<table>
<thead>
<tr>
<th>Title</th>
<th>Effects of an 8-Week Pre-seasonal Training on the Aerobic Fitness of Professional Soccer Players</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>https://clok.uclan.ac.uk/29415/</td>
</tr>
<tr>
<td>DOI</td>
<td>##doi##</td>
</tr>
<tr>
<td>Date</td>
<td>2019</td>
</tr>
<tr>
<td>Citation</td>
<td>Michaelides, Marcos A orcid: 0000-0002-9226-4657, Parpa, Koulla M orcid: 0000-0002-1139-7731 and Zacharia, Anthos I (2019) Effects of an 8-Week Pre-seasonal Training on the Aerobic Fitness of Professional Soccer Players. Journal of strength and conditioning research. ISSN 1064-8011</td>
</tr>
<tr>
<td>Creators</td>
<td>Michaelides, Marcos A, Parpa, Koulla M and Zacharia, Anthos I</td>
</tr>
</tbody>
</table>

It is advisable to refer to the publisher’s version if you intend to cite from the work. ##doi##

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/
AUTHOR QUERIES

DATE 5/18/2019
JOB NAME JSCR
ARTICLE JSCR-08-11789
QUERIES FOR AUTHORS M.A. Michaelides et al.

THIS QUERY FORM MUST BE RETURNED WITH ALL PROOFS FOR CORRECTIONS

Please confirm the given names (pink) and surnames (blue) of authors have been identified correctly.
Please check and confirm whether all authors and their respective affiliations are appropriate.

AU1) Please check the edits made to the article title.
AU2) Please note that abstract and keywords have been taken from the provided PDF. Please check and correct if necessary.
AU3) Please confirm that the p-values are represented accurately and correct if necessary?
AU4) Please check and confirm the edits made to the sentence “The \hat{V}_{O_2} at ventilatory threshold...”
AU5) Please confirm that this study was approved by an Institutional Review Board. Please also confirm the institution’s name if not already stated.
AU6) Please provide the age ranges for all subjects mentioned in the Subjects section if you have not already. If any subjects were <18 years of age, please confirm that written parental consent was obtained. Please also confirm, if you have not already, that signed informed consent documents were obtained for all subjects.
AU7) Please clarify whether the height, weight, and age of subjects were measured as ± SD (standard deviation) or ± SE (standard error).
AU8) Please provide manufacturer name, city for the product “Garmin wireless HR monitor.”
AU9) Please note that as per the journal style, table and figure placements are not allowed in the “Discussion” section and hence have been introduced in the “Results” section. Please check and correct if necessary.
AU10) Please note that there is no in-text citation for Figures 1 and 2. Hence, please check the suggested in-text citation and correct the placement if necessary.
AU11) Please note that reference “17” is not cited in the text. Please cite it in the text or delete from the reference list.
Effects of an 8-Week Pre-seasonal Training on the Aerobic Fitness of Professional Soccer Players

Marcos A. Michaelides, Koulla M. Parpa, and Anthos I. Zacharia
University of Central Lancashire, Pyla, Cyprus

Abstract
Michaelides, MA, Parpa, KM, and Zacharia, AI. Effects of an 8-week pre-seasonal training on the aerobic fitness of professional soccer players. J Strength Cond Res XX(X): 000–000, 2019—Pre-season in soccer training develops the physical requisites for competition and usually consists of a high volume of aerobic and anaerobic conditioning training including friendly games. The purpose of the study was to determine the effects of pre-season training on the aerobic fitness of professional soccer players. Nineteen professional male soccer players (age = 27.37 ± 3.67 years, height = 179.61 ± 5.17 cm, and body fat percentage = 11.3 ± 3.19%) participated in this study performed an incremental cardiopulmonary exercise testing on a treadmill before and after the 8 weeks of pre-season preparation. The results were analyzed using paired t tests, revealing significant differences on several indices. The subjects improved significantly on maximal aerobic capacity (V̇O₂max) and lasted significantly longer on the treadmill (p < 0.005). The V̇O₂ at ventilatory thresholds (VT) and respiratory compensation point (RCP) increased significantly (p < 0.005). The running velocity at ventilatory thresholds (vVT and vRCP) and at V̇O₂ max (V̇O₂max) also increased significantly (p < 0.005). In conclusion, the results of this study, as expected, demonstrated that the proposed 8 weeks of pre-season training program was sufficient to cause significant improvements on the aerobic performance indices of professional soccer players. The study confirms the beneficial changes in the process of adaptations that occur with this type of training and can assist coaches and trainers in planning a successful pre-season training program.

Key Words: fitness testing in soccer, lactate threshold, pre-season training

Introduction
The pre-season training period in soccer aims at developing the physical requisites for competition. Unlike individual sports, soccer is characterized by a shorter pre-season training period and a longer competitive training period, especially when teams participate in international competitions (9). This requires careful strategic planning for training periodization because the pre-season training period consists of intense conditioning as well as a number of friendly games in addition to the technical and tactical practices that are concurrently scheduled (12). Consequently, the training load during the pre-season training period is higher than that of in-season training (20) and is expected to cause significant training adaptations on the aerobic system. Interestingly, recent studies (10,18) demonstrated that when short intense running intervals (RIs), 30 seconds–4 minutes, are combined to the basic training volume, aerobic performance enhances significantly. Bangsbo (1) demonstrated that 90% of the total energy during a soccer game is supported by aerobic metabolism. Thus, the major aim of the pre-season training period is to increase aerobic capacity that translates into increased running activity and decreased walking time during competitive soccer games (19). Helgerud et al. (14) demonstrated that maximal aerobic capacity (V̇O₂max) enhancement leads to improved soccer performance, substantiated as increases in the distance covered, the level of work intensity, the number of sprints, and the number of involvements with the ball during competitive games. Although V̇O₂max fluctuates in professional soccer players (4,5,13,15,24,27,38), those who compete at superior playing standards and championships demonstrate greater levels (26,38).

The greater V̇O₂max gain, however, is usually evident after a successful pre-season training program, specifically at the beginning of the competitive season (15,27). The improvements observed are attributed to a higher aerobic contribution and the reduced involvement of the anaerobic energy system in energy expenditure (1). Evidently, running performance in endurance sports such as soccer is not only limited in high levels of V̇O₂ max but also in other aerobic performance indices such as the lactate threshold (LT) and its associated running velocities (33). Thus, the purpose of this study was to examine the effect of the proposed 8-week pre-season training program on the aerobic performance indices of professional players.

Methods
Experimental Approach to the Problem
This experimental design used an 8-week pre-season training program to examine its effects on the aerobic fitness of professional soccer players participating at the highest standard of the Cyprus Soccer League. Before the 8-week pre-season training period, the subjects went through cardiopulmonary exercise testing (CPET) on a motorized treadmill to determine their maximal aerobic capacity and its related indices. The results of the testing served to set up the training intensities for the RIs that were used during the 8-week pre-season period. On completion of the training program, the subjects were retested on the same protocol to examine the possible changes in their maximal aerobic capacity and adjust the training intensities for the in-season training modalities.

Subjects
Nineteen professional male soccer players (age = 27.37 ± 3.67 years, height = 179.61 ± 5.17 cm, and body fat percentage = 11.3 ± 3.19%) participated in this study. Participation in this study was
voluntary, and all subjects were informed of the benefits and risks of the investigation before signing an institutionally approved informed consent document to participate in the study. Goalkeepers were excluded from the study because these players do not participate in the same type of training sessions as the in-field players. The study was approved by the University of Central Lancashire Science, Technology, Engineering, Medicine and Health (STEMH) ethics committee board and the Cyprus National Committee on Bioethics (CNCB). All measurements were obtained between the hours of 9:00 and 15:00. To mitigate the effects of the circadian rhythm on performance, the subjects were retested about the same time of the day.

Procedures

Cardiopulmonary Exercise Testing. The pre and post pre-season period CPET was performed on a motorized treadmill (h/p/Cosmos Quasar med; H-P-Cosmos Sports & Medical GmbH, Nussdorf-Traunstein, Germany). The gas exchange measurements were collected on the Cosmed Quark CPET (COSMED, Rome, Italy) system, using a breath-by-breath analysis through reusable rubber masks (model 7940; Hans Rudolph, Kansas City, MO, USA). The device was calibrated as suggested by the manufacturer. The laboratory temperature was kept constant at 20 ± 2° C, and the relative humidity was 50%. The modified Heck incremental maximal protocol was used for the testing, as it was previously demonstrated to be valid and reliable on soccer players (34). The heart rate (HR) (Garmin wireless HR monitor; soft strap with ANT + sender, China) was continuously monitored.

Determination of Ventilatory Threshold and Respiratory Compensation Point. The ventilatory threshold (VT) and respiratory compensation point (RCP) were determined using different

Table 1

**Overview of the 8-week pre-season daily type of training.*

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 1</td>
<td>AM</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Training</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Off</td>
</tr>
<tr>
<td>W 2</td>
<td>AM</td>
<td>Off</td>
<td>Training</td>
<td>Off</td>
<td>Training</td>
<td>Training</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Off</td>
</tr>
<tr>
<td>W 3</td>
<td>AM</td>
<td>Training</td>
<td>Friendly game</td>
<td>Training</td>
<td>Off</td>
<td>Training</td>
<td>Friendly game</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Friendly game</td>
</tr>
<tr>
<td>W 4</td>
<td>AM</td>
<td>Training</td>
<td>Training</td>
<td>Friendly game</td>
<td>Training</td>
<td>Off</td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Friendly game</td>
</tr>
<tr>
<td>W 5</td>
<td>AM</td>
<td>Off</td>
<td>Training</td>
<td>Friendly game</td>
<td>Off</td>
<td>Off</td>
<td>Friendly game</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Friendly game</td>
</tr>
<tr>
<td>W 6</td>
<td>AM</td>
<td>Off</td>
<td>Training</td>
<td>Friendly game</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
</tr>
<tr>
<td>W 7</td>
<td>AM</td>
<td>Off</td>
<td>Friendly game</td>
<td>Off</td>
<td>Off</td>
<td>Friendly game</td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
</tr>
<tr>
<td>W 8</td>
<td>AM</td>
<td>Off</td>
<td>Training</td>
<td>Off</td>
<td>Off</td>
<td>Official game</td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
<td>Training</td>
</tr>
</tbody>
</table>

*W 1–8 = pre-season weeks; AM = morning training; PM = afternoon training.

Table 2

Training plan for weeks 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Warm-up, 3 runs × 1,200 m, passing drill, rondo 8v2</td>
<td>Warm-up, 3 runs × 1,200 m, passing control drill, possession</td>
<td>Warm-up, 4 runs × 1,000 m, technique drill, rondo</td>
<td>Warm-up, 4 runs × 1,000 m, technique drill, rondo</td>
<td>Warm-up, core training, 5 runs × 900 m, passing drill, possession</td>
<td>Gym warm-up, circuit training 3 sets, coordination/sprint</td>
<td>Off</td>
</tr>
<tr>
<td>PM</td>
<td>Core training, 4-min running, dynamic warm-up, 5 runs × 1,000 m, passing drill, tactic possession</td>
<td>Gym warm-up, circuit training 3 sets, coordination, rondo, possession, small game</td>
<td>Core training, dynamic warm-up, rondo, tactic/smaller sided game, small game</td>
<td>Core training, dynamic warm-up, rondo, tactic/technique, small-sided game, small game</td>
<td>Core training, dynamic warm-up, rondo, small-sided game, tactic game</td>
<td>Core training, dynamic warm-up, rondo, small-sided game, tactic game</td>
<td>Core training, dynamic warm-up, rondo, small-sided game, tactic game</td>
</tr>
</tbody>
</table>
criteria. The VT was determined through the V-Slope method, the point at which the increase in the rate of elimination of carbon dioxide ($\dot{V}CO_2$) is greater than the increase in $\dot{V}O_2$. The VT point was verified at the nadir of the VE/$\dot{V}O_2$ curve. The RCP was determined at the nadir of the VE/$\dot{V}CO_2$ curve (2,37). The plots used for the determination of the thresholds utilized filtered breath-by-breath values (averaged into 10-second bins).

Pre-season Training Structure. A general overview of the 8-week pre-season program is presented in Table 1 and includes the categorization of the types of training as described by the coaching team. The pre-season period included 26 single training sessions, 12 double training sessions, 9 friendly games, and 6 rest days before the first official game. The detailed training modalities during the 8-week pre-season period are presented in Tables 2–5. The duration of morning training sessions (AM) was approximately 60 minutes, whereas the duration of afternoon training sessions was approximately 80–95 minutes.

Table 3
Training plan for weeks 3 and 4.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>4-min running, dynamic warm-up, 8 runs × 600 m</td>
<td>Friendly game</td>
<td>4-min running, dynamic warm-up, 8 runs × 600 m</td>
<td>Off</td>
<td>4-min running, dynamic warm-up, 4 runs × 600 m, 4 runs × 300 m</td>
<td>Friendly game</td>
<td>Off</td>
</tr>
<tr>
<td>PM</td>
<td>Gym warm-up, circuit training 3 sets, coordination, rondo, tactic game</td>
<td>Gym warm-up, circuit training 3 sets, coordination, passing drill, possession, tactic game</td>
<td>Handball, small game, rondo, football, funny game</td>
</tr>
</tbody>
</table>

Table 4
Training plan for weeks 5 and 6.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Off</td>
<td>Gym warm-up, field, strength openings, 10 runs × 40 m turn, 8 runs × 50 m turn, 6 runs × 80 m turn</td>
<td>Friendly game</td>
<td>Off</td>
<td>Off</td>
<td>Friendly game</td>
<td>Off</td>
</tr>
<tr>
<td>PM</td>
<td>Mobility warm-up, passing drill, rondo, starters 60-min recovery, nonstarters training</td>
<td>Dynamic warm-up, rondo, tactic game/set pieces</td>
<td>Mobility warm-up, passing drill, rondo, starters 60-min recovery, nonstarters training</td>
<td>Mobility warm-up, rondo, tactic game/set pieces</td>
</tr>
<tr>
<td>AM</td>
<td>Off</td>
<td>Gym, dynamic warm-up, hurdles, strength running, small-sided games, small game</td>
<td>Friendly game</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>PM</td>
<td>Dynamic warm-up, sprint, rondo, tactic, set pieces</td>
<td>Starters recovery, nonstarters training</td>
<td>Passing warm-up, passing, basket/handball, funny, rondo</td>
<td>Dynamic warm-up, plyometrics/elastic coordination/finishing, tactic possession, tactic game</td>
<td>Dynamic warm-up, plyometrics/elastic coordination/finishing, tactic possession, tactic game</td>
<td>Dynamic warm-up, plyometrics/elastic coordination/finishing, tactic possession, tactic game</td>
<td>Technique, funny games</td>
</tr>
</tbody>
</table>

Running Intervals. Weeks 1–5 consisted of several sessions of RI. The running distances covered are presented in Tables 2–4 in the form of number of runs × distance in meters. The running intensity was individualized based on the initial pre-season period testing treadmill running speed at RCP and at VO$_2$max (vRCP and vVO$_2$max and max effort). Sprint interval training (SIT) included distances of up to 40 m. High-intensity interval training (HIIT) was divided into 3 levels: (a) Intervals of 50–100 m were set at running speed based on the individual’s 140% of vVO$_2$max. (b) Intervals of 150–300 m were set at running speed based on the individual’s 110% of vVO$_2$max. (c) Intervals between 300 and 600 m were set at running speeds based on the individual’s vVO$_2$max. Tempo runs consisted of a running speed set on the individual’s vRCP. The exercise-to-rest ratios (passive recovery) were set according to the guidelines provided by Iaia and Bangsbo (18) where max intensity bouts (2–10 seconds) received 50–100-second rests, 70–100% of max speed bouts (10–40 seconds) received rest intervals of about 3 times the exercise duration, and
50–100% of max speed bouts (5–90 seconds) received rest intervals of about 1–3 times the exercise duration. The intervals that indicate “turn” in Tables 3 and 4 included 180° turns every 30 m. The formula used to determine the time (seconds) needed to complete the intervals was \[
\frac{3600 \times \text{interval distance (meter)}}{\text{running speed (min} \cdot \text{h}^{-1})}.\]

Other Types of Training Modalities During the Pre-season Training Period. Tables 2–5 summarize the different types of training modalities that took place during the 8-week pre-season training period. The athletes typically performed 3 sets for each of the training modalities. The 4-minute runs (Tables 2–3) mostly consisted of pace runs to warm-up the players. The dynamic warm-up included dynamic stretching of the hip muscles followed by skipping ladder and passing drills. **Hurdles** was a type of plyometric training that included hopping over a series of 30- and 50-cm tall hurdles followed by short 10-m sprints. The term **strength running** is an indicator of light running drills combined with agility sprints through cones or agility poles, with or without a ball. **Rondos** included small possession games in a restricted area allowing only one-touch passes while a smaller group of players (sometimes only one player) tried to gain possession (5 vs. 1, 6 vs. 2, and 9 vs. 3). **Funny games** were low-intensity drills that combined skills and collaborative work. These included juggling walks in teams, footvolley, and heading passing. In general, the purpose of these drills was to prevent the ball from touching the ground, allowing the subjects to work on their skills. The **plyometrics/elastic/coordination/finishing** included jumping up on 4 plyometric boxes (30-45-60-75 cm), followed by a run against resistance (68-kg resistance band-Acceleration trainer Stroops) in 3 directions (diagonal-forward-diagonal, 10 m each), then advancing through a series of agility poles (zig-zag direction), receiving a pass, and, finally, attempting to score a goal against a goalkeeper (1 vs. 1). **Circuit training** consisted of a series of exercises on 6 stations (3 sets of 30-second efforts) that included body weight squats, push-ups, sit-ups, supported lunches on a suspension trainer (TRX), 2-legged balances on a balance trainer (BOSU) and, finally, front isometric plunks. The term **tactic** in Tables 2–5 refers to small-sided games (SSGs) used by the coaching staff to prepare the plan for the friendly games. The time varied according to the coaching staff plans. Similar to **tactic**, small games were SSGs in a restricted playing area (65 m long). The transition drills were also SSGs that typically included 3 color-coded teams. Their purpose was to develop the players’ ability to quickly transition from defensive to attacking positions and vice versa. The players in one team followed the instructions of the
coaching staff to collaborate with another small group of players against a third group. The aforementioned high-intensity transition drills were repeated 3 times and lasted for about 3 minutes with 2-minute rest intervals. The handball sessions were collaborative passing games. The players were restricted to passing the ball using their hands and score against another group of players only with a header.

Statistical Analyses

SPSS 25.0 for windows (SPSS, Inc., Chicago, IL, USA) was used for analyzing the results. Normality and homogeneity of variances were examined and verified using the Shapiro-Wilk and the Brown and Forsythe tests, respectively. The mean and SD were calculated for all parameters. Paired *t*-tests were used to examine the differences between the pre and post pre-season training period in both the anthropometric and aerobic fitness measures. Bonferroni adjustments were performed to avoid the inflation of getting at least one significant difference by chance. Thus, the level of significance was set at $p \leq 0.005$ ($a = 0.05 \times 10^{-1}$).

Results

The statistical analysis demonstrated that the subjects improved significantly in $V\dot{O}_{2\text{max}}$ ($t_{(18)} = -5.86, p < 0.001$), CI-95% = -4.60 to -1.58 (ml·kg$^{-1}$·min$^{-1}$); $d = 0.84$, and lasted significantly longer ($t_{(18)} = -8.69, p < 0.001$), CI-95% = -1.85 to -0.93 (minutes); $d = 1.21$, on the treadmill after the 8-week pre-season training.

Furthermore, the HR decreased slightly but not significantly at ventilatory thresholds (VT and RCP) and $V\dot{O}_{2\text{max}}$ with values recorded after pre-season training at 141 \pm 15, 170 \pm 19, and 184 \pm 8 b·min$^{-1}$, respectively.

The running velocities at VT (vVT) ($t_{(18)} = -2.04, p < 0.05$), CI-95% = -1.52 to 0.26 (km·h$^{-1}$); $d = 0.47$, RCP (vRCP) ($t_{(18)} = -4.87, p < 0.001$), CI-95% = -1.57 to -0.40 (km·h$^{-1}$); $d = 0.72$, and $V\dot{O}_{2\text{max}}$ (vVO2max) ($t_{(18)} = -4.47, p < 0.001$), CI-95% = -1.04 to -0.23 (km·h$^{-1}$); $d = 0.77$ increased significantly ($p < 0.001$).

The $V\dot{O}_{2}$ (ml·kg$^{-1}$·min$^{-1}$) at VT ($t_{(18)} = -3.78, p < 0.001$), CI-95% = -6.65 to -0.90; $d = 0.69$ and RCP ($t_{(18)} = -3.66, p < 0.001$), CI-95% = -7.17 to -0.86; $d = 0.79$ also increased significantly ($p = 0.002$) (Figures 1–3).
Discussion

This study demonstrated that the proposed 8-week pre-season training program caused significant improvements on all the aerobic performance indices of the professional soccer players. The effects of pre-season training on the aerobic fitness indices of professional soccer players are rather unsystematic in the findings of previous research. Although some studies demonstrated marked increases in VO₂max after the pre-season training period (15,21,27,28), others have shown minimal or no changes (4,30,38). This inconsistency in the literature could be due to differences in scheduling and training philosophies across coaching teams, or due to a “ceiling effect,” because higher standard, players are constantly on their maximal aerobic capacity, as suggested by Hoff et al. (16). The current study showed a significant improvement of about 6% in VO₂max at the end of the 8-week preparation period. This is an indication that the pre-season exercise program of this study was effective in improving the aerobic fitness, with the increases reported to be similar to the ones reported previously (19,21). Although VO₂max may provide a useful indication of the aerobic capacity of elite players (33), other aerobic performance indices, such as the LT, could be more sensitive to training than VO₂max. In sports with predominance in aerobic system contribution, LT might be a better indicator of aerobic endurance performance than VO₂max. Previous research demonstrated that LT (usually expressed as % VO₂max) may continue to improve with training in relation to VO₂max, a process controlled by a different physiological mechanism (11). In addition, the VT of professional soccer players could be further enhanced without any significant change in VO₂max during the competitive season (4,7). This is important for the fitness coaches because blood lactate accumulation and its associated ventilatory changes are common threshold concepts that are used for setting up training intensities (3,25,29,36). In this study, the VT and RCP were detected at 65.63 ± 9.97% and 88.26 ± 5.88% of the VO₂max, respectively, before the pre-season training period. The 8-week pre-season training in this study caused significant increases in both VTs. In particular, both the VT and RCP were detected at 67.88 ± 7.29 and 90.31 ± 4.42% of the VO₂max (Figure 3). The most common method for detecting and monitoring endurance characteristics is to determine the VO₂ and running velocity at a fixed blood lactate concentration of 4 mmol·L⁻¹ (21,40). The VT was previously found to coincide with the LT (4 mmol·L⁻¹) in soccer players, and both increased from about 80 to 86% of VO₂max after the pre-season training period (7,14). Although improvement in aerobic fitness coincides with reductions in HR response (39), the HR in this study demonstrated small but not significant decreases probably because of the short training period (11). In addition, vLT and vVO₂max were found to increase significantly after the pre-season training period (1). Ziogas et al. (40) demonstrated that soccer players of higher playing standards had a greater vLT on the commencement of the pre-season training period. In addition, Kalapotharakos et al. (21) pointed out the practicality of using the vVO₂max on assessing the aerobic demands of running and reported a 9.1% increase after the pre-season period. In this study, the running velocities vVT, vRCP, and vVO₂max were significantly improved after the pre-season training period by 6.76, 7.50, and 3.82%, respectively. The pre-season training in this study resulted in the vVT and vRCP to occur at 60 and 86% of the vVO₂max, respectively, and that is typical for highly trained athletes (6). The vRCP detected at 13.17 km·h⁻¹ before and increased significantly at 14.15 km·h⁻¹ after the pre-season training period, whereas the vVO₂max also increased significantly from 15.92 to 16.55 km·h⁻¹. Similar running velocities were reported by others (4,14,21,34) after the pre-season training period. The beneficial effects of pre-season training on the running velocities at various thresholds can be of high importance. For instance, vVO₂max in soccer has been found to positively correlate with the distance covered and the running intensity of professional soccer players (32). Furthermore, running speeds at maximum lactate steady state were found to improve the ability to use oxygen and, subsequently, to enhance metabolite removal (35).

Recent studies demonstrated that RIs such as high-intensity intermittent exercise training and speed endurance training drills improved the skeletal muscle oxidative capacity as well as exercise performance (10), and were superior to moderate-intensity training organized as SSG (31). As it concerns the intervals performed in this study (Tables 2–4), exercise duration was reduced from week 1 to week 5, whereas the intensity and the rest durations always increased in relation to the vRCP and vVO₂max running speeds. The intensity and duration of the sessions were reduced during week 8 to prevent the development of a catabolic environment at the beginning of and during the competitive season (22). Combining RIs to soccer-specific training has a significant effect in aerobic fitness (about 7% increase in VO₂max and LT) only 4 weeks into the pre-season training period (19). In addition, the combination of soccer-specific training with SIT may also provide further improvements during the in-season period. For instance, Ferrari Bravo et al. (8) observed 6 and 3% increase in VO₂max and RCP, respectively, using SIT twice a week (3 × 6 maximal shuttle sprints of 40 m), which was superior to HIIT (4 sets of 4 minutes at 90–95% of HR max with 3 minutes of active recovery at 60–70% of HR max).

Most studies highlight the importance of using thresholds to indicate and monitor the improvements in aerobic performance indices during each period of a typical soccer season (21,40). In addition, they use specific exercise modalities, such as various types of interval training, embedded in the regular training to demonstrate further improvements (10,31). This study aimed to present a complete spectrum of the pre-season training program including the RIs. The major limitation of the current study is the lack of training load for the remaining of the training modalities, as this requires GPS tracking devices. Thus, the contribution of the RIs used in this study vs. the rest of the training modalities on the demonstrated improvements of the aerobic performance indices is unknown. In addition, the use of RCP as the threshold is limited in the literature. The onset of RCP is depended on the hypoxic ventilatory chemosensitivity of the carotid bodies and the rate of lactic acid increase (37). Additive triggering mechanisms such as muscle afferents and other sensory inputs from exercising muscles have been proposed (29). However, the RCP’s effectiveness as threshold for training intensity in sports is unknown and questionable (23).

In conclusion, the results of this study, as expected, demonstrated that the proposed 8 weeks of pre-season training program was sufficient to cause significant improvements on the aerobic performance indices of professional soccer players. The findings before the pre-season training period, along with the equivalent improvements, are in line with the aforementioned literature. The effectiveness of the proposed program on the aerobic performance indices was evident from the increases in the VT, RCP, and VO₂max presented in terms of %VO₂max and running speeds, respectively. The increases observed demonstrate physical preparedness and suggest that players will be able to afford improved
Pacing strategies and repeated sprint performance (also related to vLT and vVO2max) during competitive games (1,14,19,40).

Practical Applications

Physical fitness coaches should use the results from the physiological tests to monitor and adjust the training intensities of their players. Aerobic performance indices such as VO2 max, VT, and running velocities at the thresholds (vVT, vRCP, and vVO2max) are practical indicators to monitor aerobic performance. The proposed pre-season training caused significant improvements on the aerobic fitness that infers higher performance during the competitive season. Furthermore, the study demonstrated how a range of RIs divided into tempo runs, HIIT, and STI were used in combination to the various soccer-related training modalities to improve the aerobic fitness. In addition, the study provides useful information on how the running velocities were adjusted based on the vRCP and vVO2max. Careful planning is needed to gradually increase the intensity of the intervals and adjust the volume to avoid injuries by including more soccer-related training such as SSG, technical-tactical drills, and participation to friendly games. Despite the fact that we are unable to isolate the contribution of the presented training modalities on the current improvements, the study can assist coaches and trainers in planning a successful pre-season training program.

Acknowledgments

The authors express their gratitude to the teams’ coaching and medical staff as well as to the athletes for their cooperation and participation in this study. The authors have no conflict of interest with the nature of this study. This research received no funding.

References

