Infographic. Wake up and smell the coffee

Grgic, Jozo, Grgic, Ivana, Pickerin, Craig, Schoenfeld, Brad J, Bishop, David John, Virgile, Adam and Pedisic, Zeljko

Available at http://clok.uclan.ac.uk/29559/


It is advisable to refer to the publisher’s version if you intend to cite from the work. http://dx.doi.org/10.1136/bjsports-2019-101097

For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the http://clok.uclan.ac.uk/policies/
Infographic. Wake up and smell the coffee

Jozo Grgic1 Ivana Grgic2 Craig Pickering3 Brad J. Schoenfeld4 David J. Bishop1,5 Adam Virgile6 Zeljko Pedisic1

1 Institute for Health and Sport, Victoria University, Melbourne, Australia
2 County Hospital Schrobenhausen, Schrobenhausen, Germany
3 Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, UK
4 Department of Health Sciences, Lehman College, Bronx, USA
5 School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
6 Independent author

Corresponding author:

Jozo Grgic

Institute for Health and Sport, Victoria University, Melbourne, Australia

Email: jozo.grgic@live.vu.edu.au
Caffeine has been used as a performance-enhancing aid by athletes for many years. The first
known study to explore the effects of caffeine ingestion on exercise performance dates back
to 1907. Until recently, however, findings on this topic remained equivocal, despite a large
number of published studies over the last 30 to 40 years. There are many possible reasons for
the discrepant results between these studies, but one likely issue could be a common use of
relatively small samples. To reconcile the equivocal evidence on this topic and overcome the
low statistical power of individual studies, researchers have started to use meta-analytical
methods. Meta-analysis is a statistical method that allows pooling of results from studies that
address a similar research question.

Given that meta-analytical findings may yield more conclusive statements than individual
studies, the recent International Olympic Committee consensus statement placed meta-
analyses at top of the hierarchy of evidence pyramid. However, even meta-analyses may
produce misleading conclusions. Methods used in a given review, such as the
comprehensiveness of the search strategy (eg, number of databases searched) and how the
data was analysed may impact the overall robustness of these findings. Umbrella reviews (ie,
reviews that include the synthesis of available meta-analyses) allow better recognition of the
uncertainties, biases, and knowledge gaps and therefore may provide a better understanding of
the credibility of results from different meta-analyses.

In our recent umbrella review, published in the *British Journal of Sports Medicine*, we
synthesised results of the current meta-analyses that explored the effects of caffeine ingestion
on exercise performance. We included 11 reviews with a total of 21 meta-analyses. As
assessed using Assessing the Methodological Quality of Systematic Reviews 2 checklist, all
of the included reviews were categorised as being of moderate or high methodological
quality. The included meta-analyses explored the effects of caffeine vs placebo on different exercise tasks, including aerobic endurance, muscle strength, muscle endurance, anaerobic power, jumping performance, and exercise speed. Moderate-to-high quality systematic reviews that provided a moderate quality of evidence (assessed using the Grading of Recommendations Assessment, Development and Evaluation [GRADE] criteria) support the ergogenic effects of caffeine on muscle endurance, muscle strength, anaerobic power, and aerobic endurance.\(^5\)\(^-\)\(^8\) For other outcomes, namely, jumping performance, and exercise speed, we found moderate quality reviews that provided evidence categorised as of low or very low quality on the GRADE assessment. The majority of primary studies were conducted in young men, which highlights the need for future studies in women and older age groups.

Across the primary studies, caffeine was most often provided as caffeine anhydrous (concentrated caffeine powder). However, ingestion of caffeine through coffee also has the potential to be ergogenic.\(^9\) For a 70-kg individual, approximately two cups of coffee should generally be ergogenic as this dose would provide around 3 mg of caffeine per kg of body mass—which seems to be sufficient for acute improvements in exercise performance. However, the content of caffeine in coffee may vary depending on the coffee bean type, preparation method, as well as coffee brands and flavours, which needs to be taken into account when prescribing caffeine supplementation.\(^10\)\(^-\)\(^12\)

In summary, this umbrella review highlights that the effects of caffeine on exercise performance are well-established and well-replicated, appearing consistent across a broad range of exercise modalities. Therefore, individuals interested in acute performance-enhancement may consider the use of caffeine.
Contributors JG drafted the initial manuscript. IG, CP, BJS, DJB, AV, and ZP contributed to writing the manuscript. AV designed the infographic.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.
References


