

# Central Lancashire Online Knowledge (CLoK)

| Title    | High-Intensity Acceleration and Deceleration Demands in Elite Team Sports<br>Competitive Match Play: A Systematic Review and Meta-Analysis of<br>Observational Studies                                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре     | Article                                                                                                                                                                                                                                                                                   |
| URL      | https://clok.uclan.ac.uk/id/eprint/29510/                                                                                                                                                                                                                                                 |
| DOI      | https://doi.org/10.1007/s40279-019-01170-1                                                                                                                                                                                                                                                |
| Date     | 2019                                                                                                                                                                                                                                                                                      |
| Citation | Harper, Damian, Carling, Christopher and Kiely, John (2019) High-Intensity<br>Acceleration and Deceleration Demands in Elite Team Sports Competitive<br>Match Play: A Systematic Review and Meta-Analysis of Observational<br>Studies. Sports Medicine, 49. pp. 1923-1947. ISSN 0112-1642 |
| Creators | Harper, Damian, Carling, Christopher and Kiely, John                                                                                                                                                                                                                                      |

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1007/s40279-019-01170-1

For information about Research at UCLan please go to <a href="http://www.uclan.ac.uk/research/">http://www.uclan.ac.uk/research/</a>

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u> SYSTEMATIC REVIEW



# High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies

Damian J. Harper<sup>1,2</sup> · Christopher Carling<sup>2</sup> · John Kiely<sup>2</sup>

© The Author(s) 2019

#### Abstract

**Background** The external movement loads imposed on players during competitive team sports are commonly measured using global positioning system devices. Information gleaned from analyses is employed to calibrate physical conditioning and injury prevention strategies with the external loads imposed during match play. Intense accelerations and decelerations are considered particularly important indicators of external load. However, to date, no prior meta-analysis has compared high and very high intensity acceleration and deceleration demands in elite team sports during competitive match play.

**Objective** The objective of this systematic review and meta-analysis was to quantify and compare high and very high intensity acceleration vs. deceleration demands occurring during competitive match play in elite team sport contexts.

**Methods** A systematic review of four electronic databases (CINAHL, MEDLINE, SPORTDiscus, Web of Science) was conducted to identify peer-reviewed articles published between January 2010 and April 2018 that had reported higher intensity (> 2.5 m·s<sup>-2</sup>) accelerations and decelerations concurrently in elite team sports competitive match play. A Boolean search phrase was developed using key words synonymous to team sports (population), acceleration and deceleration (comparators) and match play (outcome). Articles only eligible for meta-analysis were those that reported either or both high (> 2.5 m·s<sup>-2</sup>) and very high (> 3.5 m·s<sup>-2</sup>) intensity accelerations and decelerations concurrently using global positioning system devices (sampling rate:  $\geq$  5 Hz) during elite able-bodied (mean age:  $\geq$  18 years) team sports competitive match play (match time:  $\geq$  75%). Separate inverse random-effects meta-analyses were conducted to compare: (1) standardised mean differences (SMDs) in the frequency of high and very high intensity accelerations and decelerations across first and second half periods of match play. Using recent guidelines recommended for the collection, processing and reporting of global positioning system data, a checklist was produced to help inform a judgement about the methodological limitations (risk of detection bias) aligned to 'data collection', 'data processing' and 'normative profile' for each eligible study. For each study, each outcome was rated as either 'low', 'unclear' or 'high' risk of bias.

**Results** A total of 19 studies met the eligibility criteria, comprising seven team sports including American Football (n=1), Australian Football (n=2), hockey (n=1), rugby league (n=4), rugby sevens (n=3), rugby union (n=2) and soccer (n=6) with a total of 469 male participants (mean age: 18–29 years). Analysis showed only American Football reported a greater frequency of high (SMD=1.26; 95% confidence interval [CI] 1.06–1.43) and very high (SMD=0.19; 95% CI – 0.42 to 0.80) intensity accelerations compared to decelerations. All other sports had a greater frequency of high and very high intensity decelerations compared to accelerations, with soccer demonstrating the greatest difference for both the high (SMD=-1.74; 95% CI – 1.28 to – 2.21) and very high (SMD=-3.19; 95% CI – 2.05 to – 4.33) intensity categories. When examining the temporal changes from the first to the second half periods of match play, there was a small decrease in both the frequency of high and very high intensity accelerations (SMD=0.50 and 0.49, respectively) and decelerations (SMD=0.42 and 0.46, 100 might specific the second specific to the specif

**Electronic supplementary material** The online version of this article (https://doi.org/10.1007/s40279-019-01170-1) contains supplementary material, which is available to authorized users.

Extended author information available on the last page of the article

respectively). The greatest risk of bias (40% 'high' risk of bias) observed across studies was in the 'data collection' procedures. The lowest risk of bias (35% 'low' risk of bias) was found in the development of a 'normative profile'.

**Conclusions** To ensure that elite players are optimally prepared for the high-intensity accelerations and decelerations imposed during competitive match play, it is imperative that players are exposed to comparable demands under controlled training conditions. The results of this meta-analysis, accordingly, can inform practical training designs. Finally, guidelines and recommendations for conducting future research, using global positioning system devices, are suggested.

## **Key Points**

All team sports apart from American Football reported a greater frequency of high and very high intensity decelerations compared to accelerations. Importantly, the damaging consequences of frequent and intense decelerations imply that specific loading strategies, to inoculate players from negative deceleration outcomes, may be advisable.

There was a small decrease in the frequency of high and very high intensity accelerations and decelerations from the first to the second half periods of elite competitive match play, suggesting intense accelerations and decelerations could be particularly vulnerable to neuromuscular fatigue and consequently to an exacerbated risk of incurring injury.

In advancing the specificity of acceleration and deceleration training prescriptions, future research should look to 'individualise' and 'contextualise' acceleration and deceleration occurrences during match play.

## 1 Introduction

Team sports competitive match play requires players to perform frequent intense acceleration and deceleration actions. At the highest standard of competitive match play, there has been an evolutionary progression in the high-intensity work load profile of the contemporary team sports player [1-4]. Intense accelerations and decelerations make up a substantial part of the high-intensity external workload, yet impose distinctive and disparate internal physiological and mechanical loading demands on players [5]. For example, accelerations have a higher metabolic cost [6], whereas decelerations have a higher mechanical load [7] likely caused by highforce impact peaks and loading rates [8] that can inflict greater damage on soft-tissue structures especially if these high forces cannot be attenuated efficiently [9]. As such, the frequency of high-intensity accelerations and decelerations completed during match play is commonly associated with decrements in neuromuscular performance capacity and indicators of muscle damage post-match [10–13]. Despite these effects, elite athletes are more capable of maintaining a higher frequency and magnitude of accelerations and decelerations than lower performing players, which can contribute to enhanced match play performance outcomes that require rapid changes in velocity to be made [14, 15].

Research has also shown that during elite team sports competitive match play there is a second half decline in the frequency and distance spent accelerating and decelerating at high intensity [16–20], suggesting that these actions may be particularly sensitive to fatigue development and injury risk [21]. Collation and analysis of data from studies reporting temporal changes in the occurrence of higher intensity accelerations and decelerations during competitive match play would help acquire knowledge regarding the magnitude of the decline and potential impact that this may have on match performance and injury risk. Therefore, careful monitoring of each of these specific actions during training and match play is of significant importance to effective player load management systems, and is common practice amongst practitioners working with players at the elite level [22].

Global positioning system (GPS) devices are most commonly used to quantify the occurrence and characteristics of higher intensity accelerations and decelerations during competitive match play. With rapid advancements in this technology, together with approval by sports governing bodies to allow usage within official competitive match play, there has been an exponential increase in studies that have reported data on match-play movement demands. The results of this research have been summarised in recent systematic reviews and meta-analyses [23-25]. Despite this knowledge base, there is currently no systematic review or meta-analysis that has specifically focused on quantifying and comparing the occurrence of higher intensity accelerations and decelerations during competitive match play across a range of team sports in elite players. Furthermore, given the evident importance of these actions and the increasing number of studies measuring these actions using GPS devices there is also a need to systematically appraise the methodological procedures being used with view to identifying potential or necessary improvements in current practice.

Therefore, the aim of this systematic review and metaanalysis was to compare high (> 2.5 m·s<sup>-2</sup>) and very high (> 3.5 m·s<sup>-2</sup>) intensity acceleration and deceleration demands in elite team sports competitive match play. A temporal analysis of changes in the frequency of high and very high intensity accelerations and decelerations from the first to the second half periods of match play was also performed. A secondary aim was to review the methodological procedures used to quantify the occurrence of high and very high intensity accelerations and decelerations during elite competitive match play when measured using GPS devices.

### 2 Methods

### 2.1 Study Design

The planning and documentation of the current review were conducted in accordance with PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines [26], with a meta-analysis following the Cochrane collaboration guidelines [27].

#### 2.2 Search Strategy

Systematic searches of four electronic databases (CINAHL, MEDLINE, SPORTDiscus, Web of Science) were conducted by the lead author (DH) to identify peer-reviewed articles published in the English language between 1 January, 2010 and 1 April, 2018. The search strategy was developed using PICO (population, intervention, comparator, outcome) elements [26]. Related search terms synonymous to team sports (population), acceleration and deceleration (comparators), and match play (outcomes) were developed in accordance with those used by McLaren et al. [28]. Additional search terms were identified from pilot searching (screening of titles, abstracts and full text of papers previously known). Boolean operators 'OR' and 'AND' were used to construct the final search phrase (Table 1).

#### 2.3 Screening Strategy and Study Selection

All electronic search results were initially exported to Microsoft Excel (Microsoft, Redmond, WA, USA) by the lead author (DH). Identification of eligible studies followed a three-stage process. First, duplicate studies were removed (DH). Second, studies that were clearly 'out of scope' were excluded following screening of the title and abstract (DH) if a clear decision could not be made at this stage, studies were taken forward. The final stage was completed independently by two authors (DH, CC) and involved removal of studies by the exclusion criteria following screening of the full text. Any discrepancies (n = 13) on the final inclusionexclusion status were resolved by consensus discussion.

#### 2.4 Data Extraction

All data were extracted into a custom-made Microsoft Excel sheet by one author (DH). During the data extraction process, studies that used the same data across multiple studies were excluded, with only the earliest publication date used. This resulted in the exclusion of a further five [14, 29–32] studies (Table 2, exclusion criteria: #10). Data extracted were organised according to the sample studied (sport, position, age, body mass, stature), competition details (type, year, number of matches, data files) and classification of 'eliteness' (semi-elite, competitive elite, successful elite, world-class elite). The classification of 'eliteness' given to each study sample was undertaken independently by two authors (DH, CC) using a modified version of the model (Table S1 of the Electronic Supplementary Material [ESM]) and classification (Table S2 of the ESM) proposed by Swann et al. [33], which allows consistent within- and between-sport comparisons to be made. Any discrepancies were resolved by consensus discussion before the final classification was given (Table S3 of the ESM).

In line with recent recommendations [34, 35] for the collecting, processing and reporting of data from GPS devices, we also recorded the device brand and model details, software version, sampling frequency (Hz), minimal effort duration (MED), number of satellites used and horizontal dilution of precision. These guidelines were also used to produce a checklist (Table S4 of the ESM) that helped to inform judgements (Table S5 of the ESM) on the risk of bias (RoB) for each included study within the areas of 'data collection', 'data processing' and 'normative profile' (further information in Sect. 2.6).

The mean, standard deviation and number of observations (match data files) were extracted for all acceleration and deceleration events and also categorised according to the temporal profile (first half, second half, full match), measurement approach (absolute or relative: number of efforts, distance covered, time spent) and intensity threshold ( $m \cdot s^{-2}$ ) used to delineate the occurrence of a high and very high intensity acceleration and deceleration.

#### 2.5 Missing Data

If the mean, standard deviation (SD) and number of data files could not be obtained from published records, the corresponding authors [17, 18, 20, 36] were contacted (via e-mail, social media) for further information. If the corresponding authors could not provide data for the full match, but periods of play had been reported (first and second half), then the full match mean and SD were calculated using the formula for combining group data as recommended in the Cochrane guidelines [27]:

#### Table 1 Database search strategy

| Key search terms             | Related search terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Acceleration/deceleration | accelerat* OR decelerat* OR GPS OR "global positioning system*" OR "GPS output*" OR microtechnology<br>OR "micromechanical-electrical system*" OR microsensor* OR "tracking system*" OR video* OR camera*<br>OR "time-motion" OR "match analysis system" OR "notational analysis" OR "multi-camera system" OR<br>"external load*" OR "external training load*" OR "external intensit*" OR "external work" OR workload*<br>OR "physical performance*" OR "physical demand*" OR "physical exertion" OR acceleromet* OR "inertial<br>measurement unit" OR activit* OR "activity analysis" OR "activity demand" OR "activity profile* OR<br>"movement analysis" OR "movement performance*" OR "movement demand*" OR "movement pattern*"<br>OR "movement profile*" OR velocit* OR "high-velocit*" OR speed* OR "high-speed*" OR "maximal-<br>speed" OR "running intensit*" OR "high-intensit*" OR energ* OR "energy cost*" OR "accelerometer load*"<br>OR "body load*" OR "Player Load*" OR "PlayerLoad*" OR "metabolic power" OR "metabolic load" OR<br>"high power distance" |
| 2. Team-sport                | team-sport* OR "multi-direction*" OR "field sport*" OR "field-based sport*" OR "intermittent sport*" OR soccer OR "soccer player*" OR footballer* OR "football player*" OR futsal OR "futsal player*" OR rugby OR "rugby football*" OR "rugby player*" OR "rugby football player*" OR "rugby union player*" OR "rugby league" OR "rugby league player*" OR "rugby sevens" OR "rugby sevens player" OR "American football*" OR "American football player" OR "national collegiate athletic association*" OR NCAA OR "Australian rules football*" OR "Gaelic football*" OR "Australian football player*" OR "Gaelic football player*" OR "furgh player*" OR "hurling player*" OR hurler* OR basketball OR basketballer* OR "basketball player*" OR handball* OR "handball player*" OR handballer* OR hockey OR "hockey player*" OR lacrosse OR "lacrosse player*" OR netball OR "netball player*" OR netballer*                                                                                                                                                             |
| 3. Match-play                | match-play* <b>OR</b> "match activit*" <b>OR</b> "match analysis" <b>OR</b> "match performance*" <b>OR</b> "match demand*" <b>OR</b> "match running" <b>OR</b> "match intensit*" <b>OR</b> "match event*" <b>OR</b> "match profile*" <b>OR</b> "match schedule*" <b>OR</b> competitive <b>DR</b> "competitive performance" <b>OR</b> "competitive demand*" <b>OR</b> "competitive matches" <b>OR</b> "competitive season" <b>OR</b> "competition schedule" <b>OR</b> game* <b>OR</b> "game play*" <b>OR</b> "game activit*" <b>OR</b> "game analysis" <b>OR</b> "game performance*" <b>OR</b> "game demand*" <b>OR</b> "game intensit*"                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Search phase                 | 1 AND 2 AND 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Combined group mean = 
$$\frac{(N_1M_1) + (N_2M_2)}{(N_1 + N_2)}$$

where N equals the number of data files and M equals the mean number of accelerations or decelerations for each group.

Combined group SD = 
$$\sqrt{\frac{(SD_1^2 + SD_2^2)}{2}}$$
,

where SD equals the standard deviation for the number of accelerations and decelerations completed for each group.

Combined means and SDs were only used for one study [18] that reported relative acceleration and deceleration events (i.e. per minute).

### 2.6 Assessment of Risk of Bias

In accordance with Cochrane collaboration guidelines, a 'domain-based' evaluation was undertaken, in which critical assessments are made to inform a judgement about the overall RoB for each included study [27]. Numerous methodological factors associated with GPS devices have been shown to influence the quantification of acceleration and deceleration events during match play [34, 35]. Furthermore,

a range of contextual, tactical and fatigue-related factors, amongst others, may influence match running profiles in team sports [37]. Therefore, the domain most relevant to the outcomes of this review was 'detection bias', which appraises the systematic differences between groups in how outcomes are determined [27]. First, using recent guidelines [34, 35] a checklist was produced (Table S4 of the ESM) that identified key entries ('data collection', 'data processing', 'normative profile') and associated criteria that could be used to facilitate overall judgement (Table S5 of the ESM) about RoB for each individual entry. Two reviewers (DH, CC) independently completed the checklist using six response options: (1) 'yes', (2) 'no', (3) 'no information', (4) 'not applicable', (5) 'probably yes' and (6) 'probably no' as recommended by the Cochrane Collaboration guidelines [27]. A final judgement (Table S4 of the ESM) about RoB for each key entry was then made by each reviewer (DH, CC) using three possible outcomes: (1) low RoB: plausible bias unlikely to seriously alter the results; (2) unclear RoB: plausible bias that raises some doubts about the results; and (3) high RoB: plausible bias that seriously weakens confidence in the results [27]. The inter-rater agreement (kappa) was 0.63 (quality control), 0.79 (event identification) and 1.00 (normative profile), which are considered to be good to excellent magnitudes of agreement [27]. Any discrepancies

#### Table 2 Study inclusion-exclusion criteria

|    | Inclusion criteria                                                                                                                          | Exclusion criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Original research articles                                                                                                                  | Reviews, magazines, surveys, opinion pieces, books, periodicals, editorials, conference abstracts, non-academic/non-peer-reviewed text                                                                                                                                                                                                                                                                                                                                     |
| 2  | Field-based team sports or court-based invasion games                                                                                       | Striking and fielding games (cricket, baseball), net and wall games (badmin-<br>ton, tennis, volleyball) and ice-, sand- or water-based team sports                                                                                                                                                                                                                                                                                                                        |
| 3  | Competitive able-bodied elite athletes <sup>a</sup>                                                                                         | Athletes with physical or mental disability, athletes competing outside of the top 3 tiers in their sport, match officials                                                                                                                                                                                                                                                                                                                                                 |
| 4  | Participants with mean age $\geq 18$ years                                                                                                  | Participants with mean age < 18 years                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5  | Competitive match play rules (i.e. full-sized court/pitch, regulation number of players)                                                    | Training and small-sided games, non-competitive matches (friendlies), match simulations                                                                                                                                                                                                                                                                                                                                                                                    |
| 6  | GPS systems (with sampling frequency $\geq$ 5 Hz)                                                                                           | GPS units (with sampling frequency of <5 Hz), any non-GPS system (e.g. digital video-based tracking)                                                                                                                                                                                                                                                                                                                                                                       |
| 7  | Reported both higher (> $2.5 \text{ m} \cdot \text{s}^{-2}$ ) intensity acceleration<br>and deceleration events separately and concurrently | Reported just acceleration or deceleration events in isolation, combined<br>acceleration and deceleration variables into one metric (e.g. average<br>acceleration, velocity change load, acceleration load, high-intensity efforts,<br>explosive distance), no high-intensity thresholds reported, did not report<br>acceleration or deceleration events (i.e. focus was on other locomotor<br>related variables, e.g. sprinting, high-intensity running, metabolic power) |
| 8  | Reported data for full match duration <sup>b</sup>                                                                                          | Reported only part of a match (i.e. first half, extra-time)                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9  | Full text available in English                                                                                                              | Cannot access full text in English                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 | Data set used in one study <sup>c</sup>                                                                                                     | Studies using the same data set from an earlier publication (salami slicing)                                                                                                                                                                                                                                                                                                                                                                                               |

GPS global positioning system

<sup>a</sup>Elite athletes classified using a modified version of Swann et al. [33] (see Table S3 of the Electronic Supplementary Material)

<sup>b</sup>Match duration greater than 75%

<sup>c</sup>Study with earliest publication date used when multiple studies published using same data set

in the final judgement of RoB between reviewers were resolved by consensus discussion.

#### 2.7 Data Analysis and Interpretation of Results

A meta-analysis was performed using Review Manager Software for Mac (RevMan 5.2; Cochrane Collaboration, Oxford, UK). The inverse random-effects model for continuous data was used for statistical analysis because it accounts for heterogeneity of the included studies [27]. The metaanalysis sought to compare full match sport and positional differences in the frequency of high-intensity accelerations and decelerations. The type of sport was considered a priori to be a key moderating variable because significant differences in match-activity profiles between field-based sports have been shown to exist, even when accounting for differences in match duration [38]. To illustrate temporal changes in acceleration and deceleration outputs from the first to the second half periods of match play, a further two meta-analyses were completed, with the different intensity thresholds ('high' and 'very high') used as sub-groups.

One author (DH) entered the mean, SD and total number of observations for each separate meta-analysis. The effect magnitude was calculated using the standardised mean difference (SMD) alongside 95% confidence intervals (CIs) and presented in forest plots using GraphPad software (Prism 7, GraphPad Software Inc., La Jolla, CA, USA). The SMD includes a correction (Hedges's *g*) for small sample bias and expresses results in a uniform scale despite differences in how the outcome variable was measured [27]. The SMD was interpreted with a qualitative scale using the thresholds outlined by Hopkins et al. [39]: <0.2 = trivial; 0.2–0.6 = small; 0.6–1.2 = moderate; 1.2–2.0 = large; 2.0–4.0 = very large; and > 4.0 = extremely large. The percentage of total variation between and within subgroups due to heterogeneity was measured using the *I*<sup>2</sup> statistic for quantifying inconsistency was interpreted according to the criteria of Higgins et al. [40]: low (0–25%), moderate (26–74%) and high (75–100%). *P* < 0.05 was considered statistically significant.

### **3 Results**

#### 3.1 Search Results

The initial search identified 8269 articles across four databases (CINAHL = 834, MEDLINE = 2129, SPORTDiscus = 2390, Web of Science = 2916). Then 8211 studies were removed following screening of the study title and abstract because of duplication (n = 3917) or not meeting the inclusion criteria (n = 4294). A further 43 records were removed using the exclusion criteria after screening the full text, resulting in 15 studies that met the inclusion criteria. A further four studies that met the inclusion criteria were identified from other sources, resulting in 19 studies meeting the inclusion criteria. Two of these studies [16, 41] were not considered for the meta-analysis because of reporting distance and time-related variables only, but was included in the descriptive qualitative synthesis. This resulted in 17 independent studies that provided 115 estimates being included in the meta-analysis (Fig. 1). From these 17 studies, 99 estimates were used to examine the differences in the frequency of high and very high intensity accelerations vs. decelerations in competitive match play. The remaining 16 estimates obtained from five of these studies were used to examine the temporal changes in high and very high intensity accelerations and decelerations from the first to the second half periods of match play.

#### 3.2 Study Characteristics

The characteristics of the 19 included studies are summarised in Table 3. One study investigated American Football [42], two Australian Football [43, 44], one hockey [18], four rugby league [29, 45–47], three rugby sevens [36, 48, 49], two rugby union [41, 50] and six soccer [10, 16, 17, 19, 20, 51]. Across all seven team sports investigated, the total sample included 469 players with a mean age ranging from 18 to 29 years. No studies investigated high-intensity accelerations and decelerations in female players. The samples of male players across all sports were classified as competitive elite (n=1, 5%), successful elite (n=8, 40%) and world-class elite (n=11, 55%). One study [50] reported data from two different samples of elitism.

#### 3.3 Measurement of High-Intensity Accelerations and Decelerations

Table 4 illustrates the different methodologies used across studies to measure high-intensity accelerations and decelerations during match play. Almost half of the included studies in this review used the brand GPSports (47%, n=9), while 32% (n=6) used Catapult Sports and 21% (n=4) used STATSports. Sixty-three percent (n=12) of studies used GPS with a raw 10-Hz sampling frequency, with the remaining 32% (n=7) of studies using 5 Hz. Four of the studies [29, 36, 42, 49] that captured data at 5 Hz incorporated an interpolation algorithm that resulted in a 15-Hz output. The MED used to delineate the minimal time required to be above the specified high-intensity acceleration or deceleration threshold for an effort to be recorded was reported in four studies [17, 36, 43, 46] and ranged between 0.2 and 1 s.

The number of satellites used to infer GPS signal quality was reported in four studies [16, 44, 46, 50] and ranged from 4 to 13. Horizontal dilution of precision used to indicate the accuracy of the GPS horizontal positional signal was reported in two studies [16, 44] and values ranged from 0.8 to 1. The most common threshold used to classify the start of high-intensity acceleration or deceleration was  $3 \text{ m} \cdot \text{s}^{-2}$ (n = 11, 58%). Six studies [20, 36, 42, 48–50] also used a very high intensity threshold starting at either 3.5  $\text{m}\cdot\text{s}^{-2}$ (n=1) or 4 m·s<sup>-2</sup> (n=5). Variables used to report high or very high intensity acceleration and decelerations included frequency (n = 17 studies), distance covered (n = 3 studies) and time spent (n = 1 study). Sixteen studies reported data in absolute terms (total match duration), whilst five studies reported these variables relative to time (i.e. number per minute). Only one study [45] reported data using both absolute and relative formats.

#### 3.4 Risk of Bias

The overall RoB judgement (low, unclear and high) for each key entry (data collection, data processing and normative profile) and for each individual study is reported in Table 4. Across all studies, the greatest RoB (40% high RoB) was observed in the data collection domain (Fig. 2), as the majority of studies did not report the number of satellites obtained (85%) or the horizontal dilution of precision (90%). Notably, within this entry, 70% (n = 14) of the studies used a GPS device with a 10-Hz sampling frequency. The greatest amount of uncertainty (65%) was in the data processing domain, as only eight studies [17, 19, 20, 36, 43, 46–48] reported the MED. The lowest risk of bias (35% low RoB) was the normative profile domain, in which nearly half (45%, n=9) of the studies [16, 18, 41–44, 46, 48, 50, 51] used greater than ten matches in total, and over half (60%, n = 12) of the studies [18, 20, 29, 42–47, 50, 51] reported position-specific acceleration and deceleration data. The number of matches used to characterise the average highintensity acceleration and deceleration demands ranged between 1 and 42.

## 3.5 Meta-Analysis: Frequency of High-Intensity Accelerations and Decelerations

Sixteen studies (5220 files, 67 SMD) across seven sports: American Football (294 files, 9 SMD), Australian Football (1180 files, 11 SMD), hockey (226 files, 4 SMD), rugby league (799 files, 14 SMD), rugby sevens (51 files, 2 SMD), rugby union (516 files, 16 SMD) and soccer (2154, 11 SMD) reported the frequency of high-intensity accelerations and deceleration events (Fig. 3). An heterogeneity analysis showed a significant high percentage of total variation (p < 0.00001,  $I^2 = 99\%$ ) between sports (Table 5).

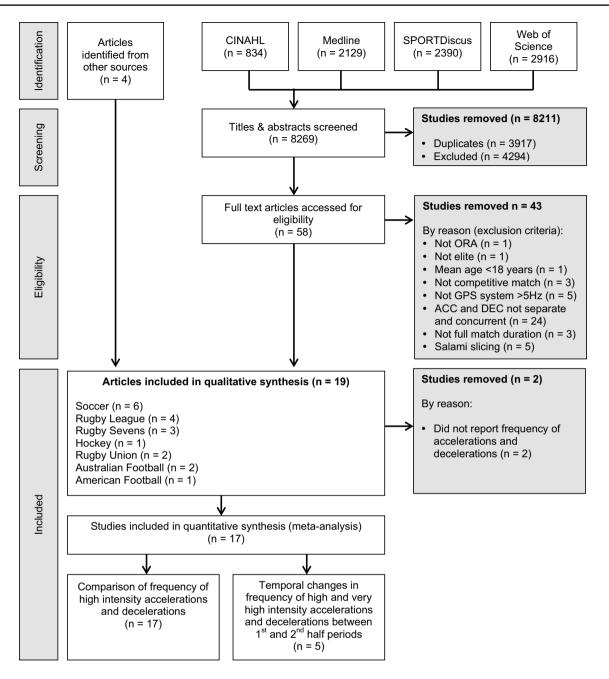



Fig. 1 Step-by-step process leading to the identification of studies eligible for a systematic review. ACC Acceleration, DEC Deceleration, GPS global positioning system, ORA original research article

Only American Football demonstrated a higher frequency of high-intensity accelerations compared to decelerations (SMD = 1.26, 95% CI 1.06–1.43). All other sports had a greater frequency of high-intensity decelerations compared to accelerations with SMD ranging from moderate (-0.69) in hockey to large (-1.74) in soccer. The percentage of total variation amongst estimates in American Football and hockey was low (p=0.51-0.9,  $I^2=0\%$ ). In all other sports, a significant moderate to high percentage of total variation was evident (p<0.003,  $I^2=57-97\%$ ).

## 3.6 Meta-Analysis: Frequency of Very High Intensity Accelerations and Decelerations

Six studies (1169 files, 32 SMD) across four sports: American Football (294 files, 9 SMD), rugby sevens (225 files, 4 SMD), rugby union (516 files, 16 SMD) and soccer (134, 3 SMD) reported the frequency of very high intensity accelerations and decelerations (Fig. 4). An heterogeneity analysis showed a significantly high percentage of total variation (p < 0.00001,  $l^2 = 94\%$ ) between sports (Table 5).

| Study                      | Sport | Sport Position (n) | Sample              |                |              | Competition details            |               |               |             | Classification of eliteness |
|----------------------------|-------|--------------------|---------------------|----------------|--------------|--------------------------------|---------------|---------------|-------------|-----------------------------|
|                            |       |                    | n Age (years)       | Body mass (kg) | Stature (cm) | Type                           | Year          | Matches $(n)$ | Files $(n)$ |                             |
| Coutts et al. [43]         | AuF   | TB                 | $39  25 \pm 3$      | 89±9           | $188 \pm 7$  | Australian Football League     | NR, 2 seasons | 19            | 35          | Successful elite            |
|                            |       | MB                 |                     |                |              |                                |               |               | 70          |                             |
|                            |       | MID                |                     |                |              |                                |               |               | 145         |                             |
|                            |       | TF                 |                     |                |              |                                |               |               | 23          |                             |
|                            |       | MF                 |                     |                |              |                                |               |               | 48          |                             |
|                            |       | RKS                |                     |                |              |                                |               |               | 21          |                             |
| Johnston et al. [44]       | AuF   | MID                | $30  24 \pm 3$      | $89 \pm 9$     | $187 \pm 7$  | Australian Football League     | 2011-2012     | 1–29          | 278         | Successful elite            |
|                            |       | FF                 |                     |                |              |                                |               |               | 31          |                             |
|                            |       | FD                 |                     |                |              |                                |               |               | 86          |                             |
|                            |       | RKS                |                     |                |              |                                |               |               | 24          |                             |
| Wellman et al. [42]        | AmF   | WR                 | $33  21 \pm 1$      | $91 \pm 12$    | $186 \pm 11$ | NCAA                           | 2014          | 12            | 41          | World class elite           |
|                            |       | RB                 |                     | $98 \pm 10$    | $182 \pm 2$  | Division 1                     |               |               | 41          |                             |
|                            |       | QB                 |                     | $93\pm 2$      | $192 \pm 2$  |                                |               |               | 12          |                             |
|                            |       | TE                 |                     | $115 \pm 7$    | $197 \pm 1$  |                                |               |               | 21          |                             |
|                            |       | OL                 |                     | $137 \pm 5$    | $192 \pm 4$  |                                |               |               | 38          |                             |
|                            |       | DB                 |                     | $86\pm6$       | $183 \pm 5$  |                                |               |               | 55          |                             |
|                            |       | DT                 |                     | $135\pm0$      | $191 \pm 0$  |                                |               |               | 17          |                             |
|                            |       | DE                 |                     | $119 \pm 6$    | $193 \pm 4$  |                                |               |               | 33          |                             |
|                            |       | LB                 |                     | $106 \pm 3$    | $186 \pm 3$  |                                |               |               | 36          |                             |
| Morencos et al. [18]       | ΗК    | BK (5)             | 16 26±3             | $75\pm 6$      | $177 \pm 5$  | Spanish Hockey Premier         | NR, 2 seasons | 17            | 45          | Competitive elite           |
|                            |       | MID (6)            |                     |                |              | League                         |               |               | 42          |                             |
|                            |       | FOR (5)            |                     |                |              |                                |               |               | 26          |                             |
| Cummins et al. [29]        | RL    | ADJ (4)            | $18  25 \pm 4$      | 99±7           | $185 \pm 7$  | National Rugby League          | 2013          | NR            | 74          | World class elite           |
|                            |       | HUF (3)            |                     |                |              |                                |               |               | 36          |                             |
|                            |       | OB (4)             |                     |                |              |                                |               |               | 59          |                             |
|                            |       | WRF (7)            |                     |                |              |                                |               |               | 104         |                             |
| Dempsey et al. [45]        | RL    | FOR (37)           | $57 30 \pm 4$       | $103 \pm 7$    | $188 \pm 5$  | Four Nations                   | 2011-12       | 9             | 37          | World class elite           |
| Vamatan at al [46]         | Id    | BK (20)            | 20±4<br>25 - 25 - 4 | 92±0           | 182±6        | Motional Ducker Lancero        | 11 0100       | 30            | 20          | Would alone alite           |
| comprom et au. [70]        | 2     | HIF                |                     | 0 / /          | 0-1-001      | ranonal rugoj poaguo           | 11_0107       |               | 57          |                             |
|                            |       | OB                 |                     |                |              |                                |               |               | 121         |                             |
|                            |       | WRF                |                     |                |              |                                |               |               | 93          |                             |
| Oxendale et al. [47]       | RL    | BK                 | $17 \ 25 \pm 4$     | $99 \pm 10$    | $184\pm 6$   | English Super League           | 2014          | 4             | 11          | World class elite           |
|                            |       | FOR                |                     |                |              |                                |               |               | 17          |                             |
| Furlan et al. [49]         | RS    | Team               | 12 22±3             | $90 \pm 9$     | $185\pm6$    | IRB World Series               | 2013-14       | 9             | 21          | Successful elite            |
| Higham et al. [48]         | RS    | Team               | $19  21 \pm 3$      | 90±7           | $181 \pm 5$  | IRB World Series               | NR            | 11            | 75          | Successful elite            |
|                            |       |                    |                     |                |              | Domestic                       |               | 16            | 66          |                             |
| Suarez-Arrones et al. [36] | RS    | Team               | 12 27+2             | 86±9           | 182 + 7      | 2 International tournaments NR | NR            | NR            | 30          | Successful elite            |

D. J. Harper et al.

Table 3 (continued)

| Study                                                                                                                                                                      | Sport                                   | Sport Position (n)                                                 | Sample                                  |                               |                                     |                                         | Competition details                                                     |                                                            |                                                                           |                                         | Classification of eliteness                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                            |                                         |                                                                    | n Age                                   | Age (years)                   | Body mass (kg)                      | Stature (cm)                            | Type                                                                    | Year                                                       | Matches (n)                                                               | Files $(n)$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cunningham et al. [50],                                                                                                                                                    | RU                                      | FR                                                                 | 27 26±2                                 | ±2                            | $119 \pm 5$                         | $186 \pm 4$                             | Six Nations                                                             | 2014-15                                                    | 8                                                                         | 76                                      | World class elite                                                                                                                                                                                                                                                                                                                                                                                                                          |
| senior                                                                                                                                                                     |                                         | SR                                                                 | 26:                                     | $26 \pm 3$                    | $117 \pm 5$                         | $199 \pm 2$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | BR                                                                 | 26:                                     | $26 \pm 3$                    | $118\pm10$                          | $190\pm3$                               |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | HB                                                                 | 24±3                                    | ±3                            | $89 \pm 5$                          | $180\pm 6$                              |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | CTR                                                                | $26 \pm 1$                              | ±1                            | $102 \pm 7$                         | $190 \pm 4$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | B3                                                                 | $25 \pm 3$                              | +3                            | $92 \pm 2$                          | $184 \pm 4$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cunningham et al. [50],                                                                                                                                                    | RU                                      | FR                                                                 | 43 20±1                                 | +1                            | $112 \pm 6$                         | $184 \pm 3$                             | Six Nations; Junior World                                               | 2014-15                                                    | 15                                                                        | 161                                     | Successful elite                                                                                                                                                                                                                                                                                                                                                                                                                           |
| under 20                                                                                                                                                                   |                                         | SR                                                                 | $20 \pm 1$                              | +1                            | $115 \pm 4$                         | $200 \pm 2$                             | Cup                                                                     |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | BR                                                                 | 20 <del>.</del>                         | $20 \pm 0$                    | $102 \pm 4$                         | $188 \pm 3$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | HB                                                                 | $20 \pm 0$                              | ±0                            | 84±4                                | $176 \pm 2$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | CTR                                                                | $20 \pm 1$                              | +1                            | 96±7                                | $183 \pm 5$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | B3                                                                 | $20 \pm 1$                              | +1                            | $90 \pm 5$                          | $184 \pm 4$                             |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Jones et al. [41]                                                                                                                                                          | RU                                      | Team                                                               | 33 25±4                                 | +<br>4                        | $104 \pm 11$                        | NR                                      | European Cup; Celtic<br>League                                          | 2012-13                                                    | 13                                                                        | 71                                      | World class elite                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Akenhead et al. [16]                                                                                                                                                       | SOC                                     | Team                                                               | 36 19±1                                 | +1                            | 80±7                                | $183 \pm 5$                             | English Premier League<br>Reserve                                       | 2010-11                                                    | 18                                                                        | 648                                     | World class elite                                                                                                                                                                                                                                                                                                                                                                                                                          |
| De Hoyo et al. [10]                                                                                                                                                        | SOC                                     | Team                                                               | 7 18±1                                  | ±1                            | 76±7                                | $180\pm 2$                              | Spanish First League                                                    | NR                                                         | 1                                                                         | Ζ                                       | World class elite                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Russell et al. [19]                                                                                                                                                        | SOC                                     | Team                                                               | 5 21±1                                  | ± 1                           | 70±2                                | $177 \pm 3$                             | English PL Reserve Team                                                 | 2013                                                       | 1                                                                         | 5                                       | World class elite                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Russell et al. [17]                                                                                                                                                        | SOC                                     | Team                                                               | 11 20±1                                 | +                             | 71±4                                | $180 \pm 10$                            | English Premier League<br>Reserve                                       | 2013-14                                                    | 19 ( $6\pm 4$ per player)                                                 | 76                                      | World class elite                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tierney et al. [51]                                                                                                                                                        | SOC                                     | WD (10)<br>CD (9)                                                  | 46 20±3                                 | +1<br>20                      | 80±6                                | 179±5                                   | Under 21 and Under 18<br>English Football League                        | 2014–15                                                    | 42                                                                        | 420<br>378                              | Successful elite                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                            |                                         | (6) MM                                                             |                                         |                               |                                     |                                         |                                                                         |                                                            |                                                                           | 378                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | CM (10)                                                            |                                         |                               |                                     |                                         |                                                                         |                                                            |                                                                           | 420                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | FW (8)                                                             |                                         |                               |                                     |                                         |                                                                         |                                                            |                                                                           | 336                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Wehbe et al. [20]                                                                                                                                                          | SOC                                     | DEF (6)                                                            | 19 26 <sub>=</sub>                      | 26±5                          | 80±5                                | $183 \pm 5$                             | Australian A-League                                                     | 2011-12                                                    | 8                                                                         | 48                                      | Successful elite                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                            |                                         | (6) (III)                                                          | 26:                                     | 26±6                          | 75±4                                | $178 \pm 5$                             |                                                                         |                                                            |                                                                           | 54                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                            |                                         | FOR (4)                                                            | 26;                                     | 26±5                          | 81±4                                | $183 \pm 7$                             |                                                                         |                                                            |                                                                           | 32                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Data are presented as mean±standard deviation                                                                                                                              | mean±s                                  | standard devia                                                     | ation                                   |                               |                                     |                                         |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>ADI</i> adjustable, <i>AmF</i> American football, <i>AuF</i> Australian football, sive end, <i>DEF</i> defender, <i>DT</i> defensive tackle, <i>FD</i> fixed defender,  | Americí<br>er, <i>DT</i> d              | an football, At<br>efensive tackl                                  | <i>uF</i> Austra<br>le, <i>FD</i> fix   | lian footb<br>ed defend       | all, B3 back thre er, FF fixed forv | e, BK back, BK<br>vard, FOR forw        | ? back row, <i>CD</i> central de vard, <i>FR</i> front row, <i>HB</i> h | efender, <i>CM</i> c <sup>1</sup><br>alf back, <i>HK</i> 1 | entral midfielder, <i>CTR</i> c hockey, <i>HUF</i> hit-up for             | centre, DB of ward, IRB                 | B3 back three, BK back, BR back row, CD central defender, CM central midfielder, CTR centre, DB defensive back, DE defen-<br>FF fixed forward, FOR forward, FR front row, HB half back, HK hockey, HUF hit-up forward, IRB international rugby board,                                                                                                                                                                                      |
| LB linebacker, MB mobile backs, MID midfielders, MF m<br>back, RB running back, RKS rucks, RL rugby league, RS r<br>midfielder. WR wide receiver. WRF wide-running forward | obile bac<br>k, <i>RKS</i> r<br>eceiver | sks, <i>MID</i> mid:<br>ucks, <i>RL</i> rugt<br><i>WRF</i> wide-ru | fielders, A<br>by league,<br>inning for | 4F mobile<br>RS rugby<br>ward | e forwards, NCA                     | 4 National Col.<br>by union, <i>SOC</i> | legiate Athletic Associati<br>soccer, SR second row, 7                  | on, <i>NR</i> not re<br><i>B</i> tall backs,               | ported, <i>OB</i> outside back<br><i>TF</i> tall forwards, <i>TE</i> tigl | s, <i>OL</i> offen<br>ht end, <i>WD</i> | LB linebacker, MB mobile backs, MID midfielders, MF mobile forwards, NCAA National Collegiate Athletic Association, NR not reported, OB outside back, OL offensive linesman, QB quarter<br>back, RB running back, RKS rucks, RL rugby league, RS rugby sevens, RU rugby union, SOC soccer, SR second row, TB tall backs, TF tall forwards, TE tight end, WD wide defender, WM wide<br>midfielder WR wide receiver WRF wide-running forward |
|                                                                                                                                                                            |                                         |                                                                    |                                         | 7777                          |                                     |                                         |                                                                         |                                                            |                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 4 Summary of the methodological procedures used to measure high and very high intensity accelerations and decelerations using global positioning system (GPS) with overall risk of bias

| Study                            | GPS device         | 6                     | Data collection           |                |        |           |                                              | Data processing |     |                   | Thresholds $(m \cdot s^{-2})$ | s (m·s <sup>-2</sup> ) | Risk | Risk of bias |    |
|----------------------------------|--------------------|-----------------------|---------------------------|----------------|--------|-----------|----------------------------------------------|-----------------|-----|-------------------|-------------------------------|------------------------|------|--------------|----|
|                                  | Brand              | Model                 | Software ver-<br>sion     | SF (Hz)        | SAT(n) | HDP $(n)$ | Variables<br>measured                        | MED (s)         |     | Raw/soft-<br>ware | High                          | Very high              | A    | В            | C  |
| Australian Football              |                    |                       |                           |                |        |           |                                              |                 |     |                   |                               |                        |      |              |    |
| Coutts et al. [43]               | Catapult<br>Sports | IN                    | Sprint v5.0.6             | 10             | NR     | NR        | $F\left(\mathbf{n}\right)$                   | 0.2             |     | Raw               | > 2.78                        |                        | ċ    | +            | +  |
| Johnston et al. [44]             | Catapult<br>Sports | MinimaxX<br>S3 and S4 | Sprint v5.0.9             | 5 and 10       | 12     | -         | <i>F</i> (n)<br><i>D</i> (m)<br><i>T</i> (s) | NR              |     | Software          | > 2.78                        |                        | +    | ć            | +  |
| American Football                |                    |                       |                           |                |        |           |                                              |                 |     |                   |                               |                        |      |              |    |
| Wellman et al. [42]<br>Hockey    | GPSports           | UdH IdS               | Team AMS                  | 5 <sup>a</sup> | NR     | NR        | $F(\mathbf{n})$                              | NI NR           |     | Software          | 2.6–3.5                       | > 3.5                  | ċ    | ć            | +  |
| Morencos et al. [18]             | GPSports           | SPI Elite             | Team AMS<br>v.R1.215.3    | 10             | NR     | NR        | $F(n \cdot min^{-1})$                        | NR              |     | Software          | >3                            |                        | I    | ċ            | +  |
| Rugby league                     |                    |                       |                           |                |        |           |                                              |                 |     |                   |                               |                        |      |              |    |
| Cummins et al. [29]              | GPSports           | SPI-ProX              | IN                        | 5 <sup>a</sup> | NR     | NR        | $F(n \cdot min^{-1})$                        |                 | NR  | Raw               | > 2.78                        |                        | I    | ċ            | ċ  |
| Dempsey et al. [45]              | GPSports           | SPI-ProX              | Team AMS<br>vR1 2012.4    | 10             | NR     | NR        | F (n)<br>F (n·min <sup>-1</sup> )            |                 | NR  | Software          | >3                            |                        | ċ    | ć            | ¢. |
| Kempton et al. [46]              | GPSports           | SPI-Pro               | Team AMS<br>vR1 2012.1    | Ś              | 6      | NR        | $F(\mathbf{n})$                              |                 | 0.4 | Raw               | > 2.78                        |                        | ċ    | +            | +  |
| Oxendale et al. [47]             | Catapult<br>Sports | MinimaxX              | Team 2.5                  | 10             | NR     | NR        | $F(\mathbf{n})$                              |                 | NR  | NR                | > 2.79                        |                        | I    | ė            | ċ  |
| Rugby sevens                     |                    |                       |                           |                |        |           |                                              |                 |     |                   |                               |                        |      |              |    |
| Furlan et al. [49]               | GPSports           | <b>U</b> dH-IdS       | Labview 2011 <sup>b</sup> | 5 <sup>a</sup> | NR     | NR        | $F (n \cdot min^{-1})$                       |                 | NR  | Raw               | 3-4                           | >4                     | I    | ċ            | Т  |
| Higham et al. [48]               | Catapult<br>Sports | MinimaxX              | Team Sport<br>v2.5        | 5              | NR     | NR        | $F(n \cdot min^{-1})$                        |                 | NR  | Software          |                               | 4 <                    | I    | +            | ÷  |
| Suarez-Arrones et al.<br>[36]    | GPSports           | SPI-ProX              | Team AMS R1<br>2013.9     | 5 <sup>a</sup> | NR     | NR        | $F\left( \mathbf{n} ight)$                   |                 | Т   | Software          | > 2.78                        | 4 <                    | I    | +            | I  |
| Rugby union                      |                    |                       |                           |                |        |           |                                              |                 |     |                   |                               |                        |      |              |    |
| Cunningham et al. [50] U20       | STAT-<br>Sports    | Viper Pod             | Viper PSA                 | 10             | 4      | NR        | $F(\mathbf{n})$                              |                 | NR  | Software          | 3-4                           | +<                     | +    | ć            | +  |
| Cunningham et al.<br>[50] Senior | STAT-<br>Sports    | Viper Pod             | Viper PSA                 | 10             | 4      | NR        | $F(\mathbf{n})$                              |                 | NR  | Software          | 3-4                           | +<                     | +    | ć            | ć  |
| Jones et al. [41]                | Catapult<br>Sports | MinimaxX<br>v4.0      | Sprint                    | 10             | NR     | NR        | <i>D</i> (m)                                 |                 | NR  | Software          | ×<br>3                        |                        | ċ    | ć            | ć  |
| Soccer                           |                    |                       |                           |                |        |           |                                              |                 |     |                   |                               |                        |      |              |    |
| Akenhead et al. [16]             | Catapult<br>Sports | MinimaxX              | Logan Plus v4.5           | 10             | 13     | 0.8       | <i>D</i> (m)                                 |                 | NR  | Raw               | >3                            |                        | +    | ċ            | ċ  |
| De Hoyo et al. [10]              | GPSports           | SPI Elite             | Team AMS                  | 10             | NR     | NR        | $F(\mathbf{n})$                              |                 | NR  | Software          | >3                            |                        | ċ    | ċ            | I  |
| Russell et al. [19]              | STAT-<br>Sports    | Viper Pod             | Viper PSA                 | 10             | NR     | NR        | $F(\mathbf{n})$                              |                 | 0.5 | Software          | >3                            |                        | ć    | +            | T  |
| Russell et al. [17]              | STAT-<br>Snorts    | Viper Pod             | Viper PSA                 | 10             | NR     | NR        | $F(\mathbf{n})$                              |                 | 0.5 | Software          | >3                            |                        | ż    | +            | Т  |

| Study                               | GPS device      |         | Data collection            |    |         |         |                                        | Data processing |              |               | Thresholds | Thresholds $(m \cdot s^{-2})$       | Risk of bias | f bias |
|-------------------------------------|-----------------|---------|----------------------------|----|---------|---------|----------------------------------------|-----------------|--------------|---------------|------------|-------------------------------------|--------------|--------|
|                                     | Brand Model     | Model   | Software ver- SF (Hz) sion |    | SAT (n) | HDP (n) | SAT $(n)$ HDP $(n)$ Variables measured | MED (s)         | Raw/<br>ware | w/soft-<br>re | High       | Raw/soft- High Very high A B C ware | A            | В      |
| Tierney et al. [51] STAT-<br>Sports | STAT-<br>Sports | N       | IN                         | 10 | NR      | NR      | $F(\mathbf{n})$                        |                 | NR NF        | NR >3         | >3         |                                     | I            | 1      |
| Wehbe et al. [20] GPSports SPI-Pro  | GPSports        | SPI-Pro | IN                         | 5  | NR NR   |         | $F(\mathbf{n})$                        | 0               | 0.5 NR       |               | 2.5-4 >4   | >4                                  | I            | ċ      |

lites, SF sampling frequency, T time, + indicates low risk of bias (plausible bias unlikely to seriously alter the results), ? indicates unclear risk of bias (plausible bias that raises some doubt about the results), – indicates high risk of bias (plausible bias that seriously weakens confidence in the results)

<sup>a</sup>Interpolated to 15 Hz from 5-Hz GPS raw velocity data

<sup>b</sup>Custom written software

Only American Football had a greater frequency of very high intensity accelerations compared to decelerations (SMD = 0.19, 95% CI - 0.42 to 0.80), although the difference was trivial. All other sports had a greater frequency of very high intensity decelerations compared to accelerations with SMD ranging from trivial (-0.12) in rugby sevens to very large (-3.19) in soccer. The percentage of total variation across studies and positional roles ranged from moderate  $(p=0.11, I^2=31\%)$  in rugby union to high (p<0.00001, $I^2 = 89-95\%$ ) in all other sports.

## 3.7 Meta-Analysis: Temporal Changes

## 3.7.1 High and Very High Intensity Accelerations: Temporal Changes

Five studies [17, 19, 20, 36, 49] covering two sports (rugby sevens, soccer) reported temporal changes in the frequency of high and very high intensity accelerations between the first and second half periods of match play. There was a low percentage (p = 0.45 - 0.93,  $I^2 = 0\%$ ) of total variation due to heterogeneity between and within the high and very high intensity subgroups (Table 5). The SMD for both high (0.50) and very high intensity (0.49) sub-groups showed a small decrease in the frequency of accelerations completed from the first to the second half periods of match play (Fig. 5a). In rugby sevens, the SMD ranged between small (0.33) to moderate (0.97), whilst in soccer the decrease was small (SMD = 0.10 - 0.50).

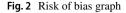
## 3.7.2 High and Very High Intensity Decelerations: Temporal Changes

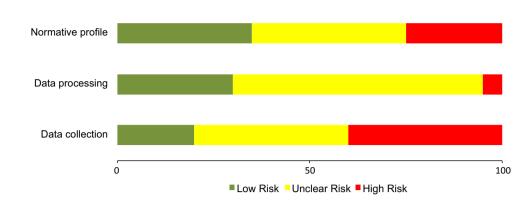
Five studies [17, 19, 20, 36, 49] covering two sports (rugby sevens, soccer) reported temporal changes in high and very high intensity decelerations between the first and second half periods of match play. There was a low percentage (p = 0.72,  $I^2 = 0\%$ ) of total variation due to heterogeneity between the high and very high intensity subgroups. Within the high and very high-intensity subgroups, a moderate percentage  $(p=0.08-0.22, I^2=34-53\%)$  of total variation due to heterogeneity was evident across studies (Table 5). The SMD for both high (0.54) and very high intensity (0.46) sub-groups showed a small decrease in the frequency of decelerations performed from the first to the second half periods of match play (Fig. 5b). In rugby sevens, the SMD ranged between trivial (0.00) and moderate (0.66), whilst in soccer it ranged between small (SMD = 0.47) and moderate (0.78).

## 3.8 Descriptive Analysis: Distances and Time Spent Accelerating and Decelerating

Three studies investigating Australian Football [44], rugby union [41] and soccer [16] reported the absolute distance spent accelerating and decelerating at high intensity (Fig. 6a). Only the study by Johnston et al. [44] reported positional differences. Australian Football had the highest full match distance (194 m) spent accelerating at high intensity followed by soccer (178 m) and rugby union (94 m). In Australian Football, midfielders reported the highest total match distance (202 m) spent accelerating at high intensity, followed by fixed defenders (190 m), fixed forwards (176 m) and rucks (133 m). Soccer had the highest full match distance (162 m) spent decelerating at high intensity, followed by Australian Football (149 m) and rugby union (54 m).

Only one study [44] investigating Australian Football reported the time spent accelerating and decelerating at high intensity (Fig. 6b). On average, all players spent a longer time (89 s) accelerating at high intensity compared to decelerating (64 s). Fixed defenders and midfielders spent the longest time accelerating (91 and 90 s, respectively) and decelerating (66 and 66 s, respectively) at high intensity amongst all positional roles. Rucks had the lowest time (69 s) spent accelerating, whilst fixed forwards had the lowest time (51 s) spent decelerating. No studies reported either the distance or time spent accelerating or decelerating at very high intensities.


## **4** Discussion


To our knowledge, this is the first meta-analysis to compare differences between the most intense (> 2.5 m·s<sup>-2</sup>) accelerations and decelerations in elite team sports competitive match play. Over half (55%) of the included studies investigated players classified as 'world-class' elite. As such, this review provides high-performance practitioners with novel insights into the acceleration and deceleration demands of players at the highest standards of match play. Using recent guidelines [34, 35], a secondary aim was to review current methodological limitations around the measurement of highintensity accelerations and decelerations, with a view to recommending future directions. The main finding from our meta-analysis is that American Football was the only sport with a higher frequency of high (SMD = 1.26) and very high (SMD=0.19) intensity accelerations compared to decelerations. In all other sports, there was a greater frequency of high (SMD = -0.48 to -1.74) and very high (SMD = -0.32to -3.19) intensity decelerations compared to accelerations.

## 4.1 Frequency of High-Intensity Accelerations Compared to Decelerations

In all team sports apart from American Football, there was a greater frequency of high-intensity decelerations compared to accelerations (SMD = -0.69 to -1.74). The largest difference (SMD = -1.74) was found in soccer, although a significant high variation  $(I^2 = 97\%)$  was evident between teams and positional estimates. The evolution of elite soccer match play requires contemporary players to perform more short high-intensity actions to fulfil tactical responsibilities, whilst in and out of possession, and during ball possession transitions [3, 52]. Whilst these studies have shown an evolutionary progression in the frequency of rapid accelerations, the findings of our meta-analysis illustrate the prevalence of high-intensity decelerations to soccer match-play performance. Although high-intensity decelerations have been shown to be very short in duration (72% less than 1 s duration) [53], they comprise the highest magnitude of mechanical load per metre-reportedly up to 65% greater than any other match-play activity and around 37% more than similarly intense accelerations [7]. Even in elite players, this load places a significant demand on the ability to repeatedly absorb high eccentric braking forces, of which the cumulative effect following match play is associated with markers of exercise-induced muscle damage [12, 54], deficits in countermovement jump concentric and eccentric phase performance [10, 12], and asymmetry in hamstring isometric strength [55], effects that have been shown to last up to 64 hours post-match. The muscle damage resulting from repeated intense decelerations is caused by strain to muscle fibres during eccentric (lengthening) contractions that result in disruption of the integrity of muscle cells [56]. Unlike maximum voluntary force that can also be affected by concentric exercise (metabolic fatigue), the rate of force development is particularly affected by muscle damage resulting in a diminished capacity to both produce and attenuate forces in very short time periods that is commonly required to enhance sports performance and reduce injury risk [57, 58]. Specific attention to loading strategies that can "mechanically protect" players from these damaging consequences of high-intensity decelerations are necessary [9]. For example, studies examining the repeated bout effect have shown that greater resistance to muscle damage can be obtained by prior eccentric or isometric exercise [59, 60]. Implementing such strategies in preparation for match play could attenuate the amount of damage accumulated per deceleration effort, resulting in less mechanical fatigue and a reduced risk of tissue failure occurring (this representing an increased 'deceleration efficiency') [61].

Our findings also highlight significant team and positional differences in the frequency of high-intensity decelerations compared to accelerations in soccer. In a study by Tierney





et al. [51], wide midfielders completed the most high-intensity decelerations (n=62) of any position, and also had the highest difference (SMD = -3.71) in the frequency of highintensity decelerations (n=62) compared to accelerations (n=35). This reflects positional-specific movement demands whereby wide midfielders are required to perform various changes in direction both before and after high-intensity efforts to meet technical and tactical requirements when in and out of possession [62, 63]. Additionally, coaches and other support staff should be aware of the fluctuations in high-intensity accelerations and decelerations that result from tactical changes in game play. For example, in the study by Tierney et al. [51], wide midfielders performed 20% more high-intensity decelerations when playing in a 3-4-3 (*n* = 66) compared to a 4-4-2 (*n* = 53) formation. These findings have important implications for the design of training micro-cycles. For instance, players who perform a high frequency of decelerations over a number of weeks may be at an increased risk of injury, whilst a moderate frequency may provide a protective effect, thereby reducing the chance of injury occurring [64].

Significant team and positional differences in the frequency of high-intensity decelerations compared to accelerations were also observed in all codes of rugby  $(I^2 = 57-97\%)$ . Both rugby league and rugby union had a greater (SMD=0.99 and 1.11, respectively) frequency of high-intensity decelerations compared to accelerations. In rugby sevens, the difference in high-intensity decelerations compared to accelerations was large (SMD = 1.56), although the CI overlapped both trivial positive and negative effects. Whilst rugby sevens is played under the same laws and pitch dimensions as rugby union, the fewer players per team (7 compared to 15) permits larger spaces [65], requiring players to possess exceptional acceleration and maximal speed capabilities to achieve success in both attacking (defenders beaten, line breaks) and defensive plays (defensive rucks, dominant tackles) [66]. Both studies [36, 49] included in our meta-analysis obtained estimates from international rugby sevens tournaments across multiple matches. In the study by Suarez-Arrones et al. [36], differences in the frequency of high-intensity accelerations and decelerations were trivial. However, the absolute number of high-intensity accelerations (n = 13.1) and decelerations (n = 13.6) per match was greater than for all positions reported in senior and under 20 international rugby union players [50], despite total game duration being up to 80% less than rugby union. Indeed, using a total game time of 14 min, this would represent an average density of high-intensity accelerations and decelerations of approximately 1 action per minute. This average density is different to that of Furlan et al. [49] who reported a very large (SMD=3.07) difference in the number of high intensity decelerations (1.8 n·min) compared to accelerations (0.4 n·min) in international rugby sevens players.

Based on these studies, it seems that there could be a large variability in the frequency of high-intensity accelerations and decelerations required to be performed during international match play. This could be owing to a range of physical (high-speed running ability, resistance to muscle damage—especially on day 1 of tournaments, neuromuscular fatigue), technical (number of contacts, tackle proficiency), psychological (well-being, perceived recovery) and situational (tournament day, score during match, opposition world ranking, travel requirements) related factors that have been shown to influence the match-activity profiles of international rugby sevens players [67–73].

Nonetheless, such a high density of high-intensity accelerations and decelerations in combination with physical contacts (rucks, mauls, scrums, tackles) is likely associated with the significant increase in muscle damage [68, 72] that coincides with deficits in neuromuscular function [68] and psychological disturbances [72, 73] following rugby sevens match play. Because rugby sevens players are required to perform multiple matches on consecutive days, with little time (~3 hours) for regeneration, strategies that can help enhance and maintain players' physical and psychological readiness between matches are essential to successful performance, and have been carefully considered in recent research [74, 75]. In fact, some of these practices may be transferable to those involved in the preparation of rugby league and rugby union players whose aim is to develop a

| Wellmann et al. [42] (WR)<br>Wellmann et al. [42] (RB)<br>Wellmann et al. [42] (RB)<br>Wellmann et al. [42] (CL)<br>Wellmann et al. [42] (DL)<br>Wellmann et al. [42] (DD)<br>Wellmann et al. [42] (DD)<br>Wellmann et al. [42] (DD)<br>Wellmann et al. [42] (DD)<br>Subtoal<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [44] (FC)<br>Johnston et al. [44] (FC)<br>Johnston et al. [44] (FC)<br>Coutts et al. [44] (FC) | 38 (13); 41<br>19 (8); 41<br>21 (8); 12<br>22 (14); 21<br>17 (6); 38<br>32 (11); 55<br>16 (6); 17<br>20 (7); 33<br>26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 41<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31<br>41 (9); 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 (13); 41<br>8 (8); 41<br>10 (8); 12<br>9 (14); 21<br>8 (6); 38<br>19 (11); 55<br>8 (6); 17<br>11 (7); 33<br>14 (11); 36<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.45 [0.96, 1.94]<br>1.36 [0.88, 1.84]<br>1.33 [0.43, 2.23]<br>0.91 [0.27, 1.55]<br>1.48 [0.97, 2.00]<br>1.17 [0.77, 1.58]<br>1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br>1.26 [1.08, 1.43]<br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-1.22 [-1.58]<br>-1.22 [-1.58, -0.86]<br>-1.22 [-1.58, -0.86] -1.22 [-1.58, -0.86]<br>-1.22 [-1.58, - |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wellmann et al. [42] (RB)<br>Wellmann et al. [42] (QB)<br>Wellmann et al. [42] (CL)<br>Wellmann et al. [42] (OL)<br>Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DE)<br>Wellmann et al. [42] (DE)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (REM)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)                                                                                                                                                                                                                                                                                                                   | 19 (8); 41<br>21 (8); 12<br>22 (14); 21<br>17 (6); 38<br>32 (11); 55<br>15 (6); 17<br>20 (7); 33<br>26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 21<br>46 (13); 21<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 (8); 41<br>10 (8); 12<br>9 (14); 21<br>8 (6); 38<br>19 (11); 55<br>8 (6); 17<br>11 (7); 33<br>14 (11); 36<br>109 (21); 35<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.36 [0.88, 1.84]<br>1.33 [0.43, 2.23]<br>0.91 [0.27, 1.55]<br>1.48 [0.97, 2.00]<br>1.17 [0.77, 1.58]<br>1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br><b>1.26 [1.08, 1.43]</b><br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wellmann et al. [42] (TE)<br>Wellmann et al. [42] (OL)<br>Wellmann et al. [42] (DB)<br>Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DE)<br>Subtotal<br>Coutts et al. [42] (LB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)                                                                                                                                                                                                                                                                                                                                        | 22 (14); 21<br>17 (6); 38<br>32 (11); 55<br>15 (6); 17<br>20 (7); 33<br>26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 44<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (6); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 (8); 12<br>9 (14); 21<br>8 (6); 38<br>19 (11); 55<br>8 (6); 17<br>11 (7); 33<br>14 (11); 36<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.91 [0.27, 1.55]<br>1.48 [0.97, 2.00]<br>1.17 [0.77, 1.58]<br>1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br><b>1.26 [1.08, 1.43]</b><br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wellmann et al. [42] (TE)<br>Wellmann et al. [42] (OL)<br>Wellmann et al. [42] (DB)<br>Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DE)<br>Subtotal<br>Coutts et al. [42] (LB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 17 \ (6); 38\\ 32 \ (11); 55\\ 15 \ (6); 17\\ 20 \ (7); 33\\ 26 \ (11); 36\\ \end{array}\\ \begin{array}{c} 94 \ (17); 35\\ 103 \ (8); 70\\ 101 \ (20); 145\\ 82 \ (8); 23\\ 101 \ (13); 48\\ 96 \ (13); 21\\ 46 \ (13); 419\\ 50 \ (14); 278\\ 40 \ (6); 31\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 (14); 21<br>8 (6); 38<br>19 (11); 55<br>8 (6); 17<br>11 (7); 33<br>14 (11); 36<br>109 (21); 35<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.91 [0.27, 1.55]<br>1.48 [0.97, 2.00]<br>1.17 [0.77, 1.58]<br>1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br><b>1.26 [1.08, 1.43]</b><br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wellmann et al. [42] (OL)<br>Wellmann et al. [42] (DB)<br>Wellmann et al. [42] (DF)<br>Wellmann et al. [42] (DE)<br>Wellmann et al. [42] (LB)<br>Subtotal<br>Coutts et al. [43] (TB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 17 \ (6); 38\\ 32 \ (11); 55\\ 15 \ (6); 17\\ 20 \ (7); 33\\ 26 \ (11); 36\\ \end{array}\\ \begin{array}{c} 94 \ (17); 35\\ 103 \ (8); 70\\ 101 \ (20); 145\\ 82 \ (8); 23\\ 101 \ (13); 48\\ 96 \ (13); 21\\ 46 \ (13); 419\\ 50 \ (14); 278\\ 40 \ (6); 31\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 (6); 38<br>19 (11); 55<br>8 (6); 17<br>11 (7); 33<br>14 (11); 36<br>109 (21); 35<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.48 [0.97, 2.00]<br>1.17 [0.77, 1.58]<br>1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br><b>1.26 [1.08, 1.43]</b><br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DE)<br>Wellmann et al. [42] (DE)<br>Subtotal<br>Coutts et al. [43] (TB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MD)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (Fam)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32 (11); 55<br>15 (6); 17<br>20 (7); 33<br>26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 (11): 55<br>8 (6): 17<br>11 (7): 33<br>14 (11): 36<br>109 (21): 35<br>120 (18): 70<br>116 (20): 145<br>100 (10): 23<br>125 (15): 48<br>100 (16): 21<br>59 (13): 419<br>60 (14): 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br>1.26 [1.08, 1.48]<br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wellmann et al. [42] (DT)<br>Wellmann et al. [42] (DE)<br>Wellmann et al. [42] (DE)<br>Subtotal<br>Coutts et al. [43] (TB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MD)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (Fam)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 (7); 33<br>26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 84<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 (6); 17<br>11 (7); 33<br>14 (11); 36<br>109 (21); 35<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.14 [0.41, 1.87]<br>1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br>1.26 [1.08, 1.48]<br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Weilmann et al. [42] (LB)<br>Subtotal<br>Coutts et al. [43] (TB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 (7); 33<br>14 (11); 36<br>109 (21); 35<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.27 [0.74, 1.80]<br>1.08 [0.58, 1.58]<br><b>1.26 [1.08, 1.43]</b><br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Weilmann et al. [42] (LB)<br>Subtotal<br>Coutts et al. [43] (TB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26 (11); 36<br>94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 (11); 36<br>109 (21); 35<br>120 (18); 70<br>116 (20); 145<br>100 (10); 23<br>125 (15); 48<br>100 (16); 21<br>59 (13); 419<br>60 (14); 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.08 [0.58, 1.58]<br><b>1.26 [1.08, 1.43]</b><br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Subtotal<br>Coutts et al. [43] (TB)<br>Coutts et al. [43] (MB)<br>Coutts et al. [43] (MD)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RFS)<br>Johnston et al. [44] (FE)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94 (17); 35<br>103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.26 [1.08, 1.43]<br>-0.77 [-1.25, -0.28]<br>-1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Coutts et al. [43] (MB)<br>Coutts et al. [43] (MID)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MKS)<br>Johnston et al. [44] (ME)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103 (8); 70<br>101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 (18); 70 -<br>116 (20); 145 -<br>100 (10); 23 -<br>125 (15); 48 -<br>100 (16); 21 -<br>59 (13); 419 -<br>60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.22 [-1.58, -0.86]<br>-0.77 [-1.01, -0.53]<br>-2.04 [-2.76, -1.31]<br>-1.72 [-2.20, -1.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Coutts et al. [43] (MID)<br>Coutts et al. [43] (TF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (RKS)<br>Johnston et al. [44] (REM)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 (20); 145<br>82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116 (20); 145 -<br>100 (10); 23 -<br>125 (15); 48 -<br>100 (16); 21 -<br>59 (13); 419 -<br>60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.77 [-1.01, -0.53<br>-2.04 [-2.76, -1.31<br>-1.72 [-2.20, -1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Coutts et al. [43] (TF)<br>Coutts et al. [43] (MF)<br>Coutts et al. [43] (MF)<br>Johnston et al. [44] (RFS)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82 (8); 23<br>101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 (10); 23 -<br>125 (15); 48 -<br>100 (16); 21 -<br>59 (13); 419 -<br>60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.04 [-2.76, -1.31<br>-1.72 [-2.20, -1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Coutts et al. [43] (MF)<br>Coutts et al. [43] (RKS)<br>Johnston et al. [44] (Team)<br>Johnston et al. [44] (MID)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 (13); 48<br>96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125 (15); 48 -<br>100 (16); 21 -<br>59 (13); 419 -<br>60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.72 [-2.20, -1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Coutts et al. [43] (RKS)<br>Johnston et al. [44] (Team)<br>Johnston et al. [44] (MID)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FD)<br>Johnston et al. [44] (RKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96 (13); 21<br>46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 (16); 21 -<br>59 (13); 419 -<br>60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Johnston et al. [44] (Team)<br>Johnston et al. [44] (MID)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FD)<br>Johnston et al. [44] (RKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46 (13); 419<br>50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59 (13); 419 -<br>60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Johnston et al. [44] (MID)<br>Johnston et al. [44] (FF)<br>Johnston et al. [44] (FD)<br>Johnston et al. [44] (RKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 (14); 278<br>40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 (14); 278 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.27 [-0.88, -0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Johnston et al. [44] (FF)<br>Johnston et al. [44] (FD)<br>Johnston et al. [44] (RKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 (9); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.00 [-1.14, -0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Johnston et al. [44] (FD)<br>Johnston et al. [44] (RKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.71 [-0.88, -0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Johnston et al. [44] (RKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41 (9); 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53 (8); 31 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>⊢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.51 [-2.08, -0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61 (12); 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.88 [-2.24, -1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38 (10); 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51 (12); 24 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.16 [-1.77, -0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F●-[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.15 [-1.41, -0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Morencos et al. [18] (Team) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7 (0.2); 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9 (0.3); 113 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⊢ <mark>+</mark> +-+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.78 [-1.05, -0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Morencos et al. [18] (BK) <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7 (0.2); 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9 (0.3); 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.78 [-1.21, -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊢ <mark>;</mark> •↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.78 [-1.22, -0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Morencos et al. [18] (FWD) <sup>a</sup><br>Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9 (0.3); 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0 (0.3); 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.33 [-0.88, 0.22]<br>-0.69 [-0.82, -0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1 (1 2). 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2 (1 2): 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.08 [-0.41, 0.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.30 [-0.77, 0.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.72 [-1.09, -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.40 [-0.67, -0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.63 [-2.16, -1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.82 [-2.57, -1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.98 [-2.54, -1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.96 [-2.73, -1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.01 [-1.29, -0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.85 [-2.32, -1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.73 [-0.99, -0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.87 [-1.17, -0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.93 [-1.64, -0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Oxendale et al. [47] (BK)<br>Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.1 (6.4); 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.6 (5.7); 11 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.08 [-0.92, 0.76]<br>-0.99 [-1.30, -0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Furlan et al. [49] (Team)ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4 (0.2); 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 (0.6); 21 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢</b> →→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.07 [-3.99, -2.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Suarez-Arrones et al. [36] (Team)<br><b>Subtotal</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.1 (4.1); 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.6 (5.5); 30 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.10 [-0.61, 0.40]<br><b>-1.56 [-4.47, 1.35]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| inningham et al. [50] (FWD SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2 (1.9); 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.4 (4); 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>⊢</b> •−-{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.33 [-1.77, -0.89]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cunningham et al. [50] (BK SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9 (3); 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.9 (4.3); 49 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢</b> ●{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.34 [-1.78, -0.90]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| unningham et al. [50] (FWD U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.3 (2.7); 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.5 (3.5); 81 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊢ <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.02 [-1.35, -0.69]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cunningham et al. [50] (BK U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.4 (4.5); 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.5 (4.4); 80 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢∔●</b> →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.69 [-1.01, -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (FR SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1 (1.3); 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5 (2.4); 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>⊢</b> ● <mark> </mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.21 [-2.02, -0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (SR SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8 (1.9); 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7 (2.4); 12 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢−−−</b> ∔ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.74 [-2.70, -0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (BR SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1 (2); 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.6 (4.3); 22 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢</b> •↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.61 [-2.30, -0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (HB SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8 (2.9); 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.4 (4.8); 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⊢ <b></b> ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.13 [-1.88, -0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| unningham et al. [50] (MID SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 (3); 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3 (4.2); 15 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>⊢</b> →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.95 [-2.84, -1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (B3 SEN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.7 (3); 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.2 (3.9); 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>⊢</b> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.98 [-1.68, -0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (FR U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.8 (2.1); 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.2 (3.7); 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>⊢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.85 [-1,42, -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (SR U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5 (2.4); 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 (3); 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>⊢</b> •i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.60 [-2.25, -0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (BR U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5 (3.1); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.2 (3.4); 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>⊢_</b> •,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.82 [-1.34, -0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (HB U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.3 (5.4); 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5 (3.6); 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>⊢</b> ∔_ <b>●</b> _∔→                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.47 [-1.19, 0.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (MF U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.9 (2.8); 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5 (4.1); 29 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>⊢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.57 [-2.17, -0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cunningham et al. [50] (B3 U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢</b> • ↓ ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.34 [-0.81, 0.12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>⊢</b> ♦-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.11 [-1,32, -0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| De Hoyo et al. [10] (Team)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 (9); 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46 (17); 7 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.06 [-3.45, -0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Russell et al. [19] (Team)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39 (17); 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52 (14); 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>⊢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.75 [-2.06, 0.56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Russell et al. [17] (Team)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26 (9); 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44 (12); 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.69 [-2.06, -1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tierney et al. [51] (WD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34 (6); 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56 (14); 420 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +●+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.04 [-2.21, -1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tierney et al. [51] (CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 (7); 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45 (8); 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H#H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.39 [-2.58, -2.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tierney et al. [51] (WM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35 (5); 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62 (9); 378 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>⊢</b> •-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.71 [-3.94, -3.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tierney et al. [51] (CM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33 (10); 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53 (12); 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.81 [-1.97, -1.65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tierney et al. [51] (FW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38 (8); 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 (12); 336 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H#H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.67 [-1.84, -1.49]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wehbe et al. [20] (DEF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111 (33); 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122 (22); 48 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>⊢∔ ●</b> →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.62 [-1.03, -0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wehbe et al. [20] (MID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114 (14); 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 136 (23); 54 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>⊢</b> •∔≀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.14 [-1.54, -0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wehbe et al. [20] (FWD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80 (25); 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102 (27); 32 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>⊢</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.84 [-1.35, -0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>⊢_↓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.74 [-2.21, -1.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ++1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.88 [-1.12, -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Morencos et al. [18] (MID) <sup>a</sup><br>Morencos et al. [18] (FWD) <sup>a</sup><br><b>Subtotal</b><br>Cummins et al. [29] (ADJ)<br>Cummins et al. [29] (OB)<br>Cummins et al. [29] (UFF)<br>Cummins et al. [29] (UFF)<br>Dempsey et al. [45] (FWD)<br>Dempsey et al. [46] (WRF)<br>Compton et al. [50] (FW D20)<br>Compton et al. [50] (BK SEN)<br>Compton et al. [50] (BK SEN)<br>Compton et al. [50] (BK SEN)<br>Compton et al. [50] (BR SEN)<br>Compton et al. [50] (FW D20)<br>Compton et al. [50] (BR SEN)<br>Compton | Morencos et al. [18] (MD) <sup>a</sup><br>Morencos et al. [29] (FWD) <sup>a</sup><br>Subtotal         0.8 (0.2); 42           Cummins et al. [29] (FWD) <sup>a</sup><br>Cummins et al. [29] (OB)         3.1 (1.2); 74           Cummins et al. [29] (OB)         1.3 (0.6); 36           Cummins et al. [29] (HUF)         2.2 (0.6); 59           Cummins et al. [29] (WRF)         2.6 (0.8); 104           Dempsey et al. [45] (FWD)         0.3 (0.2); 20           Dempsey et al. [45] (FWD) <sup>a</sup> 0.3 (0.2); 20           Dempsey et al. [45] (FWD) <sup>a</sup> 0.3 (0.2); 21           Dempsey et al. [45] (FWD) <sup>a</sup> 0.4 (0.2); 37           Kempton et al. [46] (WRF)         66 (16); 52           Kempton et al. [46] (WRF)         66 (16); 53           Oxendale et al. [47] (FOR)         4.7 (3); 17           Oxendale et al. [47] (FOR)         4.7 (3); 17           Oxendale et al. [47] (FWD)         9.1 (6.4); 11           Subtotal         9.4 (0.2); 21           nningham et al. [50] (FWD SEN)         2.2 (1.9); 48           Cunningham et al. [50] (FWD SEN)         4.9 (3); 49           nningham et al. [50] (FWD SEN)         3.1 (2); 22           Dunningham et al. [50] (FW SEN)         1.1 (1.3); 14           Dunningham et al. [50] (FW D20)         64 (4.5); 80           Cunningham et al. [50] (FW D20)         5.7 (3); 18 <t< td=""><td>Morencos et al. [18] (MD)<sup>a</sup>         0.8 (0.2); 42         1.0 (0.3); 42           Morencos et al. [19] (FWD)<sup>a</sup>         0.9 (0.3); 26         1.0 (0.3); 26           Cummins et al. [29] (ADJ)         3.1 (1.2); 74         3.2 (1.2); 74           Cummins et al. [29] (HUF)         2.2 (0.6); 59         2.6 (0.5); 59           Cummins et al. [29] (WRF)         2.6 (0.8); 104         2.9 (0.7); 104           Dempsey et al. [45] (FWD)         2.1 (10); 37         44 (17); 37           Dempsey et al. [45] (FWD)<sup>a</sup>         0.3 (0.2); 20         0.7 (0.2); 20           Dempsey et al. [45] (FWD)<sup>a</sup>         0.3 (0.2); 37         8 (0.2); 37           Kempton et al. [46] (CBB)         66 (9); 52         83 (9); 52           Kempton et al. [46] (WRF)         66 (16); 93         79 (14); 93           Oxendale et al. [47] (FOR)         4.7 (3); 17         8.4 (4.6); 17           Oxendale et al. [47] (FOR)         4.7 (3); 17         8.4 (4.6); 17           Oxendale et al. [47] (FWD SEN)         2.2 (1.9); 48         6.4 (4); 48           Dunningham et al. [50] (FWD DSEN)         2.2 (1.9); 48         6.4 (4); 48           Dunningham et al. [50] (FWD SEN)         4.9 (3); 49         9.9 (4.3); 49           Dunningham et al. [50] (FWD SEN)         3.1 (2); 22         8.6 (4.3); 22           Dunningham et al. [50]</td><td>Morences et al. [19] (WDP)       0.8 (0.2): 42       1.0 (0.3): 42         Morences et al. [19] (WDP)       0.8 (0.3): 26       1.0 (0.3): 42         Cummins et al. [29] (MDP)       2.0 (0.3): 26       1.0 (0.3): 42         Cummins et al. [29] (MDP)       2.0 (0.3): 26       1.0 (0.3): 42         Cummins et al. [29] (MPP)       2.6 (0.5): 10       2.9 (0.5): 10         Dempsey et al. [40] (PMP)       2.6 (0.5): 10       2.9 (0.5): 10         Dempsey et al. [40] (PMP)       2.6 (0.5): 10       2.9 (0.5): 10         Dempsey et al. [40] (PMP)       2.6 (0.5): 10       2.9 (0.5): 10         Kempton et al. [40] (PMP)       2.6 (0.5): 10       2.6 (0.5): 10         Kempton et al. [40] (PMP)       2.6 (0.5): 11       5.0 (0.2): 37         Oxendale et al. [47] (PKP)       3.1 (1.3): 30       5.0 (5.2): 11         Subtotal       3.1 (1.3): 30       5.0 (5.1): 11         Subtotal       9.1 (6.4): 11       9.6 (5.7): 11         Jumez-Arones et al. [40] (PMP)       3.6 (4.0): 44       9.4 (4.0): 42         Jumingham et al. [50] (PK SEN)       2.2 (1.9): 48       6.4 (4): 45         Jumingham et al. [50] (PK UD20)       4.2 (2.9): 48       9.4 (4.3): 42         Jumingham et al. [50] (PK UD20)       4.2 (2.9): 48       9.4 (4.3): 42         Jumingham et al. [50</td></t<> | Morencos et al. [18] (MD) <sup>a</sup> 0.8 (0.2); 42         1.0 (0.3); 42           Morencos et al. [19] (FWD) <sup>a</sup> 0.9 (0.3); 26         1.0 (0.3); 26           Cummins et al. [29] (ADJ)         3.1 (1.2); 74         3.2 (1.2); 74           Cummins et al. [29] (HUF)         2.2 (0.6); 59         2.6 (0.5); 59           Cummins et al. [29] (WRF)         2.6 (0.8); 104         2.9 (0.7); 104           Dempsey et al. [45] (FWD)         2.1 (10); 37         44 (17); 37           Dempsey et al. [45] (FWD) <sup>a</sup> 0.3 (0.2); 20         0.7 (0.2); 20           Dempsey et al. [45] (FWD) <sup>a</sup> 0.3 (0.2); 37         8 (0.2); 37           Kempton et al. [46] (CBB)         66 (9); 52         83 (9); 52           Kempton et al. [46] (WRF)         66 (16); 93         79 (14); 93           Oxendale et al. [47] (FOR)         4.7 (3); 17         8.4 (4.6); 17           Oxendale et al. [47] (FOR)         4.7 (3); 17         8.4 (4.6); 17           Oxendale et al. [47] (FWD SEN)         2.2 (1.9); 48         6.4 (4); 48           Dunningham et al. [50] (FWD DSEN)         2.2 (1.9); 48         6.4 (4); 48           Dunningham et al. [50] (FWD SEN)         4.9 (3); 49         9.9 (4.3); 49           Dunningham et al. [50] (FWD SEN)         3.1 (2); 22         8.6 (4.3); 22           Dunningham et al. [50] | Morences et al. [19] (WDP)       0.8 (0.2): 42       1.0 (0.3): 42         Morences et al. [19] (WDP)       0.8 (0.3): 26       1.0 (0.3): 42         Cummins et al. [29] (MDP)       2.0 (0.3): 26       1.0 (0.3): 42         Cummins et al. [29] (MDP)       2.0 (0.3): 26       1.0 (0.3): 42         Cummins et al. [29] (MPP)       2.6 (0.5): 10       2.9 (0.5): 10         Dempsey et al. [40] (PMP)       2.6 (0.5): 10       2.9 (0.5): 10         Dempsey et al. [40] (PMP)       2.6 (0.5): 10       2.9 (0.5): 10         Dempsey et al. [40] (PMP)       2.6 (0.5): 10       2.9 (0.5): 10         Kempton et al. [40] (PMP)       2.6 (0.5): 10       2.6 (0.5): 10         Kempton et al. [40] (PMP)       2.6 (0.5): 11       5.0 (0.2): 37         Oxendale et al. [47] (PKP)       3.1 (1.3): 30       5.0 (5.2): 11         Subtotal       3.1 (1.3): 30       5.0 (5.1): 11         Subtotal       9.1 (6.4): 11       9.6 (5.7): 11         Jumez-Arones et al. [40] (PMP)       3.6 (4.0): 44       9.4 (4.0): 42         Jumingham et al. [50] (PK SEN)       2.2 (1.9): 48       6.4 (4): 45         Jumingham et al. [50] (PK UD20)       4.2 (2.9): 48       9.4 (4.3): 42         Jumingham et al. [50] (PK UD20)       4.2 (2.9): 48       9.4 (4.3): 42         Jumingham et al. [50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Favours Deceleration Favours Acceleration

**∢Fig. 3** Forest plot displaying the standardized mean differences (SMD) and 95% confidence intervals (CIs) in the frequency of high (> 2.5 m·s<sup>-2</sup>) intensity accelerations vs. decelerations in elite team sports competitive match play. <sup>a</sup>Frequency relative to time (n·min<sup>-1</sup>). *ADJ* adjustable, *B3* back three, *BK* back, *BR* back row, *CD* central defender, *CM* central midfielder, *CTR* centre, *DB* defensive back, *DE* defensive end, *DEF* defender, *DT* defensive tackle, *FD* fixed defender, *FF* fixed forward, *FR* front row, *FWD* forward, *HB* half back, *HUF* hit-up forward, *MB* mobile backs, *MF* mobile forwards, *MID* midfielder/centre, *LB* linebacker, *OB* outside back, *OL* offensive linesman, *QB* quarter back, *RB* running back, *RKS* rucks, *SD* standard deviation, *SEN* senior, *SR* second row, *TB* tall backs, *TE* tight end, *TF* tall forwards, *U20* under 20, *WD* wide defender, *WM* wide midfielder, *WR* wide receiver, *WRF* wide-running forward

higher intensity of game play, whilst simultaneously reducing the muscular damage commonly associated with these actions [72].

The higher frequency of high-intensity decelerations compared to accelerations in both rugby league and rugby union is likely associated with increased spatial constraints, which restrict opportunity for high-speed running, and thereby demands players to perform more rapid short deceleration movements [46]. Unique positional responsibilities associated with offensive and defensive actions imply that high-intensity decelerations will accrue through differing task demands. For example, forwards are involved in a heightened number of heavy collisions [41, 45] that demand deceleration prior to contact to successfully perform the skill and reduce the amount of load accumulated [76, 77]. In contrast, backs have less involvement in collisions and are further away from the ball, permitting opportunities to use rapid deceleration movements to perturb the defensive line [45, 50, 78].

Amongst the team sports included in this meta-analysis, Australian Football had the second largest difference (SMD = -1.15) in the frequency of high-intensity decelerations (n = 51 - 125) compared to accelerations (n = 38 - 103). A larger pitch size than other team sports, coupled with a no 'offside' rule, permits a higher contribution of continued high-speed running [43]. Despite this, both high-intensity accelerations (~15%) and decelerations (~20%) have been shown to be the largest contributors to post-match markers of muscle damage, denoted by elevated levels of creatine kinase (CK) in Australian Football players [11]. Similarly, research by Young et al. [13] also found significant correlations between high-intensity accelerations and decelerations and CK levels in Australian Football players, but only the volume (represented by distance covered) of high-intensity decelerations was significantly different between the lowand high-CK groups. It is noteworthy that Australian Football players who cover more high-intensity deceleration distance also report a higher perceived match load, despite this being essential for increasing the amount of possessions and disposals of the ball that can contribute to match success [14]. This is exemplified by the match-activity profile of elite Australian Football players containing more high-intensity decelerations per minute than sub-elite players [30]. Collectively, these findings highlight the importance of highintensity decelerations to Australian Football match-play performance together with the damaging consequences of these actions. Similar to recommendations previously suggested for soccer practitioners, those involved in the preparation of Australian Football players should look to implement interventions that reduce a player's susceptibility to deceleration-induced tissue damage [11], likely arising from the intense eccentric muscle contractions experienced when braking abruptly.

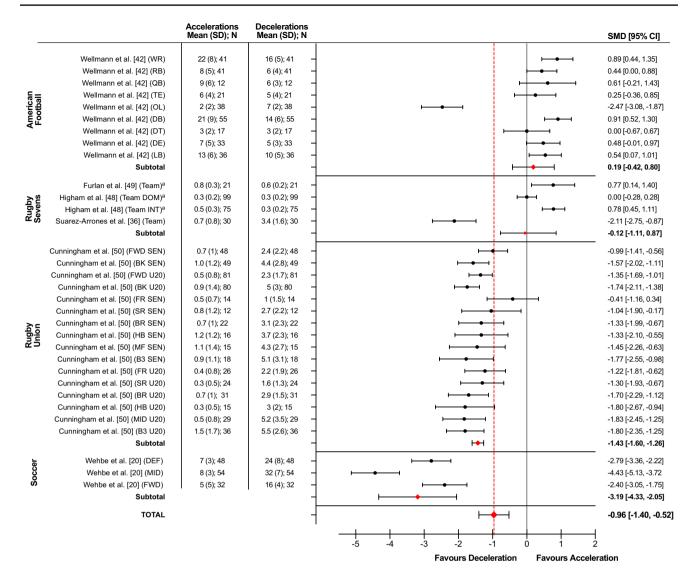
In hockey, the results of our meta-analysis showed that only the defensive and midfield positions had a greater (SMD = 0.78) frequency of high-intensity decelerations  $(0.9-1.0 \text{ n}\cdot\text{min})$  compared to accelerations  $(0.7-0.8 \text{ n}\cdot\text{min})$ . In the forward position, differences between high-intensity accelerations (0.9 n·min) and decelerations (1.0 n·min) were trivial, suggesting that some forward players may complete more high-intensity accelerations than decelerations during match play. Previous studies have also shown that forward positions accelerate to higher intensities more frequently than defenders and midfielders [79, 80]. This difference could be due to the unlimited interchange rule that reduces effective playing time; meaning less total distance and energy is expended, therefore allowing a higher intensity intermittent profile to be maintained [79]. From a tactical perspective, rotating forward positions more frequently can help to maintain high-intensity output across periods of play, resulting in more technical contributions and enhanced team performance statistics [81].

Although the frequencies of high-intensity accelerations have been shown to be different between positional roles in hockey, the relative frequency of high-intensity decelerations was similar across all positions (0.9–1.0 n·min). As the ability to decelerate at high intensity can also influence a player's change of direction performance [82], these actions may have particular importance to hockey match-play performance outcomes. Furthermore, both high-intensity accelerations and decelerations have been shown to be the match-activity variables most sensitive to fatigue development during hockey match play [18]. Performance advantages could therefore be obtained by strategies that help to increase and maintain players' capacity to both accelerate and decelerate rapidly throughout match play.

An interesting finding of the present meta-analysis was that all positional roles in American Football are required to perform more (SMD=0.91–1.45) high-intensity accelerations (n=15–38) compared to decelerations (n=8–19) during competition. This finding was unique to American Football and supports the significant time and investment that is placed on the assessment and development of an 
 Table 5
 Effect of heterogeneity across included studies within each meta-analysis

| Meta-analysis                            | Sub-group                       | Number<br>of esti-<br>mates | Number<br>of GPS<br>files | Between-<br>group $I^2$ (%) | Within-<br>group <i>I</i> <sup>2</sup><br>(%) | Qualitative descriptor | <i>P</i> value |
|------------------------------------------|---------------------------------|-----------------------------|---------------------------|-----------------------------|-----------------------------------------------|------------------------|----------------|
| Frequency of high-intensity              | accelerations and decelerations | 67                          | 5220                      | 99                          |                                               | High                   | < 0.00001      |
|                                          | American Football               | 9                           | 294                       |                             | 0                                             | Low                    | 0.9            |
|                                          | Australian Football             | 11                          | 1180                      |                             | 85                                            | High                   | < 0.0001       |
|                                          | Hockey                          | 4                           | 226                       |                             | 0                                             | Low                    | 0.51           |
|                                          | Rugby league                    | 14                          | 799                       |                             | 87                                            | High                   | < 0.0001       |
|                                          | Rugby sevens                    | 2                           | 51                        |                             | 97                                            | High                   | < 0.0001       |
|                                          | Rugby union                     | 16                          | 516                       |                             | 57                                            | Moderate               | 0.003          |
|                                          | Soccer                          | 11                          | 2154                      |                             | 97                                            | High                   | < 0.0001       |
| Frequency of very high inter<br>erations | nsity accelerations and decel-  | 32                          | 1169                      | 94                          |                                               | High                   | < 0.00001      |
|                                          | American Football               | 9                           | 294                       |                             | 92                                            | High                   | < 0.00001      |
|                                          | Rugby sevens                    | 4                           | 225                       |                             | 95                                            | High                   | < 0.00001      |
|                                          | Rugby union                     | 16                          | 516                       |                             | 31                                            | Moderate               | 0.11           |
|                                          | Soccer                          | 3                           | 134                       |                             | 89                                            | High                   | < 0.00001      |
| Temporal changes in frequen              | ncy of accelerations            | 8                           | 373                       | 0                           |                                               | Low                    | 0.93           |
|                                          | High intensity                  | 5                           | 227                       |                             | 0                                             | Low                    | 0.45           |
|                                          | Very high intensity             | 3                           | 146                       |                             | 0                                             | Low                    | 0.82           |
| Temporal changes in frequen              | ncy of decelerations            | 8                           | 373                       | 0                           |                                               | Low                    | 0.72           |
|                                          | High intensity                  | 5                           | 227                       |                             | 53                                            | Moderate               | 0.08           |
|                                          | Very high intensity             | 3                           | 146                       |                             | 34                                            | Moderate               | 0.22           |

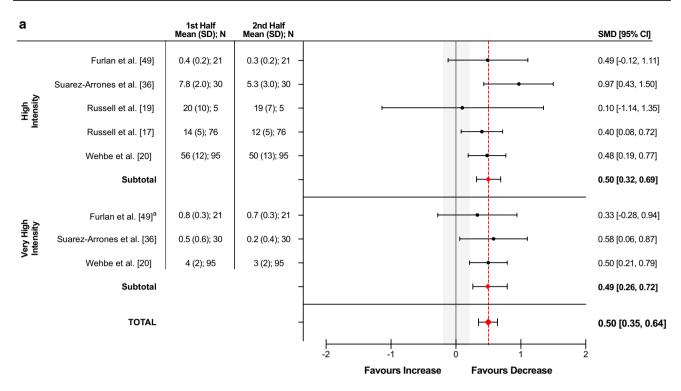
GPS global positioning system

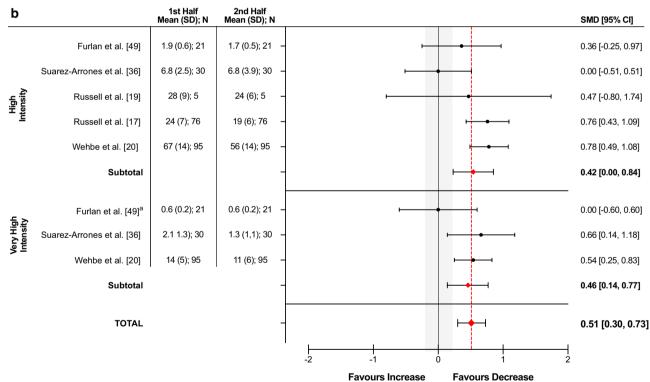

American Footballer's rapid acceleration and top speed capabilities. Indeed, these abilities have been shown to differentiate between drafted and non-drafted players in the National Football League (NFL) Scouting Combine [83] and are important in predicting future successful performance in the NFL, including the amount of prestigious accolades (i.e. Pro Bowl, All Pro) players achieve [84].

Despite the prevalence and clear importance of highintensity accelerations to match performance in American Football, the lower frequency of high-intensity decelerations compared accelerations may have some very important implications. It is well known that to accelerate, rapidly high concentric leg extensor strength capacities are required [85, 86] to produce larger and more efficient horizontal ground reaction forces [87–92]. It has also been shown that habitual loading with a predominance of a concentric mechanical stimulus could result in muscle-tendon tissue properties that leave players more vulnerable to eccentric-induced dysfunction and injury risk [93, 94]. This vulnerability to eccentric load could be inevitable in American Football—up to 40% of the weekly player load arises from match play [95], with high-intensity sprinting activity constituting an important stimulus that can lead to neuromuscular adaptations associated with increased muscular power [96]. Research has also shown that despite NFL players having distinct anthropometric (height, mass) characteristics, players all accelerate in a similar manner relative to maximum velocity, and that this could be due to the homogenous sprint training programmes they complete in the 4- to 8-week period in preparation for the NFL 40-yard dash [97]. Consequently, NFL players capable of faster horizontal movement speeds will subsequently have greater braking demands [98], which if not accompanied by higher levels of eccentric strength will result in a worse change of direction ability [99] and an increased risk of injury occurring [100].

On this basis of these findings, practitioners supporting American Football players may need to prioritise loading strategies during training sessions that develop muscle-tendon tissue structures' capacity to attenuate high eccentric forces. Practitioners should also be cognisant of periods during the season when American Football players may be more susceptible to eccentric-induced muscle damage, for example, following periods of training with a dominance of concentric conditioning in which vulnerability to damage can be increased (such as when preparing for the NFL 40-yard dash) [101].

## 4.2 Frequency of Very High Intensity Accelerations Compared to Decelerations

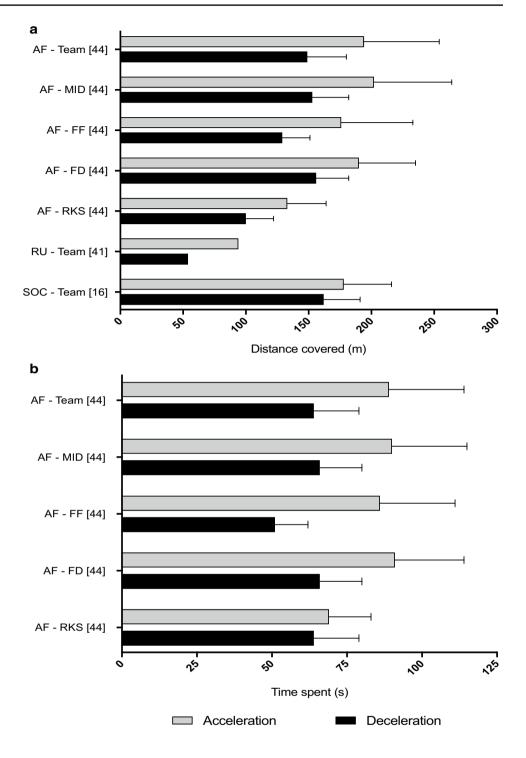

Very high  $(> 3.5 \text{ m} \cdot \text{s}^{-2})$  intensity accelerations and decelerations were reported across four sports including American




**Fig. 4** Forest plot displaying the standardized mean differences (SMD) and 95% confidence intervals (CIs) in the frequency of very high (>3.5 m·s<sup>-2</sup>) intensity accelerations vs.decelerations in elite team sports competitive match play. <sup>a</sup>Frequency relative to time (n·min<sup>-1</sup>). *B3* back three, *BK* back, *BR* back row, *DB* defensive back,

*DE* defensive end, *DEF* defender, *DOM* domestic, *DT* defensive tackle, *FR* front row, *FWD* forward, *HB* half back, *INT* international, *LB* linebacker, *MID* midfielder/centres, *QB* quarter back, *OL* offensive linesman, *RB* running back, *SD* standard deviation, *SEN* senior, *SR* second row, *TE* tight end, *U20* under 20s, *WR* wide receiver

Football [42], rugby sevens [36], rugby union [50] and soccer [20]. The difference between very high intensity accelerations and decelerations in both American Football (SMD = 0.19) and rugby sevens (SMD = -0.12) was trivial. However, the heterogeneity analysis showed a large ( $l^2$ =92–94%) variation across the estimates (positions and teams) within each of these sports. In American Football, a noteworthy finding from the meta-analysis was that the offensive lineman was the only position reporting a greater frequency of very high intensity decelerations (n=7) compared to accelerations (n=2), with the difference being very large (SMD = -2.47). The offensive linemen are required to operate in confined chaotic spaces around the scrimmage with a primary responsibility of blocking opponents from tackling their own team's ball carrier [42]. The results of our meta-analysis suggest that these actions may rely heavily on high impulse braking actions that allow for rapid decelerations and directional changes to be made to manoeuvre effectively around such congested areas of the field, and in response to the dynamic unpredictable movements of their own and opposition players. The offensive linemen are also the heaviest of all positional roles, which may further augment the magnitude of braking forces required to decelerate such high whole body momentum. These factors contribute to a high-risk loading profile that increases the chances of soft-tissue injuries occurring within this specific positional






**Fig. 5** Forest plots displaying the standardized mean difference (SMD) and 95% confidence intervals (CIs) in the **a** temporal changes in the frequency of high (>2.5 m·s<sup>-2</sup>) and very high (>3.5 m·s<sup>-2</sup>) intensity accelerations and **b** high (>2.5 m·s<sup>-2</sup>) and very high

 $(>3.5 \text{ m} \cdot \text{s}^{-2})$  intensity decelerations from the first to the second half periods of match play. <sup>a</sup>Frequency relative to time (n·min<sup>-1</sup>). *SD* standard deviation

Fig. 6 a Distances and b times spent accelerating and decelerating at high intensity during elite competitive match play. *AF* Australian football, *FF* fixed forward, *FD* fixed defender, *MID* midfielder, *RKS* ruckman, *RU* rugby union, *SOC* soccer



role [102]. Practitioners should select specific exercises for offensive linesmen that target the development of the neuromuscular capabilities required to produce and attenuate the high forces associated with decelerating rapidly, whilst also ensuring a high level of perceptual-cognitive training that will harness the ability to skilfully apply braking forces during emergent and unpredictable situations. The evident unpredictability of loads associated with decelerating rapidly also have hugely important implications for the management of load throughout the season, and return to sports participation programmes following injury [103, 104].

Similar to the high-intensity category, soccer demonstrated the highest (SMD = -3.19) frequency of very high intensity decelerations compared to accelerations. The SMD ranged from very large (-2.40 to -2.79) in defenders (n = 24 vs. 7) and attackers (n = 16 vs. 5) to extremely large (-4.43) in midfielders (n = 32 vs. 8). Given the previously discussed consequences of high-intensity decelerations to match performance and the development of cumulative fatigue (during and post-match), additional research is needed to gain a more comprehensive understanding around the prevalence and significance of very high intensity decelerations to soccer match-play performance, and readiness to play.

## 4.3 Temporal Changes in High and Very High Intensity Accelerations and Decelerations

Understanding how specific match-play activities may influence player fatigue and recovery profiles is of significant interest to practitioners [105]. The results of our meta-analysis show there was a small (SMD = 0.46 - 0.54) decrease in the frequency of high and very high intensity accelerations and decelerations from the first to the second half periods of match play. As higher intensity accelerations and decelerations have been particularly associated with post-match decrements in neuromuscular fatigue and perceptual disturbances, it is also likely that these actions have a particularly profound effect on changes to match-related movement ability and efficiency. Despite this consequence, limited studies have actually examined the actual fatigue response induced by actual match-play activities, but instead focused on using simulation protocols that induce a lower mechanical load that is reflected in lower levels of muscle damage (i.e. CK) and feelings of muscle soreness [105].

When examining the actual influence of specific matchplay activities (soccer in this example), it has been shown that the distance and frequency of high-speed running completed by a player during match play can lead to decrements in the ability to produce horizontal forces when accelerating maximally [106]. This consequently leads to reductions in sprint performance times that could be decisive in critical match-play actions. The individual estimates obtained in our meta-analysis show that rugby sevens reported the largest decrease (SMD = 0.97) in the frequency of high-intensity accelerations from the first (n = 7.8) to the second half (n=5.3) period of match play. Collectively, these findings suggest that a high frequency of accelerations together with the opportunity to sprint for longer distances (which is also apparent in rugby sevens match play) may be particularly detrimental to the ability to produce horizontal forces when accelerating at high intensity.

Despite these findings, to our knowledge, no previous study has examined the potential acute transient fatiguing effects of performing a high frequency of high-intensity decelerations during match play. Our meta-analysis shows that a small decrease in high and very high intensity decelerations occurs from the first to the second half periods of match play with the largest (SMD=0.78) decrease (n=67

to 56) reported in soccer. When rapid decelerations are required to be performed frequently following maximal sprint acceleration, fatigue and sprint performance are further exacerbated when compared to sprinting with no enforced deceleration [107]. Such a high frequency of rapid decelerations leaves players vulnerable to muscle damage, which can impair force production capacity leading to declines in the performance of activities such as sprinting and changing direction [108]. Future research should look to investigate the temporal changes in high-intensity accelerations and decelerations during match play, and the factors that could help to maintain repeated high-intensity acceleration and deceleration performance throughout match play.

#### 4.4 Methodological Limitations of Eligible Studies

Previous reviews examining the use of wearable GPS devices for quantifying match-activity demands have identified that there is a lack consistency and consensus in the methodological procedures used across studies [23, 25]. Using recent guidelines [34, 35], we produced a checklist to evaluate the methodological differences (data collection, data processing and normative profile) between studies in how high and very high intensity accelerations and decelerations were determined. To collect data, over 60% of the studies included in our meta-analysis used GPS devices (Catapult Sports; n=2, STATSports; n = 4, GPSports; n = 3) with a 10-Hz sampling frequency. Using a 10-Hz sampling frequency, it has been shown that the occurrence of high-intensity accelerations and decelerations can be reliably obtained, although distance- and time-related variables are less reliable [109-111]. In studies that used a 5-Hz sampling frequency, the RoB was rated as high because this sampling frequency has been shown to be less reliable than 10 Hz [109, 110].

The MED and filtering technique used are two extremely important data processing features that can also significantly change the quality, reliability and usefulness of acceleration and deceleration data [34, 111]. The MED delineates the minimal time in which an acceleration or deceleration needs to be maintained above a pre-defined threshold for it to be identified as an effort. Even small changes (0.1 s) in MED can result in substantial differences in the frequency of high-intensity efforts [35], for example, a lower MED is capable of detecting shorter and higher rates of acceleration and deceleration, whilst also being more susceptible to measurement error that could result in multiple accelerations or decelerations being given to a single effort [35, 112]. To prevent this, criteria that delineate the end of an acceleration or deceleration could be used in conjunction with the MED, such as when the acceleration falls below  $0 \text{ m} \cdot \text{s}^{-2}$  or a certain threshold [34, 35]. However, no study in our metaanalysis reported this information, meaning it cannot be discounted that the frequency of high-intensity accelerations or decelerations was overestimated. Furthermore, despite the importance of the MED, our checklist showed that only eight studies [17, 19, 20, 36, 43, 46-48] reported the MED, and across these studies the duration (0.2-1 s) selected was inconsistent.

Because low and high MEDs can result in over- and under-estimates, respectively, this again might raise doubt around the accuracy of the higher intensity acceleration and deceleration frequencies that are reported in current research studies. To aid comparisons between studies and to improve the accuracy of data reported, practitioners and researchers should consider carefully the criterion used to delineate both the start and end of an acceleration or deceleration, and also ensure this information is clearly reported within the methodology.

The data filtering technique used has also been shown to have a substantial influence on high-intensity acceleration and deceleration outputs [35, 111]. For example, large differences in acceleration and deceleration data can occur between and within manufacturers own proprietary software versions following updates, and when comparing manufacturer software-derived data to those obtained using independent raw processing methods [35, 111]. Eleven studies [10, 17-19, 36, 41, 42, 44, 45, 48, 50] included in our metaanalysis used manufacturers' own proprietary software, five studies [16, 29, 43, 46, 49] used raw filtering methods, whilst three studies [20, 47, 51] did not provide any information on the filtering technique used. As the reliability and usefulness of high-intensity acceleration and deceleration data can be enhanced by careful consideration to the data processing technique used [35, 109, 111], future research should look to establish which acceleration and deceleration metrics and data processing methods provide the most valid, reliable and sensitive data outputs. With respect to this, an average acceleration-deceleration metric (Ave Acc/ Dec), calculated by taking the absolute value of all raw acceleration and deceleration values then averaging them over the duration of a selected time period, has been found to have better reliability and sensitivity across a range of GPS devices than threshold-based approaches [109, 111]. Whilst this approach can provide an indication of the absolute acceleration and deceleration demands, it does not differentiate between different magnitudes of acceleration or deceleration. Similarly, it does not enable the identification of acceleration and deceleration density, and when acceleration and deceleration values are combined, it fails to differentiate the unique physiological and mechanical loading demands of these activities.

Finally, another methodological limitation was associated with the development of a 'normative profile'. Based on previous research, we chose ten matches to be representative of a 'normative profile' [113]. However, we acknowledge future research is needed to specifically examine how many games are required to ascertain that the stabilisation of high-intensity accelerations and decelerations have occurred, notably with regard to inter-match variability. Nonetheless, using this criteria, five studies [10, 17, 19, 36, 49] were rated as a high risk of bias because of using fewer than ten matches and not presenting position-specific data.

#### 4.5 Limitations and Future Directions

Whilst the results of this meta-analysis have a number of evident limitations, a range of factors can be identified to help direct future practice aimed at measuring high-intensity accelerations and decelerations during match play. First, all studies included in the meta-analysis utilised 'generic' or 'arbitrary' high-intensity acceleration and deceleration thresholds. Although these 'generic' thresholds allow "like for like" comparisons, they do not take into account individual differences in maximal acceleration and deceleration capacities that can result in significant differences in data output, particularly at higher intensities, and in players with higher maximal accelerative capabilities [114]. Furthermore, Sonderegger et al. [115] showed that if the running speed immediately prior to an acceleration being initiated is not considered, a number of high-intensity accelerations could be missed. Whilst these few studies have made a contribution to enhancing the quantification of high-intensity accelerations, there is currently no research to date that has individualised thresholds based on a player's maximal deceleration capacity. Because high-intensity decelerations permit the highest rates of velocity change, future research that adopts a threshold-based approach should look to establish exclusive high-intensity acceleration and deceleration thresholds, rather than using a shared threshold that is commonly adopted across current practice.

We also acknowledge that a major limitation of the threshold-based approach, together with other methods (i.e. Ave Acc/Dec) that have been proposed, is a lack of contextualisation with regard to the specific movement sequences and the technical and tactical requirements of different positional roles [63]. When additional layers of contextual information are provided, novel position-specific training interventions can be developed [116, 117]. Examples include the starting speed at which accelerations and decelerations are initiated, distance of the acceleration or deceleration, actions that precede or follow the acceleration or deceleration, and their technical or tactical purposes. Furthermore, because higher intensity accelerations and decelerations have been classified as the major external loads in team sports [5], further insights into the internal mechanical stresses placed on soft tissues during different magnitudes of acceleration and deceleration could be obtained by integrated inertial sensors providing estimates of foot impulses during accelerated or decelerated running using metrics such as a force load [112].

Finally, all studies included in this review reported average acceleration and deceleration data from players who completed at least 75% of match duration. Future research should look to analyse acceleration and deceleration occurrences across smaller time periods so the magnitude and temporal location of peak demands can be more precisely identified [109]. This approach could also be useful when analysing substitute players, whom upon entering the field of play may produce a higher frequency of intense accelerations and decelerations, therefore requiring different pre-entry warm-up strategies to ensure optimal preparation [118].

## 5 Conclusions

High-intensity accelerations and decelerations are particularly important measures of external biomechanical load in team sports. This is the first meta-analysis to compare high and very high intensity acceleration and deceleration demands in elite team sports competitive match play. In all team sports, apart from American Football, there was a greater frequency of high and very high intensity decelerations compared to accelerations. There is a small reduction in the frequency of high and very high intensity accelerations and decelerations from the first to the second half periods of match play. These findings have important implications for practitioners involved in ensuring elite players are optimally prepared for the high-intensity biomechanical loading demands of competitive match play. This review has also highlighted that there is currently a lack of consensus or consistency in the methodological procedures used to quantify higher intensity accelerations and decelerations during match play when using GPS devices.

Future research should establish measurement procedures that allow for valid, reliable and precise information to be obtained on individual high-intensity acceleration and deceleration demands. Finally, to permit more accurate individualised programming prescription, other contextual information relating to how and when high-intensity accelerations and decelerations are occurring during match play, should also be provided.

Acknowledgements The authors express gratitude to the authors who provided additional data for studies included in the meta-analysis. The authors also thank Dr. Sam Orange for advice on the presentation of statistical data.

#### **Compliance with Ethical Standards**

Funding No funding was received for the preparation of this article.

**Conflict of interest** Damian Harper, Chris Carling and John Kiely have no conflicts of interests that are directly relevant to the content of this article.

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

#### References

- Aughey RJ. Widening margin in activity profile between elite and sub-elite Australian football: a case study. J Sci Med Sport. 2013;16:382–6.
- Bradley PS, Archer DT, Hogg B, Schuth G, Bush M, Carling C, et al. Tier-specific evolution of match performance characteristics in the English Premier League: it's getting tougher at the top. J Sports Sci. 2016;34:980–7.
- Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35:1095–100.
- 4. Bradley PS, Carling C, Gomez Diaz A, Hood P, Barnes C, Ade J, et al. Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Hum Mov Sci. 2013;32:808–21.
- Vanrenterghem J, Nedergaard NJ, Robinson MA, Drust B. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47:2135–42.
- Hader K, Mendez-Villanueva A, Palazzi D, Ahmaidi S, Buchheit M. Metabolic power requirement of change of direction speed in young soccer players: not all is what it seems. PLoS One. 2016;11:1–21.
- Dalen T, Ingebrigtsen J, Ettema G, Hjelde GH, Wisløff U. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J Strength Cond Res. 2016;30:351–9.
- Verheul J, Nedergaard NJ, Pogson M, Lisboa P, Gregson W, Vanrenterghem J, et al. Biomechanical loading during running: can a two mass-spring-damper model be used to evaluate ground reaction forces for high-intensity tasks? Sport Biomech. 2019. https://doi.org/10.1080/14763141.2019.1584238 [Epub ahead of print].
- 9. Harper DJ, Kiely J. Damaging nature of decelerations: do we adequately prepare players? BMJ Open Sport Exerc Med. 2018;4:e000379.
- de Hoyo M, Cohen DD, Sañudo B, Carrasco L, Álvarez-Mesa A, del Ojo JJ, et al. Influence of football match time-motion parameters on recovery time course of muscle damage and jump ability. J Sports Sci. 2016;34:1–8.
- Gastin PB, Hunkin SL, Fahrner B, Robertson S. Deceleration, acceleration, and impacts are strong contributors to muscle damage in professional Australian football. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.000000000003023 [Epub ahead of print].
- Russell M, Sparkes W, Northeast J, Cook CJ, Bracken RM, Kilduff LP. Relationships between match activities and peak power output and Creatine Kinase responses to professional reserve team soccer match-play. Hum Mov Sci. 2016;45:96–101.
- Young WB, Hepner J, Robbins DW. Movement demands in Australian rules football as indicators of muscle damage. J Strength Cond Res. 2012;26:492–6.

- Johnston RJ, Watsford ML, Austin DJ, Pine MJ, Spurrs RW. An examination of the relationship between movement demands and rating of perceived exertion in Australian footballers. J Strength Cond Res. 2015;29:2026–33.
- Draganidis D, Chatzinikolaou A, Avloniti A, Barbero-Álvarez JC, Mohr M, Malliou P, et al. Recovery kinetics of knee flexor and extensor strength after a football match. PLoS One. 2015;10:e0128072.
- Akenhead R, Hayes PR, Thompson KG, French D. Diminutions of acceleration and deceleration output during professional football match play. J Sci Med Sport. 2013;16:556–61.
- Russell M, Sparkes W, Northeast J, Cook CJ, Love TD, Bracken RM, et al. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J Strength Cond Res. 2016;30:2839–44.
- Morencos E, Romero-Moraleda B, Castagna C, Casamichana D. Positional comparisons in the impact of fatigue on movement patterns in hockey. Int J Sports Physiol Perform. 2018;13:1149–57.
- Russell M, Sparkes W, Northeast J, Kilduff LP. Responses to a 120 min reserve team soccer match: a case study focusing on the demands of extra time. J Sports Sci. 2015;33:2133–9.
- Wehbe GM, Hartwig TB, Duncan CS. Movement analysis of Australian national league soccer players using global positioning system technology. J Strength Cond Res. 2014;28:834–42.
- Carling C, Gall FL, Reilly TP. Effects of physical efforts on injury in elite soccer. Int J Sports Med. 2010;31:180–5.
- Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11:587–93.
- 23. Whitehead S, Till K, Weaving D, Jones B. The use of microtechnology to quantify the peak match demands of the football codes: a systematic review. Sports Med. 2018;48:2549–75.
- Taylor JB, Wright AA, Dischiavi SL, Townsend MA, Marmon AR. Activity demands during multi-directional team sports: a systematic review. Sports Med. 2017;47:2533–51.
- Hausler J, Halaki M, Orr R. Application of global positioning system and microsensor technology in competitive rugby league match-play: a systematic review and meta-analysis. Sports Med. 2016;46:559–88.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.
- Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Higgins JP, Green S, editors. Chichester: Wiley-Blackwell; 2008.
- McLaren SJ, Macpherson TW, Coutts AJ, Hurst C, Spears IR, Weston M. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Med. 2018;48:641–58.
- Cummins C, Gray A, Shorter K, Halaki M, Orr R. Energetic and metabolic power demands of national rugby league match-play. Int J Sports Med. 2016;37:552–8.
- Johnston RJ, Watsford ML, Austin DJ, Pine MJ, Spurrs RW. Movement demands and metabolic power comparisons between elite and subelite Australian footballers. J Strength Cond Res. 2015;29:2738–44.
- Cunningham D, Shearer DA, Drawer S, Eager R, Taylor N, Cook C, et al. Movement demands of elite U20 international rugby union players. PLoS One. 2016;11:e0153275.
- Johnston R, Watsford M, Austin D, Pine M, Spurrs R. Movement profiles, match events, and performance in Australian football. J Strength Cond Res. 2016;30:2129–37.
- Swann C, Moran A, Piggott D. Defining elite athletes: issues in the study of expert performance in sport psychology. Psychol Sport Exerc. 2015;16:3–14.

- Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12:S218–26.
- Varley MC, Jaspers A, Helsen WF, Malone JJ. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int J Sports Physiol Perform. 2017;12:1059–68.
- 36. Suarez-Arrones L, Núñez J, De Villareal ES, Gálvez J, Suarez-Sanchez G, Munguía-Izquierdo D. Repeated-high-intensityrunning activity and internal training load of elite rugby sevens players during international matches: a comparison between halves. Int J Sports Physiol Perform. 2016;11:495–9.
- Paul DJ, Bradley PS, Nassis GP. Factors affecting match running performance of elite soccer players: shedding some light on the complexity. Int J Sports Physiol Perform. 2015;10:516–9.
- Varley MC, Gabbett T, Aughey RJ. Activity profiles of professional soccer, rugby league and Australian football match play. J Sports Sci. 2014;32:1858–66.
- Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.
- Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
- Jones MR, West DJ, Crewther BT, Cook CJ, Kilduff LP. Quantifying positional and temporal movement patterns in professional rugby union using global positioning system. Eur J Sport Sci. 2015;15:488–96.
- Wellman AD, Coad SC, Goulet GC, McLellan CP. Quantification of competitive game demands of NCAA division I college football players using global positioning systems. J Strength Cond Res. 2015;30:11–9.
- Coutts AJ, Kempton T, Sullivan C, Bilsborough J, Cordy J, Rampinini E. Metabolic power and energetic costs of professional Australian Football match-play. J Sci Med Sport. 2015;18:219–24.
- Johnston RJ, Watsford ML, Austin D, Pine MJ, Spurrs RW. Player acceleration and deceleration profiles in professional Australian football. J Sports Med Phys Fitness. 2015;55:931–9.
- 45. Dempsey GM, Gibson NV, Sykes D, Pryjmachuk BC, Turner AP. Match demands of senior and junior players during international rugby league. J Strength Cond Res. 2018;32:1678–84.
- Kempton T, Sirotic AC, Rampinini E, Coutts AJ. Metabolic power demands of rugby league match play. Int J Sports Physiol Perform. 2015;10:23–8.
- Oxendale CL, Twist C, Daniels M, Highton J. The relationship between match-play characteristics of elite rugby league and indirect markers of muscle damage. Int J Sports Physiol Perform. 2016;11:515–21.
- Higham DG, Pyne DB, Anson JM, Eddy A. Movement patterns in rugby sevens: effects of tournament level, fatigue and substitute players. J Sci Med Sport. 2012;15:277–82.
- Furlan N, Waldron M, Shorter K, Gabbett TJ, Mitchell J, Fitzgerald E, et al. Running-intensity fluctuations in elite rugby sevens performance. Int J Sports Physiol Perform. 2015;10:802–7.
- Cunningham DJ, Shearer DA, Drawer S, Pollard B, Eager R, Taylor N, et al. Movement demands of elite under-20 s and senior international rugby union players. PLoS One. 2016;11:1–13.
- Tierney PJ, Young A, Clarke ND, Duncan MJ. Match play demands of 11 versus 11 professional football using global positioning system tracking: variations across common playing formations. Hum Mov Sci. 2016;49:1–8.
- 52. Bush M, Barnes C, Archer DT, Hogg B, Bradley PS. Evolution of match performance parameters for various playing positions in the English Premier League. Hum Mov Sci. 2015;39:1–11.

- Bloomfield J, Polman R, O'Donaghue P. Deceleration movements performed during FA Premier League soccer matches. J Sport Sci Med. 2007;6(Suppl. 10):6–11.
- Varley I, Lewin R, Needham R, Thorpe RT, Burbeary R. Association between match activity variables, measures of fatigue and neuromuscular performance capacity following elite competitive soccer matches. J Hum Kinet. 2017;60:93–9.
- 55. Cohen D, Taberner M, O'Keefe J, Clarke N. The association of components of training and match workload and hamstring strength asymmetry. In: 8th World Congress on Science and Football, Copenhagen, 20–23 May 2015.
- 56. Guilhem G, Doguet V, Hauraix H, Lacourpaille L, Jubeau M, Nordez A, et al. Muscle force loss and soreness subsequent to maximal eccentric contractions depend on the amount of fascicle strain in vivo. Acta Physiol. 2016;217:152–63.
- Farup J, Rahbek SK, Bjerre J, de Paoli F, Vissing K. Associated decrements in rate of force development and neural drive after maximal eccentric exercise. Scand J Med Sci Sports. 2016;26:498–506.
- Peñailillo L, Blazevich A, Numazawa H, Nosaka K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25:417–27.
- Hyldahl RD, Chen TC, Nosaka K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exerc Sport Sci Rev. 2017;45:24–33.
- 60. Lima LCR, Denadai BS. Attenuation of eccentric exerciseinduced muscle damage conferred by maximal isometric contractions: a mini review. Front Physiol. 2015;6:300.
- 61. Edwards WB. Modeling overuse injuries in sport as a mechanical fatigue phenomenon. Exerc Sport Sci Rev. 2018;46:224–31.
- 62. Ade J, Fitzpatrick J, Bradley PS. High-intensity efforts in elite soccer matches and associated movement patterns, technical skills and tactical actions: information for position-specific training drills. J Sports Sci. 2016;34:2205–14.
- Bradley PS, Ade JD. Are current physical match performance metrics in elite soccer fit for purpose or is the adoption of an integrated approach needed? Int J Sports Physiol Perform. 2018;13:656–64.
- 64. Jaspers A, Kuyvenhoven JP, Staes F, Frencken WGP, Helsen WF, Brink MS. Examination of the external and internal load indicators' association with overuse injuries in professional soccer players. J Sci Med Sport. 2018;21:579–85.
- Ross A, Gill N, Cronin J. Match analysis and player characteristics in rugby sevens. Sports Med. 2014;44:357–67.
- Ross A, Gill N, Cronin J, Malcata R. The relationship between physical characteristics and match performance in rugby sevens. Eur J Sport Sci. 2015;15:565–71.
- Murray AM, Varley MC. Activity profile of international rugby sevens: effect of score line, opponent, and substitutes. Int J Sports Physiol Perform. 2015;10:791–801.
- West DJ, Cook CJ, Stokes KA, Atkinson P, Drawer S, Bracken RM, et al. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J Sci Med Sport. 2014;17:688–92.
- Mitchell JA, Pumpa KL, Pyne DB. Responses of lower-body power and match running demands following long-haul travel in international rugby sevens players. J Strength Cond Res. 2017;31:686–95.
- Vescovi JD, Goodale T. Physical demands of women's rugby sevens matches: female athletes in motion (FAiM) study. Int J Sports Med. 2015;36:887–92.
- Goodale TL, Gabbett TJ, Tsai M-C, Stellingwerff T, Sheppard J. The effect of contextual factors on physiological and activity profiles in international women's rugby sevens. Int J Sports Physiol Perform. 2017;12:370–6.

- Clarke AC, Anson JM, Pyne DB. Neuromuscular fatigue and muscle damage after a women's rugby sevens tournament. Int J Sports Physiol Perform. 2015;10:808–14.
- 73. Doeven SH, Brink MS, Huijgen BCH, de Jong J, Lemmink KAPM. High match load's relation to decreased well-being during an elite women's rugby sevens tournament. Int J Sports Physiol Perform. 2019. https://doi.org/10.1123/ijspp.2018-0516 [Epub ahead of print].
- Schuster J, Howells D, Robineau J, Couderc A, Natera A, Lumley N, et al. Physical-preparation recommendations for elite rugby sevens performance. Int J Sports Physiol Perform. 2018;13:255–67.
- Dziedzic CE, Higham DG. Performance nutrition guidelines for international rugby sevens tournaments. Int J Sport Nutr Exerc Metab. 2014;24:305–14.
- Hendricks S, Lambert MI. Theoretical model describing the relationship between the number of tackles in which a player engages, tackle injury risk and tackle performance. J Sport Sci Med. 2014;13:715–7.
- Norris JP, Highton J, Hughes SF, Twist C. The effects of physical contact type on the internal and external demands during a rugby league match simulation protocol. J Sports Sci. 2016;34:1859–66.
- Owen SM, Venter RE, du Toit S, Kraak WJ. Acceleratory matchplay demands of a Super Rugby team over a competitive season. J Sports Sci. 2015;33:2061–9.
- Polglaze T, Dawson B, Buttfield A, Peeling P. Metabolic power and energy expenditure in an international men's hockey tournament. J Sports Sci. 2018;36:140–8.
- Ihsan M, Yeo V, Tan F, Joseph R, Lee M, Aziz AR. Running demands and activity profile of the new four-quarter match format in men's field hockey. J Strength Cond Res. 2018. https://doi. org/10.1519/jsc.00000000002699 [Epub ahead of print].
- Lythe J, Kilding AE. The effect of substitution frequency on the physical and technical outputs of strikers during field hockey match play. Int J Perform Anal Sport. 2013;13:848–59.
- Dos'Santos T, Thomas C, Comfort P, Jones PA. Role of the penultimate foot contact during change of direction: implications on performance and risk of injury. Strength Cond J. 2019;41:87–104.
- Sierer SP, Battaglini CL, Mihalik JP, Shields EW, Tomasini NT. The National Football League Combine: performance differences between drafted and nondrafted players entering the 2004 and 2005 drafts. J Strength Cond Res. 2008;22:6–12.
- 84. Hedlund DP. Performance of future elite players at the NFL Scouting Combine. J Strength Cond Res. 2017;32:3112–8.
- Lockie RG, Murphy AJ, Schultz AB, Knight TJ, Janse de Jonge XAK. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J Strength Cond Res. 2012;26:1539–50.
- Nikolaidis PT, Ingebrigtsen J, Jeffreys I. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration: a longitudinal study on young soccer players. J Sports Med Phys Fitness. 2015;56:1156–62.
- Kawamori N, Nosaka K, Newton RU. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes. J Strength Cond Res. 2013;27:568–73.
- Buchheit M, Samozino P, Glynn JA, Michael BS, Al Haddad H, Mendez-Villanueva A, et al. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci. 2014;32:1906–13.
- Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sport Exerc. 2011;43:1680–8.
- Kugler F, Janshen L. Body position determines propulsive forces in accelerated running. J Biomech. 2010;43:343–8.

- Morin JB, Slawinski J, Dorel S, de Villareal ES, Couturier A, Samozino P, et al. Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech. 2015;48:3149–54.
- Bezodis NE, North JS, Razavet JL. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes. J Sports Sci. 2017;35:1817–24.
- Ploutz-Snyder LL, Tesch PA, Dudley GA. Increased vulnerability to eccentric exercise-induced dysfunction and muscle injury after concentric training. Arch Phys Med Rehabil. 1998;79:58–61.
- Gleeson N, Eston R, Marginson V, McHugh M. Effects of prior concentric training on eccentric exercise induced muscle damage. Br J Sports Med. 2003;37:119–25.
- Wellman AD, Coad SC, Flynn PJ, Siam TK, McLellan CP. A comparison of pre-season and in-season practice and game loads in NCAA division I football players. J Strength Cond Res. 2017. https://doi.org/10.1519/jsc.00000000002173 [Epub ahead of print].
- Morgans R, Di Michele R, Drust B. Soccer match-play represents an important component of the power training stimulus in Premier League players. Int J Sport Nutr Exerc Metab. 2011;32:1–44.
- Clark KP, Rieger RH, Bruno RF, Stearne DJ. The National Football League Combine 40-yd dash: how important is maximum velocity? J Strength Cond Res. 2019;33:1542–50.
- Nedergaard NJ, Kersting U, Lake M. Using accelerometry to quantify deceleration during a high-intensity soccer turning manoeuvre. J Sports Sci. 2014;32:1897–905.
- Jones P, Thomas C, Dos'Santos T, McMahon J, Graham-Smith P. The role of eccentric strength in 180° turns in female soccer players. Sports (Basel). 2017. https://doi.org/10.3390/sports5020 042.
- Jones PA, Herrington LC, Graham-Smith P. Technique determinants of knee joint loads during cutting in female soccer players. Hum Mov Sci. 2015;42:203–11.
- 101. Margaritelis NV, Theodorou AA, Baltzopoulos V, Maganaris CN, Paschalis V, Kyparos A, et al. Muscle damage and inflammation after eccentric exercise: can the repeated bout effect be removed? Physiol Rep. 2015;3:1–12.
- 102. Dodson CC, Secrist ES, Bhat SB, Woods DP, Deluca PF. Anterior cruciate ligament injuries in National Football League athletes from 2010 to 2013: a descriptive epidemiology study. Orthop J Sport Med. 2016;4:1–5.
- 103. Verstegen M, Falsone S, Orr R, Smith S. Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: American football. J Orthop Sports Phys Ther. 2012;42:337–44.
- 104. Wellman AD, Coad SC, Goulet GC, McLellan CP. Quantification of accelerometer derived impacts associated with competitive

## Affiliations

Damian J. Harper<sup>1,2</sup> · Christopher Carling<sup>2</sup> · John Kiely<sup>2</sup>

Damian J. Harper d.harper@yorksj.ac.uk

<sup>1</sup> School of Sport, York St John University, Lord Mayors Walk, York YO31 7EX, UK games in National Collegiate Athletic Association division I college football players. J Strength Cond Res. 2017;31:330–8.

- 105. Silva JR, Rumpf MC, Hertzog M, Castagna C, Farooq A, Girard O, et al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48:539–83.
- Nagahara R, Morin JB, Koido M. Impairment of sprint mechanical properties in an actual soccer match: a pilot study. Int J Sports Physiol Perform. 2016;11:893–8.
- Lakomy J, Haydon DT. The effects of enforced, rapid deceleration on performance in a multiple sprint test. J Strength Cond Res. 2004;18:579–83.
- Woolley BP, Jakeman JR, Faulkner JA. Multiple sprint exercise with a short deceleration induces muscle damage and performance impairment in young, physically active males. J Athl Enhanc. 2014;3:1–7.
- Delaney JA, Cummins CJ, Thornton HR, Duthie GM. Importance, reliability, and usefulness of acceleration measures in team sports. J Strength Cond Res. 2018;32:3485–93.
- Varley MC, Fairweather IH, Aughey RJ. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J Sports Sci. 2012;30:121–7.
- 111. Thornton HR, Nelson AR, Delaney JA, Serpiello FR, Duthie GM. Interunit reliability and effect of data-processing methods of global positioning systems. Int J Sports Physiol Perform. 2019;14:432–8.
- 112. Buchheit M, Simpson BM. Player-tracking technology: half-full or half-empty glass? Int J Sports Physiol Perform. 2017;12:S235–41.
- Hughes M, Evans S, Wells J. Establishing normative profiles in performance analysis. Int J Perform Anal Sport. 2001;1:1–26.
- 114. Abbott W, Brickley G, Smeeton NJ, Mills S. Individualizing acceleration in English Premier League academy soccer players. J Strength Cond Res. 2018;32:3503–10.
- 115. Sonderegger K, Tschopp M, Taube W. The challenge of evaluating the intensity of short actions in soccer: a new methodological approach using percentage acceleration. PLoS One. 2016;11:1–10.
- 116. Bradley P, Di Mascio M, Mohr M, Fransson F, Wells C, Moreira A, et al. Can modern football match demands be translated into novel training and testing modes? Aspetar Sport Med J. 2018;7:46–52.
- 117. Carling C, McCall A, Harper D, Bradley PS. Comment on: "The use of microtechnology to quantify the peak match demands of the football codes: a systematic review". Sports Med. 2018;48:2549–75.
- 118. Hills SP, Barrett S, Feltbower RG, Barwood MJ, Radcliffe JN, Cooke CB, et al. A match-day analysis of the movement profiles of substitutes from a professional soccer club before and after pitch-entry. PLoS One. 2019;14:1–15.

<sup>2</sup> Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston PR1 2HE, UK