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ABSTRACT 

 
There is an increased emphasis on personalised treatment in a patient-centred health care. 

Personalising dosage forms are often carried out by tablet splitting, which could be inaccurate 

and risky. The industrial platform for tablet manufacturing is geared to mass productions, 

therefore, impractical and too expensive for small batch productions. Fused deposition modelling 

(FDM) 3D printing in solid dosage form manufacturing provides a flexible technique suitable for 

dose modification at a low cost. However, it was limited to non-pharmaceutical grade and 

extended release polymers, and often uses relatively high temperature (230 oC). Therefore, this 

research aims at tackling these limitations by producing 3D printed immediate and modified 

release tablets and liquid-filled capsules using pharmaceutical grade polymers for small and large 

molecule (peptides and protein) drug models.   

Bridging 3D printing processes with hot melt extrusion (HME) in the presence of a thermostable 

filler, talc and pharmaceutical grade polymers enabled the fabrication of tablets and capsules 

shells using FDM 3D printing. The first example of immediate release 3D printed tablets using 

polyvinyl pyrrolidone (PVP)-based filaments was demonstrated, with suitability for different 

actives (aspirin, dipyridamole and theophylline). This was achieved at a relatively low temperature 

of 110 oC. Thermogravimetric analysis (TGA) demonstrated that the excipients and actives were 

stable within the HME and 3D printing temperatures apart from aspirin as observed from further 

high-pressure liquid chromatography (HPLC). The hygroscopic nature of the polymer had a major 

impact in the glass transition temperature (Tg) of the PVP-filament and its compatibility with FDM 

3D printers.   

Furthermore, for the first time, enteric release tablets were fabricated using a dual FDM 3D printer, 

using Eudragit L100-55-based shell and PVP-based drug loaded core filaments. This was 

achieved in a single process, requiring a shell layer thickness ≥0.52 mm to achieve adequate acid 

resistance. British Pharmacopoeia (BP) criteria for enteric release was met by replacing talc with 

tribasic phosphate (TBP). This however, resulted in the degradation of the active pharmaceutical 

ingredient (API), emphasising the superiority of talc (non-melting component) for filament 

formulations. The system also demonstrated suitability for other actives (budesonide, diclofenac 

and theophylline). 

By coordinating FDM 3D printing and liquid dispensing, immediate and extended liquid-filled 

capsules were fabricated using Eudragit EPO and RL respectively. The syringe-based liquid 

dispenser demonstrated a linear relationship between the estimated and actual doses obtained 

(R2 =0.9985). The integrity of the shell was maintaining during the filling process by using a multi-

phase 3D printing approach, 1.6 mm shell thickness, 100 % shell infill and concentric infill pattern.  

This process avoided thermal exposure during the capsule filling which prompted investigations 

into the encapsulation of antimicrobial peptides (AMPs). Aurein 2.6 and LL-37 demonstrated a 

concentration and time dependent increase in anticancer activities against HT-29 and only the 

former against Caco-2 colon cancer cell lines. The solution structure of the peptides was 

maintained during encapsulation. As a proof of concept to demonstrate colon targeting, a Eudragit 

S100-based capsule shell and theophylline solution model core was presented. 

Accelerated stability studies indicated that the PVP-based filament was only stable when stored 

at 5 oC. However, Eudragit L100-55 and S100 remained stable in all the investigated storage 

conditions. By adapting these pharmaceutical grade polymers for FDM 3D printing and the 

modification of the FDM 3D printer head, it was possible to fabricate immediate, enteric, extended 

and colonic release tablets and liquid-filled capsules. These demonstrated suitability for 

thermostable and thermolabile actives. In a clinical setting, health care staffs will be able to rapidly 

manufacture varied doses of tablets and small volume liquid-filled capsules with individualised 

dose contents and release pattern in response to specific patient's needs. 
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OVERVIEW 

This research focuses on the adaptations of a benchtop FDM 3D printer to the 

manufacturing immediate and modified release oral dosage forms (tablets and capsules) 

for both large and small molecules with dose personalisation potentials. Therefore, it will 

be beneficial to understand how the gastrointestinal tract (GIT) functions and how they 

affect the oral delivery of pharmaceutical products (Chapter 1). The pathologies of the 

colon were discussed since colon cancer was investigated in this research. Also, 

different types of oral dosage forms were introduced, including different drug release 

patterns. Current approaches to personalised dosing was discussed and the potentials 

of 3D printing in providing a more flexible platform that can revolutionise drug dosing 

towards a more individualised approach was discussed.  

Chapter 2 discusses the use of PVP-based filament in the manufacturing of immediate 

release dosage form. Chapter 3 discussed the use of dual FDM 3D printing in the 

manufacturing of enteric tablets in a single process. This was unlike the conventional 

approach which involves core manufacturing followed by another coating stage. 

Investigations into the use of this technology in the manufacturing of liquid-filled capsules 

were discussed in Chapter 4.  This involved the replacement of one of the heads of a 

dual FDM 3D printer with a syringe-based liquid dispenser. This was explored for the 

delivery of both small and large molecules and was used to achieve both immediate and 

modified drug release profiles. An investigation into the stability of the adapted filaments 

were discussed in Chapter 5 followed by the conclusions and future work in Chapter 6.   
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1.1 Anatomy of the gastrointestinal tract 
 
The gastrointestinal tract (GIT), also called the digestive tract or alimentary canal, is a 

large muscular tube which runs from the mouth to the anus. (Figure 1.1). It forms a 

complex system through which ingested food and oral dosage forms travel which creates 

a major barrier in the oral delivery of the variety of modified release dosage forms 

currently available in the market (Dressman and Lennernas, 2000). 

 

Figure 1.1. The gastrointestinal tract  (Anatomy&Physiology, 2013). 

 

A cross sectional view of the GIT reveals four tissues, the mucosa, submucosa, 

muscularis layer and serosa (Figure 1.2) (Anatomy&Physiology, 2014, Reinus and 

Simon, 2014). The mucosa layer forms the inner lining of the GIT and is the only tissue 
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layer in direct contact with substances passing through the GIT. It is made up of non-

keratinised stratified epithelial tissues and protects the GIT from rough substances 

passing through it. It also protects the GIT from the harsh conditions of the stomach. The 

submucosa contains connective tissue and provides blood and nerve supply to the 

mucosa and other tissues. Surrounding the submucosa is the muscularis layer, which 

controls the contraction and expansion of the GIT to move substances along it 

(peristalsis) while the serosa forms the outer cover around the GIT and loosely attaches 

it to surrounding organs.  

   

Figure 1.2. A cross section of the alimentary canal (Anatomy&Physiology, 2014).  

 
The GIT is made up of the oesophagus, stomach and duodenum also known as the 

upper GIT and the small and large intestinal areas, also known as the lower GIT. The 

oesophagus is a 25 cm long muscular tube that runs from the laryngopharynx through 

the thorax and attaches to the stomach in the abdomen (Kopoor, 2016). When food is 

ingested into the mouth, it travels down the oesophagus down to the stomach by 

peristalsis under the control of the oesophageal sphincter which controls food emptying 

into the stomach (Peate, 2018).  

In the stomach, the ingested food is mixed with water and digestive juice, producing a 

chyme, before being emptied into the small intestine through the pyloric sphincter. The 

food could be stored for about 1-2 hours during these processes as the intestine, 

pancreas, gallbladder and liver prepares to complete digestion. The size of the stomach 
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varies, but it can contain 1.5 litres of food and fluid on average (Mahadevan, 2017). In 

the stomach, food is being digested both mechanically and chemically. The mechanical 

digestion occurs due to the contraction of the smooth muscles of the stomach wall, 

leading to the mixing and breaking down of food boluses into smaller bits. Chemical 

digestion occurs while the food is being physically mixed with gastric juice (Innerbody, 

2018, Peate, 2018). The enzymes in the gastric juice e.g. gastric lipase splits triglyceride 

fats into fatty acid and diglyceride while pepsin breaks down protein into amino acids.  

Further digestion takes place in the small intestine, and it is at this stage that nutrients 

get absorbed into the blood stream. This long, highly convoluted tube absorbs 90% of 

nutrients from food and distribute them to the rest of the body.  It is about 1 inch in 

diameter and about twice the length of the large intestine measuring up to 10 feet in 

length (Innerbody, 2018, Faiz et al., 2011). The first section of the small intestine is the 

duodenum and is approximately 10 inches in length, connecting to the pyloric sphincter 

of the stomach. In this part of the intestine, chime from the stomach is mixed with bile 

from the liver and pancreatic juice to complete digestion. Absorption of nutrients occurs 

at the jejunum, which is the mid-section of the small intestine (3 feet in length) (Faiz et 

al., 2011). The food travels into the ileum, the final section of the small intestine where 

absorption continues before being emptied into the large intestine through the ileocecal 

sphincter. 

The colon or the large intestine is a long muscular tube (approximately 1.5 m) that 

connects the small intestine to the rectum. It is 7.6 cm in diameter and its primary function 

is to absorb water from wastes, creating a stool, which is stored until stimulated to empty 

when full. Nutrient absorption primary occurs in the small intestine although some could 

be absorbed in the colon as well (Faiz et al., 2011).   

The colon (Figure 1.1)  is made of the ascending colon, which lies vertically and occupies 

the lateral part of the abdominal cavity, occupying the right iliac fossa, right lumber region 

and right hypochondrium (Kapoor, 2016). The colon takes a right-angled turn below the 

liver to form the transverse colon. This runs horizontally, occupying the right 

hypochondrium, epigastrium and left hypochondrium. The transverse colon also takes a 

right-angled turn to form the descending colon. This runs vertically and occupied the left 

hypochondrium, left lumber region and left iliac fossa. The descending colon leads to the 

sigmoid colon, which becomes the rectum (Kapoor, 2016).  

Several conditions could affect the colon, their treatment strategies depending on 

severity. Treatments may involve lifestyle/diet modification, use of medicine and in some 

cases, surgery. Some of the conditions of the colon includes: 
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a. Colonic polyps 

Polyps are extra piece of tissues growing inside the body. Colonic polyps grow in the 

colon and are usually not dangerous but can also grow into cancer. They are usually 

asymptomatic but, in some cases, symptoms might include blood in the stool, 

bloodstains on underwear, constipation or diarrhoea lasting for weeks. Polyps are usually 

removed by surgical procedure and in most cases tested to determine if cancerous. 

Polyps are usually common with people over 50 years of age, people that have had it 

before and people with a family history of polyps or colon cancer (MedlinePlus, 2018).  

 

b. Diverticulitis  

This is the inflammation of the diverticula. They are small pouches that bulge outward 

through the colon. Common symptoms include abdominal pain, usually on the left side, 

fever, nausea, vomiting, chills, cramping and constipation.  In serious cases, bleeding, 

tears or blockages could be experienced. The treatment of this condition could involve 

the use of antibiotics, pain relievers, the use of soft or liquid diet and surgical removal 

depending on severity. Diverticulitis was believed by Doctors to be because of low-fibre 

diet and is usually common with elderly people (MedlinePlus, 2018).  

 

c. Ulcerative colitis 

Ulcerative colitis (UC) is one of the diseases called inflammatory bowel disease 

(Fenoglio-Preiser and Ovid Technologies, 2008). It causes inflammation and sores 

(ulcer) in the lining of the colon and the rectum.  This tends to run in families and the 

most common symptoms are pain in the abdomen and blood or pus in diarrhoea. Other 

symptoms include Anaemia, sever tiredness, weight loss, loss of appetite, bleeding from 

the rectum, sores on the skin, joint pain and growth failure in children. It could happen at 

any age and treatments could range from the use of drugs or the surgical removal of the 

colon (MedlinePlus, 2018).  

 

d. Irritable bowel syndrome (IBS) 

IBS is one of the problems of the colon, which results in abdominal cramping, bloating, 

and change in bowel habits, constipation and diarrhoea. As discomforting as this can be, 

it does not harm the intestine. It affects mostly women and the exact cause is unknown. 

This syndrome is usually managed with lifestyle/diet modification, stress management, 

probiotics and medicines (MedlinePlus, 2018). 
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e. Colorectal cancer 

The colon and rectum are part of the large intestine as discussed earlier. Colorectal 

cancer occurs when a tumour grows in the lining of the large intestine.  The symptoms 

includes diarrhoea or constipation, blood in the stool, weight loss, fatigue and nausea or 

vomiting (MedlinePlus, 2018). Colorectal cancer will be discussed in more details in the 

next section since its treatment and drug delivery method to this area was investigated 

in this research study. 

1.1.1 Epidemiology of colorectal cancer  
 
Colorectal cancer is usually associated with older people usually above 60 years (Miller 

et al., 2016). As of January 2016, it was estimate that there are more than 1.4 million 

men and women living in the US with a previous diagnosis of colorectal cancer and 

additional 134,490 cases yet to be diagnosed. Rectal cancer patients tend to be younger 

at diagnosis compared to colon cancer patients with average age of 63 and 70 

respectively (Miller et al., 2016). 

1.1.2 Stages of colorectal cancer  
 
Colorectal cancer could be categorised into stages depending on progressing of the 

cancer, that is, whether they are still localised or spreading to other parts of the body. 

There are different ways of staging colorectal cancer which includes the TNM (tumour, 

node and metastasis), Number and Dukes’ staging system. 

a. TNM staging  

This is a commonly used cancer-staging approach in the United Kingdom. The Tumour 

(T) describes the size of the tumour, which is an indication of the progression of the 

cancer cells and could be classified into 4 stages (T1, T2, T3 and T4) as shown in Figure 

1.3. T1 indicates that the tumour is still small and is still in the inner layer of the colon 

wall while T2 indicates the growth of the tumour into the muscle layer of the colon wall. 

T3  indicates growth into the outside lining of the colon wall and T4 indicates that the 

tumour has grown through the outer lining of the colon wall into nearby organs or 

structures (CancerResearchUK, 2015c). 
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Figure 1.3. Different classifications of the Tumour (T) stage of the TNM staging 
system (CancerResearchUK, 2015c).  

 
The Node (N) describes whether the lymph nodes have been affected and could be 

divided into 3 possible stages (N0, N1 and N2) (CancerResearchUK, 2015c). “N0” 

indicates that no lymph nodes have been affected by the cancer cells and therefore does 

not contain cancer cells. N1 indicates that 1 to 3 lymph nodes close to the colon has 

been affected and N2 means that 4 or more lymph nodes has been affected. 

Metastasis (M) is used to describe whether the cancer has spread to different parts of 

the body. This has 2 possible outcomes (M0 and M1). M0 means that the cancer is still 

localised and has not spread to other organs and M1 means that other parts of the body 

have been affected by the cancer cells (CancerResearchUK, 2015c). 

b. Dukes’ staging   

Dukes’ staging system could be divided into Dukes’ A, B, C or D (Figure 1.4) 

(CancerResearchUK, 2015a). Dukes’ A indicates that the cancer is in the inner lining of 

the colon walls or is slightly progressing into the muscular layer. Dukes’ B indicates that 

the cancer has grown through the muscular layer of the colon while Dukes’ C means that 

at least 1 lymph node close to the colon has been affected. Duke’s D means that at this 

stage, the cancer cells has affected other parts of the body such as the liver, lungs or 

bones. 
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Figure 1.4. Dukes’s method of colon cancer staging (CancerResearchUK, 2015a). 
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c. Number staging 

 
Colorectal cancer under the number staging is classified as follows (CancerResearchUK, 

2015b):  

i. Stage 0 or carcinoma in situ: This is usually the early stages of colorectal cancer.  

There are cancer cells in the colon lining, but the risk of spreading is low at this point.  

ii. Stage 1: This is equivalent to T1, N0, M0 or T2, N0, M0. The cancer cells have grown 

through the inner lining of the colon or has advanced into the muscular walls of the colon.  

iii. Stage 2: This could be classified into 2A and 2B. At these stages, the cancer is still 

localised and has not spread into the lymph nodes. Stage 2A indicates the growth of the 

cancer cells into the outer lining of the colon and is equivalent to T3, N0 or M0 of the 

TNM staging system. On the other hand, Stage 2B indicates that the cancer cells have 

grown through the outer lining of the colon and advancing into nearby tissues or organs. 

This is equivalent to T4, N0 or M0 of the TNM staging system.  

iv. Stage 3: This could be classified into 3A, 3B and 3C. Stage 3A indicates that the 

cancer cell is either still in the inner lining of the colon wall or has grown into the muscular 

layer.  At this stage, 1 to 3 nearby lymph nodes may be affected and is equivalent to the 

T1, N1, M0 or T2, N1, M0 of the TNM staging system. Stage 3B indicates that the cancer 

cells have grown into the outer lining of the colon or into nearby organs and body tissues 

and 1 to 3 nearby lymph nodes may also contain cancer cells. Stage 3C indicates that 

the cancer could be any size but has affected 4 or more lymph nodes but however has 

not spread to any other part of the body. This is equivalent to Any T, N2, and M0 of the 

TNM staging systems. 

v. Stage 4: This stage means that the cancer cells has spread to other parts of the body 

e.g. the liver, lungs or bones and it is the same as any T, any N, and M1 of the TNM 

staging system. 

1.1.3 Treatment of colorectal cancer  
 
Over the years, the treatment/management of colorectal cancer ranges from the use of 

chemotherapy, radiotherapy, surgery or a combined approach depending on the stage 

and the extent of proliferation of the cancer cells.  

As estimated from a 2013 treatment pattern depending on the stage of the cancer, 

majority of patients (84 %) with a stage I and II colon cancer undergoes partial or full 

colectomy alone. Two-third of those with stage III cancer and some with the stage II 
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cancer receive chemotherapy alongside colectomy to reduce chances of reoccurrence 

(Figure 1.5A). Majority of people at stage IV undergoes colectomy and chemotherapy 

but, in some cases, only chemotherapy could be used depending on the extent of 

metastasis. For patients with rectal cancer at the stages I, II and III, proctectomy is 

usually done and depending on the extent of cancer growth, chemotherapy or 

radiotherapy could be used in combination (Figure 1.5B). Chemotherapy is the main 

treatment for stage IV rectal cancer patients. 

 

 

Figure 1.5. Treatment of (A) Colon and (B) Rectal cancer (Miller et al., 2016). 
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Commonly used drugs in the management of colorectal cancer includes fluorouracil, 

capecitabine, oxaliplatin and irinotecan. The sides effects of chemotherapy and 

radiotherapy has been the downside of the conventional approaches to colorectal cancer 

and the treatment of other forms of cancer. Side effects from therapy could include 

diarrhoea, increased risk of infection, sore mouth, sickness, hair loss and even toxicity 

to normal cells etc. As a result, there are many ongoing investigations on alternative 

cancer therapies, including the potential activities of antimicrobial peptides (AMPs) 

against cancer cells. This will be discussed in more details in Chapter 4 (Section 2).  

1.3 Oral drug delivery  
 
Oral drug delivery remains the dominant delivery route for most drugs, targeting various 

therapeutic areas. The importance of oral drug delivery manifested in a 2013 report about 

drug delivery technology market as it comprises 40 % of all drug delivery routes 

(Marketsandmarkets, 2013). It was also expected in 2010 that oral drug delivery market 

values will rise from $49 billion to $97 billion by 2017 (GBIResearch, 2012). It is the route 

of choice for majority of patients as it is relatively safe, convenient, affordable and easy 

to use. Commonly used oral dosage forms includes liquids (solutions, suspensions and 

emulsions) or solids (tablets and capsules). 

1.3.1 Oral Liquid dosage forms 
 
Liquids dosage forms includes solutions, suspensions and emulsions. Their use has the 

advantage of an early onset of action when compared to tablets due to ease of 

processing and absorption into the body. Dose alteration is easy using dosing aids. 

Despite the advantages of liquid dosage forms, they lack efficiency especially when large 

doses are required, and some drugs cannot be manufactured as liquids due to poor 

solubility of many actives. Their preparation in the form of suspensions could bring about 

physical, chemical and microbiological stability challenges particularly during storage. 

Drugs in their solid state also normally have a longer half-life (Pamudji et al., 2014), 

making liquids less suitable for long term storage since liquids support the growth of 

microorganisms. In addition, manufacturing liquid dosage forms is capital-intensive, and 

products are usually significantly heavier which increases the delivery and storage costs. 

1.3.2 Oral solid dosage forms  
 
Oral solid dosage forms are usually manufactured as tablets or capsules depending on 

the manufacturer’s preferences, properties of the actives and excipients or the desired 

release profile.    
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a. Tablets  

Tablets are solid oral dosage forms usually manufactured by the compression of 

granulated excipients and actives (Ervasti et al., 2015). This have been the method for 

tablet manufacturing until the discovery of the potential application of 3D for dose 

personalisation.  

The use of tablets like most orally administered dosage forms is safe and easy to 

administer and has been used for decades to deliver several actives especially those 

that could not be formulated as liquids. Taste masking is easier using tablets and early 

onset of action is obtainable depending on the properties of the actives and excipients. 

On the other hand, friability could be one of the potentials problems of tablets 

manufacturing. In addition, swallowing these dosage forms could be difficult for infants 

and adults with swallowing difficulties. 

Depending on the desired release profile, release-modifying excipients could be used 

during the tablet formulations to modify drug release. In some cases, another stage of 

functional coating is utilised to either offer protection or modify drug release depending 

on the coating material used.  

a.1 Tablet Coating  

Coating is a well-established pharmaceutical technique and is one of the oldest 

pharmaceutical processes still in existence. It involves applying a dry outer layer of the 

coating material to the surface of a dosage form to offer certain advantages over 

uncoated dosage forms. Sugar or polymeric materials are usually used for coating and 

has been used for different purposes; improve the aesthetic appeal of a substrate, mask 

undesirable odour, colour or the taste of a bitter active/excipient, which improves 

patient’s compliance. It could also be used to protect the dosage form from the harsh 

condition of the stomach or vice versa (Haastrup et al., 2015), improve the mechanical 

strength of dosage forms and determine areas of drug release along the GIT (Macchi et 

al., 2015).  

i. Sugar coating  

The sugar coating of tablets pioneered the development of coating. It involves the use of 

sugar to mask the taste of a dosage form and provide an attractive appearance (Ando et 

al., 2007, Ohmori et al., 2004). Tablet coating using this approach involves several steps, 

which is one of its downsides. Before sugar coating takes place, tablets are first sealed 

to protect the tablet core from moisture. Afterwards, a sub coat is applied to round their 

edges to allow for easy distribution of the coating material. The tablets are then covered 
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with the syrup coating to cover imperfections and achieve the desired tablet weight 

before being coloured, dried and polished. The time-consuming nature of this process 

led to its replacement with film coating in addition to the ability to use film coating to 

modify drug release. 

ii. Film coating  

This involved covering the dosage form with a layer(s) of polymeric material. The type of 

polymer used depends on the required area of drug release or required drug release 

profile. Functional film coating is applied to modify the release of the original uncoated 

tablet to achieve a delayed drug release or extend the release of active from a dosage 

form. This could be achieved using polymers with certain properties as will be discussed 

in more details in Section 1.4. On the other hand, non-functional film coating involves the 

use of coating materials based on factors that affect mechanical properties of the coating. 

The primary aim of this coating is to improve the physical appearance of the dosage 

form, allow for a smooth and glossy finish, and readily dissolve in the GIT.      

a.2 Coating technologies/techniques  

i. Pan Coating 

A standard coating pan is a circular metal pan usually mounted at about 40 o to the 

horizontal.  The pan rotates on its horizontal axis to mix the coated tablets and the coating 

dispersion is supplied by ladling or spraying, usually fitted with atomiser to produce even 

distribution of the coating material (Kneidl et al., 2014). It also has a hot air inlet for the 

drying of the tablets and an exhaust for heat circulation. The drawbacks of this 

technology include poor mixing efficiency of the tablets and poor drying efficiency that 

led to the development of the perforated coating pan. It is fully perforated as the name 

suggests and contains a mixing blade that encouraged easy mixing of tablets, even 

distribution of the sprayed material and makes drying more efficient (Figure 1.6A).   
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Figure 1.6. Perforated coating pan (Evonik, 2018) (A) fluid bed coater 
(Microencapsulation.net, 2018) (B). 
  

A 
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ii. Fluid bed coating 

The fluidised bed coater achieves fast and uniform coating using air to mix, dry and coat 

the substrates. This technique originated from the fluidised bed dryer used in wet 

powder/granule drying. The air inlet comes from the bottom, blowing the substrates up 

and at the same time, the coating material is sprayed onto them (Figure 1.6B). 

Depending on the position of the spray nozzle, a fluidised bed coater can be classified 

into top spray, bottom spray and tangential spray with their advantage and 

disadvantages. This technique, however, was less popular due to its mechanical stress 

on tablets, leading to a compromised physical appearance. 

iii. Compression coating 

This coating approach involves the compression of the coating material around the tablet 

core using a conventional tablet compression machine. This is commonly used when the 

shell material has poor film forming properties. It involves an initial filling of the die with 

a layer of the coating material before placing the core tablet in the middle of this material. 

As the lower die moves down, more coating material fills the die surrounding the core 

before compression and ejection. It has the advantage of being short manufacturing 

process by avoiding the use of solvents, which requires drying afterward like in liquid 

coatings (Bose and Bogner, 2007). These aqueous or organic based polymer solutions 

when used could result to residual solvents in the product, which might be hazardous 

when not removed efficiently.  

A floating tablet for the time-controlled release of an active has been produced using this 

coating technique, which proved to be effective. Hydroxypropyl cellulose (HPC) was 

combined with sodium bicarbonate (effervescent agent) to produce a dosage form that 

becomes buoyant over a period of 12 hours and provide a zero order drug release (Qi et 

al., 2015). Zero order drug release has also be achieved using only HPC to coat by 

compression, a glipizide core tablet (Huang et al., 2013). Colonic drug release has also 

be achieved using this method by coating the tablets with colon targeting polymers 

(Vemula, 2015a, Pachuau and Mazumder, 2013, Sinha et al., 2007b). In a study by 

Vemula (2015b), a double compression coated tablet using hydroxypropyl 

methylcellulose (HPMC) and Eudragit S100 was use to achieve a pulsatile drug release. 

A compression coated indomethacin tablet with polyethylene oxide was used to produce 

a dosage form that follows the circadian rhythms, with potential application in the 

treatment of rheumatoid arthritis (Songa et al., 2013). This seemed effective both in vitro 

and in vivo. 



 
 

35 
 

iv. Dry coating 
 
This coating process is also called powder coating and involves coating of tablets with 

polymer powder followed by a curing process. In some processes, the powder layer is 

sprayed simultaneously with a plasticiser to reduce curing temperature especially for 

thermolabile actives. This approach was called plasticiser-dry-coating and could be 

achieved using pan coaters or a fluidised bed coater (Obara et al., 1999, Luo et al., 2008) 

which allows for the even coating of the substrates with the powder and also provides a 

means to spray the plasticiser. In a study by Obara et al. (1999), this techniques was 

used to enteric coat, using hydroxypropyl methylcellulose acetate which demonstrated 

reasonable gastric resistance. Adhesion of the powder materials on the substrates 

depends on the wetting of the dosage form surface as well as the coating powders, which 

results in film formation with heat. Film formation could be attributed to the capillary force 

from the liquid plasticiser before uptake into the polymer particles which results in particle 

deformation (Kablitz and Urbanetz, 2007). 

Another approach of dry coating involves electrostatic coating of the substrates with 

powder material. The powder materials become electrostatically charged when propelled 

from a spray gun and adheres to the earthed substrate surface to form the film layer. 

This was called electrostatic-dry-coating (Luo et al., 2008) and could also be used in 

combination with plasticiser spraying to encourage better film formation (Qiao et al., 

2013, Qiao et al., 2010b, Qiao et al., 2010a) 

A heat-dry-coating method has also been investigated for dry coating. The process 

makes use of a source of heat, which partially melts the coating powder and encourages 

adhesion to the substrate.  This coating technique was developed by Cerea et al. (2004) 

and involves the use of low Tg polymers to obviate the need for plasticisers.  

In a research Yang et al. (2015), the substrates were first loaded into a preheated coating 

pan before simultaneously spraying the plasticiser and the electrostatically charged 

powder to the substrates, demonstrating a combined use of different approaches. 

Different polymers were investigated and used to achieve different drug release patterns 

(Yang et al., 2015).   

vi. Melt coating 

This provides an alternative to the application of polymeric solutions or dispersions. It 

involves the use of coating materials that could be applied molten. The use of this offers 

the advantage of shorter processing time since the drying process of coating is reduced. 

The solvent free approach reduces cost and the possibility of microbial contamination 
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(Jannin and Cuppok, 2013). On the other hand, high temperature is used during the 

process and it is important to maintain the temperature of the molten polymer above the 

melting point during the process to ensure adequate flow and delivery to the spray 

nozzles and avoid blockage.  

The use of a spray system was entirely avoided in a research using a conventional 

coating pan Sakarkar et al. (2013). Pellets with adequate surface morphology and texture 

was produced and release modification was achieved (Sakarkar et al., 2013, Griffin and 

Niebergall, 1999). This technique has also been used in combination with other forms of 

coating (film coating using fluidised bed) to produce a sustained-release pellet (Yang et 

al., 2008). In a study by Patil Arun (2011), this approach was used to mask the taste of 

bromhexine hydrochloride by spraying a molten wax on the pellets in a heated coating 

pan at a coating level above 3 %w/w. 

b. Capsules  

Capsules remain one of the most acceptable oral drug delivery systems, which allows 

for the delivery of actives in different forms. Powders, pellets, liquids and even tablets 

could be delivered using capsules, which breaks up in the GIT to release its content. 

Capsules are commonly made from gelatine but could also be casted using HPC (Macchi 

et al., 2015), plant polysaccharides, carrageenan and modified forms of starch and 

cellulose which are water soluble and readily disintegrated in the stomach to release it 

content. Capsules come in different sizes, their use depending on the quantity of the 

content/actives to be delivered.  

Capsule shells are made of physiologically inert materials, easily digested in the GIT and 

requires less adjuvants when compare to tablets. The use of capsules has the advantage 

of easy taste and odour masking. This plays a major role in its increased acceptance by 

patient. In addition, capsules become slippery when moist, which facilitates swallowing. 

They withstand handling and transportation and could be coated with polymers to target 

different areas of the GIT (Macchi et al., 2015) or opacified with titanium dioxide or 

colours to offer light protection to photosensitive actives.   
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1.4 Drug release patterns from oral drug delivery   
 
Oral drug delivery could be engineered to possess different release patterns, which 

determines area of drug release. This could be classified into immediate and modified 

drug release.  

1.4.1 Immediate release  
 
According to the British Pharmacopeia, a solid dosage form is immediate release if ≥75 

% of the active is released before 45 min in an in vitro release study. This implies a fast 

onset of action and is usually the release pattern obtained when using liquid dosage 

forms. To achieve this fast release using solid dosage forms, most manufacturers make 

use of highly soluble excipients. Excipients that aid to break down the tablet into smaller 

particles once in contact with the body fluid (disintegrants) are often added. This 

increases the surface area available for dissolution and drug release. For capsules, the 

soluble shell dissolves once in contact with body fluid to release its content.  

Immediate release dosage forms are used when therapeutic activity is required as soon 

as possible. In a situation where the actives are poorly soluble in water, solubility 

enhancing polymers could be employed during the formulation to ensure dissolution after 

disintegration (Pietrzak et al., 2015, Okwuosa et al., 2016). Immediate release polymers 

are shown in Table 1.1.  

1.4.2 Modified release 
 
Modified release dosage forms are used to classify dosage forms that are not immediate 

release. This includes delayed drug release (enteric, colonic, pulsatile and bimodal drug 

release systems), prolonged drug release over a period (extended release) and site-

specific targeting (targeted-release dosage forms). These release modifications are 

achieved using polymers with different properties as shown in Table 1.1.  

a. Delayed drug release (DDR) 

This release modification involves the application of a polymer barrier on an oral 

medication, therefore creating a lag time between administration and therapeutic effect. 

This system usually responds to increased pH that occurs at the lower end of the GIT, 

which allows the dissolution of the used polymer and therefore drug release (Varum et 

al., 2014, Fang et al., 2014, Okwuosa et al., 2017).  

Enteric coating is a form of a DDR system which is done either to protect the drug from 

the acidic environment of the stomach or to protect the stomach walls from the harmful 
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effects of the drug. According to the British pharmacopoeia, a dosage form is enteric if 

≤10 % of the active is released in an acidic environment (pH 1.2) after two hrs, followed 

by ≥85 % release in a basic media (pH 6.8) before 30 min.  

Colonic drug deliveries are desirable for actives that are absorbed in that area of the GIT 

or to achieve a localised treatment for diseases like inflammatory bowel disease and 

colon cancer. The colon has also been recognised as the gateway to the systemic 

circulation and has been hypothesised to enhance the oral bioavailability of peptides, 

proteins, nucleic acid and oligonucleotides (Maroni et al., 2010). Polymers that dissolve 

at high pH values in comparison to those used for enteric release comes into play here 

since pH increases down the GIT although it has been shown to vary. The use of 

polymers to target the lower GIT has been well established with a wide variety of 

polymers engineered to dissolve at pH ≥5 (Table 1.1) thereby inhibiting release in the 

gastric fluid, followed by polymer dissolution and drug release at higher pH values.  

b. Extended drug release (XDR) 

This is used to achieve a prolonged drug release in contrast to an immediate release 

dosage form. This release pattern maintains the level of the actives in the systemic 

circulation over a prolonged time and therefore reduces dose administration frequency, 

which improves patient compliance. Tablets could be produced in the form of a drug 

polymer matrix where the polymer slows down or controls the rate of drug release 

(Oliveira et al., 2013, Li et al., 2014). A popular technique for polymer-drug matrix 

formation is HME.  An extended drug release could also be achieved using an osmotic 

system. In this technique, the tablet is placed in a semi-permeable outer membrane with 

one or more laser-drilled holes. Water is absorbed through the semi-permeable 

membrane which creates an osmotic pressure that forces the active(s) out through the 

holes in the tablet (e.g. OROS by ALZA Corporation) (Stevens et al., 1998). Another 

technique for XDR involves the use of floating systems where dosage forms are 

designed to be buoyant which avoids gastric emptying thereby prolonging drug release 

(Radwan et al., 2015, Ijaz et al., 2015).  

c. Targeted drug release (TDR) 

This drug delivery approach is used to achieve a site-specific delivery of active 

pharmaceutical ingredients (APIs). It could be done actively by modifying the surface of 

the carrier to have affinity for certain areas of the body or cells using bio adhesives, non-

ionic surfactants, specific cells, tissue antibodies or protein. Micro- and nano-particles 

are used effectively in this regard, as well as carrier vesicles. The incorporation of 
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anisamide ligand to a doxorubicin-loaded liposome had more affinity for prostate cancer 

cell lines due to its overexpressed sigma receptors (Banerjee et al., 2004). In another 

report, oestrone ligand was used to target oestrogen receptors of breast carcinoma cells 

(Paliwal et al., 2010) and many other applications (Li et al., 2009, Hong et al., 2009).  

A passive drug targeting relies on the circulation time of the drug carrier. This approach 

modifies the drug carrier to avoid phagocytosis and therefore removal by the 

reticuloendothelial system (RES), which enables circulation for a longer time. 

Polyethylene glycol has been used to render liposomes more hydrophilic which reduces 

rate of removal by the hydrophobic RES (Gabizon and Papahadjopoulos, 1988, Allen et 

al., 1991, Gabizon et al., 1994). 

Targeting could also be achieved physically. This type of targeting depends on 

environmental changes like temperature and pH because of the pathological area in 

comparison to the normal tissues. For example, inflamed or neoplastic areas normally 

demonstrate some level of hypothermia and acidosis which could be used as an 

advantage in drug targeting (Torchilin, 2000). A pH sensitive liposome has been used to 

enhance skin penetration of both hydrophilic and hydrophobic compounds (Tokudome 

et al., 2015) and the potentials of thermos-sensitive liposomes has been demonstrated 

(Kneidl et al., 2014). This similar approach finds use in the delivery of actives using pH 

sensitive polymers for enteric and colon targeting as will be discussed in Chapter 4.
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Table 1.1. Examples of polymers employed in dosage form manufacturing and their applications.   

 

Immediate release polymers  Delayed release Polymer Extended release polymers  

Eudragit EPO (Sadia et al., 2016)  Polyvinyl acetate phthalate (Zaid, 2012) 
Dissolves at 
pH ≥ 5.0 

Eudragit RL 100 (Roy et al., 2013)   

Eudragit E 100 (Mansing G. Patil, 
2011)  

Eudragit L 30 D-55 (Nair et al., 2010)  
 

Dissolves at 
pH ≥ 5.5 

Eudragit RL PO (Sahoo et al., 2009)  

Eudragit E 12,5 (Evonik, 2010) Eudragit L 100-55 (A et al., 2013)  Eudragit RS 100 (Tiwari et al., 2014)  

Polyvinyl pyrrolidone (Kim et al., 
2016) 

Cellulose acetate trimellitate (Giunchedi et 
al., 1995) 

Eudragit RS PO (Roni et al., 2009)   

Polyethylene glycol (Blaesi and 
Saka, 2015) 

Hydroxypropyl methylcellulose phthalate 
(Bendas and Abdelbary, 2014, Sharma et al., 
2013) 

Ethocel premium ethylcellulose 
(Colorcon, 2018) 

Hydroxypropyl cellulose 
(Mohammed et al., 2012)  

Eudragit L100 (Wilson et al., 2013)  
 

Dissolves 
above pH 6.0 

Methocel premium cellulose ethers 
CR (Colorcon, 2018) 

Polyvinyl alcohol (De Jaeghere et 
al., 2015)  

Eudragit L 12,5 (Evonik, 2010) 
Polyox water soluble resins (Colorcon, 
2018) 

 
Hydroxypropyl methylcellulose acetate 
succinate (Jansen et al., 1998, Hilton and 
Deasy, 1993)   

Poly (caprolactone) (Kamaly et al., 
2016) 

 
Cellulose acetate phthalate (Kotagale et al., 
2010) 

Chitosan (Kamaly et al., 2016) 

 Eudragit S 100 (Sun et al., 2014) 

Dissolves 
above pH 7.0 

Poly (lactic acid) (Kamaly et al., 2016) 

 Eudragit S 12,5 (Evonik, 2010) 
Poly (glycolic acid) (Kamaly et al., 
2016) 

 Eudragit FS 30 D (Huyghebaert et al., 2004) 
Poly (lactic-co-glycolic acid) (Kamaly 
et al., 2016)  
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1.5 Physiological changes along the GIT that affects 
oral delivery systems  
 
Drug release and absorption of oral dosage forms is strongly influenced by various 

factors that differ along the GIT. This includes enzymatic activities, pH values along the 

GIT, transit time and microbial activities. Some of these physiological changes also differ 

fasted or fed, therefore thorough comprehension of the GI conditions is necessary to 

understand the in vivo release and absorption of oral dosage forms. 

1.5.1 pH changes across the GIT 
 
Understanding the intraluminal pH values are highly relevant owing to the pH dependent 

behaviour of many actives and excipients commonly used in pharmaceutical industries. 

These pH changes sometimes become a challenge in drug delivery, as some actives 

might be sensitive to certain pH levels. The modified release properties of a dosage form 

could also be affected by these pH changes (Wonnemann et al., 2008). On the other 

hand, these pH changes could also be used to an advantage for site-specific delivery of 

actives utilising pH sensitive polymers. 

The pH of the stomach is reported to be between pH 1-3 (Evans et al., 1988) but has 

also been reported to vary between pH 1-8 in a fasted state (Koziolek et al., 2015). 

However, the stomach is acidic in most cases because of the secretion of hydrochloric 

acid (HCl). pH values of the stomach become higher after being fed depending on the 

composition and quantity of the ingested content. The stomach buffers this increase by 

secreting more HCl and gastric emptying, the rate of buffering depending on the content 

and quantity of the ingested material.   

In the intestine, there is usually an increase in pH value from pH 6.0 ±0.2  in the 

duodenum to 7.7 ± 0.15 in the terminal ileum (Koziolek et al., 2015). This is usually 

because of the duodenal secretion of alkaline bicarbonates. The pH in the colon tends 

to be slightly more acidic as a result of the fermentation processes of the colon microbiota 

with an average pH value of 6.5 ±0.3 (Koziolek et al., 2015). 

1.5.2 Transit time  
 
Orally administered dosage forms must travel down the GIT, get broken down and the 

actives released and absorbed to achieve its therapeutic effect. Therefore, 

understanding the factors that affect the transit time of dosage form to their site of action 

is important and is beneficial in use recommendations. The transit of oral dosage forms 

in the GIT relies on the gut motility and flow, which depends on the type of dosage form 
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and the type and timing of meals ingested. Because of these factors, the time spent by 

the dosage form in the stomach varies.  

Oral dosage forms can come in different shapes and sizes and can be categorised into 

multiple unit or single unit devices (Bechgaard and Nielsen, 1978). The single unit 

devices stay intact and does not disintegrate throughout the GIT. These influence the 

time these dosage forms spend in the stomach area before being emptied, the size of 

the dosage form playing a major role.  

In a fasted state (at least 8 hours without food ingestion prior to administration) the gastric 

emptying of oral dosage form ranges between 1 min – 185 min (Weitschies et al., 2010). 

In the absence of food, unless large single dosage forms are administered, the transit of 

dosage forms depends solely on myoelectric cycle or MMC. The primary job of the MCC 

is to move and empty left overs from a previous meal and occurs in four phases (Wilding 

et al., 2001): 

Phase 1 - 60 min quiescence with no contraction.   

Phase 2 - 40 min of intermittent contraction and action potentials. 

Phase 3 - “House keeper waves” which completely empties the stomach and involves 

an intense distal and proximal gastric contractions lasting between 5 -15 min.  

Phase 4 - Transition from Phase 3 to phase 1. 

These cycles could take up to two hours and the ingestion of food resets the cycles with  

a normal meal disrupting the MMC for approximately 3-4 hours (Wilding et al., 2001). 

Pellets and powders tend to empty fast when administered fasted, with a shot lag phase 

with or after a light meal (1000-2000 KJ) (Wilding et al., 2001). 

The presence of food delays the emptying of oral dosage forms as the stomach stores 

and attempts to break down the food into chyme before emptying into the proximal small 

intestine. During this process, liquids and small particles could pass through the partially 

constricted pyrolus while the large units are retained in the stomach. The emptying of 

pellets from the stomach tends to be faster when compared to tablets in the presence of 

food. The reverse is however the case in the intestine as pellets get caught into the rough 

surface of the intestine due to their smaller size (Abrahamsson et al., 1996), which delays 

transit.  
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1.5.3 Gut Microbiota 
  
A high level of bacterial activity has been observed in the distal part of the intestine 

compared to the rest of the GIT. The gut harbours a complex community of 

microorganisms (up to 100 trillion) which influences human physiology and metabolism 

(Enright et al., 2016). They also contribute to the low pH value obtained in the colon in 

comparison to the rest of the intestine. It could be argued that since most drug absorption 

takes place in the small intestine before reaching the colon, then the impact of the high 

level of microbiota in the colon should not be put into consideration. However, new insight 

into the small intestinal microbiota have revealed high microbial activity as well (El Aidy 

et al., 2015). Moreover, newly developed drug candidates tend to have low solubility or 

permeability, which prolongs residence time in the GIT and therefore, high probability of 

microbial interaction in the distal areas of the GIT.    

The intestinal microbiota has been associated with several pharmacokinetic activities. 

They could mediate a prodrug activation which could be used to an advantage in drug 

targeting (Enright et al., 2016). They have also been implicated in the alteration of the 

absorption of certain actives e.g. probiotic bacterium, Escherichia coli (Nissle 1917) 

improved the bioavailability of amiodarone, a class III antiarrhythmic, in rats (Matuskova 

et al., 2014). It was believed to reduce intestinal pH and enhance ionisation of the 

molecules and therefore easy mucosal transit.  

1.6 Pharmacogenomics and individualised drug therapy   
 
Pharmacogenomics, which could be used interchangeably with pharmacogenetics, is a 

term use to describe the relationship between drug responses and genetic variations. As 

research and development continues to grow as well as the knowledge about 

pharmacogenomics, there is an increasing interest to apply them in the drug discovery 

and approval processes (Mooney, 2015). It was observed that patients present large 

interindividual differences in drug response and toxicity with most major classes of drug 

when administered at a standard dose. No response from a medication could be 

observed in some patients, partial response in others and adverse drug reactions in 

others. These were linked to genetic variations, which influences the pharmacodynamics 

and pharmacokinetics of the individual patients. Variations in dose responses could also 

be due to physiological or pathophysiological differences. However, in some classes of 

drug, genetic factors could account for up to 95 % of interindividual variations 

(Eichelbaum et al., 2006).   
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The idea that genetic factors could alter patient’s response to medications evolved in the 

1950s. It was observed that the inherent lack of glucose-6-phosphate dehydrogenase 

led to haemolytic anaemia when patients were expose to the antimalarial drug,  

primaquine (Beutler, 1969). Sever adverse drug reactions (ADRs) (e.g. hepatotoxicity 

and drug-induced arrhythmias) becomes challenging in drug discovery and development 

and could be linked to several hospitalisations and deaths (Lazarou et al., 1998). 

Therefore, the knowledge about the roles of genetic factors will not only improve patient’s 

outcome from drug use but also reduce ADRs drastically. This lead to the term 

personalised medicine, which focusses on tailoring therapy towards patients need to 

obtain the best response and highest safety margin.  

Personalised medicine allows physicians to go beyond the use of the  “One Size Fits All” 

standard dosing approach to a more patient specific approach (Ginsburg and Willard, 

2009). This is known as personalised dosing and was defined by FDA as providing “the 

right patient with the right drug at the right dose at the right time” (FDA, 2013). As a result 

of this, the demand for a unique medical approach for every individual is on the rise with 

more emphasis on a patient specific or tailored method of dosing and dose combinations 

rather than conventional mass produced dosage forms (Raijada et al., 2013, Vogenberg 

et al., 2010).  

In addition to dose personalisation in response to genetic variations, there is also an 

increased necessity to tailor doses for children, disabled patients, in geriatrics and in 

some certain disease conditions. The lack of personalisation has been linked to the major 

causes of drug adverse effects which was realised to be worse in geriatric medicines 

due to the number of drugs they use on a daily basis (Davies et al., 2009).  

Since dose personalisation requires customising healthcare individually, the big question 

is “how these unique medicines for each patient can be made on a routine basis?” The 

manufacturing processes involved in the production of conventional oral solid dosage 

forms were not suitable for the degree of flexibility required. Several critical steps (e.g. 

mixing, granulation, drying, sieving etc.) are usually involved which makes flexibility a 

problem during manufacturing. 
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1.7.1 Current approaches to dose personalisation  
 
To improve drug use efficiency and minimise adverse effects in drug use, several 

approaches have been used to achieve dose personalisation.  

a. Dose personalisation using oral liquid dosage forms  

Liquids are the dosage form of choice for infants, toddlers and children due to the ease 

of modifying the dose in addition to overcoming swallowing difficulties with solid dosage 

forms. Liquids are also available for adult use especially in geriatrics where swallowing 

difficulties commonly exist (Rosemond, 2015). In addition, where no suitable licensed 

liquid dosage forms are available, prescribers may need to order liquids from “Specials” 

manufacturers to meet the need of these patients (Schiele et al., 2013).  

For decades, the use of liquid dosage forms for patient medication encouraged dose 

personalisation. This can be easily achieved by altering the administered volumes using 

various dosing aids usually included as part of the packaging of the dosage form (Brown 

et al., 2004). Commonly used dosing aids includes disposable medication measuring 

cups, plastic medicine spoons, oral syringes, Pasteur pipettes, medicine dropper, all 

used in different situations with the primary aim of improving dosing accuracy. However, 

inaccuracies in dosing could result from irregularities in the measurements from the 

dosing aids (Grießmann et al., 2007, Yin et al., 2010) or from the patient or carers 

incompetence (McMahon et al., 1997).  

b. Dose personalisation using oral Solid dosage forms  

Dose personalisation using solid dosage forms has been achieved by dispensing 

multiples of a small dose, splitting of tablets to obtain smaller doses or a combination of 

both approaches in some cases. However, the physical alteration of solid dosage forms 

could affect drug release especially for modified/controlled release formulations (Hill et 

al., 2009, Shah et al., 1987, Erramouspe and Jarvi, 1997). Coated tablets will be affected, 

as the function of the coating will be lost. In the United States, it was estimated that 3000 

compounding pharmacies formulate approximately 30 million prescriptions per year in 

an attempt to customise drugs to individual patients (WeillCornellMedicalCollege, 

2014).The majority of these prescriptions have been linked to the lack of commercially 

available dose or drug combinations.   

c. Dose personalisation by inkjet printing  

Another approach to personalized medication involves the use of inkjet printers. This 

idea originated from the same technique used in computer-operated inkjet printing which 
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recreates digital images by propelling ink droplets onto paper in a 2D format. It was 

adapted for pharmaceutical application by the replacement of the ink with pharmaceutical 

solutions containing drugs and normal paper with edible sheets known as substrates 

(Scoutaris et al., 2011, Meléndez et al., 2008). A list of the possible substrates that could 

be used in ink jet printing has be compiled in a review by Alomari et al. (2014). 

Manipulating the dose in inkjet printing could be achieved by changing the number of 

printed layers for a given area or by increasing the total printed area. The advancements 

in inkjet printing were based on the potential to print designed ratios of drugs and 

excipients as individual microdots onto an edible substrate. Two main inkjet dispensing 

systems have been investigated for pharmaceutical applications: thermal (Buanz et al., 

2011, Meléndez et al., 2008) or piezoelectric inkjet printers (Boehm et al., 2015, Lee et 

al., 2012, Lorber et al., 2014, Uddin et al., 2015). 

Inkjet drug printing offers a significant advantage of accurate control of dose combination 

and pattern of drug release. It has demonstrated that deviations as low as 1.4 % relative 

standard deviation can be achieved when 1 cm2 is printed with about 52 µg of the model 

drug (Raijada et al., 2013). This however, is influenced by the nature of the substrate or 

printing technology (Buanz et al., 2011, Sandler et al., 2011).  

Ink jet printing requires the starting materials to possess certain characteristics mainly; 

particle size needs to be ˂1 µm to avoid clogging the printer head, viscosity needs to be 

˂20 cP and surface tension between 30-70 mN/m for efficient flow (Lee et al., 2012, 

Sandler et al., 2011). Ink jet printing is thus highly suitable for manufacturing drugs with 

low therapeutic doses, ideally in the microgram range, when printing a smaller area on 

the substrate is needed. Obtaining higher doses will otherwise imply numerous printings 

on a particular area, which could lead to longer drying time and potential instabilities. A 

large surface area could be covered for larger doses, but this means that a greater 

amount of substrate needs to be consumed thus inflating the size of the dosage form.  

Inkjet printing has also been adapted for the 3D printing of solid dosage forms. One of 

the approaches involved the photoionisation of the pharmaceutical ink during the building 

processes to achieve the structure of the tablet on a poly (ethylene terephthalate) 

substrate (Clark et al., 2017). The use of liquid was avoided by using a heated inkjet 

head, loaded with a mixture of the API and beeswax. This demonstrated the flexibility 

and potentials of this approach in drug dosing and in the manufacturing of complex 

geometries and drug release pattern (Kyobula et al., 2017). The 3D printing of dosage 

forms will be discussed in more details in the next sections.  
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d. 3D printing  

A promising approach towards dose personalisation is the application of 3D printers in 

drug manufacturing. 3D printing is a rapid prototyping technique which builds a 3D object 

by successive layering of 2D forms in a layer-by-layer fashion. Examples of the 3D 

printers are shown in Figure 1.7. The use of 3D printers is well established for the 

development of customised medical devices (Chung et al., 2014, Dombroski et al., 

2014). It has also been  extensively used in tissue engineering (Boland et al., 2006, Pati 

et al., 2013) and in the manufacturing of implants (Water et al., 2015). 3D printing is a 

fast evolving process and is currently been investigated for pharmaceutical dosage form 

manufacturing for dose personalisation (Goyanes et al., 2015a, Okwuosa et al., 2016, 

Sadia et al., 2018, Yu et al., 2009b, Katstra et al., 2000). 

1.8 3D printing and its various types 
 
Various types of 3D printers have been used over the years and are as follows:  

1.8.1 Stereolithographic 3D printing (STA) 
 
Stereolithographic 3D printing (Figure 1.7A) involves the curing of photo-sensitive 

material(s) (photo-polymerisation) (Melchels et al., 2010). Curing of the polymers are 

usually done using ultraviolet (UV) rays (Cooke et al., 2003, Lan et al., 2009) or the use 

of digital light projection which uses a digital mirror device (Liska et al., 2007, Lu and 

Chen, 2012, Melchels et al., 2009) to initiates polymerisation reaction in the 

photopolymer causing it to solidify in the exposed area. This process is now repeated 

layer after layer to build the object as the unreacted functional groups on the solidified 

structure in the initial layer polymerises with the illuminated resin in the next layer 

(McMains, 2005). Post printing processing are usually required to remove excess resin 

and remove supporting structures (Melchels et al., 2010). 

This technique is associated with high printing accuracy (25 µm) (Formlabs, 2015) and 

has found use in tissue engineering (Lan et al., 2009, Melchels et al., 2009, Skoog et al., 

2014) and manufacturing of implantable devices (Popov et al., 2004). 
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Figure 1.7. Mechanism of various 3D printing technologies: (A) Stereolithographic 
(SLA), (B) Powder bed and powder jetting, (C) Semi-solid extrusion (EXT) 
and (D) Fused deposition modelling (FDM). 
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1.8.2 Powder-bed 3D printing (PB) 
 
Powder bed 3D printing (Figure 1.7B) remains one of the oldest methods of 3D printing 

developed at the Massachusetts Institute of Technology in the late 1980s (Aprecia, 

2014). This technology involves the distribution of thin layers of powder selectively joined 

by drops of liquid binder deposited from an inkjet printer head (Katstra et al., 2000). It 

has been investigated in the manufacturing of implants (Huang et al., 2007) and oral 

dosage forms (Rowe et al., 2000, Katstra et al., 2000, Yu et al., 2009a, Yu et al., 2007).  

The potentials of this technology was highlighted with the FDA approval of Spritam (the 

first FDA approved 3D printed product) an anti-epileptic drug (Aprecia, 2014). The fast 

product disintegration (4 sec) was attributed to the highly porous structure signature of 

the technique. However, the resolution is usually low and post printing processing like 

dusting and drying are required.  

1.8.3 3D printing by semi-solid extrusion (SSE) 
 

Another method of 3D printing involves the layer-by-layer deposition of semi-solids 

through a syringe-based tool-head (Figure 1.7C). The starting materials are usually in 

the form of gels or pastes formulated by the mixing of an optimal ratio of a polymer 

powder and suitable solvent to obtain viscosity suitable for printing (Khaled et al., 2014, 

Rattanakit et al., 2012, Khaled et al., 2018). This technique showed several potentials in 

personalised dosing with acceptable in batch variations. It is a non-thermal approach 

which creates room for a wide variety of APIs. 

The use of this technique in the manufacturing of guaifenesin bilayer tablets was 

compared with a commercially available guaifenesin tablets (Khaled et al., 2014). Similar 

drug release profiles were observed, showing the versatility of this technique and also 

offering and easier approach to drug manufacturing, most especially in personalised 

dosing. The versatility of this 3D printing technique was also demonstrated in the 

manufacturing of “polypills” as it was successfully used to compartmentalise different 

drugs using different polymers to achieve complex release profiles (Khaled et al., 2015b, 

Khaled et al., 2015a). Up to five actives were loaded in a single dose using this approach, 

utilising multiple extrusion heads which was aimed at dose personalisation for 

cardiovascular treatment regimen (Khaled et al., 2015a). 

1.8.4 3D printing by fused deposition modelling (FDM)   
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Fused deposition modelling (FDM) was commercialised in 1991 (Wendel et al., 2008) 

and till date remains one of the mostly used technique in 3D printing. It involves passing 

a filament based on thermoplastic polymers through a hot nozzle (Figure 1.7D), where 

temperature is elevated above its glass transition temperature (Tg). The extruded 

material is deposited layer-by-layer to form an object, with solidification occurring in less 

than a second.  

The potential of FDM 3D printers has been explored in the incorporation of different API 

molecules through their loading into commercially available PVA (Goyanes et al., 2015a, 

Skowyra et al., 2015). This was usually achieved by immersing the PVA filament in a 

solution of the active for several hours, which is then dried and 3D printed.  These 

previous attempts, however, displayed several limitations such as the use of non-

pharmaceutical grade ingredients and limited drug loading (Goyanes et al., 2015a, 

Goyanes et al., 2015b). In addition, the process of drug loading usually involves the use 

of organic solvents which might not be safe when not completely removed, in addition to 

the time consuming nature of the technique. Due to the high Tg of this polymer, previous 

reports suggested the need for using high temperatures, [220 oC (Goyanes et al., 2014), 

210 oC (Goyanes et al., 2015a) and  250 oC (Skowyra et al., 2015)] when PVA based 

dosage forms were fabricated using FDM 3D printers. Moreover, several examples of 

PLA printed structures employed a temperature range of 180-210 oC (Boetker et al., 

2016, Rosenzweig et al., 2015, Senatov et al., 2016). The use of high temperature up to 

180 oC indicated lack of suitability for sensitive actives which was demonstrated in an 

example by (Goyanes et al., 2015a) were 4-aminosalysilate with a melting point of 180 

oC degraded during 3D printing even though the amount of time spend in the FDM 3D 

printing nozzle was minimal. This therefore emphasises the need to adapt knew 

polymers that operate at lower temperatures to encourage the use of thermosensitive 

actives.  

The use of FDM 3D printing in dose personalisation is evolving fast and seems to be the 

technique with the most potential considering the number of ongoing research in that 

area. The use of FDM was reported to produce tablets with high mechanical strength at 

a low cost using a low-cost unit (Pietrzak et al., 2015, Skowyra et al., 2015). Also, the 

discovery of the application of HME in the manufacturing of filaments in the form of solid 

dispersion using pharmaceutical grade polymers was promising (Pietrzak et al., 2015). 

In addition, FDM requires no specialised facilities or large spaces, hence could 

potentially be a candidate for use as a mini-dispenser, which led this 3D printing 

technique being the primary focus in research. 
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1.9 3D printing challenges in pharmaceutical field  
 
Adopting 3D printing for pharmaceutical purposing is still at the early stages and as 

expected presents many challenges/limitations at these early stages of development. In 

addition, due to its novelty, its regulation is still not clear. These challenges will be 

discussed in the following sections. 

1.9.1 Limitations of FDM 3D printing in pharmaceutical 
manufacturing  
 
3D printing allows ease of variations of shapes and sizes whilst maintaining control over 

manufacturing through a software in comparison to a more rigid casting and compression 

approach to manufacturing. However, this flexibility is associated with some technical 

challenges, which were limiting its application for pharmaceutical purposes. 

Primarily, the application of 3D printers in pharmaceutical manufacturing is dependent 

on the level of technological advancement of the 3D printer used. This made 

manufacturing of certain dosage forms extensively difficult and in some cases requiring 

individual modifications to achieve certain goals. Advancements in technologies are 

expected to improve the potentials of 3D printers in drug manufacturing for individualised 

dosing.  

As already explained earlier, manufacturing using 3D printers occurs in a layer-by-layer 

fashion, which is one of the core identity of 3D printed objects. However, this layer-by 

layer deposition of material contributes to its slow output in comparison to conventional 

manufacturing processes. In addition, it creates more room for errors during printing. 

Partial nozzle blockage could occur and create inconsistency in the final weight and 

shape of the final product. A total blockage in-between printing could also occur resulting 

to printing failure and material wastage. Once few layers are omitted during the head 

movement, gaps are created between the nozzle and the object leading to failure. This 

printing pattern also limits the final resolution of the object printed to 0.1 mm layers. 

In the beginning of this research, one of the major limitations in the 3D printing of 

pharmaceutical dosage forms is the lack of applicable pharmaceutical grade polymers. 

This led to the use of non-pharmaceutical grade polymers (Skowyra et al., 2015), which 

were usually polymers with relatively high Tg, therefore requiring high temperature during 

processing. This limits applicable actives with available examples mostly using 

thermostable small molecules with no example of its application for large molecules like 

peptide and proteins.   
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Drug release from the polymers used were mostly extended which was determined by 

the properties of the polymer in a polymer-drug matrix system. This further emphasises 

the need to adapt more polymer for 3D printing to be able to engineer desired drug 

release patterns. There was little to no report of immediate release dosage form 

manufacturing using this approach and no report for enteric release or colon targeting. 

Conventional drug release modification methods require the need to apply a coating on 

the tablets, which will create a barrier and therefore modify release based on the 

properties of the polymer. However, coating using 3D printer has major challenges. To 

achieve coating using 3D printing, it will be necessary to create tight layers of the dose 

modifying polymers to prevent leakage and therefore modify release. This becomes 

more challenging in an attempt to fill the core of the dosage form with semisolids or 

liquids. 

One of the main questions being asked by most pharmaceutical companies about any 

new manufacturing technique is whether it could be scaled up or not. Scaling up of the 

3D printing process itself will not benefit dose personalisation. However, the filament 

manufacturing could be scaled up and stored in a ready to use form for individualised 

dosing. The optimisation and validation of this process possess a major challenge since 

variations in the diameter of the filament might result to fluctuations in the weight of the 

extruded filament and therefore the dosage forms. This could also lead to blockages and 

the inability to feed the filament into the printing head.     

1.9.2 Regulatory challenges 
 
The rapid advancement of 3D printing has made manufacturing closer to users. The 

expiring of the patents on 3D printers has even made acquiring one easy and affordable. 

With the ever-growing research in the 3D printing of pharmaceutical dosage forms for 

dose personalisation, the question on how its use will be regulated keeps resurfacing. 

The regulatory bodies to ensure safety and efficacy before being introduced into the 

market must approve every pharmaceutical product or medical devices. Until date, there 

has been no clear or unique regulatory route for the approval of 3D printed drugs. 

However, there are existing and flexible pathways that could be used for new 

technologies like this (PharmTech, 2016). 3D printing as one of the emerging 

technologies has received a lot of attention from FDA and its Centre of Drug Evaluation 

and Research (CDER) created the Emerging Technology Program to promote the 

adoption of novel and innovative approaches for pharmaceutical product manufacturing 

and design (FDA, 2018, PharmTech, 2016). This new organisation played a key role in 

the approval of the first 3D printed dosage form (Spritam), a fast disintegration 3D printed 
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tablet by Aprecia Pharmaceutical for epilepsy (Forbes, 2016). It bridged the 

communication gap between innovator and regulatory bodies and most importantly 

caters for emerging technologies for which 3D printing manufacturing is included.   

Since dose personalisation using 3D printers could be potentially done in a hospital, 

community pharmacy or even the patient’s home, how will the use of 3D printing be 

controlled? Or will it be the use of the pharmaceutical ink (filament for FDM 3D printing, 

powders and binders for powder-based 3D printing etc.) that is monitored. The answers 

to these questions are still not clear. However, as the application of 3D printers in 

pharmaceutical manufacturing advances over the years, these questions will have to be 

answered eventually. Besides the FDA reserves the right to modify laws based on 

outcomes, especially for new techniques like 3D printing. FDA’s CDER has also gone as 

far as launching researches on 3D printing to facilitate discoveries on its impact on active 

ingredients and excipients in order to determine potential quality control processes (FDA, 

2017b, FDA, 2017a). This was to understand the policy framework needed to ensure the 

quality and safety of 3D printed products are maintained.  

1.10 Scope of the research  
 
Having identified the challenges and limitations of 3D printing of pharmaceutical dosage 

forms, it is obvious that having more pharmaceutical grade polymers for FDM 3D printing 

can reduce printing temperature, which will increase the range of applicable actives and 

enable ease of dose modification using pH sensitive polymers. It will also be interesting 

to adapt 3D printing for large molecules like peptides and proteins, which are also being 

investigated for therapeutic potentials in disease management. These will add to 

increasing the potentials of 3D printing as a pharmaceutical manufacturing process in 

dose personalisation. 

1.11 Project aims  
 
This research aims at manufacturing oral tablets and liquid capsules using FDM 3D 

printing for immediate, extended, enteric or colonic drug delivery, using pharmaceutical 

grade polymers. As a result, the following objectives will be carried out:  

 To adapt pharmaceutical grade polymers for FDM 3D printing  

 To manufacture immediate release PVP-based tablets using FDM 3D printing  

 To provide the first example of an enteric tablet manufactured using dual FDM 

3D printer with a drug loaded PVP-based core and a Eudragit L100-55 shell 
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 To manufacture liquid capsules using a modified dual FDM 3D printer for 

immediate and extended drug release using Eudragit EPO and RL respectively.  

 To establish the colon cancer activities of AMPs (Aurein 2.6 and LL-37) and to 

demonstrate a proof of concept for colon targeting in the form of a liquid capsule 

using a Eudragit S100-based shell filament.  

 To establish the stability of the PVP, Eudragit L100-55 and S100-based filament 

by 6 month accelerated stability studies.  
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2.1 Introduction  
 
3D printing has established roots in various disciplines allowing users to be able to 

recreate their imaginations in a 3D format without the need for casting as used in the 

conventional manufacturing methods. It has changed the world of arts and seems to be 

exploited in all its forms from architecture to music to painting etc. In engineering 

especially in automobile industries, 3D printing finds use in the manufacturing of 

functional prototypes which aids better understanding of a project in a smaller scale 

(Leapfrog, 2018). It allows the manufacturing of unique parts that are hard to 

manufacture using conventional methods. A 3D printed part for a jet engine has been 

certified by the Federal Aviation Administration (FAA) (Winick, 2017) and attempts have 

also been made by NASA to manufacture a jet engine using this approach. For medical 

purposes, 3D printing is used in the manufacturing of low-cost prosthetics, customised 

medical implants and regenerative medicine with the prospects of being able to 

reproduce organs and body parts using biomaterial (Chung et al., 2014, Dombroski et 

al., 2014). At the start of this project, the exploitation of 3D printing for pharmaceutical 

applications was still at its early stages. However, with the emergence of the first FDA 

approved 3D printed tablet, Spritam (Aprecia, 2014), a fast disintegrating tablet 

manufactured by powder bed 3D printing, the momentum of this technology is on track 

to potentially change many means of production for oral dosage forms for individualised 

dosing. Individualising doses have always been based on a patient’s age and body 

weight with a more recent consideration of genetic makes-up, due to improved 

knowledge in pharmogenomics.  

Fulfilling individual requirements has always been challenging in drug dosing and the 

absence of large array of commercially available API combinations and 

strengths remains the most frequent problem facing compounding pharmacies today 

(McLean et al., 2013). As a result, most pharmacies resort to approaches like dosage 

splitting to enable dose individualisation. This approach proved to be unrealisable  and 

becomes risky especially when dealing with drugs with low therapeutic index (Habib et 

al., 2014). Tablet splitting is often encouraged by manufactures by the scoring the tablets 

in attempt to reduce variations from such approach. However, research has shown 

otherwise (Ciavarella et al., 2016). In addition, the traditional tableting methods require 

multiple processing stages (mixing, granulation, drying, sieving and compressing), costly 

facilities and experienced personnel, thus rendering tablet manufacturing impractical 

when dose modification for one or small group of patients is required. By contrast, 3D 

printing, not only circumvent these challenges of conventional tabletting, but also offers 

a means of fabricating medicines at the point of dispensing (Sanderson, 2015). Amongst 
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the different explored 3D printing technologies, fused deposition modelling (FDM) shows 

significant promise in low-cost dose fabrication (Goyanes et al., 2015c). This stems up 

from the fact that FDM printers are available today at low cost and capable of producing 

3D objects at a high accuracy, without post-printing steps (Skowyra et al., 2015).   

Despite the potentials of FDM 3D printing in drug manufacturing and dose 

personalisation, limitation to the use of  PVA (Skowyra et al., 2015, Goyanes et al., 

2015a) and PLA (Sandler et al., 2014b) filaments restricted drug release patterns 

towards being mostly extended due to the properties of the polymer. This major limitation 

to the use of an extended release polymer rendered the use of FDM 3D printing 

unsuitable for the production of immediate release tablets, which account for 

approximately 70% of all oral dosage forms (GBIResearch, 2012). However, immediate 

release dosage forms have been achieved using other 3D printing methods. A polypill 

system with an immediate release layer has been produced using an extrusion based 

3D printer (Khaled et al., 2015a) in addition to the already mentioned FDA approved 

“Spritam” (Aprecia, 2014).  

Unless a particular area of the body is targeted, or an extended release is required, most 

oral dosage forms quickly disintegrate and release their actives once in contact with the 

gastric fluid. This provides an early onset of action and finds use in emergency situations 

where immediate therapeutic effect is required. For a dosage form to be called immediate 

release according to the BP, it must release 75 % of the active ingredient (s) within 45 

min of an in vitro dissolution studies in an acid media. To be able to meet this criteria for 

conventional manufacturing, a fast disintegration is usually required of the dosage form 

which increases the surface area for drug dissolution to take place (Desai et al., 2016). 

Disintegrants are used to aid disintegration which swells and break up the compressed 

tablet into smaller particles in addition to the use of highly soluble bulking agents to 

facilitate fast dissolution. However, the manufacturing technique for FDM 3D printing 

does not involve any compression but a layer-by-layer deposition of the extruded 

filaments, therefore presenting new challenges in the manufacturing of immediate drug 

release dosage forms. In a rare example, Pietrzak et al. (2015) reported the fabrication 

of immediate release tablets based on positively charged methacrylic polymers loaded 

with theophylline without the need for disintegrants. Filaments for this study were 

processed by HME and also the research demonstrated the possibility of dose alteration 

by modifying the size of the printed tablets (Pietrzak et al., 2015). The use of  hot melt 

extrusion in filaments manufacturing (Pietrzak et al., 2015) created more opportunity to 

adapt many other pharmaceutical grade polymers for FDM 3D printing in addition to 

being a well-established technique in pharmaceutical formulations. It is a popular 
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technique used in the formulation of polymer matrix by using heat to soften the material 

before mixing is carried out under pressure created by the rotating screw. The molten 

mass is cooled and extruded using suitable nozzle diameters to regular the diameter of 

the product.  

Polyvinylpyrrolidone (PVP) has demonstrated compatibility with the use of HME and 

finds application in the manufacturing of immediate release dosage forms using the 

conventional manufacturing approach. It is among the most common carriers used in 

amorphous solid dispersion which was first reported in 1966 (Mayersohn and Gibaldi, 

1966). PVP exhibit solubility in both hydrophilic and hydrophobic media which makes 

them suitable for both solvent evaporation and hot melt extrusion (HME). With an 

increasing number of new drug candidates being poorly soluble, these polymers now 

play major roles in improving drug solubility (Knopp et al., 2015, Shah et al., 2008, 

Sharma and Jain, 2010, Ahuja et al., 2007, Knopp et al., 2016). PVP in solid dispersion 

with a drug inhibits crystallisation, and due to the molecular mix between the drug and 

the polymer, the dissolution of the dispersion is driven by the properties of the polymer 

(Knopp et al., 2016, Leuner and Dressman, 2000). At the beginning of this study, this 

polymer had not been used for FDM 3D printing. As a result, it will be of great interest to 

adapt this water soluble polymer for FDM 3D printing of tablets for immediate drug 

release.  
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2.2 Aim and Objectives  
 
The aim of this research is to produce immediate release tablets via FDM 3D printing at 

a reduced temperature using a pharmaceutical grade polymer (PVP), the first example 

of its application in FDM 3D printing. To be able to achieve this goal, the objectives of 

this research includes: 

 To investigate the application of this pharmaceutically accepted polymer in 3D 

printing of tablets by FDM. 

 Optimisation of PVP polymer to be able to print at a lower temperature when 

compared with the commercially available filaments.  

 Optimisation of the drug loading of the PVP-filaments both for acidic (aspirin) and 

basic (dipyridamole, theophylline) actives. 

 Characterisation of the actives, excipients and the formulations by 

o Scanning electron microscopy (SEM)  

o Thermal analysis (DSC and TGA) 

o X-ray powder diffraction (XRPD) 

o Pharmacopoeial characterisation of 3D printed tablets (weight variation, 

hardness, disintegration, friability and drug content) 

o In vitro dissolution studies    
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2.3 Materials 
The materials used for these studies includes:  

2.3.1 Theophylline  
 

 

Figure 2.1. Chemical structure of theophylline (SIGMA-ALDRICH, 2018b). 

 
Theophylline is a xanthine derivative (Figure 2.1) from tea, prepared synthetically with a 

melting point of 270 oC (SIGMA-ALDRICH, 2016c). It is a Biopharmaceutics 

Classification System (BCS) class I drug which has a diuretic, smooth muscle relaxant, 

bronchial dilating, cardiac and central nervous system activities. It is usually indicated for 

the treatment of airflow obstructions associated with chronic asthma, emphysema and 

chronic bronchitis. A loading dose of 5 mg/kg is usually recommended for a healthy non-

smoking adult with acute asthma. This might go up to 16 mg/kg for a healthy smoking 

adult (Drugs.com, 2018c). Side effects from theophylline use includes chest pain or 

discomfort, dizziness, fainting, and light-headedness. Abdominal pain, loss of appetite, 

blurred vison, and dark coloured urine could be symptoms of overdose (Drugs.com, 

2018c). For this research, theophylline was purchased from ACROS Organics (UK) and 

used as a drug model. 

2.3.2 Dipyridamole 
 
 

 

Figure 2.2. Chemical structure of dipyridamole (SIGMA-ALDRICH, 2016a). 
 

Dipyridamole (Figure 2.2) is a phosphodiesterase inhibitor, which blocks the metabolism 

and uptake of adenosine. It is used as an anticoagulant, an adjunct to coumarin 
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anticoagulants. It is a yellow powder with a melting point of 165-166 oC (SIGMA-

ALDRICH, 2016a). Common side effects include abdominal or stomach cramps, 

diarrhoea and dizziness. Sometimes, flushing, headache, nausea and weakness could 

be experienced but it is less common (Drugs.com, 2018a). For this research, 

dipyridamole was purchased from Sigma-Aldrich (UK) and used as a drug model. 

2.3.3 Aspirin 
 

 

Figure 2.3: Chemical structure of aspirin (SIGMA-ALDRICH, 2018a) 

 
Aspirin (Figure 2.3) is a white, crystalline, weakly acidic substance with a melting and 

boiling point of 136 oC and 140 oC respectively. It is an analgesic, antipyretic and anti-

inflammatory agent which acts by irreversibly blocking the activity of both 

cyclooxygenase 1 and 2. This decreases the precursors of prostaglandins and 

thromboxanes from arachidonic acid. It is usually indicated for pain relief and 

inflammation associated with rheumatoid arthritis, osteoarthritis and ankylosing 

spondylitis (DrugBank, 2017). Side effects may include abdominal pain, constipation and 

bloody or cloudy urine (Drugs.com, 2017). For this research, aspirin was purchased from 

Sigma-Aldrich (UK) and used a drug model. 

2.3.4 Polyvinyl pyrrolidone (MW, 40,000) 
 

 

Figure 2.4: Chemical structure of PVP  (SIGMA-ALDRICH, 2016b) 

 
PVP (Figure 2.4) is a fine, white to creamy-white, odourless powder with a molecular 

weight ranging from 2500 – 3000000. It is hygroscopic and are freely soluble in acids, 

chloroform, ethanol, ketones, methanol, and water. They are practically insoluble in 
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ether, hydrocarbons, and mineral oil. PVP (MW, 40,000) for this research was purchased 

from Sigma-Aldrich (UK).  

2.3.5 Talc  
 
Talc is a clay mineral made up of hydrated magnesium silicate with the chemical formula, 

Mg3Si4O10(OH)2. Its colour ranges from white to grey and it is a major component of baby 

powder. They are insoluble in water and when applied for pharmaceutical purposes, are 

commonly used as lubricants and anticaking agent to improve powder flow during 

compression (Drugs.com, 2018b). Talc finds use in some food products and is generally 

recognised as safe by the FDA (FDA, 1979). For this research, talc was ordered from 

Fluka Analytical (UK) (350 mesh) and used as a non-melting component for filament 

manufacturing.  

2.3.6 Triethyl citrate 
 
Triethyl citrate (TEC), an odourless, colourless, oily liquid which finds use as a food 

additive and in pharmaceutical manufacturing. It is an ester of citric acid commonly used 

as a plasticiser to reduce the glass transition temperature of polymers especially during 

processes like coating and hot melt extrusion. It was purchased from Sigma-Aldrich (UK) 

and used as a plasticiser during the HME of the filaments. 

2.3.7 Scotch blue painter’s tape  
 
Scotch blue painter’s tape 50 mm was supplied by 3M (Bracknell, UK). 

2.4 Methods  
 

2.4.1 Preparation of filaments using HME 
 
The pharmaceutical filaments were manufactured as a solid dispersion which is one of 

the popular techniques used to improve drug solubility. The application of polymers to 

this effect was first reported in 1969 by Chiou and Riegelman (Chiou and Riegelman, 

1969). Other techniques include the use of solubilising agents, micronisation, nano-

sizing and co-solvency.  

Hot melt extrusion is one of the methods used to create solid dispersion which forms a 

molecular mix between a drug and a polymer. The hot melt extruder works by softening 

the added materials under pressure usually created by the screws. The materials are 

mixed and compacted together and then extruded to form the solid dispersion. An 

illustration on how the HME works is shown in Figure 2.5. 
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The preparation of the filaments were carried out using a Hot Melt Extruder (Thermo 

Scientific HAAKE MiniCTW, Netherland) which is a counter rotating extruder with a 

maximum speed and temperature  of 300 rpm and 300 oC respectively (ThermofIsher, 

2017). These compounders find use in research and development especially at the initial 

stages as small samples could be extruded (5 g). An optimised ratio of a powder mixture 

constituting of the polymer (PVP), plasticizer (TEC), filler (talc) and API (aspirin, 

dipyridamole or theophylline) was gradually added to the HME. The screw speed was 

set at 80 rpm and the powders were allowed to mix for 5 min in order to allow 

homogenous distribution of the molten mass prior to extrusion using a torque of 0.4 Nm. 

Table 2.1 shows the drug free and drug loaded PVP-based filament formulations and 

their processing conditions. 

 

Figure 2.5. Formulation of a solid dispersion by hot melt extrusion process 
(ParticleScience, 2011).
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Table 2.1. HME and FDM 3D printing processing parameters.  

 

Formulation  HME processing  3D printing process 

Weight ratio 
Feeding temp. 

(oC) 

Extruding temp. 

(oC) 

Nozzle size 

(mm) 

Extruding temp. 

(oC) 

Building plate temp. 

(oC) 

Nozzle size 

(mm) 

PVP/TEC/Talc 

50%/12.5%/37.5% 
100 90 1.25 110 40 0.4 

PVP/TEC/Talc/Drug 

50%/12.5%/27.5%/10% 
100 90 1.25 110 40 0.4 
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2.4.2 Tablet design and printing 
 
Tablets in this study were designed in a caplet shape using an Autodesk® 3ds Max® 

Design 2012 software version 14.0 (Autodesk, Inc., USA). The templates design was 

then imported to the 3D printer’s software in a stereolithography (.stl) file format. For the 

printing of tablets, pre-prepared filaments were fed into a commercial FDM 3D printer 

equipped with 0.4 mm nozzle size and MakerWare software Version 2.4.0.17 (Makerbot 

Industries, LLC., USA). Tablets were printed using a standard printing resolution, 90 

mm/s extrusion speed, at 100 % infill and 200 µm layer height as reported by  (Pietrzak 

et al., 2015). 

2.4.3 Differential scanning calorimetry (DSC) 
 
DSC is a highly sensitive technique used to determine the thermotropic properties of 

excipients or actives. It is a thermoanalytical technique which measures the difference in 

the amount of heat required to increase the temperature of a sample and reference. This 

technique was first developed by E.S. Watson and M.J. O’Neil in 1962. 

Basic principles of this technique is that as samples are heated and they undergo 

physical transformation such as phase transition, more or less heat flows to the sample 

when compared to the reference to maintain both at the same temperature. It is these 

heat changes that are picked up by the equipment, a heat gain (endothermic) or heat 

loss (exothermic). Heat gain by samples usually leads to softening of material (glass 

transition temperature) or the melting of the material due to absorption of heat to undergo 

the endothermic phase transition. On the other hand, heat loss usually results from 

crystallisation of materials and require less heat to raise the samples temperature (Chiu 

and Prenner, 2011).  

A modulated temperature differential scanning calorimetry (MTDSC) is an advancement 

in the regular DSC where a sinusoidal heating program is used instead of a linear heating 

program. This enables the deconvolution of complex and overlapping thermal events by 

allowing the resolution of the obtained heat flow into a reversing and non-reversing signal 

(Coleman and Craig, 1996).  

In this research, a MTDSC analysis was achieved using a differential scanning 

calorimeter (DSC) Q2000 (TA Instruments, Elstree, Hertfordshire, UK) at a heating rate 

of 2 °C/min. Each sample was subjected to a heat-cool-heat scan in order to measure 

and exclude the effect of moisture contents on filament plasticity. A modulated scan was 

applied using an amplitude of 0.212 °C and a period of 40 sec, scanning from -70 to 200 

°C. Analysis was carried out under a purge of nitrogen (50 mL/min). The data was 



 
 

66 
 

analysed using a TA 2000 analysis software. TA pin-holed lid and 40 µL aluminium pans 

were filled with approximately 5 mg sample for the analysis. All measurements were 

carried out in triplicates. 

2.4.4 Thermogravimetric analysis (TGA) 
 
Thermogravimetric analysis is a thermal analysis method which measure changes in the 

mass/weight as a function of temperature, time and atmosphere. Results from such 

analysis could be used to determine the thermal and oxidation stability of materials. It 

also provides information about the components of a material, decomposition kinetics, 

moisture and volatile content of materials (Mohomed, 2016). Weight loss during analysis 

is usually an indication of decomposition, evaporation, reduction or desorption. On the 

other hand, a weight gain indicates oxidation or absorption. 

For TGA analysis, printed tablets, raw materials as well as extruded filaments were 

measured using a TGA Q5000 (TA Instruments, Hertfordshire, UK). Samples (10 mg) 

were added to an aluminium pan without lid and heated from 25 oC to 500 oC at a heating 

rate of 10 oC/min. All measurements were carried out in triplicates. 

2.4.5 X-ray Powder diffractometry (XPRD) 
 
X-ray powder diffraction in a non-destructive technique with a lot of pharmaceutical 

applications. It is used to determine the physical form of samples, excipient compatibility, 

process parameter optimisation, detection of purities, and monitoring uniformity of 

dosage forms and batches (Cynthia S. Randall, 2010).  

In XRPD, a detector is used to measure the diffraction pattern from the atoms of the 

samples due to an incident X-ray. The diffraction pattern provides information about the 

atomic arrangement within the crystal of the sample. However, this is not the case for 

amorphous materials as they do not produce any diffraction pattern due to lack of 

periodic array with long-range order.  

An X-ray diffractometer is made up of the X-ray tube, sample holder and the detector. 

The position of the diffraction peaks are determined by the distance between parallel 

planes of atom according to Bragg’s Law: 

nλ = 2d sinθ          Equation 2.1 

 
where n represents the positive integer, λ is the wavelength of the incident wave, d is the 

interplanar distance and θ is the scattering angle. The path difference between two 

incident waves undergoing interference from the crystal is given by 2d sinθ. A schematic 

illustration of Bragg’s spectrometer is shown in Figure 2.6 
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Figure 2.6. Schematic illustration of Bragg spectrometer  (Libretexts, 2017). 
 

A powder X-ray diffractometer, D2 Phaser with Lynxeye (Bruker, Germany) was used to 

assess the physical form of APIs in PVP, PVP:TEC filament, API-free and API-loaded 

filaments, and 3D printed tablets. Samples were scanned from 2Theta (2θ)= 5° to 50° 

using 0.01° step width and a 1 second time count. The divergence slit was 1 mm and the 

scatter slit was 0.6 mm. The wavelength of the X-ray was 0.154 nm using Cu source and 

a voltage of 30 kV. Filament emission was 10 mA using a scan type coupled with a two 

theta/theta scintillation counter over 30 min.  

2.4.6 Characterisation of the tablets properties 
 
Tablets in this study were characterised for; weight variation, drug content, friability, 

hardness and disintegration time. To determine weight uniformity, 20 tablets were 

randomly selected and weighed individually using a digital analytical balance Ohaus® 

(Discovery DV215CD). The average weights of the tablets were measured and the 

percentage deviation from the mean was then determined. 

The crushing strength of 10 tablets was measured using a TBH 220 D (Erweka GmbH, 

Heusenstamm, Germany). This is a device that measure the force required to crush a 

tablet usually inserted in-between the jaws of the device.  

The friability of the 3D printed tablets was determined using an Erweka Friability Tester 

TAR 10 (Erweka GmbH, Heusenstamm, Germany). Friability testers are devices used to 

investigate how the dosage form will withstand handling and transportation after 

manufacturing. It is made of a drum with an internal diameter between 283 and 291 mm 

and a depth between 36 to 40 mm. A curved projection inside the drum (75.5 to 85.5 

mm) tumbles the tablet at each rotation. Twenty tablets were randomly selected, weighed 

and tested at a rotation of 25 rpm for 4 min. Tablets were then collected, dusted and 

reweighed.  The differences in weight were calculated and displayed as a percentage of 

the original sample weight. 
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In order to determine the disintegration time for the 3D printed tablets, an Erweka ZT 

220 Disintegration tester (Erweka GmbH, Heusenstamm, Germany) was utilised. It 

consists of a basket-rack assembly, a 1L beaker, a system for temperature regulation 

and movement of the device. When set up adequately, it functions by lowering the basket 

containing the dosage forms in and out of the immersion fluid and the disintegration time 

is noted when no residue remains in the screen of the test apparatus. Six tablets were 

randomly selected and individually placed in the 6 cylinders of the basket rack assembly. 

The tablets in the cylinders were then covered with discs and the basket rack was 

immersed into a beaker containing 750 mL of 0.1 M HCl at 37 ±0.5 oC. The time required 

for all tablets to leave the mesh was then visually assessed and timed.  

2.4.7 Determination of drug content 
 
Drug contents for pharmaceutical purposes are analysed using HPLC. It has the mobile 

phase reservoir, injection system, the column and the detector as the major components 

(Figure 2.7). It is an equipment used to separate, identify and quantify every component 

in a mixture. This technique relies on forcing a pressurised liquid and the samples 

through a column containing solid absorbent materials. The components of the mixtures 

interact differently with these materials resulting in the separation of the components of 

the mixture and therefore being detected separately. The mobile phase and the flow rate 

used during analysis also affects the time of detection. 

 

Figure 2.7. Components of HPLC (LaboratoryInfo.com, 2015). 
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To investigate the effect of HME and FDM 3D printing on the integrity of the drugs, API-

loaded filaments and 3D printed tablets were analysed for drug content prior and 

following HME as well as in the 3D printed tablets. The drug content of the aspirin 

filament and 3D printed aspirin tablets were analysed using HPLC system (Agilent 

technologies 1200 series, Germany). Tablets were selected randomly and placed in 500 

ml of HPLC water in a volumetric flask. This was sonicated for 1 hr, cooled and filtered 

before the analysis. HPLC system consists of Agilent ZORBAX Eclipse XDB-C8 3.0 x 

150 mm, 5 µm column (made in USA) heated to 40 oC. The mobile phase was HPLC 

water and acetonitrile (90:10) at a flow rate of 1 mL/min. The injection volume was 5 µL 

and the maximum run time was 5 min. The assay was carried out at 230 nm wavelength. 

 

Dipyridamole and theophylline loaded filaments or 3D printed tablets were accurately 

weighed and placed in a 500 mL of 1:1 water:acetonitrile mixture for 2 h under 

sonication. The solutions were filtered through 0.22 μm Millex-GP syringe filters (Merck 

Millipore, USA) and prepared for HPLC analysis.  

Dipyridamole content in relevant samples were assessed using an Agilent UV-HPLC 

1260 series (Agilent Technologies, Inc., Germany) equipped with XTerra RP 18 column 

(150 x 4.6 mm, 5µm particle size) (Waters, Ireland) at temperature 40oC. The mobile 

phase (60:40, phosphate buffer pH 6.8:acetonitrile) was employed at a flow rate of 

1 mL/min and dipyridamole was detected at a wavelength of 282 nm.  The injection 

volume was10 µL and a stop time was 10 min per sample.  

For theophylline, the same UV-HPLC system and column were used as detailed above 

for dipyridamole. The mobile phase constituted of 10 mM solution of ammonium acetate 

buffer, methanol and acetonitrile (86:7:7). Analysis was carried out at a wavelength of 

272 nm, temperature of 40 oC, flow rate of 1 mL/min, injection volume was 5 µL and a 

run time of 7 min. 

2.4.8 Scanning electron microscopy (SEM) 
 
This is a type of electron microscope which produces images by scanning the surface of 

the material with a beam of electrons which interacts with the atoms on the surface of 

the sample to produces signals about its surface topography. The components of an 

SEM is shown in Figure 2.8 
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Figure 2.8. The set-up of a scanning electron microscope (Technoorg-Linda, 2018).  

 
The surface morphology of the filaments and the printed tablets was examined using 

Quanta-200 SEM microscope at 20 kV. Samples were placed on a metallic stub and gold 

coated under vacuum using JFC-1200 Fine Coater (Jeol, Tokyo, Japan). Photographs 

of the tablets were also taken with a Canon EOS-1D Mark IV (Canon Ltd, Japan). 

2.4.9 In vitro drug release studies 
 
In vitro dissolution test is usually carried out on pharmaceutical products in order to co-

relate in vivo activities of the drug. This is done to determine the drug release pattern of 

the dosage form and usually involves a transparent inert vessel for the dissolution media, 

a motor or drive shaft for the cylindrical basket (USP I) or paddle (USP II). The vessel is 

usually immersed in a temperature regulated water bath used to simulate the 

temperature of the human body. Sampling could be done automatically or manually and 

analysed by UV or HPLC. 

In vitro drug release studies were investigated using an Erweka DT 600 dissolution tester 

(USP II). Three tablets were randomly selected and individually placed in the dissolution 

vessels each containing 900 mL of 0.1M HCl and stirred at 50 rpm and 37 ±0.5 oC. Four 

mL aliquots were manually collected using 5 mL Leur-Lok syringes at (0, 5, 10, 15, 20, 

25, 30, 40, 50, 60 and 70 min) time intervals and filtered through a Millex-HA 0.45-µm 

filter. Each aliquot withdrawn was replaced with 4 mL of 0.1M HCl. The absorbance of 

the samples was finally measured using a UV spectrophotometer (Bibby Scientific Ltd, 

UK) at 230, 282 and 272 nm for aspirin, dipyridamole and theophylline respectively.  



 
 

71 
 

2.4.10 Statistical analysis 
 
One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the results. 

Differences in results above probability level (p > 0.05) were considered not significant 

whilst; (p<0.001) were considered very significant and between p = 0.01 and 0.05 were 

considered significant.  
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2.5 Results and discussions  
 
PVP is a well-known pharmaceutical excipient generally recognised as safe by the Food 

and Drug Administration (FDA). It is highly water soluble and finds use as a solubility 

enhancer amongst other uses in the pharmaceutical industries.  These properties of this 

polymer in addition to a well-established HME processing technique in the preparation 

of solid dispersion, made it a suitable candidate for FDM 3D printing drug manufacturing. 

In this research, TEC was used as a plasticiser to lower the HME processing temperature 

of this polymer which reflected on the 3D printing temperature of the PVP-based filament 

which was less than the temperature used for the commercially available PVA polymer. 

To the author’s knowledge, this is the first report of the use of PVP in the 3D printing of 

tablets using FDM 3D printing at such a low temperature. It was observed that as a result 

of this low Tg of the resultant filaments, it was difficult to obtain a 3D structure from the 

filaments as the building layer tended to collapse during the process. Talc was introduced 

into the filament formulation to prevent this. Talc being a thermostable substance with a 

melting point of 1500 oC, its primary function in the formulation was to support the 

structure of the product and encourage the formation of 3D structures during the layer 

depositions. This provided a blank filament formulation which could then be loaded with 

drugs by replacing some percentage of the talc with the actives as demonstrated with 

aspirin, dipyridamole and theophylline. The use of a thermostable substance with such 

high melting point was not carried out in the study by Pietrzak et al. (2015). However, it 

was believed that the high concentration of the actives aids the formation of the 3D 

structure since printing was done at temperatures below the melting point of the drug 

which might restrict the system to drugs with high melting points. Figure 2.9 reveals the 

stages from filament production using HME to FDM 3D printing of the tablets using the 

parameters in Table 2.1. A 1.25 mm HME nozzle was used to produce filaments 

compatible with the FDM 3D printer head which was observed to expand during extrusion 

to achieve filaments of approximately 1.5 mm, which is close to the size of the 

commercially available PVA filament (1.75 mm). It was also observed that the presence 

of talc reduced the polymer expansion during extrusion which is important as large 

filament cannot pass through the metal channel that leads to the nozzle.  3D printing was 

carried out at 110 oC with the temperature of the building plate maintained at 40 oC to 

enable fast cooling during 3D printing and at the same time aid tablet adhesion to its 

surface. Tablet adhesion was also enhanced by using Scotch blue painter’s tape on the 

surface of the building plate. 
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Figure 2.9. Schematic illustration of the fabrication of immediate release 3D-printed tablet. (A) Materials mixture (API, PVP and talc) are 
processed through HME to produce (B) API loaded PVP filament is extruded (C) Stereolithographic file is designed via CAD software 
and (D) FDM 3D printer uses the filament as a feed to fabricate drug loaded immediate release tablet (E) at 110 oC. 
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The SEM images of the 3D printed tablets revealed the layer-by-layer signature structure 

of forms produced using 3D printers (Figure 2.9). This was also seen from a cross section 

image of the tablet. The filament before 3D printing was mostly smooth with few rough 

areas in comparison to the 3D printed structure. The cross-section view of the filament 

revealed the presence of void or air pockets which might be as a result of moisture loss 

during heating in the HME.  

Thermogravimetric analysis (Figures 2.10A, B and C) revealed initial mass loss from 

PVP alone (approx. 8%) and when in the formulation (approx. 4%) before 100 oC. This 

was attributed to polymer dehydration as PVP is known to be hygroscopic with the ability 

of taking up moisture up to 40% of its weight. This also revealed the stability of the 

polymer, with weight loss occurring above 380 oC. TEC alone demonstrated weight loss 

at approx. 115 oC. However, when in combination with PVP, weight loss was observed 

above 250 oC. This stabilising effect was also noticed when PVP was formulated with 

aspirin. Weight loss on aspirin occurs in two stages as demonstrated in Figure 2.10A, 

the first occurring above 150 oC  as a result of the elimination of acetic acid and the 

evaporation of salicylic and acetylsalicylic acid (Ribeiro et al., 1996). This was however 

prevented with the addition of PVP with the second weight loss starting at approximately 

300 oC as a result of the elimination of residual acetic acid and salicylic acid with the 

thermal decomposition of 2,2- bis (acetate) diphenyl ester (Ribeiro et al., 1996). These 

stabilising properties further strengthens the use of PVP in the formulation. This 

stabilising effect was however not noticed in a PVP-dipyridamole and theophylline solid 

dispersions. The TGA of dipyridamole alone revealed an initial 35 % mass loss which 

could be as a result of the dissociation of two piperidine substituent groups attached to 

carbon C4 and C8 of pyrimido-pyrimidine ring (Silva Oliveira et al., 2006). The second 

mass loss (approx. 35%) could be as a result of the dissociation of two diethanolic groups 

attached to the substituents at positions C2 and 6 of the central ring (Silva Oliveira et al., 

2006). Talc was stable up to 500 oC confirming its role as the structure forming agent 

without which the structure of the tablets cannot be maintained. 

In conclusion, the excipients and the actives used in the filament fabrication 

demonstrated thermal stability at the HME (100 oC) and 3D printing (110 oC) processing 

temperatures which was necessary to maintain their integrity throughout the process.  
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Figure 2.10. TGA Thermal degradation profiles of TEC, PVP, PVP:TEC filament, 
API-free and API loaded filaments, and 3D printed tablets for (A) Aspirin, (B) 
Dipyridamole, (C) theophylline and the excipients used.  
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The DSC thermographs of the first heat-scans all displayed a large endothermal event 

between 50-110 oC due to polymer dehydration (Figures 2.11A, 2.12A and 2.13A). This 

might be related to the hygroscopic nature of PVP, where electronegative groups of the 

carbonyl group in the pyrrolidone structure are able to form hydrogen bonds with water 

(Verdonck et al., 1999). Therefore, a modulated heat-scan was utilized to assess this 

event-complex. In order to investigate the impact of water on glass transition temperature 

(Tg), a heat-cool-heat scan was employed.   

The reversing heat flow of the first heat-scan indicated that the Tg of PVP filament 

(plasticised with TEC) to be in the range of 19-35 oC. This Tg was significantly lower than 

expected from Gordon-Taylor equation (Tg =82.3 oC) and was related to the plasticising 

effect of water. On the other hand, the second heat-scan indicated a significantly higher 

Tg value of 93 oC (in comparison to the Tg of first heat-scan, p<0.05), confirming that 

moisture has an impact on the plasticity of PVP. Such a plasticizing effect of moisture on 

PVP was previously reported (Szakonyi and Zelkó, 2012, Lai et al., 1999). 

The addition of talc did not show any significant effect on the thermal behaviour of PVP 

as noted in the first and second heat-scans (Figures 2.11B, 2.12B and 2.13B). The 

addition of aspirin, dipyridamole and theophylline shifted the Tg of the filament in the 

second scan from 93 oC to 62, 78 and 70 oC respectively. Such depression in the Tg 

indicates a plasticizing effect of the actives used. Similar findings have been reported 

earlier for other API-PVP blends (Nair et al., 2001).  

  



 
 

77 
 

 

 

Figure 2.11. Reversing MTDSC thermographs of PVP, PVP:TEC filament, API-free 
and API-loaded filaments, and 3D printed tablets for Aspirin (A) First heat-scan 
and (B) second heat-scan). 
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Figure 2.12. Reversing MTDSC thermographs of PVP, PVP:TEC filament, API-free 
and API-loaded filaments, and 3D printed tablets for dipyridamole (A) First heat-
scan and (B) second heat-scan).  
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Figure 2.13. Reversing MTDSC thermographs of PVP, PVP:TEC filament, API-free 
and API-loaded filaments, and 3D printed tablets for theophylline (A) First heat-
scan and (B) second heat-scan). 
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Initial investigation into the physical forms of the drug in the filaments after processing 

by HME and 3D printing was carried out using MTDSC, where the presence of a drug 

peak due to its melting point indicates crystallinity and a shift in baseline (Tg) or the 

absence of peaks indicates an amorphous formulation. The non-reversible heat flow from 

the MTDSC result of the actives alone demonstrated peaks due to the melting point of 

aspirin, dipyridamole and theophylline at approx. 137, 165 and 271 oC respectively 

(Figure 2.14A, B, C). However, processing these actives with the polymer and the other 

excipients resulted in the absence of these drug peaks for the three actives which was 

also observed after the 3D printing processes. This was expected as when actives are 

dispersed at the molecular level in a polymer matrix, the system therefore exhibits the 

properties of the polymer due to its crystalline inhibition properties.  

To further confirm this observation, an X-ray powder diffraction analysis technique was 

used. The XRPD pattern for aspirin alone showed peaks at (2θ) = 7.98, 15.80, 22.85, 

23.39, 27.05 o (Figure 2.15A). However, this was absent in the aspirin loaded filament 

and tablets indicating no crystalline presence in the PVP matrix. This was also the case 

for dipyridamole loaded filament and tablets (Figure 2.15B) which showed the absence 

of peaks at (2θ) = 10.13, 17.89, 18.91, 20.42, 20.98, 23.65, 26.12, 28.49, 30.45 o. XRD 

spectra for theophylline alone elucidated diffraction peaks at (2θ) =7, 12, 14 and 24 ° 

analogous to previous findings (Räsänen et al., 2001). However, the presence of some 

peaks at (2θ) =12 and 7 ° (Figure 2.15C) indicated that a percentage of theophylline 

remained in the crystalline form. This contradicted the initial finding about the physical 

form of theophylline using DSC technique. In another research, a polymer matrix with 

PVP remained amorphous at up to 20 % drug loading (LaFountaine et al., 2016). 

However the investigated active was a micronised greseofulvin and the nature of the 

active and its interaction with the polymers plays a key role in the type of solid dispersion 

formed. In addition to these findings, it was observed that talc remained in its crystalline 

form in all the formulations with peaks at (2θ) = 9.44, 19.03 and 28.66 o from talc alone 

remaining present after processing by HME and 3D printing. The application of XRPD in 

the determination of physical forms of actives and excipients seems to be a more reliable 

technique since it is non-invasive and relies on x-ray diffractions from crystal patterns in 

a sample. This is unlike DSC which involves the use of thermal energy which might 

change the behaviour of the polymer matrix. In this regard, it was concluded that some 

portion of theophylline remained in their crystalline form after these processes. Drugs 

are more soluble when in their amorphous forms, therefore it will be interesting to 

determine how this affects the solubility of the theophylline loaded caplets in comparison 

to the other actives.   
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Figure 2.14. Determination of the physical form of the actives before and after 
processing using HME and 3D printing for (A) aspirin, (B) dipyridamole and (C) 
theophylline.  
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Figure 2.15. XRPD patterns of PVP, PVP:TEC filament, API-free and API-loaded 
filaments, and 3D printed tablets for aspirin (A) dipyridamole (B) and theophylline. 
(C). 
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The 3D printed tablets demonstrated adequate mechanical properties, demonstrating a 

high crushing strength with 0 % friability. This high crushing strength was attributed to 

the tablet manufacturing mechanism which involves a layer-by-layer deposition of 

material fused as a result of heat in addition to the plasticity of the polymer. For 

conventional tablet, crushing strength depends on compaction pressure during tableting 

and the quantity of binder used during the formulation. Although this is an unofficial test, 

it could affect the rate of tablet disintegration which could be improved using super 

disintegrants for conventional tablets. The 3D printed caplets were able to disintegrate 

before 15 min (Table 2.2) which was the required criteria for immediate release dosage 

forms irrespective of the high crushing strength without the need for disintegrants. Weight 

variations were observed for the 3D caplets which could be as a result of irregularity in 

the filament diameter or as a result of accumulation of particles in the 3D printer nozzle 

especially from the insoluble and non-melting component of the formulation (talc). 

However, these weight variations did not reflect in the dimensions of the tablets of the 

same formulation (deviation was ≤0.15) (Table 2.3), which might be related to materials 

distributions in the filament which result in layers of similar dimension having different 

weight. Variations in weight and dimensions were noticed between the different 

formulations. Moreover, the theoretical dimension of the caplets was higher than the 

actual dimensions obtained after 3D printing demonstrating the need to optimise the 

technology for pharmaceutical purposes to ensure more accurate dispensing.  

To determine the effect of the processes on the model drugs, HPLC analysis was carried 

out on the produced filaments to check for the effect of the HME, and on the drugs and 

the 3D printed tablets to check for the effect of the FDM. Drug contents of 102.60 ±0.59% 

and 101.18 ±3.9% (p > 0.05), 100 ±0.09 and 99.56 ±0.48 (p > 0.05) of the actives was 

recovered for dipyridamole and theophylline respectively from the filament (after HME) 

and 3D printed tablets (Table 2.4). This level of drug recovery after these processes was 

attributed to the low operating temperature of the optimised PVP polymer (110 oC) on 

the FDM. This might not be the case for the commercially available PVA or PLA filaments 

usually printing above 220 oC since dipyridamole and theophylline starts degrading at 

approx. 230 oC. Drug degradation was observed for the hot melt extruded aspirin-PVP 

formulation and 3D tablets (p < 0.05). However, these findings are not conclusive. Aspirin 

is a sensitive molecule and could be easily hydrolysed into salicylic acid and acetate. 

Therefore, this degradation could be during the extraction of the drug from the filament 

and the 3D tablets since water was used. Besides the TGA analysis revealed no mass 

loss at the processing temperatures, therefore it was concluded that optimising the 

extraction of aspirin will avoid this degradation.   
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Table 2.2. Physical characterisation (Weight uniformity n=20, Crushing strength 
n=3, Disintegration n=6). 

 

Drug 

Weight 

Uniformity 

±SD (mg)  

SD% 
Friability 

(%) 

Crushing 

strength (N) 

Disintegration 

time (min) 

Aspirin 112.05 ± 4.58 4.09 0 411.33 ±15 8 

Dipyridamole 121.68 ± 9.28 7.63 0 432.67 ±24 10 

Theophylline 111.01 ± 5.30 4.78 0 353.00 ±22 13 

 

Table 2.3. The dimensions of the 3D printed tablets (n=6). 

 

3D printed tablets  X ±SD (mm) Y ±SD (mm) Z ±SD (mm) 

Theoretical values  10 3.96 3.64 

Aspirin 9.41 ±0.05 3.74 ±0.13 3.53 ±0.11 

Dipyridamole  9.23 ±0.15 3.86 ±0.09 3.80 ±0.12 

Theophylline  9.43 ±0.07 3.65 ±0.02 3.54 ±0.08 

 

Table 2.4. Drug content analysis using HPLC (n=3). 

 

Active ingredient 
Drug content 

before HME 

Drug content after 

HME (%) ±SD 

Drug content After 

3D printing (%) ±SD 

Aspirin 100 83.65 ±0.96 89.07 ±2.04 

Dipyridamole 100 102.60 ±0.59 101.18 ±3.91 

Theophylline 100 100.23 ±0.09 99.56 ±0.48 
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The immediate release properties of the PVP loaded drug was demonstrated using an 

in vitro dissolution studies. It was observed that more than 85% of the actives were 

dissolved within 30min for the three drugs (Figure 2.16), therefore compliant with the 

British pharmacopeia standards. However, dipyridamole and theophylline had a faster 

drug release percentage at 30 min, with aspirin formulation being significantly slower (p 

< 0.05). This might be as a result of the effect of the acidic media on the degree of 

ionisation of aspirin.  The fast dissolution of the formulations was attributed to the 

amorphous nature of the polymer and hence the amorphous nature of the drug after 

been dispersed in the polymer, leaving the drug with the fast dissolving properties of the 

polymer (PVP). Theophylline is also highly soluble in an acidic pH and therefore some 

portion of it being in the crystalline form as observed from the XRD results might not 

affect its rate of dissolution. In this study, it seems to demonstrate the fastest dissolution 

rate.  

 

 

 

 
 
 
 

Figure 2.16. Immediate drug release profile from PVP 3D tablets (n=3). 
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2.6 Conclusions  
 
By combing FDM with HME, it was possible to fabricate 3D printed caplets with 

immediate release properties based on PVP and talc as a matrix former and a 

thermostable filler. The PVP-based filament was suitable for three model drugs (aspirin, 

dipyridamole and theophylline) which was successfully 3D printed into caplets and 

characterised. These loaded actives with the exception of theophylline became 

amorphous in the extruded filament and 3D printed caplets. The excipients and APIs 

were stable within the HME and 3D printing processing temperature with the exception 

of aspirin which degraded during this process. This was however attributed to the method 

used in the extraction of aspirin for HPLC analysis since there was no weight loss at the 

processing temperatures when analysed using TGA. This could be as a result of the high 

sensitivity of the molecule to hydrolysis which could break it down into salicylic acid and 

acetate.  

The manufactured tablets showed excellent mechanical properties and was still able to 

disintegrate before 15 min falling into the BP criteria for immediate release dosage forms.  

To the authors’ knowledge, this is the first report of employing PVP in FDM 3D printing 

and a rare example of employing the process to produce immediate release caplets. The 

reported approach can be employed to fabricate patient-tailored caplets at relatively 

lower temperature (110 oC), using pharmaceutically approved and solubility enhancing 

polymer. This work confirms the possibility of expanding the use of FDM 3D printing to a 

wider range of APIs for on-demand fabrication of immediate release products. It also 

opens doors for the use of other pharmaceutical grades polymers with various release 

profile to encouraging the fabrication of more complex release profiles as will be 

discussed in the next chapter.  
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3.1 Introduction 
 
Latest advances in pharmacogenomics and clinical trials have put more emphasis on 

individualizing treatment in a patient-centred health care (Raijada et al., 2013). One 

important aspect of personalizing treatment is having the ability to individualise dosage 

forms to every patient’s need. This has been carried out over the years with no 

consideration to the genetic makeup of the patients, rather the age and weight of the 

patients are considered during dosing, especially for infants and children. Splitting of 

tablets to personalise doses has been associated with dose variation (Habib et al., 2014, 

Peek et al., 2002) as the method of splitting and patient’s/caregiver’s competence plays 

a key role in the dosing accuracy. Moreover, the splitting of coated tablets physically 

compromises the barrier function of the coating, rendering dose adjustment impractical 

for delayed and other modified release tablets (Noviasky et al., 2006).  

One potential solution in the dose personalising of tablets is the on-demand 

manufacturing using a benchtop 3D printer (Skowyra et al., 2015) especially the use of 

FDM 3D printing. This approach offers several advantages to both healthcare workers 

and patients, which includes flexibility in modifying the dose, shape and size of the 

dosage form in response to patient’s or healthcare staff’s needs (Alhnan et al., 2016) 

and also offers the potential of being able to do so at the point of care.  At the point of 

this research, there has been no report of an enteric drug release dosage form produced 

using an FDM 3D printer. It will be of great benefit to be able to achieve personalisation 

of dosage forms with such release properties and bring the use of 3D printers closer to 

being a universal personalised dosing equipment.  

Enteric coated dosage forms are usually achieved by film coating in conventional 

manufacturing and involves two main steps; i) production of an API-loaded core, and ii) 

coating the core with synthesized or semi-synthetized polymers (Nollenberger and 

Albers, 2013, Sakae and Hiroyasu, 2008). This makes the process time consuming and 

therefore difficult to apply for personalised dosing. Coating could be carried out using the 

coating techniques explained in chapter 1, Section 1.3.2, with the primary aim of creating 

a thin polymeric film on the drug loaded core/substrate. Enteric coating is a functional 

film coating system designed to protect actives from the acidic environment of the 

stomach and prevent drug release which occurs only at the high pH environment of the 

small intestine. In addition, enteric coating also avoids side effects such as nausea or 

bleeding by protecting the stomach walls from the irritating effect of some actives. 

Tablet coating is typically performed in large batches, with coating efficiency relying on 

the tablet mixing dynamics, tablet size and shape and the coating method used. Coating 
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is usually monitored by substrate weight gains during the process as the coating material 

is applied. Over the years, this was deemed not efficient and research is now turning to 

more specific approaches to monitor coating efficiency to ensure that the function of the 

coating is achieved. This includes the use of terahertz in-line sensing (Lin et al., 2015) 

which is a non-destructive approach and was able to pick up alterations in coating 

thickness due to experimental changes during the research. Other techniques include 

the use of near-infrared frequencies and Raman spectroscopy (Romero-Torres et al., 

2005). Insufficient coating or the presence of imperfection in the coating could result in 

ineffective gastric resistance, while too much of the coating material could result in a 

longer lag time before the drug is release in the intestinal area. The ionic strength, buffer 

capacity and the pH of the media used during the in vitro studies also affects the rate of 

polymer dissolution and drug release. In an example, bicarbonate buffer was 

demonstrated to provide a better in vitro-in vivo correlation in comparison to the use of 

the compendia phosphate buffer. Enteric release using several enteric polymers 

achieved a fast release after a pH change in the phosphate buffer which was not the 

case when carried out in the bicarbonate buffer media (Liu et al., 2011). Obvious release 

delays were noticed which seemed to correspond to the results obtained in vivo. These 

observations demonstrate the complex nature of obtaining such drug release profile.   

Moreover, the chemistry of the polymer plays a major role in obtaining enteric drug 

release. A list of commonly used enteric polymers are shown in Chapter 1, Table 1.1. 

For this chapter, more emphasis will be laid on the applications of Eudragit L100-55 

which is a methacrylic acid copolymer that is only soluble at pH ≥5.5. Because of this 

property of the polymer, it finds use in enteric release and other forms of delayed release 

formulations in combination with other polymers. The application of a Eudragit L100 55-

based polymeric film on tablets or pellets has been successful using conventional coating 

approaches (Qiao et al., 2013, Sauer and McGinity, 2009). In an example, a dry coating 

approach at 4 % coating level achieved 70 ±4 % coating efficiency and was stable over 

12 months. Drug release modification has also been demonstrated by compression 

coating which demonstrated adequate acid resistance and release at high pH values 

(Rujivipat and Bodmeier, 2010).  It has also demonstrated compatibility with HME and 

has been used in the manufacturing of a drug polymer matrix for enteric release. This 

demonstrated acid resistance without the need for coating, which could be time 

consuming because of the nature of the process (Andrews et al., 2008). 

According to the US Pharmacopeia, enteric products require a paradoxical criteria of no 

or limited drug release in the acid media (<10 %) followed by the release of 80 % of the 

actives in the intestinal phase within a certain time limit (Revision, 2007). These criteria 
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are usually met by applying a 30-100 µm thick polymeric film to a substrate. However, 

achieving such a demanding criterion via 3D printing technologies creates major 

technical challenges such as i) grafting a consistent protective shell within the resolution 

of 3D printers, ii) achieving adhesion and compatibility between the shell and core 

materials, and iii) coordinating simultaneous applications of the shell and core materials.  

Recent technological advances have made 3D printers available with multiple nozzles. 

Such advances paved its way in artistic designs (Hergel and Lefebvre, 2014, Reiner et 

al., 2014), for the manufacturing of composite elements (Dudek, 2013), as well as 

pharmaceutical applications. This also increases the chances of nozzle blockage during 

printing and creates more room for error when printing high resolution 3D objects even 

with the use of the commercial PVA filaments.  

These challenges were reflected by the absence of literature reports utilising 3D printing 

technologies for the fabrication of delayed release shell-core tablets. Although a powder-

based 3D printing technology have been reported for immediate and controlled release 

(Yu et al., 2007, Rowe et al., 2000, Katstra et al., 2000), no examples of delayed release 

tablets meeting the pharmacopeia criteria have been reported. One relevant attempt was 

the use of TheriForm technology (powder-based 3D printing) to manufacture a dual 

pulsatile release system composed of 3 chambers (Rowe et al., 2000). In the enteric 

chamber, an ethanolic solution of the enteric polymer was sprayed onto a mixture of 

lactose and MMC, resulting in a pH dependent behaviour and a drug release over 4 hrs 

in the intestinal phase. 

With increased interest in FDM 3D printing of oral tablets for extended (Sandler et al., 

2014a, Skowyra et al., 2015, Goyanes et al., 2015a) and immediate drug release (Sadia 

et al., 2016, Okwuosa et al., 2016, Pietrzak et al., 2015), few attempts have been 

reported utilising the technology for enteric tablets. For instance, FDM 3D printed PVA 

based tablets were coated with methacrylic polymer to target the colon using a 

conventional fluidized bed coater (Goyanes et al., 2015b). More recently, a double disc 

containing an enteric layer was fabricated by FDM 3D printing and the drug release from 

the disc was assessed using a test cell assembly (Melocchi et al., 2016). As far as the 

author knows, there have been no previous examples of complete production of delayed 

release tablets through 3D printing at the point of this research. 

3.2 Aims and objectives  
 
This research therefore aims at fabricating an enteric-coated tablet using a dual-nozzle 

single step FDM 3D printing process. To be able to achieve this, the following objectives 

will be carried out: 
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 Develop a Eudragit L100-55-based filament for FDM 3D printing 

 Produce gastric-resistant tablets by employing a range of shell-core designs 

using polyvinyl pyrrolidone (PVP) and methacrylic acid co-polymer for core and 

shell structures respectively.  

 To use theophylline as an initially model drug for its thermal stability, small 

molecular weight in addition to a high water solubility, rendering it an ideal model 

drug to test the efficiency of controlling drug release from the enteric system. 

Later, other model drugs commonly available as gastric-resistant products 

(budesonide and diclofenac sodium) were employed in this system. 

 Characterise the actives, excipients and the formulations 

o Scanning electron microscopy (SEM)  

o Thermal analysis (DSC, TGA) 

o X-ray powder diffraction  

o Raman spectroscopy  

o Drug content 

o In vitro dissolution studies   
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3.3 Materials 
 

3.3.1 Eudragit L100-55 
 

 
 
Figure 3.1. Chemical structure of Eudragit L100-55 (Hamman, 2010). 

 
This is a methacrylic acid copolymer (Figure 3.1) with gastric resistance properties, 

dissolving only at pH ≥5.5. This makes the polymer a perfect candidate for enteric drug 

delivery of actives that are acid-sensitive or mucosa aggressive. Evonik Industries 

(Darmstadt, Germany) donated Eudragit L100-55 for this research.  

3.3.2 PEG400 
 
This is a low molecular weight grade of polyethylene. It is a clear, colourless and viscous 

liquid with low toxicity leading to its various pharmaceutical applications. It has been used 

as a solvent, surfactant, plasticiser (Khan et al., 2015), suppository base and tablet 

(Fujimori et al., 2002) and capsule formulations. For this research, PEG400 was 

purchased from Sigma-Aldrich (UK) 

3.3.3 Castor oil 
 
Castor oil is a pale-yellow vegetable oil extracted from castor oil plants (Ricinus 

communis) with a boiling point of 313 oC. It is generally recognised as safe and finds use 

in the food industry as well as pharmaceutical formulations (Amaral et al., 2001). For this 

research, castor oil was purchased from Sigma-Aldrich (UK).   

3.3.4 Oleic acid  
 
This is a colourless and odourless oil occurring naturally in animal and vegetable fats 

and oil. It has a boiling point of 286 oC and finds use in the food industries and as an 

emulsifying or solubilising agent in the pharmaceutical industries. For this research, oleic 

acid was purchased from Sigma-Aldrich (UK). 
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3.3.5 Other ingredients  
 
Theophylline was purchased from ACROS Organics (UK). Polyvinyl pyrrolidone (PVP, 

MW 40,000), triethyl citrate, tribasic phosphate (TBP) and dipyridamole were purchased 

from Sigma-Aldrich (UK). Talc was ordered from Fluka Analytical (UK). Scotch blue 

painter’s tape 50 mm was supplied by 3M (Bracknell, UK).  
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3.4 Methods  
 

3.4.1 Preparation of filaments using HME 
 
For the preparation of the core filaments, a Thermo Scientific HAAKE MiniCTW hot melt 

extruder (Karlsruhe, Germany) was utilised. An optimised ratio of a powder mixture 

constituting of the polymer (PVP), plasticizer (TEC), filler [talc or tribasic phosphate 

sodium (TBP)] and API (Table 3.1) was adapted from previous study (Chapter 2) 

(Okwuosa et al., 2016). The mixture was gradually added to the HME and allowed to mix 

for 5 min at 100 oC to allow homogenous distribution of the molten mass. Afterwards, 

extrusion took place at 90 oC at a torque of 0.4 Nm and 1.25 mm nozzle size. Optimised 

filaments were also modified to include another two model drugs, budesonide (2.3 %wt) 

and diclofenac sodium (20 %wt). The change in drug concentration allowed achieving a 

representative dose for budesonide (3 mg) and diclofenac sodium (25 mg) from the 

model core. For the preparation of the shell, Eudragit L100-55, TEC and talc (50, 16.67 

and 33.33%wt) were mixed at 135 oC for 5 min in a HME and extruded at 125 oC using 

1 mm nozzle size. 

3.4.2 Tablet design and printing 
 
The core-shell tablets were designed in a caplet shape as described in Section 2.4.2 

(Chapter 2). To assess the impact of shell thickness, several designs with increasing 

shell thicknesses (0.17, 0.35, 0.52, 0.70 or 0.87mm) were constructed. All the shell 

designs were complementary to the same core. Shell-core tablets were printed using 

modified settings of the software: Shell and core printing temperatures were 185 °C and 

110 °C respectively and the platform was heated to 40 °C. The first layer, infill, inset and 

outline layers were printed at 12 mm/s extrusion speed and 50 mm/s travelling speed. 

The resolution was set as standard (200 µm layer thickness). In a separate experiment, 

to assess the impact of 3D printing resolution, the resolution of core-shell theophylline 

tablet with 0.52mm shell were printed at low, standard and high resolutions. 

3.4.3 Thermal analysis 
 
For modulated temperature differential scanning calorimetry (MTDSC) analysis, a 

differential scanning calorimeter (DSC) Q2000 (TA Instruments, Elstree, Hertfordshire, 

UK) was employed, using methods as previously reported in Section 2.4.3 (chapter 2).  

To assess the impact of different lubricant on thermal stability of the PVP filament, TGA 

analysis was employed. Printed tablets, raw materials as well as extruded filaments were 

also measured using a TGA Q5000 (TA Instruments, Hertfordshire, UK). Approximately 
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10 mg of the samples were added to an aluminium pan without lid and heated from 25 

oC to 500 oC at a heating rate of 10 oC/min. All measurements were carried out in 

triplicates. 

3.4.4 X-ray Powder diffractometry (XRPD) 
 
The physical form of model APIs in PVP, PVP: TEC filament, API-free and API-loaded 

filaments, and 3D printed tablets were assessed using a powder X-ray diffractometer, 

D2 Phaser with Lynxeye (Bruker, Germany). Samples were scanned from 2Theta (2θ) = 

5° to 50° using the parameters as previously reported in Section 2.4.5 (chapter 2). 

3.4.5 Determination of drug content 
 
To examine the effect of HME and FDM 3D printing on the integrity of API, API-loaded 

filaments and 3D printed tablets, they were analysed for drug content prior and following 

HME as well as in the 3D printed tablets. Samples (API loaded filaments or tablets) were 

accurately weighed and placed in a 500 mL of 0.1M HCl, 1:1 water: acetonitrile mixture 

or phosphate buffer 6.8 for 2 hr under sonication for theophylline, budesonide and 

diclofenac sodium respectively. The solutions were filtered through 0.22 μm Millex-GP 

syringe filters (Merck Millipore, USA) and prepared for HPLC analysis.  

Theophylline content in relevant samples was assessed using an Agilent UV-HPLC 1260 

series (Agilent Technologies, Inc., Germany) equipped with XTerra RP C18 column 

(150 × 4.6 mm, 5 μm particle size) (Waters, Ireland) at a temperature of 40°C. The mobile 

phase consists of a 10 mM solution of ammonium acetate buffer, methanol and 

acetonitrile (86:7:7). Analysis was carried out at a wavelength of 272 nm, flow rate of 

1 mL/min, injection volume was 5 µL and a run time of 7 min.  

Budesonide content was assessed using an Agilent UV-HPLC 1260 series (Agilent 

Technologies, Inc., Germany) equipped with synergy max column at 30°C. A mixture of 

acetonitrile and pH 3 water (55:45) was used as a mobile phase. Analysis was carried 

out at a wavelength of 244 nm, flow rate of 1.5 mL/min, injection volume was 50 µL and 

a run time of 10 min.  

For diclofenac sodium, samples were assessed using an Agilent UV-HPLC 1200 series 

(Agilent Technologies, Inc., Germany) equipped with synergy fusion column at 

temperature 30°C. The mobile phase was made up of methanol and pH 2 water (80: 20). 

Analysis was carried out at a wavelength of 280 nm, flow rate of 1 mL/min, injection 

volume was 10 µL and a run time of 10 min.  
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3.4.6 Scanning electron microscopy (SEM) 
 
Quanta-200 SEM microscope at 20 kV was used to examine the surface morphology of 

the printed shell-core structures. Samples were placed on a metallic stub and then gold 

coated under vacuum using JFC-1200 Fine Coater (Jeol, Tokyo, Japan). Images of the 

tablets were also taken using a Canon EOS-1D Mark IV (Canon Ltd, Japan). 

3.4.7 Raman Spectroscopy 
 
Raman spectroscopy is a qualitative and quantitative analytical technique, which was 

named in the honour of the inventor, C.V. Raman (Raman and Krishnan, 1928).  It 

consists of a light source, lenses, filters, prism and a sensitive detector all controlled by 

a computer system to enable analysis (Figure 3.2).  Samples are illuminated with 

monochromatic laser beam which interacts with the molecules of the samples to produce 

a scattered light. A small part of the scattered light produces a frequency different from 

the incident light which is detected and used to construct the Raman spectrum (Bumbrah 

and Sharma, 2016).  

 

Figure 3.2. The components and working principles of Raman spectroscopy 
(Frejberg, 2013). 

 
Raman spectroscopy (Horiba HR800, UK) was used to analyse and map the flat surface 

of the content of a 50% printed tablet. A green laser was used (532 nm) with 25 % filter 

and 600 grating. The slit and hole were set to 100 and 300 µm respectively. An 
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acquisition time of 2 sec was used with an accumulation of 5 scans per point. Samples 

were scanned from 1200 nm to 1800 nm with a step size of 150 μm. The band for 

theophylline was assigned a green colour, whilst a red colour was assigned to Eudragit 

L100-55. Labspec 6 spectroscopy software suite (Horiba Scientific, Japan) was used to 

process the data.  

3.4.8 In vitro disintegration and dissolution studies 
 
a. Disintegration tests. Disintegration studies were conducted following United States 

Pharmacopeia 30 standards (Revision, 2007). Six tablets were placed in the baskets of 

DT700 disintegration apparatus (Erweka, Germany) and were shaken for an hour in 0.1 

M HCl. The gastric medium was then replaced with phosphate buffer pH 6.8. The 

experiment was continued and the time for complete disintegration of all tablets was 

recorded.  

b. Acid uptake tests. To assess the ability of the 3D printed enteric shell to 

protect the core, three coated tablets were weighed individually prior to 2 -hours 

exposure to 0.1 M HCl at 37 °C. The tablets were then drained off the acidic 

medium, dried with filter paper and weighted again. The acid uptake was 

calculated as follows: 

 

Weight gain (%) = [(wet mass - dry mass)/dry mass] × 100 Equation 3.1 
 

c. pH change dissolution test (phosphate buffer). In vitro drug release studies for all 

gastro-resistant tablets used in this study were conducted using an AT 7 Smart 

dissolution USP II apparatus (Sotax, Switzerland). Each experiment was carried out in 

triplicate in dissolution medium at 37 ±0.5 °C with a paddle speed of 50 rpm. The tablets 

were tested in 750 mL of a stimulated gastric fluid (0.1 M HCl, pH 1.2) for 2 h, followed 

by 4 hrs exposure to pH 6.8 phosphate buffer.  

Within all the experiments the amount of released theophylline was determined at 5 min 

intervals by UV/VIS spectrophotometer (PG Instruments Limited, UK) at a wavelength of 

272 nm and path length of 1 mm. Data was analysed using IDISis software (Automated 

Lab, 2012). For budesonide and diclofenac sodium, samples (2 mL) were manually 

collected at 15, 30, 60, 90, 120, 150, 165, 180, 210, 240, 300, 360, 420 and 480 min. 

They were then assessed using the HPLC methods outlined in the HPLC method 

described in Section 3.4.5. 

d. pH change dissolution test (bicarbonate buffer). To assess the drug release 

pattern in a more physiologically relevant medium, an additional evaluation of drug 
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release was performed in pH 7.4 modified Krebs bicarbonate buffer. The latter better 

simulates the buffer capacity, pH and ionic composition of human gastric fluids (Fadda 

and Basit, 2005). 

The dissolution test was carried out following the same protocol specified in Section 

3.4.8c. For the first 2 hrs, tablets were exposed to 900 mL of 0.1 HCl (pH 1.2). Tablets 

were then retrieved from the acidic medium and introduced into 900 mL of modified 

Krebs buffer for an additional 4 hrs (1.18 mM KH2PO4, 24 mM NaHCO3, 118.07 mM 

NaCl, 4.69 mM KCl, 2.52 mM CaCl2, and 1.18 mM MgSO4·7H2O).  

3.4.9 Statistical analysis 

One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the 

results. Differences in results of p <0.05 were considered to be significant. 
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3.5 Results and discussions  
 
Figure 3.3 provides a schematic illustration of the fabrication of 3D-printed shell-core 

enteric tablets. CAD software was utilized to design two complementary 

stereolithographic files to form a shell-core structure. Dual FDM 3D printer was employed 

with two different filaments; i) filament for enteric shell (Eudragit L100-55), and ii) filament 

for the core (API, PVP) processed through a HME compounder. Theophylline was used 

as a model drug to develop the enteric core structure due to its high solubility in acidic 

medium and small  molecular weight, rendering it a major challenge for an enteric system 

(Alhnan et al., 2010).  

Unlike single FDM 3D printing of theophylline (Okwuosa et al., 2016), frequent blocking 

of PVP filament (core) was encountered in dual FDM 3D printing. It is possible that whilst 

the first nozzle is printing, the filament in the second head remains at elevated 

temperature leading to material adherence to the inner wall of the nozzle head. To 

overcome the blocking of the nozzle, several additives were initially incorporated in the 

PVP filament composition. However, it led to the softening of the filament and rendered 

it incompatible with the gear of the 3D printer as they become easily compressed and 

flattened which results in the inability of the gears to pull down the filaments into the hot 

nozzle. An alternative solution was the use of lubricants with high boiling points (castor 

oil, oleic acid or PEG 400) to coat the surface of the filaments during 3D printing. All three 

liquids allowed successful printing of tablets without affecting the TGA patterns of the 

polymer (Figure 3.4A) or the dissolution rate of theophylline from the filaments (Figure 

3.4B). It is likely that these liquids exhibit a lubricating rather than a protective effect and 

physically prevents the sticking of the filament to the internal wall of the nozzle, hence 

allowing smooth alternation between nozzles. Based on these findings it was decided to 

choose one lubricant, oleic acid to facilitate dual 3D printing.  

Following the optimisation of the core matrix, it was possible to graft a shell material 

based on developing a filament comprising of Eudragit L100-55, TEC and talc at a ratio 

of 50, 16.67 and 33.33 %wt, respectively. Eudragit L100-55 is a methacrylic acid-ethyl 

acrylate copolymer (1:1) commonly used for the preparation of enteric solid dosage 

forms. Its unique structure gives it an enteric pH-dependent character, being soluble 

above pH 5.5 medium (Hao et al., 2013). 
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Figure 3.3. Schematic illustration of the fabrication of 3D-printed shell-core enteric tablet. (A) Two complementary stereolithographic 
files are designed via CAD software to create a shell-core structure (B) Dual FDM 3D printer is employed with two different filaments; 
i) filament for enteric shell (based on Eudragit L), and ii) filament core (based API, PVP) processed through HME compounder. A 
lubricating station is installed for PVP to facilitate the printing of the core during nozzle alternation. (C) Image of the 30% completed 
FDM 3D printer Shell-core.  

PVP based core 
coated containing 

API 

Methacylic polymer based 
shell for gastric 

protection 

A B 

Oleic acid 
station 

Enteric 

filament Drug loaded 

filament 

Gears 

Heater 

Nozzle Printing 

plate 

3D printed enteric 

tablet 

C 

Core containing 

API 

Enteric shell 



 
 

101 
 

 

 

Figure 3.4. Impact of lubricants on (A) TGA thermal degradation profiles of PVP 
filament and (B) the in vitro release pattern of theophylline from core tablet.
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Figure 3.5. (A and B) Rendered images (Autodesk 3DS Max) of shell-core designs with increasing shell thickness (0.17, 0.35, 0.52, 0.70 
and 0.87mm), (C) Images of 30% completed shell-core designs with theophylline core and increasing Eudragit L100-55 shell thickness, 
(D) SEM images of the surface of the tablets (E) Impact of shell thickness of 3D printing on in vitro release pattern of theophylline from 
3D printed tablet in USP II pH change dissolution test.  
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The used ratio was deemed necessary to significantly lower the Tg of Eudragit L100-55 

to 34.74 oC as obtained from the second scan of the MTDSC study, which was used to 

eliminate the impact of water loss on the Tg of the filament (Chapter 7: Supplementary 

Data, Figure 7.1) to allow continuous flow from FDM 3D printer’s nozzle, whilst solidifying 

quickly to permit the formation of a well-defined structure. To adjust the pH response 

release pattern of core-shell structures, tablets with identical cores comprising of 

theophylline as a model drug were fabricated with increasing thicknesses of the Eudragit 

L100-55 shell (Figures 3.5A-D). In vitro dissolution tests indicated that thickness levels 

0.17 and 0.35 mm led to a premature release of the drug in the acidic medium (Figure 

3.5E). It is possible that these thicknesses only allowed the printing of 1-2 layers in the 

shell structure since the FDM 3D printer was operated at a standard resolution (0.2 mm). 

This was insufficient to provide a better protection in the acid media to prevent drug 

release. When a thicker shell design was applied (0.52, 0.7 or 0.87 mm), a superior 

control of drug release was achieved (<3 % of drug released after 120 min in gastric 

medium) in the acid media. This could be as a result of the formation of larger number 

of layers (3-5 layers), which is essential to construct a gastric-resistant barrier in the 

acidic medium. It is notable that the drug release in the intestinal phase (pH 6.8) followed 

a bi-phase pattern; a relatively slow drug release in the initial 45 min after pH change 

followed by a faster release after 45 min. It is possible that the first phase reflects the 

diffusion of the model drug through the eroding enteric shell layers, whilst a faster release 

takes place following the complete dissolution of the shell, where a water-soluble PVP-

based core starts to dissolve. Such a pattern has been seen in shell-core structures 

(Goyanes et al., 2015d), where erosion of the external layer preceded the dissolution of 

the core. 

The impact of FDM 3D printing resolution on the dissolution of shell-core structures was 

also investigated using 0.52 mm shell (Figure 3.6A) which was chosen as it was the 

smallest shell thickness required to provide acid resistance. The makeware software 

used to control the MakerBot FDM 3D printer provides the options of using high, standard 

or low printing resolutions corresponding to 0.1, 0.2 and 0.3 mm layer thicknesses 

respectively. Adjusting to a low resolution 3D printing, thereby reducing the number of 

layers to fabricate the shell due to a bigger extrudate resulted in a relatively slower 

response to pH change in comparison to high resolution (Figure 3.6B). This could be as 

a result of the creation of more gaps for drug release once the pH is changed since more 

layers were involved in the wall formation for the high resolution shell, unlike when fewer 

layers were used to create the same wall thickness as for the standard and low resolution 

3D printing approach.  
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Figure 3.6. (A) Images of 3D printed enteric theophylline tablet printed with low, medium and higher resolution, (B) Impact of resolution 
of 3D printing on in vitro release pattern of theophylline from 3D printed tablet in USP II pH change dissolution test. (C) Impact of filler 
(TBP or talc) on the in vitro release pattern of theophylline from 3D printed tablets in USP II pH change dissolution test in phosphate 
buffer, (D1,2) SEM and Raman images (respectively) of a cross-sections of 0.52 mm thickness shell theophylline table. 
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However, the use of high resolution did not produce a release profile that fell within the 

pharmacopoeia standards. It is worthy to note that using FDM 3D printing, a much thicker 

shell layer was needed to achieve sufficient gastric resistant pattern in comparison to 

conventionally coated tablets with fluid-bed or pan coater (30-100 µm) (Thoma and 

Bechtold, 1999) which reflects the difficulty of producing a complete protective layer with 

a single layer of filament. Adjusting the printing resolution as expected influenced the 

overall appearance of the printed tablets as seen in Figure 3.6A with a higher resolution 

seeming to provide a better finish.     

To accelerate drug release in the intestinal phase, an alkalinising agent, tribasic 

phosphate sodium (TBP), was examined as a filler to replace talc. The strategy allowed 

a much faster dissolution pattern in the intestinal phase (Figure 3.6C). It is likely that TBP 

in the core would dissolve with water imbibition upon pH change, leading to a rise in the 

local pH, resulting in acceleration of dissolution of Eudragit L100-55 shell and hence 

faster release of the API (Liu et al., 2009). A similar concept was used to reduce the lag 

time before drug release by using an inner layer coating neutralised to a high pH in 

addition to a buffer agent before the actual polymer coating (Liu et al., 2010). This 

demonstrated a potential method to improve drug release using polymers for lower GIT 

targeting. The use of TBP in this study for the core filament formulation was associated 

with a weight loss as revealed by its TGA analysis around the core processing 

temperature (Figure 3.7). To further confirm the compatibility of the system to the active, 

a HPLC analysis was carried out on the filaments and the 3D printed tablets which 

confirmed a significant drop in drug content (86%) (Table 3.1). These findings suggest 

that unlike talc which acts as an inert filler, TBP tends to react with theophylline at an 

elevated temperature leading to a significant drug degradation. Although the use of TBP 

produced a faster drug release that met the criteria of the BP, talc was considered as the 

filler of choice for this study. The investigation of other alkalising agents that will be inert 

at an elevated temperature will be beneficial in a future work.  

Raman spectral mapping was utilised to generate a detailed chemical image of the flat 

surface of a 50% complete 3D printed tablet (Figure 3.6D1). Integration of individual 

spectra to produce false colour representations of distribution for theophylline (green) 

and Eudragit L100-55 (red) elucidated a definitive separation between the core and the 

shell (Figure 3.6D2), suggesting the presence of theophylline in the core of the tablet 

with no signs of it diffusing into the Eudragit L100-55 shell. 
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Figure 3.7. TGA thermal degradation profiles of the raw materials of; theophylline, 
PVP, TBP, TEC as well as the physical mixture, the filament and the 3D printed 
tablets. 

 
Table 3.1. Summary of the compositions of API loaded filament and residual drug 
contents following HME and dual FDM 3D printing. 
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Active ingredient  

Contents (PVP, 

TEC, filler and 

drug) 

Drug content 

after HME (%) 

±SD 

Drug content 

after 3D printing 

(%) ±SD 

Theophylline (Talc) 
(50,12.5, 27.5 

and 10%wt) 
100.23 ±0.09 99.56 ±0.48 

Theophylline (TBP)  
(50,12.5, 27.5 

and 10%wt) 
80.04 ±0.82 84.68 ±2.10 

Budesonide (Talc) 
(50, 12.5, 35.2 

and 2.3%wt) 
97.24 ±4.02 96.41 ±4.42 

Diclofenac sodium 

(Talc) 

(45.5, 17.5, 17 

and 20%wt) 
91.98 ±1.03 90.47 ±2.31 
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To prove the suitability of the system to different APIs, two other model drugs, 

budesonide or diclofenac sodium, were also examined by including them individually in 

the PVP-based filament. This further confirms the suitability of this filament for different 

actives as discussed in chapter 2. TGA thermographs (Figures 3.8A and B) showed a 

mass drop of PVP filaments around 100 oC due to water loss whilst a second major mass 

drop was also apparent at 400 oC due to the degradation of PVP. The thermal stability 

of both model APIs, similar to earlier studies, showed no further weight loss at 

temperatures <200 oC for budesonide (Goyanes et al., 2015b) and diclofenac sodium 

(Tudja et al., 2001).  

Analogous to TGA results, DSC thermographs of PVP displayed a large endothermal 

event in the range of 50-110 oC due to water loss as established in Chapter 2 (Okwuosa 

et al., 2016). This was attributed to the hygroscopic nature of PVP (Verdonck et al., 

1999). Our previous investigation using modulated heat-scan and heat-cool-heat scan 

indicated that water content plays a major role as a plasticiser for PVP filament (Okwuosa 

et al., 2016). The Tg of PVP filament (plasticised with TEC) were in much lower range 

(19-35 oC) than expected from Gordon-Taylor equation (Tg =82.3 oC). However, the Tg 

obtained in the second heat flow was 93 oC. 

The addition of budesonide appeared to have a limited effect on the Tg of the filament 

and the tablet (Figure 3.9). This might be due to the limited concentration of budesonide 

in the product (2.3%). In case of diclofenac sodium, when same level of plasticization 

was initially investigated (12.5%), a brittle filament was produced with a higher Tg (44.89 

oC) (Chapter 7: Supplementary Data, Figure 7.2). In fact, a high level of plasticization 

(TEC 17.5%) was deemed necessary to produce a compatible filament, this was 

reflected with a shift of Tg upon the addition of diclofenac sodium to 16.27oC (Figure 

3.10A). The addition of theophylline on the other hand as reported in our earlier work led 

to a depression in the Tg of the filament (Okwuosa et al., 2016). Such a shift can be 

attributed to the plasticising effect of theophylline (Nair et al., 2001). 
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Figure 3.8. TGA thermal degradation profiles of TEC, PVP, PVP:TEC filament, API-
free and API loaded filaments, and 3D printed tablets for (A) budesonide and (B) 
diclofenac sodium. 
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Figure 3.9. Reversing DSC thermographs of PVP, PVP: TEC filament, API-free and 
API-loaded filaments, and 3D printed tablets for budesonide (A1 first heat-scan 
and A2 second heat-scan) and diclofenac sodium (B1 first heat-scan and B2 
second heat-scan).   
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Figure 3.10. Reversing DSC thermographs of PVP, PVP: TEC filament, API-free and 
API-loaded filaments, and 3D printed tablets for budesonide (A1 first heat-scan 
and A2 second heat-scan) and diclofenac sodium (B1 first heat-scan and B2 
second heat-scan). 
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The XRPD patterns of budesonide loaded filament and tablets (Figure 3.11A) showed 

the absence of peaks at (2θ) = 6.2, 12.1, 15.5, 16.1, 22.9 indicating no crystalline 

presence in the PVP matrices (Kim et al., 2014, Toropainen et al., 2006). For diclofenac 

sodium, XRPD spectra (Figure 3.11B) demonstrated several diffraction peaks at 

(2θ) =11.3, 15.3, 23.5 (Korkiatithaweechai et al., 2011). However, the absence of such 

peaks in the XRPD of the API loaded filament matrix and tablet suggests that the majority 

of diclofenac sodium remained in the amorphous form. On the other hand, as reported 

in our earlier study (Okwuosa et al., 2016) (Section 2.5), theophylline remained in a 

crystalline form in the PVP-talc based matrix and also seemed to be the case for the 

PVP-TBP based matrix with peaks from theophylline still seen after HME and 3D printing 

processes (Figure 3.11C). The concentration of a drug, the nature of the polymer and 

the drug-polymer interaction plays a key role in the physical form of a drug in a polymer 

matrix, with a high drug concentration usually resulting in some degree of crystallinity. 

This also results in faster recrystallisation during storage. The diclofenac loaded filament 

remained amorphous even though it was twice the concentration of the used theophylline 

which could be due to one of the aforementioned reasons. Theophylline (10 %) solid 

dispersion has been also shown to remain crystalline in a drug polymer matrix (Fini et 

al., 2011, Asada et al., 2004).  
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Figure 3.11. XRPD patterns of PVP, PVP: TEC filament, API-free and API-loaded 
filaments, and 3D printed tablets for (A) budesonide, (B) diclofenac sodium and 
(C) theophylline.  
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In vitro dissolution test was carried out on the 3D printed enteric tablets using a USP II 

apparatus. The dissolution pattern of all tested APIs indicated a pH-dependant drug 

release (Figure 3.12A) with adequate acid resistance demonstrated by <10 % drug 

release in the acid media. This was followed by a slow release of the actives over 4 hrs 

period. When these tablets were assessed in a more physiologically relevant dissolution 

medium (Fadda and Basit, 2005), a slower dissolution pattern was noted (Figure 3.12B). 

Such effect might be related to the lower buffer capacity of bicarbonate buffers in 

comparison to phosphate based ones (Liu et al., 2011). The faster drug release of 

diclofenac sodium in comparison with budesonide might be related to its higher drug 

loading as well as solubility (26 mg/mL) (Ming-Thau et al., 1992) in comparison to 

budesonide (0.0429 mg/mL) (Bhatt et al., 2014).  

The disintegration test indicated that all tablets remained intact after 1 hr in the 

disintegration medium (Table 3.2). However, upon pH change the disintegration time 

was significantly longer than the Pharmacopeia standards (Revision, 2007). Such 

behaviour is related to the nature of core, where polymeric matrices erode slowly upon 

exposure to media rather than the exploding of the core as obtained in tablets produced 

by powder compression. The acid uptake behaviour indicated a relatively high acid 

uptake (Table 3.2). However, these results should be interpreted with caution when 

compared to coated tablets, where weight gain of 3-7% is usually applied for enteric 

coating to achieve protection. In the presented example, the shell represents 

approximately 50% of the tablet total weight which resulted in the high uptake.  

In summary, by adapting FDM 3D printing to two polymeric matrices and coordinating 

the construction of core and shell structures, the potential of 3D printing technology in 

fabricating patient-specific pH-responsive tablets has been demonstrated. 
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Figure 3.12. In vitro release pattern of APIs; budesonide, diclofenac sodium or 
theophylline from 3D printed tablets using a USP II pH change dissolution test in 
(A) phosphate buffer and (B) bicarbonate buffer. 
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Table 3.2. Summary of gastric resistant properties of 3D printed enteric tablets. 

 Theophylline (talc) Theophylline (TBP) Budesonide (talc) Diclofenac sodium (talc) 

Disintegration test* 

Acid medium resistance Resistant Resistant Resistant  Resistant 

Disintegration time of all 

tablets in SIF (min) 
33.08±2.55 26.96±9.18 39.87±9.32 42.28±7.92 

Acid uptake tests* 

Weight gained (%) 16.51±3.05 9.16±0.04 23.16±1.80 22.41±4.63 
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3.6 Conclusions  
 
It was possible to fabricate tablets based on shell-core structure with increasing shell 

thicknesses using dual FDM 3D printing. The use of oleic acid reduced nozzle blockage 

and therefore a successfully interchanging between the nozzles during the shell and core 

printing. Following pH change dissolution test, it was necessary to obtain a shell 

thickness ≥0.52 mm to achieve sufficient core protection in the acid medium. The use of 

TBP as a non-melting component in the core filament formulation achieved a faster drug 

release after pH change and was able to fall within the criteria set by the BP for enteric 

dosage forms. This however resulted in the degradation of the loaded active indicating 

the superiority of the use of talc as the inert non-melting component in the formulation. 

The drug release from the delayed release 3D printed tablets containing theophylline, 

budesonide and diclofenac in the PVP-talc filament-based system demonstrated a 

slower release profile in a more biorelevant pH 7.4 bicarbonate buffer media. 

Theophylline remained in its crystalline form in both the filament and 3D printed tablets 

unlike budesonide and diclofenac which became amorphous in the polymer matrix.  

This process presents a single step production method for gastric-resistant products with 

no need for a time wasting additional coating step, in addition to dose personalisation 

potentials. This work illustrates the potential of employing dual FDM 3D printing to 

overcome the rigidity of traditional techniques of manufacturing delayed release solid 

dosage forms in response to demands from clinical and industrial sectors.  

The ability to produce a shell-core system using 3D printing increased the potential of 

this approach in drug manufacturing since the core of the table could be replaced with 

liquids or powders if the shell is able to maintain its integrity during the process. The use 

of powders or liquids will completely avoid the use of heat which is one of the major 

problems in 3D printing by FDM. The researches carried out to investigate the possibility 

to load the shell filament with liquids and therefore, the manufacturing of 3D printed 

liquid-filled capsules will be discussed in the next chapter. 
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4.1 Overview   
 
The use of capsules in drug delivery has proven to be very efficient and has been used 

for decades by pharmaceutical industries to target different areas of the body. In 

comparison to tablets, they could be filled with powders, pellets or liquids, this flexibility 

being one of its major benefits. It also involves fewer manufacturing steps, which 

encourages faster development, resulting in their use during early clinical trials. 

The ever-growing research in the FDM 3D printing of pharmaceutical dosage forms has 

shown potential in personalised drug manufacturing and dosing. However, they were 

mostly used in the 3D printing of tablets of different forms with little research in their use 

in capsule manufacturing. This chapter will therefore demonstrate the potentials of 3D 

printing in the manufacturing of liquid-filled capsules by the modification of a MakerBot 

dual FDM 3D printer to enable the coordination of FDM 3D printing and liquid dispensing.  

The first section of this chapter will show the application of 3D printing in the 

manufacturing of immediate and extended release liquid-filled capsules using Eudragit 

EPO and RL-based filaments respectively. It also demonstrates the ability to fill the 

capsules with either a solution or suspension of different actives, in addition to being able 

to control dosing and rate of drug release.  

The second section focuses on demonstrating the potential of the liquid dispenser head 

in the delivery of large molecules to the colon. The colon cancer activity of two AMPs 

(Aurein 2.6 and LL-37) were determined on Caco-2 and HT-29 colon cancer cell lines 

which was successfully loaded into capsules using the proposed approach without 

altering their solution structure. Eudragit S100-based filament (pH threshold 7) was used 

as the colon-targeting polymer while theophylline solution was used as a proof of concept 

for colon targeting. 
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4.2 Section 1: Introduction 
 
Personalised dosing is an upcoming and promising approach in drug therapy that 

ensures doses are tailored to an individual patient’s needs and preferences (McDougall 

et al., 2016). This can reduce the incidence of side effects and risk of overdose as 

pharmacodynamics and pharmacokinetic factors are able to be considered along with 

the age and weight of the patient (Al-Metwali and Mulla, 2017). Over the years, 

individualising liquid oral dosage forms e.g. solutions and suspensions has been carried 

out using a variety of simple dosing aids e.g. calibrated spoons, droppers or syringes. 

Although these methods provided a low-cost solution, they were however associated 

with human errors during dosing (Ryu and Lee, 2012, Sobhani et al., 2008). 

Another approach in the dosing of liquids involves the use of Liquid capsules which has 

been shown to enhance the absorption of poorly soluble drugs (Cole et al., 2008, Deepthi 

and Murthy, 2015, Hussein et al., 2012) since the actives are already dispersed in a 

liquid and becomes available for absorption once the shell dissolves. This is however 

not the case when capsules are filled with powders or compressed tablet since they need 

to disintegrate and dissolve before being absorbed by the body. Liquids capsules are 

usually manufactured as soft gelatine capsules which involves four steps: i) Preparation 

of the gelatine ii) Preparation of the fill material iii) The encapsulation process using 

suitable equipment iv) further processing of the filled soft capsule which includes drying, 

quality control, polishing and packaging.  

The use of hard gelatine capsules offered significant advantages over soft gel capsules 

for encapsulation of liquids and semisolids. There is a reduced incidence of drug 

migration (Armstrong et al., 1984)  and an improvement in product stability by lowering 

moisture and oxygen permeability, rendering it more suitable for sensitive active 

molecules (Hom et al., 1975, Lucas et al., 1987). Hard shell capsules also provide better 

taste and odour masking, and hence can improve patient’s compliance. Unlike the 

manufacturing of a soft gel capsule, hard shells are casted separately before filling and 

sealing in another separate step. Their wall thicknesses ranges from 0.086 to 0.890 mm 

depended on the size of the chosen capsule shell (Capsulesupplies, 2018). These wall 

thicknesses allow fast dissolution and release of the capsule contents once in contact 

with the body fluid unless coated with dose modifying materials. 

The applications of capsules in medical treatments are already well established; 

however, dose personalisation using this oral delivery system seem very complicated 

and impracticable. It is impossible to split these capsules as carried out on tablets 

because of its nature which will lead of the loss of the shell function in addition to the loss 
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of its content especially for liquid capsules. Besides encapsulation is carried out on a 

large scale using equipment that are not suitable for on demand personalisation on a 

small scale. 

The pharmaceutical applications of 3D printers in drug manufacturing have 

demonstrated great potential as an alternative production technique for personalising 

dosage forms at a peripheral level. 3D printing has been used in the manufacturing of 

immediate (Okwuosa et al., 2016, Pietrzak et al., 2015, Sadia et al., 2016), extended 

(Chai et al., 2017, Clark et al., 2017, Goyanes et al., 2015b, Kyobula et al., 2017, Park, 

2015, Skowyra et al., 2015), as well as enteric release (Okwuosa et al., 2017, Goyanes 

et al., 2017) dosage forms using pharmaceutical grade polymers. In FDM 3D printing, 

filaments are heated above the glass transition temperature (Tg) of the matrix polymer, 

passed down a nozzle by gears and deposited in a layer-by-layer fashion to fabricate an 

object without the need for post-printing processing (Alhnan et al., 2016). 

In a previous attempt, FDM 3D printing was used in the fabrication of capsule by 

interrupting the printing of the shell and filling in the core manually before completing the 

shell (Markl et al., 2017). In another example, the capsule cap and bottom were 3D 

printed separately and then filled manually with powder (Melocchi et al., 2015). To the 

authors’ knowledge, at the point of this research, there have been no previous reports 

around a fully integrated, automated 3D printing of liquid-filled capsules. This could be a 

reflection of major challenges associated with attempts to achieve this goal. Unlike 

manufacturing capsules by casting, the additive manufacturing of capsules imposes a 

major difficulty of sealing the spaces between the printed layers and maintaining the 

barrier function of the shell. In fact, a fully automated 3D printing of liquid capsules 

requires the coordination of a liquid dispenser with the shell manufacturing. The design 

of the shells, its additive manufacturing and liquid filling should be carefully organised to 

ensure that the resultant shell structure are compatible with the liquid core.  
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4.3 Aims 
 
This research aims at demonstrating the first example of a fully automated additive 

manufacturing process for a liquid-filled capsule with the capability to control the 

dispensed dose for immediate and extended drug release. The objectives of this 

research include: 

 Modification of a dual FDM 3D printer to include a syringe-based liquid dispenser, 

which was used to fabricate a capsule shell through FDM 3D printing and 

instantaneously dispense either a suspension or a solution formulation of model 

drugs.  

 Optimisation of the dosing accuracy of the liquid dispenser, which was used in 

the manufacturing of immediate or extended release liquid-filled capsules 

employing two methacrylate polymers (Eudragit EPO and RL). 

 Characterisation of the actives, excipients and the formulations 

o Scanning electron microscopy (SEM)  

o Thermal analysis (DSC, TGA) 

o X-ray powder diffraction  

o Drug content analysis 

o In vitro Dissolution studies    
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4.5 Materials 
 
To carry out this study, the following materials were used.  

4.5.1 Eudragit EPO 
 

 

 

Figure 4.1. Chemical structure of Eudragit EPO (An Nguyen et al., 2006). 
  
This is an amino alkyl methacrylate copolymer (Figure 4.1) which has immediate release 

properties. It is soluble at lower pH levels up to pH 5 but becomes swellable and 

permeable above that pH value. It is good for taste masking (Taki et al., 2017) and 

provides a glossy and slippery easy-to-swallow finishing. Its use is well established for 

pharmaceutical purposes as a solubility enhancer (Saal et al., 2018, Saal et al., 2017, 

Higashi et al., 2016), stability enhancer (Ochi et al., 2016) and in the manufacturing of 

immediate release dosage forms (Qiao et al., 2010b, Sadia et al., 2016, Yang et al., 

2015). Its compatibility with hot melt extrusion has also been previously demonstrated 

(Ashour et al., 2016, Li et al., 2016a, Li et al., 2016b). It was donated by Evonik Industries 

(Darmstadt, Germany) for this research study. 
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4.5.2 Eudragit RL 100 
 

 
 
Figure 4.2. Chemical structure of Eudragit RL100 (An Nguyen et al., 2006). 

 
This is an insoluble methacrylic ester copolymer (Figure 4.2) which becomes permeable 

in the digestive fluids. They are cationic polymers which enables time-controlled drug 

release of actives by a pH-independent swelling (Dave et al., 2015, Elzayat et al., 2017, 

Ozguney et al., 2007). It also provides a glossy and slippery finish which makes 

swallowing less difficult. They are usually supplied as granules and was donated by 

Evonik Industries (Darmstadt, Germany) for this study.  

4.5.3 Methocel E4 
 
Methocel E4, donated by Colorcon limited (UK) is a well-established polymer in 

pharmaceutical industry. It a methylcellulose-based polymer which finds use in creams, 

ointments, suspensions, and ophthalmic preparations as a thicker or suspending 

agent.   

4.5.4 Tween 80 
 
Tween 80 also called polysorbate 80 is a non-ionic surfactant and an emulsifier which 

find use in food, cosmetic and pharmaceutical industries. It is viscous and very water 

soluble and is usually yellow in colour. For this study, tween 80 was purchased from 

Sigma-Aldrich (UK). 

4.5.5 Citric acid  
 
This is a weak organic acid with the chemical formula C6H8O7. It is GRAS and 

commonly used to adjust the pH of solvents and to add sour flavour to food. It was 

purchased from Sigma-Aldrich (UK) for this study.  
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4.5.6 Other ingredients  
 
Theophylline (>99%, anhydrous) was purchased from ACROS Organics (UK). Triethyl 

citrate (TEC) and dipyridamole (≥98%) were purchased from Sigma-Aldrich (UK). Talc 

(350 mesh) was purchased from Fluka Analytical (UK).  

4.6 Methods  
 

4.6.1 Preparation of shell filament  
 
For the preparation of the capsule shell, drug-free Eudragit EPO or RL filaments were 

produced by a HAAKE MiniCTW hot melt compounder (Thermo Scientific, Karlsruhe, 

Germany). An optimised ratio of a powder mixture constituting of the polymer, 

plasticizer (TEC) and filler (talc) was gradually added to the HME and allowed to mix 

for 5 min at 80 rpm to allow homogenous distribution of the molten mass. Afterwards, 

the filament was extruded at 20 rpm. The processing parameters for the hot melt 

extrusion are shown in Table 4.1. 

4.6.2 Thermal analysis 
 
For differential scanning calorimetry (DSC) analysis of Eudragit EPO and RL, a 

differential scanning calorimeter (DSC) Q2000 (TA Instruments, Elstree, Hertfordshire, 

UK) with a heating rate of 10°C/min was employed. A standard scan was carried out 

from −70 to 200 °C or to 150 °C for Eudragit EPO and RL respectively. Analysis was 

carried out under a purge of nitrogen (50 mL/min). The data was analysed using a TA 

2000 analysis software. Each sample (approximately 5 mg) was accurately weighed and 

placed in a 40 μL aluminium pan and covered with pin-holed lid (TA Instruments, Elstree, 

Hertfordshire, UK). All measurements were carried out in triplicate. 

For TGA analysis, 3D-printed capsule shells, raw materials as well as extruded filaments 

were investigated using a TGA Q5000 (TA Instruments, Hertfordshire, UK). Analysis was 

carried out from 25 oC to 500 oC as described in a in Chapter 2, Section 2.4.4 (Okwuosa 

et al., 2016).  

4.6.3 X-ray powder diffraction 
 
An X-ray powder diffractometer, D2 Phaser with Lynxeye (Bruker, Germany) was used 

to assess the physical properties of the shell filaments using parameters as reported in 

Chapter 2, Section 2.4.5.
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Table 4.1. The formulation and processing parameters for HME and FDM 3D printing of shell filament formulations.  
 

Polymer name  Polymer (%) TEC (%) Talc (%) 
Processing 

temp. (oC) 

Extrusion 

temp. (oC) 

Nozzle size 

(mm) 

3D printing 

temp. (oC) 

Platform 

temp. (oC) 

Eudragit EPO 45 5 50 100 90 1.7 135 40 

Eudragit RL 45 5 50 130 120 1.7 170 20 
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4.6.4 Scanning Electron Microscopy (SEM) 
 
A JOEL JCM-6000PLUS benchtop SEM microscope (Joel LTD, Tokyo, Japan) was used 

to examine the surface morphology of the printed shell-core structures. Images of the 

capsules were also taken using a Canon EOS-1D Mark IV (Canon Ltd, Japan). 

4.6.5 Preparation of the liquid core 
 
Two model liquid cores (aqueous active suspension or solution) were prepared for use 

in the syringe-based liquid dispenser: 

a. Dipyridamole suspension was initially prepared by subjecting aqueous dipyridamole 

suspension (1.5 g/ 30 mL) to size reduction via application to T8.01 Ultra Turrax 

Homogeniser (IKA, Germany) at 25,000 rpm. This was carried out for 1 h at 15 min 

interval with 5 min cooling time between the intervals. Methocel E4 was added to the 

suspension to reach a polymer concentration 0.5% w/v before probe sonicating using 

Sonics Vira cell (USA) at 15 min interval in an ice bath for additional 4 hrs using an 

amplitude of 70%. The final suspension was diluted with Methocel E4 (0.5 % w/v in water) 

to achieve a drug concentration of 1.5 % w/v. The size distribution of dipyridamole 

particles in the suspension was confirmed by a Mastersizer 2000 laser diffraction particle 

size analyser (Malvern Instruments, UK). 

b. Theophylline solution was prepared by adding 15 g of citric acid and 1.5 g of Tween 

80 to a 4 % w/v theophylline aqueous suspension (50 mL). This was heated to 65 oC and 

stirred until a complete solution is formed. Methocel E4 was then added to achieve a 

cellulosic solution concentration of 0.25 % w/v before cooling in an ice bath. 

4.6.6 Modification of dual FDM 3D printer 
 
To devise a fully automated manufacturing of the liquid capsule, a Makerbot Replicator 

Experimental 2X dual FDM 3D printer (MakerBot Industries, New York, USA) was 

modified. The printer has two FDM nozzle heads. The right extruder/head of the dual 3D 

printer was replaced by a syringe-based liquid dispenser as shown in Figure 4.3. The 

design for the dispenser was obtained from an open source website (Thingiverse, 2017) 

and the different parts were produced by 3D printing using an M2 MakerGear FDM 3D 

printer  and ABS filaments (MakerGear LLC, Ohio, USA). The dispenser head was 

assembled and equipped with either a 2 or 10 mL syringe. A Nema17 1.5A 4-lead stepper 

motor (MakerBot Industries, New York, USA) was connected to the motherboard using 

the default housing connectors.  
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4.6.7 Liquid Capsule design and printing 
 
The shells of the capsules were designed as a 1.6 mm thick capsule shell with a capsule-

shaped cavity and different dimensions (Table 4.2). Regardless of the digital design of 

the core, the core will be dispensed as a liquid and will fill the cavity of the capsule shell. 

A simple geometry (cube) was chosen as the digital design for the core to simplify the 

calculation of core volumes and to confine the movement of the liquid dispenser head 

within the cavity space. This proved to be a more suitable approach than using capsule-

shaped digital design for the core. The contents of the core were manipulated by 

modifying the dimensions of the digital design of the core as specified in Section 4.6.8 

and 4.6.9. 

For the fabrication of liquid capsule, two different printing modes were employed (Figure 

4.4): 

a. Single-phase printing: Within the Makerbot Desktop software version 3.10.0.1364 

(MakerBot Industries, New York, USA), the core was placed in the centre of the cavity of 

its corresponding shell and was printed by the interchanging printing of the shell filament 

and core liquid. 

b. Multi-phase printing: A simplified 3D software version 3.1.1 (Simplify 3D LLC, Ohio, 

USA) was used in this printing mode. The shell was designed to comprise a 

complementary bottom and a cap. This liquid capsule printing was carried out in 3 

phases: i) printing of the shell bottom, ii) filling of liquid core, and iii) sealing of the shell 

in a separate 3D printing stage. 

The liquid capsules for both modes were printed with cube dimensions corresponding to 

80, 160, 240 or 320 µL (Table 4.2). The settings of the software were modified, and the 

shells were printed using the 3D printing parameters as shown in Table 4.1. The 

resolution was set at medium (200 μm layer thickness), the infill was 100 % and the 

internal and external infill pattern were set at grid and concentric respectively. The rest 

of the settings were left as default. As priming was not necessary for liquids, the script of 

the software was also modified to omit the priming step of the liquid dispenser.  
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Table 4.2. A summary of the volume, dimensions and respective volumes, estimated volume, estimated dose and actual dose for 
different cores in the 3D printed liquid capsules (n=4, ±SD).  
 

 

*The estimated dispensed volume was calculated based on the density of the dispensed dipyridamole suspension. **The estimated dose was 
calculated based on the concentration of the suspension and the estimated dispensed volume. †Actual dose was measured using HPLC, and 
‡dosing efficiency was calculated as efficiency (%) = (estimated dose/ actual dose) x 100. 
 

Sample 
Theoretical 
Volume (µL) 

Core's 
Dimensions (mm) 

Shell's 
Dimensions (mm) Core weight 

(mg) 

Estimated 
dispensed 
volume* 
(µL) 

Estimated 
Dose** 
(mg) 

Actual 
dose † 
(mg) 

Dosing 
efficiency ‡ 
(%) X y z x y z 

Core 1 80 4.32 4.32 4.32 23 10.35 6.74 82.3 ± 6.95 82.7 ± 7.0 1.4 ± 0.1 1.51 ± 0.2 91.1 ± 7.5 

Core 2 160 5.43 5.43 5.43 23 10.35 6.74 185.8 ± 23.75 186.8 ± 23.9 3.1 ± 0.4 3.11 ± 0.2 99.4 ± 13.7 

Core 3 240 6.22 6.22 6.22 23 10.35 7.74 284.6 ± 1.48 286.1 ± 1.5 4.7 ± 0.02 4.99 ± 0.5 95.6 ± 9.8 

Core 4 320 6.84 6.84 6.84 23 10.35 9.74 385.7 ± 30.57 387.8 ± 30.7 6.4 ± 0.5 6.60 ± 0.9 99.0 ± 11.5 
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4.6.8 Validation of the liquid dispenser using different nozzle 
sizes  
 
The impact of different nozzle sizes on liquid volumes from the liquid dispenser was 

investigated using digital design of core with cubes of edge dimensions: 2.15, 2.71, 3.42, 

4.31, 4.93, 5.43, 5.85, and 6.21 mm as the printed object. These dimensions 

corresponded to theoretical volumes of 10, 20, 40, 80, 120, 160, 200 and 240 µL. A 10 

mL syringe was then used for drug dispensing using 0.25, 0.41 or 0.84 mm nozzle sizes. 

The dispensed liquid was collected, weighed and the volume determined based on the 

density of the liquid at the operating temperature. The relationship between the 

theoretical volumes and the actual dispensed liquid volumes were determined. The effect 

of different 3D printing modes (single-phase or multi-phase) on the accuracy of the 

dispensed volume was also investigated.  

4.6.9 Optimising the dosing accuracy of the liquid dispenser 
using different syringe sizes 
  
The dosing accuracy of the liquid dispenser was investigated using dispensed liquids 

corresponding to digital design of the core (cube volume of 80, 160, 240 or 320 µL). The 

nozzle size was 0.41 mm and the effect of syringe sizes (2 or 10 mL) (Nipro Luer Lock) 

was investigated (n=4). The dispensed liquid was collected into a tared 5 mL polystyrene 

diamond-shaped weighing-boat (Fisher scientific, UK) and weighed. The estimated 

dispensed volumes were calculated based on the density of the dispensed volume. The 

estimated doses were calculated based on the concentration of the suspension and the 

estimated dispensed volume. The actual dispensed dose was determined using HPLC 

methods shown in Section 4.6.10. The dosing efficiency was used to compared the 

estimated doses versus actual doses and was calculated using Equation 4.1. 

 

Efficiency (%) = (estimated dose/actual dose) x 100   Equation 4.1 
 

The relationship between the estimated and actual doses was determined using both 

printing modes. Due to higher accuracy of 2 mL syringe and the superior quality products 

produced via multi-phase mode, they were considered as a default and used for the 3D 

printing of all capsules reported for dissolution tests. 

4.6.10 Determination of drug contents 
 
Liquid capsules and their contents were placed in a 500 mL 1:1 acetonitrile and water in 

a volumetric flask and then sonicated for 2 h. The solution was filtered through 0.22 μm 

Millex-GP syringe filters (Merck Millipore, USA) and prepared for HPLC analysis. 
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Dipyridamole and theophylline contents in relevant samples were assessed using an 

Agilent UV-HPLC 1260 series (Agilent Technologies Inc., Germany) equipped with 

XTerra RP 18 column (150 × 4.6 mm, 5 μm particle size) (Waters, Ireland) as previously 

reported in Chapter 2 (Section 2.4.7). 

4.6.11 In vitro dissolution test 
 
In vitro drug release studies for all liquid-filled capsules used in this study were carried 

out in triplicates in 900 mL of 0.1 M HCl at 37 ± 0.5 °C in USP II apparatus (AT7, Sotax, 

city, Switzerland) with a paddle speed of 50 rpm. The capsules were placed in sinkers to 

ensure immersion in dissolution medium. 

a. For the Eudragit EPO-dipyridamole liquid capsule release studies, four mL aliquots 

of release medium were manually collected using 5 mL Leur-Lock syringes at 0, 5, 10, 

15, 20, 25, 30, 40 and 60 min time intervals and filtered through a Millex-HA 0.45-μm 

filter. Each aliquot withdrawn was replaced with 4 mL of 0.1 M HCl. Analysis of 

dipyridamole content of samples was undertaken using HPLC methods reported in 

Section 4.6.10. 

b. Eudragit EPO-theophylline liquid capsule release studies were conducted using an in-

line UV/VIS spectrophotometer (PG Instruments Limited, UK). The amount of released 

theophylline was determined at 5 min intervals at a wavelength of 272 nm and path 

length of 1 mm. Data was analysed using IDISis software 2012 (Automated Lab, UK).  

c. For Eudragit RL-Theophylline extended release liquid capsules, the test was carried 

out using 750 mL of a stimulated gastric fluid (0.1 M HCl, pH 1.2) for 2 hrs followed by 

12 hrs exposure to pH 6.8 phosphate buffer. 

4.6.12 Statistical analysis 
 
One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the results. 

Differences in results above probability level (p > 0.05) was considered not significant 

whilst differences (p < 0.05) were considered significant.
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Figure 4.3. Schematic illustration of the fabrication of 3D-printed liquid capsule using a modified dual FDM 3D printer.  
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4.7 Results and Discussion  
 
The co-ordination of FDM 3D printing with a liquid dispenser enabled the manufacturing 

of liquid capsules in a fully automated process (Figure 4.3). The proposed configuration 

allowed the synchronisation of two processes: i) capsule shell fabrication, and ii) capsule 

filling whilst maintaining control over both through 3D printing software. To orchestrate 

these processes, two modes of capsule shell printing and filling have been adapted. The 

single-phase 3D printing involves the simultaneous construction of the shell and 

dispensing of the liquid core into its cavity (Figure 4.4A). However, this mode implicates 

a constant switching between the two printing heads after building each layer, leading to 

frequent disruptions of the shell 3D printing process. It is possible that core liquids can 

interfere with the layer-by-layer deposition of filaments during shell manufacturing by the 

deposition of liquid on the growing layers, hence preventing the casted layers from fusing 

and in effect compromising the barrier function of the shell walls. This was avoided when 

a multi-phase printing mode was adopted. In multi-phase printing, the printing of 75% of 

the bottom side of the shell is first completed, followed by the core liquid filling before 

sealing the shell in another separate 3D printing stage (Figure 4.4B). Although both 

approaches were successfully used in the fabrication of liquid capsule, the later was 

chosen for this research due to its advantages. 

The design and the printing patterns of the shell plays a key role to successfully print 

liquid-filled capsules. The capsule shell was hollow in the middle with a 1.6 mm thick wall 

to be able to accommodate the liquid core (Figure 4.4) which is by far, thicker than 

conventional hard shell capsules (Capsulesupplies, 2018). However, this thickness was 

required due to the layer-by-layer manufacturing approach used by 3D printers, thereby 

requiring the deposition of more layers to create a sealed shell wall and avoid linkages. 

When thinner wall thicknesses were initially assessed, it led to leakage of the liquid core 

during or following the printing process and were deemed insufficient to control liquid 

contents within the shell. The excipients in the liquid core could also affect the integrity 

of the shell as materials with a high plasticising effect on the shell polymer will lead to 

deformation and leakage.   
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Figure 4.4. The co-ordination of FDM nozzle and liquid syringe dispenser is achieved in two different printing modes: i) Single-phase 
printing: (A1) the core is located in the centre of the cavity of the shell, (A2) Shell printing and capsule filling is achieved by alternation 
at each layer. (A3) Image of completed shell-core designs with dipyridamole core and Eudragit EPO shell. ii) Multi-phase printing: (B1) 
the core is located in a median level between the bottom shell (75%) and the top shell (25%). (B2) the shell is printed first followed by 
complete filling of the shell bottom, the printing is completed by printing the shell top. (B3) Image of completed shell-core designs 
(shell top was separated from bottom for demonstration). (See Supplementary Data Videos S1 and S2).  
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The thermogravimetric analysis of the Eudragit EPO and RL polymer powder on its own 

demonstrated two stages of weight losses from approx. 250 oC and 200 oC respectively 

(Figures 4.5A and B). A physical mixture of the polymer with TEC with or without the 

addition of talc showed and early weight loss due to TEC starting at approx. 115 oC. Their 

formulation as filaments demonstrated degradations at the same temperatures as the 

polymer alone. This remained the same after 3D printing with TEC seeming to become 

more stable in a polymer matrix, degrading with the polymer as observed in Chapter 2. 

Talc remained stable throughout the analysis. These filaments were not subjected to a 

significant weight loss at the HME and 3D printing processing temperatures (Figures 

4.5A and B). This suggested the stability of these shells at the exposed temperatures 

and therefore suitable for shell fabricating.  
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Figure 4.5. TGA analysis of polymer, polymer:TEC physical mixture, 
polymer:TEC:talc physical mixture, filament and 3D printed shell for Eudragit EPO 
(A) and RL (B) respectively.  
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The DSC analysis of the filaments indicated that the addition of TEC to the methacrylate 

polymeric matrix in filament manufacturing effectively plasticised the polymers and 

lowered their Tg from 43.7 to 18.9 oC and from 74.7 to 47.9 oC for Eudragit EPO and RL 

respectively (Figures 4.6A and B). The resultant filaments were thus compatible with 

FDM 3D printer head. The addition of the structure former, talc, was essential to permit 

the 3D printing by regulating the filament diameter, retaining the filament integrity 

following going through nozzles and allowing rapid solidification after extrusion from the 

nozzle (Okwuosa et al., 2016). With these adaptations, it was possible to carry out FDM 

3D printing at 135 and 170 oC for Eudragit EPO and RL respectively.  
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Figure 4.6. DSC thermographs of polymer, polymer:TEC physical mixture, 
polymer:TEC:talc physical mixture, filament and 3D printed shell for Eudragit EPO 
(A) and RL (B) respectively. 
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The XRPD patterns for the filaments and 3D printed capsule shell based on both Eudragit 

EPO and RL demonstrated the presence of peaks at (2ᶿ) = 9.5, 19.0, 28.6, 36.5 and 

48.9o (Figure 4.7). These peaks could be attributed to the talc used in the formulation 

and confirmed that talc remained in a crystalline form. Previous research also indicated 

that in filled polymeric systems, the addition of a non-melting component to methacrylic 

polymer enhanced the viscoelastic behaviour of the melt in a monotonic fashion and 

decreased the critical strain amplitude for strain thinning (Sadia et al., 2016). 

 

 

Figure 4.7. XRPD patterns of polymer, talc and polymer:TEC:talc physical mixture, 
filament and 3D printed shell for Eudragit EPO. 
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In conventional capsule filling, most gelatine capsules are designed at thicknesses of 

usually ≤ 0.240 mm, which could differ depending on the size and the manufacturer of 

the capsules (Capsugel, 2012, Limited, 2014). The body and the cap of gelatine capsules 

are manufactured separately, typically by casting before being filled and sealed. In this 

research, the shell and the core of a 3D printed liquid capsule were created 

simultaneously by stacking polymeric layers and filling the printed cavity with liquid. 

Therefore, the barrier function of the 3D printed capsule shell was maintained by 

increasing shell thickness to 1.6 mm and applying a 100 % infill in the shell structure 

using the operating software. Moreover, the pattern of shell printing also seemed to 

influence the integrity of the shell. While rectilinear pattern resulted in gaps of 

approximately 100 µm (Figures 4.8A1 and A2), concentric capsule filling provided tighter 

alignment of the fused filament and resulted in more stable shell structure (Figures 4.8B1 

and B2). 

 

Figure 4.8. Impact of 3D printing pattern on the structure and integrity of the shell: 
SEM images of (A1 and B1) external surface and (A2 and B2) internal surface of 
the Eudragit E based shell, in rectilinear or concentric infill respectively. 
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The printing mode also appeared to influence the architecture and the finishing of the 

capsule. In multi-phase printing mode, the wall of the shell appeared tighter in 

comparison to single-phase printing (Figures 4.9A1 and B1). In single-phase mode, 

following the deposition of each layer, the FDM 3D printer’s nozzle moves away from the 

shell to allow the liquid dispenser to fill the capsule. To add the next layer, the nozzle 

head returns to the same x-y spot at a higher level (200 m, thickness of the one layer). 

However, the lag in the stoppage and commencement of material flow from the printer’s 

nozzle during head movements and alternation results in the formation of a gap at each 

layer starting point (Figure 4.9A2). By employing multi-phase 3D printing, it was possible 

to minimize imperfection (Figure 4.9B2) as the 3D printing of the shell is only interrupted 

once. It is expected that the precision of the printing will improve with the development 

of highly precise 3D printers (Gross et al., 2014).    

 

 

Figure 4.9. The impact of printing pattern on the structure of the shell: SEM image 
of external surface of the corner and side of Eudragit E based capsule shell 
produced via (A1 and A2) single-phase or (B1 and B2) multi-phase 3D printing. 
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These different modes of 3D printing appear to also affect the volume of dispensed liquid 

(p< 0.05) (Figures 4.10A and B). The lower dispensed volume from the single-phase 

mode compared to multi-phase printing could be attributed to the continuous stoppage 

and retraction of the liquid dispenser at each layer of printing (as a part of switching 

between FDM printing nozzle and liquid dispenser). This creates a gap between 

dispensed volumes leading to a lower overall volume. Therefore, the multi-phase mode 

was employed as a default printing method.  

As accurate dose dispensing is of paramount importance for personalised dosing, it was 

necessary to confirm the accuracy and reproducibility of the dispenser. Initial 

investigation on the accuracy of the dispensed volume was demonstrated using the 

dipyridamole suspension (density= 1.008 g/cm3). A linear relationship was established 

between the theoretical volumes and the actual dispensed volumes from the liquid 

dispenser across the different sizes of nozzle used with R2 values ≥0.9971 (Chapter 7: 

Supplementary Data, Figures 7.3 and 7.4), while a smaller aperture nozzle provided a 

better accuracy, the smallest aperture nozzle frequently blocked, and a nozzle diameter 

of 0.41 mm was used as a default.  

The impact of different syringe sizes on the dispensed volumes and dosing accuracy of 

the liquid dispenser was also investigated (Figures 4.10A and B). Reducing the size of 

the syringe used on the liquid dispenser influences both the volume of dispensed liquid 

and its accuracy. The 2 mL syringe produced a narrower deviation and was used as a 

default syringe for further studies. This could be directly related to the mechanism of 

liquid discharge from the syringe dispenser. During liquid dispensing, although the 

distance travelled by the piston of the liquid dispenser motor remained identical for both 

2 and 10 mL syringes, however the dispensed volume is significantly reduced by a 

syringe of smaller diameter. The control of liquid dispensing could also be achieved 

through the use of pneumatic liquid dispensers (Xie et al., 2010).  

 

  



 
 

142 
 

 

 

Figure 4.10. Impact of single-phase and multi-phase 3D printing modes on 
dispensed volume of dipyridamole suspension (1.5% w/v) from the liquid 
dispenser using (A) 2 mL or (B) 10 mL syringe. 
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Different liquid volumes (80, 160, 240 or 320 µL) of dipyridamole suspension (median 

particles size 5.08±0.68 µm) were dispensed and analysed for dosing accuracy by 

HPLC. It was possible to dictate the dispensed volume and hence corresponding doses 

by the software modification of the digital core’s volume (Figure 4.11A, Table 4.2). The 

linearity between the estimated and the actual dose (R2 =0.9985) (Figure 4.11B) 

demonstrated the promising potential of this dispenser for on demand drug dosing. The 

accuracy of dosing was affected by surface tension related phenomena such as foam 

forming and droplet hanging. These were noted in both printing modes and potentially 

could be mitigated in commercial manufacturing via adjustments to the programme for 

the dispenser motor. 
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Figure 4.11. Dose accuracy using syringe liquid dispenser of dipyridamole 
suspension (1.5% w/v): (A) relation of theoretical volume of the core in the 
software and dispensed dose using single- or multi-phase 3D printing modes, (B) 
correlation between theoretical and actual volume.  
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To determine the release profile of the 3D printed liquid capsule, a USP II dissolution 

apparatus was used. Initially, an optimised suspension of dipyridamole was dispensed 

in a Eudragit EPO shell at different doses. An immediate drug release profile was 

obtained as >85 % of the active was released before 30 min (Figure 4.12A), and 

complied with USP criteria for oral dipyridamole products. (Convention, 2007) This might 

be attributed to rapid ionization of cationic chains of the methacrylate polymer in gastric 

medium (Sadia et al., 2016) as well as high solubility of dipyridamole in this medium 

(Alhnan et al., 2010, Paprskarova et al., 2016).  

To prove the suitability of this capsule system to drug solution, the model core of drug 

suspension was substituted by a theophylline solution. The shell system was also 

effective in containing the liquid drug payload without compromising the integrity of the 

shell, with the absence of leakage during or after printing. In vitro, the capsules 

demonstrated their ability to dissolve quickly leading to a complete release of 

theophylline before 30 min (Figure 4.12B). This also demonstrated the versatility of the 

presented approach in the delivery of potentially a wide range of actives in different 

forms, and potentially holds the promise to be used where thermal processing must be 

avoided to minimize aggregation and potency loss. 
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Figure 4.12. A) In vitro release pattern of dipyridamole suspension from 3D printed 
liquid Eudragit EPO capsule using USP II with different core volumes in gastric 
media (pH 1.2). B) In vitro release of theophylline from 3D printed liquid capsule 
filled with theophylline solution based on (B) Eudragit E or (C) Eudragit RL. All 
capsules were printed using multi-phase mode 3D printing and 2 mL syringe liquid 
dispenser. 
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The capacity of this shell system to extend drug release has also been subject to 

preliminary investigation, employing a water insoluble permeable polymer, Eudragit RL 

in the filament used to fabricate the shell (Figure 4.12C). This is essentially a reservoir-

based controlled release system where amongst other factors, formulation of reservoir 

vehicle, drug loading, drug solubility, drug diffusivity through shell, plasticiser or pore 

formers in shell can all impact drug release rate  (Ahmed and Naini, 2010). 

By altering the shell thickness (1.6, 2 or 2.4 mm), it was possible to control drug release 

simply through a digital order, without the need to change the formulation composition. 

It is likely that soluble drug permeates through the insoluble acrylate layer through 

diffusion mechanism (Evonik, 2010). As the shell thickness increases, the travelled 

distance of drug will increase too thereby further prolonging drug release. It is worth 

noting here that the thickness of coating far exceeds typical Eudragit coating systems for 

pellets (Akhgari and Tavakol, 2016), this might be attributed to the porous nature of 3D 

printed shell due to voids between fused layers as well as the pores within the filament 

structure (Tsuda et al., 2015). It is worth noting that conventional coating system can 

provide a tighter control in comparison to the proposed 3D printed system (Emami and 

Kazemali, 2016, Siddique et al., 2010). However, this is the first report to achieve such 

control of drug release from a 3D printed capsule. With on-going advances in additive 

manufacturing in general, we expect that many of such limitations will be overcome in 

the future attempts. 

In summary, we have reported a dynamic capsule-dispensing platform based on the 

orchestration of FDM 3D printing and liquid dispensing. Such platform is of high value 

when providing a small volume of liquid drug payload in a capsule is desirable. It could 

be potentially developed to include thermolabile substrate in the core, where hot melt 

extrusion (Patil et al., 2016) and FDM 3D printing (Okwuosa et al., 2016) are usually 

avoided. Other complex release profiles could also be feasible since the interior of the 

capsule shell could be compartmentalised with different wall thicknesses, which could 

be potentially filled with different actives for multiple active administration.   

  



 
 

148 
 

4.8 Conclusions   
 
This is the first report of a fully automated process for the 3D printing of a liquid capsule. 

Both immediate and extended drug release profiles based on polymethacrylate polymer 

shells were fabricated with the immediate release from the Eudragit EPO polymer falling 

within the BP criteria. This could only be possible by using a modified dual FDM 3D 

printer where one of the heads was replaced with a syringe-based liquid dispenser, 

thereby allowing the coordination of FDM 3D printing of the shell followed by a liquid 

filling step.  

Although the capsule shell was constructed in layer-by-layer fashion, it was possible to 

construct a capsule shell that maintains its integrity and instantly contains the loaded 

liquid doses without any curing step. This was made possible by using a concentric shell 

filling pattern which resulted in a tight shell structure. It was also necessary to use a wall 

thickness of up to 1.6 mm to avoid leakages post printing which is far thicker than the 

wall of a conventional capsule. The use of the multi-phase printing approach also 

produced a superior shell structure in comparison to the single-phase printing due to the 

limited need to switch between the FDM head and the syringe-based liquid dispenser 

head. This goes a long way to avoid creating gaps between layers during the shell 

printing which usually results in leakages.  

The use of this modified setup also proved to be suitable for two APIs (dipyridamole and 

theophylline) and for suspensions or solutions as core materials, demonstrating the 

flexibility of the system in handling different actives in different forms. Above all, this 

technique demonstrated the ability to control doses as well as drug release by 

manipulating the dispensed volume and shell thickness simply via software. It was also 

observed that the use of a smaller syringe for the liquid dispenser produced a smaller 

and more accurate liquid dispensing. In a clinical setting, this will empower healthcare 

staff with capability to provide specific dosing and drug release patterns in individualised 

liquid-filled capsules without the need to change formulation. 

The modified FDM heat completely avoided the use of temperature for the core 

processing, therefore creating more opportunities to employ thermosensitive actives 

including the use of large molecules like peptides and proteins. The application of 

peptides and protein in disease management and treatment is getting a lot of recognition, 

therefore having a 3D printing approach toward the delivery of such molecules will be an 

important addition to dose personalisation in the pharmaceutical industries. This will be 

discussed in more details in the next section.   
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4.9 Section 2: Introduction  
 
The discovery of antimicrobial peptides (AMPs) dates back to 1939 with the extraction 

of antimicrobial agent from soil Bacillus strain (Dubos, 1939b, Dubos, 1939a) which was 

later fractionated and called tyrocidine and gramicidin (Van Epps, 2006). AMPs are small 

polypeptides produced by a constitutive or inducible expression in organisms and form 

an integral component of the host innate immune system. They are widely distributed in 

invertebrates, plants and higher animals, including humans and are usually less than 10 

kDa (Liu et al., 2017). They are involved in the body’s first line of defence with a broad 

spectrum of activity against various microorganisms. The Antimicrobial Peptide 

Database (APD) contains about 2828 AMPs, 300 of these AMPs derived from bacteria, 

4 from archaea, 8 from protists, 13 from fungi, 343 from plants and 2160 from animals  

(UNMC, 2018). The activities of these peptides were suggested to include antibacterial, 

antiviral, antifungal, antiparasitic, antiprotist, antioxidant, chemotactic, insecticidal, 

protease inhibitor, spermicidal, surface immobilized and wound healing properties 

(UNMC, 2018).  

Studies have shown the effect of AMPs against drug resistant bacteria (E. coli) both in 

vitro and in vivo using a novel cathelicidin peptide extracted from a king cobra (Li et al., 

2012). Synthetic cationic AMPs were also found to have some activity against bacterial 

species associated with wound healing and therefore demonstrating potentials in the 

treatment of skin infection (O’Driscoll et al., 2013).  

AMPs have also been identified to possess anticancer properties, demonstrating 

activities against breast cancer cell lines (Wong and Ng, 2005), cervical cancer (Kong et 

al., 2004), human adenocarcinoma and lymphoma cells (Li et al., 2002, Svangard et al., 

2007, Yeshak et al., 2011). Their mechanism of action is still not clear. However research 

suggested that the anticancer activities of some AMPs could be due to tumour 

angiogenesis, tumour apoptosis, tumour necrosis, inhibition of kinases or proteases 

activities or interference with functional proteins (Wu et al., 2014). 

Thirteen of the aurein peptide family derived from the granular dorsal glands of the Green 

and Golden Bell Frog (Litoria aurea) and the related Southern Bell Frog (Litoria 

raniformis) have been identified to possess anticancer activity. Aurein 1.2, 2.2 and 3.1 

were identified as the most active (Rozek et al., 2000). Most studies on the anticancer 

activities of aurein were centred around aurein 1.2, which was active against cancer cell 

lines including colon cancer (Rozek et al., 2000) by invading the negatively charged 

cancer cell membrane due to their positive surface charge (Dennison et al., 2007). To 
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the authors understanding, the anticancer properties of aurein 2.6, which is also an active 

member of the aurein family, on colorectal cancer, has little information available.  

LL-37, the only human cathelicidin AMP has also been investigated for anticancer 

activities especially for colon cancer. They are cationic which enables them to interact 

selective with the negatively charge cancer cell wall (membranolytic) (Hoskin and 

Ramamoorthy, 2008). The anticancer activity of LL-37 was improved in a DLD-1 and HT-

29 colon cancer cell line when attached to the surface of a magnetic nanoparticle 

(Niemirowicz et al., 2015) and was able to induce cell death by apoptosis. A derivative 

of LL-37 (FK-16) not only demonstrated cell death by apoptosis but also by autophagic 

cell death due to  the activation of protein p53 (Ren et al., 2013). 

The use of peptides in disease management is gradually gaining recognition and as of 

2016, polymyxin and enfuvirtide AMPs produced by RXGeneric and Trimeris 

respectively have been introduced to the United States market (Xia et al., 2017). 

Endogenous AMP inducers like vitamin D3, isoleucine and sodium butyrate have also 

been tested in a phase II clinical trials (Xia et al., 2017). However, one of its major 

limitation is the poor oral bioavailability of these macromolecular drugs due to pre-

enzymatic degradation and poor transport across the intestinal membrane (Renukuntla 

et al., 2013). This resulted in the intramuscular, subcutaneous or intravenous injection of 

these peptides remaining the most common means of administration. The oral 

administration of drugs presents several advantages, including the ease of 

administration, patient compliance, safety and its less invasive approach, therefore the 

unrelenting investigation in the oral delivery of peptides and proteins. This however 

entails adequate understanding of the physicochemical properties (molecular weight, 

ionisation constant, pH stability, molecular size and hydrophobicity) and biological 

barriers (variable pH, poor permeability, membrane efflux and proteolysis in the stomach) 

that influence GIT absorption of these molecules (Renukuntla et al., 2013).  

One of the approaches to improve the oral delivery of such actives include the use of 

absorption enhancers, which are compounds that allow actives to permeate across 

biological membrane more effectively (Aungst, 2012). Several absorption enhancers 

have been investigated, their efficiency depending on the physicochemical properties of 

the peptides and proteins, the vehicles used and area of absorption along the GIT.  

These enhancers could be classified into bile salts (sodium deoxycholate, sodium 

taurocholate), chelators (citric acid, salicylates), surfactants (sodium lauryl sulphate, 

sodium dodecyl sulphate), fatty acids (oleic acid, linoleic acid), cationic polymers 

(chitosan and its derivatives), anionic polymers (carbopol, n-acetyl cysteine) and 
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acylcarnitines (lauroyl-L-carnitine chloride, palmitoylcarnitine chloride) (Maroni et al., 

2012). Their mechanisms of action may include temporarily disrupting the structural 

integrity of the intestinal barrier, opening the tight junctions, decreasing the viscosity of 

the mucus or by increasing membrane fluidity (Renukuntla et al., 2013, Maroni et al., 

2012).  

Another approach involves the use of enzyme inhibitors to suppress the enzymatic 

degradation of peptides and proteins, thereby facilitating absorption in the GIT 

(Yamamoto et al., 1994). These enzymes (trypsin, chymotrypsin, elastase, pepsin) are 

produced down the GIT to breakdown ingested food into simpler molecules before 

absorption. The use of enzyme inhibitors, which includes aprotinin, soyabean trypsin 

inhibitors, camostat mesilate, chromostatin, showed potential in improving peptide and 

protein activity (Yamamoto et al., 1994, Renukuntla et al., 2013). This could also be used 

in combination with absorption enhances to enhance oral bioavailability (Sinha et al., 

2007a).  

Peptides and proteins could also be encapsulated with mucoadhesive substances to 

increase drug concentration gradient in the attached area, in addition to offering 

protection to the molecules (Muheem et al., 2016). Mucoadhesives such as chitosan 

(Mathiowitz et al., 1997), poly[lactic-co-glycolic acid] and thiolated polymers have been 

investigated in the oral delivery of peptides (Muheem et al., 2016). However, better 

results were obtained when used in combination with other approaches.  

Colonic drug delivery avoids the acidity of the stomach and the proteolytic enzymes in 

the intestine, which play a key role in the reduced oral bioavailability of peptides and 

protein. It also offers longer transit time compared to the small intestine and may have a 

better responsiveness to permeation enhancers (Patel, 2011). Colonic delivery could be 

achieved by a microflora dependent approach (Saffran et al., 1986) where the molecules 

are coated with substances that are only broken down by the colon (Brøndsted and 

Kopec̆ek, 1991). A time dependent colonic delivery on the other hand depends on the 

use of swellable/erodible polymers which delays the time of drug release to produce 

colon targeting. In an example, an insulin loaded core was coated with HPMC to achieve 

colonic delivery (Maroni et al., 2009). Colon targeting can also be achieved using 

polymers that dissolve at high pH levels. Eudragit S100 was used in the delivery of 

myovirus, Clostridium difficile specific bacteriophages to the colon (Vinner et al., 2017). 

This approach has been researched for the delivery of insulin in the colon alone or in 

combination with other approaches (Touitou and Rubinstein, 1986, Gwinup et al., 1991).  
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The site-specific approach in the delivery of peptides and proteins provides the 

opportunity to potentially localise drug effects in the colon. This will be beneficial in the 

treatment of diseases associated with the colon, including colon cancer which was 

discussed in Chapter 1 (Section 1.1.1). However, these drug delivery systems have been 

achieved using conventional tablet manufacturing approaches and, in some cases, the 

use of carrier vesicles (Bayat et al., 2008, Cheng and Lim, 2004).  

The use of FDM 3D printers in drug manufacturing is gaining popularity, demonstrating 

potential in dose personalisation as shown in previous chapters. However, they have 

been utilised mostly for small molecules with no examples for its adaptation for large 

molecules like peptides and proteins. Achieving this goal using this novel approach will 

showcase the versatility of 3D printing in pharmaceutical manufacturing and also provide 

a means to tailor such molecules to individual needs. Peptides and proteins are 

thermosensitive and therefore could not be loaded into filaments due to the heat 

processing involved in HME and FDM use. This therefore calls for modifications and 

adaptations of the FDM head. The set up and modifications used in the printing of the 

liquid capsule as described in section one was investigated for its potential in the 

manufacturing of peptide-loaded liquid-filled capsules in this study.  

4.10 Aims  
 
This research aims at demonstrating a fully automated additive manufacturing process 

for a liquid-filled capsule with the potential of achieving colon targeting of anticancer 

AMPs. To achieve this goal, the objectives of this research includes:   

 Determinations of the anticancer activities of aurein 2.6 and LL-37 using HT-29 

and Caco-2 cancer cell lines as models. 

 To modify a dual FDM 3D printer to include a syringe-based liquid dispenser, 

which was used to fabricate a capsule shell through FDM 3D printing and 

instantaneously dispense a solution of model drugs. 

 To demonstrate the first example of a fully automated additive manufacturing 

process for a liquid-filled capsule containing a thermosentive active. 

 To determine the effect of the 3D process on the peptide’s secondary structure 

 To initially characterise colon drug delivery and release profiles by encapsulating 

theophylline solution into 3D printed Eudragit S100-based hard shell liquid-filled 

capsules.  
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4.11 Materials 
   
The following materials were used in this research. 

4.11.1 Eudragit S100  
 

 
 
 

 

 
Figure 4.13. Chemical structure of Eudragit S100 (Yoo et al., 2011). 

 
This is a methacrylic acid copolymer (Figure 4.13), which is gastric resistant and stable 

at low pH level. It however dissolves at pH ≥7 which makes it very useful in colon delivery 

and other forms of delayed release products. Evonik Industries (Darmstadt, Germany) 

donated this polymer for this research. 

4.11.2 Aurein 2.6 (MW, 1629) 
 
Aurein 2.6 is one of the 16 antimicrobial peptides derived from the skin of Litoria 

raniformis (Southern bell frog) with the amino acid sequence GLFDIAKKVIGVIGSL-NH2. 

It has been observed to demonstrate a random coil structure in an aqueous media which 

changes depending on the dissolution solvent used, amidation resulting to a helical 

structure (Mura et al., 2016).  It has a wide spectrum of activity against bacteria and fungi 

and has been investigated for anticancer properties. This AMP was purchased from 

Pepceuticals, UK for this research. 

4.11.3 Cathelicidin LL-37 (MW, 4493.33) 
 
Cathelicidin LL-37 is the only AMPs under the cathelicidin family derived from humans 

with the amino acid sequence LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES. 

The solution structure of this peptides depends on the media used, its ion composition, 

salt type and pH (Xhindoli et al., 2014). It has been shown to demonstrate a helical 

structure in an aqueous buffer solution (Thennarasu et al., 2010) and a random structure 

in pure water (Zhang et al., 2010).  It is amphipathic and serves a critical role in 

mammalian innate immune defence against infections (Dürr et al., 2006).  It is expressed 

in several parts of the human body including the epithelial cells of the testis, skin, GIT, 

respiratory tract and in leukocytes such as monocytes, neutrophils, T cells, NK cells and 

B cells.  They are well established to have a broad spectrum of antimicrobial activity 
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(Johansson et al., 1998) and have also been investigated for cytotoxic activities. This 

AMP was purchased from Pepceuticals, UK at 80% purity for this research.  

4.11.4 HT-29 colon cancer cell line (Passage number 141) 
 
HT-29 was derived from 44 years old human and it is a colorectal adenocarcinoma. It 

originated in 1964 and has been used in studies relating to colorectal cancer. This was 

purchased from Sigma-Aldrich (UK).   

4.11.5 Caco-2 colon cancer cell line (passage number 57) 
 
Derived from a 72 years old male Caucasian, this cell line is a colorectal adenocarcinoma 

which finds use in cancer studies. For this study the cell line was purchased from Public 

health, England. 

4.11.6 Other ingredients 
 
Theophylline (>99%, anhydrous) was purchased from ACROS Organics (UK). Triethyl 

citrate (TEC), Tween 80, citric acid, MTT assay, dimethyl sulphoxide (DMSO) EMEM 

and McCoy’s 5A medium was purchased from Sigma-Aldrich (UK). Phosphate buffer 

tablets were from Fisher Scientific (UK). Trypsin was purchased from Lonza 

(Switzerland). Talc was purchased from Fluka Analytical (UK). 

4.12 Methods  
 

4.12.1 Cell recovery from cell bank  
 
Frozen cells were received in a cryogenic vial (1 mL) and were preserved in liquid 

nitrogen before defrosting. Defrosting was carried out by placing the vial in a 37 oC water 

bath for approx. 2 min. The thawed cell suspension was added into 20 mL media (EMEM 

for Caco-2 and McCoy’s 5A for HT-29) in a T25 flask to further dilute DMSO usually used 

as cryoprotectant during freezing down. The flask was incubated at 37 oC under 5 % CO2 

and the cells monitored. Once attached to the flask, which usually occurs within 24 hrs, 

the media was replaced with a fresh one. 

4.12.2 Cell sub-culturing / passaging  
 
Cells were grown until 80-90 % confluency as observed using a light microscope. Cells 

were passaged by aspirating the media from the flask and washing the cells with PBS 

as the media dilutes the effect of the trypsin. A 0.25 % trypsin-PBS (I in 10 dilution) was 

added into the flask (2 mL in 75 cm3 flask or 1 mL in 25 cm3 flask) and incubated for 3-5 

min at 37 oC. This detaches the cells from the flasks and in some cases a gentle tapping 
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is required to aid detaching. The effect of the trypsin was stopped by diluting with an 

equal volume of media. The cell suspension was centrifuged at 1000 rpm for 5 min and 

the supernatant removed. The cell pellet was re-suspended in fresh media and cell 

splitting carried out depending on the number of cells (as specified by ECACC) 

determined using haemocytometer.  

4.12.3 Cell counting using haemocytometer  
 
The preparation of the haemocytometer for cell counting requires cleaning the glass 

haemocytometer and cover slip with alcohol. The haemocytometer was moistened by 

breathing on it before fixing the coverslip by gently sliding it across using the two thumbs. 

The presence of Newton’s refraction rings under the coverslip indicates proper adhesion. 

A haemocytometer has two counting chambers and each chamber has 9 squares that 

are 1 mm in length (Figure 4.14). 

The cell suspension was evenly distributed before taking 100 µL of the suspension into 

an Eppendorf. Trypan blue (100 µL) was added to the collected cell suspension (1:1).  

Trypan blue is commonly used during cell counting to distinguish between live and dead 

cells as they can get into dead cells with ruptured membranes. This makes them appear 

blue under the light microscope unlike live ones with intact cell membrane. Using a 

pipette, 100 µL of the trypan blue-treated cell suspension was applied to the 

haemocytometer at the chamber underneath the coverslip, allowing the cell suspension 

to be taken up by capillary action. Using a hand tally counter, the live cells were counted 

for five different regions (Figure 4.14) and the average was multiplied by 2 (the dilution 

factor from the trypan blue added) and multiplied by 104 [(Average × 2) ×104].  

 

Figure 4.14. The surface of a haemocytometer.   
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4.12.4 Freezing down of cells  
 
To ensure sufficient cell stocks are available for experiments, it was necessary to freeze 

down cells. Once the cells have been passaged into a few flasks as explained earlier 

(Section 4.12.2), cell counting was carried out and the cell suspension centrifuged. The 

supernatant was removed, and the cells were re-suspended in a freezing media, which 

is the culture media (EMEM for Caco-2 and McCoy’s 5A for HT-29) with 10 % DMSO at 

a cell density as specified by ECACC. The cell suspension was transferred into cryogenic 

vials (1 mL) and placed into freezing container (Mr Frosty TM) which was designed to 

achieve a cooling rate of 1 oC/min. This was placed in a -80 oC freezer and left for 24 hrs 

before transferring into a liquid nitrogen (-192 oC) for long term storage. 

4.12.5 Growth curve using trypan blue  
 
Cell growth for HT-29 and Caco-2 was carried out by seeding 2 × 104 cells into 6-well 

plates. This was incubated at 37 oC for 7 days and the cell count was checked every 24 

hrs. To determine cell growth using trypan blue, after every 24 hrs, the media was 

aspirated, and 0.5 mL of trypsin was added to the cells to detach them from the plate. 

The trypsin was neutralised by adding an equal volume of the media and then centrifuged 

and replaced with a fresh media. Cell counting was carried out as explained in Section 

4.12.3 above.  

4.12.6 Growth curve using MTT assay  
 
MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay is a reliable 

and sensitive indicator of cell metabolic activity. The assay relies on the reduction of 

MTT, a yellow water-soluble tetrazolium dye to a purple coloured formazan crystal, 

primarily by mitochondrial dehydrogenase.  

Cell growth for HT-29 and Caco-2 was carried out by seeding 5 × 103 cells in 96-well 

plate in a total volume of 100 µL. This was incubated at 37 oC for 7 days. Every 24 hrs, 

20 µL of the MTT assay reagent (5 mg/mL) was added the 100 µL cell suspension and 

incubated for 3 hrs. At the end of the incubation, the supernatant was careful aspirated 

to avoid disturbing the formazan salt. This was dissolved using 100 µL of DMSO and 

was incubated for another 30 min. Absorbance was taken using Tecan microtitre plate 

reader (Australia) at 595 nm.  

4.12.7 Cell viability / cytotoxicity studies  
 
To determine cell cytotoxicity of the actives (aurein 2.6 and LL-37) on the cells (HT-29 

and Caco-2), 5 × 103 of the cells were seeded in 96-well plates. This was allowed 24 hrs 
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to attach to the bottom of the well plate before treating. Treatment was carried out by 

dissolving the actives in the cell media at concentrations of 1000, 300, 100, 30 and 10 

µg/mL and used to replace the media in the well plates. This was monitored for 24, 48 

and 72 hrs. The viable cells were determined by MTT assay as explained in Section 

4.12.6 above. A graph of the percentage viability based on the absorbances obtained 

were plotted against the drug concentration. This experiment was also carried out using 

cisplatin as the positive control.  

4.12.8 Determination of IC50 

 
IC50 stands for the inhibitory concentration where the response is reduced to half. It is a 

measure of the potency of a substance against a biochemical or biological function 

(Sebaugh, 2011). The IC50 of the peptides were determined using Microsoft excel 

software. The percentage viability was plotted against the concentrations of the peptides 

used in µM. the equation from the polynomial order 2 was used to determine the IC50 of 

the actives by solving for “x”. 

4.12.9 Preparation of shell filament  
 
For the preparation of the shell, drug-free Eudragit S100 filaments were produced by 

a HAAKE MiniCTW hot melt compounder (Thermo Scientific, Karlsruhe, Germany). An 

optimised ratio of a powder mixture constituting of the polymer (52.5 %), TEC (22.5 %) 

and talc (25 %) was gradually added to the HME at 130 oC and allowed to mix for 5 min 

at 80 rpm to allow homogenous distribution of the molten mass. Afterwards, the 

filament was extruded at 20 rpm after cooling the HME down to 120 oC.  

4.12.10 Preparation of liquid core  
 
a. Peptide solutions were prepared by dissolving the peptides in phosphate buffer 

solution (PBS), pH 5.9 at 0.01 mg/mL. The PBS was prepared by mixing 92 : 8 mL of 0.1 

M sodium phosphate monobasic (M.W. 138,13.8g/L) and 0.1 M sodium phosphate 

dibasic (M.W. 268, 26.8g/L) respectively.  

b. Theophylline solution was prepared as described in Section 4.6.5b 

4.12.11 3D printing of liquid capsules  
 
A modified FDM 3D printer as described in Section 4.6.6 was used in this study. A Multi-

phase printing mode using simplified 3D software version 3.1.1 (Simplify 3D LLC, Ohio, 

USA) was used in 3D printing of the liquid capsule. The shell was designed to comprise 

a complementary bottom and a cap. This liquid capsule printing was carried out in 3 
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phases: i) printing of the shell bottom, ii) filling of liquid core, and iii) sealing of the shell 

in a separate 3D printing stage. 

The liquid capsules were printed with cube dimensions corresponding to 240 µL. The 

settings of the software were modified, and the parameters of 3D printing of the shell 

was carried out at 190 oC with the building plate at 20 oC. The resolution was set at 

medium (200 μm layer thickness), the infill was 100 % and the internal and external infill 

pattern were set at grid and concentric respectively. The rest of the settings were left as 

default. As priming was not necessary for liquids, the script of the software was also 

modified to omit the priming step of the liquid dispenser.  

4.12.12 Thermal analysis using thermal imaging camera  
 
Thermal images were taken at different points of shell printing using FLIR B400 IR 

camera. The camera was positioned 30 cm from the printing stage and images were 

taken after every 10 secs. The printing temperature was plotted against time.  

4.12.13 Determination of the secondary structure of the 
peptides using circular dichroism  
 
Circular dichroism (CD) is a result of the difference in the absorption of left-handed 

circularly polarised light (L-CPL) and right-handed circularly polarised light (R-CPL) from 

a chiral molecule. In a circular dichroism spectrophotometer, a monochromatic linearly 

polarised light is altered by a photo-elastic modulator (PEM) which creates a left or right-

circularly polarised light as it oscillates at its resonance frequency. The samples are 

exposed to these light and if chiral, the detectors record the light intensity due to the L-

CPL and the R-CPL.  

CD= (vAC/vDC) G         Equation 4.2 

 
vAC= Difference in the intensity between the two circularly polarised light 

vDC= The average total light intensity across many PEM oscillations 

G= Calibrating-scaling factor. 

This find use in assessing the secondary structure of large molecules like peptides and 

proteins which could be sensitive to changes due to environmental conditions.  

The impact of temperature and the 3D printing processes on the integrity of the AMPs 

were determined using circular dichroism. This was carried out using J-815 

spectropolarimeter (JASCO, UK) equipped with a peltier temperature control unit. All the 

experiments were carried out using a 10 mm path-length cell cover over a 260-180 nm 

wavelength range at a scanning speed of 50 nm/min. Scanning was carried out in 
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triplicate and was prepared by dissolving the peptides in phosphate buffer saline (pH 5.9) 

at a concentration of 0.01 mg/mL. Secondary structure analysis was carried out using 

Dichroweb (on-line analysis of protein circular dichroism spectra).  

4.12.12 Statistical analysis 

One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the 

results. Differences in results of p <0.05 were considered to be significant. 
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4.13 Results and discussions  
 
Figures 4.15A and B. shows the images of approximately 50 % confluent Caco-2 and 

HT-29 colon cancer cells used in this research, respectively. These cells were cultured 

and monitored for 7 days to understand the growth pattern of the colon cancer cells. This 

was very crucial to determine the time of natural cell death and therefore the time for cell 

treatment to avoid obtaining false positive results. Initial investigation on the growth curve 

of the cells were carried out using trypan blue dye in a 6 well plate with a seeding density 

of 20 x 104. This was based on the principle that only dead cells will absorb the dye due 

to cell wall penetration. It was observed that Caco-2 cells doubled after 24 hrs (49.2 x 

104 ±11.4) and the cell growth peaked after 72 hrs (90.5 x 104 ±11.4) after which cell 

death started occurring (Figure 4.16A). On the other hand, the HT-29 cell line doubled 

after 48hrs (62.3 x 104 ±4.2) and the time for the highest point of growth was after 120 

hrs (328.2 x 104 ±51.2) before cell death started occurring. The HT-29 cell population 

was noticed to be 3.5 times greater than that of Caco-2 cells at the highest point of growth 

even though the doubling time was much slower, demonstrating the rapid proliferation of 

HT-29 cells.  

This initial understanding on the doubling time of the cells and the points of cell death 

gave an idea of the behaviour of the cells but however does not represent the conditions 

at which the cytotoxicity of the actives (AMPs) on the cell lines will be tested. As a result, 

another growth curve was carried out using a 96-well plate at a seeding density of 5 x 

103 using MTT assay to determine only the viable cells. This seeding density was chosen 

based on the area of the wells of the 96-well plate in relation to that of the 6 well plates 

used initially. This was believed to be a better representation of the growth pattern of the 

cells. The seeded cells were allowed to attach to the plate after 24 hrs before growth 

curve determination. It was observed that both cell lines doubled 48 hrs after attachment 

(Figure 4.16B). A 62 hrs doubling time has been reported by American Type Culture 

Collection  (ATCC, 2016) however factor like the culture conditions and the passage 

number of the cell line could play a major role in this disparity (Corrêa et al., 2016).  The 

absorbance obtained from the MTT assay increased from 0.3701 ±0.0018 to 0.6679 

±0.0267 and 0.4932 ±0.0133 to 0.8554 ±0.0210 for Caco-2 and HT-29 cell lines 

respectively. The growth of both cells peaked after 96 hrs after which cell death started 

occurring as observed from the decrease in the absorbance obtained from the assay. It 

was believed that cell death for both assays were as a result of the lack of space and 

nutrients since no media change was conducted during this process. 
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 As a result of these initial observations, 24, 48 and 72 hrs after cell seeding were 

considered as the periods of cell proliferation and therefore will be the points of 

consideration during treatment. Cell growth inhibition at any of these stages will indicate 

the influence of an external factor and in this case the administered actives.   

 

 

 

Figure 4.15. 50 % confluent Caco-2 (A) and HT-29 (B) colon cancer cell lines.  

A 
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Figure 4.16. Growth curve of Caco-2 and HT-29 using trypan blue (A) and MTT 
assay (B). 
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AMPs have been shown to have a wide range of activities including anticancer properties 

(Rozek et al., 2000, Dennison et al., 2007) which was also investigated in this research. 

The anticancer activities of aurein 2.6 and LL-37 were investigated by treating the HT-

29 and Caco-2 colon cancer cell lines with a range peptide concentration (1000 – 10 

µg/mL). Cisplatin was used as the positive control as it is a well-established anticancer 

agent with the ability to induce cell death by interfering with DNA repair mechanism, 

thereby causing DNA damage in addition to inducing apoptosis in cancer cells (Dasari 

and Tchounwou, 2014).  

The seeded cells were allowed 24 hrs to attach to the well plates before treatment. It was 

observed that the peptides and the positive control had a concentration dependent 

increase in activity against the cell lines used at the three points of evaluation (24, 48 

and 72 hrs) (Figures 4.17 and 4.18), thereby demonstrating the anticancer properties of 

the AMPs. Aurein 1.2 which is one of the most active aurein family was suggested to 

demonstrate anticancer activities by invading the negatively charged cancer cell 

membrane due to their positive surface charge (Dennison et al., 2007). This could also 

be the mechanism of action of aurein 2.6. However further investigations are required to 

confirm this.  

A study by Niemirowicz et al. (2015) showed minimal activity of LL-37 HT-29 colon 

cancer cell at concentrations ≤100 µg. This was also observed in this study with higher 

concentrations required to induce more cell death. Cell death  by LL-37 could be due to 

a selective cancer cell wall invasion as a result of their surface charge. It has been 

demonstrated to also cause cell death by a caspase-independent apoptosis in colon 

cancer cells (Niemirowicz et al., 2015, Ren et al., 2013, Piktel et al., 2016, Ren et al., 

2012). 
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Figure 4.17. Cytotoxicity of aurein 2.6 (A), LL-37 (B) and cisplatin (C) on HT-29 
colon cancer cell line.  
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Figure 4.18. Cytotoxicity of aurein 2.6 (A), LL-37 (B) and cisplatin (C) on Caco-2 
colon cancer cell line.  
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Results from the determination of the peptide concentration required to kill 50% of the 

cell population (IC50) after 24, 48 and 72 hrs of treating the cell lines with aurein 2.6, LL-

37 and cisplatin are shown in Table 4.3.   The treatment of HT-29 cell line with the various 

actives demonstrated a time dependent increase in activity as seen from the decrease 

in IC50 value over time. However, this was not the case for the treatment of Caco-2 cell 

lines except for cisplatin, which maintained a time depended activity. This time 

dependent activity of cisplatin on both cell lines has also been reported in a study by 

Leong et al. (2016). However, an IC50 of 181.1 ± 6.1, 104.5 ±1.2, 75.7 ±4.7 and 120.9 

±7.0, 93.5 ±3.0, 62.3 ±1.2 µM were obtained for its use on HT-29 and Caco-2 respectively 

after 24, 48 and 72 hrs (Leong et al., 2016).  Initial investigations into the activities of 

aurein 2.6 peptide on colon cancer cell lines also demonstrated similar range of IC50 

(Rozek et al., 2000).  

Table 4.3. IC50 of aurein 2.6, LL-37 and cisplatin on HT-29 and Caco-2 colon cancer 
cell lines. 
  

Time 
(hrs)  

IC50 of aurein 2.6 
(Mean ± µM) 

IC50 of LL-37    
(Mean ± µM) 

IC50 of cisplatin 
(Mean ± µM) 

 HT-29 Caco-2 HT-29 Caco-2 HT-29 Caco-2 

24 93 ±11 73 ±6 51 ±9 34 ±6 500 ±41 746 ±144 

48 69 ±4 80 ±11 38 ±5 57 ±10 146 ±9 332 ±36 

72 71 ±1 90 ±9 32 ±4 45 ±5 19 ±20 254 ±13 

 

To be able to localise the release of these AMPs in the colon, a Eudragit S100-based 

shell filament was adapted for FDM 3D printing based on previously used principles 

involving the use of a plasticiser and a non-melting component. This polymer was chosen 

as it is only soluble at pH ≥7 which makes is a good candidate for colon targeting. This 

will potentially localise the activity of the AMPs in the colon and completely avoid the 

harsh conditions of the stomach which is one of the reasons for the poor oral 

bioavailability of peptides and proteins (Moroz et al., 2016). The optimised formulation of 

the polymer, TEC and talc was processed by HME and the resultant filament allowed 3D 

printing by FDM at 190 oC. 

TGA of the filament demonstrated no significant weight loss at the HME and 3D printing 

processing temperatures indicating the stability of the filament. Weight loss from the 

filaments started occurring above 200 oC due to TEC degradation before the polymer 

degradation above 350 oC (Figure 4.19A). The DSC analysis of Eudragit S100 

demonstrated a Tg of 174 oC which was in agreement with the findings of Parikh et al. 
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(2014). The Tg of Eudragit S100 has been also reported to be 188.5 Tg (Sharma et al., 

2011) which could be as a result of the used experimental conditions. The addition of the 

plasticiser (TEC) and the non-melting component resulted in a shift in the Tg from 174 

oC to 85.7 oC (Figure 4.19B).     

 

 

Figure 4.19. TGA (A) and DSC (B) thermographs of Eudragit S100 polymer and 
Eudragit S100-based filament. 
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The modified FDM head, which allows the coordination of an FDM head and a syringe-

based liquid dispenser, was used in this study. This will allow the FDM printing of the 

Eudragit S100-base filament as the shell filament which could be subsequently filled with 

a peptide solution to form a liquid capsule. The multiphase printing mode was also 

chosen as the default approach for this experiment since this will reduce interchanging 

of the printing heads as explained earlier, therefore reducing the impact of the processes 

on the peptides. A shell thickness of 1.6 mm was chosen since this offered adequate 

protection to the core content (Okwuosa et al., 2018). 

It was crucial to determine the temperature changes that occurs during FDM 3D printing 

using the multi-phase approach as peptides are sensitive to environmental conditions 

(Johansson et al., 1998, Xhindoli et al., 2014). These initial investigations were essential 

to ensure the integrity of the peptides are maintained since changes in secondary 

structure of a peptides could affect their biological activity (Thành, 2015). This was 

investigated using a thermal imaging camera, which demonstrated fluctuations in the 

temperature as determined from readings from particular areas during the shell printing 

(Figures 4.20 and 4.21). This however seems to be influenced by the position of the 

heated nozzle in relation to the spot being measured, therefore making this initial 

investigation inconclusive and unreliable. However, at the end of the initial 75 % shell 

printing step, the shell cools down to the temperature of the plate (20 oC) which was ideal 

for the peptides injection (Figures 4.20 and 4.21) before the final sealing stage. The 

cooling of the shell layers as printing progresses could also be seen from the colour 

coding of the layers from the thermal camera (Figure 4.21), which confirms the fast 

cooling and solidification of FDM 3D printed objects.  

 

 

Figure 4.20. Temperature changes during FDM 3D printing of Eudragit S100.  
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Figure 4.21. Temperature changes during FDM 3D printing of Eudragit S100. 
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Since 3D printing is a thermal process and is required to completely seal the capsule 

after the peptide filling, it was also necessary to determine the impact of temperature 

change on the solution structure of the AMPs. A temperature interval scan over the range 

10 °C to 90 °C was undertaken on the peptides using circular dichroism. 

At 20 oC Aurein 2.6 displayed a random coil secondary structure with a minimum around 

205 nm and a negative shoulder around 228 nm (Figure 4.22A). Exposure to 

temperatures between 10 to 90 oC demonstrated a loss of negative ellipticity around 205 

nm and a gain of negative ellipticity around 228 nm suggesting the possibility of a heating 

induced folding of the peptide into a helical structure (increase in helicity from 2.4 % 

±0.006 to 6.8 % ±0.001).  This therefore suggests a temperature induced partial folding 

into a more organised structure. Similar behaviour was also observed in a study on a 

peptide with a random coil structure (Kjaergaard et al., 2010). A comparison of its 

solution structure at 20 oC and 90 oC demonstrated a change in secondary structure as 

calculated from Dichroweb (Whitmore and Wallace, 2008, Whitmore and Wallace, 2004) 

(p <0.05). 

The solution structure of LL-37 in PBS 5.9 suggested an α-helical structure at 20 oC with 

broad negative minima around 208 and 223 nm (Figure 4.22B). This was in agreement 

with research undertaken by Thennarasu et al. (2010), which identified a broad minima 

at 206 and 222 nm in an aqueous buffer solution (pH 7.4), a characteristic of an α-helical 

conformation. Further analysis using Dichroweb (Whitmore and Wallace, 2008, 

Whitmore and Wallace, 2004) showed that although the CD spectra of LL-37 (Figure 

4.22B) displayed an α-helical conformation, the calculated percentage helicity was <10 

%. The α-helical content conformation of LL-37 showed little variation over the 

temperature range studied [10 to 90 oC; (p >0.05)] therefore indicating that the peptide 

was potentially stabile (Figure 4.22B). In support of these data, it was observed that 

Pyrularia pubera thionin, an AMP displayed similar α-helical structure behaviour when 

exposed to high temperature (Vila-Perello et al., 2005). A random coil conformation at 

20 oC has been identified for LL37 (Zhang et al., 2010, Turner et al., 1998). In pure water, 

it was also observed to demonstrate a temperature–dependent equilibrium between a 

left-handed PPII helix and a random coil secondary structure at an increased 

temperature (Zhang et al., 2010). The solution structure of LL37 has also been shown to 

be affected by the pH of the media, physiological ion composition as well as salt type 

and concentration (Johansson et al., 1998, Xhindoli et al., 2014).   
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Figure 4.22. Impact of temperature on the secondary structure of aurein 2.6 (A) 
and LL-37 (B). 
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Using the modified dual FDM heads, a 3D printed liquid capsule was manufactured, with 

the core being a peptide solution (0.01 mg/mL) and the shell 3D printed from a Eudragit 

S100-based filament. The integrity of the peptides before and after 3D printing were 

investigated by circular dichroism to determine the impact of the 3D printing processes 

on the solution structure of the AMPs. It was observed that the secondary structure of 

the peptides remained the same after 3D printing (p >0.05) (Figures 4.23A and B), which 

demonstrated the efficiency of the system in carrying thermolabile actives. This led to 

the conclusion that coordinated peptide dispensing and FDM 3D printing did not affect 

the AMPs used.   
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Figure 4.23. The impact of coordinated FDM 3D printing and syringe-based liquid 
dispenser on the secondary structure of aurein 2.6 (A) and LL-37 (B).  
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In order to demonstrate a proof of concept, colon targeting was demonstrated using a 

theophylline loaded liquid-filled capsule. In vitro drug release analysis demonstrated a 

delayed drug release with about 30 % drug release in the acid media followed by a 

controlled drug release at elevated pH of 7.4 (Figure 4.24). Optimisation of the shell 

thickness will potentially decrease this initial drug leakage since < 10 % drug release in 

the acid media is usually optimal. 

 

  

Figure 4.24. In vitro dissolution studies of the 3D printed colon targeting liquid 
capsule.   
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4.14 Conclusion  
 
The anticancer activity of aurein 2.6 and LL-37 AMPs were demonstrated on the 

researched colon cancer cell lines where they both showed a concentration dependent 

increase in activity. The peptides also seemed to have a time dependent activity on HT-

29 which does not seem to be the case when used on Caco-2 cell lines. The potential 

for colon targeting was demonstrated by adapting Eudragit S100 for FDM 3D printing, 

which was successfully used to fabricate liquid capsule to carry either large molecules 

(AMPs) or small molecules (theophylline). Drug release studies was carried out using 

the theophylline solution liquid-filled capsules, where more than 10 % of the active was 

released in the acid media after which a pH change to 7.4 produced a sustained release 

of theophylline over 5 hrs.  The coordination of the FDM head and a liquid dispenser was 

able to preserve the secondary structure of the peptides by avoiding the thermal 

processing of the peptides which was confirmed by studies using circular dichroism.  

This research presents a proof of concept for potential oral delivery of peptides for 

individualised drug therapy. It also demonstrates the potential of using Eudragit S100 to 

avoid peptides degradation due to the high acidity of the stomach, with drug release 

occurring in the lower part of the GIT with higher pH values and reduced enzymatic 

activity. Further research is required to achieve better control on drug release using this 

approach.   
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5.1 Introduction  
 
Stability studies are an essential component in product development. They allows for the 

evaluation of the stability of pharmaceutical excipients, active ingredients and drug 

products in controlled conditions (ICH, 2003). Stability studies include testing those 

qualities of the product that might be susceptible to changes due to storage. They also 

include the study of the interaction of API and excipients, interaction between two or 

more APIs were applicable and the effect of container closure and packaging materials 

on the quality of the active ingredient or product. Data from such studies aid in 

recommending ideal storage conditions and shelf lives for the tested API or product 

before being introduced into the market. This ensures that safety, efficacy and quality is 

maintained during storage and use of pharmaceutical products. 

The guideline for stability studies are provided by the International Council for 

Harmonisation (ICH). Regional differences in environmental conditions were considered 

before setting these guidelines, which led to categorisation into four climatic zones and 

four different long-term stability-testing conditions were recommended (Table 5.1) 

(WHO, 2009). However, depending on the product development stage, stability studies 

could be carried out under different conditions and period.  

One type of the initial stability tests usually carried out on products/potential products is 

the accelerated stability testing. They are used to estimate the effect of long term storage 

over a shorter period (ICH, 2003). The storage conditions are usually more extreme 

(Table 5.2 and Table 5.3) in comparison to the other stability testing routes which are 

designed to speed up or accelerate potential stability problems. This saves time during 

development since unstable products are fished out without much time and resource 

wastage. The storage condition during accelerated stability studies depend on the 

intended storage conditions for the drug / drug product (Table 5.2 and Table 5.3). Three 

points of stability testing are required during this study, which is usually carried out over 

6 months (ICH, 2003). Physical, chemical or microbial changes as well changes due to 

light exposure could be investigated using adequate analytical equipment.   

Intermediate stability studies are usually carried out when significant changes were 

observed during the accelerated studies. This requires a minimum of four testing points 

including the starting point (e.g. 0, 6, 9 and 12 months) and is usually carried out over 12 

months (Table 5.2) (ICH, 2003).  On the other hand, long term stability studies are usually 

carried out for over 12 months (Table 5.2,Table 5.3 and Table 5.4) with sampling done 

every three months for the first year, every six months for the second year and annually 
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afterwards depending on the proposed shelf life of the drug (ICH, 2003). Data from a 

minimum of 6 months could be submitted for substances with established stability.  

Table 5.1. Stability testing conditions based on climatic zones (WHO, 2009). 

 

Climatic zone Definition  
Long-term testing 

conditions 

Zone I Temperate 21 oC / 45 % RH 

Zone II 
Subtropical, with possible high 

humidity  
25 oC / 60 % RH 

Zone III Hot and dry 30 oC / 35 % RH 

Zone IVA Hot and humid 30 oC / 65 % RH 

Zone IVB Hot and very humid  30 oC / 75 % RH 

RH= Relative humidity  

Table 5.2. General case of stability studies (ICH, 2003). 

 

Study type  Storage conditions  Minimum time period  

Long term  

25 oC ±2 oC / 60 % RH ±5 % RH 

Or 

30 oC ±2 oC / 65 % RH ±5 % RH 

6 months or  

12 months  

Intermediate  30 oC ±2 oC / 65 % RH ±5 % RH 6 months  

Accelerated  40 oC ±2 oC / 75 % RH ±5 % RH 6 months  

 

Table 5.3. APIs and products intended to be stored in the fridge (ICH, 2003).  

 
Study type  Storage conditions  Minimum time period  

Long term  5 oC ±3 oC  12 months  

Accelerated  

25 oC ±2 oC / 60 % RH ±5 % RH or 

30 oC ±2 oC / 65 % RH ±5 % RH or 

30 oC ±2 oC / 75 % RH ±5 % RH 

6 months  

 

Table 5.4. APIs and products intended for storage in freezer (ICH, 2003). 

 
Study type  Storage conditions  Minimum time period  

Long term  -20 oC ±5 oC  12 months  
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Physical stability includes changes in the physical properties of the drug/drug product. 

This includes changes in organoleptic properties like appearance e.g. changes in shape 

or size, odour and taste which could affect drug use and compliance (Guo et al., 2013). 

Loss of weight, changes in pH and viscosity are looked out for when dealing with liquid 

dosage forms and mechanical resistance over time is usually examined for solid dosage 

forms. Changes in drug release pattern, which is possible with aging even with an 

already established and stable APIs are also investigated (Tingstad, 1964). During 

storage, APIs tends to transform into a more stable crystalline form. Therefore, APIs in 

their amorphous state might revert to their crystalline form, which might influence 

dissolution and drug release. Different analytical techniques are usually employed during 

physical stability testing (Table 5.5). 

Table 5.5. Analytical equipment commonly used in physical characterisations and 
their applications  (Guo et al., 2013). 

 

Analytical Method  Applications  

Polarised light Microscopy (PLM) 
Qualitative confirmation of presence of 

crystals  

X-ray powder diffraction (XRPD) 
Crystallinity quantification, miscibility, 

crystallisation kinetics   

Fourier-transform infrared 

spectroscopy (FTIR)   
Molecular level interaction, quantification  

Fourier-transform Raman 

spectrometer (FT-Raman) 
Molecular level interaction, quantification  

Scanning electron microscopy 

(SEM) 
Morphology of particles  

Thermal gravimetric analysis 

(TGA)  
Mass loss at elevated temperature  

Inverse gas chromatography (IGC) Surface energy and molecular mobility  

Dissolution test Changes in release pattern  

 

Chemical instability could occur during storage as impurities/degradation products could 

arise because of interaction with excipients and/or container closure or packaging 

materials.  API/drug product chemical stability depends on the rate of oxidation or 

hydrolysis as a result of exposure to light/heat and humidity respectively (Waterman and 

Adami, 2005). This introduces changes in the chemical structure of the API which could 

affect its potency (Timothy J. Snape, 2010). The International Council of Harmonisation 
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controls the amount of degradants allowed during the shelf life of a product and this is 

based on the total daily intake of the drug (ICH, 2006).  

Solid dispersions as a solid solution or suspension is one of the methods used to improve 

the solubility, dissolution rate and consequently the bioavailability of poorly soluble drugs 

(BCS class II drugs). Techniques used in the manufacturing of solid dispersions includes 

HME (Agrawal et al., 2016), spray drying (Paudel et al., 2013), supercritical carbon 

dioxide impregnation (Potter et al., 2015) or co-precipitation (Huang and Dai, 2014). 

These different techniques have been used to create a polymer-drug matrix where the 

drug may or may not be dispersed at the molecular level in the polymer. Several factors 

like the drug-polymer ratio, drug-polymer interaction (Sarode et al., 2013), the type of 

polymer used and the processing conditions plays a major role in the stability of the solid 

dispersion (Huang and Dai, 2014, Agrawal et al., 2013). Recrystallization could occur 

during storage and alter the release properties of the solid dispersion depending on the 

storage conditions (Agrawal et al., 2016), which emphasises the importance of stability 

studies during product development (Khougaz and Clas, 2000, Matsumoto and Zografi, 

1999, Konno and Taylor, 2006).  

The use of HME in the manufacturing of solid dispersion has been shown to be an 

efficient approach (Liu et al., 2012). In some cases, it was shown to offer a better physical 

stability in comparison to spray drying (Agrawal et al., 2013, Mahmah et al., 2014). 

Different polymers and APIs have been processed using HME for application to different 

pharmaceutical processes (Li et al., 2015, Andrews et al., 2010, Sarode et al., 2013, 

Zecevic et al., 2014).  

PVP has been shown to be compatible with HME (Andrews et al., 2010, Yang et al., 

2016, LaFountaine et al., 2016, Mahmah et al., 2014, Chan et al., 2015); either applied 

to improve solubility or the stability of an API. Amorphous solid dispersions are produced 

depending on the drug-polymer ratio. In an example, a micronised griseofulvin-PVP solid 

dispersion by HME was shown to remain amorphous at ≤20 % drug loading (LaFountaine 

et al., 2016). Solid dispersions with such polymers have been shown to remain stable 

over 3 months, maintaining similar release and physical properties (Guo et al., 2014). In 

another study, PVP was used in combination with another polymer which showed a slight 

reduction in drug release most likely due to aging after 2 months of storage (Jijun et al., 

2011). The drug-polymers interaction as well as the polymer properties like the Tg in 

relation to the storage condition determines the ease of polymer rearrangement. A less 

hygroscopic PVP VA64 was more stable in comparison to PVP K12 which had a lower 
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Tg as a result of water uptake and therefore allows ease of polymer motility (Agrawal et 

al., 2016).  

The use of Eudragits in the manufacturing of solid dispersions could also be achieved 

using HME (Sarode et al., 2013, Abu-Diak et al., 2011, Bennett et al., 2015, Feng et al., 

2012, Zhang et al., 2014, Yang et al., 2014, Jijun et al., 2011).  The interaction between 

lumefantrine (model basic compound) and Eudragit L100-55 (acidic compound) 

demonstrated the effect of the solid dispersion manufacturing process, polymer acid 

strength and drug loading on the acid-base interactions (Song et al., 2016). The ionic 

interactions between the polymer and the drug which depends on the drug-polymer 

miscibility also contributes to formation of solid dispersions (Maniruzzaman et al., 2013).  

In a research where propranolol HCl and diphenhydramine HCl were used as model 

cationic APIs, it was discovered that the drug-polymer interactions between the amino 

groups of the drug molecule and the carbonyl groups of the methacrylate and ethyl 

acrylate copolymers played a key role in forming the amorphous solid dispersion 

(Maniruzzaman et al., 2013). This was demonstrated in a Eudragit S100-based solid 

dispersion which showed API precipitation inhibition as well as amorphous  stabilisation 

(Chauhan et al., 2013). Eudragit S100 has also been utilised in a binary polymer system 

containing celecoxib, where the development of  hydrogen  bond with polyethylene oxide 

after HME contributed to the stability of the solid dispersion (Jones et al., 2016). 

In this research and as shown in the previous chapters, 3D printing of the dosage forms 

were carried out using filaments. These filaments were manufactured as a solid 

dispersion of the drug, polymer and a non-melting component (talc) using HME before 

being inserted in the FDM 3D printing head to fabricate the tablets or capsule shells. The 

potential of 3D printing in pharmaceutical manufacturing and therefore personalised 

dosing is expected to revolve around these filaments, which could be easily scaled up, 

packaged appropriately and shipped to different hospitals and community pharmacies in 

a ready to use form. Since these filaments are potentially going to be the pre-product 

from which dosage forms of different sizes and doses could be manufactured from, it 

was important to investigate their stability at different storage conditions according to the 

ICH guideline.   
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5.2 Aims  
 
This research aims to determine the long-term stability of PVP, Eudragit L100-55 and 

S100-based filaments manufactured by HME by accelerated 6 month stability studies. 

In order to achieve this, the research objectives includes: 

 To carry out an accelerated stability studies on PVP, Eudragit L100-55 and S100-

based filament based on ICH guideline.  

 To determine the effect of storage conditions on the diameter and printability of 

the filaments. 

 To determine the effect of storage on the physical properties of the filament 

through XRPD, TGA and DSC analysis. 

 To determine the effect of storage on the integrity of the theophylline loaded PVP 

filament and on drug release.  
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5.3 Materials  
 
Theophylline was purchased from ACROS Organics. Polyvinylpyrrolidone (PVP, 

MW 40,000) and triethyl citrate were purchased from Sigma-Aldrich (UK). Talc was 

ordered from Fluka Analytical (UK). Scotch blue painter’s tape 50 mm was supplied by 

3M (Bracknell, UK). Eudragit L100-55 and Eudragit S100 was donated by Evonik 

Industries (Darmstadt, Germany).  

5.4 Methods  
 

5.4.1 Preparation of filaments  
 
The PVP and Eudragit based filaments were produced by Hot melt extrusion using the 

parameters in Table 5.6. The components were fed into the HME and allowed to evenly 

mix at 80 rpm for 5 mins before extrusion. The Eudragit-based filaments were drug free 

since they were used as shells for drug release modification.   

5.4.2 Accelerated stability studies (storage conditions)  
 
In order to determine the stability of the filaments over long-term storage, accelerated 

stability studies was carried out according to the ICH guideline. The PVP, Eudragit L100-

55 and S100-based filaments were sealed in a PVC bag with or without a vacuum and 

stored in a fridge at 5 oC, in an incubator at 30 oC + 65 %RH or at 40 oC + 75 %RH. 

Vacuum was created using AndrewJames VS517 Dom Sealer. The filaments were 

characterised when freshly prepared and then after 1 month, 3 months and 6 months of 

storage to determine the effects of the storage conditions on the filaments.  

5.4.3 Printability test using Makerbot 2X FDM 3D printer 
(Makerbot, US)  
 
3D printing of the filaments stored in different conditions was attempted using the 

parameters in Table 5.6, to determine the effect of the storage conditions on 3D printing. 

Printing was carried out at a standard resolution (0.2 mm layer thickness) and a 100 % 

infill with rectilinear infill pattern. Other settings were left at default. A 10 mm caplet was 

designed and imported into the makerware software and used to test the printability of 

the filaments.  
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Table 5.6. Filament formulation, HME and 3D printing parameters. 

 

Polymer type Polymer (%) TEC (%) Talc (%) Drug (%) 
Processing 
temp (oC) 

Extrusion 
temp (oC) 

Nozzle 
size (mm) 

3D 
printing 
temp (oC) 

Platform 
temp (oC) 

PVP 50 12.5 27.5 10 100 90 1.25 110 40 

Eudragit L100-55 50 16.67 33.33  135 125 1 185 40 

Eudragit S100 52.5 22.5 25  130 120 1.5 190 20 
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5.4.4 Filament dimension 
 
In order to determine the effect of the storage conditions on the diameter of the filaments, 

five points (10 cm apart) were marked with a pencil along the length of the filament. 

Changes in the diameter of those points were monitored at the points of characterisation 

using a Draper Electronic Digital Micrometre (0 – 25 mm) with a resolution of 0.001 mm. 

5.4.5 X-ray powder diffractometry (XRPD) 
 
X-ray powder diffraction was carried out on the filaments over 6 months to investigate 

changes in physical forms of the API or excipients. This was assessed using a powder 

X-ray diffractometer, D2 Phaser with Lynxeye (Bruker, Germany). Samples were 

scanned from 2Theta (2θ) = 5° to 50°. The divergence slit was 1 mm and the scatter slit 

0.6 mm. The wavelength of the X-ray was 0.154 nm using Cu source and a voltage of 

30 kV.  

5.4.6 Differential scanning calorimetry (DSC) 
 
For modulated temperature differential scanning calorimetry (MTDSC) analysis, a 

differential scanning calorimeter (DSC) Q2000 (TA Instruments, Elstree, Hertfordshire, 

UK) with a heating rate of 2 °C/min was employed. Each sample was subjected to a heat-

cool-heat scan in order to measure and exclude the effect of moisture contents on 

filament plasticity with the exception of Eudragit S100-based filaments. A modulated 

scan was applied using an amplitude of 0.212 °C and a period of 40 sec, scanning from 

-70 to 200 °C. Analysis was carried out under a purge of nitrogen (50 mL/min). The data 

was analysed using a TA 2000 analysis software. TA pin-holed lid and 40 µL aluminium 

pans were filled with approximately 5 mg sample. All measurements were carried out in 

triplicates. 

5.4.7 Thermal gravimetric analysis (TGA) 
 
TGA analysis for the extruded filaments were measured using a TGA Q5000 (TA 

Instruments, Hertfordshire, UK). Samples (10 mg) were added to an aluminium pan 

without lid. Samples were then heated from 25 oC to 500 oC at a heating rate of 10 oC/min. 

All measurements were carried out in triplicates. 

5.4.8 In vitro drug release studies (PVP-based filament) 
 
In vitro drug release analysis from the filaments were carried out to determine the effect 

of the storage conditions on the release pattern of theophylline from the PVP-based 

filaments. Approximately 115 g of the filament was dissolved in 900 mL of 0.1M HCL at 
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a wavelength of 272 nm using an AT 7 Smart dissolution USP II apparatus (Sotax, 

Switzerland). Sampling was carried out automatically after every 5 min. 

5.4.9 Determination of drug content (PVP-based filament) 
 
To determine changes in the drug content of the filament after storage, the PVP-based 

filament containing theophylline was solubilised in 0.1 M HCl, which was allowed to 

sonicate for 2 hr. Assessment was carried out using an UV-HPLC system and an Xterra 

column (Waters, Uk). A mobile phase of 10 mM solution of ammonium acetate buffer, 

methanol and acetonitrile (86:7:7) was used. Analysis was carried out at a wavelength 

of 272 nm, temperature of 40 oC, flow rate of 1 mL/min, injection volume was 5 µL and a 

run time of 7 min. 

5.4.10 Statistical analysis  
 
One-way ANOVA was employed using SPSS Software (22.0.0.2) to analyse the results. 

Differences in results above probability level (p > 0.05) was considered not significant 

whilst differences (p < 0.05) were considered significant 
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5.5 Results and discussions 
 
The potential of FDM 3D printing in rapid drug manufacturing and dose personalisation 

requires the use of filaments. It is from these filaments that several doses could be 

printed on demand. This therefore is required to be stable during storage and therefore 

readily available for use. In this research, accelerated stability studies were carried out 

on a PVP-based filament loaded with theophylline as the model drug. Eudragit L100-55 

and S100-based filament which were drug free and utilised as shell filaments were also 

investigated. The filaments were stored in a polyvinyl chloride (PVC) bag, sealed with or 

without vacuum and stored in a fridge at 5 oC, in an incubator at 30 oC + 65 %RH or at 

40 oC + 75 %RH. The filaments were analysed before storage and these analyses were 

repeated after 1, 3 and 6 months to determine changes in the filament properties. The 

filaments in the vacuumed PVC bags were placed in a strong hollow PVC tube to avoid 

physical compression from the storage bag due to vacuuming.  

The impact of the storage conditions of the diameter of the filaments were investigated 

since diameters greater than 2 mm will not pass through the 3D printer head and any 

deformation along the length of the filament could potentially affect 3D printing. An 

average of five different points of measurement on the filaments which was monitored 

during storage revealed no major changes in the filament diameter (p ≥0.05) with the 

exception of the PVP-based filament (Table 5.7). It was observed that the storage of the 

filaments at 5 oC maintained the stability of the PVP-based filament which resulted in no 

changes in its diameter over time. However, storage at 30 oC + 65 % RH or 40 oC +75 

% RH resulted in the deformation and flattening of the filament. This could be related to 

the hygroscopic nature of the PVP polymer leading to polymer relaxation (Fitzpatrick et 

al., 2002). Storage at 5 oC on the other hand, which is below the Tg of the polymer, 

resulted in the increase of its viscosity due to reduced polymer mobility and therefore 

providing a more stable condition by preventing polymer mobility (Fitzpatrick et al., 2002).  

One of the major challenges from the use of filaments in drug manufacturing is ensuring 

compatibility with the 3D printer after storage. It was observed that the PVP, Eudragit 

L100-5 and S100-based filaments remained compatible with the 3D printer at the same 

temperature as the freshly prepared sample except for the PVP-based filament which 

deformed as a result of storage at 30 oC + 65 % RH or 40 oC +75 % RH. This early 

observation resulted in the termination of the stability studies for these failed conditions 

after the first month.  
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Table 5.7. Impact of storage conditions on filament diameter.  

 

Filament Storage condition 

Dimension (mm) 

Fresh 
After 3 

months  

After 6 

months  

PVP 5 oC 1.50 ±0.04 1.47 ±0.04 1.53 ±0.03 

PVP 5 oC + Vac 1.50 ±0.01 1.51 ±0.02 1.48 ±0.02 

PVP  30 oC + 65% RH  1.37±0.09 X X 

PVP 30 oC + 65% RH + Vac 1.49±0.01 X X 

PVP 40 oC + 75% RH  1.51±0.02 X X 

PVP 40 oC + 75% RH + Vac 1.54±0.09 X X 

Eudragit L100-55  5 oC  1.67 ±0.03 1.66 ±0.05 1.67 ±0.04 

Eudragit L100-55   5 oC + Vac  1.67 ±0.14 1.72 ±0.16 1.65 ±0.14 

Eudragit L100-55 30 oC + 65% RH  1.61 ±0.05 1.76 ±0.09 1.77 ±0.06 

Eudragit L100-55   30 oC + 65% RH + Vac 1.73 ±0.06 1.72 ±0.03 1.75 ±0.04 

Eudragit L100-55 40 oC + 75% RH  1.67 ±0.04 1.50 ±0.24 1.51 ±0.23 

Eudragit L100-55  40 oC + 75% RH + Vac 1.68 ±0.04 1.73 ±0.05 1.64 ±0.08 

Eudragit S100 5 oC  1.53 ±0.02 1.55 ±0.02 1.54 ±0.02 

Eudragit S100 5 oC + Vac  1.61 ±0.08 1.61 ±0.05 1.62 ±0.05 

Eudragit S100 30 oC + 65% RH  1.63 ±0.02 1.64 ±0.03 1.63 ±0.02 

Eudragit S100 30 oC + 65% RH + Vac 1.62 ±0.03 1.61 ±0.02 1.62 ±0.03 

Eudragit S100 40 oC + 75% RH  1.61 ±0.06 1.64 ±0.04 1.61 ±0.04 

Eudragit S100  40 oC + 75% RH + Vac 1.64 ±0.03 1.65 ±0.05 1.58 ±0.04 
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XRPD was used to investigate changes in the physical forms of the API or the excipients 

because of the accelerated stability storage conditions used during the study.  A fresh 

PVP-based filament loaded with theophylline as a model drug demonstrated sharp peaks 

from talc at (2θ) = 9.52, 19.54, 28.87° and also peaks at (2θ) = 7 and 12° due to 

theophylline, which remained in its crystalline form (Figures 5.1A and B) after HME. This 

was unlike some other drug models that were used previously with PVP (Okwuosa et al., 

2016). These drug peaks were also observed to still appear after storage (Figures 5.1A 

and B) indicating that the excipient and the API remained in their crystalline forms 

throughout these conditions. Variations in peak intensities could be an early indication of 

stability problems. However, this was not investigated in this research.    
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Figure 5.1. The impact of storage at 5 oC on the XRPD of PVP-based filament (A) 
no vacuum (B) vacuum.   
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Eudragit L100-55 and Eudragit S100 based filaments as used during this research were 

drug free since they were mostly used as shell filaments for engineering drug release 

patterns using the core-shell formulation strategy. A fresh Eudragit L100-55-based 

filament had peaks at (2θ) = 9.52, 19.54, 28.87° due to talc as the polymers were 

amorphous in nature. Analysis after 1, 3 and 6 months revealed no changes as regards 

the physical forms of talc in any of the storage condition (Figures 5.2, 5.3 and 5.4). This 

indicated the stability of the excipients and consequently, the filaments. The Eudragit 

S100-based filament was also stable throughout the storage conditions with peaks at 

(2θ) = 9.52, 19.54, 28.87° due to talc (Figures 5.5, 5.6 and 5.7) which remained the same 

throughout storage.  
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Figure 5.2. The impact of storage at 5 oC on the XRPD of Eudragit L 100-55-based 
filament (A) no vacuum (B) vacuum.   
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Figure 5.3. The impact of storage at 30 oC + 65 %RH on the XRPD of Eudragit L 
100-55-based filament (A) no vacuum (B) vacuum.   
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Figure 5.4. The impact of storage at 40 oC + 75 %RH on the XRPD of Eudragit L 
100-55-based filament (A) no vacuum (B) vacuum.   
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Figure 5.5. The impact of storage at 5 oC on the XRPD of Eudragit S100-filament 
(A) no vacuum (B) vacuum.   
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Figure 5.6. The impact of storage at 30 oC + 65 %RH on the XRPD of Eudragit S100-
filament (A) no vacuum (B) vacuum.   
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Figure 5.7. The impact of storage at 40 oC + 75 %RH on the XRPD of Eudragit S100-
based filament (A) no vacuum (B) vacuum.   
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Thermogravimetric analysis provides information about the thermal stability of materials 

represented as a percentage weight loss, which might differ as samples age or due to 

excipient or API interactions. This analytical technique also provides information about 

the moisture content of the filament as demonstrated in this study (Table 5.8).  

Table 5.8. Investigation of the moisture uptake of the stored filaments using TGA.   

 

Filament  Storage condition  

Water loss (%) 

Fresh 
After 1 

month 

After 3 

months  

After 6 

months  

PVP 5 oC 3.99 2.91 5.74 6.51 

PVP 5 oC + Vac 3.99 1.97 5 4.61 

PVP  30 oC + 65 %RH  3.99 4.44 X X 

PVP 30 oC + 65 %RH + Vac 3.99 5 X X 

PVP 40 oC + 75 %RH  3.99 5.1 X X 

PVP 40 oC + 75 %RH + Vac 3.99 6.4 X X 

L100-55 5 oC  1.03 0.49 1.49 1.58 

L100-55 5 oC + Vac  1.03 0.61 1.95 1.69 

L100-55 30 oC + 65 %RH  1.03 0.68 2.1 2.1 

L100-55 30 oC + 65 %RH + Vac 1.03 0.58 2.02 1.69 

L100-55 40 oC + 75 %RH  1.03 0.57 1.75 2.75 

L100-55 40 oC + 75 %RH + Vac 1.03 0.72 1.49 2.27 

S100  5 oC  1.36 0.54 1.56 1.54 

S100 5 oC + Vac  1.36 0.72 1.9 1.48 

S100 30 oC + 65 %RH  1.36 0.69 1.56 2.23 

S100 30 oC + 65 %RH + Vac 1.36 0.93 2.15 1.95 

S100 40 oC + 75 %RH  1.36 0.65 2.19 2.21 

S100 40 oC + 75 %RH + Vac 1.36 0.66 1.7 2.73 

PVP – Polyvinyl pyrrolidone, L100-55 = Eudragit L100-55 and S100 = Eudragit S100 

Fresh samples of PVP-based filament showed an initial weight loss of up to 3.99 % at 

120 oC due to water loss, which was expected as PVP is hygroscopic. Up to 6 % water 

content has been reported (Gupta et al., 2014). The storage of this filament at 5 oC did 

not result in an increase in moisture uptake after the first month as indicated by the water 

loss % in Table 5.8 and Figure 5.8. However, its storage at the other condition resulted 

in an increase in moisture content with water loss of up to 6.4 % after the first month. 

PVP has been reported to be able to take moisture up to 40% of its weight (Ramineni et 
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al., 2013). This was believed to be the reason behind the deformation of the polymers at 

the storage conditions with the exception of its storage at 5 oC. The storage of these 

stable filament over 6 months resulted in water loss of approx. 6.51 and 4.61 % for the 

filament store without and with a vacuum respectively (Table 5.8 and Figure 5.9). 

However, this did not influence the diameter nor physical appearance of the filaments 

which could also be due to storage at temperature below the Tg of the polymer as 

explained earlier which reduces polymer mobility (Fitzpatrick et al., 2002). 

Besides the moisture variations, this filament demonstrated no changes in the obtained 

TGA thermograph before and after storage with weight losses due to the degradation of 

the APIs and excipients occurring in a similar manner (Figures 5.8 and 5.9). The second 

weight loss occurs as a result of theophylline degradation, the third as a result of the 

polymers and TEC as discussed in Section 2.5 (Okwuosa et al., 2016) were the polymer 

improved the stability of TEC. As a result, degradation occurring at the same time. No 

further weight losses were observed since talc is stable above 500 oC.   

 

Figure 5.8. The impact of different storage condition on TGA of PVP-based filament 
after 1 month.  
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Figure 5.9. The impact of storage at 5 oC on the TGA of PVP-based filament (A) no 
vacuum (B) vacuum.  
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The TGA thermograph for Eudragit L100-55-based filament demonstrated an initial 

weight loss of 1.03 % due to water evaporation from the fresh sample, with a slight 

increase in moisture uptake as seen from its water loss after storage in the investigated 

conditions (Table 5.8, Figures 5.10, 5.11 and 5.12). This was expected since Eudragit 

L100-55 does not seem to be very hygroscopic. A 4 % moisture loss was observed  in 

an earlier study in Chapter 3 although lower water contents have been reported (Parikh 

et al., 2014). The lower moisture content observed in the filaments in comparison to the 

polymer alone could be due to the HME processing technique involved in filament 

manufacturing which might lead to water loss.  The storage of the filaments at 5 oC, 30 

oC + 65 %RH or 45 oC + 75 %RH over 6 months did not seem to affect its weight loss 

pattern. A first major weight loss due to TEC from approx. 190 oC was observed in all the 

thermographs followed by another weight loss from approx. 315 oC due to the polymer 

degradation. This is in contract with a study by (Parikh et al., 2014) were the degradation 

temperature of Eudragit L100-55 was reported to be 176 oC. As mentioned earlier, talc 

does not show any weight loss pattern since it is stable above the experimental 

temperature.  
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Figure 5.10. The impact of storage at 5 oC on the TGA of Eudragit L 100-55-based 
filament (A) no vacuum (B) vacuum. 
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Figure 5.11. The impact of storage at 30 oC + 65 %RH on the TGA of Eudragit L 100-
55-based filament (A) no vacuum (B) vacuum. 
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Figure 5.12. The impact of storage at 40 oC + 75 %RH on the TGA of Eudragit L 100-
55-based filament (A) no vacuum (B) vacuum. 
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Eudragit S100 has been reported to have a moisture content as low as 0.2 % (Parikh et 

al., 2014). The Eudragit S100-based filaments demonstrated slight variations in their 

moisture content due to storage as observed from the water loss in Table 5.8. Figures 

5.13, 5.14 and 5.15 showed the weight loss pattern from a freshly prepared Eudragit-

based filament in comparison with their weight loss patterns after storage in the 

researched condition. These TGA results showed a similar pattern with the first major 

weight loss due to TEC above 200 oC and the second weight loss due to the Eudragit 

polymer starting from approx. 350 oC. which was also in contract to the study by Parikh 

et al. (2014). As also expected, talc remained unaltered during the thermal process due 

to in high degradation temperature.  
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Figure 5.13. The impact of storage at 5 oC on the TGA of Eudragit S100-based 
filament (A) no vacuum (B) vacuum. 
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Figure 5.14. The impact of storage at 30 oC + 65 %RH on the TGA of Eudragit S100-
based filament (A) no vacuum (B) vacuum. 
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Figure 5.15. The impact of storage at 40 oC + 65 %RH on the TGA of Eudragit S100-
based filament (A) no vacuum (B) vacuum. 
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MTDSC analysis was used to investigate the effect of the storage conditions on the glass 

transition temperature of the filaments. This allows for the separation of complex events 

into reversible and non-reversible heat flow especially since PVP, a hygroscopic polymer 

was used in this study. A previous report on the Tg of a PVP-based filament 

demonstrated a broad endothermic effect before 100 oC, suggesting the evaporation of 

water (Okwuosa et al., 2016). This occurs around the Tg of this filament and was 

observed to still interfere with the thermograph after separation of the events as seen 

from the reversible heat flow in (Chapter 7: Supplementary data, Figures 7.5A and 7.6A). 

This therefore made the determination of the actual Tg of the filament challenging using 

this approach.  A heat-cool-heat method was used to exclude the effect of moisture on 

the Tg of the filaments. This demonstrated a Tg of the PVP-based filament before 

storage to be 70.2 oC which is similar to a previous report (Okwuosa et al., 2016) 

(Chapter 7: Supplementary data, Figures 7.5B and 7.6B). It was also observed that its 

storage at 5 oC (with or without vacuum) did not seem to produce a significant shift in the 

Tg of the polymer. However, it is believed that this might not be a clear representation of 

the effects of the storage conditions on the Tg of the filament. The heat-cool-heat 

approach completely dehydrates the filament into a state that is not a representation of 

the filaments after storage. Since the polymer used is hydroscopic, with water being a 

plasticiser, changes due to storage will be dependent on the extent of water intake which 

was observed to increase due to storage from the TGA analysis. This effect was 

excluded by the heat-cool-heat approach used in this study, resulting in a similar Tg 

before and after storage.  

Interactions between the polymer and other excipients and API could also influence the 

Tg of a polymer matrix. For example, the recrystallisation of the API as a result of storage 

could increase the Tg of the polymer (Baik et al., 1997). Recrystallization has been 

shown to be influenced by the relationship between the Tg and the recrystallization 

temperature (Nojima et al., 1998). However, this was not the case in this study with the 

Tg of the polymer remaining within the same range as observed from the second heat 

scan (Chapter 7: Supplementary data, Figures 7.5B and 7.6B). 

The MTDSC of Eudragit L100-55 showed the interference of water evaporation on the 

Tg of the polymer and therefore the need for a heat-cool-heat approach. The initial scan 

demonstrated a smaller endothermic event (Chapter 7: Supplementary data, Figures 

7.7A, 7.8A, 7.9A, 7.10A, 7.11A and 7.12A) in comparison to that obtained from a PVP 

based polymer. The second scan revealed no major shift in the Tg of the filament after 

the first month of storage in the investigated condition. However a slight increase in the 
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Tg after the 3rd and 6th month across the investigated storage conditions were observed 

(Chapter 7: Supplementary data, Figures 7.7B, 7.8B, 7.9B, 7.10B, 7.11B and 7.12B). 

A freshly prepared Eudragit S100-based filament demonstrated a Tg of approx. 85.89 

oC. Its storage in the investigated conditions according to the ICH guidelines 

demonstrated no major shift in the Tg of the filament as a result of storage (Chapter 7: 

Supplementary data, Figures 7.13, 7.14, 7.15) demonstrating the stability of this filament 

irrespective of the storage condition. However, a slight increase in Tg was observed after 

3 months of storage under vacuum at 40 oC + 75% RH (Chapter 7: Supplementary data, 

Figure 7.15B), a similar behaviour obtained when Eudragit L100-55-based filament was 

stored in all the experimented condition. Unlike PVP and Eudragit L100-55-based 

filaments, a heat-cool-head approach was not required, demonstrating it non-

hygroscopic nature. This also demonstrates the stability of polymers with high Tg as 

proposed by Fridgeirsdottir et al. (2018). 

It was important that the integrity of the API loaded on the PVP-based filaments stayed 

intact throughout the stability trial. As a result, samples were taken at the points of 

analysis and analysed using HPLC. It was observed that there was no degradation of 

the API due to storage at 5 oC over the 6 months stability studies. Drug contents obtained 

from the filaments stored without vacuum were 99.94 ±0.05 %, 99.90 ±0.07 %, 100.19 

±3.15 % and was 99.52 ±0.25 %, 99.39 ±1.91 %, 100.87 ±1.50 % when stored in a 

vacuum after 1, 3 and 6 Months respectively (p >0.05).  

Investigating into the effect of the storage condition on the in vitro release profile of 

theophylline from the filament was demonstrated using a USP II dissolution apparatus. 

An increase in drug release was observed once stored at 5 oC in comparison to a freshly 

prepared filament and storage in the other investigated conditions after 1 month (Figure 

5.16A). Hundred percent of the APIs were released at approximately 15 min in 

comparison to 100 % release at 40 min from the other samples. This fast release 

properties of the PVP-based filament was maintained through the 6 months storage as 

seen in Figure 5.16B indicating no changes in the release properties of the filament due 

to storage.   
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Figure 5.16. In-vitro drug release profile from PVP-based filament after storage in 
different condition for 1 month (A) and after storage at 5 OC alone for 6 months (B).   
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5.6 Conclusions  
 
This research demonstrated the use of accelerated stability studies in the determination 

of the long-term stability of a PVP, Eudragit L100-55 and S100-based filament. These 

filaments were manufactured using HME extrusion which is well established in the 

preparation of solid dispersions. The PVP-based filament was only stable when stored 

at 5 oC. This could be due to storage below the Tg of polymer which increases polymer 

viscosity, therefore preventing polymer mobility. Storage at the other conditions lead to 

the flattening and deformation of the filaments, rendering them incompatible with FDM 

3D printer head which lead to the discontinuation of this study in these storage 

conditions. The storage of the PVP-based filament at 5 oC demonstrated no changes in 

physical form of the loaded API, likewise its degradation pattern. However, increase in 

moisture content was observed after storage as seen from the TGA. An investigation into 

the changes in the Tg of the filament due to storage demonstrated the interference of 

water evaporating during analysis. However, the complete removal of water from the 

sample by a heat-cool-heat approach revealed no alterations in the Tg of the filament. 

This was believed not to be a good representation of the filament properties after storage 

since water content plays a role in Tg.  

Eudragit L100-55 and S100-based filaments remained stable throughout the 6 months 

stability studies with no changes in their physical form and TGA thermograph. They also 

remained compatible with the 3D printer. The use of a heat-cool-heat approach was 

required to determine the Tg of the Eudragit L100-55 based filaments due to the effect 

of water evaporation on the MTDSC thermograph, which influences the actual Tg of the 

filament. However, an increase in Tg was observed after 3 months in all the storage 

conditions. A heat-cool-heat approach was not required during the MTDSC of Eudragit 

S100 which presented no variations in the Tg of the filament after storage with the 

exception of its storage under vacuum at 40 oC + 75 %RH which demonstrated an 

increase in Tg after 3 months.  

The Eudragit L100-55 and 100-based filaments were also less hygroscopic and 

remained printable irrespective of the storage conditions, indicating the potential of 

having a high Tg and less hygroscopic polymers in a polymer matrix as a better 

alternative. The stability of these filaments will go a long way to encourage the large-

scale manufacturing of filaments which could be transported and stored in different 

regions and used on demand for dose personalisation using a FDM 3D printer. This was 

believed to probably be the path of this technology as research strives to establish this 

technique in the pharmaceutical industries for dose personalisation.    
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6.1 General conclusions  
 
The use of the oral route for drug delivery remains one of safest and commonly used 

route for drug administrations (GBIResearch, 2012). Dosage forms are usually 

manufactured in large numbers using conventional manufacturing approaches resulting 

to dose personalisation limitations. The knowledge about pharmacogenomics created 

more awareness on the impact of genetic makeup of different patients on responses to 

the same medication, thus emphasising the need for a more personalised approach to 

drug dosing (Mooney, 2015). This has the potential of increasing positive outcomes from 

drug use and reduce adverse drug effects.  

The use of FDM 3D printing amongst other 3D printing approaches showed great 

potential in drug manufacturing and dose personalisation with the ability to create 3D 

products on a small scale without requiring several processing steps and large and 

expensive equipment. Products are ready to use once printed with no further processing 

required. This benchtop and readily available equipment seemed to be the future of dose 

personalisation although with many limitations especially at this early stage of 

development. Mostly extended release dosage forms were manufactured due to the 

nature of the polymer used which also required high processing temperature, making it 

unsuitable for thermolabile actives. Limitations in loading drugs into these commercially 

available non-pharmaceutical grade polymers (PVA, PLA) were also a major drawback 

to the technique. There were also limited information in the application of the technique 

in the manufacturing of other oral solid dosage forms e.g. capsules. The ability to 

manufacture filaments for 3D printing using HME and employing pharmaceutical grade 

polymers seemed to be a breakthrough in the use of this technology. This provided a 

solution to some of the major limitations of FDM 3D printing.   

By coordinating FDM with HME, it was possible to produce the first example of applying 

PVP, a well-used pharmaceutical grade polymer, for the FDM 3D printing of immediate 

release tablets. Since the majority of oral dosage forms demonstrate such release 

profiles, this was believed to be a positive contribution. Immediate drug release was 

proved using two model drugs, indicating potential compatibility with a wider variety of 

API, showing the versatility of the PVP-based filament.  It also creates more opportunities 

for the use of thermolabile actives since 3D printing was achieved at a much lower 

temperature in comparison to the use of the commercially available PVA filament that 

requires temperatures up to 210 oC, due to the high Tg of the polymer. The manufactured 

tablets showed excellent mechanical properties when tested against the requirements of 

the BP. Although they were manufactured using an entirely different approach to powder 
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compression-based tablets, they demonstrated acceptable in-batch variations and 

presented qualities required for an immediate release dosage form. Weight variations 

were one of the main concerns during this study. However, this was attributed to the 

variations in the filament diameter, in addition to the possibilities of partial blockade of 

the printing nozzle during tablet 3D printing. This research improves the potentials of this 

technology in the dose personalisation of bespoke immediate release tablets and opened 

doors for the adaptation of other pharmaceutical grade polymers for FDM 3D printing.    

The splitting of solid dosage form is a very common practise in the absence of an 

adequate dose personalisation techniques. This eliminates the barrier function of 

delayed release (DR) tablets thereby rendering such practises impractical for such 

dosage forms.  The ability to use multiple heads in FDM 3D printing was used to an 

advantage in the fabrication of DR tablets based on a shell-core structure in a single 

process. This was unlike conventional approaches which requires a separate coating 

stage to achieve release modifications. To the author’s knowledge, this is the first report 

of producing DR tablets based on FDM 3D printing technology which complied with BP 

criteria. Both filaments were processed by HME to form a matrix system using a 

plasticiser (TEC) and a non-melting component (talc). The replacement of talc with an 

alkalising agent (TBP) created an enteric release tablet following the BP criteria for 

enteric dosage forms. This accelerates the drug release profiles obtainable using this 

technology. Delayed release tablets of theophylline, budesonide and diclofenac sodium 

were achieved using this approach, which further emphasises the flexibility of the PVP-

based filament. This therefore demonstrates the potentials of this technology for a wider 

range of actives for delayed release oral products. These were only possible by applying 

a thin layer of oleic acid over the shell filament during 3D printing to reduce nozzle 

blockage. This seemed to do so by providing a lubricating effect which prevents the 

filaments from sticking to the walls of the heated nozzle, whilst maintaining the physical 

properties of the filament. In addition, the layer thickness of the delayed release filament 

needed to be ≥0.52 mm to achieve sufficient core protection in the acid medium which 

is thicker than the usual coating thickness used to modify the release of conventional 

dosage forms. One of the major implications of this approach in the manufacturing of 

delayed release dosage form is providing a single step solution to the conventional 

approach which required tablets compression and another coating step to achieve 

release modification. This therefore offers an approach in drug modification with reduced 

processing time in addition to the potentials of dose personalisation. The shell-core 

approach also opens doors to the manufacturing of other dosage forms such as capsules 
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by constructing a shell structure which could be either filled with solids, semisolids or 

liquids.  

The manufacturing of capsules using FDM 3D printing proved to be challenging, resulting 

in few available researches in its application in the manufacturing of one of the most 

acceptable oral delivery forms. However, this research demonstrated the first report of a 

fully automated process for the 3D printing of liquid-filled capsules. This could only be 

possible by replacing one of the heads of a dual FDM printer with a syringe-based liquid 

dispenser which allows the coordination of FDM 3D printing and liquid dispensing using 

the same device. Both immediate and extended drug release profiles based on 

methacrylate polymer shells were fabricated and the suitability of the system for different 

APIs (dipyridamole and theophylline) as a suspension or solution was demonstrated. It 

was possible to construct a capsule shell structure that maintains its integrity and 

instantly contains the loaded liquid dose without any curing step. However, in contrast to 

the conventional capsules, 1.6 mm shell thickness was required to maintain the capsule 

integrity after loading with the liquids. This was due to the layer-by-layer fashion of 3D 

printing and therefore requiring the fusing of many layers of the extruded filament to 

prevent leakages. A concentric filling pattern and the use of a multi-phase 3D printing 

approach resulted in a tightly layered capsule shell with minimised interruptions during 

shell printing and liquid dispensing. Above all, this technique demonstrated the ability to 

control dosing, as well as drug release by manipulating the dispensed volume and shell 

thickness simply via software. In a clinical setting, this will empower healthcare staff with 

the capability to provide specific dosing and drug release patterns in individualised liquid-

filled capsules without the need to change the capsule shell formulation. This 

advancement in the use of 3D printers in liquid capsules manufacturing and previous 

adaptations in the manufacturing of tablets indicates the potentials of this techniques in 

the manufacturing of the two most popular and widely accepted oral dosage forms. The 

modification of the dual FDM 3D printer completely minimised the impact of temperature, 

which encourages the use of a wider range of APIs including peptides and proteins.  

The use of AMPs has been investigated to have a wide range of activities. In this regard, 

the anticancer activity of Aurein 2.6 and LL-37 AMPs were investigated which 

demonstrated a concentration dependent colon cancer cell line activity, a vital addition 

to the ongoing research on the potentials of AMPs in cancer management.  The peptides 

demonstrated changes in their secondary structure when the effect of temperature was 

investigated. However, the use of the modified dual FDM 3D printer in the fabrication of 

a potential colon targeting liquid capsules loaded with AMPs did not alter the secondary 

structure of the peptides as confirmed by CD. Therefore, indicating the maintenance of 
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biological activity after the 3D printing process.  In vitro colon targeting studies using a 

Eudragit S100-based shell filament was investigated using model liquid solution as a 

proof of concept to demonstrate colon targeting potentials. The produced liquid-filled 

capsule demonstrated acid resistance and a gradual release of theophylline after a 

change in pH to 7.4. Further optimisation is required to inhibit drug release in the gastric 

phase. This research further emphasises the possibility to adapt this technology in most 

aspects of oral drug delivery and provides a potential approach in peptide delivery using 

a similar approach investigated for the conventional delivery of peptides.  

Stability studies are crucial in drug development and are routinely carried out on 

pharmaceutical products before being introduced into the market. Therefore, it was vital 

that some of the successfully adapted filaments are accessed for stability. Accelerated 

stability studies were carried out on the PVP, Eudragit L100 55 and S100-based 

filaments since they are the primary products from which several doses could be 

manufactured from depending on the patient’s requirement at a particular time. It was 

crucial that these filaments remain stable during their shelf life and remain compatible 

with the 3D printer for application in dose personalisation. In a clinical setting, the 

manufactured and stored filaments must remain in a ready to use condition to tackle 

everyday challenges in drug dosing. This research was based on the ICH guideline and 

demonstrated the stability of PVP-based filament when stored at 5 oC in comparison to 

storage at 30 oC + 65 %RH and 40 oC + 75 %RH. This was attributed to storage below 

the Tg of PVP which increases polymer viscosity, thereby reducing motility. As a result, 

the physical properties of the filament were maintained. The Eudragit-based polymers 

were stable in all the storage conditions and maintained their physical properties with 

minimal shift in Tg. This was attributed to their less hygroscopic nature and potentially, 

the high Tg of the polymer, therefore indicating the possibility of polymers with similar 

characteristics being better candidates for FDM 3D printing.  

In conclusion, this work demonstrated the potential of FDM 3D printing in the 

manufacturing of tablets or capsules for oral dose personalisation using pharmaceutical 

grade polymers and a bench top equipment (FDM 3D printer). The adaptation of this 

technology for pharmaceutical purposes is expected to continue evolving over the years 

and potentially bring an end to the “one size fits all” approach in conventional dosing.  
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6.2 Future works  
 
3D printing of personalised pharmaceutical dosage forms is still at the early stages of 

research and development with our research group being one of the pioneers.  As a 

result, more is yet to be accomplished in this research area with most of the setbacks 

centred on the limitations of the technology itself since they were not initially designed 

for pharmaceutical use. 

Batch reproducibility problems were observed during the manufacturing of the filaments 

and dosage forms during this study. Therefore, the validation of the filament 

manufacturing process will benefit their use for FDM 3D printing. This could be carried 

out by identifying key processing parameters that affects quality during HME. The 

performance of the filament could also be investigated during FDM 3D printing processes 

to ensure that reproducible and validated production in good manufacturing practise 

(GMP) environment is maintained. This will transition to clinical trials and product 

introduction into the market.   

It will be beneficial to attempt to improve the stability of the PVP-based filament since it 

is a well-established polymer for pharmaceutical purposes. Its hygroscopic nature was 

concluded to play a key role in its instability. This could be improved by modifying the 

filament formulation to minimise and control moisture uptake or the optimisation of its 

storage condition.  

The coordination of FDM 3D printing and liquid dispensing produced a liquid-filled 

capsule which led to investigations on the colonic delivery of AMPs using this approach. 

Although anticancer activities were established with the AMPs, it will be beneficial to 

investigate further, their mechanism of action. Colonic drug release was demonstrated 

using theophylline solution as a model core, as a proof of concept. Therefore, it will be 

desirable to develop an adequate analytical method for the peptide drug release studies 

to be able to do so with the peptides themselves. Theophylline release from the colon 

targeted 3D printed liquid-filled capsule in the gastric phase fell outside the 

recommendations of the BP. The capsule shell optimisation will be beneficial in 

controlling this undesirable initial drug release. In addition, it will be beneficial to reduce 

the overall capsule shell thickness and size to encourage better patient acceptance and 

therefore, manufacture products with similar dimensions as the well accepted 

conventional hard shell liquid-filled capsules.    
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Figure 7.1. Reversing MTDSC thermographs of Eudragit L100-55, Eudragit L100-
55:TEC filament, API-free filaments, and 3D printed shell (A) First heat-scan and 
(B) second heat-scan. 
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Figure 7.2 Reversing DSC thermographs of PVP, PVP: TEC (12.5%) filament, as 
well as diclofenac-loaded filaments (first heat-scan). 
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Figure 7.3. Linear relationship theoretical volume of the software and dispensed 
volume using single-phase printing mode and different nozzle aperture sizes 
(blue, orange and grey graphs for 0.25, 0.41 or 0.84 mm nozzles respectively). 
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Figure 7.4. Linear relationship theoretical volume of the software and dispensed 
volume using multi-phase printing mode and different nozzle aperture sizes (blue, 
orange and grey graphs for 0.25, 0.41 or 0.84 mm nozzles respectively). 
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Figure 7.5. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 5 oC without vacuum on 
the Tg of PVP-based filaments.   
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Figure 7.6. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 5 oC + vacuum on the 
Tg of PVP-based filaments.   

A 

B 



 
 

226 
 

 

 

Figure 7.7. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 5 oC without vacuum on 
the Tg of Eudragit L100-55-based filaments.  
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Figure 7.8. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 5 oC + vacuum on the Tg 
of Eudragit L100-55-based filaments.  
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Figure 7.9. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 30 oC and 65 %RH 
without vacuum on the Tg of Eudragit L100-55-based filaments.  
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Figure 7.10. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 30 oC and 65 %RH + 
vacuum on the Tg of Eudragit L100-55-based filaments.  
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Figure 7.11. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 40 oC and 75 %RH 
without vacuum on the Tg of Eudragit L100-55-based filaments.  
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Figure 7.12. Reversible heat flow for the first (A) and second (B) MTDSC 
thermograph used to investigate the impact of storage at 40  oC and 75 %RH + 
vacuum on the Tg of Eudragit L100-55-based filaments.  
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Figure 7.13. Reversible heat flow for the MTDSC thermograph used to investigate 
the impact of storage at 5 oC without vacuum (A) or with vacuum (B) on the Tg of 
Eudragit S100-based filaments.  
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Figure 7.14. Reversible heat flow for the MTDSC thermograph used to investigate 
the impact of storage at 30 oC and 65 %RH without vacuum (A) or with vacuum (B) 
on the Tg of Eudragit S100-based filaments.  
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Figure 7.15. Reversible heat flow for the MTDSC thermograph used to investigate 
the impact of storage at 40 oC and 75 %RH without vacuum (A) or with vacuum (B) 
on the Tg of Eudragit S100-based filaments.   
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Brøndsted, H. & Kopecĕk, J. i. 1991. Hydrogels for site-specific oral drug delivery: synthesis and 

characterization. Biomaterials, 12, 584-592. 

Brown, D., Ford, J. L., Nunn, A. J. & Rowe, P. H. 2004. An assessment of dose-uniformity of 

samples delivered from paediatric oral droppers. J Clin Pharm Ther, 29, 521-529. 

Buanz, A. B., Saunders, M. H., Basit, A. W. & Gaisford, S. 2011. Preparation of personalized-

dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res, 28, 2386-

92. 

Bumbrah, G. S. & Sharma, R. M. 2016. Raman spectroscopy – Basic principle, instrumentation 

and selected applications for the characterization of drugs of abuse. Egyptian Journal 

of Forensic Sciences, 6, 209-215. 

CancerResearchUK. 2015a. Dukes's Staging System [Online]. Available: http://about-

cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/dukes-staging 

[Accessed 19/03 2018]. 

CancerResearchUK. 2015b. Number Stages [Online]. Available: http://about-

cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/number-

staging [Accessed 19/03 2018]. 

CancerResearchUK. 2015c. TNM Staging [Online]. Available: http://about-

cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/tnm-staging 

[Accessed 19/03 2018]. 

Capsugel. 2012. A New HPMC Capsule for Optimum Formulation pf Pharmaceutical Dosage 

Forms [Online]. Available: http://www.capsugel.com/media/library/WP-

VcapsPlus_30270_FIN_10-8-12.pdf [Accessed 23/08/2017 2017]. 

Capsulesupplies. 2018. Capsule Sizes [Online]. Available: 

http://www.capsulesupplies.com/capsule-sizes/ [Accessed 01/03 2018]. 

Cerea, M., Zheng, W., Young, C. R. & McGinity, J. W. 2004. A novel powder coating process for 

attaining taste masking and moisture protective films applied to tablets. International 

Journal of Pharmaceutics, 279, 127-139. 

Chai, X., Chai, H., Wang, X., Yang, J., Li, J., Zhao, Y., Cai, W., Tao, T. & Xiang, X. 2017. Fused 

Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of 

Domperidone. Sci Rep, 7, 2829. 

http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/dukes-staging
http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/dukes-staging
http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/number-staging
http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/number-staging
http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/number-staging
http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/tnm-staging
http://about-cancer.cancerresearchuk.org/about-cancer/bowel-cancer/stages-grades/tnm-staging
http://www.capsugel.com/media/library/WP-VcapsPlus_30270_FIN_10-8-12.pdf
http://www.capsugel.com/media/library/WP-VcapsPlus_30270_FIN_10-8-12.pdf
http://www.capsulesupplies.com/capsule-sizes/


 
 

239 
 

Chan, S. Y., Qi, S. & Craig, D. Q. 2015. An investigation into the influence of drug-polymer 

interactions on the miscibility, processability and structure of polyvinylpyrrolidone-

based hot melt extrusion formulations. Int J Pharm, 496, 95-106. 

Chauhan, H., Hui-Gu, C. & Atef, E. 2013. Correlating the Behavior of Polymers in Solution as 

Precipitation Inhibitor to its Amorphous Stabilization Ability in Solid Dispersions. 

Journal of Pharmaceutical Sciences, 102, 1924-1935. 

Cheng, K. & Lim, L. Y. 2004. Insulin‐Loaded Calcium Pectinate Nanoparticles: Effects of Pectin 

Molecular Weight and Formulation pH. Drug Development and Industrial Pharmacy, 

30, 359-367. 

Chiou, W. L. & Riegelman, S. 1969. Preparation and Dissolution Characteristics of Several Fast-

Release Solid Dispersions of Griseofulvin. Journal of Pharmaceutical Sciences, 58, 1505-

1510. 

Chiu, M. H. & Prenner, E. J. 2011. Differential scanning calorimetry: An invaluable tool for a 

detailed thermodynamic characterization of macromolecules and their interactions. 

Journal of Pharmacy and Bioallied Sciences, 3, 39-59. 

Chung, P., Heller, J. A., Etemadi, M., Ottoson, P. E., Liu, J. A., Rand, L. & Roy, S. 2014. Rapid and 

low-cost prototyping of medical devices using 3D printed molds for liquid injection 

molding. J Vis Exp, e51745. 

Ciavarella, A. B., Khan, M. A., Gupta, A. & Faustino, P. J. 2016. Dose Uniformity of Scored and 

Unscored Tablets: Application of the FDA Tablet Scoring Guidance for Industry. PDA J 

Pharm Sci Technol, 70, 523-532. 

Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., Yoo, J., 

Hague, R. J. M., Tuck, C. J. & Wildman, R. D. 2017. 3D printing of tablets using inkjet 

with UV photoinitiation. Int J Pharm, 529, 523-530. 

Cole, E. T., Cadé, D. & Benameur, H. 2008. Challenges and opportunities in the encapsulation 

of liquid and semi-solid formulations into capsules for oral administration. Adv Drug 

Deliv Rev, 60, 747-756. 

Coleman, N. J. & Craig, D. Q. M. 1996. Modulated temperature differential scanning 

calorimetry: A novel approach to pharmaceutical thermal analysis. International 

Journal of Pharmaceutics, 135, 13-29. 

Colorcon. 2018. Controlled Release Alliance [Online]. Available: 

https://www.colorcon.com/products-formulation/all-products/polymers-controlled-

release [Accessed 23/04 2018]. 

https://www.colorcon.com/products-formulation/all-products/polymers-controlled-release
https://www.colorcon.com/products-formulation/all-products/polymers-controlled-release


 
 

240 
 

Convention, U. S. P. 2007. The United States Pharmacopeia : USP30 : the National Formulary : 

NF25, Rockville, Md, United States Pharmacopeial Convention Inc. 

Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C. & Mikos, A. G. 2003. Use of stereolithography 

to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed 

Mater Res B Appl Biomater, 64, 65-9. 

Corrêa, A. L., Senna, J. P. M. & de Sousa, Á. P. B. 2016. Effects of passage number on growth 

and productivity of hybridoma secreting MRSA anti-PBP2a monoclonal antibodies. 

Cytotechnology, 68, 419-427. 

Cynthia S. Randall, W. L. R., Pierre Ricou 2010. XRD in Pharmaceutical Analysis: A versatile Tool 

for Problem-Solving. American Pharmaceutical Review. 

Dasari, S. & Tchounwou, P. B. 2014. Cisplatin in cancer therapy: molecular mechanisms of 

action. European journal of pharmacology, 0, 364-378. 

Dave, V. S., Fahmy, R. M. & Hoag, S. W. 2015. Near-infrared spectroscopic analysis of the 

breaking force of extended-release matrix tablets prepared by roller-compaction: 

influence of plasticizer levels and sintering temperature. Drug Dev Ind Pharm, 41, 898-

905. 

Davies, E. C., Green, C. F., Taylor, S., Williamson, P. R., Mottram, D. R. & Pirmohamed, M. 2009. 

Adverse Drug Reactions in Hospital In-Patients: A Prospective Analysis of 3695 Patient-

Episodes. PLoS ONE, 4, e4439. 

De Jaeghere, W., De Beer, T., Van Bocxlaer, J., Remon, J. P. & Vervaet, C. 2015. Hot-melt 

extrusion of polyvinyl alcohol for oral immediate release applications. International 

Journal of Pharmaceutics, 492, 1-9. 

Deepthi, Y. & Murthy, T. E. G. 2015. Design and development and evaluation of candesartan 

cilexetil liquid filling formulations. Int J Pharm Investig, 5, 81-86. 

Dennison, S. R., Harris, F. & Phoenix, D. A. 2007. The interactions of aurein 1.2 with cancer cell 

membranes. Biophys Chem, 127, 78-83. 

Desai, P. M., Liew, C. V. & Heng, P. W. S. 2016. Review of Disintegrants and the Disintegration 

Phenomena. J Pharm Sci, 105, 2545-2555. 

Dombroski, C. E., Balsdon, M. E. & Froats, A. 2014. The use of a low cost 3D scanning and 

printing tool in the manufacture of custom-made foot orthoses: a preliminary study. 

BMC Res Notes, 7, 443. 

Dressman, J. B. & Lennernas, H. 2000. Oral Drug Absorption : Prediction and Assessment, Baton 

Rouge, UNITED STATES, CRC Press. 



 
 

241 
 

DrugBank. 2017. Acetylsalicylic acid [Online]. Available: 

https://www.drugbank.ca/drugs/DB00945 [Accessed 22/11 2017]. 

Drugs.com. 2017. Aspirin [Online]. Available: https://www.drugs.com/aspirin.html [Accessed 

22/11 2017]. 

Drugs.com. 2018a. Dipyridamole [Online]. Available: 

https://www.drugs.com/mtm/dipyridamole.html [Accessed 03/04 2018]. 

Drugs.com. 2018b. Magnesium Silicate [Online]. Available: 

https://www.drugs.com/inactive/magnesium-silicate-122.html#ref1 [Accessed 03/04 

2018]. 

Drugs.com. 2018c. Theophylline [Online]. Available: 

https://www.drugs.com/mtm/theophylline.html [Accessed 3/04 2018]. 

Dubos, R. J. 1939a. STUDIES ON A BACTERICIDAL AGENT EXTRACTED FROM A SOIL BACILLUS : I. 

PREPARATION OF THE AGENT. ITS ACTIVITY IN VITRO. J Exp Med, 70, 1-10. 

Dubos, R. J. 1939b. STUDIES ON A BACTERICIDAL AGENT EXTRACTED FROM A SOIL BACILLUS : 

II. PROTECTIVE EFFECT OF THE BACTERICIDAL AGENT AGAINST EXPERIMENTAL 

PNEUMOCOCCUS INFECTIONS IN MICE. J Exp Med, 70, 11-7. 

Dudek, P. 2013. FDM 3D Printing Technology in Manufacturing Composite Elements. Archives 

of Metallurgy and Materials. 

Dürr, U. H. N., Sudheendra, U. S. & Ramamoorthy, A. 2006. LL-37, the only human member of 

the cathelicidin family of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - 

Biomembranes, 1758, 1408-1425. 

Eichelbaum, M., Ingelman-Sundberg, M. & Evans, W. E. 2006. Pharmacogenomics and 

Individualized Drug Therapy. Annual Review of Medicine, 57, 119-137. 

El Aidy, S., van den Bogert, B. & Kleerebezem, M. 2015. The small intestine microbiota, 

nutritional modulation and relevance for health. Curr Opin Biotechnol, 32, 14-20. 

Elzayat, E. M., Abdel-Rahman, A. A., Ahmed, S. M., Alanazi, F. K., Habib, W. A., Abou-Auda, H. S. 

& Sakr, A. 2017. Formulation and pharmacokinetics of multi-layered matrix tablets: 

Biphasic delivery of diclofenac. Saudi Pharm J, 25, 688-695. 

Emami, J. & Kazemali, M. R. 2016. Design and in vitro evaluation of a novel controlled onset 

extended-release delivery system of metoprolol tartrate. Res Pharm Sci, 11, 81-92. 

Enright, E. F., Gahan, C. G. M., Joyce, S. A. & Griffin, B. T. 2016. The Impact of the Gut 

Microbiota on Drug Metabolism and Clinical Outcome. The Yale Journal of Biology and 

Medicine, 89, 375-382. 

https://www.drugbank.ca/drugs/DB00945
https://www.drugs.com/aspirin.html
https://www.drugs.com/mtm/dipyridamole.html
https://www.drugs.com/inactive/magnesium-silicate-122.html#ref1
https://www.drugs.com/mtm/theophylline.html


 
 

242 
 

Erramouspe, J. & Jarvi, E. J. 1997. Effect on dissolution from halving methylphenidate 

extended-release tablets. Ann Pharmacother, 31, 1123-6. 

Ervasti, T., Simonaho, S. P., Ketolainen, J., Forsberg, P., Fransson, M., Wikstrom, H., Folestad, 

S., Lakio, S., Tajarobi, P. & Abrahmsen-Alami, S. 2015. Continuous manufacturing of 

extended release tablets via powder mixing and direct compression. Int J Pharm, 495, 

290-301. 

Evans, D. F., Pye, G., Bramley, R., Clark, A. G., Dyson, T. J. & Hardcastle, J. D. 1988. 

Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 

29, 1035-1041. 

Evonik. 2010. Methacrylate Polymers for Oral Drug Delivery [Online]. Available: 

http://healthcare.evonik.com/product/health-care/en/products/pharmaceutical-

excipients/pages/default.aspx [Accessed 23/08 2017]. 

Evonik. 2018. EUDRAGIT® Application Guidelines (12th edition) [Online]. Available: 

http://otomed.co.kr/english/sub12_evonik_eng_04-02.php [Accessed 22/06 2018]. 

Fadda, H. M. & Basit, A. W. 2005. Dissolution of pH responsive formulations in media 

resembling intestinal fluids: bicarbonate versus phosphate buffers. Journal of Drug 

Delivery Science and Technology, 15, 273-279. 

Faiz, O., Blackburn, S. & Moffat, D. 2011. Anatomy at a Glance, Hoboken, UNITED KINGDOM, 

John Wiley & Sons, Incorporated. 

Fang, Y., Wang, G., Zhang, R., Liu, Z., Liu, Z., Wu, X. & Cao, D. 2014. Eudragit L/HPMCAS blend 

enteric-coated lansoprazole pellets: enhanced drug stability and oral bioavailability. 

AAPS PharmSciTech, 15, 513-21. 

FDA. 1979. SCOGS Database [Online]. Available: 

https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS [Accessed 03/04 2018]. 

FDA. 2013. Paving the Way to Personalized Medicine: FDA's Role in a New Era of Medical 

Product Development [Online]. Available: 

http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/PersonalizedMedicine

/UCM372421.pdf [Accessed 20/04/2016 2016]. 

FDA. 2017a. CDER Researchers Explore the Promise and Potential of 3D Printed 

Pharmaceuticals [Online]. Available: 

https://www.fda.gov/Drugs/NewsEvents/ucm588136.htm [Accessed 16/02 2018]. 

FDA. 2017b. Statement by FDA Commissioner Scott Gottlieb, M.D., on FDA ushering in new era 

of 3D printing of medical products; provides guidance to manufacturers of medical 

devices [Online]. Available: 

http://healthcare.evonik.com/product/health-care/en/products/pharmaceutical-excipients/pages/default.aspx
http://healthcare.evonik.com/product/health-care/en/products/pharmaceutical-excipients/pages/default.aspx
http://otomed.co.kr/english/sub12_evonik_eng_04-02.php
https://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS
http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/PersonalizedMedicine/UCM372421.pdf
http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/PersonalizedMedicine/UCM372421.pdf
https://www.fda.gov/Drugs/NewsEvents/ucm588136.htm


 
 

243 
 

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm587547.htm 

[Accessed 16/02 2017]. 

FDA. 2018. Emerging Technology Program [Online]. Available: 

https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/

CDER/ucm523228.htm [Accessed 16/02 2018]. 

Feng, J., Xu, L., Gao, R., Luo, Y. & Tang, X. 2012. Evaluation of polymer carriers with regard to 

the bioavailability enhancement of bifendate solid dispersions prepared by hot-melt 

extrusion. Drug Dev Ind Pharm, 38, 735-43. 

Fenoglio-Preiser, C. M. & Ovid Technologies, I. 2008. Gastrointestinal pathology an atlas and 

text, Philadelphia, Philadelphia : Wolters Kluwer/Lippincott Williams & Wilkins. 

Fini, A., Cavallari, C., Ospitali, F. & Gonzalez-Rodriguez, M. L. 2011. Theophylline-loaded 

compritol microspheres prepared by ultrasound-assisted atomization. J Pharm Sci, 

100, 743-57. 

Fitzpatrick, S., McCabe, J. F., Petts, C. R. & Booth, S. W. 2002. Effect of moisture on 

polyvinylpyrrolidone in accelerated stability testing. International Journal of 

Pharmaceutics, 246, 143-151. 

Forbes. 2016. FDA Approved 3D Printed Drug Available In The US [Online]. Available: 

https://www.forbes.com/sites/jenniferhicks/2016/03/22/fda-approved-3d-printed-

drug-available-in-the-us/#3e3d6d89666b [Accessed 16/02 2018]. 

Formlabs. 2015. Form 1+ high-resolution 3D printer [Online]. Available: 

http://formlabs.com/products/form-1-plus/ [Accessed 12/3/2015]. 

Frejberg, A. 2013. Confocal Raman Principle [Online]. Available: 

http://www.kemi.dtu.dk/english/research/physicalchemistry/raman_spektroskopi/ra

man_spectrometer [Accessed 30/03 2018]. 

Fridgeirsdottir, G. A., Harris, R. J., Dryden, I. L., Fischer, P. M. & Roberts, C. J. 2018. Multiple 

Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: 

Comparison of the Effects of Polymers and Manufacturing Methods on Solid 

Dispersion Stability. Mol Pharm, 15, 1826-1841. 

Fujimori, J., Yonemochi, E., Fukuoka, E. & Terada, K. 2002. Application of eudragit RS to 

thermo-sensitive drug delivery systems. I. Thermo-sensitive drug release from 

acetaminophen matrix tablets consisting of eudragit RS/PEG 400 blend polymers. 

Chem Pharm Bull (Tokyo), 50, 408-12. 

Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A. & 

Barenholz, Y. 1994. Prolonged circulation time and enhanced accumulation in 

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm587547.htm
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm523228.htm
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm523228.htm
https://www.forbes.com/sites/jenniferhicks/2016/03/22/fda-approved-3d-printed-drug-available-in-the-us/#3e3d6d89666b
https://www.forbes.com/sites/jenniferhicks/2016/03/22/fda-approved-3d-printed-drug-available-in-the-us/#3e3d6d89666b
http://formlabs.com/products/form-1-plus/
http://www.kemi.dtu.dk/english/research/physicalchemistry/raman_spektroskopi/raman_spectrometer
http://www.kemi.dtu.dk/english/research/physicalchemistry/raman_spektroskopi/raman_spectrometer


 
 

244 
 

malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated 

liposomes. Cancer Res, 54, 987-92. 

Gabizon, A. & Papahadjopoulos, D. 1988. Liposome formulations with prolonged circulation 

time in blood and enhanced uptake by tumors. Proc Natl Acad Sci U S A, 85, 6949-53. 

GBIResearch. 2012. Oral drug delivery market report [Online]. Available: 

http://www.contractpharma.com/issues/2012-06/view_features/oral-drug-delivery-

market-report/ [Accessed 12/3/2015]. 

Ginsburg, G. S. & Willard, H. F. 2009. Genomic and personalized medicine: foundations and 

applications. Transl Res, 154, 277-87. 

Giunchedi, P., Ltorre, M., Maggi, L., Conti, B. & Conte, U. 1995. Cellulose Acetate Trimellitate 

Microspheres Containing NSAIDS. Drug Development and Industrial Pharmacy, 21, 

315-330. 

Goyanes, A., Buanz, A. B., Hatton, G. B., Gaisford, S. & Basit, A. W. 2015a. 3D printing of 

modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm, 89, 

157-62. 

Goyanes, A., Buanz, A. B. M., Basit, A. W. & Gaisford, S. 2014. Fused-filament 3D printing (3DP) 

for fabrication of tablets. International Journal of Pharmaceutics, 476, 88-92. 

Goyanes, A., Chang, H., Sedough, D., Hatton, G. B., Wang, J., Buanz, A., Gaisford, S. & Basit, A. 

W. 2015b. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D 

printing. Int J Pharm, 496, 414-20. 

Goyanes, A., Fina, F., Martorana, A., Sedough, D., Gaisford, S. & Basit, A. W. 2017. 

Development of modified release 3D printed tablets (printlets) with pharmaceutical 

excipients using additive manufacturing. Int J Pharm, 527, 21-30. 

Goyanes, A., Robles Martinez, P., Buanz, A., Basit, A. W. & Gaisford, S. 2015c. Effect of 

geometry on drug release from 3D printed tablets. International Journal of 

Pharmaceutics, 494, 657-663. 

Goyanes, A., Wang, J., Buanz, A., Martinez-Pacheco, R., Telford, R., Gaisford, S. & Basit, A. W. 

2015d. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design 

and Drug Release Characteristics. Molecular Pharmaceutics, 12, 4077-4084. 

Grießmann, K., Breitkreutz, J., Schubert-Zsilavecz, M. & Abdel-Tawab, M. 2007. Dosing 

accuracy of measuring devices provided with antibiotic oral suspensions. Paediatr 

Perinat Drug Ther, 8, 61-70. 

http://www.contractpharma.com/issues/2012-06/view_features/oral-drug-delivery-market-report/
http://www.contractpharma.com/issues/2012-06/view_features/oral-drug-delivery-market-report/


 
 

245 
 

Griffin, E. N. & Niebergall, P. J. 1999. Release kinetics of a controlled-release multiparticulate 

dosage form prepared using a hot-melt fluid bed coating method. Pharm Dev Technol, 

4, 117-24. 

Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. & Spence, D. M. 2014. Evaluation of 3D 

Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Anal 

Chem, 86, 3240-3253. 

Guo, Y., Shalaev, E. & Smith, S. 2013. Physical stability of pharmaceutical formulations: solid-

state characterization of amorphous dispersions. TrAC Trends in Analytical Chemistry, 

49, 137-144. 

Guo, Z., Lu, M., Li, Y., Pang, H., Lin, L., Liu, X. & Wu, C. 2014. The utilization of drug-polymer 

interactions for improving the chemical stability of hot-melt extruded solid dispersions. 

J Pharm Pharmacol, 66, 285-96. 

Gupta, S. S., Meena, A., Parikh, T. & T.M. Serajuddin, A. 2014. Investigation of thermal and 

viscoelastic properties of polymers relevant to hot melt extrusion - I: 

Polyvinylpyrrolidone and related polymers. 

Gwinup, G., Elias, A. N. & Domurat, E. S. 1991. Insulin and C-peptide levels following oral 

administration of insulin in intestinal-enzyme protected capsules. General 

Pharmacology: The Vascular System, 22, 243-246. 

Haastrup, P. F., Gronlykke, T. & Jarbol, D. E. 2015. Enteric coating can lead to reduced 

antiplatelet effect of low-dose acetylsalicylic acid. Basic Clin Pharmacol Toxicol, 116, 

212-5. 

Habib, W. A., Alanizi, A. S., Abdelhamid, M. M. & Alanizi, F. K. 2014. Accuracy of tablet splitting: 

Comparison study between hand splitting and tablet cutter. Saudi Pharm J, 22, 454-9. 

Hamman, J. 2010. Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in 

Drug Delivery Systems. 

Hao, S., Wang, B., Wang, Y., Zhu, L., Wang, B. & Guo, T. 2013. Preparation of Eudragit L 100-55 

enteric nanoparticles by a novel emulsion diffusion method. Colloids and Surfaces B: 

Biointerfaces, 108, 127-133. 

Hergel, J. & Lefebvre, S. 2014. Clean color: Improving multi-filament 3D prints. Comput. Graph. 

Forum, 33, 469-478. 

Higashi, K., Seo, A., Egami, K., Otsuka, N., Limwikrant, W., Yamamoto, K. & Moribe, K. 2016. 

Mechanistic insight into the dramatic improvement of probucol dissolution in neutral 

solutions by solid dispersion in Eudragit E PO with saccharin. J Pharm Pharmacol, 68, 

655-64. 



 
 

246 
 

Hill, S. W., Varker, A. S., Karlage, K. & Myrdal, P. B. 2009. Analysis of drug content and weight 

uniformity for half-tablets of 6 commonly split medications. J Manag Care Pharm, 15, 

253-61. 

Hilton, A. K. & Deasy, P. B. 1993. Use of hydroxypropyl methylcellulose acetate succinate in an 

enteric polymer matrix to design controlled-release tablets of amoxicillin trihydrate. J 

Pharm Sci, 82, 737-43. 

Hom, F. S., Veresh, S. A. & Ebert, W. R. 1975. Soft gelatin capsules II: Oxygen permeability 

study of capsule shells. J Pharm Sci, 64, 851-7. 

Hong, M., Zhu, S., Jiang, Y., Tang, G. & Pei, Y. 2009. Efficient tumor targeting of 

hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control 

Release, 133, 96-102. 

Hoskin, D. W. & Ramamoorthy, A. 2008. Studies on anticancer activities of antimicrobial 

peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1778, 357-375. 

Huang, H., Wu, Z., Qi, X., Zhang, H., Chen, Q., Xing, J., Chen, H. & Rui, Y. 2013. Compression-

coated tablets of glipizide using hydroxypropylcellulose for zero-order release: In vitro 

and in vivo evaluation. International Journal of Pharmaceutics, 446, 211-218. 

Huang, W., Zheng, Q., Sun, W., Xu, H. & Yang, X. 2007. Levofloxacin implants with predefined 

microstructure fabricated by three-dimensional printing technique. Int J Pharm, 339, 

33-8. 

Huang, Y. & Dai, W.-G. 2014. Fundamental aspects of solid dispersion technology for poorly 

soluble drugs. Acta Pharmaceutica Sinica B, 4, 18-25. 

Hussein, A., El-Menshawe, S. & Afouna, M. 2012. Enhancement of the in-vitro dissolution and 

in-vivo oral bioavailability of silymarin from liquid-filled hard gelatin capsules of 

semisolid dispersion using Gelucire 44/14 as a carrier. Die Pharmazie, 67, 209-14. 

Huyghebaert, N., Vermeire, A. & Remon, J. P. 2004. Alternative method for enteric coating of 

HPMC capsules resulting in ready-to-use enteric-coated capsules. Eur J Pharm Sci, 21, 

617-23. 

ICH. 2003. Stability Testing of New Drug Substances and Product [Online]. Available: 

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1

A_R2/Step4/Q1A_R2__Guideline.pdf [Accessed 02/05 2018]. 

ICH. 2006. Impurities in New Drug Product [Online]. Available: 

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3B

_R2/Step4/Q3B_R2__Guideline.pdf [Accessed 28/11 2017]. 

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1A_R2/Step4/Q1A_R2__Guideline.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1A_R2/Step4/Q1A_R2__Guideline.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3B_R2/Step4/Q3B_R2__Guideline.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3B_R2/Step4/Q3B_R2__Guideline.pdf


 
 

247 
 

Ijaz, H., Qureshi, J., Danish, Z., Zaman, M., Abdel-Daim, M., Hanif, M., Waheed, I. & 

Mohammad, I. S. 2015. Formulation and in-vitro evaluation of floating bilayer tablet of 

lisinopril maleate and metoprolol tartrate. Pak J Pharm Sci, 28, 2019-25. 

Innerbody. 2018. Digestive System [Online]. Available: 

http://www.innerbody.com/image/digeov.html [Accessed 29/01 2018]. 

Jannin, V. & Cuppok, Y. 2013. Hot-melt coating with lipid excipients. International Journal of 

Pharmaceutics, 457, 480-487. 

Jansen, P. J., Oren, P. L., Kemp, C. A., Maple, S. R. & Baertschi, S. W. 1998. Characterization of 

impurities formed by interaction of duloxetine HCl with enteric polymers 

hydroxypropyl methylcellulose acetate succinate and hydroxypropyl methylcellulose 

phthalate. J Pharm Sci, 87, 81-5. 

Jijun, F., Lishuang, X., Xiaoli, W., Shu, Z., Xiaoguang, T., Xingna, Z., Haibing, H. & Xing, T. 2011. 

Nimodipine (NM) tablets with high dissolution containing NM solid dispersions 

prepared by hot-melt extrusion. Drug Dev Ind Pharm, 37, 934-44. 

Johansson, J., Gudmundsson, G. H., Rottenberg, M. E., Berndt, K. D. & Agerberth, B. 1998. 

Conformation-dependent antibacterial activity of the naturally occurring human 

peptide LL-37. J Biol Chem, 273, 3718-24. 

Jones, D. S., Tian, Y., Li, S., Yu, T., Abu-Diak, O. A. & Andrews, G. P. 2016. The Use of Binary 

Polymeric Networks in Stabilizing Polyethylene Oxide Solid Dispersions. Journal of 

Pharmaceutical Sciences, 105, 3064-3072. 

Kablitz, C. D. & Urbanetz, N. A. 2007. Characterization of the film formation of the dry coating 

process. European Journal of Pharmaceutics and Biopharmaceutics, 67, 449-457. 

Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. 2016. Degradable Controlled-Release 

Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. 

Chemical reviews, 116, 2602-2663. 

Kapoor, V. K. 2016. Colon Anatomy [Online]. Available: 

https://emedicine.medscape.com/article/1949039-overview#showall [Accessed 16/03 

2018]. 

Katstra, W. E., Palazzolo, R. D., Rowe, C. W., Giritlioglu, B., Teung, P. & Cima, M. J. 2000. Oral 

dosage forms fabricated by Three Dimensional Printing™. Journal of Controlled 

Release, 66, 1-9. 

Khaled, S. A., Alexander, M. R., Wildman, R. D., Wallace, M. J., Sharpe, S., Yoo, J. & Roberts, C. 

J. 2018. 3D extrusion printing of high drug loading immediate release paracetamol 

tablets. Int J Pharm, 538, 223-230. 

http://www.innerbody.com/image/digeov.html
https://emedicine.medscape.com/article/1949039-overview#showall


 
 

248 
 

Khaled, S. A., Burley, J. C., Alexander, M. R. & Roberts, C. J. 2014. Desktop 3D printing of 

controlled release pharmaceutical bilayer tablets. Int J Pharm, 461, 105-11. 

Khaled, S. A., Burley, J. C., Alexander, M. R., Yang, J. & Roberts, C. J. 2015a. 3D printing of five-

in-one dose combination polypill with defined immediate and sustained release 

profiles. Journal of Controlled Release, 217, 308-314. 

Khaled, S. A., Burley, J. C., Alexander, M. R., Yang, J. & Roberts, C. J. 2015b. 3D printing of 

tablets containing multiple drugs with defined release profiles. International Journal of 

Pharmaceutics, 494, 643-650. 

Khan, S., Boateng, J. S., Mitchell, J. & Trivedi, V. 2015. Formulation, characterisation and 

stabilisation of buccal films for paediatric drug delivery of omeprazole. AAPS 

PharmSciTech, 16, 800-10. 

Khougaz, K. & Clas, S. D. 2000. Crystallization inhibition in solid dispersions of MK-0591 and 

poly(vinylpyrrolidone) polymers. J Pharm Sci, 89, 1325-34. 

Kim, D. S., Kim, D. W., Kim, K. S., Choi, J. S., Seo, Y. G., Youn, Y. S., Oh, K. T., Yong, C. S., Kim, J. 

O., Jin, S. G. & Choi, H.-G. 2016. Development of a novel l-sulpiride-loaded quaternary 

microcapsule: Effect of TPGS as an absorption enhancer on physicochemical 

characterization and oral bioavailability. Colloids and Surfaces B: Biointerfaces, 147, 

250-257. 

Kim, J. E., Cho, H. J. & Kim, D. D. 2014. Budesonide/cyclodextrin complex-loaded lyophilized 

microparticles for intranasal application. Drug Dev Ind Pharm, 40, 743-8. 

Kjaergaard, M., Nørholm, A.-B., Hendus-Altenburger, R., Pedersen, S. F., Poulsen, F. M. & 

Kragelund, B. B. 2010. Temperature-dependent structural changes in intrinsically 

disordered proteins: Formation of α-helices or loss of polyproline II? Protein Science : A 

Publication of the Protein Society, 19, 1555-1564. 

Kneidl, B., Peller, M., Winter, G., Lindner, L. H. & Hossann, M. 2014. Thermosensitive liposomal 

drug delivery systems: state of the art review. Int J Nanomedicine, 9, 4387-98. 

Knopp, M. M., Nguyen, J. H., Becker, C., Francke, N. M., Jørgensen, E. B., Holm, P., Holm, R., 

Mu, H., Rades, T. & Langguth, P. 2016. Influence of polymer molecular weight on in 

vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid 

dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 101, 145-151. 

Knopp, M. M., Olesen, N. E., Holm, P., Langguth, P., Holm, R. & Rades, T. 2015. Influence of 

Polymer Molecular Weight on Drug–polymer Solubility: A Comparison between 

Experimentally Determined Solubility in PVP and Prediction Derived from Solubility in 

Monomer. Journal of Pharmaceutical Sciences, 104, 2905-2912. 



 
 

249 
 

Kong, J. L., Du, X. B., Fan, C. X., Xu, J. F. & Zheng, X. J. 2004. [Determination of primary structure 

of a novel peptide from mistletoe and its antitumor activity]. Yao Xue Xue Bao, 39, 

813-7. 

Konno, H. & Taylor, L. S. 2006. Influence of different polymers on the crystallization tendency 

of molecularly dispersed amorphous felodipine. J Pharm Sci, 95, 2692-705. 

Kopoor, V. K. 2016. Anatomy [Online]. Medscape. Available: 

https://emedicine.medscape.com/article/1899389-overview#showall [Accessed 29/01 

2018]. 

Korkiatithaweechai, S., Umsarika, P., Praphairaksit, N. & Muangsin, N. 2011. Controlled release 

of diclofenac from matrix polymer of chitosan and oxidized konjac glucomannan. Mar 

Drugs, 9, 1649-63. 

Kotagale, N., Maniyar, M., Somvanshi, S., Umekar, M. & Patel, C. J. 2010. Eudragit-S, Eudragit-L 

and cellulose acetate phthalate coated polysaccharide tablets for colonic targeted 

delivery of azathioprine. Pharm Dev Technol, 15, 431-7. 

Koziolek, M., Grimm, M., Becker, D., Iordanov, V., Zou, H., Shimizu, J., Wanke, C., Garbacz, G. & 

Weitschies, W. 2015. Investigation of pH and Temperature Profiles in the GI Tract of 

Fasted Human Subjects Using the Intellicap® System. Journal of Pharmaceutical 

Sciences, 104, 2855-2863. 

Kyobula, M., Adedeji, A., Alexander, M. R., Saleh, E., Wildman, R., Ashcroft, I., Gellert, P. R. & 

Roberts, C. J. 2017. 3D inkjet printing of tablets exploiting bespoke complex 

geometries for controlled and tuneable drug release. J Control Release, 261, 207-215. 

LaboratoryInfo.com. 2015. High Performance Liquid Chromatography (HPLC) : Principle, Types, 

Instrumentation and Applications [Online]. Available: https://laboratoryinfo.com/hplc/ 

[Accessed 03/04 2018]. 

LaFountaine, J. S., Prasad, L. K., Brough, C., Miller, D. A., McGinity, J. W. & Williams, R. O., 3rd 

2016. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions. 

AAPS PharmSciTech, 17, 120-32. 

Lai, M. C., Hageman, M. J., Schowen, R. L., Borchardt, R. T., Laird, B. B. & Topp, E. M. 1999. 

Chemical stability of peptides in polymers. 2. Discriminating between solvent and 

plasticizing effects of water on peptide deamidation in poly(vinylpyrrolidone). Journal 

of Pharmaceutical Sciences, 88, 1081-1089. 

Lan, P. X., Lee, J. W., Seol, Y. J. & Cho, D. W. 2009. Development of 3D PPF/DEF scaffolds using 

micro-stereolithography and surface modification. J Mater Sci Mater Med, 20, 271-9. 

https://emedicine.medscape.com/article/1899389-overview#showall
https://laboratoryinfo.com/hplc/


 
 

250 
 

Lazarou, J., Pomeranz, B. H. & Corey, P. N. 1998. Incidence of adverse drug reactions in 

hospitalized patients: a meta-analysis of prospective studies. Jama, 279, 1200-5. 

Leapfrog. 2018. Benefits of 3D Printing for Engineers with the BOlt Pro [Online]. Available: 

https://www.lpfrg.com/en/professionals/benefits-of-3d-printing-for-engineers/ 

[Accessed 11/06 2018]. 

Lee, B. K., Yun, Y. H., Choi, J. S., Choi, Y. C., Kim, J. D. & Cho, Y. W. 2012. Fabrication of drug-

loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet 

printing system. Int J Pharm, 427, 305-10. 

Leong, K. H., Looi, C. Y., Loong, X.-M., Cheah, F. K., Supratman, U., Litaudon, M., Mustafa, M. R. 

& Awang, K. 2016. Cycloart-24-ene-26-ol-3-one, a New Cycloartane Isolated from 

Leaves of Aglaia exima Triggers Tumour Necrosis Factor-Receptor 1-Mediated Caspase-

Dependent Apoptosis in Colon Cancer Cell Line. PLoS ONE, 11, e0152652. 

Leuner, C. & Dressman, J. 2000. Improving drug solubility for oral delivery using solid 

dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 50, 47-60. 

Li, L., Wang, L., Li, J., Jiang, S., Wang, Y., Zhang, X., Ding, J., Yu, T. & Mao, S. 2014. Insights into 

the mechanisms of chitosan-anionic polymers-based matrix tablets for extended drug 

release. Int J Pharm, 476, 253-65. 

Li, S., Tian, Y., Jones, D. S. & Andrews, G. P. 2016a. Optimising Drug Solubilisation in 

Amorphous Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing 

Parameters. AAPS PharmSciTech, 17, 200-13. 

Li, S., Yu, T., Tian, Y., McCoy, C. P., Jones, D. S. & Andrews, G. P. 2016b. Mechanochemical 

Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Feasibility 

Studies and Physicochemical Characterization. Mol Pharm, 13, 3054-68. 

Li, S. A., Lee, W. H. & Zhang, Y. 2012. Efficacy of OH-CATH30 and its analogs against drug-

resistant bacteria in vitro and in mouse models. Antimicrob Agents Chemother, 56, 

3309-17. 

Li, S. S., Gullbo, J., Lindholm, P., Larsson, R., Thunberg, E., Samuelsson, G., Bohlin, L. & Claeson, 

P. 2002. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding 

domain from the mistletoe Phoradendron liga. Biochem J, 366, 405-13. 

Li, X., Ding, L., Xu, Y., Wang, Y. & Ping, Q. 2009. Targeted delivery of doxorubicin using stealth 

liposomes modified with transferrin. Int J Pharm, 373, 116-23. 

Li, X., Peng, H., Tian, B., Gou, J., Yao, Q., Tao, X., He, H., Zhang, Y., Tang, X. & Cai, C. 2015. 

Preparation and characterization of azithromycin – Aerosil 200 solid dispersions with 

enhanced physical stability. International Journal of Pharmaceutics, 486, 175-184. 

https://www.lpfrg.com/en/professionals/benefits-of-3d-printing-for-engineers/


 
 

251 
 

Libretexts. 2017. Powder X-ray Diffraction [Online]. Available: 

https://chem.libretexts.org/Core/Analytical_Chemistry/Instrumental_Analysis/Diffracti

on_Scattering_Techniques/Powder_X-ray_Diffraction [Accessed 12/12 2017]. 

Limited, E. P. 2014. Specifications For Empty Hard Gelatin Capsules [Online]. Available: 

http://www.erawat.com/technical-details.html [Accessed 23/08/2017 2014]. 

Lin, H., May, R. K., Evans, M. J., Zhong, S., Gladden, L. F., Shen, Y. & Zeitler, J. A. 2015. Impact of 

Processing Conditions on Inter-tablet Coating Thickness Variations Measured by 

Terahertz In-Line Sensing. J Pharm Sci, 104, 2513-22. 

Liska, R., Schuster, M., Inführ, R., Turecek, C., Fritscher, C., Seidl, B., Schmidt, V., Kuna, L., 

Haase, A., Varga, F., Lichtenegger, H. & Stampfl, J. 2007. Photopolymers for rapid 

prototyping. Journal of Coatings Technology and Research, 4, 505-510. 

Liu, F., Lizio, R., Meier, C., Petereit, H. U., Blakey, P. & Basit, A. W. 2009. A novel concept in 

enteric coating: a double-coating system providing rapid drug release in the proximal 

small intestine. J Control Release, 133, 119-24. 

Liu, F., Merchant, H. A., Kulkarni, R. P., Alkademi, M. & Basit, A. W. 2011. Evolution of a 

physiological pH6.8 bicarbonate buffer system: Application to the dissolution testing of 

enteric coated products. European Journal of Pharmaceutics and Biopharmaceutics, 

78, 151-157. 

Liu, F., Moreno, P. & Basit, A. W. 2010. A novel double-coating approach for improved pH-

triggered delivery to the ileo-colonic region of the gastrointestinal tract. European 

Journal of Pharmaceutics and Biopharmaceutics, 74, 311-315. 

Liu, S., Fan, L., Sun, J., Lao, X. & Zheng, H. 2017. Computational resources and tools for 

antimicrobial peptides. J Pept Sci, 23, 4-12. 

Liu, X., Lu, M., Guo, Z., Huang, L., Feng, X. & Wu, C. 2012. Improving the chemical stability of 

amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res, 

29, 806-17. 

Lorber, B., Hsiao, W. K., Hutchings, I. M. & Martin, K. R. 2014. Adult rat retinal ganglion cells 

and glia can be printed by piezoelectric inkjet printing. Biofabrication, 6, 015001. 

Lu, Y. & Chen, S. 2012. Projection printing of 3-dimensional tissue scaffolds. Methods Mol Biol, 

868, 289-302. 

Lucas, R. A., Bowtle, W. J. & Ryden, R. 1987. Disposition of vancomycin in healthy volunteers 

from oral solution and semi-solid matrix capsules. J Clin Pharm Ther, 12, 27-31. 

Luo, Y., Zhu, J., Ma, Y. & Zhang, H. 2008. Dry coating, a novel coating technology for solid 

pharmaceutical dosage forms. International Journal of Pharmaceutics, 358, 16-22. 

https://chem.libretexts.org/Core/Analytical_Chemistry/Instrumental_Analysis/Diffraction_Scattering_Techniques/Powder_X-ray_Diffraction
https://chem.libretexts.org/Core/Analytical_Chemistry/Instrumental_Analysis/Diffraction_Scattering_Techniques/Powder_X-ray_Diffraction
http://www.erawat.com/technical-details.html


 
 

252 
 

Macchi, E., Zema, L., Maroni, A., Gazzaniga, A. & Felton, L. A. 2015. Enteric-coating of pulsatile-

release HPC capsules prepared by injection molding. European Journal of 

Pharmaceutical Sciences, 70, 1-11. 

Mahadevan, V. 2017. Anatomy of the stomach. Surgery (Oxford), 35, 608-611. 

Mahmah, O., Tabbakh, R., Kelly, A. & Paradkar, A. 2014. A comparative study of the effect of 

spray drying and hot-melt extrusion on the properties of amorphous solid dispersions 

containing felodipine. J Pharm Pharmacol, 66, 275-84. 

Maniruzzaman, M., Morgan, D. J., Mendham, A. P., Pang, J., Snowden, M. J. & Douroumis, D. 

2013. Drug–polymer intermolecular interactions in hot-melt extruded solid 

dispersions. International Journal of Pharmaceutics, 443, 199-208. 

Mansing G. Patil, S. M. K. a. S. G. P. 2011. Formulation and evaluation of orally disintegrating 

tablet containing tramadol hydrochloride by mass 

extrusion technique. Journal of Applied Pharmaceutical Science, 178-181. 

Marketsandmarkets. 2013. Drug delivery technology market [Online]. Available: 

http://www.marketsandmarkets.com/Market-Reports/drug-delivery-technologies-

market-1085.html?gclid=CIXRuMT5osQCFe6WtAodmiUAZg [Accessed 12/3/2015]. 

Markl, D., Zeitler, J. A., Rasch, C., Michaelsen, M. H., Müllertz, A., Rantanen, J., Rades, T. & 

Bøtker, J. 2017. Analysis of 3D Prints by X-ray Computed Microtomography 

and Terahertz Pulsed Imaging. Pharm Res, 34, 1037-1052. 

Maroni, A., Curto, M. D. D., Serratoni, M., Zema, L., Foppoli, A., Gazzaniga, A. & Sangalli, M. E. 

2009. Feasibility, stability and release performance of a time-dependent insulin 

delivery system intended for oral colon release. European Journal of Pharmaceutics 

and Biopharmaceutics, 72, 246-251. 

Maroni, A., Zema, L., Curto, M. D. D., Loreti, G. & Gazzaniga, A. 2010. Oral pulsatile delivery: 

Rationale and chronopharmaceutical formulations. International Journal of 

Pharmaceutics, 398, 1-8. 

Maroni, A., Zema, L., Del Curto, M. D., Foppoli, A. & Gazzaniga, A. 2012. Oral colon delivery of 

insulin with the aid of functional adjuvants. Advanced Drug Delivery Reviews, 64, 540-

556. 

Mathiowitz, E., Jacob, J. S., Jong, Y. S., Carino, G. P., Chickering, D. E., Chaturvedi, P., Santos, C. 

A., Vijayaraghavan, K., Montgomery, S., Bassett, M. & Morrell, C. 1997. Biologically 

erodable microspheres as potential oral drug delivery systems. Nature, 386, 410-4. 

http://www.marketsandmarkets.com/Market-Reports/drug-delivery-technologies-market-1085.html?gclid=CIXRuMT5osQCFe6WtAodmiUAZg
http://www.marketsandmarkets.com/Market-Reports/drug-delivery-technologies-market-1085.html?gclid=CIXRuMT5osQCFe6WtAodmiUAZg


 
 

253 
 

Matsumoto, T. & Zografi, G. 1999. Physical properties of solid molecular dispersions of 

indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) 

in relation to indomethacin crystallization. Pharm Res, 16, 1722-8. 

Matuskova, Z., Anzenbacherova, E., Vecera, R., Tlaskalova-Hogenova, H., Kolar, M. & 

Anzenbacher, P. 2014. Administration of a probiotic can change drug 

pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats. PLoS 

One, 9, e87150. 

Mayersohn, M. & Gibaldi, M. 1966. New method of solid-state dispersion for increasing 

dissolution rates. Journal of Pharmaceutical Sciences, 55, 1323-1324. 

McDougall, D. A. J., Martin, J., Playford, E. G. & Green, B. 2016. Determination of a suitable 

voriconazole pharmacokinetic model for personalised dosing. Journal of 

Pharmacokinetics and Pharmacodynamics, 43, 165-177. 

McLean, S., Sheikh, A., Cresswell, K., Nurmatov, U., Mukherjee, M., Hemmi, A. & Pagliari, C. 

2013. The Impact of Telehealthcare on the Quality and Safety of Care: A Systematic 

Overview. Plos One, 8. 

McMahon, S. R., Rimsza, M. E. & Bay, R. C. 1997. Parents can dose liquid medication 

accurately. Pediatrics, 100, 330-3. 

McMains, S. 2005. Layered manufacturing technologies. Commun. ACM, 48, 50-56. 

MedlinePlus. 2018. Colonic Diseases [Online]. Available: 

https://medlineplus.gov/colonicdiseases.html [Accessed 16/03 2018]. 

Melchels, F. P., Feijen, J. & Grijpma, D. W. 2009. A poly(D,L-lactide) resin for the preparation of 

tissue engineering scaffolds by stereolithography. Biomaterials, 30, 3801-9. 

Melchels, F. P. W., Feijen, J. & Grijpma, D. W. 2010. A review on stereolithography and its 

applications in biomedical engineering. Biomaterials, 31, 6121-6130. 

Meléndez, P. A., Kane, K. M., Ashvar, C. S., Albrecht, M. & Smith, P. A. 2008. Thermal inkjet 

application in the preparation of oral dosage forms: Dispensing of prednisolone 

solutions and polymorphic characterization by solid-state spectroscopic techniques. 

Journal of Pharmaceutical Sciences, 97, 2619-2636. 

Melocchi, A., Parietti, F., Loreti, G., Maroni, A., Gazzaniga, A. & Zema, L. 2015. 3D printing by 

fused deposition modeling (FDM) of a swellable/erodible capsular device for oral 

pulsatile release of drugs. J Drug Deliv Sci Technol. 

Melocchi, A., Parietti, F., Maroni, A., Foppoli, A., Gazzaniga, A. & Zema, L. 2016. Hot-melt 

extruded filaments based on pharmaceutical grade polymers for 3D printing by fused 

deposition modeling. Int J Pharm, 509, 255-63. 

https://medlineplus.gov/colonicdiseases.html


 
 

254 
 

Microencapsulation.net. 2018. Fluid Bed Coating [Online]. Available: 

http://microencapsulation.net/fluidBed.html [Accessed 19/03 2018]. 

Miller, K. D., Siegel, R. L., Lin, C. C., Mariotto, A. B., Kramer, J. L., Rowland, J. H., Stein, K. D., 

Alteri, R. & Jemal, A. 2016. Cancer treatment and survivorship statistics, 2016. CA 

Cancer J Clin, 66, 271-89. 

Ming-Thau, S., Huei-Lan, C., Ching-Cheng, K., Cheng-Hsiung, L. & Sokoloski, T. D. 1992. 

Dissolution of diclofenac sodium from matrix tablets. International Journal of 

Pharmaceutics, 85, 57-63. 

Mohammed, N. N., Majumdar, S., Singh, A., Deng, W., Murthy, N. S., Pinto, E., Tewari, D., 

Durig, T. & Repka, M. A. 2012. Klucel EF and ELF polymers for immediate-release oral 

dosage forms prepared by melt extrusion technology. AAPS PharmSciTech, 13, 1158-

69. 

Mohomed, K. 2016. Thermogravimetric Analysis (TGA): Theory and Applications [Online]. 

Available: file://lha-023/pers-H/00069750/Downloads/CA-2016-TGA.pdf [Accessed 

12/12 2017]. 

Mooney, S. D. 2015. Progress Towards the Integration of Pharmacogenomics in Practice. 

Human genetics, 134, 459-465. 

Moroz, E., Matoori, S. & Leroux, J.-C. 2016. Oral delivery of macromolecular drugs: Where we 

are after almost 100years of attempts. Advanced Drug Delivery Reviews, 101, 108-121. 

Muheem, A., Shakeel, F., Jahangir, M. A., Anwar, M., Mallick, N., Jain, G. K., Warsi, M. H. & 

Ahmad, F. J. 2016. A review on the strategies for oral delivery of proteins and peptides 

and their clinical perspectives. Saudi Pharmaceutical Journal, 24, 413-428. 

Mura, M., Wang, J., Zhou, Y., Pinna, M., Zvelindovsky, A. V., Dennison, S. R. & Phoenix, D. A. 

2016. The effect of amidation on the behaviour of antimicrobial peptides. European 

Biophysics Journal, 45, 195-207. 

Nair, A. B., Gupta, R., Kumria, R., Jacob, S. & Attimarad, M. 2010. Formulation and evaluation 

of enteric coated tablets of proton pump inhibitor. J Basic Clin Pharm, 1, 215-21. 

Nair, R., Nyamweya, N., Gonen, S., Martinez-Miranda, L. J. & Hoag, S. W. 2001. Influence of 

various drugs on the glass transition temperature of poly(vinylpyrrolidone): a 

thermodynamic and spectroscopic investigation. Int J Pharm, 225, 83-96. 

Niemirowicz, K., Prokop, I., Wilczewska, A. Z., Wnorowska, U., Piktel, E., Watek, M., Savage, P. 

B. & Bucki, R. 2015. Magnetic nanoparticles enhance the anticancer activity of 

cathelicidin LL-37 peptide against colon cancer cells. Int J Nanomedicine, 10, 3843-53. 

http://microencapsulation.net/fluidBed.html


 
 

255 
 

Nojima, S., Tanaka, H., Rohadi, A. & Sasaki, S. 1998. The effect of glass transition temperature 

on the crystallization of ε-caprolactone-styrene diblock copolymers. Polymer, 39, 

1727-1734. 

Nollenberger, K. & Albers, J. 2013. Poly(meth)acrylate-based coatings. Int J Pharm, 457, 461-9. 

Noviasky, J., Lo, V., Luft, D. D. & Saseen, J. 2006. Clinical inquiries. Which medications can be 

split without compromising efficacy and safety? J Fam Pract, 55, 707-8. 

O’Driscoll, N. H., Labovitiadi, O., Cushnie, T. P. T., Matthews, K. H., Mercer, D. K. & Lamb, A. J. 

2013. Production and Evaluation of an Antimicrobial Peptide-Containing Wafer 

Formulation for Topical Application. Current Microbiology, 66, 271-278. 

Obara, S., Maruyama, N., Nishiyama, Y. & Kokubo, H. 1999. Dry coating: an innovative enteric 

coating method using a cellulose derivative. European Journal of Pharmaceutics and 

Biopharmaceutics, 47, 51-59. 

Ochi, M., Kimura, K., Kanda, A., Kawachi, T., Matsuda, A., Yuminoki, K. & Hashimoto, N. 2016. 

Physicochemical and Pharmacokinetic Characterization of Amorphous Solid Dispersion 

of Meloxicam with Enhanced Dissolution Property and Storage Stability. AAPS 

PharmSciTech, 17, 932-939. 

Ohmori, S., Ohno, Y., Makino, T. & Kashihara, T. 2004. Effect of moisture on impact toughness 

of sugar-coated tablets manufactured by the dusting method. Chem Pharm Bull 

(Tokyo), 52, 329-34. 

Okwuosa, T. C., Pereira, B. C., Arafat, B., Cieszynska, M., Isreb, A. & Alhnan, M. A. 2017. 

Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3D Printing for 

Patient-Centred Therapy. Pharmaceutical Research, 34, 427-437. 

Okwuosa, T. C., Soares, C., Gollwitzer, V., Habashy, R., Timmins, P. & Alhnan, M. A. 2018. On 

demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing 

and liquid dispensing. Eur J Pharm Sci, 118, 134-143. 

Okwuosa, T. C., Stefaniak, D., Arafat, B., Isreb, A., Wan, K.-W. & Alhnan, M. A. 2016. A Lower 

Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate 

Release Tablets. Pharmaceutical Research, 33, 2704-2712. 

Oliveira, P. R., Mendes, C., Klein, L., Sangoi Mda, S., Bernardi, L. S. & Silva, M. A. 2013. 

Formulation development and stability studies of norfloxacin extended-release matrix 

tablets. Biomed Res Int, 2013, 716736. 

Ozguney, I., Ozcan, I., Ertan, G. & Guneri, T. 2007. The preparation and evaluation of sustained 

release suppositories containing ketoprofen and Eudragit RL 100 by using factorial 

design. Pharm Dev Technol, 12, 97-107. 



 
 

256 
 

Pachuau, L. & Mazumder, B. 2013. Evaluation of Albizia procera gum as compression coating 

material for colonic delivery of budesonide. Int J Biol Macromol, 61, 333-9. 

Paliwal, S. R., Paliwal, R., Mishra, N., Mehta, A. & Vyas, S. P. 2010. A novel cancer targeting 

approach based on estrone anchored stealth liposome for site-specific breast cancer 

therapy. Curr Cancer Drug Targets, 10, 343-53. 

Pamudji, J. S., Mauludin, R. & Nurhabibah 2014. Influence of β-cyclodextrin on Cefixime 

Stability in Liquid Suspension Dosage Form. Procedia Chem, 13, 119-127. 

Paprskarova, A., Mozna, P., Oga, E. F., Elhissi, A. & Alhnan, M. A. 2016. Instrumentation of 

Flow-Through USP IV Dissolution Apparatus to Assess Poorly Soluble Basic Drug 

Products: a Technical Note. AAPS PharmSciTech, 17, 1261-6. 

Parikh, T., Gupta, S. S., Meena, A. & T.M. Serajuddin, A. 2014. Investigation of thermal and 

viscoelastic properties of polymers relevant to hot melt extrusion - III: 

Polymethacrylates and polymethacrylic acid based polymers. 

Park, K. 2015. 3D printing of 5-drug polypill. J Control Release, 217, 352. 

ParticleScience. 2011. Hot Melt Extrusion [Online]. Available: 

http://www.particlesciences.com/news/technical-briefs/2011/hot-melt-

extrusion.html [Accessed 13/05 2016]. 

Patel, M. M. 2011. Cutting-edge technologies in colon-targeted drug delivery systems. Expert 

Opinion on Drug Delivery, 8, 1247-1258. 

Pati, F., Shim, J.-H., Lee, J.-S. & Cho, D.-W. 2013. 3D printing of cell-laden constructs for 

heterogeneous tissue regeneration. Manufacturing Letters, 1, 49-53. 

Patil Arun, C. S., Khobragade Deepak, Umathe Sudhir, Avari Jasmine 2011. Evaluation of Hot 

Melt Coating as Taste Masking Tool. International Research Journal of Pharmacy. 

Patil, H., Tiwari, R. V. & Repka, M. A. 2016. Hot-Melt Extrusion: from Theory to Application in 

Pharmaceutical Formulation. AAPS PharmSciTech, 17, 20-42. 

Paudel, A., Worku, Z. A., Meeus, J., Guns, S. & Van den Mooter, G. 2013. Manufacturing of 

solid dispersions of poorly water soluble drugs by spray drying: Formulation and 

process considerations. International Journal of Pharmaceutics, 453, 253-284. 

Peate, I. 2018. Anatomy and physiology, 9. The gastrointestinal system. British Journal of 

Healthcare Assistants, 12, 110-115. 

Peek, B. T., Al-Achi, A. & Coombs, S. J. 2002. Accuracy of tablet splitting by elderly patients. 

JAMA, 288, 451-2. 

http://www.particlesciences.com/news/technical-briefs/2011/hot-melt-extrusion.html
http://www.particlesciences.com/news/technical-briefs/2011/hot-melt-extrusion.html


 
 

257 
 

PharmTech. 2016. FDA and the Emerging Technology of 3D Printing [Online]. Available: 

http://www.pharmtech.com/fda-and-emerging-technology-3d-printing [Accessed 

16/02 2018]. 

Pietrzak, K., Isreb, A. & Alhnan, M. A. 2015. A flexible-dose dispenser for immediate and 

extended release 3D printed tablets. Eur J Pharm Biopharm. 

Piktel, E., Niemirowicz, K., Wnorowska, U., Wątek, M., Wollny, T., Głuszek, K., Góźdź, S., 

Levental, I. & Bucki, R. 2016. The Role of Cathelicidin LL-37 in Cancer Development. 

Archivum Immunologiae et Therapiae Experimentalis, 64, 33-46. 

Popov, V. K., Evseev, A. V., Ivanov, A. L., Roginski, V. V., Volozhin, A. I. & Howdle, S. M. 2004. 

Laser stereolithography and supercritical fluid processing for custom-designed implant 

fabrication. J Mater Sci Mater Med, 15, 123-8. 

Potter, C., Tian, Y., Walker, G., McCoy, C., Hornsby, P., Donnelly, C., Jones, D. S. & Andrews, G. 

P. 2015. Novel supercritical carbon dioxide impregnation technique for the production 

of amorphous solid drug dispersions: a comparison to hot melt extrusion. Mol Pharm, 

12, 1377-90. 

Qi, X., Chen, H., Rui, Y., Yang, F., Ma, N. & Wu, Z. 2015. Floating tablets for controlled release of 

ofloxacin via compression coating of hydroxypropyl cellulose combined with 

effervescent agent. Int J Pharm, 489, 210-7. 

Qiao, M., Luo, Y., Zhang, L., Ma, Y., Stephenson, T. S. & Zhu, J. 2010a. Sustained release coating 

of tablets with Eudragit((R)) RS/RL using a novel electrostatic dry powder coating 

process. Int J Pharm, 399, 37-43. 

Qiao, M., Zhang, L., Ma, Y., Zhu, J. & Chow, K. 2010b. A novel electrostatic dry powder coating 

process for pharmaceutical dosage forms: immediate release coatings for tablets. Eur J 

Pharm Biopharm, 76, 304-10. 

Qiao, M., Zhang, L., Ma, Y., Zhu, J. & Xiao, W. 2013. A novel electrostatic dry coating process 

for enteric coating of tablets with Eudragit(R) L 100-55. Eur J Pharm Biopharm, 83, 293-

300. 

Radwan, M. A., Abou El Ela Ael, S., Hassan, M. A. & El-Maraghy, D. A. 2015. Pharmacokinetics 

and analgesic effect of ketorolac floating delivery system. Drug Deliv, 22, 320-7. 

Raijada, D., Genina, N., Fors, D., Wisaeus, E., Peltonen, J., Rantanen, J. & Sandler, N. 2013. A 

step toward development of printable dosage forms for poorly soluble drugs. J Pharm 

Sci, 102, 3694-704. 

Raman, C. V. & Krishnan, K. S. 1928. A New Type of Secondary Radiation. Nature, 121, 501. 

http://www.pharmtech.com/fda-and-emerging-technology-3d-printing


 
 

258 
 

Ramineni, S. K., Cunningham, L. L., Dziubla, T. D. & Puleo, D. A. 2013. COMPETING PROPERTIES 

OF MUCOADHESIVE FILMS DESIGNED FOR LOCALIZED DELIVERY OF IMIQUIMOD. 

Biomaterials science, 1, 753-762. 

Räsänen, E., Rantanen, J., Jørgensen, A., Karjalainen, M., Paakkari, T. & Yliruusi, J. 2001. Novel 

identification of pseudopolymorphic changes of theophylline during wet granulation 

using near infrared spectroscopy. Journal of Pharmaceutical Sciences, 90, 389-396. 

Rattanakit, P., Moulton, S. E., Santiago, K. S., Liawruangrath, S. & Wallace, G. G. 2012. 

Extrusion printed polymer structures: a facile and versatile approach to tailored drug 

delivery platforms. Int J Pharm, 422, 254-63. 

Reiner, T., Carr, N., Radom, #237, M, r., #283, ch, Ond, #345, ej, #352, t'ava, Dachsbacher, C. & 

Miller, G. 2014. Dual-color mixing for fused deposition modeling printers. Comput. 

Graph. Forum, 33, 479-486. 

Reinus, J. F. & Simon, D. 2014. Gastrointestinal Anatomy and Physiology : The Essentials, 

Hoboken, UNITED KINGDOM, John Wiley & Sons, Incorporated. 

Ren, S. X., Cheng, A. S. L., To, K. F., Tong, J. H. M., Li, M. S., Shen, J., Wong, C. C. M., Zhang, L., 

Chan, R. L. Y., Wang, X. J., Ng, S. S. M., Chiu, L. C. M., Marquez, V. E., Gallo, R. L., Chan, 

F. K. L., Yu, J., Sung, J. J. Y., Wu, W. K. K. & Cho, C. H. 2012. Host Immune Defense 

Peptide LL-37 Activates Caspase-Independent Apoptosis and Suppresses Colon Cancer. 

Cancer research, 72, 6512-6523. 

Ren, S. X., Shen, J., Cheng, A. S. L., Lu, L., Chan, R. L. Y., Li, Z. J., Wang, X. J., Wong, C. C. M., 

Zhang, L., Ng, S. S. M., Chan, F. L., Chan, F. K. L., Yu, J., Sung, J. J. Y., Wu, W. K. K. & Cho, 

C. H. 2013. FK-16 Derived from the Anticancer Peptide LL-37 Induces Caspase-

Independent Apoptosis and Autophagic Cell Death in Colon Cancer Cells. PLoS ONE, 8, 

e63641. 

Renukuntla, J., Vadlapudi, A. D., Patel, A., Boddu, S. H. S. & Mitra, A. K. 2013. Approaches for 

Enhancing Oral Bioavailability of Peptides and Proteins. International journal of 

pharmaceutics, 447, 75-93. 

Revision, U. S. P. C. C. o. 2007. U.S. pharmacopeia & national formulary, United States 

Pharmacopeial Convention, Inc. 

Ribeiro, Y. A., Caires, A. C. F., Boralle, N. & Ionashiro, M. 1996. Thermal decomposition of 

acetylsalicylic acid (aspirin). Thermochimica Acta, 279, 177-181. 

Romero-Torres, S., Perez-Ramos, J. D., Morris, K. R. & Grant, E. R. 2005. Raman spectroscopic 

measurement of tablet-to-tablet coating variability. J Pharm Biomed Anal, 38, 270-4. 



 
 

259 
 

Roni, M. A., Kibria, G. & Jalil, R. 2009. Formulation and in vitro Evaluation of Alfuzosin Extended 

Release Tablets Using Directly Compressible Eudragit. Indian J Pharm Sci, 71, 252-8. 

Rosemond. 2015. Medicine management for patients with trouble swallowing pills [Online]. 

Available: http://www.rosemontpharma.com/health-professionals [Accessed 

12/3/2015]. 

Rosenzweig, D. H., Carelli, E., Steffen, T., Jarzem, P. & Haglund, L. 2015. 3D-Printed ABS and 

PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration. Int J Mol Sci, 16, 

15118-35. 

Rowe, C. W., Katstra, W. E., Palazzolo, R. D., Giritlioglu, B., Teung, P. & Cima, M. J. 2000. 

Multimechanism oral dosage forms fabricated by three dimensional printing™. Journal 

of Controlled Release, 66, 11-17. 

Roy, H., Brahma, C. K., Nandi, S. & Parida, K. R. 2013. Formulation and design of sustained 

release matrix tablets of metformin hydrochloride: Influence of hypromellose and 

polyacrylate polymers. Int J Appl Basic Med Res, 3, 55-63. 

Rozek, T., Wegener, K. L., Bowie, J. H., Olver, I. N., Carver, J. A., Wallace, J. C. & Tyler, M. J. 

2000. The antibiotic and anticancer active aurein peptides from the Australian Bell 

Frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur J 

Biochem, 267, 5330-41. 

Rujivipat, S. & Bodmeier, R. 2010. Improved drug delivery to the lower intestinal tract with 

tablets compression-coated with enteric/nonenteric polymer powder blends. 

European Journal of Pharmaceutics and Biopharmaceutics, 76, 486-492. 

Ryu, G. S. & Lee, Y. J. 2012. Analysis of liquid medication dose errors made by patients and 

caregivers using alternative measuring devices. J Manag Care Pharm, 18, 439-45. 

Saal, W., Ross, A., Wyttenbach, N., Alsenz, J. & Kuentz, M. 2017. A Systematic Study of 

Molecular Interactions of Anionic Drugs with a Dimethylaminoethyl Methacrylate 

Copolymer Regarding Solubility Enhancement. Mol Pharm, 14, 1243-1250. 

Saal, W., Ross, A., Wyttenbach, N., Alsenz, J. & Kuentz, M. 2018. Unexpected Solubility 

Enhancement of Drug Bases in the Presence of a Dimethylaminoethyl Methacrylate 

Copolymer. Mol Pharm, 15, 186-192. 

Sadia, M., Arafat, B., Ahmed, W., Forbes, R. T. & Alhnan, M. A. 2018. Channelled tablets: An 

innovative approach to accelerating drug release from 3D printed tablets. Journal of 

Controlled Release, 269, 355-363. 

http://www.rosemontpharma.com/health-professionals


 
 

260 
 

Sadia, M., Sosnicka, A., Arafat, B., Isreb, A., Ahmed, W., Kelarakis, A. & Alhnan, M. A. 2016. 

Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of 

patient-tailored immediate release tablets. Int J Pharm, 513, 659-668. 

Saffran, M., Kumar, G. S., Savariar, C., Burnham, J. C., Williams, F. & Neckers, D. C. 1986. A new 

approach to the oral administration of insulin and other peptide drugs. Science, 233, 

1081-4. 

Sahoo, J., Murthy, P. N., Biswal, S. & Manik 2009. Formulation of sustained-release dosage 

form of verapamil hydrochloride by solid dispersion technique using Eudragit RLPO or 

Kollidon SR. AAPS PharmSciTech, 10, 27-33. 

Sakae, O. & Hiroyasu, K. 2008. Application of HPMC and HPMCAS to Aqueous Film Coating of 

Pharmaceutical Dosage Forms. In: MCGINITY, J. W. & FELTON, L. A. (eds.) Aqueous Film 

Coating of Pharmaceutical Dosage Forms. Boca Raton, FL.: CRC Press. 

Sakarkar, D. M., Dorle, A. K., Mahajan, N. M. & Sudke, S. G. 2013. Design of sustained release 

pellets of ferrous fumarate using cow ghee as hot-melt coating agent. Int J Pharm 

Investig, 3, 151-6. 

Sanderson, K. 2015. 3D printing: the future of manufacturing medicine? Pharm. J., 7865. 

Sandler, N., Kassamakov, I., Ehlers, H., Genina, N., Ylitalo, T. & Haeggstrom, E. 2014a. Rapid 

interferometric imaging of printed drug laden multilayer structures. Sci. Rep., 4. 

Sandler, N., Määttänen, A., Ihalainen, P., Kronberg, L., Meierjohann, A., Viitala, T. & Peltonen, 

J. 2011. Inkjet printing of drug substances and use of porous substrates-towards 

individualized dosing. J Pharm Sci, 100, 3386-3395. 

Sandler, N., Salmela, I., Fallarero, A., Rosling, A., Khajeheian, M., Kolakovic, R., Genina, N., 

Nyman, J. & Vuorela, P. 2014b. Towards fabrication of 3D printed medical devices to 

prevent biofilm formation. International Journal of Pharmaceutics, 459, 62-64. 

Sarode, A. L., Sandhu, H., Shah, N., Malick, W. & Zia, H. 2013. Hot melt extrusion (HME) for 

amorphous solid dispersions: predictive tools for processing and impact of drug-

polymer interactions on supersaturation. Eur J Pharm Sci, 48, 371-84. 

Sauer, D. & McGinity, J. 2009. Properties of theophylline tablets dry powder coated with 

Eudragit E PO and Eudragit L 100-55. Pharm Dev Technol, 14, 632-41. 

Schiele, J. T., Quinzler, R., Klimm, H. D., Pruszydlo, M. G. & Haefeli, W. E. 2013. Difficulties 

swallowing solid oral dosage forms in a general practice population: prevalence, 

causes, and relationship to dosage forms. Eur J Clin Pharmacol, 69, 937-48. 

Scoutaris, N., Alexander, M. R., Gellert, P. R. & Roberts, C. J. 2011. Inkjet printing as a novel 

medicine formulation technique. J Control Release, 156, 179-185. 



 
 

261 
 

Sebaugh, J. L. 2011. Guidelines for accurate EC50/IC50 estimation. Pharm Stat, 10, 128-34. 

Senatov, F. S., Niaza, K. V., Zadorozhnyy, M. Y., Maksimkin, A. V., Kaloshkin, S. D. & Estrin, Y. Z. 

2016. Mechanical properties and shape memory effect of 3D-printed PLA-based 

porous scaffolds. J Mech Behav Biomed Mater, 57, 139-48. 

Shah, J., Vasanti, S., Anroop, B. & Vyas, H. 2008. Enhancement of dissolution rate of valdecoxib 

by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro 

evaluation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 63, 69-75. 

Shah, V. P., Yamamoto, L. A., Schuirman, D., Elkins, J. & Skelly, J. P. 1987. Analysis of in vitro 

dissolution of whole vs. half controlled-release theophylline tablets. Pharm Res, 4, 416-

9. 

Sharma, A. & Jain, C. P. 2010. Preparation and characterization of solid dispersions of 

carvedilol with PVP K30. Research in Pharmaceutical Sciences, 5, 49-56. 

Sharma, M., Sharma, V., Panda, A. & Majumdar, D. K. 2011. Development of enteric submicron 

particle formulation of papain for oral delivery. 

Sharma, M., Sharma, V., Panda, A. K. & Majumdar, D. K. 2013. Development of enteric 

submicron particles formulation of alpha-amylase for oral delivery. Pharm Dev 

Technol, 18, 560-9. 

Siddique, S., Khanam, J. & Bigoniya, P. 2010. Development of sustained release capsules 

containing "coated matrix granules of metoprolol tartrate". AAPS PharmSciTech, 11, 

1306-14. 

SIGMA-ALDRICH. 2016a. Dipyridamole [Online]. Available: 

http://www.sigmaaldrich.com/catalog/product/sigma/d9766?lang=en&region=GB 

[Accessed 16/06 2016]. 

SIGMA-ALDRICH. 2016b. Polyvinylpyrrolidone [Online]. Available: 

http://www.sigmaaldrich.com/catalog/product/sial/pvp40?lang=en&region=GB&gclid

=CIzz7Lau0swCFYidGwodgMAM0A [Accessed 11/05 2016]. 

SIGMA-ALDRICH. 2016c. Theophylline melting point standard [Online]. Available: 

http://www.sigmaaldrich.com/catalog/product/sial/phr1151?lang=en&region=GB 

[Accessed 16/06 2016]. 

SIGMA-ALDRICH. 2018a. Aspirin [Online]. Available: 

https://www.sigmaaldrich.com/catalog/product/sigma/a2093?lang=en&region=GB 

[Accessed 03/04 2018]. 

http://www.sigmaaldrich.com/catalog/product/sigma/d9766?lang=en&region=GB
http://www.sigmaaldrich.com/catalog/product/sial/pvp40?lang=en&region=GB&gclid=CIzz7Lau0swCFYidGwodgMAM0A
http://www.sigmaaldrich.com/catalog/product/sial/pvp40?lang=en&region=GB&gclid=CIzz7Lau0swCFYidGwodgMAM0A
http://www.sigmaaldrich.com/catalog/product/sial/phr1151?lang=en&region=GB
https://www.sigmaaldrich.com/catalog/product/sigma/a2093?lang=en&region=GB


 
 

262 
 

SIGMA-ALDRICH. 2018b. Theophylline [Online]. Available: 

https://www.sigmaaldrich.com/catalog/product/sigma/t1633?lang=en&region=GB 

[Accessed 03/04 2018]. 

Silva Oliveira, M., Miguel Agustinho, S. C., Guzzi Plepis, A. M. d. & Tabak, M. 2006. On the 

Thermal Decomposition of Dipyridamole: Thermogravimetric, Differential Scanning 

Calorimetric and Spectroscopic Studies. Spectroscopy Letters, 39, 145-161. 

Sinha, V., Singh, A., Kumar, R. V., Singh, S., Kumria, R. & Bhinge, J. 2007a. Oral colon-specific 

drug delivery of protein and peptide drugs. Crit Rev Ther Drug Carrier Syst, 24, 63-92. 

Sinha, V. R., Singh, A., Singh, S. & Bhinge, J. R. 2007b. Compression coated systems for colonic 

delivery of 5-fluorouracil. J Pharm Pharmacol, 59, 359-65. 

Skoog, S. A., Goering, P. L. & Narayan, R. J. 2014. Stereolithography in tissue engineering. J 

Mater Sci Mater Med, 25, 845-56. 

Skowyra, J., Pietrzak, K. & Alhnan, M. A. 2015. Fabrication of extended-release patient-tailored 

prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm 

Sci, 68, 11-7. 

Sobhani, P., Christopherson, J., Ambrose, P. J. & Corelli, R. L. 2008. Accuracy of oral liquid 

measuring devices: comparison of dosing cup and oral dosing syringe. Ann 

Pharmacother, 42, 46-52. 

Song, Y., Zemlyanov, D., Chen, X., Su, Z., Nie, H., Lubach, J. W., Smith, D., Byrn, S. & Pinal, R. 

2016. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared 

by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy. 

International Journal of Pharmaceutics, 514, 456-464. 

Songa, A. S., Meka, V. S., Nali, S. R. & Kolapalli, V. R. 2013. An in vitro and in vivo investigation 

into the suitability of compression coated tablets of indomethacin for the treatment of 

rheumatoid arthritis which follow circadian rhythms. Drug Dev Ind Pharm, 39, 447-56. 

Stevens, R. E., Limsakun, T., Evans, G. & Mason, D. H., Jr. 1998. Controlled, multidose, 

pharmacokinetic evaluation of two extended-release carbamazepine formulations 

(Carbatrol and Tegretol-XR). J Pharm Sci, 87, 1531-4. 

Sun, H., Liu, D., Li, Y., Tang, X. & Cong, Y. 2014. Preparation and in vitro/in vivo characterization 

of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Int J 

Nanomedicine, 9, 1709-16. 

Svangard, E., Burman, R., Gunasekera, S., Lovborg, H., Gullbo, J. & Goransson, U. 2007. 

Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid 

membranes. J Nat Prod, 70, 643-7. 

https://www.sigmaaldrich.com/catalog/product/sigma/t1633?lang=en&region=GB


 
 

263 
 

Szakonyi, G. & Zelkó, R. 2012. The effect of water on the solid state characteristics of 

pharmaceutical excipients: Molecular mechanisms, measurement techniques, and 

quality aspects of final dosage form. International Journal of Pharmaceutical 

Investigation, 2, 18-25. 

Taki, M., Tagami, T. & Ozeki, T. 2017. Preparation of polymer-blended quinine nanocomposite 

particles by spray drying and assessment of their instrumental bitterness-masking 

effect using a taste sensor. Drug Dev Ind Pharm, 43, 715-722. 

Technoorg-Linda. 2018. High-Resolution Scanning Electron Microscopy [Online]. Available: 

http://www.technoorg.hu/news-and-events/articles/high-resolution-scanning-

electron-microscopy-1/ [Accessed 03/04 2018]. 

Thành, M. X. 2015. Effect of Secondary Structure on Biological Activities of 

Antimicrobial Peptides. VNU Journal of Science: Natural Sciences and Technology, 44-53. 

Thennarasu, S., Tan, A., Penumatchu, R., Shelburne, C. E., Heyl, D. L. & Ramamoorthy, A. 2010. 

Antimicrobial and Membrane Disrupting Activities of a Peptide Derived from the 

Human Cathelicidin Antimicrobial Peptide LL37. Biophysical Journal, 98, 248-257. 

ThermofIsher. 2017. HAAKE MiniCTW Micro-conical Twin Screw Computer [Online]. Available: 

https://www.thermofisher.com/order/catalog/product/567-2090 [Accessed 11/12 

2017]. 

Thingiverse 2017. Thingyverse website (https://www.thingiverse.com/thing:20733) last 

accessed 23/6/2017. 

Thoma, K. & Bechtold, K. 1999. Influence of aqueous coatings on the stability of enteric coated 

pellets and tablets. European Journal of Pharmaceutics and Biopharmaceutics, 47, 39-

50. 

Timothy J. Snape, A. M. A. a. J. D. 2010. Understanding the chemical basis of drug stability and 

degradation. The Pharmaceutical Journal. 

Tingstad, J. E. 1964. Physical Stability Testing of Pharmaceuticals. Journal of Pharmaceutical 

Sciences, 53, 955-962. 

Tiwari, R., Gupta, A., Joshi, M. & Tiwari, G. 2014. Bilayer Tablet Formulation of Metformin HCl 

and Acarbose: A Novel Approach To Control Diabetes. PDA J Pharm Sci Technol, 68, 

138-52. 

Tokudome, Y., Nakamura, K., Itaya, Y. & Hashimoto, F. 2015. Enhancement of Skin Penetration 

of Hydrophilic and Lipophilic Compounds by pH-sensitive Liposomes. J Pharm Pharm 

Sci, 18, 249-57. 

Torchilin, V. P. 2000. Drug targeting. European Journal of Pharmaceutical Sciences, 11, S81-S91. 

http://www.technoorg.hu/news-and-events/articles/high-resolution-scanning-electron-microscopy-1/
http://www.technoorg.hu/news-and-events/articles/high-resolution-scanning-electron-microscopy-1/
https://www.thermofisher.com/order/catalog/product/567-2090
https://www.thingiverse.com/thing:20733


 
 

264 
 

Toropainen, T., Velaga, S., Heikkila, T., Matilainen, L., Jarho, P., Carlfors, J., Lehto, V. P., 

Jarvinen, T. & Jarvinen, K. 2006. Preparation of budesonide/gamma-cyclodextrin 

complexes in supercritical fluids with a novel SEDS method. J Pharm Sci, 95, 2235-45. 

Touitou, E. & Rubinstein, A. 1986. Targeted enteral delivery of insulin to rats. International 

Journal of Pharmaceutics, 30, 95-99. 

Tsuda, S., Jaffery, H., Doran, D., Hezwani, M., Robbins, P. J., Yoshida, M. & Cronin, L. 2015. 

Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics. 

Plos One, 10. 

Tudja, P., Khan, M. Z., Mestrovic, E., Horvat, M. & Golja, P. 2001. Thermal behaviour of 

diclofenac sodium: decomposition and melting characteristics. Chem Pharm Bull 

(Tokyo), 49, 1245-50. 

Turner, J., Cho, Y., Dinh, N.-N., Waring, A. J. & Lehrer, R. I. 1998. Activities of LL-37, a Cathelin-

Associated Antimicrobial Peptide of Human Neutrophils. Antimicrobial Agents and 

Chemotherapy, 42, 2206-2214. 

Uddin, M. J., Scoutaris, N., Klepetsanis, P., Chowdhry, B., Prausnitz, M. R. & Douroumis, D. 

2015. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. 

Int J Pharm, 494, 593-602. 

UNMC. 2018. The Antimicrobial Peptide Database [Online]. Available: 

http://aps.unmc.edu/AP/main.php [Accessed 25/04 2018]. 

Van Epps, H. L. 2006. Rene Dubos: unearthing antibiotics. J Exp Med, 203, 259. 

Varum, F. J., Merchant, H. A., Goyanes, A., Assi, P., Zboranova, V. & Basit, A. W. 2014. 

Accelerating the dissolution of enteric coatings in the upper small intestine: evolution 

of a novel pH 5.6 bicarbonate buffer system to assess drug release. Int J Pharm, 468, 

172-7. 

Vemula, S. K. 2015a. Formulation and pharmacokinetics of colon-specific double-compression 

coated mini-tablets: Chronopharmaceutical delivery of ketorolac tromethamine. Int J 

Pharm, 491, 35-41. 

Vemula, S. K. 2015b. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation 

and Pharmacokinetics of Double-Compression-Coated Mini-Tablets. AAPS 

PharmSciTech, 16, 1465-73. 

Verdonck, E., Schaap, K. & Thomas, L. C. 1999. A discussion of the principles and applications of 

Modulated Temperature DSC (MTDSC). International Journal of Pharmaceutics, 192, 3-

20. 

http://aps.unmc.edu/AP/main.php


 
 

265 
 

Vila-Perello, M., Sanchez-Vallet, A., Garcia-Olmedo, F., Molina, A. & Andreu, D. 2005. Structural 

dissection of a highly knotted peptide reveals minimal motif with antimicrobial activity. 

J Biol Chem, 280, 1661-8. 

Vinner, G. K., Vladisavljević, G. T., Clokie, M. R. J. & Malik, D. J. 2017. Microencapsulation of 

Clostridium difficile specific bacteriophages using microfluidic glass capillary devices 

for colon delivery using pH triggered release. PLoS ONE, 12, e0186239. 

Vogenberg, F. R., Isaacson Barash, C. & Pursel, M. 2010. Personalized Medicine: Part 1: 

Evolution and Development into Theranostics. Pharmacy and Therapeutics, 35, 560-

576. 

Water, J. J., Bohr, A., Boetker, J., Aho, J., Sandler, N., Nielsen, H. M. & Rantanen, J. 2015. Three-

Dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial 

Polylactide Feedstock Material. Journal of Pharmaceutical Sciences, 104, 1099-1107. 

Waterman, K. C. & Adami, R. C. 2005. Accelerated aging: Prediction of chemical stability of 

pharmaceuticals. International Journal of Pharmaceutics, 293, 101-125. 

WeillCornellMedicalCollege. 2014. Study Shows Inconsistent dosages of widely used eye 

disease drug [Online]. Available: http://weill.cornell.edu/news/pr/2014/09/study-

shows-inconsistent-dosages-of-widely-used-eye-disease-drug-szilard-kiss-donald-

damico.html [Accessed 12/3/2015]. 

Weitschies, W., Blume, H. & Mönnikes, H. 2010. Magnetic Marker Monitoring: High resolution 

real-time tracking of oral solid dosage forms in the gastrointestinal tract. European 

Journal of Pharmaceutics and Biopharmaceutics, 74, 93-101. 

Wendel, B., Rietzel, D., Kühnlein, F., Feulner, R., Hülder, G. & Schmachtenberg, E. 2008. 

Additive Processing of Polymers. Macromolecular Materials and Engineering, 293, 799-

809. 

Whitmore, L. & Wallace, B. A. 2004. DICHROWEB, an online server for protein secondary 

structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res, 32, 

W668-73. 

Whitmore, L. & Wallace, B. A. 2008. Protein secondary structure analyses from circular 

dichroism spectroscopy: methods and reference databases. Biopolymers, 89, 392-400. 

WHO. 2009. Stability Testing of Active Pharmaceutical Ingredients and Finished Pharmaceutical 

Products [Online]. Available: 

http://apps.who.int/medicinedocs/documents/s19133en/s19133en.pdf [Accessed 

02/05 2018]. 

http://weill.cornell.edu/news/pr/2014/09/study-shows-inconsistent-dosages-of-widely-used-eye-disease-drug-szilard-kiss-donald-damico.html
http://weill.cornell.edu/news/pr/2014/09/study-shows-inconsistent-dosages-of-widely-used-eye-disease-drug-szilard-kiss-donald-damico.html
http://weill.cornell.edu/news/pr/2014/09/study-shows-inconsistent-dosages-of-widely-used-eye-disease-drug-szilard-kiss-donald-damico.html
http://apps.who.int/medicinedocs/documents/s19133en/s19133en.pdf


 
 

266 
 

Wilding, I. R., Coupe, A. J. & Davis, S. S. 2001. The role of γ-scintigraphy in oral drug delivery. 

Advanced Drug Delivery Reviews, 46, 103-124. 

Wilson, B., Babubhai, P. P., Sajeev, M. S., Jenita, J. L. & Priyadarshini, S. R. 2013. Sustained 

release enteric coated tablets of pantoprazole: formulation, in vitro and in vivo 

evaluation. Acta Pharm, 63, 131-40. 

Winick, E. 2017. Additive Manufacturing in the Aerospace Industry [Online]. Available: 

https://www.engineering.com/AdvancedManufacturing/ArticleID/14218/Additive-

Manufacturing-in-the-Aerospace-Industry.aspx [Accessed 17/04 2017]. 

Wong, J. H. & Ng, T. B. 2005. Sesquin, a potent defensin-like antimicrobial peptide from ground 

beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. 

Peptides, 26, 1120-6. 

Wonnemann, M., Schug, B., Anschütz, M., Brendel, E., Nucci, G. D. & Blume, H. 2008. 

Comparison of two marketed nifedipine modified-release formulations: An exploratory 

clinical food interaction study. Clinical Therapeutics, 30, 48-58. 

Wu, D., Gao, Y., Qi, Y., Chen, L., Ma, Y. & Li, Y. 2014. Peptide-based cancer therapy: 

Opportunity and challenge. Cancer Letters, 351, 13-22. 

Xhindoli, D., Pacor, S., Guida, F., Antcheva, N. & Tossi, A. 2014. Native oligomerization 

determines the mode of action and biological activities of human cathelicidin LL-37. 

Biochemical Journal, 457, 263-275. 

Xia, X., Cheng, L., Zhang, S., Wang, L. & Hu, J. 2017. The role of natural antimicrobial peptides 

during infection and chronic inflammation. Antonie van Leeuwenhoek. 

Xie, D., Zhang, H., Shu, X., Xiao, J. & Cao, S. 2010. Multi-materials drop-on-demand inkjet 

technology based on pneumatic diaphragm actuator. Sci China Tech Sci, 53, 1605-

1611. 

Yamamoto, A., Taniguchi, T., Rikyuu, K., Tsuji, T., Fujita, T., Murakami, M. & Muranishi, S. 1994. 

Effects of various protease inhibitors on the intestinal absorption and degradation of 

insulin in rats. Pharm Res, 11, 1496-500. 

Yang, F., Su, Y., Zhang, J., DiNunzio, J., Leone, A., Huang, C. & Brown, C. D. 2016. Rheology 

Guided Rational Selection of Processing Temperature To Prepare Copovidone-

Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME). Mol Pharm, 13, 

3494-3505. 

Yang, Q., Ma, Y. & Zhu, J. 2015. Applying a novel electrostatic dry powder coating technology 

to pellets. Eur J Pharm Biopharm, 97, 118-24. 

https://www.engineering.com/AdvancedManufacturing/ArticleID/14218/Additive-Manufacturing-in-the-Aerospace-Industry.aspx
https://www.engineering.com/AdvancedManufacturing/ArticleID/14218/Additive-Manufacturing-in-the-Aerospace-Industry.aspx


 
 

267 
 

Yang, Z., Nollenberger, K., Albers, J., Moffat, J., Craig, D. & Qi, S. 2014. The effect of processing 

on the surface physical stability of amorphous solid dispersions. Eur J Pharm Biopharm, 

88, 897-908. 

Yang, Z. Y., Lu, Y. & Tang, X. 2008. Pseudoephedrine hydrochloride sustained-release pellets 

prepared by a combination of hot-melt subcoating and polymer coating. Drug Dev Ind 

Pharm, 34, 1323-30. 

Yeshak, M. Y., Burman, R., Asres, K. & Goransson, U. 2011. Cyclotides from an extreme habitat: 

characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands. J 

Nat Prod, 74, 727-31. 

Yin, H. S., Mendelsohn, A. L., Wolf, M. S., Parker, R. M., Fierman, A., Van Schaick, L., Bazan, I. S., 

Kline, M. D. & Dreyer, B. P. 2010. Parents' medication administration errors: Role of 

dosing instruments and health literacy. Arch Pediatr Adolesc Med 164, 181-186. 

Yoo, J.-W., Giri, N. & Lee, C. H. 2011. pH-sensitive Eudragit nanoparticles for mucosal drug 

delivery. International Journal of Pharmaceutics, 403, 262-267. 

Yu, D. G., Branford-White, C., Ma, Z. H., Zhu, L. M., Li, X. Y. & Yang, X. L. 2009a. Novel drug 

delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm, 

370, 160-6. 

Yu, D. G., Branford-White, C., Yang, Y. C., Zhu, L. M., Welbeck, E. W. & Yang, X. L. 2009b. A 

novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind 

Pharm, 35, 1530-6. 

Yu, D. G., Yang, X. L., Huang, W. D., Liu, J., Wang, Y. G. & Xu, H. 2007. Tablets with material 

gradients fabricated by three-dimensional printing. J Pharm Sci, 96, 2446-56. 

Zaid, A. N. 2012. Development and stability evaluation of enteric coated Diclofenac sodium 

tablets using Sureteric. Pak J Pharm Sci, 25, 59-64. 

Zecevic, D. E., Meier, R., Daniels, R. & Wagner, K. G. 2014. Site specific solubility improvement 

using solid dispersions of HPMC-AS/HPC SSL--mixtures. Eur J Pharm Biopharm, 87, 264-

70. 

Zhang, X., Oglęcka, K., Sandgren, S., Belting, M., Esbjörner, E. K., Nordén, B. & Gräslund, A. 

2010. Dual functions of the human antimicrobial peptide LL-37—Target membrane 

perturbation and host cell cargo delivery. Biochimica et Biophysica Acta (BBA) - 

Biomembranes, 1798, 2201-2208. 

Zhang, Y., Luo, R., Chen, Y., Ke, X., Hu, D. & Han, M. 2014. Application of carrier and plasticizer 

to improve the dissolution and bioavailability of poorly water-soluble baicalein by hot 

melt extrusion. AAPS PharmSciTech, 15, 560-8. 


