTTATTTAGG 3600 

          ------------------------------------------------------------                                                                             

          GGGAAAGGGGAGTATCTGGATGACAGTTAGTGCCAAAATGTAAAACATGAGGCGCTAGCA 3660 
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          ------------------------------------------------------------                                                                             

          GGAGATGGTTAAACACTAGCTGCTCCAAGGGTTGACATGGTCTTCCCAGCATGTACTCAG 3720 

          ------------------------------------------------------------                                                                             

          CAGGTGTGGGGTGGAGCACACGTAGGCACAGAAAACAGGAATGCAGACAACATGCATCCC 3780 

          ------------------------------------------------------------                                                                             

          CTGCGTCCATGAGTTACATGTGTTCTCTTAGTGTCCACGTTGTTTTGATGTTATTCATGG 3840 

          ------------------------------------------------------------                                                                             

          AATACCTTCTGTGTTAAATACAGTCACTTAATTCCTTGGCCTTAAAA 3887 

 

          ----------------------------------------------- 

Figure 3.9: shRNA oligonucleotides against Hsp90α mRNA transcript. Accessed on 
http://www.ebi.ac.uk/Tools/clustalw2/index.html 

 

3.4.2 Puromycin: 

Cells treated with puromycin (0.2 – 1 μg/ml) showed decreased viability as the 

concentration of the drug increased (Fig. 3.10) 

 

Figure 3.10: Cell viability assessment of 1321N1, GOS-3 and U87-MG with increasing 
concentrations of puromycin (0.2 – 1 μg/ml). Data values are mean ± standard error of the 
mean, n = 3.  

 

http://www.ebi.ac.uk/Tools/clustalw2/index.html
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The half maximal inhibitory rate (IC50) for puromycin was achieved at a concentration 

of 0.5 μg/ml in all three glioma cell lines. 

3.4.3 mRNA, cDNA and qRT-PCR: 

Spectrophotometry was carried out on the extracted mRNA for checking the purity and 

quantification of the mRNA. Depending on the spectrophotmetry readings the 

concentration of mRNA varies which determined the quantity of mRNA required for 

converting it to cDNA. The absorbance was measured at 260 nm and 280 nm and the 

concentration of mRNA present in each cell line was calculated. Table 3.2 lists an 

example of the spectrophotometry results obtained for 1321N1, GOS-3 and U87-MG. 

Table 3.2: Spectrophotometry reading for three glioma cell lines. Data are mean ± standard 
deviation, n = 3, *p < 0.05 and **p < 0.001 are considered significant. 

Cell Lines Ratio (A260/A280) 

mRNA 

concentrations 

(µg/ml) 

1321N1 1.75 52 ± 2.8 

GOS-3 1.86       70 ± 2.5    ** 

U87-MG 1.75 50 ± 1.5 

 

The data show a significant decrease in GOS-3 cell line compared to 1321N1 and    

U87-MG cell line with **p < 0.01. 
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The isolated mRNA was analyzed using an alkaline gel electrophoresis. 

 

Figure 3.11: Alkaline gel electrophoresis mRNA isolated from glioma cell lines. 

Lanes 1-3 represent 2μl of mRNA isolated from 1321N1, U87-MG, GOS-3, respectively ran on a 
denaturing alkaline agarose gel (2 %). Micrograph of gel is typical of 3 such different 
experiments. 

 

 

Post successful isolation of mRNA, 100 ng of mRNA was reverse transcribed into cDNA 

and real time PCR was performed quantitatively to measure the expression of hsp90α 

and the housekeeping gene GAPDH. hsp90α was found to be present in all the three 

cell lines (Fig. 3.12), the highest expression was observed in the 1321N1 cell line.  
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Figure 3.12: Gene expression of hsp90α and GAPDH in glioma cell lines. (A) Agarose gel 
electrophoresis: lane 1 represents the 100 bp molecular marker, lanes 2-4 represents 1321N1, 
GOS-3 and U87-MG, respectively, and lane 5 represents negative control (primer with no 
cDNA). (B) The respective mean values ± standard error of the copy number of hsp90α and 
GAPDH gene expressed in each cell line were included (obtained from 3 independent 
experiments, n = 3). *p < 0.05 and **p < 0.01 are considered statistically significant. The gel 
micrograph in A are typical of 3 such different experiments. Regarding Hsp90α expression,   
**p < 0.001 for 1321N1 compared to GOS-3 and U87-MG cell lines. 
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The qRT-PCR product analysis demonstrated induced expression of hsp90α in all three 

glioma cell lines. GAPDH, which is a housekeeping gene, was consistently expressed in 

all the three glioma cell lines and was used as a control in this study.  

The cells were transfected with shRNA constructs targeted against hsp90α and post 48 

hours were analysed for gene expression. 100 ng of mRNA was reverse transcribed to 

cDNA and real time PCR was performed quantitatively to measure the expression of 

hsp90α and GAPDH (Fig. 3.14).  

As observed below, hsp90α is best silenced by using shRNA construct 2 (Fig. 3.9 and         

Fig. 3.13) and there is almost a 99 % decrease in the gene expression (Fig. 3.14). 

                      A    A  

                G    G  

 5’-CTCTCAAGGACTACTGCACCAGAATGAAG 

 3’-GAGAGTTCCTGATGACGTGGTCTTACTTC 

                              G    C 

                                                A    A  

  (TARGET mRNA SEQUENCE 2137-2166 bp) 

Figure 3.13: shRNA construct 2. The sequence of shRNA construct further used in the study to 

silence hsp90α.  
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Figure 3.14 Contd. 
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Figure 3.14 Contd. 

 

Figure 3.14: Gene expression of hsp90α and GAPDH in glioma cell lines treated with shRNA constructs. (A) Agarose gel electrophoresis: lane 1 represents 100 bp 
molecular size markers, lane 2-8 stands for shRNA construct 1, shRNA construct 2, shRNA construct 3, shRNA construct 4, shRNA negative control, shRNA scramble 
control and untreated cells, respectively. Lane 9 represents negative control (primer with no cDNA). (B) Copy numbers of hsp90α and GAPDH expression in glioma 
cell lines. Data values are mean ± standard error, n = 3, *p < 0.05 and **p < 0.001 are considered statistically significant. The gel micrograph in A are typical of 3 
such different experiments.
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Regarding hsp90α expression, **p < 0.01 for shRNA construct 2 compared to the other 

shRNA constructs in all three cell lines and thus it was statistically significant. Thus, 

shRNA construct 2 works better than the other constructs in silencing hsp90α and 

hence, it was used throughout the study.  

 

3.4.4 Akt/PKB Kinase activity assay: 

Commercially available Akt/PKB kinase activity assay kit (Assay Designs, UK) was used 

to measure the activity of Akt/PKB kinase in treated and untreated glioma cell lines 

(Fig. 3.15 and Table 3.3).  

 

Figure 3.15: Standard graph for Akt/PKB Kinase activity assay. The standard graph was 
plotted with the active Akt/PKB provided. The equation for the graph was used to calculate the 
values of the samples based on their absorbance. This graph is typical of three such different 
experiments. Data are mean ± standard deviation, n = 3. 
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The kinase activity was calculated as: 

Considering untreated 1321N1, the absorbance of the sample was = 1.838 nm, which 

was later substituted in the equation of the standard (y = 0.1908 x + 0.056).  

Therefore, the kinase activity level for 1321N1 = 9.04 ng 

The samples were diluted in the kinase buffer and subsequently the dilution factor for 

untreated 1321N1 sample = 78.95. 

Thereby, the resulting kinase activity in 1321N1 control cells was calculated to be 

713.30 ng (Table 3.3).  

Table 3.3: Determination of kinase activity according to Akt/PKB Kinase Activity Assay Kit 
Data values are mean ± standard deviation, n = 3, *p < 0.05 and **p < 0.001 are considered to 
be statistically significant.  

Samples 

Kinase activity for 1 ug 

Protein (ng) 

1321N1 713.71 ± 2.5 

1321N1-shRNA hsp90α 2     244.19 ± 1.7 ** 

GOS-3 149.80 ± 1.3 

GOS-3-shRNA hsp90α 2 61.80 ± 1 ** 

U87-MG 367.89 ± 1.9 

U87-MG-shRNA hsp90α 2      141.20 ± 1.7 ** 

 

Upon statisitical analysis, **p < 0.001 for treated cells compared to untreated cells in 

each cell line showing significant decrease in Akt kinase activity post hsp90α inhibition 

using shRNA construct 2. 
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3.5 DISCUSSION: 

Hsp90 and its involvement in tumours have made it an attractive molecular target for 

cancer treatment by gene therapy. Hsp90 chaperones a vivid list of client proteins, 

several of which have been involved in apoptosis, cell survival and growth pathways 

(Chiosis et al., 2004). Recent studies in our laboratory have deduced the presence of 

the inducible Hsp90α protein and gene in glioma cell lines and tissue and its absence in 

normal cells and tissues (Shervington et al., 2008). Further, hsp90α was downregulated 

in glioma cell lines using siRNA targeted against hsp90α and the sensitivity of the cells 

to chemotherapeutic agents was confirmed. It was reported that, inhibition of hsp90α 

using siRNA could possibly be adopted as a favourable therapeutic approach compared 

to conventional therapies owing to its specificity and reduced toxicity and also due to 

the enhanced chemosensitivity attained (Cruickshanks et al., 2010).  

Given the advantages of shRNA over siRNA, this study used shRNA to target hsp90α in 

glioma as opposed to the previous work (Cruickshanks et al., 2010). hsp90α was highly 

induced in three glioma cell lines. These results are in agreement with similar previous 

studies by Shervington et al., (2008) with GAPDH being consistently expressed. Pre-

transfection with shRNA oligonucleotide the IC50 of puromycin in all three glioma cell 

lines was carried out in the study. The shRNA plasmids have a puromycin-N-acetyl 

transferase gene located downstream of the SV40 early promoter, thus transfecting 

the cells with shRNA plasmids which in turn resulted in them being resistant to 

antibiotic puromycin. The IC50 of puromycin for glioma cell lines was approximately   

0.5 μg/ml and post transfection with shRNA plasmids, a selection pressure was 

maintained by adding 0.5 μg/ml of puromycin to the transfected cells. This was carried 
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out to selectively isolate the cells transfected with the plasmid from the cohort of cells. 

Yadav et al., in (2009) transfected human shRNA knockdown retroviral construct 

targeted against ANXA7 in GBM cell lines, U87 and LN229 cell lines followed by 1 μg/ml 

of puromycin selection. Similarly, in another study, U87 and a mouse embryonic 

fibroblast (NIH-3T3) cell lines were transfected with Marburg virus (MBG) pseudotypes 

carrying a human immunodeficiency virus (HIV-1) vector containing a puromycin 

resistant gene. The IC50 level of puromycin was found to be 1 μg/ml for the cell lines 

used in the study (Chan et al., 2000). This difference in the IC50 level of puromycin for 

glioma cell lines could be attributed to different experimental conditions.  

Post-treatment with shRNA oligonucleotides, mRNA was isolated from the three 

glioma cell lines after 48 hours of transfection. It was subsequently converted into 

cDNA and then was quantified using RT-PCR. Upon analysis, it was found that post-

treatment with shRNA oligonucleotides, the hsp90α expression level was reduced 

significantly (*p < 0.05) with all the four shRNA constructs reducing the expression of 

hsp90α in glioma cell lines. Interestingly, amidst the four constructs, shRNA construct 2 

silences hsp90α almost by 99 % compared to untreated cells (**p < 0.001). This was in 

accordance to the company’s product specification (www.origene.com) which 

guaranteed at least one of the four constructs to inhibit the expression gene of 

interest (hsp90α) by > 90 %. Additionally, to rule out the potential non-specific effects 

induced by the shRNA oligonucleotides driven against hsp90α, the study used two sets 

of controls namely shRNA negative oligonucleotide (cloning plasmid) control. This is a 

purified and sequence verified plasmid construct without the shRNA cassette and 

shRNA scramble oligonucleotide (shGFP (29) non-effective plasmid) which was 

constructed by cloning a non-effective shGFP sequence cassette into the plasmid 

http://www.origene.com/
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vector. As expected, the controls, shRNA negative and shRNA scramble did not affect 

hsp90α expression and GAPDH was found to be expressed consistently in the samples. 

It can thus be speculated that on genomic front, shRNA targeted against hsp90α works 

efficiently by reducing the activity of Hsp90α in all three glioma cell lines used in the 

study. In another study hsp90α was subjected to inhibition in breast cancer cell lines 

MCF7 and T47D with >30 shRNA constructs designed against hsp90α. It was reported 

that only one construct (sh11) was capable of reducing Hsp90α expression by 

approximately 80 % (Srirangam et al., 2006). 

The level of Akt/PKB kinase, which is a client protein to Hsp90, was also checked. 

Akt/PKB kinase plays a major role in the anti-apoptotic pathway, however, in tumours, 

including glioma it stimulates cell proliferation and inhibits apoptosis, thus 

empowering the cancer cells the property of “immortality” (Basso et al., 2002). The Akt 

protein is directly regulated by Hsp90. Commercially available Akt/PKB kinase activity 

assay kit (Assay Designs, UK) was used to measure the activity of Akt/PKB kinase in 

glioma cell lines. The Akt/PKB kinase activity levels significantly decreased                   

(**p < 0.001) by 65.8 %, 58.8 % and 61.7 % in 1321N1, GOS-3 and U87-MG treated cell 

lines, respectively, showing inactive Akt/PKB kinase in glioma cell lines thus, confirming 

the silencing of hsp90α. This reduced activity of Akt/PKB kinase is of therapeutic 

importance in glioma therapy. Furthermore, a report in 2010 suggested that silencing 

Hsp90 using deoxycholate, downregulates Akt pathway in a dose-dependent manner 

in human gastric epithelial cells with almost complete inhibition of Akt at a 

concentration of 100 μM deoxycholate (Redlak and Miller, 2010). 
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3.6 CONCLUSION: 

Previous studies in our laboratory (Cruickshanks et al., 2010; Shervington et al., 2008) 

have shown that inhibition of hsp90α in glioma could be used as a future therapeutic 

approach. In this study, it can be concluded that shRNA works efficiently to silence 

hsp90α in glioma cell lines at a genetic level. Furthermore, it can also be stated that by 

using shRNA targeted against hsp90α, a significant reduction profile of the Akt/PKB 

kinase activity is observed. Given the role of Akt/PKB kinase, this may suggest that the 

glioma cells used in this study are no longer “immortal” and could thereby undergo 

apoptosis, which is of therapeutic importance. Thus, silencing of hsp90α using shRNA 

targeted against it could be used as a future therapeutic option in glioma studies.  
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4.1 INTRODUCTION: 

Gliomas are the most commonly diagnosed malignant adult primary brain tumours 

with a median survival rate for glioblastoma multiforme of 12 to 15 months. Treatment 

options include surgical resection followed by adjuvant radiotherapy and 

chemotherapy (Stupp et al., 2006). Despite technical advances, the prognosis and 

survival rate for gliomas is very poor. This demands alternative therapeutic aspects in 

the treatment of gliomas (Fulda et al., 2002). Heat shock protein Hsp90 is upregulated 

in several tumours including glioma and thus, targeting its function may provide new 

therapeutic aspects (Shervington et al., 2008; Altieri, 2004). The heat shock protein 90 

(Hsp90) is a highly conserved molecular chaperone present in eukaryotic cytosol and it 

has been proposed to play a vital role in tumorigenesis, maintenance of 

transformation and regulation of several key proteins involved in apoptosis, survival 

and growth pathways (Neckers, 2007). These pathways are exploited in tumours 

where Hsp90 chaperoning contributes towards drug resistance (Cowen and Lindquist, 

2005), metastasis (Eustace et al., 2004) and cell survival (Rodina et al., 2007). Hsp90 is 

abundantly present both intracellularly and extracellularly in eukaryotic cells and has 

extensive influence on various cellular activities (Sreedhar et al., 2004; Richter and 

Buchner, 2001). The chaperoning function of Hsp90 is critical not only for normal cells 

but for transformed cells since it facilitates cell growth and cell cycle progression and 

thus, helps in their survival (Altieri, 2004). Hsp90 assists functional maturation for a 

diverse group of proteins particularly those involved in signalling pathways in several 

tumours (Picard, 2002). For an example, Hsp90 stabilizes Akt/PKB kinase and also 

oncogenic forms of mutant epidermal growth factor receptor (EGFR) both of which are 

responsible for the growth of several tumours including gliomas (Basso et al., 2002; 
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Lavictoire et al., 2003). The syntheses of several natural and chemical inhibitors along 

with RNAi using siRNA or shRNA to silence hsp90 have been undertaken.  

Bensoquinone ansamycins were the first class of natural Hsp90 inhibitors to be studied 

and then subsequently used for tumour therapy (Workman et al., 2007). 

Benzoquinone ansamycins are antibiotics, characterized by the linkage of a quinone 

moiety to the planar macrocyclic ansa bridge structure (Messaoudi et al., 2008). 

Glendanamycin (GA) was the first prototype of the class of Bezoquinone ansamycins. It 

was purified from the broth of Streptomyces hygroscopicus as early as 1970 (Solit and 

Rosen, 2006). The structural and biochemical analysis showed GA to compete against 

ATP in binding to the Hsp90 N terminal pocket (Roe et al., 1999). Binding of GA to the 

N terminal pocket of Hsp90 restricts Hsp90 to remain in its ADP bound state and, thus, 

subsequently prevents Hsp90 binding to other client proteins (Blagg and Kerr, 2006; 

Neckers, 2006) resulting in degradation of the client proteins via the ubiquitin-

proteasome pathway (Mimnaugh et al., 1996; Sharp and Workman, 2006; Whitesell 

and Lindquist, 2005). Although GA displayed potential anti-cancer activities, it was not 

seen as a prominent candidate due to the high levels of toxicity displayed in animal 

models (Neckers et al., 1999). This demanded the search for GA derivates with lower 

toxicity profiles. 17-allylamino-17-desmethoxygeldanamycin (17AAG) and more 

recently 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) and                

17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504) were 

therefore synthesized for further evaluation (Fig. 4.1) (Pacey et al., 2006; Workman et 

al., 2007). 

 



[130] 
 

 

 

Figure 4.1: Chemical structures of GA and its derivates (Adapted from Messaoudi et al., 2008).  

 

 

17AAG, an analogue of GA is less toxic and has the same mechanism of action to 

inhibit Hsp90 (Fig. 4.2) (Workman et al., 2007) 
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Figure 4.2: Hsp90 chaperone cycle. The client proteins bind to the Hsp70-Hsp40 early complex 
which then interacts with Hsp90 complex via HOP. Hydrolysis of ATP releases Hsp70-Hsp40 
and HOP from the intermediate complex. The mature protein complex is formed by the 
association of Hsp90 along with its co-chaperons namely cdc37 p23 and/or client proteins. 
17AAG blocks the formation of mature complex by actively binding to the ATP binding site of 
the Hsp90 protein leading to degradation of the client proteins via the ubiquitin proteasome 
pathway. (Adapted from Fukuyo et al., 2010) 

 

 

17AAG was the first Hsp90 inhibitor to enter phase I clinical trials in 1999 (Banerji et 

al., 2005; Pacey et al., 2006). Clinical trials were carried out on patients with advanced 

tumours including metastatic prostate, melanoma, lung, colon, pancreatic, head and 

neck, ovarian and breast cancers (Goetz et al., 2005; Grem et al., 2005; Solit et al., 

2007; Weigel et al., 2007; Heath et al., 2008; Solit et al., 2008). Phase II clinical trials for 

17AAG are currently ongoing (Heath et al., 2005; Ronnen et al., 2006).  In 2007, Modi 
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and his colleagues, successfully administered 17AAG in combination with trastuzumab 

in patients with breast cancer whose tumours had progressed during treatment with 

trastuzumab alone. It was found that a combination of trastuzumab and 17AAG was 

well tolerated in patients and has antitumour activity (Modi et al., 2007).  

The ability of Hsp90 inhibitors to target several signal transduction pathways involved 

in proliferation and cell survival is of therapeutic importance in gliomas due to complex 

etiology of brain tumours (Siegelin et al., 2009). Additionally, the lipophilic nature of 

17AAG enables it to penetrate through the blood brain barrier making it an ideal 

candidate for the treatment of gliomas (Siegelin et al., 2009).  

 

4.1.1 Hsp90 and Proteomic Studies:  

Genomic studies are edifying, however, they do not necessarily reveal the true picture 

of the condition of the cell. The levels of mRNA do not necessarily correlate with the 

cellular protein content as proteins often undergo proteolytic cleavage, alternative 

splicing and/or other post-translational modifications such as phosphorylation or 

glycosylation (Walsh et al., 2005). Proteome are proteins that are expressed in the cell 

in a particular condition at a particular time. Cancer proteome is estimated to be made 

of approximately 1.5 million proteins (Khalil and Madhamshetty, 2006; Alaoui-Jamali 

and Xu, 2006; Sun et al., 2007). Contrasting to the genome, the proteome is dynamic 

and in a state of unrest (Srinivas et al., 2002). Thus, it can be said that, genomic studies 

alone would not unravel the fate of Hsp90; in order to study the various regulatory and 

downstream effects and to determine the changes in the cell proteome at that instant 

in time, proteomic studies have to be carried out (Thakkar and Shervington, 2008).  
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Proteomic studies carried out on cervical cancer cells taken from Henrietta Lacks 

(HeLa) identified Hsp90 binding proteins which accumulated as ubiquityl tagged 

aggregates, post Hsp90 silencing (Falsone et al., 2007). HeLa cells were treated with a 

proteosomal inhibitor MG132 and then Hsp90 was silenced by treating the cells with 

radicicol. Post 16 hours detergent insoluble fractions were prepared and resolved on 2 

dimensional gel electrophoresis (2-DE) gel. Of the 78 proteins identified, 48 proteins 

were ubiquitylated of which 30 proteins were previously unreported to be 

ubiquitylated in humans suggesting a significant effect of Hsp90 inhibition. 

Furthermore, a prominent degradation of proteins involved in signal transduction, 

transcription, metabolism and metabolic biosynthesis was observed post treatment 

with radicicol. These results suggest a multiple circuit breakdown of multiple networks 

post Hsp90 inhibition (Falsone et al., 2007).   

A study in 2009 applied three complementary proteomics approaches 

(coimmunoprecipitation, purifying Hsp90 protein complexes with biotinylated Hsp90 

inhibitor geldanamycin and immobilization of Hsp90β on sepharose) in human 

epidermoid carcinoma cells A431 to identify novel protein interactors of Hsp90. This 

study helped to increase current knowledge regarding Hsp90 interactors by identifying 

42 proteins of which 18 proteins had not been characterized previously as Hsp90 

interactors   (Tsaytler et al., 2009).  

It can be clearly observed that proteomic studies on Hsp90 shed light on Hsp90’s role 

in regulating several signalling cascades in tumours (Falsone et al., 2007). Additionally, 

proteomic studies have helped expand our awareness of an ever increasing number of 

Hsp90 client proteins and provide further steps in understanding the Hsp90 chaperone 

system (Tsaytler et al., 2009).  

http://en.wikipedia.org/wiki/Cervical_cancer
http://en.wikipedia.org/wiki/Henrietta_Lacks
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Proteomic studies can therefore: 

1. Shed light on downstream effects of Hsp90 silencing in the various biological 

processes.  

2. Identify novel Hsp90 interactors and thereby further help understand the 

Hsp90 chaperone system. 

3. Highlight post translational changes which were earlier not detected by 

genomic studies. 

 

4.1.2 Summary: 

U87-MG glioma cell line represents grade IV glioblastoma which is the most severe 

form of glioma and hence, would be used for further analysis. This study looks into 

Hsp90 inhibition with: 

a) 17AAG, an analogue of GA and a potent Hsp90 inhibitor 

  and  

       b) shRNA oligonucleotide targeted against hsp90α 

 (sense: 5’CTCTCAAGGACTACTGCACCAGAATGAAG3’                                                       

antisense: 5’GAGAGTTCCTGATGACGTGGTCTTACTTC3’) 

Post inhibition with 17AAG or shRNA (hsp90α), proteins were extracted from the    

U87-MG cell lysate and further sent to Applied Biomics, U.S.A to characterize the 

changes made due to inhibition of Hsp90 by a differential proteomic analysis. The 

protein expressed in wild type U87-MG cells (control) were compared to the proteins 

expressed in U87-MG cells after silencing hsp90α (U87-MG-shhsp90α) and the proteins 

expressed in U87-MG cells, post 17AAG treatment (U87-MG-17AAG). Additionally, the 

inhibition was compared by studying the protein level of Hsp90α in control and treated 
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cells using fluorescence-activated cell sorting (FACS) analysis (quantitative) with a flow 

cytometer. Furthermore, the Akt/PKB kinase activity levels were checked using the 

Akt/PKB Kinase Activity Assay kit (Assay Designs, UK) and Hsp90α protein levels were 

also quantified in the control and treated cells using Hsp90α ELISA kit (Assay Designs, 

UK).  

This approach elucidates the changes caused in the Hsp90 chaperone system post 

inhibition using 17AAG or shRNA oligonucleotide targeting hsp90α in glioma. Though 

the significance of Hsp90’s glioma regulation has been well documented, the 

downstream effect of Hsp90 inhibition at the various physiological and signalling 

pathways in glioma is still ambiguous. Silencing hsp90α at the genetic level (shRNA) 

and at the protein level (17AAG) to identify potential downstream pathways and 

protein affected and/or controlled by Hsp90 in glioma is a novel approach. Therefore, 

this study aims to silence Hsp90 either by using 17AAG or shRNA targeting hsp90α and 

tries to identify the potential downstream pathways and proteins affected by Hsp90 in 

glioma. 
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4.2 PROTEOMICS: 

There are approximately 20,500 protein encoding genes in the human genome (Clamp 

et al., 2007) while close to a million protein products, including splice variants and 

essential post-translational modifications are present (Godovac et al., 1999).  

Proteomics is the study and characterization of complete sets of proteins present in a 

cell, organ or organism at a given point in time (Wilkins et al., 1996) and it displays 

patterns of several proteins being differentially regulated at one time point post 

different treatments (Whiteley, 2006). Proteomic studies helps to analyze            

protein-protein interaction, compare different protein expression analysis under 

different conditions and monitors post-translational modifications (Whiteley, 2006). 

Proteomic analysis involves the use of a combination of sophisticated analytical 

techniques such as 2D gel electrophoresis for protein separation; image analysis, mass 

spectrophotometric analysis and bioinformatics tools to quantify and characterize 

complex proteins (Chandramouli and Quian, 2009).  

Proteomic analysis for this study was carried out by Applied Biomics, U.S.A and an 

overview of the workflow is summarized in Figure 4.3.  

 

 

 

 

 

 

 

http://www.sage-hindawi.com/60723512.html
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Figure 4.3: Overview of proteomic strategies. (Adapted from Chandramouli and Quian, 2009). 
Methods used in this study are highlighted.  

 

4.2.1 Fluorescence difference gel electrophoresis (2D-DIGE): 

In the 2D-DIGE experiment, the samples are covalently labelled with different 

fluorescent cyanide (Cy) dyes. Later, the samples are migration matched to ensure the 

protein labelled with different dyes migrate to the same position on the gel. The 

control/untreated sample serves as internal standard which is subsequently used for 

normalization and spot matching enabling inter and intra gel analysis (Minden, 2007; 

http://www.sage-hindawi.com/60723512.html


[138] 
 

Loeffler-Ragg et al., 2008). The gel is then scanned using a fluorescence imager at 

specific wavelengths for Cy2 (488 nm), Cy3 (532 nm) and Cy5 (633 nm). The gel image 

for each of the different samples obtained is then merged and analyzed using imaging 

software to analyze different regulations among the proteins (Minden, 2007).  

Fully automated software such as DeCyder, which increases the accuracy of the DIGE, 

is specifically designed for 2D-DIGE analysis (Marouga et al., 2005). DeCyder being the 

only software to contain proprietary algorithms which helps in the co-detection of 

differently labelled samples within the same gel. It allows automated detection, 

background subtraction, normalization and inter-gel matching and spot picking 

(Marouga et al., 2005) which results in high output, minimum introduction of human 

error and high reproducibility (Fig. 4.4). 
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Figure 4.4: Typical workflow of 2D-DIGE using DeCyder (Adapted from Ettan DIGE user 
manual, 2002). Typical of one experiment based on cost. 

 

4.2.2 Mass spectrophotometry analysis: 

Protein identification is carried out by mass spectrophotometry (MS). A mass 

spectrophotometer consists of three major units namely, a) an ion source wherein 

proteins are ionized and gas phase ions are generated, b) a mass analyzer which 
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separates ions according to their mass to charge ratio and c) an ion detection system 

(Domon and Aebersold, 2006).  

In matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrophotometer, the samples of interest are crystallized with a chemical matrix 

which is mixed with the analyte and spotted on the MALDI plate reader. The molecules 

dissolve in their solvents (hydrophobic or hydrophilic) and then vaporize to leave a 

spreaded analyte in the recrystallized matrix. A nitrogen laser beam triggers the 

ionization of the samples. The matrix transfers some of its energy to the analyte when 

the light wavelength matches the absorbance maximum of the matrix and 

subsequently the analyte is released into the gas phase. MALDI measures the mass of 

peptides derived from the parent protein and generates a list of experimental peptide 

masses often referred as “mass fingerprints” (Vestling and Fenselau, 1994; 

Medzihradszky et al., 2000). 

 

4.2.3 Database search: 

Peptide masses derived from the mass spectrophotometer analysis are in correlation 

with peptide fingerprints of known proteins in a protein sequence database and are 

identified using search engines such as MASCOT, Sequest, Comet, X!tandem, MOWSE, 

PeptIdent-2 and Profound (Pappin et al., 1993; Mann et al., 1993; Yates et al., 1993; 

Colinge et al., 2003; Geer et al., 2004). These search engines provide a list of best 

matching peptide sequences for an individual tandem mass spectrum and also provide 

scores relating to the confidence level in the match. Each search engine has different 

algorithms and scoring functions and thereby do not provide identical results (Carr et 



[141] 
 

al., 2004; Bradshaw, 2005). This project used MASCOT search engine developed by 

Matric science.  

 

4.2.4 Ingenuity Patway Analysis (IPA): 

Knowledge-based software such as IPA (Ingenuity® Systems) was used to identify 

molecular functions and pathways relating to our dataset. The IPA system makes use 

of a knowledgebase derived from the literature to relate gene products based on their 

interaction and function. It helps to identify relationships, mechanisms, interaction 

networks, functions and global pathways of the proteins (Jimenez-Marin et al., 2009). 

IPA provides a platform where one can access information on genes and proteins 

implicated in tumour related processes and pathways generate hypothesis and 

discover new targets for tumour studies.  

Biofunctions are grouped into three categories in IPA; a) diseases and disorders           

b) molecular and cellular functions and c) physiological systems development and 

functions. The canonical pathways on the other hand are grouped in metabolic and 

signalling pathways. The identified proteins are mapped to the existing networks 

based on their score. Two parameters are considered for the identification of the 

significant pathways namely a) ratio of the number of proteins that map to pathways 

divided by the total number of proteins that map to the canonical pathway and b) the 

p-value calculated by Fisher’s exact test determines the association between the 

protein in the dataset and the canonical pathway (Skynner et al., 2006). 
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4.3 MATERIALS AND METHODS: 

As described in chapter 2, the U87-MG cell line was cultured as described in section 2.1 

of the study. The cells were treated with varying concentrations of 17AAG                 

(0.25 – 1.5 μM) for 48 hours as described in section 2.11. Hsp90α ELISA assay was 

carried out to quantify Hsp90α in the cell lysate as described in section 2.10. The levels 

of Hsp90α protein were quantified by FACS analysis using a Flow Cytometer as 

described in section 2.13. The Akt/PKB kinase activity was assayed using Akt/PKB 

Kinase Activity Assay Kit (Assay Designs, UK) as described in section 2.9. The cell cycle 

analysis was carried out on the control and treated samples as described in section 

2.12.  

4.3.1 Protein extraction for proteomic analysis: 

Proteins were extracted from the cell lysates of control and treated samples for 

proteomic analysis. 

1. Cell pellets were freshly collected and washed thrice with washing Buffer (10 

mM Tris-Hydrochloric acid (HCl), 5 mM magnesium acetate, pH 8.0) to remove 

culture medium. 

2. For 10 mg of cultured cell pellet, 200 µl of 2D cell lysis buffer (400 mM Tris, 

0.01 M EDTA; pH 8.3) was added.    

3. The mixture was later sonicated at 4 °C followed by shaking for 30 min at room 

temperature.  

4. The samples were centrifuged for 30 min at 14 x 103 rpm and the supernatant 

was collected.  

5. Protein concentration was calculated using Bio-Rad protein assay method. 
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4.3.2 Protein quantification: 

Bio-Rad protein assay based on Bradford method of protein quantification is a dye 

based assay which produces differential colour change based upon the protein 

concentration (Bradford, 1976). The dye reagent concentrate was purchased in a kit 

with BSA (Biorad, UK) which was used as a standard. 

1. Lyophilized BSA standards were reconstituted by adding 20 ml of deionized 

water and were mixed thoroughly until dissolved. 

2. The standard was aliquoted and stored at -20 °C when not used. 

3. The dye reagent was prepared by diluting 1 part dye reagent concentrate with 

4 parts of distilled deionized water and this was then filtered through  

Whatman #1 filter. 

4. The protein solution to be tested was prepared by pipetting 100 µl of each 

standard and sample solution into a clean and dry test tube.  

5. Diluted dye reagent (5 ml) was added to each tube. 

6. The tubes were vortexed and incubated at room temperature for at least 5 

min. 

7. The absorbance was measured at 595 nm using gamma thermo Helios 

spectrophotometer (Thermospectronics, UK). 

8. A standard curve was plotted and the value of the unknown protein was 

extrapolated (Fig 4.5). 

9. Each protein was assayed at least 2-3 times and the mean values taken. 

The protein samples from the control (wild type U87-MG cells) and treated cells (U87-

MG-shhsp90α and U87-MG-17AAG) were further sent to Applied Biomics, U.S.A for 

protein separation (2D-DIGE) and protein identification (MALDI-TOF). 
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Figure 4.5: Standard graph for protein quantification. The standard graph was plotted with 
the lyophilized BSA standard supplied. The equation of the graph was used to calculate the 
values of the samples based on their absorbance. This is typical of 3 such different 
experiments. Data are mean ± standard deviation, n = 3. 

 
 

4.3.4 Statistical Analysis 

As described in Chapter 2.  
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4.4 RESULTS: 

4.4.1 Cell viability using 17AAG: 

Varying concentrations of 17AAG (0.25 – 1.5 μM) were added to the U87-MG glioma 

cell line and then incubated for 48 hours to check the IC50 of 17AAG (Fig. 4.6). 

 

  
Figure 4.6: Cell viability assessment of U87-MG with increasing concentrations of 17AAG 
(0.25 – 1.5 μM). Data values are mean ± standard error, n = 3. 

 

 

The IC50 of 17AAG is 0.25 μM in case of the U87-MG glioma cell line. 
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4.4.2 Akt/PKB kinasae activity assay: 

Commercially available Akt/PKB kinase activity assay kit (Assay Designs, UK) was used 

to measure the activity of Akt/PKB kinase in the control (wild type U87-MG cells) and 

treated cells (U87-MG-shhsp90α and U87-MG-17AAG) (Table 4.1). The standard graph 

was plotted as shown in figure 3.15, in chapter 3 and the equation of the graph was 

used to calculate the values of the samples based on their absorbance.  

Table 4.1: Determination of kinase activity according to Akt/PKB Kinase Activity Assay Kit 
Data values are mean ± standard deviation, n=3, *p < 0.05 and **p < 0.001 are considered to 
be statistically significant.  

Samples 

Kinase activity for 1 ug 

Protein 

U87-MG (CONTROL) 234.51 ± 4 

U87-MG-17AAG      44.53 ± 0.1 ** 

U87-MG-shRNA hsp90α     95.16 ± 1.9 ** 

 

It can be clearly seen that the Akt/PKB kinase activity was significantly reduced upon 

inhibition of Hsp90 by 17AAG and shRNA oligonucleotide targeted against hsp90α. 

Moreover, statitisical analysis using Paired-Sample T-Test demonstrated  **p < 0.001 

for treated cells compared to untreated cells in U87-MG cell line showing significant 

decrease in Akt kinase activity post hsp90α inhibition using 17AAG and shhsp90α. Note 

that shhsp90α was less effective compared to 17AAG. 
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4.4.3 Hsp90α ELISA assay: 

Commercially available Hsp90α Elisa Kit (Assay Designs, UK) was used to measure the 

Hsp90α protein level in treated and untreated glioma cell lines (Table 4.2). 

 

 

Figure 4.7: Standard graph for Hsp90α ELISA assay. The standard graph was plotted with the 
recombinant Hsp90α standard supplied. The equation of the graph was used to calculate the 
values of the samples based on their absorbance. This is typical of 3 such different 
experiments. Data are mean ± standard deviation, n = 3. 

 

Hsp90α protein levels were calculated as: 

Considering U87-MG cells treated with 17AAG, absorbance obtained was 1.873 nm. 

Substituting this value in the equation of graph (y = 0.7171x + 0.0955), the Hsp90α 

level was = 2.36 ng/ml.  

However, the samples were diluted in the sample diluent and the resulting dilution 

factor for U87-MG-17AAG was 14.71.  
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Therefore, the Hsp90α protein level in U87-MG-17AAG cells was obtained to be          

34.72 mg/ml (Table 4.2). 

Table 4.2: Determination of Hsp90α protein level according to Hsp90α ELISA kit 

Data values are mean ± standard deviation, n=3,  

Samples Hsp90α protein level (ng/ml) 

U87-MG (CONTROL) 
100 ± 3.6 

U87-MG-17AAG 
       34.72 ± 2.9 ** 

U87-MG-shRNA hsp90α 
       55.12 ± 1.7 ** 

 

The results show that, Hsp90α protein level was significantly (**p < 0.001) reduced 

upon inhibition of Hsp90 by 17AAG or shRNA oligonucleotide targeted against hsp90α 

(Table 4.2). 

 

4.4.4 Flow cytometry: 

A flow cytometer was used to quantify Hsp90α protein levels in control (wild type U87-

MG cells) and treated cells (U87-MG-shhsp90α and U87-MG-17AAG). Hsp90α antigen 

was detected with fluorescein isothiocyanate (FITC) conjugated secondary antibody 

which was detected upon flow cytometric analysis (Fig. 4.8 and Table 4.3). 
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Figure 4.8: Flow cytometric analysis of control and treated U87-MG cell line for Hsp90α 
detection. Hsp90α antigen is detected with FITC conjugated secondary antibody upon flow 
cytometric analysis; A) Control (wild type U87-MG cells) B) U87-MG cells treated with 17AAG 
and C) U87-MG cells treated with shRNA targeted against hsp90α and; 1) Cells stained negative 
to Hsp90α secondary antibody 2) Gated cell population stained with FITC showing positive cells 
3) Overlay image of negative(red) with the positive (blue). These flow cytometric readings are 
typical of 3 such different experiments. 
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Table 4.3: Hsp90α quantification by flow cytometric analysis (data values are mean ± 
standard deviation, n=3). 

Samples Hsp90α expression (%) 

U87-MG (CONTROL) 
76 ± 0.7 

U87-MG-17AAG 
       42.7 ± 0.2 ** 

U87-MG-shRNA hsp90α 
      64.1 ± 1.4 ** 

 

The results showed that both treatments can significantly (**p < 0.001) inhibit the 

expression of Hsp90α in the U87-MG glioma cell line. These results also show that, 

17AAG was much more effective than shRNA. 

 

4.4.5 Cell cycle analysis: 

Cell cycle analysis was carried out to compare control cells (wild type U87-MG) and 

treated cells (U87-MG-shhsp90α and U87-MG-17AAG) based on the cohort of cells 

found at different stages of cell cycle. As shown in Figure 4.8, the P2 represents the 

cohort of cells in the G1 phase of the cell cycle, P3 represents for the cohort of cells in 

the S phase of the cell cycle and P4 represents the cohort of cells in the G2 phase of 

the cell cycle (Figures 4.9 and 4.10; Table 4.4). 
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Figure 4.9: Cell cycle analysis of U87-MG control and treated glioma cell line. Cohort of      
U87-MG cells stained with PI upon cell cycle analysis in A) Control (wild type U87-MG cells) B) 
U87-MG cells treated with 17AAG and C) U87-MG cells treated with shRNA targeted against 
hsp90α. These flow cytometric readings are typical of 3 such different experiments.  

 

Table 4.4: Cell cycle analysis of U87-MG control and treated glioma cell line (data values are 
mean ± standard deviation, n=3). 

Samples 
 

 

Cell Cycle (%) 

G1 S G2 

WT U87-MG 61.15 ± 0.6 14.4 ± 0.2 14.3 ± 0.7 

U87-MG-17AAG 54.65 ± 0.3 * 17.1 ± 0.8* 19.95 ± 0.5 

U87-MG-shhsp90α 60.95 ± 0.2 19.6 ± 0.3 15.05 ± 0.3 * 
 

 

Different stages of the cell cycle affected upon inhibiting Hsp90. 
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Figure 4.10: Different stages of the cell cycle affected post inhibition of Hsp90. Data are mean 
± standard deviation, n = 3, *p < 0.05 and **p < 0.001 are considered to be statistically 
significant. 

 

Statistical analysis confirmed a significant decrease (*p < 0.05) in G1 and S phase of 

U87-MG cell cycle upon treatment with 17AAG while a significant decrease (*p < 0.05) 

was observed in G2 phase of U87-MG cell cycle upon treatment with shRNA targeting 

hsp90α. 

 

4.4.6 Proteomic analysis: 

U87-MG glioma cells were treated with 17AAG or were transfected with shRNA 

targeting hsp90α to inhibit Hsp90 function. Proteins were isolated from the samples 

and were then sent for proteomic analysis (Applied Biomics, U.S.A). A comprehensive 
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proteomic study was further performed on control (wild type U87-MG) and treated 

(U87-MG-17AAG and U87-MG-shhsp90α) samples using 2D-DIGE and MALDI-TOF. 

Proteomic analysis revealed 96 spots to be differentially expressed by a volume ratio 

of 1.5 fold or greater post treatment across the three samples tested (Fig. 4.10). The 

spots were selected upon DeCyder analysis and some of the spots were differentially 

modified between the three treated groups to show a slight shift in molecular weights. 

Mass spectrophotometric analyses was carried out using MALDI-TOF and for protein 

identification, 36 spots showing ≥ 2 fold change were selected (Table 4.5). The 

identification of the proteins was carried out on the basis of peptide fingerprint mass 

mapping (MS data) and peptide fragmentation mapping [tandem mass spectrometry 

(MS/MS) data]. For identification of proteins from their primary sequence databases, 

MASCOT search engine was used. Of the 36 spots identified, 33 were identified as 

human proteins while the other 3 were not elucidated (identified). More than one spot 

was identified as the same protein upon protein identification. This could have been 

attributed to the presence of different isoforms of the same protein following post-

translational modifications such as phosphorylation or methylation which changes the 

proteins isoelectric point (pI) and/or molecular weight (MW) causing the spots to shift 

along with protein fragmentation.  

The biological significance and molecular functions of the proteins identified have 

been analysed using the public database, Human Protein Research Database (HPRD)    

(Table 4.6). 
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                A.                                                                                                             B. 

 

Figure 4.11: 2D-DIGE protein profile. Representation of the 2D-DIGE gel showing, A) Control U87-MG and U87-MG-17AAG and 

 B) Control U87-MG and U87-MG-shhsp90α. Spots were picked automatically by Spots Vol Ratio ≥ 2. Typical of one experiment due to cost. 
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Table 4.5: Proteins identified by mass spectrophotometry. 

The lists of identified peptide having ≥ 2 fold change were searched against MASCOT database for the corresponding proteins. Proteins were 
categorized according to their change in expression post treatment with 17AAG and shRNA targeting hsp90α in U87-MG glioma cell line. 

 

Top Ranked Protein Name Accession No. 

 

Protein 
MW 

 

Protein 
PI 

 

Peptide 
Count 

 

Protein 
Score 

 

Protein 
Score    C. 

I. % 

 

Total 
Ion 

Score 

 

Total 
Ion   C. 

I. % 

U87-MG-
17AAG/  
U87-MG 

U87-MG-
shhsp90α 

/U87-MG 

A. Up-regulated proteins           

unnamed protein product [Homo sapiens] gi|28193108 49327.3 5.33 12 203 100 157 100 2.3 1.3 

HSP70-1 [Homo sapiens] gi|4529893 69995.0 5.5 17 297 100 199 100 7.8 1.3 

hexokinase 1, isoform CRA_d [Homo sapiens] gi|119574708 108001.9 6.4 29 357 100 190 100 4.5 1.9 

tumor rejection antigen (gp96) 1 variant [Homo 
sapiens] 

gi|62088648 65912.3 5.1 20 417 100 269 100 3.1 1.7 

vimentin variant 3 [Homo sapiens] gi|167887751 49623.1 5.2 18 192 100 64 100 2 1.2 

Pyruvate kinase, muscle [Homo sapiens] gi|127795697 57921.1 8.4 19 291 100 158 100 6.6 2.9 

vimentin variant 3 [Homo sapiens] gi|167887751  49623.1 5.19 29 839 100 523 100 3.9 1.4 

unnamed protein product [Homo sapiens] gi|194379798 54543.4 4.9 17 332 100 217 100 2.6 1.2 

unnamed protein product [Homo sapiens] gi|194379798 54543.4 4.9 15 252 100 153 100 2.7 1.7 

heat shock 70kDa protein 8 isoform 2 [Homo sapiens] gi|24234686 53484.4 5.6 9 223 100 178 100 4.2 1.2 

Chain A, Crystal Structure of Aldose Reductase 
complexed with Dichlorophenylacetic Acid 

gi|119390284 35700.4 6.4 16 349 100 206 100 2.8 1.2 

annexin I [Homo sapiens] gi|4502101 38690.0 6.6 18 544 100 380 100 16.8 1.7 
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Table 4.5 (contd) 
 

glyceraldehyde-3-phosphate dehydrogenase [Homo 
sapiens] 

 

gi|31645 

 

36031.4 

 

8.3 

 

12 

 

329 

 

100 

 

233 

 

100 

 

8 

 

1.9 

ubiquitin carboxyl-terminal esterase L1 (ubiquitin 
thiolesterase), isoform CRA_c [Homo sapiens] 

gi|119613387 24508.3 5.2 3 73 99 60 100 2.2 1 

heat shock protein 27 [Homo sapiens] gi|662841 22313.3 7.8 13 489 100 367 100 2.7 1.1 

heat shock protein 27 [Homo sapiens] gi|662841 22313.3 7.8 11 224 100 131 100 2.7 1.2 

actin related protein 2/3 complex subunit 2 [Homo 
sapiens] 

gi|5031599 34311.5 6.8 18 384 100 220 100 2.9 1 

heat shock 70kDa protein 8 isoform 2 variant [Homo 

sapiens] 

gi|62896815 53466.4 5.62 12 147 100 80 100 4.5 1.3 

Top Ranked Protein Name Accession No. 

 

Protein 
MW 

Protein 
PI 

 

Peptide 
Count 

 

Protein 
Score 

 

Protein 
Score     
C. I. % 

 

Total 
Ion 

Score 

 

Total 
Ion   

C. I. % 

U87-MG-
17AAG /  
U87-MG 

 

U87-MG-
shhsp90α  
/U87-MG 

B. Down-regulated proteins           

 

X-ray repair complementing defective repair in 
Chinese hamster cells 6 (Ku autoantigen, 70kDa) 
[Homo sapiens] 

 

gi|169145198 

 

64035.1 

 

6.4 

 

 

7 

 

92 

 

100 

 

70 

 

100 -3.7 -1.2 

vimentin [Homo sapiens] gi|62414289 53619.1 5.1 29 421 100 137 100 -2.3 -3.4 
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Table 4.5 (contd) 
 

        
  

vimentin [Homo sapiens] gi|62414289 53619.1 5.1 30 851 100 523 100 -2.1 -1.3 

SERPINE1 mRNA binding protein 1 isoform 1  gi|66346679 44938.5 8.7 11 204 100 142 100 -2.2 -1.4 

calumenin isoform a precursor [Homo sapiens] gi|4502551 37083.5 4.5 16 364 100 203 100 -1.9 -2.5 

phosphoglycerate kinase 1 [Homo sapiens] gi|4505763 44586.1 8.3 20 376 100 217 100 -1.2 -2 

aldolase A, fructose-bisphosphate, isoform CRA_b gi|119600342 39792.5 8.3 13 143 100 36 86 -2 -1.6 

PREDICTED: glyceraldehyde-3-phosphate 
dehydrogenase-like 6 [Homo sapiens] 

gi|169208088 37668.4 9.2 1 108 100 108 100 -2.5 -1.8 

tropomyosin 4-anaplastic lymphoma kinase fusion 
protein [Homo sapiens] 

gi|13274400 36564.6 4.9 17 302 100 193 100 -2 -1.4 

eukaryotic translation initiation factor 3, subunit 12 gi|10801345 25043.4 4.8 6 73 99 38 93 -2.7 -1.6 

transgelin 2 [Homo sapiens] gi|4507357 22377.2 8.4 18 589 100 386 100 -3 -1 

Chain A, Cyclophilin B complexed with [d-
(Cholinylester)ser8]-Cyclosporin 

gi|1310882 19648.2 9.2 15 181 100 31 56 -3.7 -1.8 
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Table 4.5 (contd) 
 

 

 

 

 

 

Top Ranked Protein Name Accession No. 
Protein 
MW 

 

Protein 
PI 

 

Peptide 
Count 

 

Protein 
Score 

 

Protein 
Score C. 

I. % 

Total 
Ion 
Score 

Total 
Ion    
C. I. % 

U87-MG-
17AAG/  
U87-MG 

U87-MG-
shhsp90α 

/U87-MG 

C. Differentially regulated proteins           

collagen, type VI, alpha 1 precursor [Homo sapiens] gi|87196339 108462.0 5.3 12 92 100 58 100 2.1 -1.5 

Chain A, Structure of human Annexin A2 in the presence of 
calcium ions 

gi|56967118 36459.8 8.3 17 405 100 254 100 
2.1 -1.1 

heat shock protein beta-1 [Homo sapiens] gi|4504517 22768.5 6.0 6 196 100 159 100 2.3 -1.2 

Chain A, Human Manganese Superoxide Dismutase Mutant 
Q143n 

gi|2780818 22176.2 6.9 12 399 100 277 100 
2.7 -1.2 

Chain A, Crystal structure of Ca2+-bound form of Des3-
23alg-2 

gi|211939086 19773.8 5.0 10 208 100 104 100 
2.3 -1.1 

transgelin 2 [Homo sapiens] gi|4507357 22377.2 8.4 17 461 100 275 100 2.4 -1.1 
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Table 4.6: Molecular and biological function with location of proteins identified by mass spectrophotometry using Human Protein Research 

Database.  

Protein Molecular function Biological process Location 

Proteins upregulated by inhibition of Hsp90 by 17AAG and shRNA targeted towards hsp90α  

 

HSP70-1 [Homo sapiens] 

 

Chaperone activity 

 

Protein metabolism 

 

Cytoplasm 

hexokinase 1, isoform CRA_d [Homo sapiens] Catalytic activity Metabolism, Energy pathways Cytoplasm 

tumor rejection antigen (gp96) 1 variant [Homo sapiens] Heat shock protein activity Protein metabolism Cytoplasm 

vimentin variant 3 [Homo sapiens] Structural constituent of cytoskeleton Cell growth and/or maintenance  Intermediate filament 

Pyruvate kinase, muscle [Homo sapiens] Kinase activity Metabolism, Energy pathways Cytoplasm 

vimentin  variant 3 [Homo sapiens] Structural constituent of cytoskeleton Cell growth and/or maintenance  Intermediate filament 

heat shock 70kDa protein 8 isoform 2 [Homo sapiens] Heat shock protein activity  Protein metabolism Cytoplasm, Nucleolus 

Chain A, Crystal Structure of Aldose Reductasecomplexed with 
Dichlorophenylacetic Acid 

Oxidoreductase activity  Metabolism, Energy pathway Cytoplasm 

annexin I [Homo sapiens] Calcium ion binding Cell communication, Signal transduction Plasma membrane 

glyceraldehyde-3-phosphate dehydrogenase [Homo sapiens] Catalytic activity Metabolism, Energy pathway Cytoplasm 
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Table 4.6 (contd) 

ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase), 
isoform CRA_c [Homo sapiens] 

Ubiquitin specific protease activity Protein metabolism - 

heat shock protein 27 [Homo sapiens] Chaperone activity  Protein metabolism Cytoplasm 

heat shock protein 27 [Homo sapiens] Chaperone activity  Protein metabolism Cytoplasm 

actin related protein 2/3 complex subunit 2 [Homo sapiens] Cytoskeletal protein binding  Cytoskeleton organization and biogenesis Actin cytoskeleton 

heat shock 70kDa protein 8 isoform 2 variant [Homo sapiens] Heat shock protein activity  Protein metabolism Cytoplasm, Nucleolus 
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Table 4.6 (cont) 

 

Proteins downregulated by inhibition of Hsp90 by 17AAG and shRNA targeted towards hsp90α 

 

X-ray repair complementing defective repair in Chinese hamster 
cells 6 (Ku autoantigen, 70kDa) [Homo sapiens] 

 

DNA binding 

 

Regulation of nucleobase, nucleoside, nucleotide and 
nucleic acid metabolism, DNA repair. 

Nucleus 

vimentin [Homo sapiens] 
Structural constituent of cytoskeleton Cell growth and/or maintenance  

Intermediate 
filament 

vimentin [Homo sapiens] 
Structural constituent of cytoskeleton Cell growth and/or maintenance  

Intermediate 
filament 

SERPINE1 mRNA binding protein 1 isoform 1  
RNA binding 

Regulation of nucleobase, nucleoside, nucleotide and 
nucleic acid metabolism. 

Cytoplasm 

calumenin isoform a precursor [Homo sapiens] 
Calcium ion binding Cell communication, Signal transduction 

Endoplasmic 
reticulum 

phosphoglycerate kinase 1 [Homo sapiens] Catalytic activity Metabolism, Energy pathways Cytoplasm 

aldolase A, fructose-bisphosphate, isoform CRA_b Lyase activity Metabolism, Energy pathways Cytoplasm 

PREDICTED: glyceraldehyde-3-phosphate dehydrogenase-like 6 
[Homo sapiens] 

Catalytic activity Metabolism, Energy pathways Cytoplasm 

tropomyosin 4-anaplastic lymphoma kinase fusion protein 
[Homo sapiens] 

Structural constituent of cytoskeleton Cell communication, Signal transduction Cytoskeleton 

eukaryotic translation initiation factor 3, subunit 12 Translation regulator activity Protein metabolism Cytoplasm 

transgelin 2 [Homo sapiens] Unknown Unknown Unknown 

Chain A, Cyclophilin B complexed with  [d-(Cholinylester)ser8]-
Cyclosporin 

Unknown Unknown Unknown 
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 Three of the proteins identified were unknown protein products and hence have been excluded from the table.

    

Proteins differentially expressed by inhibition of Hsp90 by 17AAG and shRNA targeted towards hsp90α 

    

collagen, type VI, alpha 1 precursor [Homo sapiens] Extracellular matrix structural constituent Cell growth and/or maintenance Extracellular 

Chain A, Structure of human Annexin A2 in the presence Of 
Calcium ions 

Calcium ion binding Signal transduction, Cell communication Nucleus 

heat shock protein beta-1 [Homo sapiens] Chaperone activity Protein metabolism Cytoplasm 

Chain A, Human Manganese Superoxide Dismutase Mutant 
Q143n 

Superoxide dismutase activity 
Cell proliferation, Anti-apoptosis, Cell growth and/or 
maintenance 

Mitochondrion 

Chain A, Crystal structure of Ca2+-bound form of  Des3-23alg-2  Unknown Apoptosis Cytoplasm 

transgelin 2 [Homo sapiens] Unknown Unknown Unknown 
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4.4.8 Bioinformatic analysis: 

IPA knowledge-based software was used to identify molecular functions with pathways 

correlating proteins identified by mass spectrophotometry post Hsp90 inhibition. The 

programme correlated the proteins (Table 4.6) with each other based on their 

interaction and function. In IPA, the biofunctions are categorized according to: A) 

Diseases and disorder B) Molecular and cellular function C) Physiological system 

development and functions while canonical pathways are grouped into metabolic and 

signalling pathways.  

Significant functional pathways and networks were identified from the IPA library of 

canonical pathways based on two parameters taken into consideration i.e. A) ratio of 

the number of proteins mapping to the pathway the total number of proteins that map 

to the canonical pathway and B) Fisher’s exact test was used to calculate the p-value 

which determined the probability of association of proteins between the dataset and 

the canonical pathways by chance alone.  

The networks generated were ranked on the basis of a score based on the negative log 

of p-value. The top four networks are shown in Figure 4.12. 
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Figure 4.12: Functional-network-analysis-by-IPA. Top 4 A)  Diseases and disorders;  B) Molecular and cellular functions  and C) Physiological System Development and 
Function and D) Pathways selected from a total of 96 canonical pathways relevant to the dataset  defined by Ingenuity Pathway Analysis program.
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The networks were ranked on a score based on the negative log of p-value computed 

using a right tailed Fisher’s exact test (Table 4.8). 

Table 4.8: Top biofunctions generated by IPA. 

The values are calculated using right tailed Fisher’s exact test based on the negative log of       
p-value. 

Top Biofunctions 

Diseases and Disorders                                                                          p-value 

1 Cancer  

F 

1.14 x 10-9 - 4.21 x 10-2 

2 Gastrointestinal disease 

 

1.14 x 10-9  - 2.08 x 10-2 

3 Genetic disorder 9.53 x 10-8 - 4.21 x 10-2 

4 Neurological disease 9.53 x 10-8 - 4.86 x 10-2 

5 Skeletal and muscular disorders 9.53 x 10-8 - 1.62 x 10-2 

Molecular and Cellular Functions 

1 Carbohydrate Metabolism 1.88 x 10-11 - 3.61 x 10-2 

2 Cellular Compromise 1.98 x 10-7 - 3.21 x 10-2 

3 Cellular Function and Maintenance 1.98 x 10-7 - 4.65 x 10-2 

4 Cell Death 7.51 x 10-6 - 4.00 x 10-2 

5 Cellular Assembly and Organization 2.38 x 10-5 - 4.26 x 10-2 

Physiological System Development and Function 

1 Cell-mediated Immune Response 8.44 x 10-4 - 1.35 x 10-2 

2 Hematological System Development and Function 8.44 x 10-4 - 4.65 x 10-2 

3 Hematopoiesis 8.44 x 10-4 - 4.13 x 10-2 

4 Cardiovascular System Development and Function 1.36 x 10-3 - 2.15 x 10-2 

5 Endocrine System Development and Function 1.36 x 10-3 - 1.48 x 10-2 

Top Cannonical Pathways 

1 Glycolysis/Glucogenesis 2.68 x 10-9 

2 Glucocorticoid Receptor Signaling 3.23 x 10-4 

3 Protein Ubiquitination Pathway 1.99 x 10-3 

4 Fructose and Mannose Metabolism 2.86 x 10-3 

5 Aldosterone Signaling in Epithelial Cells 4.95 x 10-3 

IPA analysis did not generate any pathways from amongst the proteins identified and 

this could have been attributed to the small number of proteins deteced by mass 

spectrophotometry.  
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4.5 DISCUSSION: 

Hsp90 is upregulated in several human cancers and targeting its function could be of 

therapeutic importance (Altieri, 2004). Recent studies have shown the presence of 

Hsp90 activity in glioma cell lines and tissues but not in normal brain cell lines or 

tissues (Shervington et al., 2008; Siegelin et al., 2009). Hsp90 inhibitors exhibit anti-

tumour activity by binding to Hsp90 and inducing proteosomal degradation of Hsp90 

(Schulte et al., 1997; An et al., 2000; Whitesell et al., 1994; Miller et al., 1994; 

Mimnaugh et al., 1996; Schulte et al., 1995). 17AAG, a benzoquinone antibiotic derived 

from GA is a potent Hsp90 inhibitor and has been reported to inhibit tumour growth in 

tumour cell line and it is presently being examined in pre-clinical trials (Burger et al., 

2004; Bagatell et al., 2001; Nguyen et al., 2001; Nimmanapalli et al., 2001; Yang et al., 

2001; Braga-Basaria et al., 2004; Bisht et al., 2003; Munster et al., 2002; Hostein et al., 

2001; Solit et al., 2002).  

Varying concentrations of 17AAG (0.25 – 1.5 μM) were added to U87-MG cells. The 

cells were incubated for 48 hours before the viability of the drug was assessed. It was 

noted that 0.25 μM of 17AAG killed nearly half of the cells (IC50) post 48 hours. 

Consistent to these findings, Sauvageot et al., (2009) inhibited Hsp90 in several glioma 

cell lines and reported the IC50 of 17AAG to lie between 0.05 – 0.5 μM concentrations. 

In another study the IC50 of 17AAG was reported to be approximately 10 μM in U87-

MG glioma cell line (Siegelin et al., 2009).The variation in the levels of 17AAG could 

have been attributed to the difference in cell line growth conditions, passage number 

of the cell lines and also differing experimental conditions.  
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Cohorts of U87-MG cells were treated with either 17AAG or shRNA to target hsp90α. 

The efficacy of Hsp90 inhibition was analysed by measuring the protein levels of 

Hsp90α in control and treated cells by FACS analysis (quantitative) using a flow 

cytometer. The Akt/PKB kinase activity levels were also measured using the Akt/PKB 

Kinase Activity Assay kit (Assay Designs, UK) and Hsp90α levels were also quantified in 

control and treated cells using Hsp90α ELISA kit (Assay Designs, UK).  

In the post treatment, the level of Akt/PKb, a client protein for Hsp90 (Basso et al., 

2002) was assayed using commercially available Akt/PKB kinase activity assay kit 

(Assay Designs, UK) in U87-MG cells. The Akt/PKB kinase activity was significantly 

reduced (**p < 0.001) by 81 and 59.4 %, post 17AAG and shhsp90α treatment, 

respectively in U87-MG glioma cells, suggesting that Hsp90 inhibition could be of 

therapeutic significance. The reduction of Akt/PKB kinase protein was in agreement 

with previous studies which reported a dose dependent decrease in Hsp90 client 

proteins, namely Akt post exposure to 17AAG in murine neural stem cells and glioma 

stem cells (Sauvageot et al., 2008). Furthermore, Hsp90α ELISA assay using 

commercially available Hsp90α ELISA kit (Assay Designs, UK) showed that Hsp90α 

protein levels were reduced significantly by approximately 65 % and 45 %, post 

treatment with 17AAG and shhsp90α, respectively, in U87-MG cells. Moreover, flow 

cytometric analysis showed a reduction in Hsp90α protein levels by approximately     

44 % and 16% post 17AAG and shhsp90α treatment respectively (**p < 0.001). This 

variation between the two results could be due to flow cytometry not being able to 

distinguish between active and inactive protein i.e. dying or apoptotic cells can 

influence the results (Nusse and Marx, 1997). Thus, it can be suggested that in post 
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Hsp90 inhibition, most of the treated cells could be apoptotic and hence, a false 

negative result could be obtained.  

Cell cycle analysis was carried out to compare control cells (wild type U87-MG) and 

treated cells (U87-MG-shhsp90α and U87-MG-17AAG) based on the cohort of cells 

found at different stages of cell cycle. The S phase arrest and the G2 phase arrest was 

observed post Hsp90 inhibition in treated cells compared to control cells, suggesting 

that Hsp90 inhibition affects DNA replication and cell growth which is of therapeutic 

importance while treating tumours such as glioma. 17AAG inhibits the Chk1, a protein 

kinase essential for G2/M cell cycle checkpoint (Tse and Schwartz, 2004). HCT116 colon 

cancer cells were treated with 0.5 μM 17AAG and it was observed that treatment with 

17AAG resulted in a time and dose dependent depletion of Chk1, suggesting a G2/M 

cell cycle phase arrest (Tse and Schwartz, 2004). Statistical analysis showed a 

significant decrease (*p < 0.05) in G1 and S phase of U87-MG cell cycle upon treatment 

with 17AAG while a significant decrease (*p < 0.05) was observed in G2 phase of    

U87-MG cell cycle upon treatment with shhsp90α. 

Treatment with either 17AAG or shRNA targeting hsp90α, effectively reduced Hsp90α 

activity and subsequently reduced the Akt/PKB kinase activity along with the S and G2 

phase arrest in the U87-MG glioma cell line. These results suggest that inhibition of 

Hsp90 activity could be used for GBM therapy.  

Based on these reports and also the laboratory findings, the inhibition of Hsp90 

protein is a more effective therapeutic approach than silencing hsp90 i.e. though 

shRNA targeting hsp90α did silence Hsp90, 17AAG showed a better silencing profile.  
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Inhibition of Hsp90 as discussed above is of therapeutic importance in glioma therapy. 

However, to understand the mechanisms involved or to characterize the changes 

caused at the cellular protein levels by inhibition of Hsp90 a differential proteomic 

analysis comparing control cells (wild type U87-MG) and treated cells (U87-MG-

shhsp90α and U87-MG-17AAG) was performed. The 2D-DIGE technique was carried 

out to separate the proteins while MALDI-TOF was used for protein identification. 

Based on a 2 fold cut off, the analysis identified 36 proteins while MALDI-TOF analysis 

identified 33 proteins with altered expressions showing >99 % confidence levels (3 

protein being listed as unknown proteins).  

IPA analysis identified dynamically regulated biological networks and canonical 

pathways correlating cellular response to Hsp90 inhibition. The top network 

significantly transformed upon Hsp90 inhibition was identified as “cancer”. The top 

diseases and disorders modulated upon Hsp90 inhibition were cancer, gastrointestinal 

disease, genetic disorder, neurological disease and skeletal and muscular disorders. 

This confirmed that altering Hsp90 levels significantly alters the cancer proteome 

including neurological and genetic disorders. The IPA analysis also showed that by 

inhibiting Hsp90 molecular and cellular functions such as; carbohydrate metabolism, 

cellular compromise, cellular function and maintenance, cell death and cellular 

assembly and organization, are affected. The IPA library of canonical pathways 

indicated that most of the proteins altered upon Hsp90 inhibition are involved in 

glycolysis/glucogenesis pathways. These results highlight the downstream effects of 

Hsp90 in different molecular and cellular functions besides its normal role as a 

chaperone.  
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Proteins upregulated by Hsp90 inhibition 

Previous studies have reported that inhibition of Hsp90 alters the multi-chaperone 

complexes associated with heat shock factor 1 (HSF-1) (Luo et al., 2010). HSF-1 is a 

transcription factor regulating the stress response and it is stimulated upon Hsp90 

inhibition (Zou et al., 1998). Subsequently, stimulation of HSF-1 leads to induction of 

heat shock response which in turn provides protection to the non-transformed cells 

from the toxicity of Hsp90 inhibitors, whereas the tumour cells are particularly 

sensitive to Hsp90 inhibition (Voellmy and Boellmann, 2007; Ali et al., 1998). Induction 

of Hsp72 and Hsp27 act as molecular signatures proving Hsp90 inhibition (McCollum et 

al., 2006). Thus, it could be postulated that several co-chaperones of Hsp90 such as 

Hsp72 (Hsc70) and Hsp27 would be upregulated along with other client proteins upon 

Hsp90 inhibition.  

Inhibition of Hsp90 by either 17AAG or shRNA to target hsp90α in this study resulted in 

the upregulation of several proteins such as Hsp70 isoform 1, hexokinase 1 isoform 

CRA_d, tumour rejection antigen (gp96) 1 variant, vimentin variant 3, pyruvate kinase, 

vimentin, Hsp70 protein 8 isoform 2, aldose reductase complexed with 

dicholorophenyacetic acid, annexin 1, GAPDH, ubiquitin thiolesterase isoform CRA_d, 

Hsp27 and actin related protein 2/3 complex subunit 2. The proteins in questiion are 

involved in protein metabolism, energy pathways, cell growth and/or maintenance, 

metabolism, cell communication, signal transduction and cytoskeleton organization 

and biogenesis.  

Hsp70 and Hsc70 (Hsp70 protein 8 isoform 2 variant) represent the inducible and 

constitutively expressed isoforms of Hsp70 family, respectively. Members of the Hsp70 

family were found to be upregulated post Hsp90 inhibition. Additionally, Hsp90 
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inhibition by 17AAG induced Hsp70 family members to a greater extent than that seen 

with Hsp90 inhibition with shhsp90α. Previous studies have shown a relation between 

Hsp90 and Hsp70, wherein Hsp70 acts as a co-chaperone to Hsp90 for recruiting 

substrates (Wegele et al., 2004). Hsp70 is the most predominant and conserved class 

of the Hsps (Oehler et al., 2000) and it functions as an anti-apoptotic protein (Kang et 

al., 2009; Lanneau et al., 2007). Hsp70 is involved in folding and refolding of newly 

synthesized or misfolded proteins (Kang et al., 2009; Lanneau et al., 2007; Beckmann 

et al., 1990; Seidberg et al., 2003; Mayer and Bukau, 2005). Similar to Hsp90, Hsp70 

has two domains namely an N terminal ATPase domain and a C terminal domain 

chaperoning denatured proteins and peptides. Both the domains play a vital role in 

tumour immunity by preventing apoptosis and regulating the generation of stable 

complexes with cytoplasmic tumour antigens bestowing anti-tumour immunity 

(Calderwood et al., 2005; Schmitt et al., 2007). Under normal conditions, Hsp70 

functions as a molecular chaperone whereas in tumours including glioma, it is over 

expressed and is associated with cell proliferation, metastasis, invasion and cell death 

(Nylandsted et al., 2000). The over expression of Hsp70 has been associated with poor 

prognosis and reduced response to tumour therapeutics (Calderwood et al., 2006). 

Members of the Hsp70 family act at multiple points in the apoptotic pathway and 

inhibit cell death (Mosser and Morimoto, 2004; Calderwood et al., 2006; Garrido et al., 

2006). Following Hsp90 inhibition, the glioma cells undergo apoptosis, and as a survival 

mechanism induced Hsp70 family members. Supporting the findings, previous studies 

of the Hsp70 isoforms (Hsp70 and Hsc70) reported increases in their expression post 

exposure to Hsp90 inhibitors in colon and ovarian cancer cell lines (Clarke et al., 2000; 
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Maloney et al., 2007). Thus, it could be further postulated that inhibition of the Hsp70 

family members could inhibit Hsp90 chaperone function in glioma.  

Another member of the chaperone family, Hsp27 was also induced post Hsp90 

inhibition. Hsp27 is a molecular chaperone and it plays a role in protein metabolism, 

cytoskeletal reorganization and apoptosis-inhibition (Huot et al., 1997; Concannon et 

al., 2003; Nakagomi et al., 2003; Arrigo et al., 2005). Hsp27 has been involved in the 

regulation of cell death by interacting with cytochrome c (Bruey et al., 2000) and it can 

also activate protein kinase B and Akt to inhibit cell death by phosphorylating 

procaspase-9 (Mehlen et al., 1996). Hsp27 is over expressed in ovarian, gastric, liver 

and prostate tumours (Cardone et al., 1995; Harrison et al., 1991; King et al., 2000; 

Cornford et al., 2000) and has been down regulated in human glioma tissues (Shen et 

al., 2010). Proteomic analysis revealed that Hsp27 was induced post Hsp90 inhibition 

in glioma and this could possibly be to increase the survival ability of glioma cells. 

Previous studies supported this finding and reported the induction of Hsp27 post 

Hsp90 inhibition (Shen et al., 2010). 

Hsp90 beta member 1 referred to as tumour rejection antigen 1 and gp96 is a 

molecular chaperone. It is involved in protein folding and also been implicated as an 

essential immune chaperone regulating both innate and adaptive immunity (Schild and 

Rammensee, 2000). The gp96 is to be highly expressed in several tumours such as lung, 

adenocarcinoma and esophageal squamous cell carcinoma (Wang et al., 2010). Its 

expression is abundant in the glial cells (Graham et al., 2009). Though its expression in 

glioma is not yet known, studies have shown that vitespen, a gp96 peptide complex 

purified from resected tumours is being used in Phase I and II clinical trials to capture 

the antigenic fingerprint of a specific tumour and is also used as a patient specific 
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vaccine for the treatment of several tumours including GBM (Wood and Mulders, 

2009). It is unclear as to why inhibition of Hsp90 leads to both induction and 

differential expression of gp96. A possible reason for the upregulation of gp96 post 

Hsp90 inhibition could be to confer tumour immunity to the glioma cells so as to evade 

apoptosis. However, further studies need to be carried out to address this issue. 

As observed from IPA analysis that the top canonical pathway upon Hsp90 inhibition 

was glycolysis/glucogenesis, several key enzymes of the pathway namely,               

hexokinase 1, GAPDH and pyruvate kinase were reportedly upregulated upon Hsp90 

inhibition. Hexokinase is an enzyme which phosphorylates glucose to glucose-6-

phosphate in the glycolysis pathway while pyruvate kinase is an enzyme which 

catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP 

forming ATP molecules. GAPDH is an enzyme which breaks down glucose to give 

energy and carbon molecules. The expression of Hexokinase 1 is lower in gliomas 

(Oudard et al., 1996). The pyruvate kinase expression is correlated with the grade of 

gliomas (van Veelen et al., 1998). Interestingly, the protein expression of GAPDH which 

is a house keeping gene whose expression is constitutive in glioma is induced upon 

Hsp90 silencing. This contradicts the gene expression profile of GAPDH post Hsp90 

inhibition. A possible reason could be attributed to the fact that gene expression does 

not necessarily correlates to the protein expression. Moreover, increased levels of 

proteins involved in glycolysis post Hsp90 inhibition suggests an increased dependency 

on glycolysis for energy supply by the treated glioma cells. This phenomenon is called 

the Warburgs effect and it is an important concept during malignant transformation 

(Warburg, 1956).  
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Increased dependency on glycolysis and induction of Hsp70 isoforms post Hsp90 

inhibition suggests that targeting Hsp90 is sub-lethal and a multi-target approach 

should be considered for future glioma therapy.  

Vimentin is a major intermediate filament cytoskeletal protein and is involved in 

maintaining structural constituency of the cytoskeleton (Katsumoto et al., 1990). It 

plays a role in cell motility and movement, responding to mechanical stress, stabilizes 

cytoskeletal interactions and maintains the integrity of the cytoplasm (Thoumine et al., 

1995). It is associated with mechanosensitive signalling, apoptosis, regulating genomic 

DNA and providing immunity (Wang et al., 1993; Ingber, 2003). Vimentin has several 

isoforms and it can be present either in phosphorylated or non-phosphorylated form 

(Ando et al., 1989; Chou et al., 1991; Huang et al., 1994). 

Vimentin is involved in tumour development and progression (Ngan et al., 2007; 

Zajchowski et al., 2001; Penuelas et al., 2005). Studies have suggested phosphorylated 

vimentin to be an indicator of non-aggressiveness and/or non-invasiveness in certain 

tumours (Shirahata et al., 2009). Vimentin is found in the extracellular matrix 

component and is involved in neo-vascularisation and invasion of malignant glioma 

cells (Zhang et al., 2006). Four spots were identified by MALDI-TOF as vimentin protein 

products post Hsp90 inhibition. Two upregulated spots identified were vimentin 

variant 3, while two downregulated spots were identified as vimentin. Studies have 

reported vimentin as a novel client protein for Hsp90α with Hsp90α-vimentin binding 

inhibition resulting in an increase in apoptosis induced stimulus making cells more 

chemosensitive (Trog et al., 2006). Thus, the downregulation of vimentin protein could 

be attributed to Hsp90 inhibition. A possible reason in the upregulation status of 

vimentin variant 3 could be that post Hsp90 inhibition vimentin variant 3 is 
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upregulated to compensate for the downregulation of vimentin as a cell survival 

mechanism.  

Aldose reductase is an oxidoredutase catalyzing the reduction of several aldehydes and 

carbonyls. It primarily catalyzes the reduction of glucose to sorbitol, the first step in 

polyol pathway of glucose metabolism (Petrash, 2004). The expression of the aldose 

reductase gene has been reported in several tumours such as liver, breast, cervix and 

rectal and even gliomas (Saraswat et al., 2006; Dan et al., 2003). It has been reported 

that, in hepatocarcinoma induction of aldose reductase gene expression renders 

tumour cells resistant to toxic compounds produced during metabolism or when 

administered as drugs (Takahashi et al., 1996). Thus, it can be suggested that induction 

of aldose reductase is associated with drug resistance in tumours. Proteomic analysis 

revealed aldose reductase complexed with dicholorophenylacetic acid suggesting a 

post-translational modification. The compound was reported to be upregulated post 

Hsp90 inhibition, suggesting that inhibition of Hsp90 could possibly induce aldose 

reductase expression conferring drug resistance to the glioma cell line.  

Annexin 1 is a class of proteins involved in cell communication and signal transduction, 

and is involved in several physiological pathways such as cell growth, membrane 

trafficking, phagocytosis, chaperone activity, tumour suppression, apoptosis 

differentiation, proliferation and inflammation (Lim and Parvaiz, 2007).  Annexin 1 

shows differential expression in tumours with it being downregulated in certain 

tumours such as prostrate and oesophageal, whereas, it is upregulated in other 

tumours such as neck, head and breast tumours (Lim and Parvaiz, 2007). The over 

expression of annexin 1 was found in gliomas with primary glioblastomas having a 

higher expression of annexin 1 compared to secondary glioblastomas (Schittenhelm et 
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al., 2009). In post Hsp90 inhibition, an increased expression of annexin 1 was observed 

and this could possibly be explained by the antiproliferative and/or proapoptotic 

function of annexin 1.  The induction in annexin 1 expression on Hsp90 inhibition could 

possibly be adapted by the U87-MG glioma cells for their survival.  

UCHL1 encodes for ubiquitin carboxyl-terminal esterase L1 (UCHL1) which is also 

commonly referred to as ubiquitin thiolesterase. UCHL1 is reported to be involved in 

ubiquitin specific protease activity (http://ghr.nlm.nih.gov/gene/UCHL1). Damaged or 

unwanted proteins are tagged with ubiquitin molecules which further move these 

proteins into proteosomes where the proteins are degraded. The ubiquitin-

proteasome pathway thus acts as the cells quality control system 

(http://ghr.nlm.nih.gov/gene/UCHL1). UCHL1 is predominantly present in neurons and 

associated tumours (Doran et al., 1983). It has been reported that UCHL1 interacts 

with Hsp90 causing an increase in α-synuclein and GAPDH (Kabuta et al., 2008).  

Considering glioma UCHL1 expression is inversely proportional to the grades of glioma 

(Park et al., 2009). The present results show that in U87-MG cells, a decrease in Hsp90 

activity was associated with an increase in UCHL1 levels. A possible explanation for this 

reciprocal change could be the involvement of UCHL1 in ubiquitin specific protease 

activity.  

ARPC2 encodes for actin related protein 2/3 complex subunit 2 (Arp2/3). Arp2/3 

protein complex regulates actin polymerization in cells  

(http://www.ncbi.nlm.nih.gov/gene/10109). Arp2/3 has been over expressed in 

certain tumours such as leukaemia (Ross et al., 2003; Yeoh et al., 2002). Its role in 

glioma or with Hsp90 is unclear although a study has reported that Arp2/3 is 

downregulated in glioma cell lines post treatment with chemotherapeutic drug, BCNU 

http://ghr.nlm.nih.gov/gene/UCHL1
http://ghr.nlm.nih.gov/gene/UCHL1
http://www.ncbi.nlm.nih.gov/gene/10109
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(1,3-bis (2-chloroethyl)-1-nitrosoure) (Bandres et al., 2005). It is unclear as to why 

Hsp90 inhibition would result in the down regulation of a protein with such properties 

and further investigations are necessary to address this phenomenon. 

Considering the types of proteins found to be upregulated post Hsp90 inhibition it 

could be postulated that, Hsp90 inhibition is sub-lethal and there is a need for a multi-

target approach in glioma therapy. Furthermore, as discussed earlier, it can be seen 

that 17AAG inhibits Hsp90 better than shRNA targeting hsp90α. A significant difference 

between the increased fold observed in some of the key proteins namely; Hsp70-1, 

Hsc70, hexokinase 1, pyruvate kinase, GAPDH and annexin 1 was observed. The 

increased changes observed post 17AAG treatment could possibly be attributed 

towards a more profound Hsp90 inhibition attained with 17AAG than shRNA targeting 

hsp90α.  

Proteins downregulated by Hsp90 inhibition 

 A vast number of proteins involved in cell signalling, apoptosis and cell survival are 

chaperoned by Hsp90. Thus, it could be postulated that, a wide range of proteins 

involved in cell cycle, apoptosis, signal transduction and other metabolic pathways 

could be downregulated post Hsp90 inhibition. Proteomic studies have reported that 

inhibition of Hsp90 activity leads to a downregulation of several proteins such as Ku 

autoantigen, vimentin, serpine1 mRNA binding protein 1, calumenin, 

phosphoglycerate kinase, aldolase A, tropomyosin 4-anaplastic lymphoma kinase 

fusion protein, eukaryotic translation initiation factor 3, transgelin 2, cyclophilins B 

complexed with [d-(cholinyester)ser8]-cyclosporin. Another protein detected was 

predicted to be GAPDH.  
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X-ray repair complementing defective repair in Chinese hamster cells 6 also referred as 

Ku70 is an autoantigen. The Ku protein is a heterodimer of Ku70 and Ku86 proteins. It 

binds to double stranded DNA and is involved in nucleic acid metabolism (Rathmell and 

Chu, 1994). The Ku70 protein is involved in DNA recombination and DNA repair 

pathways. It has been found to be associated with a DNA dependent protein kinase 

and could possibly initiate a signalling pathway for a cell cycle arrest upon DNA 

damage (Rathmell and Chu, 1994). Additionally, the Ku protein has also been reported 

to play a vital role in apoptosis and telomere fusion (Ayene et al., 2005). The Ku70 

protein is over expressed in several tumours such as colon, breast, skin, renal cell 

carcinoma and glioma (Wang et al., 2009; Pucci et al., 2004; Parrella et al., 2006).  The 

expression of the Ku70 protein has been linked to tumour progression and tumour 

proliferation rate (Pucci et al., 2004; Parrella et al., 2006). Ku70 was inhibited in human 

cervical epithelioid (HeLa) and colon cancer cells (HCT116) and its inhibition lead to 

sensitization towards radiation in HeLa and HCT116 cells by several folds and to 

decrease in tumour cell survival (Ayene et al., 2005). No direct relation between Ku70 

protein and Hsp90 has yet been made, however, this studies illustrates that Hsp90 

inhibition leads to downregulation of Ku70 protein. This downregulation of Ku70 could 

be of possible therapeutic importance in glioma therapy.  

SERPINE1 codes for SERPINE1 which is a member of serine proteinase inhibitor (serpin) 

superfamily. It acts as an inhibitor to fibrinolysis and acts by inhibiting tissue 

plasminogen activator (tPA) and urinary plasminogen activator (uPA)  

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report

&list_uids=5054). Previous studies have shown that a high level of SERPINE1 is 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=5054
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=5054
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correlated with poor prognosis in several tumours. Although it has been reported that 

SERPINE1 is over expressed in tumours the rationale behind the altered levels of 

SERPINE1 expression in tumours is still unknown (Gao et al., 2010). In glioma, 

SERPINE1 has been reported to play a role in regulating glioma cell motility and 

invasion (Martin et al., 2009). Currently, the link between Hsp90 and SERPINE1 is has 

not been found; however, post Hsp90 inhibition in U87-MG glioma cell line it was 

observed that SERPINE1 protein is downregulated. This could be of therapeutic 

importance in glioma therapy as SERPINE1 downregulation possibly suggests inhibition 

of glioma cell motility and invasion. Though the mechanism is unclear, it would be 

interesting to further investigate the potential of SERPINE1 inhibition in glioma 

therapy.  

Calumenin is a calcium binding protein localized in the endoplasmic reticulum (ER). It is 

reported to be differentially expressed in cardiomyopathy; cell induced apoptosis and 

in squamous tumour cells (Cho et al., 2009). Though it has been implicated in several 

diseases, the in vivo functions of calumenin are largely unknown (Cho et al., 2009). 

Additionally, calumenin is highly expressed in neoplastic cells which have developed 

resistance to chemotherapeutic drugs. Research is presently focussed on utilizing 

calumenin as a diagnostic and therapeutic tool in the treatment of tumours (Georges 

and Prinos, 2007). Moreover, it has been reported that calumenin is downregulated in 

invasive glioma cells compared to stationary glioma cells (Holtkamp et al., 2005). Thus, 

in the U87-MG glioma cell line, the expression of calumenin should be downregulated 

when compared to the stationary glioma cell line. In post Hsp90 inhibition in U87-MG 

glioma cell line, it was reported that calumenin levels decreased with treatment. 

Owing to the ambiguity in calumenin functions, it would be difficult to suggest the 
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implications of these findings and further work should be undertaken to clarify the role 

of calumenin.  

Phosphoglycerate kinase (PGK1) is a glycolytic enzyme that catalyses the formation of 

ATP from ADP and vice versa (http://www.ncbi.nlm.nih.gov/gene/5230). A study in 

ovarian cancer cells demonstrated that PGK1 can induce multidrug resistance through 

p- glycoprotein (MDR-1) independent mechanism (Duan et al., 2002). Another study 

involving gastric cancer illustrated that PGK1 could be used as a prognostic marker 

and/or could possibly be a potential therapeutic target by preventing dissemination of 

gastric carcinoma cells into the peritoneum (Zieker et al., 2010). PGK1 is over 

expressed in both high and low grade astrocytomas (Kreth et al., 2010; Khatua et al., 

2003). This study has demonstrated that post Hsp90 inhibition U87-MG glioma cells 

exhibit low levels of PGK1. Thus, U87-MG glioma cells could possibly be prone to 

chemotherapeutics upon PGK1 downregulation, therefore being of therapeutic 

importance in glioma therapy.  

Proteomic analysis on U87-MG glioma cell line exhibited downregulation of aldolase A 

post Hsp90 inhibition. Aldolase A also referred to as fructose-bisphosphate aldolase is 

a glycolytic enzyme catalyzing fructose 1,6-diphosphate to glyceraldehyde-3-

phosphate and dihydroxyacetone phosphate. Aldolase A physically interacts with 

tubulin and actin filaments contributing towards regulation of cytoskeletal structures 

and cell mobility. Furthermore, it can modulate transcriptional activity by interacting 

with the DNA sequence (Hua et al., 2000). Aldolase C is a more potential biomarker 

than aldolase A for not just cerebrovascular diseases but also glia cells and their 

differentiation (Asaka et al., 1990; Sato et al., 1972). Aldolase A is also a useful 

http://www.ncbi.nlm.nih.gov/gene/5230
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biomarker for renal cell carcinoma (Takashi et al., 1992). Considering the role of 

aldolase A in glioma and Hsp90, no specific correlation has yet been reported.  

Anaplastic lymphoma kinase (ALK) fused with tropomyosin 4 (TPM4) results in the 

formation of TPM4-ALK fusion protein. The homodimerization through the TPM   

coiled-coil domain with ALK leads to the autophosphorylation and activation of ALK 

(Chiarle et al., 2008). Such fusion has been previously reported to occur in anaplastic 

large cell lymphoma, inflammatory myofibroblastic tumours and oesophageal 

squamous cell carcinomas (Chiarle et al., 2008). ALK has been reported to be 

overexpressed in gliomas and its downregulation prevents anti-apoptotic signalling 

and reduced tumour growth (Chiarle et al., 2008). This study, thereby for the first time, 

demonstrates the downregulation of TPM4-ALK fusion protein post Hsp90 inhibition in 

glioma which could hold therapeutic significance. However, a more mechanistic insight 

is required to gain a complete understanding of the effect of TPM4-ALK 

downregulation post Hsp90 inhibition for glioma studies.  

During post Hsp90 inhibition, the protein level of eukaryotic translation initiation 

factor 3 subunit 12 is downregulated in the U87-MG glioma cell line. Eukaryotic 

translation initiation factor 3 subunit 12 also known as eukaryotic translation initiation 

factor 3 subunit K (eIF3K) is a component of eukaryotic translation initiation factor 3 

(eIF3) complex which plays a role in the initiation of protein synthesis 

(http://www.uniprot.org/uniprot/Q9UBQ5). A study of simple epithelial cell 

demonstrated apoptosis promoting function of the eIF3K complex by reducing the 

caspase sequestration effect of kertains 8 and 18 (K8/K18), thereby increasing the bio 

availability of caspases to non-keratin residing substrates (Lin et al., 2008). However, 

no direct link between eIF3K and gliomas has yet been reported.  

http://www.uniprot.org/uniprot/Q9UBQ5
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Transgelin 2 is a homologue to the protein transgelin which is a marker for smooth 

muscle differentiation. The precise function of this protein is yet to be determined 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&cmd=Link&LinkName=protein

_gene&from_uid=4507357). Transgelin 2 is frequently observed in tumour cells, 

precancerous lesions and hepatatic metastases while its expression in normal epithelia 

is rarely observed. A study in colorectal cancer displayed transgelin 2 to be over 

expressed and the over expression was associated with lymph node metastasis. 

Thereby, transgelin 2 can be a potential biomarker for the prognosis and to predict 

progression of colorectal cancer (Zhang et al., 2010). Transgelin 2 is reportedly 

upregulated in gliomas (Mehrian et al., 2005; Shirahata et al., 2007), subsequently, 

post Hsp90 inhibition transgelin 2 was downregulated post Hsp90 silencing using 

shRNA targeting hsp90α and was differentially expressed post Hsp90 inhibition using 

17AAG in U87-MG glioma cell line. This study for the first time demonstrates a link 

between Hsp90 and transgelin 2. It is unclear as to why a differential expression was 

observed in trangelin 2 protein levels, post Hsp90 inhibition and it would be interesting 

to study the interaction between Hsp90α and transgelin 2 in order to achieve a better 

understanding of glioma therapy. 

Another protein downregulated post Hsp90 inhibition in U87-MG glioma cell line was 

identified as chain A, cyclophilins B complexed with[d-(cholinylester)ser8]-cyclosporin. 

Proteomic studies in head and neck cancer (HNC) identified chain A, cyclophilins B 

complexed with [d-(cholinylester) ser8]-cyclosporin to be potentially involved in 

radioresistance phenotype (Lin et al., 2010).  

The inhibition of Hsp90 by either 17AAG or shRNA to target hsp90α in U87-MG glioma 

cell line resulted in subsequent downregulation of several proteins such as Ku70,    

http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&cmd=Link&LinkName=protein_gene&from_uid=4507357
http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&cmd=Link&LinkName=protein_gene&from_uid=4507357
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SERPINE 1 and PGK 1 which could possibly be of therapeutic importance in glioma 

therapy. Moreover, considering the difference in the changes between proteins 

downregulated by 17AAG and shRNA targeting hsp90α, it could be postulated that 

Hsp90 inhibition with 17AAG is more effective. Furthermore, an understanding of the 

interactions between Hsp90 and other downregulated proteins such as transgelin, 

calumenin, aldolase A, TPM4-ALK and eIF3K would be interesting and it would certainly 

clarify the working of the Hsp90 chaperoning system in glioma studies. 

 

Proteins differentially regulated by Hsp90 inhibition 

Inhibition of Hsp90 using 17AAG and shRNA targeting hsp90α in the U87-MG glioma 

cell line resulted in the differential expression of specific proteins such as type IV 

collagen, annexin A2 with calcium ions, Hsp90 beta-1, manganese superoxide 

dismutase, Des3-23alg-2 bound to calcium and transgelin 2. Interestingly, all the 

proteins differentially expressed were upregulated upon 17AAG treatment and 

downregulated upon shRNA treatment. The differential expression of these proteins 

could be attributed to the inhibition of Hsp90 by different mechanisms i.e. 17AAG 

targeting Hsp90 protein and shRNA targeting hsp90α gene. COL4A1 gene encodes for 

collagen alpha-1 (IV) chain which is a major type IV collagen chain of basement 

membranes 

(http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermTo

Search=1282). Molecular genetics have enabled the identification of six evolutionary 

related mammalian genes that encode six different polypeptide chains of collagen IV. 

Each gene is differentially expressed during embryonic development, thus, providing a 

tissue specific collagen IV network. The α-chains further assemble themselves in ER 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1282
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1282
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forming unique heterotrimers in a chain specific manner (Khoshnoodi et al., 2008). 

Type IV collagen is strictly an exclusive member of the basement membrane and forms 

supramolecular networks influencing cell adhesion, migration and differentiation 

(Khoshnoodi et al., 2008). Studies have linked collagen IV to rare genetic diseases such 

as cererbral haemorrhage, porencephaly in infants, haemorrhagic strokes in adults and 

several tumours (Khoshnoodi et al., 2008). The human glioma cell line, U87-MG has 

the ability to degrade type IV collagen intracellularly for tumour invasion (Sameni et 

al., 2001).  

Annexin A2 also referred to as annexin II is encoded by ANXA2 gene. It is a calcium and 

phospholipid ion binding protein and acts as a substrate for tyrosine kinases. Increased 

levels of annexin II have been observed in various tumours including gliomas (Nygaard 

et al., 1998). Earlier studies have demonstrated the presence of annexin II as a marker 

for malignancy in glioma cell lines (Nygaard et al., 1998). Annexin II is also involved in 

glioma invasion and its subsequent silencing using RNAi reportedly decreased the 

migration of human glioma cell lines in vitro (Tatenhorst et al., 2006). 

Manganese superoxide dismutase (MnSOD) is a mitochondrial protein which forms 

homotetramer and binds to one manganese per subunit. It further binds to superoxide 

by-products of oxidative phosphorylation and converts them to hydrogen peroxide and 

diatomic oxygen (http://www.genecards.org/cgi-bin/carddisp.pl?gene=Sod2). 

Mutations of the gene encoding MnSOD are associated with several diseases including 

tumours. MnSOD has been found to be increased in several tumours including glioma 

(Zhong et al., 1997). In one particular study, MnSOD was over expressed in wild type 

U118 and U118-9 glioma cell lines and interestingly, it was noted that the MnSOD over 

expressed cell lines became less malignant and had a slower tumour growth. Thus, the 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=Sod2
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present findings suggest MnSOD to be a tumour suppressor gene in a several tumours 

(Zhong et al., 1997).  

The N terminal truncated apoptosis linked gene-2 (des3-23alg-2) was found to be 

differentially regulated upon Hsp90 inhibition. ALG-2 gene encodes for ALG-2 protein 

belonging to the penta-EF-hand protein family. It is reportedly bound to calcium and 

this calcium binding enables homodimerization and brings about conformational 

changes which are required for binding to other proteins. The ALG-2 protein is also 

reportedly involved in T cell receptor-Fas-and glucocorticoid-induced cell death  

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=Pdcd6; Jang et al., 2002). A 

study reported that, ALG-2 deficiency in mice failed to block apoptosis induced by T 

cell receptor-Fas-and/or glucocorticoid signals indicating that ALG-2 is not essential for 

apoptotic responses and other functionally redundant proteins might be present in 

mammalian cells (Jang et al., 2002). Contradictory to the above findings, the 

expression of ALG-2 was reportedly upregulated in lung and mesenchymal tumours. 

Further ALG-2 expression was silenced in HeLa cells using siRNA targeting ALG-2. A 

significant reduction in the viability of HeLa cells was observed suggesting a possible 

role of ALG-2 in tumour development and expansion (Ia Cour et al., 2008). 

Although Hsp90 was inhibited, proteomic analysis could not identify Hsp90 to be one 

the proteins affected. This could have been attributed to post translational 

modifications and/or alteration of the Hsp90 protein complex post treatment with 

17AAG and shhsp90α.  

 

 

 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=Pdcd6
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4.6 CONCLUSION: 

In conclusion, the present results have shown that the treatment of U87-MG glioma 

cells with either 17AAG or shRNA to target hsp90α effectively reduced Hsp90α activity 

and subsequently reduced the Akt/PKB kinase activity along with S and G2 phase arrest 

in the cell line. These results suggest that inhibition of Hsp90 activity could be used for 

GBM therapy. Based on the application of proteomics and the laboratory findings, it 

was observed that the inhibition of the Hsp90 is achieved far greater with 17AAG than 

with shRNA targeting hsp90α. 

Proteomic analysis post Hsp90 inhibition in the U87-MG glioma cell line revealed a 

clearer picture of the role of Hsp90 in glioma. However, there are still certain areas 

where further work should be carried out in order to understand the multifaceted 

nature of gliomas. With post proteomic analysis, it may be suggested that Hsp90 

inhibition is sub-lethal and a multi-target approach involving the targeting of Hsp70 

and/or members of the glycolysis pathway should be undertaken for enhanced glioma 

therapy.  
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5.1 INTRODUCTION: 

Glioma is resistant to standard treatment modalities such as surgery, radiation and 

chemotherapy with a mean survival rate of approximately 12-15 months (Carter et al., 

2007). Recent studies have shown significant progress in understanding the molecular 

pathogenesis of GBM (Furnari et al., 2007) which has increased an interest in 

molecular therapies for the treatment of gliomas (Idbaih et al., 2008; Chi and Wen, 

2007). Several single agents have been tried unsuccessfully in therapeutics (Idbaih et 

al., 2008; Chi and Wen, 2007). Co-activation of multiple tyrosine kinases and 

superfluous signalling pathways are some of the reasons for poor therapeutic response 

towards signal agents (Stommel et al., 2007). Furthermore, passage of several agents 

via the blood brain barrier has been poor followed by active efflux of the drugs via P-

glycoprotein and other pumps. To improve the effectiveness of molecular therapies 

there has been an increased interest in using multiple agents that target kinases, 

combining agents inhibiting complementary targets such as EGFR and mammalian 

target of rapamycin (mTOR), followed by the combination of several single agents with 

radiotherapy and/or chemotherapy (Wen, 2009). Previous preliminary results have 

shown good response in: 

1. A clinical study involving seventeen patients with advanced solid tumours was 

carried out. The patients were treated with a combination of chemotherapeutic 

drugs such as sorafenib and bevacizumab.  Partial responses (12 %) or disease 

stabilization occurred in most of the patients, thus, showing promising clinical 

activity along with sorafenib dose reduction and lowered side effects (Lee et 

al., 2010).  
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2. A monoclonal antibody against vascular endothelial growth factor (VEGF) called 

as bevacizumab has shown promising activity in malignant glioma therapeutics. 

Six patients with malignant glioma were treated with bevacizumab alongwith 

chemotherapy (temozolomide, irinotecan or topotecan).  Five of six patients 

showed a radiographic response. Thus, combining bevacizumab with 

chemotherapy could be an effective strategy to treat patients with malignant 

gliomas (Zhang et al., 2009). Additionally, bevacizumab combined with 

irinotecan showed promising activity in relapsed, heavily pre-treated 

population of patients with high grade malignant glioma. Of the thirteen 

patients treated, ten patients showed partial response (Ali et al., 2008). 

3.  Adenovirus carrying the secretable trimeric tumour necrosis factor-related 

apoptosis inducing ligand (Ad-stTRAIL) was injected in human glioma tumours 

in vivo. It was observed that gene therapy obtained with Ad-stTRAIL illustrated 

potent anti-tumour activity with no toxic side effects at therapeutically 

effective doses. In comparison with 1,3-bis(2-chloroethyl)-1-nitrosourea 

(BCNU), a conventional therapeutic for malignant glioma, Ad-stTRAIL 

demonstrated potent tumour growth suppression. Furthermore, the 

combination of Ad-stTRAIL with BCNU showed a significant increase in survival 

compared to control mice or mice treated with Ad-stTRAIL alone, thereby 

suggesting possible therapeutic aspects of Ad-stTRAIL combined with BCNU in 

the treatment of gliomas (Jeong et al., 2009). 

4. Human GBM cell lines (A-172 and LA567) were treated with a combination of 

TMZ and tamoxifen or hypericin and cell survival was analysed. It was observed 

that both tamoxifen and hypericin were able to enhance the growth inhibition 
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and apoptosis stimulatory response of TMZ by down regulating essential 

components of cell cycle and survival pathways (inhibiting protein kinase C, a 

growth stimulatory kinase) both in vivo  and in vitro (Gupta et al., 2006). 

5. Inhibitor of Akt pathway, LY294002 in combination with 17AAG showed 

enhanced cytotoxicity in malignant glioma cell lines. Furthermore, the cells 

exposed to LY294002 and 17AAG demonstrated a significant reduction in cell 

cycle regulatory proteins. Taken together, these findings postulate the use of 

targeting the Akt pathway in combination with 17AAG to achieve enhanced 

effects on downstream signalling pathways on treating patients with malignant 

gliomas (Premkumar et al., 2006). 

Proteomic analysis in the present study reported the induction of molecular chaperone 

Hsp70 family members post Hsp90 inhibition. This induction was in agreement with 

the literature (McCollum et al., 2006). In tumours, Hsp70 is upregulated and plays a 

key role in the regulation of several pathways such as cell proliferation, metastasis, 

invasion and death (Nylandsted et al., 2000). Members of Hsp70 family are involved in 

the apoptotic pathway and inhibit cell death (Frese et al., 2003; Pocaly et al., 2007; 

Kaur et al., 2000; Zhao et al., 2005). Thus, even though Hsp90 was inhibited, the 

induction of Hsp70 post inhibition resulted in survival of the glioma cells (U87-MG). It 

can be postulated that inhibition of Hsp70 along with Hsp90 could be of therapeutic 

importance in glioma therapy. Based on this hypothesis, U87-MG glioma cells were 

treated with both Hsp90 inhibitor i.e 17AAG and Hsp70 inhibitor i.e.                                

N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam (KNK437). KNK437 is 

a benzylidene lactam compound which inhibits Hsp70 (Yokota et al., 2000). Along with 
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Hsp70, KNK437 inhibits the activity of Hsp40 and Hsp105. However, little is known 

about KNK437 and its mechanisms (Yokota et al., 2000). 

 

Figure 5.1: Structure of KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-
butyrolactam) 

 

KNK437 was first reported in 2000 by Yokota et al., (2000) where in they showed 

inhibition of Hsp70 and inhibition of thermotolerance acquisition post KNK437 

treatment in human colon carcinoma (Yokota et al., 2000). Furthermore, Lui and Kong 

(2007) observed DNA defragmentation when Hsp70 was inhibited by KNK437 in 

erythroleukemic cell line,   TF-1 (Lui and Kong, 2007). However, studies are still ongoing 

to determine the exact mechanisms of action of KNK437. 

This study, in the light of these previous findinup, examined the combined effect of 

inhibiting Hsp90 and Hsp70 with 17AAG and KNK437 respectively, in U87-MG glioma 

cell line. Cell cycle analysis was carried out to determine the effect of combining 

17AAG and KNK437 on various stages of cell cycle. Additionally, U87-MG glioma cells 

were checked for viability post treatment with both 17AAG and KNK437. 
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5.2 MATERIALS AND METHODS: 

In this study, U87-MG glioma cell line was cultured as described in section 2.1. The 

cells were treated with varying concentrations of KNK437 (10 – 100 nM) for 48 hours 

to assess its IC50 as described in section 2.11. The cells were then treated with both 

17AAG and KNK437 in combination and assessed for viability as described in section 

2.11. Moreover, cell cycle analysis was carried out on control (wild type U87-MG cell 

line) and treated (1. U87-MG cells treated with 17AAG, 2. U87-MG cells treated with 

KNK437 and 3. U87-MG cells treated with both 17AAG and KNK437) as described in 

section 2.12. Statistical analysis were performed as described in chapter 2, section 

2.14. 
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5.3 RESULTS: 

5.3.1 U87-MG cell viability using KNK437: 

Varying concentrations of KNK437 (10 – 100 nM) were added to U87-MG glioma cell 

line and then incubated for 48 hours to determine the IC50 for KNK437 (Fig. 5.2).  

 

Figure 5.2: Cell viability assessment of U87-MG with increasing concentrations of KNK437  
(10 – 100 nM). Data values are mean ± standard error, n = 3. 

 

The results presented in figure 5.2 show that KNK437 can evoke a gradual inhibition in 

cell viability upto 50 nM. Further concentrations evoked only small decreses in cell 

viability with maximal effect observed with 100 nM. Typically, 100 nM produced an 

inhibition of 65 %. Following an analusos of the data the IC50 of KNK437 was calculated 

to be 55 nM. 
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5.3.2 Cell viability using 17AAG AND KNK437: 

U87-MG glioma cells were treated with IC50 values of 17AAG (0.25 μM), KNK437         

(55 nM) and then with a combination of IC50 values of 17AAG and KNK437 (Fig. 5.3). 

 

Figure 5.3: Cell viability assessment of U87-MG with 17AAG and KNK437. Data values are 
mean ± standard error, n = 3, *p < 0.05 and **p < 0.001 are considered to be statistically 
significant. 

 

The results show that, combining 17AAG and KNK437 (**p < 0.001) resulted in an 

increased cell death rate of U87-MG glioma cells. Though IC50 values of 17AAG and 

KNK437 were used, the percentage of viable cells observed, post 17AAG and KNK437 

treatment were 61.2 (*p < 0.05) and 62.6 (*p < 0.05), respectively. This flux could have 

been possibly attributed to changes in passage number of the U87-MG cells used.  
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5.3.3 Cell cycle analysis: 

Cell cycle analysis was carried out to compare control cells (wild type U87-MG) and 

treated cells [U87-MG-17AAG, U87-MG-KNK437 and U87-MG-(17AAG + KNK437)] 

based on the cohort of cells found at different stages of the cell cycle. As seen below, 

the P2 represents the cohort of cells at the G1 phase of the cell cycle, P3 stands for the 

cohort of cells in the S phase of the cell cycle and P4 represents the cohort of cell in 

the G2 phase of cell cycle (Fig. 5.4 and 5.5; Table 5.1). 

 

Figure 5.4: Cell cycle analysis of U87-MG control and treated glioma cell line. Cohort of      
U87-MG cells stained with PI upon cell cycle analysis in A) Control (wild type U87-MG cells) B) 
U87-MG cells treated with 17AAG C) U87-MG cells treated with KNK437 and D) U87-MG cells 
treated with a combination of 17AAG and KNK437. These flow cytometric readings are typical 
of 3 such different experiments. 
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Table 5.1: Cell cycle analysis of U87-MG control and treated glioma cell line. 

Data values are mean ± standard deviation, n=3, *p < 0.05 and **p < 0.001 are considered to 
be statistically significant. 

Sample 

Cell Cycle (%) 

G1 S G2 

WT U87-MG 60.5 ± 0.6  14.2 ± 0.1 15.6 ± 3.4 

U87-MG-17AAG 54.8 ± 0.1 17.9 ± 0.6* 18 ± 5 

U87-MG-KNK437 45.5 ± 2.2 25.8 ± 2.9* 20 ± 3.1 * 

U87-MG-(17AAG + KNK437) 48.5 ± 0.7 * 16 ± 0.7 20.5 ± 3 *  

 

Different stages of the cell cycle are affected upon inhibiting Hsp90 and Hsp70. 
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Figure 5.5: Different stages of the cell cycle affected post inhibition of Hsp90 and Hsp70. Data 
are mean ± standard deviation, n = 3, *p < 0.05 and **p < 0.01 are considered to be 
statistically significant. 

 

 

Thus, it can be observed that various stages of the cell cycle are affected post 

inhibition of Hsp90 and Hsp70 using 17AAG and KNK437, respectively. Also, upon 

statistical analysis there was a significant decrease (*p < 0.05) when KNK437 was used 

in combination with 17AAG on G1 and G2 phases of U87-MG cell cycle. 
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5.4 DISCUSSION: 

Heat shock proteins are a group of molecular chaperones responsible for protein 

folding, assisting re-folding of denatured proteins and preventing proteins from 

aggregation and other cellular processes (Hartl et al., 2002; Young et al., 2004). Hsp90 

and Hsp70 act as co-chaperones to each other (Dittmar and Prat, 1997; Morishima et 

al., 2000). Hsp90 has emerged as a molecular target due to its role in maturation and 

regulation of key oncogenic client proteins (Workman et al., 2007; Whitesell and 

Lindquist, 2005). Over the past few years, several small molecular inhibitors such as 

radicicol and 17AAG have been utilized to inhibit Hsp90 function in an attempt to be of 

therapeutic importance. One of the inhibitors of Hsp90, 17AAG is currently in clinical 

trials for the treatment of several tumours (Goetz et al., 2003; Neckers, 2002). Though 

Hsp90 works on multiple oncogenic, proliferative and survival pathways, inhibition of 

Hsp90 does not completely inhibit the rate of tumour cell growth or tumour invasion. 

This could be attributed to the heat shock response generated post Hsp90 inhibition 

which attenuates cell death (Guo et al., 2005; Gabai et al., 2005; Zaarur et al., 2006). 

Post Hsp90 inhibition, HSF-1 transcription factor monomers are released from the 

Hsp90 complexes and results in HSF-1 trimerization followed by its translocation inside 

the nucleus, wherein, it binds to the promoter elements of heat shock genes (Zou et 

al., 1998; Ali et al., 1998; Voellmy and Boellmann et al., 2007). Regulators of apoptotic 

pathways such as members of Hsp70 family are predominantly induced along with 

Hsp27 post Hsp90 inhibition causing reduced sensitivity amongst tumour cells towards 

Hsp90 inhibition (Powers et al., 2008). Previous studies have noted induction of Hsp70 

isoforms i.e. Hsp72 and Hsc70 post Hsp90 inhibition in colon and ovarian tumours 

(Clarke et al., 2000; Maloney et al., 2007). Proteomic analysis of the present research 
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showed a similar pattern. Members of the Hsp70 family were induced post Hsp90 

inhibition using 17AAG or shRNA targeting hsp90α. Taking this into consideration, 

experiments were conducted to inhibit both Hsp90 and Hsp70 in U87-MG glioma cell 

line.  

Varying concentrations (10 – 100 nM) of KNK437, an Hsp70 inhibitor were pre-

incubated with U87-MG cells. The cells were treated for 48 hours before the viability of 

the cells were assessed. The results have indicated that approximately 55 nM of 

KNK437 was required to kill 50 % of the cells (IC50) post 48 hours. Previous studies in 

the erythroleukemia cell line (TF-1) showed that 100 nM of KNK437 was required to kill 

50 % of the cells post 24 hours of treatment (Lui and Kong 2007). Thus, it could be 

inferred that if maintained for 48 hours, the IC50 of KNK437 in TF-1 cells could possibly 

then be 50 nM which is in consistency to our findings. Additionally, this flux of IC50 

levels in KNK437 could be due to differences in cell lines and the experimental 

conditions used.  

Furthermore, U87-MG cells were treated with either 17AAG, KNK437 or a combination 

of the two inhibitors. The combination of 17AAG with KNK437 resulted in a higher 

percentage (~ 60 %) of U87-MG glioma cell death rate compared to treatment with 

17AAG (~ 39 %) or KNK437 (~ 37 %) alone. Statistic analysis using paired-sample T-test 

confirmed that the combination of 17AAG with KNK437 produced a significant 

decrease (**p < 0.001) of U87-MG glioma cells. Thus, it may be suggested that 

combination therapy involving inhibition of both, Hsp90 and Hsp70 could be used in 

glioma therapy. Interestingly, arsenic trioxide (ATO) is used as a promising therapeutic 

agent in leukemia as it can induce apoptosis (Wu et al., 2009). Wu et al., (2009) 
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demonstrated that co-treatment of human adenocarcinoma cell line, HeLa-S3 with 

ATO, with either 17-DMAG (Hsp90 inhibitor) or KNK437 significantly increased ATO-

induced cell death and apoptosis along with ATO-induced mitotic arrest (Wu et al., 

2009).  

Cell cycle analysis was carried out to compare control (wild type U87-MG cell line) and 

treated cells (U87-MG cells treated with 17AAG and U87-MG cells treated with KNK437 

and U87-MG cells treated with both 17AAG and KNK437). Consistent with previous 

findings, it was observed that Hsp90 inhibition with 17AAG resulted in S and G2 phase 

arrest. Additionally, inhibition of Hsp70 with KNK437 also resulted in S and G2 phase 

arrest. Similarly, inhibition of both Hsp90 and Hsp70 resulted in G1 and G2 phase 

arrest in the U87-MG glioma cell line (*p < 0.05). Previous work on the A-172 glioma 

cell line demonstrated that post KNK437 treatment, the A-172 cells entered into G2/M 

phase arrest post 48 hours of treatment (Ohnishi et al., 2006). Though the data 

obtained are preliminary, the results do look promising. Previous studies have 

illustrated the use of a multi-target approach combining different therapeutic 

drugs/inhibitors for tumour therapy (Ali et al., 2008; Gupta et al., 2006; Premkumar et 

al., 2006; Jeong et al., 2009). Thus, it could be hypothesized that a combination 

treatment involving the simultaneous inhibition of both, Hsp90 and Hsp70 could be 

possible strategy for the treatment of glioma. 
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5.5 CONCLUSION: 

The efficacy of Hsp90 inhibitors can be compromised by the induction of anti-apoptotic 

Hsp70 isoforms as an off-target effect of Hsp90 inhibition. Similar findings were 

observed when Hsp90 was inhibited in U87-MG glioma cells. Subsequently, Hsp90 and 

Hsp70 were both inhibited by treating U87-MG cells with 17AAG and KNK437, 

respectively. An induced U87-MG cell death rate was observed when both Hsp90 and 

Hsp70 were simultaneously inhibited. Additionally, S and G2 phase arrest was 

observed in U87-MG cells post Hsp90 and Hsp70 inhibition. It can thus be postulated 

that, combination therapy targeting multiple pathways could be a future strategy in 

glioma therapy. 
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CHAPTER 6 

 

 

GENERAL DISCUSSION, CONCLUSION AND 

FUTURE WORK. 
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6.1 GENERAL DISCUSSION AND CONCLUSION:  

Heat shock protein 90 (Hsp90), a highly conserved molecular chaperone, has two 

isoforms of which, Hsp90α is the major inducible isoform (Gupta, 1995). Hsp90 plays a 

vital role in tumorigenesis, maintenance of transformation and regulation of several 

proteins involved in apoptosis, survival and growth pathways (Shervington et al., 

2008). Hsp90 also has an active role in the transformation and maturation of several 

“oncogenic” client proteins such as Akt (Kamal et al., 2003). Akt, a protein kinase is 

involved in anti-apoptotic pathways. However, in tumours including glioma, it 

stimulates cell proliferation and inhibits apoptosis thus empowering cancer cells the 

property of “immortality” (Basso et al., 2002; Basso et al., 2002). Hsp90 is over-

expressed in breast tumours, lung cancers, leukaemias and Hodgkin’s disease (Neckers, 

2007). Previous studies in our laboratory have reported hsp90α over expression in 

both glioma tissue and cell lines but not in normal brain tissues and cell lines, 

suggesting a possible role in sensitizing glioma cells to therapy by using anti-Hsp90α 

drugs (Shervington et al., 2008). Inhibiting hsp90α expression can possibly be a 

favourable therapeutic approach compared to conventional chemotherapies since it is 

target-specific and has a reduced toxicity profile (Cruickshanks et al., 2010). Given the 

advantages of silencing achieved using shRNA as opposed to siRNA, this study used 

shRNA oligonucleotides targeting hsp90α. shRNA olignucleotide 2 was mRNA effective 

by silencing hsp90α upto approximately 99  % (**p < 0.001). The activity of the Hsp90α 

protein was assayed by quantifying the levels of Akt/PKB in these samples. Significant 

reductions (> 50 %) (**p < 0.001) of Akt/PKB levels were observed post hsp90α 

inhibition. Due to the anti-apoptotic role of Akt in gliomas, it can be suggested that the 
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reduction of Akt levels post Hsp90α inhibition would be of therapeutic importance in 

glioma therapy. 

Hsp90 was inhibited using 17AAG, a potent Hsp90 inhibitor which has shown 

significant results so far in clinical trials. The IC50 level of 17AAG was found to be       

0.25 μM following 48 hours incubation in the case of the U87-MG cell line. Cohorts of 

the U87-MG cells were treated with either 17AAG or shRNA to target hsp90α. The 

efficacy of Hsp90 inhibition was analysed by assessing the protein level of Hsp90α in 

control and treated cells by FACS analysis (quantitative) using a flow cytometer. 

Furthermore, the Akt/PKB kinase activity levels were checked using the Akt/PKB kinase 

activity assay kit (Assay Designs, UK) and Hsp90α levels were also quantified in control 

and treated cells using Hsp90α ELISA kit (Assay Designs, UK). Upon FACS analysis 

Hsp90α protein levels were found to be reduced (**p < 0.001) by approximately 44 % 

and 16 %, post treatment with 17AAG and shRNA oligonucleotide targeting hsp90α, 

respectively. ELISA analysis quantified Hsp90α protein levels in control (wild type U87-

MG) and treated (U87-MG-17AAG and U87-MG-shhsp90α) and it was observed that 

the Hsp90α protein levels were reduced significantly (**p < 0.001) by more than 65 % 

and 45 %, post treatment with 17AAG and shhsp90α, respectively, in U87-MG cells. 

The activity of Hsp90α protein was determined by assaying the quantity of Akt in the 

samples. It was observed that the Akt/PKB kinase activity was reduced significantly 

(**p < 0.001) by   81 % and 59 %, post 17AAG and shhsp90α treatment, respectively in 

U87-MG glioma cells, suggesting that Hsp90 inhibition could be of therapeutic 

significance. Furthermore, cell cycle analysis demonstrated S and G2 phase arrest in 

the U87-MG cell line, post Hsp90 inhibition. 
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Interestingly, it was observed that the inhibition of the Hsp90 protein is a more 

effective therapeutic approach than silencing hsp90α i.e. though shRNA targeting 

hsp90α did silence Hsp90, the 17AAG showed a better silencing profile. These results 

thereby illustrate the importance of Hsp90 inhibition for glioma therapy.  

A major drawback of RNAi therapy is the effects of silencing by RNAi being only partial 

and results in incomplete knockout of phenotype (Yamada et al., 2007). Such a 

phenotype might contribute in the production of a spliced/altered Hsp90 isoforms 

which could compensate the function of Hsp90α and thereby diminish the effects of 

post treatment with shhsp90α. The mRNA transcripts are processed by several post-

translational events such as alternative splicing or RNA editing. These events generate 

different mRNA strands from the same gene resulting in an increase of the 

transcriptome and subsequently the proteome (Gallo and Galardi, 2008). Thus, it could 

be suggested that RNA editing generates RNA diversity through the post-

transcriptional modification of single nucleotides in pre-Hsp90α mRNA and 

subsequently hampering the effect of Hsp90α inhibition, post shhsp90α treatment.  

Though such an edited/altered isoform of Hsp90α has yet to be reported, recent 

studies have reported that adenosine (A) to inosine (I) editing widely occurs in human 

trancriptome (at least 2 % of available mRNAs), with most of the editing sites residing 

in Alu repetitive elements. Alu sequences are typically 300 nucleotides (nt) long and 

comprise > 10% of the human genome (Athanasiadis et al., 2004; Kim et al., 2004; 

Levanon et al., 2004; Levanon et al., 2005; Eisenberg et al., 2005). 

Tumour cells have a high dependence on stress response pathways compared to 

normal cells. As a result, Hsp90 has been found to be present in an activated 

superchaperone complex in tumour cells while in normal cells it is present in an 
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uncomplexed state. Hsp90 present in the activated superchaperone complex (tumour 

cells) is highly sensitive to pharmacological Hsp90 inhibitors than the Hsp90 present in 

an uncomplexed state (normal cells) (Workman et al., 2007). Considering 17AAG, it 

targets the Hsp90 protein reducing the effects of RNA editing. Furthermore, the 

binding affinity of Hsp90 to 17AAG is 100 folds higher in tumour cells than normal cells 

which enables selective drug targeting of tumours (Kamal et al., 2003). Moreover, 

17AAG’s ability to target tumour cells over normal cells and its ability to cross the 

blood brain barrier is of therapeutic importance in glioma therapy (Sauvageot et al., 

2009).  

To understand the downstream effects of Hsp90 inhibition and to determine the client 

proteins affected, proteomic analysis was performed on U87-MG cells. Proteins were 

extracted from the control and treated samples and then were analyzed by Applied 

Biomics; 2D-DIGE for separation and MALDI-TOF for protein identification. Based on a 

2 fold cut off, the analysis identified 36 proteins while MALDI-TOF analysis identified 

33 proteins with altered expression with a confidence levels > 99 %. Three proteins 

were classified as unknown proteins. IPA analysis demonstrated dynamically regulated 

biological networks and canonical pathways, post Hsp90 inhibition. The top network 

transformed post Hsp90 inhibition identified as “cancer” while the top diseases and 

disorders transformed upon Hsp90 inhibition were cancer, gastrointestinal disease, 

genetic disorder, neurological disease and skeletal and muscular disorders. These 

results confirm that by altering Hsp90 levels, the cancer proteome including 

neurological and genetic disorders is affected. The IPA library of canonical pathways 

further demonstrate that most of the proteins affected post Hsp90 inhibition belong to 

glycolysis/glucogenesis pathways.  
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During post Hsp90 inhibition, several proteins were upregulated, and these included 

members of Hsp70 family together with Hsp27 and member of the Hsp90 family, i.e. 

gp96. These molecular chaperones are also upregulated and they serve as co-

chaperones to Hsp90 function (Dittmar and Pratt, 1997; Morishima et al., 2000) there 

by suggesting the role of Hsp90 co-chaperones in compensating for Hsp90 function 

post Hsp90 inhibition. However, further research needs to be carried out to confirm 

these postulations. Moreover, members of the glycolysis/glucogenesis pathways are 

also upregulated, demonstrating increased dependency on glycolysis for energy supply 

by the treated glioma cells. This phenomenon is called the “Warburgs effect” and it is 

an important phenomenon during malignant transformation (Warburg, 1956). Other 

proteins such as vimentin, aldose reductase complexed with dicholorophenyacetic 

acid, annexin 1, ubiquitin thiolesterase isoform CRA_d and actin related protein 2/3 

complex subunit 2. Most of the proteins upregulated are involved in protein 

metabolism, energy pathways, cell growth and/or maintenance, metabolism, cell 

communication, signal transduction, and cytoskeleton organization and biogenesis. 

Their upregulation could be attributed to their functions which could have helped U87-

MG glioma cells survive post Hsp90 inhibition. Thus, Hsp90 inhibition may be sub-

lethal and there is a need for a multi-target approach in glioma therapy. As discussed 

earlier, it was observed that 17AAG inhibits Hsp90 better than shRNA targeting 

hsp90α. A significant difference between the increase observed in some the key 

proteins namely, Hsp70-1, Hsc70, hexokinase 1, pyruvate kinase, GAPDH and annexin 1 

could be seen between the two treatments i.e. 17AAG and shRNA targeting hsp90α.  

Several proteins such as Ku autoantigen, vimentin, serpine1 mRNA binding protein 1, 

calumenin, phosphoglycerate kinase, aldolase A, tropomyosin 4-anaplastic lymphoma 
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kinase fusion protein, eukaryotic translation initiation factor 3, transgelin 2, 

cyclophilins B complexed with [d-(cholinyester)ser8]-cyclosporin and GAPDH 

(predicted) were downregulated. Some of the proteins downregulated post Hsp90 

inhibition are involved in various cellular responses such as DNA repair, protein 

synthesis and cell mobility. Most of the proteins downregulated such as Ku70, 

SERPINE1, PGK1 and transgelin post Hsp90 inhibition are normally upregulated in 

several tumours including gliomas (Wang et al., 2009; Martin et al., 2009; Kreth et al., 

2010; Shirahata et al., 2007). Thus, their subsequent downregulation post Hsp90 

inhibition could be of therapeutic importance. However, further work should be 

carried out to understand the interactions between the downregulated proteins and 

Hsp90 in the treatment of gliomas.  

Proteomic analysis in this study also showed induction of the Hsp70 family members 

post Hsp90 inhibition. This induction is in agreement with the literature (McCollum et 

al., 2006). Members of Hsp70 family act at multiple points in the apoptotic pathway 

and inhibit cell death (Frese et al., 2003; Pocaly et al., 2007; Kaur et al., 2000; Zhao et 

al., 2004). Thus, even though Hsp90 was inhibited, the induction of Hsp70 post 

inhibition could have resulted in survival of the glioma cells (U87-MG). It can therefore 

be postulated that inhibition of Hsp70 and Hsp90 would be of therapeutic importance 

in glioma therapy. Based on this hypothesis, U87-MG glioma cells were treated with 

both the Hsp90 inhibitor i.e 17AAG and the Hsp70 inhibitor i.e. KNK437. The IC50 level 

of KNK437 was reported to be 55 nM, post 48 hours in the U87-MG cell line. Cell 

viability analysis demonstrated a higher percentage of U87-MG glioma cell death (~ 60 

%)(**p < 0.001) when treated with a combination of 17AAG and KNK437 compared to 

treatment with 17AAG alone which resulted in ~ 39 % cell death. When U87-MG 
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glioma cells were treated with only KNK437 there was ~ 37 % cell death. However, the 

effects of 17AAG and KNK437 are not synergetic but rather additive in nature. Thus, it 

could be suggested that combination therapy involving inhibition of both Hsp90 and 

Hsp70 could be used in glioma therapy. Cell cycle analysis was also carried out to 

compare control (wild type U87-MG cell line) and treated cells (U87-MG cells treated 

with 17AAG, U87-MG cells treated with KNK437 and U87-MG cells treated with both 

17AAG and KNK437). It was observed that Hsp90 inhibition with 17AAG resulted in S 

and G2 phase arrest. Inhibition of Hsp70 with KNK437 also resulted in S and G2 phase 

arrest. Similarly, inhibition of both Hsp90 and Hsp70 resulted in S and G2 phase arrest 

in U87-MG glioma cell line. Figure 6.1 summarizes the main findings of this study. 

General conclusion: Together, the above findings have demonstrated the effect of 

combination therapy involving Hsp90 and Hsp70 for glioma therapy. However, more 

work needs to be undertaken to fully understand the Hsp90-Hsp70 chaperoning of 

glioma for effective glioma therapy. Further work needs to be carried out to 

understand the role of the proteins affected downstream post Hsp90 inhibition in 

glioma therapeutics. Members of the glycolysis pathway should also be extensively 

studied as a possible therapeutic option for glioma therapy. It is also equally important 

to determine the cellular and subcellular mechanism whereby KNK437 and 17AAG can 

induce cell death. 
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A 

 

B 

 

Figure 6.1: Schematic model summarizing the main findings. A) Hsp90 inhibition by 

either 17AAG or shRNA targeting hsp90α is of significant importance in glioma therapy. 

Proteomic analysis highlighted several proteins regulated post Hsp90 inhibition and further 

work needs to be undertaken to understand the chaperoning activity of Hsp90 in glioma 

therapy. B) Combination therapy involving 17AAG and KNK437 to inhibit Hsp90 and Hsp70 

respectively, showed enhanced U87-MG glioma cell death. 
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6.2 FUTURE WORK: 

Given the role of Hsp90 and its subsequent involvement in several tumours including 

gliomas, it has been an attractive target in tumour therapy. Several Hsp90 inhibitors 

have been used over the past decades in an attempt to treat tumours. In recent years, 

17AAG has emerged as an attractive Hsp90 inhibitor and has shown to be a promising 

candidate in clinical trials carried out so far. It inhibits Hsp90 ATPase activity; shuts 

down the chaperone function and induces client protein degradation. Furthermore, 

the results from our laboratory also illustrate that 17AAG is a better inhibitor for Hsp90 

function compared with shRNA oligonucleotide targeting hsp90α. However, there are 

some drawbacks in using 17AAG in clinical studies (Kang and Altieri, 2009). There is 

therefore a need to understand other aspects of Hsp90 biology to unlock the full 

therapeutic potential of these inhibitors. 

Cancer is a complex disorder and is usually caused by more than one oncogenic factor. 

Targeting a single agent or a single protein (in this case Hsp90) would be sub-lethal and 

subsequently, it demands a need to target multiple proteins/factors in the treatment 

therapy of tumours. Post Hsp90 inhibition, Hsp70 was induced, assiting the glioma cells 

survive by evading apoptosis. Upon subsequent inhibition of both Hsp90 and Hsp70 in 

U87-MG glioma cell line, a high percentage of cell death was observed along with S 

and G2 phase arrest. Taking this into considerations, it could be postulated that 

targeting multiple targets, such as inhibiting Hsp90 and Hsp70, could be of therapeutic 

importance in glioma studies. However, further work needs to be undertaken to 

understand the role of Hsp90-Hsp70 in the chaperoning of glioma and its implication 

on glioma therapy. 
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Hsp90 chaperones a vivid list of client proteins and there is an ever increasing list of 

proteins that are being discovered that appear to play a role with Hsp90. In this 

particular study, several novel client proteins of Hsp90 such as transgelin 2, Ku70, 

SERPINE1, calumenin and TPM4-ALK fusion protein were identified. However, work 

needs to be undertaken to establish a direct link between Hsp90 and the proteins 

mentioned above to categorize them as novel Hsp90 client proteins. 

Members of the glycolysis/glucogenesis pathways were upregulated, post Hsp90 

inhibition, suggesting an increased dependency on glycolysis for energy supply by the 

treated glioma cells. Thus, more work needs to be undertaken to establish the link 

between Hsp90 and members of glycolysis pathway. The identified proteins should 

then be analyzed and studied for their role in the treatment of glioma. Work needs to 

be done illustrating the cellular and subcellular mechanism of action of 17AAG and 

KNK437 in inducing glioma cell death by measuring cellular Ca+2 homeostatis, p53 and 

caspase 3/9 and several other kinases which are involved with cell death. 
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