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Abstract 
Presented within this thesis are four studies into the structure and interactions of ionic 
liquids (ILs), using X-ray photoelectron spectroscopy (XPS) both in situ and in vacuo, 
and using other complementary techniques. The findings provide insight into the 
surface chemistry and ordering of ILs, and are discussed in the context of energy 
applications. 

The water/hydrophilic IL interface was investigated using near-ambient pressure XPS 
(NAPXPS) using a multilayer IL system (~109 Å) and an ultrathin layer system (~10 Å) 
on TiO2 substrates. Results indicate rearrangement of the outermost ions as water 
molecules adsorb on the IL surface, primarily manifested as intensity changes in the C 
1s core level region. The higher binding energy features, associated with the charged 
parts of the IL (i.e. the anion and the imidazolium ring of the cation) increase in 
intensity with exposure to water, which infers a reorientation of the cation toward the 
interface. Because the water molecules were able to adsorb on the IL surface for a 
significant period under vacuum, this may have negative implications for IL catalysis 
systems, as water may inhibit the absorption of gaseous reactants. 

The interactions between a superbasic IL and water/CO2 were investigated using 
NAPXPS. The reaction with CO2 forms carbamate, as evidenced by peaks in the N 1s 
core level region at the higher binding energy edge. The reaction is reversible by 
reducing the surrounding CO2 pressure. The results show that in each regime where 
the IL is exposed to CO2, the molar uptake ratio of CO2 molecules to IL pairs has an 
upper limit of 0.5. This indicates that the presence of water does not inhibit the IL’s 
ability to react with CO2 under near-ambient pressure conditions. Furthermore, it 
appears that the IL preferentially reacts with CO2 over water vapour. This has 
implications for gas capture and separation technology, where complex mixtures of 
gases, including CO2 and water, is released from industrial processes. 

The structure and interactions at the IL/polar ZnO and IL/non-polar ZnO interfaces 
were probed using a combination of XPS and near-edge X-ray absorption fine structure 
(NEXAFS) spectroscopy. Shifts in the core level XPS regions associated with the anion 
support the idea that the IL interacts more strongly with the polar ZnO than the non-
polar ZnO. IL/substrate interactions are thought to be occurring at O-terminated step 
edges, which is a mechanism involved in other reactions on polar ZnO surfaces 
described in literature. As evidenced by the NEXAFS spectra, the imidazolium ring of 
the approximately submonolayer deposition on non-polar ZnO was found to orientate at 
an angle closer to the surface normal than the surface itself. This has important 
implications for solar cells, where molecular interactions at a surface can affect the 
charge transfer across the interface. The polar ZnO substrate appeared to somewhat 
catalyse IL decomposition at the surface, as determined by XPS measurements taken 
at different temperatures using an analogous IL on the same substrate. Signs of 
decomposition began to show at temperatures much lower than those in literature. This 
has consequences for solar cell applications, where thermal stability is important to 
maintain device longevity. 

The electrochemical influence of ILs on the anodization of Ti was investigated using an 
IL-based electrolyte, and varying anodization voltages between 5 V and 20 V. 
Scanning electron microscopy revealed that nanoporous TiO2, and TiO2 nanotubes 
were synthesised. The surface chemistry, determined by XPS, revealed a trend with 
anodization voltage, which may be linked to electrochemical decomposition of the IL. 
The introduction of contaminant species into TiO2 nanotubes has consequences for 
their application in photocatalytic water splitting, where contamination could inhibit their 
hydrogen production capabilities.  
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1 Introduction 

1.1 Introduction and motivation 

Ionic liquids, or ILs, are salts that are liquid below 100°C, with many being liquid 

at room temperature. They are composed solely of ions that are held together 

by a strong Coulomb potential [1]. ILs have only recently gained significant 

scientific interest, and only in the last few decades have IL-centric publications 

increased in number significantly, from less than 200 in 1990 to over 40000 by 

2018 (according to the Web of Science database). This surge in publications is 

not surprising: not only are they interesting from an industrial perspective (due 

their wide range of potential applications for numerous technologies), but they 

are also interesting from an academic perspective, as they demonstrate some 

unusual behaviour for liquids (see Section 1.2.3). 

The global demand for energy is ever increasing, and discovering more efficient 

ways of harvesting, storing and using energy are important to maintain our 

technology-driven lifestyles. This increasing energy demand means we need to 

improve upon, or invent new light-harvesting technologies; as well as adapt 

current energy technologies to mitigate the harmful effects of their by-products 

on the environment. 

ILs have a wide variety of potential applications in energy. They have 

applications in energy production, such as incorporation in photovoltaic 

technologies for solar energy harvesting [2, 3]. They also have applications in 

energy storage, as an electrolyte in batteries for example [4]. They also have 

applications in greenhouse gas emission reduction as CO2 capture agents [5]. 

ILs can also be used to synthesise nanoparticles and nanostructures for energy 

applications, such as titanium dioxide nanotubes for photocatalytic water 

splitting, which produces hydrogen and oxygen [6, 7]. 

This thesis presents a variety of surface-sensitive studies with a view toward 

energy applications. Presented first is an investigation into the interface 

between a hydrophilic IL and water, using near-ambient pressure X-ray 

photoelectron spectroscopy (NAPXPS). NAPXPS data was recorded at the 
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University of Manchester by the author, and colleagues. These data allow some 

insight into the behaviour of the constituent ions at the IL/water interface from a 

fundamental perspective, which has implications for gas capture and catalysis 

applications. 

The second study investigates the reversible CO2 capture behaviour of a 

superbasic IL. These ILs present superior CO2 capture capabilities compared to 

other types of ILs. Using NAPXPS, the IL/CO2 interface was probed under 

different gas composition conditions, including CO2, H2O vapour, and mixtures 

of both. Similarly to the first study, these data were taken at the University of 

Manchester by the author and colleagues. This investigation has allowed a 

unique insight into the surface chemistry taking place at the surface of the IL 

under ambient pressure conditions. 

The third study is composed of two halves, and investigates the behaviour of IL 

multilayers on ZnO. ZnO has applications in photovoltaic cells and catalysis. 

The first half investigates the structure and orientation of the constituent IL ions 

at the surface of polar and non-polar ZnO using XPS and near-edge X-ray 

absorption fine structure (NEXAFS) spectroscopy, undertaken by colleagues of 

the author at the ANTARES beamline of the French synchrotron facility, 

SOLEIL. Understanding how the ions self-organise at the interface with ZnO 

has implications for interfacial charge transfer in photovoltaic technologies. The 

second half investigates the thermal stability of an IL on polar ZnO, monitored at 

increasing temperatures, from the glass transition, to 200°C. This was 

investigated using XPS, undertaken by the author and colleagues at AU-

MATline beamline of the Danish synchrotron facility, ISA. The thermal stability 

of ILs at these temperatures has implications for catalysis, including supported 

ionic liquid phase (SILP) catalysis and solid catalysts with ionic liquid layers 

(SCILL). 

The final study investigates the use of an IL as an electrolyte to synthesise TiO2 

nanotubes via the anodization of Ti, investigated using a combination of 

scanning electron microscopy and XPS, carried out at the University of 

Manchester by colleagues of the author.  TiO2 is a versatile material with 

applications in catalysis. TiO2 nanotubes in particular have applications in 

photocatalytic water splitting. Understanding the morphology and surface 

chemistry of the resultant nanostructures on a fundamental level can contribute 
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toward a deeper understanding of the influence on the electrochemical 

conditions on these properties, and even the subsequent effects on 

photocatalytic performance. 

To introduce these experiments, a research context is provided, beginning with 

a short history of ionic liquids with a discussion of their use in energy 

applications. 

1.2 Ionic liquids 

While scientific interest into the properties and potential applications of ionic 

liquids (ILs) is fairly recent, they do have a rich history. Since the 1960s, a huge 

variety of ILs have been discovered. In recent years, many of these have been 

functionalised to alter a particular property or to tailor them for a specific 

purpose. As mentioned earlier, ILs possess interesting properties, some of 

which are unusual for liquids. The fact that ILs are able to be functionalised, or 

‘tuned’, means they have potential applications in many different fields. In the 

context of this thesis, those of particular interest are in gas capture, photovoltaic 

technologies and catalysis. 

1.2.1 Short history of ionic liquids 

ILs are thought to have been first discovered in 1914 by Paul Walden, who 

created an alkylammonium nitrate salt from combining concentrated nitric acid 

(HNO3) and ethylamine (CH3CH2NH2). The resultant salt was discovered to be 

a liquid at a relatively low temperature [8]. During the 1960s and 1970s, 

numerous other liquid salts were discovered under a variety of different names 

like ‘molten salts’, and ‘liquid clathrates’ [9]. However, many of the modern-day 

ILs originate from research conducted by a group working for the Unites States 

Air Force Academy in the early 1960s, who were investigating alternative 

electrolytes for thermal batteries. After testing a variety of unstable compounds, 

the group uncovered a patent from 1948 that outlined mixtures of aluminium 

chloride (AlCl3) and 1-ethylpyridinium halides (see Figure 1.1 for the structure of 

pyridinium cations) that were conductive, non-aqueous and electrochemically 

stable. Using the patent as a starting point, the group developed a system 

consisting of 1-butylpyridinium chloride-AlCl3, which proved to be somewhat 

more stable than its predecessors [10, 11]. These groups of mixtures are often 
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referred to as chloroaluminate melts [1]. Around a similar time, Swain et al [12] 

discovered that the salt tetrahexylammonium benzoate (see Figure 1.1 for 

ammonium cation structure) was liquid at 25°C, and suggested it could 

potentially be used as a solvent in electrochemistry due to its conductivity. 

The next milestone in the history of ILs was during the 1980s and 1990s, when 

the groups of Seddon and Hussey were studying transition metal complexes 

and using room temperature chloroaluminate melts as solvents [13-15]. Their 

investigations were from an electrochemical perspective, and it was from the 

work of these groups that the modern-day, prototypical ILs (the imidazolium-

based ILs, see Figure 1.1) were developed. The imidazolium-based ILs were a 

little more stable than their pyridinium counterparts, as they did not tend to 

reduce as easily. Despite their promising behaviour as electrolytes, one of the 

problems faced by the chloroaluminate materials was their reactivity with water. 

Research conducted in the early 1990s by Wilkes and Zaworotko [16], based at 

the United States Air Force Academy, gave way to imidazolium cations paired 

with water-stable anions. These included tetrafluoroborate and acetate (see 

Figure 1.1), which produced water- and air-stable salts that were liquid at 

ambient temperatures. 

Since these pioneering works, much of the research endeavour in the synthesis 

and characterisation of ILs has led to unearthing a wealth of information about 

their bulk properties, such as electrical conductivity, density, viscosity and 

thermal stability. While the study of ILs within the material sciences, in general, 

can be considered fairly young, the study of the surface properties of ILs is even 

younger. The field of ‘ionic liquid surface science’ as it is viewed today could be 

considered to have started with the first XPS studies of ILs carried out by the 

Licence group in 2005 [17]. Studying behaviour at surfaces and interfaces is 

important for optimising their integration into technologies, particularly where 

phenomena at those interfaces is vital for function. 

1.2.2 Ionic liquid categorisation 

Before detailing the wide array of IL properties, it may be useful to frame them 

in the context of categories. 

A simple categorisation, included in a recent review by Vekariya et al [18], is by 

generation: the origins of which are chronological by discovery. Generation I ILs 
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are what are often referred to as the chloroaluminate ILs, developed in the 

1980s as electrolytes in batteries [13]. Generation II ILs could be considered 

some of the more widely-known ILs, and were discovered in the 1990s. These 

were found to be stable in air and with water, which their chloroaluminate 

ancestors were not. ILs categorised as Generation III are those that have been 

functionalised for a specific purpose, and are known as task-specific ILs, or 

TSILs. TSILs were first developed around the start of the millennium [19], and 

have since been developed as potential candidates for a wide variety of 

applications, from heavy metal extraction [20] to superhydrophobic coatings 

[21]. 

 

Figure 1.1: A selection of common cations and anions. 
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ILs can be more specifically categorised in terms of their cationic or anionic 

structure, and often in literature, a group of ILs may be identified as ‘-based’, 

referring to a common cation or anion. Figure 1.1 displays a small collection of 

ions that make up a variety of ILs. Those selected are some of the more 

common cations and anions, and the ILs composed of these ions have been 

studied with relative rigour. 

Among some of the most well-studied ILs in the research community are the 

imidazolium-based ILs. These are ILs that contain the imidazolium cation 

(Figure 1.1, top left). The imidazolium cation consists of an aromatic ring that 

contains two nitrogen atoms: one which is positively charged, and one which is 

protonated (bonded to a hydrogen atom, and is neutral). This structure is 

therefore called an imidazolium ring. As seen in Figure 1.1, other atoms or small 

molecular groups can be bonded to the nitrogen atoms in the imidazolium 

cation. In chemistry, these other atoms or molecular groups are typically 

referred to as R-groups or functional groups. The most common functional 

group for imidazolium cations is the alkyl functional group (hydrocarbon chains 

with length of n carbon atoms, terminating with CH3). These alkyl chains can be 

bonded to either nitrogen in the imidazolium ring, and are hydrophobic 

functional groups. Other functional groups include amine, hydroxyl and carboxyl 

groups. 

Other cations containing aromatic ring structures include pyrrolidinium and 

pyridinium cations (shown in Figure 1.1). While both pyrrolidinium and 

pyridinium cations contain aromatic structures with only one nitrogen atom, 

pyridinium cations consist of a benzene ring where one of the carbon atoms is 

replaced by a nitrogen atom. Pyrrolidinium, on the other hand, has a similar 

structure to imidazolium, but consists of a cyclopentane structure with one 

carbon atom replaced by a nitrogen atom. Again, much like imidazolium cations, 

functional groups may be bonded at the nitrogen atoms in pyrrolidinium and 

pyridinium cations. Typical functional groups include alkyl chains and hydroxyl 

groups, and even heavier molecules such as a benzene ring. Of course, cations 

do not necessarily need to contain ring structures. Ammonium, phosphonium, 

and sulphonium (shown in Figure 1.1) are just three examples of such ring-less 

cations. While ring-structured functional groups can bond to these cations, the 

charge-carrying moiety of these cations is the ‘central’ atom, which in the case 
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of ammonium, phosphonium and sulphonium is nitrogen, phosphorus, and 

sulphur respectively. One of the more common functional groups of these 

cations are long alkyl chains, some of which can be up to n = 14 carbons in 

length [22]. 

Anions, much like cations, can range in size, from halide monoatomic anions 

(such as chloride, bromide and iodide- see Figure 1.1, top right), to relatively 

bulky anions containing large functional groups such as long alkyl chains or 

aromatic rings. While many cations are organic, anions can be either organic or 

inorganic. Inorganic anions include monoatomic halide anions and others, such 

as tetrafluoroborate ([BF4]-) and hexafluorophosphate ([PF6]-, see inorganic 

section of Figure 1.1). Larger inorganic anions exist, with bis(trifluoromethyl-

sulphonyl)imide ([NTf2]-) being a prototypical example. Other organic cations 

include imidazolide (see Figure 1.1) and triazolide. Imidazolide is an anion with 

a similar structure to the imidazolium cation, but the charge carrier is a 

negatively charged nitrogen atom instead of a positively charged nitrogen atom. 

It is negatively charged as it is not doubly bonded to either of its neighbouring 

carbon atoms. Meanwhile triazolide is similar in structure to imidazolide, but one 

or more of the remaining carbon atoms are replaced by nitrogen atoms. These, 

too, can include functional groups, including alkyl chains of various lengths and 

heavier structures like benzene. 

The composite cations and anions influence different properties of an IL- as will 

any functional groups that are attached to the cation or anion. For the sake of 

brevity, the effect of non-TSIL cationic and anionic constituents on IL properties 

will be considered here, using the ILs made up of the ions in Figure 1.1 as 

examples. 

1.2.3 Ionic liquid properties 

The tuneable nature of ILs is one attribute among many that make them so 

uniquely interesting. A simple ‘swap’ of cation or anion in order to change a 

property (or properties) for a particular function is a core aspect of their 

usefulness. As such, the physicochemical properties of a vast array of ILs have 

been, and are still being, investigated and documented. 
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Liquidus range 

One of the fundamental properties of ILs are their liquidus range, which is 

defined as the temperature range in which they are in the liquid phase. The 

property that defines the lower limit of this range is the melting point of the IL. 

The upper limit is usually defined by the thermal decomposition temperature of 

the IL rather than vaporisation temperature. Many thermally-stable ILs can be 

evaporated under extremely low-pressure conditions and at substantially high 

temperatures [1]. 

The melting point of most ILs will not describe an absolute crystalline-to-liquid 

phase change, but rather a glassy solid-to-liquid (and vice versa). Thus, for 

most ILs, the lower limit of the liquidus range is actually defined by the glass 

transition temperature- typically denoted Tg. The temperature of the lower limit 

is influenced by the constituent cation or anion, more specifically the sizes of 

the ions. An increase in ion size will reduce the Coulombic attraction 

experienced between the cation and anion. The size difference between cations 

and anions also affect how well they can pack together, and a large discrepancy 

in size reduces the packing efficiency. This effect is particularly obvious in 

alkylammonium and alkylphosphonium ILs (ammonium and phosphonium 

cations functionalised with four alkyl chains, typically three are of equal lengths), 

where the long alkyl chains will often shield the charge-carrying nitrogen or 

phosphorus from the anion, reducing the Coulombic attraction. Large anions 

have a similar effect to large cations, where bulky, neutral functional groups 

cause a similarly steric effect on the anion charge. The subsequent reduction in 

cation-anion interactions means smaller ions (such as 1-methyl-3-

methylimidazolium cations, or monoatomic halide anions) produce ILs with 

higher melting points than those with larger ions (such as trihexyl-

tetradecylphosphonium cations or bis(trifluoromethylsulphonyl)imide anions). 

The upper limit of the liquidus range of an IL is not as easily definable as its 

lower limit. Decomposition temperatures depend on the experimental 

conditions, including IL purity [23], heating rate [24], and even the sample pans 

used [25]. However, under the same experimental conditions, it has been 

shown that the decomposition temperature depends on the anion, where weakly 

nucleophilic anions (such as bis(trifluoromethylsulphonyl)imide) are more 

thermally stable [26, 27]. 
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Conductivity and electrochemical window 

The origins of IL research are rooted in electrochemistry, so a discussion of IL 

properties will naturally include two key electrochemical properties: the electrical 

conductivity, and the electrochemical window. The electrochemical window of 

an IL is defined as the voltage range between which the IL is neither reduced 

nor oxidised. It is also known as the electrochemical stability. It is typically 

measured using cyclic voltammetry, which contains a three-electrode system: a 

working electrode (composing of glassy carbon, platinum or tungsten), a 

counter electrode (made of platinum, or a carbon rod), and a reference 

electrode (typically silver or platinum wire). In this method, the potential across 

the working electrode and the reference electrode is varied to extreme 

positive/negative potentials until background currents (which are measured 

between the working and counter electrodes) rise due to oxidation of the 

anion/reduction of the cation [1]. In neat ILs, the ‘width’ of the electrochemical 

window depends on how resistant the constituent cations are to reduction, and 

how resistant the constituent anions are to oxidation. For example if the 

reduction potential of a cation is measured at 2 V, and the oxidation potential of 

an anion at -3.5 V, the electrochemical window of that particular IL would be 5.5 

V. The electrochemical windows for common ILs span a range between 2.1 eV 

and 6.4 V [1, 28].  

The conductivity of ILs is dependent on a number of factors. ILs conduct 

electricity via ion mobility, and their electrical conductivity is, therefore, 

influenced by the mobility of their constituent ions. The conductivity, denoted by 

the symbol κ, of ILs range between 10 S cm-1 (Siemens per centimetre) to 300 

S cm-1 [29]. To put into context, the conductivity of water can range between 50 

and 400 S cm-1 depending on the temperature and the presence of ions [30, 

31]. The relationship with temperature follows a linear Arrhenius trend above 

room temperature, but as the temperature decreases toward the glass transition 

temperature (Tg), the relationship is similar to other glass-forming liquids, 

according to the Vogel-Tamman-Fulcher equation [1]: 

 κ = AT - 
1
2 exp �-

B
(T-T0)� (1.01) 

 

where κ is the electrical conductivity in S cm-1, T is temperature in K, A and B 
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are empirically-derived constants, and T0 is the temperature at which the 

conductivity goes to zero (also in K). Therefore, as T → T0, κ → 0. An Arrhenius 

plot illustrating temperature dependency of the electrical conductivities (and the 

line of best fit for each set calculated using Equation (1.01) [32, 33]) of 1-ethyl-

3-methylimidazolium tetrafluoroborate (denoted (A)(C)), 1-ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide (denoted (A)(D)), and 1,2-

dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide (denoted (B)(D)) 

are shown in Figure 1.2 [1].  

 

Figure 1.2: Arrhenius plots of the temperature-dependent conductivity for three ILs. (A) is the 1-
ethyl-3-methylimidazolium cation, (B) is the 1,2-dimethyl-3-propylimidazolium cation, (C) is the 
tetrafluoroborate anion, and (D) is the bis(trifluoromethylsulfonyl)imide anion. The (X)(Y) label 

format signifies the cation (X) and anion (Y) pairing of each IL. Figure adapted from [1]. 

For liquids and solutions, particularly those used in electrolytes, it is sometimes 

useful to use molar conductivity, denoted by the symbol Λ, which is defined as 

the conductivity of an electrolyte solution divided by the electrolyte 

concentration of the solution. The molar conductivity of ILs varies between 0.01 

and 16.0 S cm2 mol-1 [1]. Molar conductivity of an IL is given by the following [1]: 

 Λ = 
κ MIL

ρ  (1.02) 
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where κ is the conductivity of the IL in S cm-1, MIL is the molecular weight of an 

IL pair in g mol-1, and ρ is the density of the IL in g cm-3. The molar conductivity 

and viscosity of ILs are related via a quantity known as Walden’s Product [1, 

34]: 

 Λη = constant (1.03) 
 

where η is the viscosity (often expressed in units of Poise, or P) of the IL. 

Ideally, Walden’s Product should be a constant for a given IL, irrespective of 

temperature. With that in mind, an increase in IL viscosity results in a decreased 

molar conductivity, and vice versa. So, as shown by Equation (1.02) and 

Equation (1.03), key electrochemical properties of ILs are influenced by their 

viscosity and density. 

Viscosity and density 

ILs are more viscous than other molecular solvents, and are non-Newtonian 

fluids [1]. Non-Newtonian fluids are differentiated from Newtonian fluids by a 

viscosity that changes with applied strain. As mentioned in the previous 

subsection, viscosity is in units of P, and quite often for ILs, cP, or centipoise. At 

room temperature, the viscosity of ILs spans a range of 10 cP to 500 cP, which 

is considerably more viscous than water, which is 0.890 cP at room temperature 

[35]. Like many other materials, the viscosity of ILs shares an inversely-

proportional relationship with temperature; but the viscosity also depends on the 

anionic component, where there appears to be a loose correlation with size [1]. 

However, much like the liquidus range, an increase in IL viscosity may be due 

to the ability to form hydrogen bond networks within the IL, i.e. the IL is more 

likely to be viscous if hydrogen networks are easy to form [36]. 

The measurement of IL viscosity is difficult to determine absolutely, since a 

small amount of contaminant species can result in rather large discrepancies in 

viscosity. For example, Seddon et al [37] measured the viscosities of a variety 

of ILs, and found that the viscosities varied depending upon the contaminant 

chloride (Cl-) content (originating from preparation procedures), as well as water 

content (originating from absorption of ambient water vapour). They found that 

residual chloride content (which varied between 1.5 wt% and 6 wt%) could 



12 
 

increase the viscosity by as much as 600%. The ILs that absorbed water when 

exposed to atmosphere experienced a decrease in viscosity, in the case of 1-

butyl-3-methylimidazolium tetrafluoroborate, to less than 50% of the original 

viscosity. There is also a relationship between viscosity and length of alkyl 

chains in imidazolium-based ILs, where ILs containing imidazolium cations with 

longer alkyl chains are more viscous than imidazolium-based ILs with shorter 

alkyl chains [1]. As mentioned earlier, symmetry of constituent ions impact the 

melting point of an IL. In a similar fashion, symmetry of the organic cation has 

shown to impact the viscosity in alkylimidazolium and dialkylimidazolium ILs 

[38]. Asymmetrical cations (with one alkyl chain shorter than the other) 

displayed greater viscosities than their symmetrical counterparts [38]. 

The SI unit for density is kg m-3, but the density of ILs is usually quoted in g cm-3 

or g ml-1. Most ILs are denser than water (which is approximately 1 g cm-3), with 

densities ranging from 1.12 g cm-3 to 2.40 g cm-3 [1]. There is also a trend 

between alkyl chain length and density of ILs. Generally, ILs with longer alkyl 

chains are less dense than those with shorter alkyl chains, as longer chains are 

more difficult to pack together [26]. There is also a relationship between density 

and anion mass, where anions with larger masses tend to result in denser ILs 

[26, 39]. The density values of ILs are not as significantly affected by 

temperature as their viscosity values are [1], but as shown by Tariq et al [40], 

the density decreases as a function of increasing temperature. Similarly to their 

viscosities, the densities of ILs are known to decrease with increasing water 

content, approaching the density of water with greater dilution, as shown in 

Figure 1.3 [26]. 
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Figure 1.3: Density (squares) and viscosity (triangles) changes in the IL, 1-butyl-3-
methylimidazolium tetrafluoroborate. The molar fraction of IL is denoted by xs (so pure IL 

corresponds to xs = 1 and pure water corresponds to xs = 0). The viscosity is displayed in mPa, 
which is equal to cP. Figure adapted from [37]. 

Hydrophilicity 

ILs can be categorised as hydrophobic or hydrophilic depending on their bulk 

miscibility of water (i.e. whether or not water is stable in the bulk of the IL; if they 

can ‘mix together’). If the IL is water-miscible, it is considered hydrophilic; and if 

water-immiscible, it is considered hydrophobic. These definitions, however, are 

rather loose: some ILs that have been classified as hydrophobic can hold onto a 

significant amount of water in the bulk, for example the IL [C4C1Im][Tf2N], which 

can hold up to a water mole fraction of approximately 0.26 (equivalent to ~1.5% 

by mass) [41]. Some ILs absorb water vapour from exposure to ambient 

conditions, and are referred to as hygroscopic. The length of the alkyl chain on 

the cation influences the extent to which an imidazolium-based IL is 

hygroscopic (hygroscopicity). A study into the change in mass through exposure 

to ambient humidities by Cuadrado-Prado et al [42] found that, out of four 

imidazolium-based ILs ([CnC1Im], where n = 2, 4, 6, 8) with the same anion 

(tetrafluoroborate), the IL with the shortest alkyl chain on the cation experienced 

the largest increase in mass after 24 hours in 100% humidity atmosphere. With 

increased chain length, the ILs experienced a smaller increase in mass, as 

shown in Figure 1.4. Of the four ILs, the cations with chain lengths of n = 2 and 

n = 4, were classified as miscible. Those with chain lengths of n = 6 and n = 8, 

however, were categorised by the authors as partially miscible and immiscible 

to water under ambient conditions respectively, yet they still experienced a 

mass increase upon exposure to extremely humid conditions. 
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Figure 1.4: Increase in mass (Δm in g) measured as a function of humidity (H%) for four 
imidazolium-based ILs of the same anion. Figure adapted from [42]. 

Vapour pressure 

One of the most intriguing properties of ILs is their vapour pressures. The 

vapour pressure of a liquid is defined as the pressure (force per unit area) 

exerted by a vapour in thermodynamic equilibrium with its liquid form at a given 

temperature. While gases can exist purely in the gas phase, a finite value of 

vapour pressure means that liquids do not exist solely in the liquid phase. So 

rather than a well-defined boundary separating the surface of a liquid and its 

surrounding environment, there is a gradient of phase: from solely bulk liquid, to 

a vapour (or mixed vapour if surrounded by a gas or air), to vacuum (or 

gaseous) environment surrounding the liquid. 

At room temperature, many ILs possess very low, practically negligible, vapour 

pressures. For comparison, the vapour pressure of water at room temperature 

is 30 mbar [43], while for the IL 1-butyl-3-methylimidazolium 

hexafluorophosphate, is of the order of 10-12 mbar [44]. Vapour pressures of 

liquids, including ILs, increase with increasing temperature, and various groups 
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have measured the vapour pressures at a range of temperatures for numerous 

imidazolium-based ILs [1, 45-48]. Figure 1.5 shows the change in vapour 

pressure as a function of temperature for two non-ionic liquids (NILs), three 

room temperature ILs (RTILs), and two inorganic fused salts (IFSs). 

 

Figure 1.5: Vapour pressures (psat) for two NILs, three RTILs, and two IFSs. The two NILs are 
benzene and water (red and green lines respectively). The three RTILs are 1-butyl-3-

methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 
and 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (blue, violet, and cyan lines 
respectively). The two IFSs are cadmium chloride and sodium chloride (yellow and grey lines 

respectively). Figure adapted from [46]. 

Techniques exist that can probe the IL surface in ambient conditions, but certain 

kinds of information can only be gathered using surface-sensitive methods. 

Access to this information requires the use of sub-molecular-sized probes such 

as photons, electrons, and ions. These kinds of techniques require extremely 

low-pressure conditions, also known as ultra-high vacuum, or UHV (see 

Chapter 2 for more detailed information). In order for a material to be 

investigated in UHV, it must be stable under extremely low-pressure conditions 

and therefore have a low or negligible vapour pressure. It follows that ILs, with 

their negligible vapour pressures, can be studied using UHV techniques. 

1.3 Ionic liquids in surface science 

While the bulk properties of ILs have been studied relatively extensively, 

research into their surface properties is still relatively recent, tracing back only a 

couple of decades. Studying bulk systems can only yield so much information, 

until an understanding of kinetics and chemistry at IL surfaces and interfaces at 
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a fundamental level is required, particularly for applications where 

surface/interfacial phenomena is important. Surface studies of ILs did not begin 

with low-pressure methods, but rather with techniques that can be used under 

ambient conditions, such as sum frequency generation spectroscopy [49, 50], 

and X-ray reflectometry [51, 52]. While they have revealed important 

information regarding the surface properties of ILs, exploiting the advantages 

provided by low vapour pressures of ILs is what has allowed the field of ionic 

liquid surface science to grow exponentially. 

1.3.1 Introduction 

One of the most well established techniques for investigating chemical 

composition at surfaces is X-ray photoelectron spectroscopy, or XPS. Like 

many other surface-sensitive techniques, XPS is typically conducted under very 

low pressure conditions: in the range of 10-8 to 10-11 mbar, which is classified as 

ultra-high vacuum, or UHV (see Chapter 2.2 for more details about vacuum 

classification). ILs are stable in UHV because of their low vapour pressures, and 

can, therefore, be investigated using XPS and other techniques. XPS can 

provide much insight into the chemical composition at the surface of ILs, 

particularly information regarding cation-anion interactions, and interactions at 

the interface between ILs and solid media [53, 54]. This can then provide insight 

into other aspects, such as structure and ordering at the interface. XPS studies 

of liquid media are few, due to many liquids being unsuitable for vacuum, but 

recent advancements in electron transfer optics have brought about the 

development of near-ambient pressure XPS (see Chapter 2.4), which allows the 

interface between ILs (and even other liquids [55, 56]) and gaseous media to be 

investigated with equal surface sensitivity as regular XPS. 

In the context of ILs, a ‘monolayer’ refers to the substrate surface covered by a 

‘single layer’ of cations and anions, where the thickness of the layer is 

approximately equal to the ‘thickness’ of an IL pair. A simple estimate can be 

made of the ‘thickness’ of an IL pair using Equation (1.04) [57, 58], given by: 

 dr = �
MIL

ρ NA×10-21
3

 (1.04) 

 

where d is the ‘thickness’ of one IL pair in nm, MIL is the molecular mass of the 
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IL in g mol-1, ρ is the density of the IL in g cm-3, and NA is Avogadro’s constant. 

By extension, ‘sub-monolayer’ coverage is incomplete coverage of a substrate 

surface. The term ‘multilayers’ therefore refers to several ‘monolayers’ on top of 

one another. Studies of the interface between an IL and a solid or gaseous 

medium can be done using a surface-sensitive technique and a thin or ultrathin 

film (which can also be referred to as multilayer, monolayer or sub-monolayer 

coverage on solid substrates), or by using a penetrative technique that can 

observe an interface buried within a medium. 

1.3.2 IL/vacuum interface 

ILs demonstrate stronger ordering than most molecular liquids, and their ability 

to self-assemble distinguishes IL ordering from the ordering displayed by molten 

salts [59]. The molecular structure at the surface or interface is different from 

the bulk of the IL, since interactions between the IL and a medium are different 

from the interactions within the IL itself. ILs will arrange themselves in a 

particular orientation as a way of ‘balancing out’ forces at the interface. This is 

the case for the IL/gas, IL/solid, and even the IL/vacuum interface. 

The composition and molecular structure of the IL/vacuum interface has been 

studied using various UHV methods, namely XPS [53]. XPS is inherently 

surface-sensitive due to the short inelastic mean free path of photoelectrons 

(see Chapter 2.3). This surface sensitivity has allowed insight into the 

comparative differences between surface and bulk compositions of ILs, 

highlighting the so-called enrichment of IL surfaces [60]. Generally speaking, 

ILs arrange such that the neutral components of ions are located at the 

outermost surface of an IL, while the charged components are contained 

beneath the neutral components. The surface ions in imidazolium-based ILs 

arrange such that the alkyl chains face outward, creating a ‘charged underlayer’ 

that contains the anion and the charged imidazolium ring of the cation [61-64]. 

As mentioned in Section 1.2.3, the density of an IL is dependent on the size of 

the composite ions and alkyl chain length. The density of the outer surface also 

depends on these factors. Using an alkylimidazolium-based IL as an example, 

when the anions are small, the alkyl chains can pack closer together, and will 

orient approximately perpendicular to the IL surface, creating a denser outer 

layer [65, 66]. With larger composite anions (such as [BF4]-, [PF6]-, [NTf2]-), the 

anion pushes the alkyl chains apart, and with a sufficiently long alkyl chain, can 
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develop a layer where the chains are approximately parallel to the IL surface, 

lying across the anions [67, 68]. For [CnC1Im][X], where X is a large anion, with 

n < 4, the alkyl chains will orient upright, just as they would in an IL with a small 

anion. For the alkyl chain to lie approximately parallel to the IL surface, the 

length typically corresponds to n > 8 [67, 68]. Although the alkyl chains display 

a preferential orientation toward vacuum (regardless of chain length), the outer 

layer is not dense enough to completely shield the charged components 

beneath, meaning that all components of the composite ions can be probed with 

XPS [69].  

The preferential orientation of alkyl chains toward vacuum is also seen in 

functionalised ILs, such as the terminating Cl moiety of the anion in 1-methyl-3-

octylimidazolium 4-chlorobutylsulphonate (or [C8C1Im][ClC4H8SO3]). Using 

angle-resolved XPS (i.e. measurements taken at different emission angles), it 

was found that the anion preferred to orient with its Cl-terminated alkyl chain 

toward vacuum, with its charge-carrying SO3- group oriented toward the bulk IL 

[70]. Furthermore, much like other imidazolium-based ILs, the alkyl chain of the 

[C8C1Im]+ cation oriented toward vacuum, and the charge-carrying imidazolium 

ring oriented toward the bulk. The behaviour is different, however, when 

functional groups are located throughout the chain, rather than at the end. A 

theoretical study into the arrangement of the IL/vacuum interface for the IL 1-

methyl-3-octylimidazolium octylsulfate (or [C8C1Im][C8H17SO4]), which has an 

anion consisting of alkyl chain with a penultimate linking ether group, making 

CH3-(CH2)7-O-SO3-. In the study, the IL displayed a lamellar morphology (i.e. 

alternating layers of charged and neutral components) at the IL/vacuum 

interface, whereas the bulk of the IL was more ‘sponge-like’ [71]. The lamellar 

behaviour extended to almost tens of nanometres in the simulations, and it was 

speculated that it could continue on even larger length scales. Another 

theoretical study was done by the same research group with a similar IL, but 

with chains containing ether groups (which are structured as R-O-R’) rather 

than purely alkyl chains. This study, contrastingly, showed that the arrangement 

in the IL/vacuum interfacial region only extended a few nanometres [72]. 

1.3.3 IL/gas interface 

The ordering of the outermost surface of ILs, as determined by the composite 

ions, is thought to govern their gas capture and uptake behaviour. Studying the 
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interactions between ILs and gases is important for a number of reasons. An 

understanding of the adsorption and absorption phenomena at a molecular level 

provides a foundation for tailoring ILs for future gas capture applications. There 

is much interest in the interactions between ILs and greenhouse gases, as ILs 

show great promise as candidates for industrial gas capture applications. 

As discussed in the previous section, there is an enrichment of alkyl chains at 

the ‘free’ surface (i.e. at the interface with vacuum) of ILs whereby the chains of 

the cation face out toward vacuum, and the imidazolium ring and the anion are 

located beneath. This also appears to be the case at the IL/air interface, as 

confirmed by various techniques that are carried out under ambient conditions. 

This includes sum frequency generation (SFG) spectroscopy [73], which 

provides information about the structure of the topmost layer of an IL. Of 

particular interest for the work in this thesis is the IL/water interface, which has 

also been studied using SFG by various research groups. For example, SFG 

measurements of the IL, 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulphonyl)imide at low pressures of water vapour (< 10-4 

mbar) reveal that the imidazolium ring orientates parallel to the IL surface. Upon 

increased pressure, however, the imidazolium ring is orientated at an angle of 

approximately 35° to 50° from the IL surface [74], indicating a preferential 

orientation in the presence of water vapour. Other SFG studies of the same IL 

[75] reveal that the SO2 groups of the anion are oriented more toward the water 

phase, which indicates that the anion also experiences a preferential orientation 

at the interface with water. Other techniques include X-ray reflectometry [51, 

76], which provides density profile information of the topmost few layers of an 

IL. Lauw et al [51], for example, used a combination of X-ray reflectometry and 

molecular dynamics simulations to study the interfacial structure of the IL 1-

butyl-1-methylpyrrolidinium bis(trifluoromethylsulphonyl)imide with water. Their 

findings revealed layering at the interface with water, where a ‘net positive’ layer 

of water and cations composed the topmost layer, which swelled with increasing 

water exposure. A ‘net negative’ layer was located beneath the ‘net positive’ 

layer, composed of anions. This has consequences for applications involving IL 

electrolytes, where ionic arrangement at electrodes and presence of water 

impact the electrochemical performance. 
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Studying the IL/gas interface using ultra-high vacuum techniques is a little more 

difficult, requiring preparation of all media so that they will agree with the low-

pressure conditions. This involves ‘freezing’ a gas onto the IL surface, followed 

by heating in situ and monitoring changes as the gas desorbs from the IL [77, 

78]. This procedure was carried out for a combined XPS and temperature 

programmed desorption investigation into the adsorption of water on 1-octyl-3-

methylimidazolium tetrafluoroborate [79]. They found that multilayers of water 

desorbed at approximately 185 K, but a monolayer coverage of water on the IL 

surface was present until the IL was heated to approximately 245 K. XPS has a 

lot of information to offer with regards to surface chemistry of IL/gas systems, 

and recent technological advancements in electron transfer optics means that 

XPS can now be conducted under near-ambient conditions through the use of 

differential pumping. Near-ambient pressure XPS (see Chapter 2.5 for more 

information) is being used to investigate the IL/gas interface by a number of 

groups. Broderick et al [80], investigated the IL/water interface using the 

hydrophobic IL, 1-hexyl-3-methylimidazolium chloride, and found that there was 

a build-up of interfacial water under low relative humidity compared to 

absorption in the bulk IL. The same group has investigated the IL/gas interface 

of relatively thick films of other ILs, such as 1-butyl-3-methylimidazolium acetate 

[81, 82]. NAPXPS has also been used by Niedermaier et al [83] to investigate 

the IL/CO2 interface using the amine-functionalised IL, dihydroxyethyl-

dimethylammonium taurinate. They found that, in combination with infrared 

spectroscopy measurements of the bulk IL, the surface composition of the IL 

during exposure to relatively low pressures of CO2 (< 1 mbar) differed to the 

bulk composition, where carbamic acid (CH3NO2) dominated the near-surface 

region, while carbamate (N-COO-) dominated in the bulk of the IL. 

Many questions remain about the mechanics of adsorption and absorption of 

gases in ILs, and studying their sorption behaviour is vital if they are to be used 

in gas capture applications. 

1.3.4 IL/oxide interface 

One of the ways in which the IL/solid interface can be investigated is using thin 

and ultrathin films of IL on a solid substrate. Numerous XPS studies have used 

this method to investigate the ordering and interactions on various substrates, 

including gold [84], nickel [85], copper [86], mica [77] and glass [87]. More 
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recently, with a view toward energy and catalysis applications, thin and ultrathin 

IL film/oxide systems have been studied. 

Sobota et al [88] investigated the structure and ordering of 1-butyl-3-

methylimidazolium bis(trifluoromethylsulphonyl)imide on alumina (Al2O3), using 

a combination of XPS, density functional theory (DFT), and infrared reflection 

absorption spectroscopy (IRAS). The IRAS measurements, which were 

recorded during the IL deposition onto the alumina surface, revealed the 

composite anion displayed a preferential orientation, which was confirmed and 

quantified by DFT. At submonolayer coverage, the anion adsorbs slightly tilted 

with respect to the surface, with the sulphonyl (R-SO2-R’) groups interacting 

with the alumina substrate. Mezger et al [89] investigated the layering geometry 

displayed by three ILs with the tris(pentafluoroethyl)trifluorophosphate anion in 

common. Using X-ray reflectometry, they determined two different kinds of 

layering arrangements: checkerboard-type arrangement (where cation and 

anion arrange side-by-side, forming a checkerboard pattern of charge), and 

double layer-type (where either cations or anions arrange preferentially at the 

surface, followed by a second layer of the oppositely-charged ion). 

With a view toward photovoltaic applications, investigation of the structure and 

interactions of ILs at oxides, particularly those used in dye-sensitised solar cells 

(see Section 1.4.2), is extremely useful. One example is the interactions of an 

IL, 1-benzyl-3-methylimidazolium chloride, with tin dioxide (SnO2), studied by 

Tran et al [90] as part of coated-glass electrodes in dye-sensitised solar cells. 

The XPS analysis showed a shift in binding energy of the peaks associated with 

the SnO2 substrate toward lower binding energy, attributed to the presence of 

the electronegative chloride anion on the substrate surface. The band gap of 

the SnO2 film was reduced after IL deposition, as revealed by ultraviolet 

photoelectron spectroscopy, resulting in better conduction and improved 

interfacial charge transfer. Wagstaffe et al [91] investigated the surface 

chemistry and cationic arrangement of the IL 1-butyl-3-methylimidazolium 

tetrafluoroborate on anatase TiO2. The structural information, acquired by 

carrying out near-edge X-ray absorption fine structure (NEXAFS) spectroscopy 

measurements, revealed the cation arranged itself at the IL/TiO2 interface such 

that the imidazolium ring was orientated at approximately 32° relative to the 

surface. They used XPS to study the surface chemistry of approximately 
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monolayer and multilayer coverage of the IL on anatase TiO2, and found that 

there is an interaction between the anion and the substrate, where Ti-F bonds 

form most likely at O-vacancy sites. Both the structure and interaction of the 

ions with the TiO2 substrate could impact the charge transfer across the 

interface, and thus the device performance. 

Double layer-type arrangements of ILs at oxide interfaces are useful for 

electrochemical applications for ILs in contact with electrodes in electrochemical 

systems [92]. Furthermore, understanding the arrangement of ILs at oxide 

interfaces is important for applications involving charge transfer across 

interfaces, such as battery and photovoltaic applications. Many studies into 

IL/oxide systems take an empirical approach, while few studies have 

investigated the structure and interactions at the interface. 

1.4 Energy-based applications of ionic liquids 

The tuneable nature of ILs insinuates a vast array of potential uses, and since 

their discovery from research into battery electrolytes, this has proven to be 

true. While ILs are interesting from a fundamental perspective, they have 

gained a significant amount of interest from an industrial perspective, 

particularly for their potential applications in catalysis, lubrication and energy 

storage. 

As mentioned earlier in this chapter, many ILs are electrochemically stable, 

making them desirable as non-aqueous electrolytes in batteries. Much research 

has explored the possibility of their integration into lithium ion battery 

technologies [93]. Ionic liquids as part of other energy storage applications 

includes supercapacitors [94], which are electrochemical capacitors that deliver 

high energy for short time periods (up to a few seconds).  

It is from the initial research by the US Air Force into IL-based battery 

technology that has brought forth their potential applications in a wide variety of 

energy technologies, which encompasses harvesting as well as storage. This is 

particularly important in the context of two main problems facing humanity in the 

modern age: climate change and the global demand for energy. 
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1.4.1 Gas capture 

Climate change, the long-term and large-scale shift of global weather patterns 

and average temperatures, is one of the most pressing issues we face. It is also 

probably one of the most widely recognised, with many countries implementing 

legislation in an effort to mitigate the human impact on climate change [95, 96]. 

The human impact is defined as our direct contribution as a species to the 

natural climate change process. The global temperature naturally increases and 

decreases over long periods of time, but there is overwhelming evidence to 

support that humans are accelerating the rate of global temperature via 

greenhouse gas emissions. 

Greenhouse gas effect and related gas emissions 

Greenhouse gases are gases in the atmosphere that absorb radiation, 

particularly infrared radiation. Greenhouse gases include carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O). Visible light from the Sun is reemitted 

by the Earth as infrared radiation, which is absorbed by the greenhouse gases 

in the atmosphere. The presence of greenhouse gases in the atmosphere are 

required to raise the temperature of the Earth in order to support life, but an 

excess of greenhouse gases in the atmosphere will result in more absorption of 

infrared radiation and an overall rise in global temperature [97]. In an effort to 

slow down the increase in global temperatures and adhere to current legislation 

to reduce emissions, technologies that capture and store greenhouse gases, 

namely CO2, have been implemented in industry to minimise emissions. 

CO2 capture and CO2 scrubbing 

Industrial processes release multiple gases in a mixture (called flue gas), so in 

order to remove CO2 from the mixture, a material that reacts with CO2 is 

required. One of the most commonly employed CO2 capture technologies is 

CO2 scrubbing [98, 99]. This kind of CO2 scrubbing technology consists of a 

liquid solvent that reacts with CO2, and a stripper that removes the CO2 from 

the solvent so it can be reused. 
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Figure 1.6: Schematic diagram of an absorber-stripper system. The stripper system consists of 
a desorber equipped with a condenser and reboiler. The condenser removes the CO2, and the 
reboiler regulates the temperature of the solvent inside the desorber. The terms ‘rich’ and ‘lean’ 

refer to the CO2 content of the solvent. Figure adapted from [100]. 

The generic process, as shown in Figure 1.6, begins with flue gas entering the 

system through a flue gas inlet, located at the bottom of the absorber. The CO2 

within the flue gas reacts with the solvent, and as the flue gas travels up 

through the system, more CO2 is removed from it. Solvent that is saturated with 

CO2 (used solvent) is transferred from the system to the stripper, where the 

CO2 is removed from the solvent via heating. The used solvent enters at the top 

of the column in the stripper system, and travels down toward the bottom of the 

column, which is heated using steam. When the solvent reaches the bottom, the 

solvent is at a sufficient temperature to release the CO2. Some of the solvent 

will transform to into the gas phase, and rise back up to the top of the column. 

The gas-phase solvent condenses back into a liquid phase inside a condenser, 

and returned to the absorber system as regenerated solvent. The CO2 is cooled 

inside the condenser and compressed for transport [98]. 
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Figure 1.7: Diagrams of the plate tower (a), packed column (b), spray tower (c), and bubble 
column (d) absorber setups. In each setup, the flue gas inlet and used solvent outlet are located 

toward the bottom of the system. The cleaned gas outlet and regenerated solvent inlet are 
located toward the top of the system. Figure adapted from [98]. 

Figure 1.7 illustrates various absorber setups for CO2 scrubbing. The plate 

tower design increase the surface area between the liquid solvent and the flue 

gas with equidistantly stacked plates. These plates have holes small enough to 

retain the solvent, but allow gas to pass through them. The packed column 

design is filled with ‘packing material’ that resembles material used in 

packaging. The spray column design increases the surface area between the 

solvent and flue gas by distributing the solvent as liquid droplets, much like 

running water from a showerhead. The bubble column works in a similar way, 
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but rather than the flue gas surrounding the solvent, flue gas is bubbled 

through, and surrounded by, the solvent. 

The most popular industrial solvents for CO2 scrubbing are amine-based, and 

one such example is monoethanolamine (MEA). Amines are derivatives of 

ammonia (NH3), and consist of a nitrogen atom and up to three non-hydrogen 

R-groups. MEA consists of NH2 with a single ethanol functional group, hence 

monoethanolamine (see Scheme 1.1 for chemical structure of MEA). MEA is 

popular as it is relatively cheap as a bulk solvent [101]. 

 

Scheme 1.1: Reaction between MEA and CO2. Dry CO2 scrubbing results in the formation of 2-
hydroxyethylcarbamate and ammonium, while wet CO2 scrubbing results in the formation of 

bicarbonate and MEA, allowing a net molar uptake ratio nCO2:nMEA of 1:1. 

The reaction between CO2 and MEA requires two MEA molecules for every one 

molecule of CO2, which can also be expressed in terms of a molar uptake ratio, 

nCO2:nMEA, of 0.5:1. The reaction forms a carbamate group (N-COO-), whereby 

a bond is formed between the carbon atom in the CO2 and the nitrogen in one 

of the MEA molecules. The second MEA molecule becomes protonated (bonds 

to a ‘spare’ hydrogen), and forms ammonium (NH3+). The addition of water to 

the solvent can improve the ratio of CO2 molecules to MEA molecules, reducing 

the amount of solvent to process the same amount of CO2. This is known as 

wet CO2 scrubbing, and relies on a proportion of the carbamate groups to react 

with water to form bicarbonate (see Scheme 1.1). This reaction removes the 

CO2 from the MEA molecule without regeneration through heating, which 

increases nCO2:nMEA to a ratio of 1:1. 

While MEA and other amine-based solvents can store large quantities of CO2, 

the regeneration process to ‘strip’ the CO2 requires a relatively large amount of 

energy. The heat of absorption for primary amines (those containing only one 
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non-hydrogen R-group, such as the ethanol group in MEA) and secondary 

amines (which contain two non-hydrogen R-groups) is approximately -80 kJ 

mol-1 [98], which means the reaction takes a significant amount of energy to 

reverse, and culminates in an expensive process in the long-term. This aspect 

is vitally important from an industrial perspective, where costs for creation, 

implementation and maintenance of any potential CO2 capture material will 

increase overall costs. For various gas energy applications, separation of CO2 

from other gases is also important for equipment maintenance, since its 

presence can cause pipeline corrosion [102-104]. 

Ionic liquids and CO2 capture 

Owing to their tuneable nature and thermal stability, ILs have emerged as 

potential future CO2 capture materials [105-108]. Within the last two decades, 

much research has been carried out into the interactions between ILs and CO2, 

beginning with the Davis group [109] who synthesised ILs with the purpose of 

CO2 chemisorption. CO2 that is chemically absorbed by ILs is generally easier 

to release, which consequently decreases the energy required for regeneration 

to below that of traditional scrubbing [110]. Numerous investigations into the 

CO2 uptake capabilities of ILs have involved functionalised ILs [107, 110]. This 

includes ILs with carboxylate (O=C-O-) and amine functional groups. 

Carboxylate-functionalised ILs can hold onto a molar ratio of water to IL, 

nH2O:nIL, of 2:1. [111]. CO2 is absorbed by the IL, and reacts with water to form 

bicarbonate, as it does in aqueous amine solvents mentioned previously. 

However, with current global water shortages, and potential further shortages 

induced by climate change [112], a process requiring an equimolar quantity of 

water to capture and process CO2 is problematic. Amine-functionalised ILs 

react with CO2 directly to form carbamate. While a number of research groups 

have found that amine-functionalised ILs can successfully capture CO2, their 

absorption capabilities are somewhat limited by their viscosities, which increase 

when they react with CO2 [113], in some cases as much as 200-fold [114]. This 

inhibits further absorption of CO2 into the IL. Furthermore, while the addition of 

water can somewhat alleviate the viscosity problem [113], this increases the 

energy required to regenerate the IL. In the interest of gas separation, 

supported ionic liquid membranes, or SILM, systems have been investigated 

using various different ILs [115, 116]. In the last few years, research has been 
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conducted into the synthesis and performance of ILs with CO2 capture ability 

without specific functionalisation, and without the necessity for water. This 

includes imidazolide-based ILs (see Figure 1.1 under organic anions), which are 

typically paired with phosphonium cations with long alkyl chains [22, 101, 117]. 

The heat of absorption of CO2 for these ILs is typically greater than -65 kJ mol-1 

[113, 117], making them a more energy-efficient alternative to MEA. 

In order to gain insight into the sorption mechanics at the interface between ILs 

and gases, surface-sensitive methods are of vital importance. While gas 

sorption can be investigated under the low-pressure conditions required by 

many surface science techniques, it is also important to be able to investigate 

sorption behaviour under more realistic pressure and temperature conditions. 

One such technique is near-ambient pressure X-ray photoelectron spectroscopy 

(NAPXPS, see Chapter 2.4 or more information about this technique), which 

combines surface-sensitive measurements with near-ambient pressures and 

ambient temperatures. Gaining an understanding of the interactions at the 

IL/gas interface will provide a solid foundation for development and optimisation 

of task-specific ILs for potential applications in gas capture and separation. The 

interface between ILs and water, and ILs and CO2, are particularly important for 

industrial gas capture applications. Chapters 3 and 4 report NAPXPS data of 

the IL/water and IL/CO2 interfaces, and provide insight into the influence of 

these gases on the structure and interactions of the IL ions. 

1.4.2 Photovoltaics 

As mentioned previously in Section 1.4, the global energy demand is ever 

increasing, which is unsurprising as the planet sustains a growing population 

and a prevalence of technology in modern-day life. In 2017, the total amount of 

electricity generated by all nations on Earth amounted to approximately 2.6 

×104 terawatt hours, which is equivalent to a total of 9×1019 J [118]. 

The majority of the energy consumed globally is generated from coal, natural 

gas, and petroleum via combustion processes. These sources, collectively 

known as fossil fuels, are non-renewable, which means they are a foreseeably 

finite resource. To keep up with global energy demand, the consumption of 

fossil fuels has increased, as well as brought about the development and usage 
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of energy technologies utilising renewable resources. This includes solar 

harvesting technologies, such as photovoltaics.  

Over the span of a year, approximately 4×1024 J of energy reaches the surface 

of Earth [97]. This is five orders of magnitude greater than the energy 

consumed in 2017. While not all the solar energy incident on Earth is 

harvestable, the sheer excess of energy available provides strong justification 

for the research and development into new and innovative photovoltaic (PV) 

technologies. 

Photovoltaic effect and related technologies 

The photovoltaic effect is defined as the generation of an electromotive force 

through the absorption of a photon. As part of generating the electromotive 

force, negative and positive charge must be generated, separated, and 

recombined much like in a conventional battery. 

There are many different types of photovoltaic cell, as illustrated by the sheer 

variety of types presented in the National Renewable Energy Laboratory 

(NREL) PV efficiencies graph [119] (see Figure 1.8), which have developed 

over many years. All PV cells are built around the same principle of photo-

induced electron promotion, but the range of materials that comprise PV 

technologies is relatively varied. 
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Some of the PV technologies listed on the left side in Figure 1.8 show a sharp 

rise in efficiencies over a short period of time (with their efficiencies labelled on 

the right side), including some of the thin film PV, and many of the emerging 

PV. Thin film PV cells, such as cadmium telluride (CdTe) and copper indium 

gallium selenide (CIGS) technologies consist of additional layers than those of 

traditional silicon solar cells, including transparent conducting oxide layers as 

electrical contacts. 

 

Figure 1.9: Schematic diagram of a dye-sensitised solar cell. The incident visible light photon 
promotes an electron from the valence band of the dye (S) to the conduction band (CB) of the 
semiconductor, leaving the dye molecule in an excited state (S*). The electron travels around 

the circuit, doing useful work through a load, R. The electron continues through the circuit, 
eventually transferring to the electrolyte, where the redox couple allows the previously oxidised 

dye molecule to be reduced through the transfer of electrons [120, 121]. 

Those of particular interest to the work in this thesis are dye-sensitised solar 

cells (DSSCs), a schematic diagram of which is shown in Figure 1.9. They are 

electrochemical in nature, unlike typical semiconductor devices, and are 

significantly cheaper to manufacture than semiconductor-based systems. The 

dye (typically ruthenium-based) sensitises the cell to visible light. In DSSCs 

under illumination, the electrons in the dye are excited from the valence band in 
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the dye to unoccupied states in the conduction band. The electrons are then 

injected into the conduction band of the semiconductor, where they then drift 

through to a back contact. The electrons in the dye are ‘replenished’ by 

electrons from the electrolyte. Typical electrolytes in DSSCs consist of a redox 

(reduction-oxidation) active component, such as iodide (I-), in an organic 

solvent. The redox-active component forms a redox couple. Using iodide as an 

example, electrons from the iodide are transferred to several dye molecules, 

and forms triiodide (I-3) as a result. Additionally, electrons that are on their way 

to completing the circuit transfer to triiodide, forming iodide once again. The 

semiconductor in DSSCs is typically a large band gap semiconductor (3 eV < 

Eg < 3.5 eV) such as titanium dioxide (TiO2) or zinc oxide (ZnO). The highest 

efficiency DSSC reported to date was reported by Komiya et al [122, 123] with 

an efficiency of (11.9 ± 0.4)%. 

One of the issues facing layered PV technologies is electron injection across 

each of the composite layers. For ZnO-based technologies in particular, slow 

processes (of the order of picoseconds) can dominate the electron transfer 

across the interface between the active layer and the ZnO [124, 125]. This can 

be mitigated through band gap engineering and reducing the contact resistance 

between layers [126]. Another issue specific to DSSCs is the use of volatile 

organic solvents in the electrolyte, which have high vapour pressures and 

evaporate over time. Electrolyte evaporation is accelerated by solar heating, 

and thus heavily impedes the longevity of the DSSC [127, 128]. 

Ionic liquids in photovoltaics 

As mentioned in Section 1.2.3, ILs are thermally stable and have good electrical 

conductivities. They are also non-volatile, unlike the conventional electrolytes 

currently used in DSSCs (such as acetonitrile) [129]. This makes them desirable 

as potential electrolytes in DSSCs. Typical IL-based electrolytes consist of a 

mixture of a low-viscosity IL and a salt capable of taking part in a redox reaction 

(also known as a redox-active salt). The low viscosity of the IL allows superior 

diffusion rates (over higher viscosity ILs) for the redox couple generated by the 

redox-active salt [121]. While the more efficient IL-based DSSCs have <10% 

efficiency, they are still versatile in practical applications. For example, IL 

electrolytes have been successfully printed using inkjet technology, making 

them viable for flexible DSSCs [130]. This is also possible with ZnO-based 
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DSSCs, since a number of research groups have developed ZnO electrodes on 

plastic substrates for the same application [131-133]. 

ILs are not restricted to DSSCs, and have been implemented into solid-state 

devices, such as hybrid organic-inorganic solar cells [126], perovskite solar cells 

[134], and quasi-solid state devices that contain IL-based gel-polymer 

electrolytes [135]. Studying ILs on oxide surfaces using surface-sensitive 

techniques will provide insight into their structure and interactions at the 

interface, which is vital when investigating electronic, electrochemical, and 

catalytic properties of IL-modified oxide systems. In order to be able to tailor the 

components of future photovoltaic devices to incorporate ILs, an intimate 

understanding of the IL/oxide interface is required. Chapter 5 of this thesis 

features a combined XPS and NEXAFS study into the surface ordering and 

interactions of ILs at polar and non-polar ZnO surfaces with a view toward 

DSSC and catalysis applications. Chapter 6 features XPS data of TiO2 

nanotubes to gain an insight into the influence of their growth conditions on their 

surface chemistry with a view toward photocatalytic water splitting applications. 

1.4.3 Catalysis 

ILs are useful in catalysis, both as solvents for catalysts and for synthesis of 

catalysts. There is little solvent loss during reactions due to their low vapour 

pressures, and their good thermal stabilities, solvation abilities, and electrical 

conductivities make them desirable catalysis solvents. ILs can be used to 

synthesise a wide variety of materials, both chemically and electrochemically 

[1]. Of particular interest is electrochemical nanoparticle and nanostructure 

synthesis, particularly of transition metal oxide photocatalysts used for water 

splitting. 

Supported ionic liquid phase and solid catalyst with ionic liquid layer systems 

IL-based catalysis systems have the benefits of homogeneous catalysis 

(catalysis involving a soluble catalyst in a solvent), which include high specificity 

and selectivity of the catalyst. They also have the benefits of heterogeneous 

catalysis (where the phase of the reactants are different to that of the catalyst), 

which include the products and the catalyst are easily separable, and large 

interfacial area for the reactions to take place [60]. 
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Supported ionic liquid phase (SILP) catalysis involves a thin film of IL, which 

contains the homogeneous catalyst, on a high surface area support material 

(see Figure 1.10 for a schematic diagram). The system is useful for reactions 

involving gas-phase reactants, where the low vapour pressure of the IL film 

allows for continuous reaction via easy sorption of reactants and desorption of 

products. Example reactions using the SILP system include rhodium-catalysed 

hydrogenation [136, 137] and rhodium-, palladium- and zinc-catalysed 

hydroamination [138]. 

 

Figure 1.10: Schematic diagrams of the SILP (left) and SCILL (right) catalysis systems. 

Another IL-modified catalysis concept is solid catalysts with ionic liquid layer 

(SCILL, see Figure 1.10), where catalysts are immobilised on a support beneath 

a thin layer of IL. Compared to their non-IL counterparts, the SCILL catalysis 

systems exhibit superior selectivity of products, as demonstrated experimentally 

with hydrogenation reactions using nickel [139] and palladium [140] catalysts. 

Nanostructure synthesis and photocatalytic water splitting 

ILs have been used to successfully electrochemically synthesise nanoparticles 

for catalysis applications [141]. Examples include noble metal nanoparticles, 

such as silver [142], transition metal nanoparticles, such as iridium [143] and 

palladium [144], and semiconductor catalysts, such as germanium [145]. ILs 

have also been used to electrochemically synthesise transition metal oxide 

nanostructures, such as TiO2 nanotubes [146] (see Chapter 6). 

TiO2 is one of the most photocatalytically active materials due to the position of 

its conduction and valence bands in aqueous environments [147]. TiO2 

nanotubes are useful for a variety of energy applications, but of particular 

relevance to this thesis is their application in photocatalytic water splitting. 

Photocatalytic water splitting involves photogeneration of electron-hole pairs, 

which react with water to form H2 and O2 [148]: 
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 TiO2  
hν
→ e- + h+ (1) 

 2H2O + 4h+ → O2 + 4H+ (2)i 

 2H+ + 2e- → H2 (2)ii 

 

Where e- and h+ are electrons and holes respectively. There are competing 

reactions involving an excited electron, where the electron becomes part of an 

O2 molecule to form O2-. Charge exchange between a water molecule and a 

vacancy in the valence band can result in a hydroxyl radical (OH·), and charge 

exchange at the conduction band can generate O2- from O2 [147]: 

 2H2O + 2h+ → 2OH· + H2 (2)iii 

 O2 + e- → O2- (2)iv 

 

TiO2 nanotubes are particularly favourable for water splitting, since reaction 

rates can be increased through the maximisation of surface area. The 

electrochemical synthesis of TiO2 nanotubes via anodization of Ti allows control 

over various morphological properties, and the use of ILs has proven to produce 

good quality nanotube arrays without the need for dangerous materials like 

hydrofluoric acid [149]. In order to fully understand the extent of customisability 

of TiO2 nanotubes, the relationship between the anodization conditions and the 

resultant nanotubes must be explored with techniques that can provide 

morphological and chemical information. Chapter 6 features a study into the 

influence of anodization conditions on electrochemically synthesised TiO2 

nanotubes. It includes scanning electron microscopy data, which provides 

morphological information, as well as XPS data for insight into the surface 

chemistry of the nanotubes. The data is discussed in the context of TiO2 

nanotubes for photocatalytic water splitting applications. 
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2 Theory, Techniques and Instrumentation in 

Surface Science 

2.1 Introduction 

By its very nature, surface science is an interdisciplinary field. The techniques 

used in surface science typically require incredibly low pressures (also known 

as ultra-high vacuum) in order to investigate surfaces with nanoscale accuracy. 

Some of these techniques have been adapted in recent years, engineered to 

gain the same information while operating at higher pressures. There are a 

number of surface science techniques that can be performed using a laboratory 

kit, but some require synchrotron facilities. 

All of the data in this thesis has been collected using surface-sensitive 

techniques that are usually carried out under vacuum conditions. Chapters 3 

and 4 use X-ray photoelectron spectroscopy, carried out under both ultra-high 

vacuum (UHV) and near-ambient pressure conditions. Chapter 5 features X-ray 

photoelectron spectroscopy data taken at UHV, which were recorded at two 

different synchrotron facilities (SOLEIL, ASTRID2 (ISA)), and X-ray absorption 

data, specifically near-edge X-ray absorption fine structure spectroscopy data, 

also recorded at a synchrotron facility (SOLEIL). Chapter 6 uses X-ray 

photoelectron spectroscopy, scanning electron microscopy, and energy-

dispersive X-ray spectroscopy. These techniques are outlined below, explaining 

their physical principles and experimental setups. 

2.2 Vacuum systems 

A vacuum is characterised by the pressure within a particular region. While the 

international system (SI) unit of pressure is the Pascal (Pa), in vacuum science 

the units of millibar (mbar) or Torr are usually used. There are different regions 

of vacuum, which start at rough vacuum (typically defined as >10-4 mbar), and 

go up to ultra-high vacuum (UHV) (defined as <10-8 mbar) [1]. 
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Surface science techniques that characterise surfaces using particles require 

UHV conditions. This is because longer mean free paths are necessary for use 

and/or detection of particles in these systems. The lower the pressure in the 

system, the longer the mean free path of these particles, and thus fewer 

scattering events occur and minimises the loss of information contained within 

those particles. 

 Achieving vacuum 

Vacuum systems consist of various pumps, valves, plumbing (tubing) and 

pressure gauges. Reducing the pressure inside a system to UHV must be done 

in stages. 

First, the pressure in the system must be brought down from atmospheric to 

~10-3 mbar using a roughing pump. For UHV systems, roughing pumps are also 

used as ‘forepumps’ for those that require rough vacuum to function (see 

turbomolecular and entrapment pumps below). The most commonly used 

roughing pumps are rotary pumps and scroll pumps. Rotary pumps (see Figure 

2.1) remove gas in a chamber through vanes mounted onto a rotor. The vanes 

move back and forth, creating a motion that captures and compresses gas in 

the interior of the pump. The trapped gas is then expelled through an exhaust 

valve to atmosphere [2]. Scroll pumps, on the other hand, remove gas using two 

nested Archimedean screws. These screws are made by mounting spiral-

shaped walls on a circular base plate. Each of these screws are called scrolls. 

The scrolls rotate, and trap gas between the spiral walls (see Figure 2.2). The 

continued rotation moves the trapped gas along the pump toward the outlet to 

atmosphere [3]. 
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Figure 2.1: Schematic diagram of a rotary vane pump [3]. 

 

Figure 2.2: Diagram of the scrolls inside a scroll pump. The shaded area illustrates the path of 
gas as it is trapped in the scrolls inside a scroll pump [4]. 

Once a chamber is in the 10-3 to 10-4 mbar range, a turbomolecular pump 

(sometimes simply referred to as a turbo-pump) is used to reduce the pressure 

to ~10-6 mbar and below (a schematic diagram is featured in Figure 2.3). Using 

rapidly spinning, circular rotor blades (that can reach up to 3×104 revolutions 

per minute), residual gas molecules travel downward to the lower section of the 

pump. The blade design is such that molecules impinging upon them gain 

momentum in the downward direction. The gas is compressed in the lower 

section, and then expelled to an auxiliary pump [2]. For many systems, the use 

of turbomolecular pumps (supported by roughing pumps) is enough to reduce 

the pressure to 10-9 to 10-10 mbar range. However, the pressure in a chamber 

can be reduced even further with the use of entrapment pumps. 
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Figure 2.3: Schematic of a turbomolecular pump [2]. 

Reducing the pressure from <10-10 mbar to the order of 10-12 mbar requires an 

entrapment pump. These pumps ‘trap’ remaining molecules by various means.  

Commonly used entrapment pumps include cryopumps, sputter ion pumps, and 

titanium sublimation pumps. Cryopumps, as the name suggests, trap molecules 

on surfaces cooled to temperatures below -150°C. Gas molecules bind to these 

cooled surfaces via van der Waals forces. In a sputter ion pump, gas is ionised 

between a Ti cathode and a stainless steel anode that generate a strong 

electric field between them (of the order of several kV). The gaseous ions, 

accelerate to the cathode by the strong electric field, which then sputter Ti 

atoms. This forms a Ti film on the inner walls of the pump (as shown in Figure 

2.4) which reacts with residual gases in the chamber, such as oxygen, nitrogen 

and hydrogen. The gases (or compounds formed from the reaction) are 

subsequently trapped beneath layers of further sputtered Ti. A Ti sublimation 

pump uses a combination of cryopump and sputter ion pump technology. In 

these pumps, Ti is evaporated (or sublimed) from a filament onto cooled 

surfaces, where gases condense due to the low temperatures. The gases then 
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react with the Ti, leading to irreversible gas entrapment. Entrapment pumps can 

bring the pressure down to as low as 10-11 mbar. 

 

Figure 2.4: Schematic diagram illustrating components within a sputter-ion pump and the 
process of ionising and trapping stray gas molecules to maintain UHV [5]. 

 

 Maintaining vacuum 

Part of attaining a good vacuum is a process known as a bakeout, executed 

prior to an experiment. This is when the chamber is heated between 150°C and 

200°C for approximately 24 hours to remove atoms or molecules that have 

adsorbed on the internal surfaces of the equipment. These atoms or molecules 

desorb and are subsequently pumped away. 

The pressure inside a vacuum system can be monitored using pressure gauges 

specifically catered for monitoring the quality of vacuum. The most common 

type for monitoring pressure from atmosphere to 10-2 mbar is the Pirani gauge, 

which measures the pressure via heat lost from a thin metal wire to its 

surroundings. At high pressures, heat is transferred from the wire to gas 

molecules that collide with the wire. As the pressure decreases, thermal 

conduction decreases and the wire loses heat at a slower rate [6]. 

Ionisation gauges are used to monitor the pressure from ~10-3 mbar pressure to 

UHV. These work with the use of electrons accelerated from a cathode filament 

to a cylindrical wire mesh anode. Running down the middle of the anode mesh 

is a negatively-charged thin metal wire. A portion of the gas molecules ionised 
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by the accelerated electrons are ‘collected’ by the wire. The current through the 

wire is proportional to the number density of gas molecules inside the chamber 

and therefore proportional to pressure [5, 6]. 

Attaching external components to a vacuum system requires a tight seal- this is 

so that there is no leaking of atmosphere into the system. These seals are 

usually made of metal, and are known as gaskets. The gasket is ‘sandwiched’ 

between two flanges (one belonging to the component being attached). Once 

the component is attached securely with nuts and bolts onto the system, the 

knife-edges in both flanges ‘bite’ into the gasket and creates an air-tight seal. 

Copper gaskets are most widely used, but other materials used include gold 

and aluminium. 

UHV can be sustained in a system of chambers with the use of valves. 

Chambers that are vented and pumped down again often (such as load lock 

chambers), can be closed off from sample preparation/sample analysis 

chambers using valves. That way, the load lock chamber can be exposed to 

atmosphere, while the UHV conditions are maintained in the sample 

preparation/sample analysis chamber. There are a variety of valves that will be 

suitable depending on the vacuum system (such as size, manual/computer-

controlled, etc), and where they are located in the system (backing valve 

between a mechanical pump and a backing pump, for example) but all serve 

the same purpose [2, 7]. Gas canisters attached to a chamber (containing argon 

for sputtering, or oxygen for annealing purposes (see Chapter 5 for an example 

of this)), may be separated from the chamber by a needle valve, which allows 

for control of the gas flow into a chamber. 

2.3 X-ray photoelectron spectroscopy (XPS) 

 Introduction 

X-ray photoelectron spectroscopy, or XPS, is a technique based on the 

photoelectric effect, where illumination of a sample with electromagnetic (EM) 

radiation results in photoelectrons being ejected from the sample surface. For 

XPS, the EM radiation is usually soft X-rays (defined as X-rays with energies in 

the region of 200 eV- 2000 eV). It can be used to probe the occupied electronic 
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states in materials, and explore the chemical composition of, and chemical 

environments within, the surface of a sample. 

 Theory 

Core electrons are bound to the nucleus of an atom in discrete energy levels, 

known as orbitals, or stationary states. The energies of the electron orbitals are 

element-specific and are influenced by the chemical environments of said 

element. These interactions alter the energies of the core electrons and 

therefore alter the electron density of the atom. 

Orbitals are denoted using spectroscopic notation, which is of the form nlj where 

n, l, and j are quantum numbers that define the orbital. The principal quantum 

number, n, is proportional to the energy of the orbital, and so larger values of n 

correspond to higher energy orbitals. The orbital angular momentum is 

described by the orbital angular momentum quantum number l, and can have 

any integer value between 0 and n - 1, where n is the principal quantum 

number. The quantum number l describes the type of orbital the electron is in 

(when l = 0, 1, 2, 3,…; this corresponds to the s, p, d, f,… orbitals respectively). 

The total angular momentum (described by the total angular momentum 

quantum number, j) factors in both the orbital angular momentum (l) and the 

electron spin (s), where j = l ± s. The spin quantum number, s, for an electron is 

equal to ½, and the projection of the spin relative to the orbital angular 

momentum, sp, takes the value ± ½, depending on whether it is parallel 

(positive) or antiparallel (negative). This results in two values of j for all core 

orbitals apart from s orbitals. 

In XPS, X-ray photons of a fixed-energy (hν) are directed at the sample, which 

results in the emission of electrons from the sample surface- from both the core 

and valence states. The process is outlined in Figure 2.5. The electrons emitted 

(or photoelectrons) have a particular kinetic energy (EK), which can then be 

used to obtain the binding energy (EB) of the state the photoelectron once 

occupied. This requires the equation for Einstein’s photoelectric effect, given by 

Equation (2.01): 

 hν = EK - EB - φ (2.01) 
 

Where φ is the work function. The work function is defined as the energy 
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necessary to remove an electron from the Fermi level to the vacuum level [8], 

i.e. to a position where the electron is no longer influenced by the system it 

came from. The binding energy is usually scaled to the Fermi level rather than 

vacuum level (i.e. defining the Fermi level as the zero point). 

 

Figure 2.5: Energy level diagram describing the process of X-ray photoemission. 

The work function in most cases is largely due to the electron energy analyser 

used and is not the inherent work function of the sample. The difference in work 

function is due to the electrical contact between the sample being analysed and 

the analyser itself [9]. 

The assumption can be made that the core hole left behind by the ejected 

photoelectron is not immediately filled by another electron, meaning the 

energies required to remove the electrons from their orbits are representative 

(equal to the negative of) of the energy of the orbitals from which they were 

ejected. The approximation that these other electrons are ‘fixed’ is known as 

Koopmans’ theorem. While in actuality rearrangement of electrons will occur 

(also known as relaxation), this is only significant for valence electrons. When 

considering core levels, the electrons surrounding the core hole are insensitive 

and the approximation holds [10]. 

 Experimental setup for XPS 

The necessary components of XPS include an X-ray source, a monochromator, 

and a hemispherical analyser (HSA). The HSA houses a detector (either a 
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channeltron or a multichannel plate) which allows an XPS spectrum to be 

generated. 

X-ray source 

For laboratory-based XPS, the most popular choices of X-ray sources are Al Kα 

and Mg Kα sources. X-rays are produced when the anode (which for the 

aforementioned sources are made of aluminium and magnesium respectively) 

is bombarded with high-energy electrons, ionising atoms within the anode. The 

electrons bombarding the anode are of a high enough energy to ionise a core 

shell, resulting in a Kα electronic transition (transition of an electron from an L 

shell orbital (n = 2) to an orbital in the K shell (n = 1)). Because there are two 2p 

levels (2p3/2 and 2p1/2), there are two Kα transitions, and so produces a doublet. 

For Al Kα sources, the width of this doublet is narrow enough as to not limit the 

resolution (0.85 eV), and the X-rays are of high enough energy (1486.6 eV) to 

cause core-level photoemission in the sample. 

Monochromator 

 

Figure 2.6: Schematic diagram showing the setup for monochromatic X-rays, whereby the X-ray 
source, the concave quartz crystal and the target chamber entrance are in position on a 

Rowland circle. 

When X-rays are emitted from the source, the Kα emission needs to be 

separated from radiation produced by Bremsstrahlung processes (radiation 

emitted by electrons decelerating due to electromagnetic interaction with the 
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nucleus), and from weaker radiation produced by other transitions (such as Kβ 

transitions). This is done using a monochromator, which is composed of a 

concave quartz crystal. The quartz crystal diffracts the incoming radiation 

according to Bragg’s law: 

 nλ = d sin θ (2.02) 
 

Where n is the order of diffraction, λ is the wavelength of the X-rays, d is the 

lattice spacing in the crystal and θ is the Bragg angle. The sample is placed in a 

position where the diffracted X-rays (those with characteristic energy of Al Kα or 

Mg Kα transition) are able to be refocussed. The position where this can occur 

is on a Rowland circle, which is a circle whose diameter is equal to the radius of 

curvature of the grating (assuming the X-ray source also lies on the Rowland 

circle, see Figure 2.6) [11]. 

Hemispherical analyser (HSA) 

 

Figure 2.7: Schematic diagram of a hemispherical analyser. The path of the photoelectron is 
represented by a grey dashed line and the incident X-ray photon is represented by a solid black 

arrow. 

The X-rays, travelling from the crystal monochromator to the sample surface, 

generate photoelectrons with a range of kinetic energies. Before entering the 

HSA, they pass through an electrostatic lens (see Figure 2.7) designed to slow 
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the electrons down to an energy known as the pass energy. They also focus the 

electrons into a beam of dimensions comparable to the entrance slit of the HSA. 

Upon entering the slits, the electrons are then subject to an electric field 

generated by the hemispheres (a negative voltage is applied to the outer 

hemisphere, and a positive voltage is applied to the inner hemisphere). 

Electrons that are more energetic than the pass energy are deflected less by 

the field, and into the outer hemisphere. Electrons that are less energetic than 

the pass energy are deflected more by the field, and into the inner hemisphere. 

This means that only the electrons with the required energy arrive at the exit 

slits and into the detector, which typically houses a channeltron or microchannel 

plate. 

Detector 

The detector, either a channeltron or microchannel plate, amplifies the signal 

through the generation of secondary electrons. In the case of a channeltron, a 

curved tube is used, which is coated in an insulating material with a low work 

function. A potential difference is applied across the ends of the tube, 

accelerating incoming electrons. The incoming electrons impinge on the 

material inside the tube, generating secondary electrons. In turn, those 

electrons impinge the material and generate more electrons, and so on. This 

amplifies the output by approximately 106. The sample principle is applied in a 

microchannel plate, but rather than one single tube, an array of smaller tubes 

are used, where the entrance of the tubes are angled in such a way that 

incoming electrons hit the tube walls. Both types of detector are illustrated in 

Figure 2.8. 

 

Figure 2.8: Schematic diagrams of a channeltron (a) and a microchannel plate (b). The inset of 
(b) shows the path of a photoelectron through one of the microchannels. 
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 Core level photoelectron spectra 

 

Figure 2.9: Example XPS survey spectrum recorded from Au (111) single crystal. Some of the 
more intense core level peaks have been annotated. 

Figure 2.9 displays a typical XPS spectrum, taken from a clean sample of gold, 

specifically an Au (111) single crystal. Plotted on the x-axis is binding energy 

(often abbreviated to BE), and plotted on the y-axis is intensity. This particular 

spectrum is known as a survey spectrum, as it spans a wide binding energy 

range. Spectra that span a narrower energy range (in order to obtain a 

spectrum of a particular peak with better resolution) are known as narrow scans 

or region scans. Most peaks in XPS can be fitted with mixed Gaussian-

Lorentzian line shapes (also known as a Voigt line shape), typically of a 70:30 

ratio of Gaussian:Lorentzian. The Lorentzian profile originates from the lifetime 

broadening of states, and the Gaussian profile originates from instrumental 

broadening [1, 12]. Peaks arising from orbitals other than s orbitals are 

doublets, due to the interaction between orbital angular momentum and electron 

spin. The respective degeneracies of the orbitals (2j + 1) give the relative 

intensities of the doublet peaks. 

Peaks in XPS are superimposed on a background that increases toward higher 

binding energies. The background is comprised of signals arising from 

secondary electrons. These secondary electrons are the result of inelastic 

photoemission (whereby an ejected photoelectron experiences an energy loss, 

or multiple energy losses, on its way out of a sample). Inelastic photoemission 
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can be caused by phonon excitation, plasmon excitation, and/or inter and intra-

atomic transitions. 

Background corrections, normalisation, and spectra calibration 

 

Figure 2.10: Linear, Shirley, and Tougaard background correction types displayed on an 
example Fe 2p spectrum. Figure adapted from [9]. 

A number of different background corrections can be made to XPS spectra. The 

most commonly used are a linear background; a Shirley background algorithm, 

or a Tougaard algorithm [9]. These background correction methods are shown 

using an example Fe 2p spectrum in Figure 2.10. Linear backgrounds are a 

simple approximation, and while they can alter the total peak area depending on 

the start and end points, are useful for data with numerous overlapping peaks. 

The Tougaard algorithm corrects for the background by simulation of the 

inelastic scattering over an energy range, but can be problematic for use in 

analysing complex samples with overlapping peaks in the spectra. The Shirley 

background algorithm corrects an S-shaped background for each peak in a 

spectrum, with the shape of the S dependent on the intensity of the start and 

end points. Because of its simplicity and accuracy, it is the most popular choice. 
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Figure 2.11: Example region spectrum, taken of the Au 4f region. The figure shows two sets of 
data: the raw data (solid line) and the data BE-calibrated to the Au 4f7/2 peak to 84.0 eV, 

showing a shift of approximately 0.2 eV to lower BE. Also annotated are the lowest intensity 
region (where the dotted horizontal line represents the intensity value of the lowest intensity 
data point), and the peak intensity. The grey shaded area represents the area of the whole 

region. 

Spectra are typically normalised in one of two ways. They can be normalised to 

a particular peak, which means a specific feature maintains the same intensity, 

allowing for comparison of intensity changes in other peaks. First, the lowest 

intensity part of the spectrum needs to be at zero intensity (the lowest intensity 

region is annotated at the right side of Figure 2.11). The spectrum is then 

divided by the intensity of the peak to which the region is being normalised (see 

Figure 2.11), and thus the intensity of the peak is equal to unity. Chapters 3, 4, 

5, and 6 contain spectra where this type of normalisation has been used. 

Spectra may also be normalised to the total area of a particular region (given by 

the shaded area in Figure 2.11 in this example). This involves the same 

procedure as normalisation to a specific peak, but instead the spectrum is 

divided by the area of the whole region. This allows intensity comparison of 

multiple peaks, and is particularly useful when comparing peaks of vastly 

differing peak intensities (i.e. a region containing both quite low-intensity and 

high-intensity peaks). Chapter 4 features normalisation of this kind. 

Calibration of spectra is important when comparing spectra with binding energy 

shifts. As mentioned earlier, binding energies would normally be calibrated to 

the Fermi edge of the sample (fixing the Fermi edge to 0 eV), but this is not 
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feasible for fixed-energy X-ray sources. Instead, a particular peak must be 

chosen for calibration. This involves assigning a particular peak to a specific 

binding energy, usually one that is featured in all spectra and is least likely to 

experience a shift. The shift between the ‘experimental’ binding energy of the 

peak and the ‘true’ binding energy value is then applied to all other regions (the 

shift in the Au 4f region can be seen in Figure 2.11). Quite often substrate 

peaks are chosen for calibration (this could include Au 4f7/2 at 84.0 eV, for 

example), but a popular choice in XPS spectra of imidazolium- or phosphonium-

based ionic liquids is calibration to the alkyl chain (C-C) peak in the C 1s region. 

Chemical shifts 

As mentioned earlier, region scans in XPS measure the number of electrons 

over a relatively narrow binding energy range. The exact range will vary from 

region to region (and depending on the core level peak/doublet of interest). 

Photoelectrons from the same element, but in non-equivalent atoms, will 

produce peaks at slightly different binding energies. This is known as chemical 

shift. The direction of the shift (i.e. to higher or lower binding energy) depends 

on the nature of the difference between atoms. For example, the O 1s signal in 

nitrogen-doped TiO2 is lower in binding energy than that of undoped TiO2 [13]. 

Sample charging 

In samples with poor electrical conductivity (such as insulator materials or 

viscous ionic liquids), charge can gather in the sample and cause artefacts in 

the XPS spectra. These include unusual binding energy shifts (usually of 

several to tens of eV) and peak broadening. Sample charging can be offset 

using an electron flood gun or reducing the thickness of the sample material. 

Surface sensitivity of XPS 

While X-ray photons can penetrate deep into a sample, the depth from which 

photoelectrons can escape the sample is limited by their inelastic mean free 

path (IMFP). The intensity of photoelectrons are attenuated according to the 

Beer-Lambert law: 

 I = I0 exp � -d
λ sin α

� (2.03) 
 

Where λ is the inelastic mean free path length, α is the angle at which the 
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photoelectrons exit the sample (relative to the surface), I0 is the initial intensity 

and I is the intensity of the photoelectrons after travelling through a vertical 

distance d through the sample. Using Equation (2.03), the angle at which 

electrons escape from the sample can be used to determine the vertical 

distance they have traversed in the sample (i.e. sampling depth). 95% of the 

photoelectrons measured in XPS will have been produced approximately 3λ 

distance into the sample. The smaller (more grazing) the photoemission angle 

probed (0° < α < 90°), the more surface-sensitive the resultant XPS 

measurements. 

 

Figure 2.12: Mean free path (in monolayers) for the inelastic scattering of photoelectrons as a 
function of their kinetic energy [14]. 

The inelastic mean free path of an electron is dependent on its kinetic energy, 

which is illustrated by the IMFP curve shown in Figure 2.12. This is the IMFP, 

plotted on the y-axis in monolayers, as a function of electron energy in eV. The 

curve has a minimum at ~100 eV, where the mean free path is only a few 

monolayers. To obtain the most surface-sensitive information, electrons with a 

kinetic energy of ~100 eV (and thus with a minimum value of IMFP) are ideal. 

Therefore, for variable X-ray sources, such as synchrotrons (see Section 2.9 for 
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more details about synchrotron radiation and synchrotron facilities), photon 

energies should be selected that will produce photoelectrons with kinetic 

energies of ~100 eV. 

2.4 Near-ambient pressure X-ray photoelectron 

spectroscopy (NAPXPS) 

 Introduction 

At the basic level, near-ambient pressure XPS (NAPXPS) and XPS carried out 

in UHV operate on the same physical principles. The technique still involves X-

rays incident on a sample, and photoelectrons are still emitted from the sample 

surface, but in NAPXPS, this process no longer requires vacuum conditions to 

be measured. While the idea of NAPXPS has been around for several decades, 

it is only because of the comparatively recent advancement of transfer optics 

that allows NAPXPS hemispherical analysers to acquire feasible electron 

signals.  

 Experimental setup for NAPXPS 

The key differences between XPS in UHV and XPS under NAP conditions lie in 

the experimental set up. The components that allow NAPXPS to be carried out 

are the NAP cell and the transfer optics. 

 

Figure 2.13: A schematic diagram of a NAP cell and differential pumping is shown in (a) with the 
sample surrounded by gas. The apertures are annotated inside the differential pumping system 

that is attached to the HSA in the schematic diagram shown in (b). Figure adapted from [15]. 
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NAP cell 

For NAPXPS measurements, the sample is housed inside a NAP cell, where a 

near-ambient pressure gas surrounds the sample, as shown in Figure 2.13. 

Incident X-rays enter the NAP cell through an X-ray window. The X-ray window 

is typically coated in a Si3N4 membrane 50 μm or 100 μm in thickness. The 

window serves to prevent gas leakage from the NAP cell to the X-ray source, 

which is under UHV. The X-ray housing is mounted on bellows (with the X-ray 

window at the end of the bellows) for ease of alignment. The source is typically 

positioned ~10 mm away from the sample. 

Photoelectrons emitted from the sample can experience both elastic and 

inelastic collisions with the gas molecules as they travel through the gas. The 

mean free path of photoelectrons is proportional to their kinetic energy and is 

inversely proportional to the gas pressure inside the NAP cell. This requires the 

first aperture to be at a suitable distance from the sample in order to maximise 

the photoelectron yield (typically in the range of tens of μm). The first aperture is 

conical, and has a diameter of 1 mm or less (the conical apertures are 

detachable and are available in different sizes). Photoelectrons that have 

successfully exited the NAP cell through the first aperture travel through a 

series of differentially pumped chambers.  

Transfer optics 

In the first two chambers after leaving the NAP cell, the photoelectrons are 

focussed by two sets of electrostatic lenses into the third chamber. These first 

two chambers are pumped by turbomolecular pumps to bring them down to 

lower pressures extremely quickly. As illustrated in Figure 2.13a, the second 

chamber has a lower pressure than the first. In the third chamber, a quadrupole 

directs the photoelectrons toward the entrance of the HSA. The third chamber is 

pumped using an ion pump bring the pressure down even further, to the 

extremely low-pressure conditions required by the HSA. This differential 

pumping system allows the NAP cell to sustain a comparatively high pressure 

while the HSA is under UHV. 
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 Near-ambient pressure photoelectron spectra 

 

Figure 2.14: C 1s NAPXPS spectrum, featuring a sample of trihexyl-tetradecyl phosphonium 
benzimidazolide under UHV conditions (dotted line) and under 5 mbar of CO2 (solid line). The 

CO2 peak, appearing at ~293.1 eV, is annotated. 

The spectra produced by NAPXPS are much the same as those produced by 

XPS under UHV (and thus can usually be background-corrected, normalised 

and BE calibrated in the same way), but possess some differences. Gas 

molecules surround the sample and are, too, illuminated by incident X-rays. 

Like the atoms in the sample, a transfer of energy occurs from the X-rays to the 

electrons in the constituent atoms of the gas molecules, which results in 

photoemission. This produces a signal, or multiple signals depending on the 

composition of the NAP environment, known as gas-phase features. 

Gas-phase features 

Peaks produced by the gas inside the NAP cell are typically separated from 

other features by several eV. This is demonstrated by the CO2 peak in the 

example spectrum in Figure 2.14. The intensity of the gas-phase features is 

dependent on the gas pressure surrounding the sample, so a greater gas 

pressure results in a more intense the gas-phase peak.  

Gas-induced attenuation 
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The counts per second measured for NAPXPS are much lower than that of 

ordinary XPS because of the short mean free path of electrons at high 

pressures, meaning a proportion of electrons are lost before they even enter the 

first aperture. However, as mentioned previously, electrostatic lenses that are in 

place between the apertures focus the electrons and maximise the 

photoelectron yield. Fewer electrons reaching the detector results in lower 

counts, and spectra with reduced signal-to-noise ratio. This is evident in the 

example spectrum in Figure 2.14. 

2.5 X-ray absorption spectroscopy (XAS) 

 Introduction 

X-ray absorption spectroscopy (XAS) probes the unoccupied electronic states 

of atoms. In XAS and related spectroscopies, electrons are excited rather than 

ejected from the surface, which differentiates it from XPS. It can be used to 

investigate the chemical environments of a sample, as well as the structure and 

arrangement of resonant structures on a sample.  

 Theory 

An incident X-ray photon with energy hν excites a core electron into an 

unoccupied state. The greater the incident X-ray photon energy, the greater the 

energy of the unoccupied states that can be probed. The incident X-ray photon 

will be attenuated by the material it is probing according to the Beer-Lambert 

equation (see Equation (2.04)), where I0 is the initial intensity of the incident X-

ray, µ is the X-ray linear absorption coefficient, x is the thickness of the sample, 

and I is the attenuated intensity of the X-ray photon. The X-ray linear absorption 

coefficient is therefore defined as the reciprocal of the sample thickness (x) to 

reduce the intensity of the incident X-ray by a factor of 1/e. The coefficient 

increases with atomic number (approximately Z4), and, generally, decreases 

with increasing X-ray photon energy (approximately E-3) [16]. 

 I = I0 exp(-μx) (2.04) 
 

At particular energies, there is a drastic increase in the absorption coefficient of 

a sample, distinguished by a discontinuity, or sharp ‘dip’ in the absorption 

coefficient as a function of X-ray energy (see Figure 2.15). This increase in 



72 
 

absorption is known as the absorption edge and occurs when the incident X-ray 

photon is of a sufficient energy to result in an electron transition from a core 

state to an unoccupied state. The absorption edges are denoted as K-, L-, M-

edges which correspond to transitions involving electrons from K (n = 1), L (n = 

2), M (n = 3) subshells. 

 

Figure 2.15: Absorption coefficient (in µm-1) as a function of photon energy in eV (a) for 
beryllium (red), silicon (yellow), and lead (blue). The absorption edges arise from electron 

transitions with just sufficient energy to liberate an electron from a core orbital to a continuum 
state. Example transitions are shown in (b) with X-ray notation on the left and spectroscopic 

notation on the right (see Section 2.6.2 for more information about these notations) [16]. 

When the hole that is left behind by the excited electron is filled, this results in 

the loss of energy (de-excitation) via either the emission of an X-ray (X-ray 

fluorescence) or emission of an Auger electron (see Figure 2.16). In XAS, either 

X-rays or Auger electrons can be collected to gain information about the surface 

(corresponding to fluorescence yield XAS and electron yield XAS respectively). 

Because of the relatively short mean free path of electrons (see Section 2.3.4), 

Auger yield XAS can be considered more surface-sensitive than fluorescence 

yield XAS. 
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Figure 2.16: Schematic diagram demonstrating the spectator and participator decay processes 
as a result of electronic transition to an unoccupied orbital. The spectator and participator Auger 
electrons are emitted with a unique kinetic energy independent of the energy of incident X-ray 
photon, hν. The energy of the X-ray photon emitted via spectator fluorescence is given by hν’ 

and is less than that of the incident X-ray photon, while the X-ray photon emitted via participator 
fluorescence is the same as the incident X-ray photon. The labels HOMO and LUMO stand for 

highest occupied molecular orbital and lowest unoccupied molecular orbital respectively. 

In Auger electron emission, an electron from a valence state fills the core hole. 

The energy released by the newly-filled core hole is transferred to another 

electron. If the energy transferred is enough to liberate that electron, it is then 

emitted as an Auger electron with a specific kinetic energy. For molecules 

consisting of lighter atoms (atoms with low atomic number, Z), Auger emission 

is the most dominant energy-loss method. For organic molecules, the 

absorption edges of interest require soft X-rays (<1000 eV). It is also worth 

noting that the kinetic energy of an Auger electron is independent of incident X-

ray photon energy. Auger features often appear in XPS spectra depending on 

the energy of the incident X-ray photons. If a binding energy spectrum is taken 

at different photon energies, the Auger peaks will shift but the photoemission 

peaks will not (an example of this is featured in Chapter 5). 
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2.6 Near-edge X-ray absorption fine structure (NEXAFS) 

spectroscopy 

 Introduction 

 

Figure 2.17: XAS spectrum (absorption cross section as a function of photon energy in keV) 
over the K absorption edge of germanium, highlighting the energy regions covered by near-

edge X-ray absorption fine structure (NEXAFS) spectroscopy (labelled XANES in the figure due 
to the use of hard X-rays) and extended X-ray absorption fine structure (EXAFS) spectroscopy. 

Adapted from [8]. 

Studying XAS features near absorption edges is known as near-edge X-ray 

absorption fine structure (or NEXAFS) spectroscopy, where significant 

variations in the X-ray absorption coefficient of a material occur at energies 

close to an absorption edge (and usually in the soft X-ray range, somewhat 

distinguishing it from its hard X-ray sibling, X-ray absorption near-edge 

spectroscopy, or XANES). Therefore, the scanned energy range is only around 

30 eV to 50 eV above the absorption edge. On the other hand, extended X-ray 

absorption fine structure, or EXAFS; investigates regions in the range of 50 eV 

to 1000 eV above the absorption edge. Example energy ranges are displayed in 

Figure 2.17 for EXAFS and XANES spectrum of germanium. 

 Theory 

Spectroscopic notation versus X-ray notation 

Both spectroscopic and X-ray notation describe electronic transitions. In X-ray 

photoelectron spectroscopy (XPS), spectroscopic notation is often employed, 

and reflects the origin of photoelectrons collected during measurements. As 

mentioned previously in Section 2.3.2, the spectroscopic notation is of the form 

nlj, where n is the principal quantum number, l is the orbital angular momentum 
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quantum number and j is the total angular momentum quantum number, which 

incorporates the orbital angular momentum and spin quantum numbers. 

X-ray notation, on the other hand, uses capital letters K, L, M, N, O etc. to 

denote the principal quantum number (i.e. K corresponds to n = 1, L 

corresponds to n = 2, and so on), and are sometimes known as shells. These 

are sometimes followed by a subscripted number to denote a specific state 

within the shell (and thus states within the shells are called subshells), which 

increases according to how closely bound the electrons are within the subshell. 

For example, the 2s level is denoted in X-ray notation as L1, 2p1/2 as L2, 2p3/2 

as L3, and so on. Core states, such as those within the K or L shell, are 

sometimes represented by C for simplicity. Valence states are often 

represented by the letter V due to their closeness in energy to one another, as 

the energy of one valence state difficult to distinguish from another and 

assumed to be of the same energy and one state. 

While spectroscopic notation is favoured in XPS, X-ray notation is particularly 

useful when considering Auger electrons, since multiple electronic transitions 

can be expressed in a much simpler way. For example, the generation of a 1s 

core hole in an aluminium atom followed by the transition of an electron from 

the 2p3/2 orbital to fill the core hole would be denoted in spectroscopic notation 

in two parts: the production of the ionised Al, and the electronic transition from 

2p3/2 to 1s: 

Ionisation: 1s22p6 → 1s12p6 

Transition: 1s12p6 → 1s22p5 

In X-ray notation, the transition would be represented as a KL3 transition. If this 

transition results in an Auger emission from the 2p1/2 orbital, the electron would 

be referred to, in X-ray notation, as a KL3L2 Auger electron [9]. 

Ionisation potential and dipole selection rule 

The ionisation potential is defined as the energy required to liberate an electron 

from a core level to the continuum of free states (located above vacuum level, 

as shown in Figure 2.15b). The X-ray absorption cross section of an atom or 

molecule is defined as the number of electrons excited per unit time divided by 

the number of incident X-ray photons per unit time per unit area. This quantity, 
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therefore, has the units of cm2 or barn (where 1 barn = 1×10-28 m). This is an 

important aspect in X-ray absorption spectra in general, but is also important in 

understanding the shape of NEXAFS spectra. When the excitation energy 

approaches that of the ionisation potential, the absorption cross section 

approaches the value for electron transition to continuum states, rather than 

bound states [17]. At the ionisation potential, it follows that the cross section is 

then equal to that of the continuum cross section. The absorption cross section, 

derived from Fermi’s ‘Golden Rule’, incorporates a number of approximations in 

order to simplify quantum mechanically. One important approximation is the 

electric dipole approximation, which at its core is the dipole selection rule, 

which, among others, is given by: 

 Δl = ± 1 (2.05) 
 

Of relevance to this thesis are X-ray absorption spectra above the K-edge. So, 

this rule implies that, for K shell excitations (with an electron initially in an s 

orbital, and l = 0), the final state must contain a p orbital (where l = 1). 

Transitions forbidden by the dipole selection rules (such as s-s or p-p 

transitions) have implications for NEXAFS spectra, and may provide non-

negligible contributions [8]. 

Molecular orbitals 

Atomic orbitals consist of the culmination of all electron orbitals. Each orbital is 

the solution of a Schrödinger equation, where the potential arises from both 

attraction to the nucleus and repulsion from neighbouring electrons in their own 

orbitals. Molecular orbitals can be considered a linear combination of atomic 

orbitals. Using a homonuclear diatomic molecule (such as molecular hydrogen, 

or H2) as an example, the molecular orbitals are formed from a combination of 

1s atomic orbitals by addition or subtraction [18]. In the case of a heteronuclear 

diatomic molecule (i.e. a molecule made up of two different atoms), the relative 

energy of the atomic orbitals results in the molecular orbitals located more on 

one atom than the other. This causes a net charge transfer across the molecule 

if electrons populate the orbital. Bonding molecular orbitals have a lower energy 

than the atomic orbitals that combine to create them. Antibonding molecular 

orbitals have a higher energy than the atomic orbitals that combine to create 
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them. This is illustrated in Figure 2.18. Therefore ψ1 is an antibonding molecular 

orbital and ψ2 is a bonding molecular orbital. 

 

Figure 2.18: Schematic energy level diagram illustrating the interaction of two atomic orbitals 
inside a homonuclear molecule (top) and a heteronuclear molecule (bottom), each combining 

together to form molecular orbitals in the linear combination method. The shapes represent the 
probability distribution of electron position in each atom/molecule. Figure adapted from [17]. 

Wavefunctions associated with atomic orbitals describe the probability 

amplitudes of the position of an electron in that orbital. The wavefunctions 

correspond to an energy and a shape which determines how atomic orbitals 

interact. The shapes of atomic s- and p-orbitals are shown in Figure 2.19. 

Atomic s-orbitals have a ‘spherical’ symmetry, and atomic p-orbitals can have 

symmetry in either the x, y, or z axis; and thus these p-orbitals can be 

distinguished from one another by a subscript x, y, or z to denote their 

symmetry. 

 

Figure 2.19: Shape of probability distribution for s- and p-orbitals. Figure adapted from [18]. 
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Origin of bonding and antibonding σ and π molecular orbitals 

The combination of atomic orbitals influences the shape and energy of the 

resultant molecular orbitals and the bonding between atoms [18]. Example 

combinations using 2p atomic orbitals of two homonuclear atoms are shown in 

Figure 2.20. 

 

Figure 2.20: Example combinations of atomic 2pz and 2py orbitals of two atoms, A and B, to 
generate bonding and antibonding σ and π molecular orbitals. Figure adapted from [19]. 

An asterisk as a suffix denotes antibonding molecular orbitals. Molecular 

orbitals that are involved in K shell excitations are the σ* and π* orbitals, which 

are unoccupied antibonding σ and π orbitals. Features observed in K-edge 

NEXAFS spectra correspond to a dipole-allowed electronic transition from a 1s 

orbital to an unoccupied π or σ antibonding orbital [17]. Molecular σ orbitals 

arise from s-s or pz-pz atomic orbital interaction. Molecular π orbitals arise from 

px-px or py-py atomic orbital interaction. The bonds that form from σ and π 
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orbitals are known as σ- and π-bonds respectively. Examples are shown in 

benzene in Figure 2.24. 

 

Figure 2.21: Schematic potential (bottom) and the resultant K-edge NEXAFS spectrum (top) of 
a diatomic molecule. The potential wells of each atom in the molecule combine, where the 
molecular orbitals reside, labelled as valence states. Beyond the Rydberg states and the 
vacuum level lie the continuum states, and the centrifugal barrier (the magnitude of which 

depends on the angular momentum quantum number l of the atom or molecule) separates the 
inner potential wells (which includes the core and valence levels) from the shallower outer wells. 

In the spectrum (top), the π* features appear below the ionisation potential (IP), and the σ* 
features appear above the IP. Figure adapted from [17]. 

Figure 2.21 shows a potential well diagram of a generic diatomic molecule 

(bottom) and the K-shell spectrum of the molecule (top). Above the vacuum 

level are continuum states. In a neutral molecule, the π* and σ* orbitals are 

above vacuum level, but ionisation/excitation of an electron from a core level 

(and thus the generation of a core hole) leads to an increase in Coulomb 

potential between the nucleus and the remaining electrons. Consequently there 

is a shift toward higher binding energy for the outer orbitals, and thus the 

excitation energy required for a transition from a 1s orbital to a π* orbital is 

below the ionisation potential. Rydberg states arise from bound state transitions 
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involving states below the vacuum level. Transitions to Rydberg states are 

responsible for the sharp features below the IP in the spectrum [17]. 

 Experimental setup for NEXAFS 

The experimental setup for NEXAFS depends on the yield detection method. 

Two types exist: electron yield and fluorescence yield. As mentioned in the 

introduction to this Chapter, Auger electron-yield NEXAFS was used in Chapter 

5. 

Electron yield NEXAFS can be measured in three ways: Auger electron yield 

(AEY), partial electron yield (PEY), and total electron yield (TEY). PEY and TEY 

are often taken in tandem with AEY, but have different window settings (kinetic 

energy ranges) to one another, as shown in Figure 2.22. 

 

Figure 2.22: A combined energy level diagram (left to right) and example photoemission spectra 
at different incident photon energies (right side). In (a), the photon energy is below the excitation 

energy of the core level A, but is above the excitation energy for photoemission from the core 
level of B. In (b), the photon energy is sufficiently above the absorption threshold of A, which 

results in an Auger peak and a shift in the photoemission spectrum. In (c), the photon energy is 
beyond the threshold, and results in a photoemission peak from A and B, as well as the 

emergence of the valence band, VB. The Auger peak, independent of incident photon energy, 
appears at the same kinetic energy as it does in (b). The yield window settings (bottom) 

illustrate the energy window that is probed in Auger yield, partial yield, and total yield detection. 
Figure adapted from [17]. 
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As the name suggests, in AEY, the window selected spans a narrow range 

around the Auger peak of interest. In PEY, the detector detects electrons with a 

kinetic energy above a threshold kinetic energy limit, Ep (see Figure 2.22), and 

uses a biased grid to decelerate electrons below that limit. For a specific value 

of Ep, photoemission peaks from the substrate can be omitted from the 

spectrum. While the count rate is higher for PEY than AEY, the signal-to-noise 

ratio is reduced. In TEY, all electrons are detected via the drain current using an 

ammeter. An inelastic ‘tail’ (a convolution of signals from low energy electrons 

of kinetic energy < 20 eV) dominates the resultant spectrum. Although the count 

rates of TEY spectra are high, their signal-to-background ratios are typically 

very small [17]. Of all the electron-yield methods, TEY is less surface sensitive 

than AEY and PEY due to the wide range of electron energies. 

 NEXAFS spectra 

 

Figure 2.23: Example partial-yield C-K edge NEXAFS spectrum recorded from a sample of 
carbon monoxide on a molybdenum (110) single crystal (a), illustrating background correction 

using a spectrum recorded from the clean Mo (110) single crystal (c). The corrected spectrum is 
annotated with the label (a)/(c). Also illustrated is the spectrum ‘step’, shown by the double-

headed arrow in the bottom panel. Figure adapted from [17]. 

Figure 2.23 shows an example K-edge NEXAFS spectrum for carbon monoxide 

on a molybdenum (110) single crystal surface. In order to quantify the angular 

direction of resonant structures at the surface of a substrate, the spectra need 

to be background-corrected and normalised. 

Background correction and normalisation 
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Correcting the background of a NEXAFS spectrum requires a NEXAFS 

spectrum recorded of the clean substrate over the same photon energy range, 

ideally with the same energy step size. The clean spectrum should have a 

similar shape and ‘step’ as the general background of the spectrum or spectra 

taken from the sample. The background correction is done by dividing the 

NEXAFS spectrum of the sample by the NEXAFS spectrum of the clean 

substrate. This has multiple benefits: dividing by the clean spectrum 

compensates for aberrations in the monochromator and the detector. However, 

any instabilities in the X-ray source will remain in the spectrum if not 

compensated for through multiple measurements [17]. 

Following substrate correction, the baseline of the sample spectrum is then 

shifted to zero intensity. The spectrum can then be normalised to the size of the 

spectrum ‘step’ (see Figure 2.23). This allows relative changes in the intensity 

of the π* and σ* features to be observed. 

Identifying orientation of molecules on surfaces 

 

Figure 2.24: Example NEXAFS spectra demonstrating the dependence of the alignment of 
electric field vector of the incident X-ray beam in determining the direction of the molecular 

orbital vector relative to the sample surface. On the left shows transitions of an electron from the 
C 1s core level to either the π* or σ* orbital in benzene (ring structure of carbon and hydrogen). 

On the right shows the resultant C K-edge NEXAFS spectra. The top spectrum is with the 
electric field vector aligned ‘out-of-plane’ of the benzene ring, and thus displaying π* features. 

The bottom spectrum is with the electric field vector aligned ‘in-plane’ of the benzene ring, 
displaying σ* features [20]. 
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X-rays are EM radiation, and are, therefore, made up of an electric field and a 

magnetic field, which are perpendicular to one another, and are perpendicular 

to the direction of travel. The electric field of the incident X-ray will interact with 

the π* and σ* orbitals of the adsorbed molecule on the surface of the substrate. 

The electric field vector will be more closely aligned to either the σ* or π* orbital 

(see Figure 2.24), and, therefore, NEXAFS spectra must be recorded at various 

angles (ideally one with the incident X-rays 90° to the substrate surface, and 

one at a more grazing incidence angle). Measurements recorded at different 

angles will result in concomitant intensity changes in the features associated 

with the σ* and π* orbitals, as the electric field interacts more strongly with one 

orbital more than another. 

2.7 Scanning electron microscopy (SEM) and energy-

dispersive X-ray (EDX) spectroscopy 

 Introduction 

Scanning electron microscopes use electrons to map out the morphology of 

sample surfaces. Because they use electrons to image samples, they require 

vacuum conditions to operate. The advantage of an electron microscope is a 

small wavelength allowing for nanoscale (of the order of nanometres (nm), or 

10-9 m) resolution, allowing supported nanostructures (i.e. nanostructures 

immobilised on a substrate) to be imaged with ease. Energy-dispersive X-ray 

spectroscopy often accompanies SEM analysis. This involves analysing X-rays 

of characteristic energies emitted by the samples studied, which gives an 

insight into the chemical composition of the sample. 

 Theory 

In SEM, electrons are emitted from a filament and accelerated via an electric 

field toward an anode. The wavelength, λ (in m), of the electron is given by the 

de Broglie equation: 

 λ = 
h

mv
 (2.07) 

 

Where h is Planck’s constant (6.62×10-34 kgm2s-1), m is the mass of the electron 

(9.11×10-31 kg), and v is the velocity of the electron. The velocity can be 
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determined by the acceleration voltage (V), and the electron charge (q, and is -

1.6×10-19 C): 

 v2=
2qV
m

 (2.08) 

 

Equation (2.08) can be rearranged and inserted into the de Broglie equation, 

which gives: 

 λ=
h

�2qVm
 (2.09) 

 

Electrons in the range of 10-30 keV are typically used, which corresponds to 

wavelengths in the range of 0.01 Å to 0.1 Å. 

 

Figure 2.25: Diagram showing the resultant particles from the interaction between the primary 
electrons and a sample in SEM/EDX. 

A narrow beam of electrons is created by focusing the electrons using 

electrostatic or magnetic lenses. The beam then traverses a given area of a 

sample. Electrons in the electron beam (also known as primary electrons) 

produce secondary electrons or backscattered electrons in the sample (see 

Figure 2.25). Secondary electrons are produced as a result of the primary 

electrons colliding inelastically with electrons in the atoms of the sample. The 

energy transferred from the primary to the secondary electrons needs to be 

greater than that of the work function of the sample in order for emission to 

occur. Backscattered electrons are produced by elastic collisions between the 

primary electrons and the nuclei of the sample atoms. Backscattered electrons 

are emitted from the surface with the same energy as the primary electrons, 
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and are emitted at a variety of angles [21]. Depending on the desired image, 

either the secondary or backscattered electrons are collected by a detector. 

EDX analysis, on the other hand, detects X-rays generated via de-excitation of 

core electrons. Primary electrons transfer energy to core electrons, causing 

excitation. The core electron loses energy via de-excitation, which can result in 

the emission of a photon in the X-ray energy range. This is fluorescence, similar 

to that described in Section 2.5.2, but with electrons causing excitation rather 

than X-ray photons. The energy of the emitted X-ray is element-specific, and is 

detected as a pulse in a multichannel analyser. The information then forms a 

spectrum. 

 Experimental setup for SEM/EDX 

A scanning electron microscope is a single vertical column system, with EDX 

and electron detector attachments (see Figure 2.26). Inside the column is an 

electron gun, several sets of electrostatic lenses, and scanning coils. The 

electrons are produced in the electron gun by applying a high voltage across a 

specially coated tungsten filament. Electrons emitted by the filament are 

focussed by the lenses, generating a beam of electrons (primary electrons), 

with a diameter between tens and hundreds of nanometres. The primary 

electrons pass through a series of scanning coils that direct the beam with 

nanoscale precision using electrically induced magnetic fields. The electrons 

exit the column and enter the sample chamber, where they impinge on the 

sample surface. Secondary/ backscattered electrons are collected separately to 

X-rays. 
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Figure 2.26: Schematic diagram of a typical scanning electron microscope. The dotted line 
represents the path of the primary electrons. 

Secondary/backscattered electrons are collected by the detector in slightly 

different ways. Secondary electrons are typically weaker than backscattered 

electrons, and in order to produce an image using information gathered from 

secondary electrons, they must be separated from others by applying a small 

negative bias to the transducer housing. 
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Figure 2.27: Schematic diagram illustrating the components inside an EDX analyser. 

X-ray photons that are emitted from the sample are collected by the EDX 

detector (a schematic diagram of which is shown in Figure 2.27). The incoming 

X-ray photons enter first through a window. While contemporary EDX 

instruments are windowless or have ultrathin windows, some older instruments 

are equipped with beryllium windows, which can impede the low energy X-rays 

and stop them from reaching the analyser. This can limit in-depth quantitative 

analysis of organic materials, including ionic liquids. Once the X-ray enters, it 

hits the detector, which houses a silicon/lithium wafer. Inside the Si or Li wafer, 

the X-ray photon is absorbed, and transfers enough energy to promote several 

thousand electrons into the conduction band. These electrons are detected as a 

pulse, with a current proportional to the energy of the incident X-ray photon. The 

pulse is converted to a voltage and amplified by a field effect transistor that is 

cooled with liquid nitrogen, and an amplifier. The signals produced by the field 

effect transistor are sorted according to energy and stored in a corresponding 

channel in a multichannel analyser. A spectrum of counts as a function of 

energy is then outputted. 

2.8 Low energy electron diffraction (LEED) 

 Introduction 

Low-energy electron diffraction (LEED), as the name suggests, uses low-energy 

electrons (typically in the range of tens of eV) to study the surface structure of a 

sample, in particular the crystallographic structure. It is a useful tool in 

determining the cleanliness of single-crystal substrates. 
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 Theory and experimental setup for LEED 

An electron beam of variable energy is generated by an electron gun, with 

energy between 20 eV and 200 eV. The incident electrons hit the sample and 

are backscattered onto a grid (see Figure 2.28). 

 

Figure 2.28: Example setup for LEED. The low energy electrons incident on the sample are 
backscattered. Elastically backscattered electrons make it through the grid, while inelastically 
scattered electrons do not. The electrons that make it through the grid and hit the fluorescent 

screen generate a LEED pattern. 

The electrons that scatter elastically produce a pattern on a fluorescent screen 

beyond the grid. As expressed in de Broglie’s equation (Equation (2.07)), the 

wavelength of these low energy electrons is comparable to atomic spacing. This 

is a prerequisite for diffraction to occur from the sample atoms. 

The pattern produced by the elastically-scattered electrons illustrates the 

sample lattice in reciprocal space, which can be used to elucidate the lattice in 

real space. Since the energy of these electrons is low, LEED is a surface-

sensitive technique (see Section 2.3.4 for more about the surface sensitivity of 

electrons). Samples with few surface defects and long-range order produce 

LEED patterns with sharp, clear diffraction spots [1, 22]. Samples with a heavily 
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defective surface will produce LEED patterns with diffuse and blurry diffraction 

spots [23]. 

2.9 Synchrotron radiation 

 Introduction 

Synchrotron radiation (SR) is EM radiation emitted from an accelerated charged 

particle in a circular orbit. At synchrotron facilities, SR is typically produced by 

electrons accelerated at close to the speed of light in a circular storage ring. SR 

can produce radiation from the infrared (λ ~10-5 m) to the hard X-ray region (λ 

~10-10 m), and is thus considered a tuneable source of radiation. SR is useful 

for techniques utilising soft X-rays, since SR is more intense than that produced 

by typical laboratory sources, particularly in the X-ray region. It is also 

particularly useful for a technique like NEXAFS where a range of X-ray photon 

energies is necessary to carry out the measurements. It is also beneficial for 

XPS since a desired surface sensitivity can be achieved by tuning the energy of 

the incident X-ray photons, which affects the kinetic energy and IMFP of the 

photoelectrons, and therefore the depth from which they can originate and 

successfully escape the sample. 

 Production of synchrotron radiation 

Electrons are accelerated in a circular orbit in the storage ring, directed by 

dipole magnets, in order to produce SR. The acceleration of the electrons in a 

circular orbit under the influence of a magnetic field can be expressed using the 

Lorentz equation: 

 
dp�
dt

= e�E�+
v� × B�

c
� (2.10) 

 

Where p�, e, and v� are the momentum, charge and velocity of the electrons, c is 

the speed of light, and B� and E� are the magnetic and electric fields respectively. 

The power radiated (P) by the electrons moving with a radius of curvature R, at 

relativistic velocities is proportional to E4, 1/R2 and 1/me4, where E is the energy 

of the electrons and me is the electron rest mass (which is 0.511 MeV). This 

therefore means that, to produce higher energy electrons, the radius of the 

storage ring must decrease. This, in turn, means more SR emitted by the 
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electrons. In order to keep the electrons at a constant energy, their energy can 

be replenished using radio frequency (RF) cavities. Inside the RF cavity is a 

longitudinal electric field that accelerates the electrons [8]. 

The main features of a SR facility are outlined below, starting with how the 

electrons are generated, followed by the SR generation process using a linear 

accelerator (linac), a booster ring, and a storage ring. Also described are 

beamlines and end stations, which utilise the SR emitted by the electrons in the 

storage ring. 

 

Figure 2.29: Schematic diagram of a typical synchrotron radiation (SR) facility. The orange lines 
inside the linac, booster ring, and storage ring represent the path of the accelerated electrons. 
The yellow lines inside the beamlines represent the path of the SR emitted by the accelerated 

electrons inside the storage ring. 

Electron generation and linear accelerator 

A schematic diagram of a synchrotron facility is shown in Figure 2.29. Before 

electrons enter any kind of circular orbit, they first need to be produced by 

heating a filament. These electrons are then accelerated along a linear 

accelerator (linac) to approximately 100 MeV where they are then injected into a 

booster ring. 
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Booster ring 

Electrons in the booster ring are brought up to an energy where they can be 

periodically injected into the storage ring. Modern SR facilities ‘top up’ the 

electrons in the storage ring by frequent injections of a small number of 

electrons from the booster ring. This simultaneously maintains a steady current 

in the storage ring, which means continuous user operation without the need for 

suspending experiments, or risking damage to X-ray optical components from 

SR intensity changes [16]. 

Storage ring 

Once electrons are injected into the storage ring, they are accelerated for a 

number of hours under high vacuum. The storage ring directs the electrons in a 

circular orbit with a network of magnets. Dipole magnets direct and bend the 

beam to generate the circular trajectory (they are also known as bending 

magnets). Quadrupole magnets are used to compensate for Coloumb repulsion 

and focus the beam of electrons. Sextupole magnets correct any aberrations 

caused by the quadrupole focusing of the electrons [16]. The energy of the 

electrons in the storage ring is of the order of GeV. The storage ring also 

contains insertion devices (see Section 2.9.3) which produce more intense SR 

than the bending magnets. 

Beamlines and end stations 

The electrons lose energy in the form of SR tangentially to the direction of orbit. 

SR is harnessed on beamlines that are tactically positioned, tangentially to the 

storage ring. On a typical beamline, the SR traverses through a series of optics 

(with specifications relevant to the experiments conducted on the beamline) and 

a monochromator, filtering the desired SR toward the end station. At the end 

station, specialist equipment that utilises the desired SR is set up, where users 

conduct experiments. The ‘front end’ of the beamline (i.e. the part attached to 

the storage ring) is heavily shielded with lead-lined concrete walls to protect 

from high-energy photons (such as γ photons) or high-energy neutrons 

produced by any collisions between the electrons in the storage ring and gas 

molecules. 
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 Insertion devices 

Insertion devices (IDs) are composed of periodic magnetic arrays and are 

designed to increase the intensity and brightness of the SR. When an electron 

passes through the alternating magnetic field, it emits radiation with every 

transverse oscillation. 

There are two main types of IDs: wigglers and undulators. These are both 

outlined below. 

 

Figure 2.30: Electron path inside an insertion device. The parameters α and 1/γ (and thus λ 
according to Equation (2.11)) vary depending on whether the insertion device is a wiggler or an 

undulator. 

Wigglers are composed of a periodic series of magnets, which generate an 

alternating magnetic field in the vertical direction (see Figure 2.30). This then 

causes sinusoidal motion of electrons in the horizontal plane (but perpendicular 

to their direction of motion), and the electron then follows a “wiggling” path. The 

magnets in a wiggler are stronger than the dipole magnets used in the storage 

ring, which increases the spectral range of the SR toward higher energies. 

The differences between a wiggler and an undulator are usually expressed in 

terms of a dimensionless parameter, K, which is simply defined as the ratio of 

the wiggling angle, α, and the natural photon emission angle of the SR, 1/γ: 

 K = αγ (2.11) 
 

In a wiggler, this parameter K >> 1. This means that the amplitudes of the 

transverse oscillations of the electrons are large (and thus α is large), and in this 

case, the interference effects from each pole can be considered negligible. 

Thus, the intensity of the SR emitted due to the wiggler is simply the summation 

of the individual SR contributions at each pole. 
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Undulators are similar to wigglers, but α is closer to the photon natural emission 

angle 1/γ, and therefore K < 1. The amplitudes of the transverse oscillations of 

the electrons are smaller, and interference effects cannot be ignored, and is 

evidenced in the flux of the beamline. The resultant SR has a much higher 

photon flux than SR emitted from wigglers and bending magnets [8, 16]. 

2.10 Instrumentation and synchrotron facilities 

The following subsections outline and describe instrumentation used throughout 

this thesis. Chapters 3 and 4 feature NAPXPS data that was taken using the 

NAPXPS system at the Photon Science Institute of the University of 

Manchester. Chapter 5 uses XPS and NEXAFS data collected at the ANTARES 

beamline at SOLEIL synchrotron facility in France, and at the AU-Matline 

beamline at ASTRID in Denmark. Chapter 6 features XPS data taken on a 

standard Kratos XPS system at the University of Manchester. 

 NAPXPS at the University of Manchester 

The near-ambient pressure X-ray photoelectron spectroscope is located at the 

Photon Science Institute at the University of Manchester. It is a custom-built 

SPECS system, and comprises of a monochromated Al Kα X-ray source (of 

photon energy 1486.6 eV) and PHOIBOS 150 NAP hemispherical analyser. The 

system is equipped with a load lock chamber, preparation chamber, analysis 

chamber, and NAP cell. 
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Figure 2.31: Photograph of the SPECS NAPXPS kit at the University of Manchester. The yellow 
star (between the arrows that point to the NAP cell manipulator and the analysis chamber) 

shows where the wobble stick is attached to the analysis chamber. 

The load lock chamber is equipped with a transfer arm for sample transfers 

from the load lock chamber to the preparation chamber. Inside the preparation 

chamber is a sample manipulator to transfer samples between the preparation 

chamber and the analysis chamber. Attached onto the preparation chamber is a 

modified Knudsen cell (see Figure 2.32) for deposition of ionic liquid. The 

sample manipulator is equipped with a k-type thermocouple attached to the 

sample holder, and spans a sample temperature range of -150°C to 800°C. 
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Figure 2.32: Side view (left) and top-down view (right) of the modified Knudsen cell. Prior to 
being bolted onto the vacuum chamber, a small amount (typically <1 ml) of IL is placed into a 

small quartz vial (not shown) which fits down the central column. The vial is inserted at an angle 
to prevent leaking. The heating element consists of tantalum wire weaved through the column 
wall. The thermocouple, fixed to the column wall by silver epoxy, measures the temperature of 

the column wall. 

The analysis chamber is equipped to perform a variety of measurements on a 

sample including regular (UHV) XPS, ultraviolet photoelectron spectroscopy 

(UPS), mass spectrometry and low energy electron diffraction. The NAP cell is 

brought into the analysis chamber using the sample manipulator (see Figure 

2.33) and ‘docks’ with the PHOIBOS 150 NAP analyser. The wobble stick 

(indicated by a star in Figure 2.31) is used to open the cell initially before taking 

the sample from the manipulator and placing it inside the cell (see Figure 2.34 

for a photograph of the NAP cell inside the analysis chamber). Once the sample 

is securely inside, the NAP cell is then closed up and sealed. 
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Figure 2.33: Model of the NAP cell, with components annotated. Rather than being housed in a 
transport case, the NAP cell resides inside the analysis chamber. 

The PHOIBOS 150 NAP analyser has a mean radius of 150 mm, a nozzle with 

a half-angle of 35° and post-lens apertures of radius 0.4 mm. The lenses, 

analyser and detector are coated in µ-metal to screen external magnetic fields. 

 

Figure 2.34: Photograph showing the NAP cell extended out into the analysis chamber and 
docked to the PHOIBOS 150 NAP analyser. 
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The NAPXPS system can achieve up to 25 mbar in pressure, and available 

gases include H2O, O2, CO, CO2, and NH3. 

 XPS at the University of Manchester 

The X-ray photoelectron spectroscopy kit operated under solely ultra-high 

vacuum conditions is located at the Photon Science Institute of the University of 

Manchester. It is a standard Kratos system, comprising of an Al kα X-ray source 

(hν = 1486.6 eV) and a hemispherical analyser. 

 ANTARES beamline (SOLEIL) 

The ANTARES beamline (A New Tailored Angle REsolved Spectroscopy 

beamline) is located at the SOLEIL synchrotron facility in France. The storage 

ring of SOLEIL has a circumference of 354.1 m, a maximum stored current of 

430 mA, and electron energy of 2.75 GeV. The ANTARES beamline is an 

undulator beamline and provides photons in the energy range of 10 eV to 1000 

eV with energy resolution ΔE/E >1×105 and a photon flux of 1.2×1015 s-1. 

 

Figure 2.35: Annotated photograph of the ANTARES beamline at the SOLEIL synchrotron 
facility in France. 
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The end station on the ANTARES beamline (Figure 2.35) is equipped with a 

SM-PGM monochromator and a Scienta R4000 hemispherical analyser. 

Various techniques can be carried out on the ANTARES beamline, including 

angle-resolved XPS, X-ray absorption spectroscopy, low-energy electron 

diffraction, photoelectron diffraction and resonant photoemission. 

 AU-MATline beamline (ASTRID2) 

AU-MATline (Aarhus University MATerial science beamLINE) is located at the 

3rd generation synchrotron ASTRID2, part of ISA, in Denmark. ASTRID2 has a 

circumference of 45.7 m, a current of 200 mA, and an electron energy of 580 

MeV. AU-MATline is a wiggler beamline able to provide a photon energy range 

of 20 eV to 700 eV, and a typical photon flux of 1×1011 s-1. 

 

Figure 2.36: Photograph of the endstation at the AU-MATline beamline of ASTRID2 (ISA) in 
Denmark. The arrow on the rightmost side shows the direction of the storage ring (out of the 

frame, beyond concrete walls). 

The end station (featured in Figure 2.36) is equipped with a SX-700 

monochromator and a Scienta hemispherical analyser. Techniques that can be 

carried out on this beamline include X-ray photoelectron spectroscopy, low-
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energy electron diffraction, ultraviolet photoelectron spectroscopy, near-edge X-

ray absorption fine structure spectroscopy, and photoelectron diffraction. 

2.11 Experimental considerations in ionic liquid surface 

science 

Experiment-based investigations into the structure and interactions of ILs at 

surfaces and interfaces require a number of factors to be taken into 

consideration. 

 Handling ionic liquids and sample preparation 

Most imidazolium-based ILs are skin irritants and serious eye irritants, requiring 

the use of basic personal protective equipment (which comprises of a laboratory 

coat, nitrile gloves and safety goggles) during handling. Due to their low vapour 

pressures at room temperatures there is minimal risk of inhalation of IL vapours; 

however, ingestion of any kind is acutely toxic. They are also toxic to aquatic life 

with long-lasting effects. 

Because ILs have low vapour pressures, they are capable of being deposited 

on a substrate and degassed under vacuum. However, physical vapour 

deposition (PVD) of ILs onto substrates in vacuo is becoming more popular. 

This involves heating the IL to its evaporation temperature and exposing the 

vapour to the desired substrate. This method is desirable, since the IL can be 

easily treated prior to deposition to remove contaminant species and impurities 

(such as water). This involves heating the IL to a temperature below their 

vaporisation temperature (which for some imidazolium-based ILs is 

approximately 120°C to 180°C) for several hours prior to deposition. 

 Contamination 

Contamination is always a consideration in surface science. Just as 

contamination can influence the surface chemistry of solid samples (such as 

blocking active sites on catalysts), the same principle can apply to ILs. As 

mentioned previously, hygroscopic ILs (such as 1-butyl-3-methylimidazolium 

tetrafluoroborate) tend to absorb some water from the surrounding air [24, 25]. 

Contamination can also originate from the preparation and synthesis of ILs, 

such as silicon grease contamination from glassware sealant [26]. As 
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mentioned in the previous section, most contaminants can be removed from ILs 

via heating before vapour deposition. 

 Damage from prolonged exposure to X-rays 

XPS is sensitive to the chemical environments in samples, which includes 

contaminant species, and species that manifest as a result of damage from 

prolonged exposure to the X-ray beam. In studies using thin films of 

imidazolium-based ILs [27, 28], peaks appeared in the N 1s region at a lower 

binding energy than the imidazolium nitrogen peak. It can be seen in Chapter 

3.4.1 of this thesis that the features associated with beam damage species 

become more intense with longer exposure time, and it is known that thin and 

ultrathin IL depositions are particularly susceptible to X-ray beam damage. This 

can be somewhat mitigated by taking rastered scans (see Chapter 3.4.3 for 

more information).  
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3 Water-Induced Reordering in Ultrathin Ionic 

Liquid Films 

Studying the interface between ionic liquids (ILs) and gases is important for a 

variety of capture, separation and catalysis applications involving gaseous 

materials. The bulk and interfacial structure of ILs are both determined by their 

composite ions, and thus their structure at the IL free interface (i.e. IL/gas, 

IL/vacuum). Since the sorption behaviour of ILs is dependent on this ordering, it 

is imperative to understand how the adsorption of gas molecules influences the 

outer surface of the IL. 

Any IL application that could be potentially used in ambient conditions will, of 

course, be exposed to water vapour. The mechanics of water adsorption on ILs 

are still largely a mystery. There have been a number of studies that have tried 

to answer some of the questions that remain about the IL/water interface, and 

with a variety of techniques of varying surface sensitivities. 

Presented in this chapter is a study of the IL/water interface using an ultrathin IL 

film and a surface sensitive technique that can be operated under ambient 

pressure. This has the dual benefit of realistic pressure and temperature 

conditions and surface sensitivity that is vital for observing phenomena at 

surfaces and interfaces. 

3.1 Introduction 

The natural ionic state and characteristic non-volatility of ILs make them 

promising alternative solvents for homogeneous catalysis [1, 2]. In fact, ILs are 

an integral part of two catalysis concepts: Supported Ionic Liquid Phase (SILP) 

and Solid Catalyst with Ionic Liquid Layer (SCILL) [3, 4]. As described in 

Chapter 1.4.3, SILP catalysis consists of a thin layer of IL containing the 

catalyst 

 is spread over an inert support material that is high-area and porous [5]. SCILL 

is similar, but the catalyst is either a solid material, or is immobilised on the 

support material [6]. The reactions between the catalyst and the gaseous 
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reactants and products take place near the IL/gas interface, so the thin film 

provides the necessary environment and minimises wastage of both the IL and 

the catalyst. SCILL and SILP catalysis are therefore attractive due to their cost-

effectiveness. 

ILs are more structured than most molecular liquids, and their ordering and 

structure is governed by the structure of their constituent ions. Interactions (and 

subsequent structure and ordering) at the IL/substrate interface have been 

investigated previously using ultrathin IL films. A study by Cremer et al [7] 

showed that imidazolium-based ILs display a different morphology at sub-

monolayer coverages on Ni (111) compared to O-precovered Ni (111) 

(specifically Ni (111) with an O(√3×√3)R30° superstructure). They observed that 

on O-precovered Ni, the cation and anion were both in direct contact with the 

substrate, arranged in a checkboard arrangement at the IL/substrate interface. 

However, on Ni (111) the ILs demonstrated a bilayer-type ordering, with only 

the cation in direct contact with the substrate and the anion sat on top of the 

imidazolium ring of the cation. The arrangement of the IL on the Ni surface was 

quite different to that observed for the same IL on Au (111) at similar coverages, 

which instead arranged in a checkerboard formation [3]. Cremer et al also 

observed that the IL tended to couple more strongly to the metallic Ni surface 

than the O-covered Ni surface.  

At the IL/vacuum interface, it has been seen in imidazolium-based ILs that the 

ions order such that the alkyl chains of the cations face out toward vacuum [8-

11], creating a charged under-layer that contains the anions and the 

imidazolium ring of the cations. It is this ordering that is believed to govern the 

gas adsorption and uptake by ionic liquids [12, 13] including that of water 

vapour. One obstacle that has yet to be overcome for the use of ILs in industrial 

applications is their tendency for water capture and uptake. Water has been 

shown to affect the physical properties of ILs [14-16], so this hygroscopic 

behaviour is often problematic. Many of their potential industrial applications will 

be subject to ambient conditions and thus will be, naturally, subject to water 

vapour. While the effect of water on the bulk properties of ILs has been studied 

relatively extensively, there have been few studies into the IL/water interface. 

There are two key concepts associated with the interface that still have yet to be 

understood: transport of water molecules on and through the surface, and the 
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influence of water on IL surface structure. Understanding the mechanics of 

water adsorption at the IL/water interface is not only vital for a first model of gas 

capture in ILs, it is also important to understand the implications the addition of 

water creates for IL thin film applications in ambient conditions. 

In order to observe the IL/water interface in a more realistic environment, in situ 

measurements with high surface sensitivity must be taken. The emergence of 

near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS) facilities 

allows the IL/water interface to be studied with the necessary surface sensitivity 

under more realistic conditions. Discussed in this Chapter are NAPXPS 

measurements of water with a multilayer deposition and and an ultrathin film of 

the water-miscible IL, 1-butyl-3-methylimidazolium tetrafluoroborate, or 

[C4C1Im][BF4]. 

3.2 Experimental section 

Two experiments were conducted to investigate the [C4C1Im][BF4]/water 

interface. The first was an IL deposition on anatase TiO2 (101), where the 

IL/water interface was investigated using two different relative humidities. The 

second was an ultrathin IL deposition on rutile TiO2 (110), where the IL/water 

interface was investigated under one relative humidity, but with multiple 

measurements after exposure in order to study the interactions between 

adsorbed water molecules and the IL surface. 

 

Figure 3.1: Chemical structure diagram of 1-butyl-3-methylimidazolium tetrafluoroborate, or 
[C4C1Im][BF4]. The different carbon environments in the [C4C1Im]+ cation are labelled C1 to C4. 
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3.2.1 Water/IL on anatase TiO2 (101) 

The  IL, [C4C1Im][BF4] (>97%, Sigma Aldrich), was degassed in a modified 

Knudsen cell by heating to 393 K for three hours to remove water and other 

impurities (the chemical structure of the IL is shown in Figure 3.1). The 

substrate, an anatase TiO2 (101) single crystal (5 mm × 5 mm, PI-KEM), was 

mounted onto a Ta sample plate using spot-welded Ta strips. The anatase TiO2 

crystal was cleaned via Ar+ sputter/anneal cycles until the preliminary ultra-high 

vacuum (UHV) XPS spectra showed no contamination. To deposit the IL it was 

heated to 460 K and deposited via vapour deposition on the crystal surface, at 

room temperature under UHV conditions, for 30 minutes. 

 

Scheme 3.1: Regimes as part of the investigation into water/[C4C1Im][BF4] on anatase TiO2 
(101). 

Using the intensity of the O 1s peak before and after deposition, it was 

calculated that the IL deposition was 109 Å thick, corresponding to 

approximately 27 layers of IL (assuming the ‘thickness’ of a single 

[C4C1Im][BF4] ion pair to be ~4 Å [17] and an electron mean free path of 2.60 

nm [18]). The calculation for IL deposition thickness can be found in Appendix 

A. The room temperature sample was exposed to 6 mbar of water vapour 

(which corresponds to 20% relative humidity) in the NAP cell (see Chapter 

2.10.1) and XPS spectra recorded. The NAP cell was then pumped overnight to 
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allow the pressure to recover to UHV. The IL multilayers were then exposed to 

water vapour at 6 mbar again, and spectra recorded once the sample plate had 

cooled to 280 K (which corresponds to approximately 60% relative humidity). 

Further XPS measurements were taken once the NAP cell had recovered to 

UHV. The stages are shown in Scheme 3.1. 

The binding energies (BEs) of all core level XPS peaks are calibrated to the C 

1s component that corresponds to the alkyl chain of the IL cation at 285.5 eV 

[19] and quoted to ± 0.1 eV. All spectra have been fitted with a Shirley 

background and 30:70 (Gaussian:Lorentzian) Voigt line shapes in the absence 

of sample charging or analyser artefacts. Peak fitting was performed using 

CasaXPS software. 

3.2.2 Water/IL on rutile TiO2 (110) 

The  IL, [C4C1Im][BF4] (>97%, Sigma Aldrich), was degassed in a modified 

Knudsen cell by heating to 393 K for three hours to remove water and other 

impurities. The substrate, a rutile TiO2 (110) single crystal (10 mm × 10 mm, 

99.9%, PI-KEM), was mounted onto a Ta sample plate using spot-welded Ta 

strips. The rutile TiO2 crystal was cleaned via Ar+ sputter/anneal cycles until the 

preliminary UHV XPS spectra showed no contamination. The IL was then 

heated to 460 K for vapour deposition onto the room temperature rutile TiO2 

substrate for approximately 30 minutes under UHV conditions. The ultrathin 

deposition of IL was then transferred to the NAP cell, and exposed to water 

vapour at a pressure of 7 mbar and a temperature of 283 K (relative humidity of 

~70%). 
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Scheme 3.2: Regimes as part of the investigation into water/[C4C1Im][BF4] on rutile TiO2 (110). 

Measurements were taken on a SPECS NAPXPS system (see Chapter 2.10.1) 

in three regimes: one before water exposure, one during water exposure and 

one after water exposure (see Scheme 3.2). Three measurements were taken 

during the regime after water exposure (named Pump Stage 1, 2 and 3; 

shortened to PS 1, PS 2 and PS 3), while only one was taken in the other 

regimes. Each measurement took approximately one hour, and each of the 

measurements after water exposure were separated by one hour. PS 1 was 

immediately after water vapour was closed off, and the NAP cell was opened to 

pumping. PS 2 was approximately two hours after pumping began, and PS 3 

was approximately four hours after pumping began. These stages are outlined 

in Scheme 3.2. 

Using the intensity of the O 1s peak associated with the lattice O in the TiO2, 

and using the ‘thickness’ of a single [C4C1Im][BF4] of ~4 Å [17] and mean free 

path of 2.60 nm [18], we calculated the thickness of IL to be (10 ± 1) Å, 

corresponding to three IL layers (the calculation for IL deposition thickness can 

be found in Appendix A). One of the advantages of using an ultrathin film in this 

case allowed the IL/water interface to be observed directly without the need for 

more surface-sensitive grazing emission XP spectra (which is not possible on 

the NAPXPS system used for these measurements). 
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All spectra for the study of water/IL on rutile TiO2 (110) are the result of merged 

raster scans (short scans taken at equally spaced points, specifically 0.6 mm 

part in a 6×5 grid on the sample, then merged). In each regime, scans of the C 

1s, O 1s, N 1s and F 1s regions were recorded, all at normal emission. 

The binding energies (BEs) were referenced to the C 1s component that 

corresponds to the alkyl chain of the IL cation at 285.5 eV [19] and quoted to ± 

0.1 eV. All spectra have been fitted with a Shirley background and 30:70 

(Gaussian:Lorentzian) Voigt line shapes in the absence of sample charging or 

analyser artefacts. Peak fitting was performed using CasaXPS software. 

3.3 Water/IL on anatase TiO2 (101) 

3.3.1 XPS analysis at UHV 

Figure 3.2 shows the anatase TiO2 (101) crystal before the IL deposition (Figure 

3.2a) and after IL deposition (Figure 3.2b). It can be seen that the IL multilayer 

deposition is thick enough to attenuate the O 1s and Ti 2p regions significantly. 

In the O 1s region (Figure 3.2c), there appears to be a shoulder at the higher 

BE edge, attributed to Ti-OH [20, 21]. The Ti 2p region (Figure 3.2d) is 

consistent with that of an anatase TiO2 (101) crystal surface with minimal 

defects [19]. 
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Figure 3.2: Survey spectrum before (a) and after (b) the [C4C1Im][BF4] multilayer deposition on 
anatase TiO2 (101). Peaks associated with the substrate (Ti 2p, O 1s) and the IL (C 1s, N 1s, F, 
1s, B 1s) are labelled. The O 1s and Ti 2p regions prior to IL deposition are shown in (c) and (d) 

respectively. 
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3.3.2 NAPXPS analysis 

 

Figure 3.3: C 1s region (a) and O 1s region (b) taken of the IL multilayer deposition on anatase 
TiO2 before exposure to water. The annotations in (a) correspond to the carbon labels in Figure 

3.1. 

Figure 3.3 shows the C 1s and O 1s regions of the IL multilayer deposition on 

anatase TiO2 (101) before exposure to water, under UHV conditions. The C 1s 

region (Figure 3.3a) is fitted with four peaks. The peak at 285.5 eV is attributed 

to the alkyl chain carbon atoms in the [C4C1Im]+ cation (labelled C1 in Figure 

3.1). The peaks at 286.8 eV and 287.0 eV are attributed to the C2 carbon atoms 

(just outside of the imidazolium ring) and C3 carbon atoms (inside the 

imidazolium ring) respectively. The peak at 287.9 eV is attributed to the C4 

carbon atoms between the nitrogen atoms inside the imidazolium ring. The area 

ratio of the C 1s composite peaks, C1:C2:C3:C4 is 3:2:2:1, which is the same as 

that predicted by stoichiometry, and that previously observed for a thick IL film 

on anatase TiO2 [19]. The O 1s region (Figure 3.3b) is fitted with three peaks. 

The dominant peak at 530.3 eV is attributed to lattice O of the anatase TiO2 

substrate [19, 22]. The peaks at 531.9 eV and 533.2 eV are attributed to 

hydroxyl groups, specifically Ti-OH and contaminant C-OH groups [23] 

respectively. Table 3.1 summarises all peak assignments, together with their BE 

values, throughout the investigation of water/IL on anatase TiO2. 
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Figure 3.4: C 1s region (a) and O 1s region (b) recorded from the water/IL anatase TiO2 (101) 

system. Each feature the region before exposure to water vapour (where the NAP cell was 
under UHV conditions), at 20% relative humidity, at 60% relative humidity, and after exposure to 
water vapour (once the NAP cell returned to UHV conditions). The inset figures in (b) display a 

15× magnification of the O 1s region between 535 eV and 530 eV. The annotations ‘Ad/ab H2O’ 
and ‘G-P H2O’ refer to adsorbed/absorbed water and gas-phase water respectively. In the inset 
figures, the broad-hatched area is the TiO2 peak, the thick line-hatched area is the Ti-OH peak, 

and the fine-hatched area is the C-OH peak. 

Figure 3.4 shows the C 1s and O 1s region of the IL deposition on anatase TiO2 

(101), recorded before exposure to water (bottom), at 20% RH, at 60% RH, and 

after water exposure (top). No new peaks appear in the C 1s region, but there is 

a slight change in the peak area ratio, C1/C4 (see Figure 3.1 for carbon 

assignments), with pressure. As the relative humidity increases, the ratio 

decreases. The intensity of the peak attributed to C4 increases relative to that 

attributed to the alkyl chain carbons. When the water vapour is removed and the 

system is allowed to return to UHV overnight, this ratio decreases (the relative 

intensity of the C4 peak decreases relative to the C1 peak), but does not return 

to its original value, the value prior to any water exposure. The change in shape 

of the region is easier to see in Figure 3.5a, where the C 1s region at 60% RH 

and after exposure to water are overlaid. The increase in this ratio with 

increasing RH could indicate that the imidazolium ring of the IL cation becomes 

more prominent at the surface of the IL as water molecules are 
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adsorbed/absorbed, indicating interaction between the charged head of the 

imidazolium cation and ad/absorbed water molecules. The fact that the ratio 

does not return to its original value may indicate that some water still remains 

trapped in the IL, even after the system has returned to UHV. This effect is 

more apparent in the C 1s region of the ultrathin film system in Section 3.4. 

 

Figure 3.5: The C 1s spectra taken at 60% RH and after exposure to water are shown in (a), 
represented by a grey solid line and black solid line respectively. The O 1s spectra taken before 
and after water exposure (represented by a grey solid line and black solid line respectively) are 

shown in (b). 

The O 1s spectra recorded for the IL deposition on anatase TiO2 are displayed 

in Figure 3.4b. During exposure to water vapour, two new peaks appear. The 

peak at 536.0 eV is attributed to gas-phase water vapour [24, 25]. The peak that 

appears at 533.8 eV is attributed to adsorbed/absorbed water [25, 26]. At 60% 

RH, the adsorbed/absorbed water peak is more intense relative to the lattice O 

peak than it is at 20% RH. While the pressure of the water vapour is the same, 

the cooler temperature of the sample corresponds to a greater relative humidity. 

This therefore corresponds to a greater water uptake, shown by the increase in 

relative intensity of the ad/absorbed water peak. The O 1s region recorded after 

exposure to water (after pumping overnight) is a similar shape to that recorded 

before exposure (see Figure 3.5b). This would suggest that all water desorbs 

from the IL. However, it has been shown that peaks attributed to adsorbed 

water can shift to a lower BE with decreasing coverage [25, 26]. It may be the 

case here that the coverage (in the case of adsorption) or concentration (in the 

case of absorption) of water is very low,  which could mean that the peak 

attributed to ad/absorbed water and the peak attributed to C-OH groups in the O 

1s region overlap one another. This would account for the peak area ratio C1/C4 

not returning to the value prior to exposure to water vapour, as well as the 

disappearance of the ad/absorbed water feature at 533.8 eV. Rivera-Rubero et 
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al [14] used sum frequency generation (SFG) spectroscopy, to determine how 

the presence of water affects the surface ordering of imidazolium-based ILs. 

They suggest that the surfaces of hydrophobic (water-immiscible) ILs are more 

affected by the addition of water than those of hydrophilic (water-miscible) ILs. 

They propose that, in the bulk of the hydrophilic IL, the water molecules are 

stabilised by intermolecular interactions, such as hydrogen bonding and dipole-

dipole forces. It is therefore possible that a small amount of water has been 

allowed to stabilise within the IL multilayers. 

 

Figure 3.6: The N 1s spectrum recorded before exposure to water vapour (where the NAP cell 
was under UHV conditions), at 20% RH, at 60% RH, and after exposure to water vapour (once 

the NAP cell had returned to UHV conditions). 

Figure 3.6 shows the N 1s region before exposure to water vapour, at 20% RH, 

at 60% RH, and after exposure to water vapour. Before exposure to water, 

there is a single dominant peak at 402.6 eV, which can be attributed to 

imidazolium nitrogen atoms in the [C4C1Im]+ cation. Both nitrogen atoms are 

considered chemically equivalent, and thus appear as a single peak in the N 1s 

region. As the relative humidity increases, the N 1s region changes shape 

significantly. At 20% RH, a shoulder appears at a lower BE than the 
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imidazolium N peak, and increases in intensity at 60% RH. When the water 

vapour is removed and the system pumped overnight, the intensity of this 

shoulder decreases, but is more intense (relative to the imidazolium N peak) 

than before exposure to water vapour. Lovelock et al [27] showed that thin 

depositions of IL are susceptible to damage from prolonged X-ray exposure- 

damage which manifests peaks on the lower BE edge of the N 1s region. From 

this data, it appears that water may exacerbate this beam damage. One way 

that could minimise beam damage is the use of raster scanning, where a short 

measurement is taken at a number of places on the sample, rather than a few 

longer measurements taken on one area of the sample. The short 

measurements would be merged together to produce a smooth spectrum. This 

method was explored and is detailed in Chapter 3.4.1. 

 

Figure 3.7: The F 1s spectrum recorded before exposure to water vapour (where the NAP cell 
was under UHV conditions), at 20% RH, at 60% RH, and after exposure to water vapour (once 

the NAP cell had returned to UHV conditions). 

Figure 3.7 shows the F 1s before exposure to water vapour, at 20% RH, at 60% 

RH, and after exposure to water vapour. At all stages, the region is composed 

of a single peak at 686.0 eV. The peak is attributed to fluorine in the [BF4]- 
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anion, as the BE is consistent with those quoted in literature [19, 28]. In 

previous works of multilayer and approximately monolayer depositions of the 

same IL on anatase TiO2 [19], a feature appears at the lower BE edge of the F 

1s region for the monolayer deposition, which is suggested by Wagstaffe et al to 

be Ti-F interactions. This feature is not present in the F 1s region for the data 

presented here, which suggests the IL deposition here is too thick to observe a 

signal from the interactions between the IL and the TiO2 surface. In order for 

this peak to appear in the F 1s region for a [C4C1Im][BF4]/TiO2 system (and, 

therefore, for these interactions to be observed), a much thinner deposition of IL 

is required. Ultrathin films are highly structured, and are also known to have an 

alkyl enrichment at their surface, where alkyl chains face outward toward 

vacuum, just like the IL/vacuum interface of thick IL films [12, 13, 29]. A 

sufficiently thin film may also allow for interactions at the IL/water interface to be 

investigated without significant water absorption. Therefore, a second 

investigation into the IL/water interface was conducted using an ultrathin 

deposition of the same IL on rutile TiO2. The results from this experiment are 

outlined in Chapter 3.4.2. 

Table 3.1: Assignments of all fitted core level XPS peaks for the water/IL on anatase TiO2 (101) 
system, together with their respective binding energies. 

Region Binding Energy 
(± 0.1 eV) (eV) Assignment 

C 1s 

285.5 C1, alkyl chain 
286.8 C2, imidazolium 
287.0 C3, imidazolium 
287.9 C4, imidazolium 

O 1s 

530.3 TiO2 substrate 
531.9 Hydroxyl (Ti-OH) 
533.2 Hydroxyl (C-OH) 
533.8 Ad/absorbed H2O 
536.0 Gas-phase H2O 

F 1s 686.0 F, [BF4]- 
 

3.4 Water/IL on rutile TiO2 (110) 

Because the IL deposition on anatase TiO2 (101) sustained significant beam 

damage, a short investigation was carried out on the effects of prolonged X-ray 

exposure under comparable conditions. 
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3.4.1 Short investigation into sample beam damage 

 

Figure 3.8: N 1s region before and after exposure to water, and (b) N 1s region after heating in 
UHV and subject to two further scans. The labels in (a) have been differentiated from the labels 

used in the main data with '. The label BDT stands for ‘beam damage test’. 

An IL film was deposited onto the rutile TiO2 substrate in the same manner as 

the water/IL on rutile TiO2 experiment (also dosed for 30 minutes). Similarly, 

measurements were taken in three regimes: before exposure to water, during 

water exposure (at a pressure of 8 mbar and 285 K, which corresponds to a 

relative humidity of ~70%, not shown in Figure 3.8) and after water exposure. 

The regime after water exposure was seceded into three measurements, 

named here Pump Stages 1' to 3', (similarly abbreviated to PS 1' to PS 3' in 

Figure 3.8a). These scans were not rastered, and were taken on the same part 

of the sample surface each time. After these measurements, the sample was 

then gently heated in UHV conditions to remove some of the beam-damage 

species (spectrum labelled ‘After heating’ in Figure 3.8b). To observe only the 

effects of prolonged X-ray exposure on the ultrathin IL film (i.e. with no water 

vapour), two more non-rastered measurements were taken under UHV 

conditions only. These data are labelled as “beam damage test”, or BDT, in 

Figure 3.8b. Each measurement took approximately one hour, and with 

additional time compensating for sample heating, the experiment overall took 

eight hours. The shoulder at the lower BE edge of the N 1s spectra recorded 
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with exposure only to X-rays displays a noticeable increase in intensity. 

However, the change in shape of the N 1s region is the most dramatic in Figure 

3.8a. The shape of the N 1s region only changes slightly throughout PS 1' to PS 

3', but it is not as significant as the change between the measurement taken 

before exposure and immediately after exposure to water vapour (PS 1’). 

Therefore, it can be concluded that water vapour has a significantly 

exacerbating effect on the beam damage of IL samples. Subsequently, 

measurements of the water/IL system on rutile TiO2 (110) were rastered to 

minimise sample beam damage. 
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3.4.2 XPS analysis at UHV 

 

Figure 3.9: Survey spectra of the TiO2 substrate before (a) and after (b) in UHV. All relevant 
peaks have been labelled in both survey spectra. The inset figure in (a) shows the C 1s 
spectrum of the TiO2 region prior to IL deposition. The O 1s and Ti 2p regions prior to IL 

deposition are shown in (c) and (d) respectively. 
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After the investigation into beam damage, the rutile TiO2 (110) crystal was 

cleaned via Ar+ sputter/anneal cycles until the XPS spectra showed minimal 

contamination. These XPS spectra are displayed in Figure 3.9. Figure 3.9a 

shows the survey spectra of the TiO2 substrate in UHV before the ultrathin IL 

deposition, and Figure 3.9b shows the survey spectrum after IL deposition. The 

O 1s and Ti 2p region of the TiO2 surface in UHV before IL deposition are 

shown in Figure 3.9c and Figure 3.9d respectively. The inset of Figure 3.9a 

shows the C 1s region taken of the TiO2 substrate prior to IL deposition, 

demonstrating there is some carbon contamination of the surface. The O 1s 

region appears to have a slight shoulder toward higher BE, indicating the 

presence of hydroxyl groups, and is labelled Ti-OH (see Table 3.2 for a 

summary of all peak assignments for water/IL on rutile TiO2). The surface of the 

TiO2 also contains defects, as shown by the shoulder at the lower BE edge of 

the Ti 2p region (Figure 3.9c). The significance of these observations are 

discussed in the following subsections. 
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3.4.3 NAPXPS analysis 

 

Figure 3.10: C 1s region before exposure to water (a), C 1s region at 70% RH (b), and the C 1s 
spectrum from PS 1 to PS 3 (represented by the cyan, amber and magenta lines respectively) 
(c), together with the C 1s spectrum taken before exposure (represented by the black dashed 

line). 

Figure 3.10 shows the C 1s spectrum for the sample prior to water exposure. It 

can be fitted with four composite peaks, (corresponding to the numbered carbon 

atoms in Figure 3.1) and in good agreement with literature [19]. The peak at 

285.5 eV corresponds to that of the alkyl chain carbons. The peak at 286.8 eV 

corresponds to the C2 carbons just outside of the imidazolium ring, the peak at 

287.0 eV corresponds to the C3 carbons inside the imidazolium ring and the 

peak at 287.9 eV corresponds to the C4 carbon, between the two N atoms in 

the imidazolium ring. The alkyl carbon peak and the imidazolium carbon peaks 

together create the characteristic two-peak shape of the C 1s region. A study by 

Wagstaffe et al [19] of multilayer and approximately monolayer coverages of 
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[C4C1Im][BF4] on anatase TiO2 (101) highlighted distinct differences between 

the C 1s regions of the bulk and monolayer IL films. More specifically, the 

component associated with the alkyl chain and two of the three components 

associated with the imidazolium group were found to shift to a lower binding 

energy (BE) for the thin film. This observation is consistent with findings 

reported by Cremer et al with analogous ILs [3]. As expected, the binding 

energies of the components of the C 1s region in our study are more in line with 

those of a thin film. However, the alkyl chain component dominates the region, 

which is not consistent with the shape of the C 1s observed by Wagstaffe et al. 

The film studied here is indeed thicker than the monolayer film studied by 

Wagstaffe et al, and while it is known that alkyl chains face outward toward 

vacuum in imidazolium-based ILs, the strength of the alkyl chain signal here 

may be explained by a contribution from carbon contamination. 

Table 3.2: Assignments of all fitted core level XPS peaks for the water/IL on rutile TiO2 (110) 
system, together with their respective binding energies. 

Region Binding Energy 
(±0.1 eV) (eV) Assignment 

C 1s 

285.5 C1, alkyl chain 
286.8 C2, imidazolium 
287.0 C3, imidazolium 
287.9 C4, imidazolium 

O 1s 

530.2 TiO2 substrate 
531.5 Hydroxyl (Ti-OH) 
533.0 Hydroxyl (C-OH) 
533.3 Adsorbed H2O 
535.9 Gas-phase H2O 

N 1s 
399.6 Beam damage 
400.9 Beam damage 
402.3 N, imidazolium 

F 1s 684.3 F-Ti 
686.4 F, [BF4]- 

 

ILs have a tendency to become contaminated via external sources: such as the 

introduction of adventitious carbon from exposure to atmosphere [30, 31], or 

even Si contamination due to grease present in the IL from synthesis [27, 32]. It 

is possible that the vapour-deposited IL contained impurities, but we believe it is 

more likely that the contamination of the IL film in this study originates from the 

background vacuum of the NAP cell. Quantification of the C 1s, O 1s and Ti 2p 

regions prior to IL deposition reveals (2.3 ± 0.6)% carbon contamination present 
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on the TiO2 surface (see Table 3.3). The nature of the carbon contamination is 

not clear (i.e. whether it is flat coverage, island-like growth, etc.), but the 

presence of carbon prior to IL deposition could explain the strength of the alkyl 

chain signal in the C 1s region. Deyko et al [33] studied the influence of carbon 

coverage on the growth mechanisms of 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide (or [C2C1Im][Tf2N]) on mica. They found that, 

on mica surfaces with minimal carbon coverage, the IL demonstrated 3D growth 

in the form of islands at sub-monolayer IL coverage (i.e. complete dewetting of 

the mica surface). On mica surfaces with partial or complete carbon coverage, 

the IL demonstrated 2D layer-by-layer growth on the contaminated areas, and 

3D growth on the non-contaminated areas (i.e. partial or complete wetting of the 

mica surface). This illustrates that carbon contamination can play a rather 

significant role on the growth of ILs on oxide surfaces. The rutile TiO2 used in 

our study appears to have minimal carbon coverage prior to IL deposition. 

Therefore, the IL itself (rather than the TiO2 substrate) may have become 

contaminated when introduced to the NAP cell. One possible way to remove 

contamination from ILs is through gentle Ar+ sputtering [27, 30], but this was not 

possible with the sample in the NAP cell. 

Table 3.3: Composition (in atomic percentage) of C, Ti and O on the rutile TiO2 (110) single 
crystal substrate prior to ionic liquid deposition. The relative sensitivity factor (RSF) is shown for 

each element. 

Element RSF Composition (at%) 
C 1.00 2.3±0.6 
O 2.93 70.4±0.6 
Ti 7.81 27.3±0.3 

 

Another noteworthy observation made by Wagstaffe et al [19] is that the IL 

adsorbed well-ordered on the anatase TiO2, which was corroborated by X-ray 

absorption measurements. Although it cannot be determined whether the IL film 

in our study has grown in a 2D or 3D configuration with these data alone, it is 

likely that the IL film is highly ordered by both the TiO2 and vacuum interfaces. 

Also reported by Wagstaffe and colleagues was that [C4C1Im][BF4] chemically 

interacts with TiO2 via the F in the anion bonding with Ti, possibly at O-vacancy 

sites [19]. This statement is supported in the literature by a peak in the F 1s 

region, with a BE consistent with that of Ti-F bond formation. Because the IL 

layer studied was approximately a monolayer, this peak was the majority signal 
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in the F 1s region. A similar peak has been observed in the F 1s region in our 

study (see Figure 3.13), which we also attribute to F-Ti bonding. Since it is only 

the first IL layer that bonds to the Ti surface the F-Ti peak in our study makes 

up a smaller percentage of the F 1s signal than that presented by Wagstaffe et 

al. This therefore corroborates our assessment of the film thickness in our 

study. 

Table 3.4: Composition (in atomic percentage) of C, N and F in the sample before exposure to 
water and at PS 1. The relative sensitivity factor (RSF) is shown for each element. 

Element RSF Composition (at%) 
Before PS 1 Bulk IL* 

C 1.00 73 ± 2 70 ± 1 55.6 
N 1.80 9.4 ± 0.3 10.3 ± 0.4 13.2 
F 4.43 17 ± 1 19.7 ± 0.4 31.2 

* Indicates values adapted from Ref [13] for bulk [C4C1Im][BF4] for comparison to values from 
this work. 
 

Upon exposure to water, the contribution from the imidazolium ring increases 

relative to the contribution from the alkyl chain. This indicates a rearrangement 

of the cations at the surface of the IL, where the imidazolium ring becomes 

more prominent. We suggest that water adsorbed on the IL causes the cations 

to rearrange such that the imidazolium ring (the hydrophilic part) is orientated 

toward the adsorbed water, and the hydrophobic alkyl chain orientates away 

from the adsorbed water. This water-induced rearrangement of the surface ions 

could be explained by a dipole-dipole interaction between the imidazolium ring 

and water lone pair, an interaction previously proposed for water in the bulk of 

imidazolium-based ILs and water [28]. In addition, the concentrations of C, N 

and F have been calculated for the regions before exposure to water and at PS 

1 (as the reordering was most prevalent at this stage than at 70% RH) and 

compared. The concentrations were calculated using the total area of each 

region (see Table 3.4). At PS 1, there is a decrease in the concentration of C 

and an increase in the concentration of N and F. In each case, the 

concentration decrease/increase is beyond the range of the uncertainty 

boundaries calculated for the regime before water exposure. This change in 

composition of the surface further reiterates the idea that the charged parts of 

the IL, i.e. the anion and the charged head of the cation, become more 

prominent at the IL/water interface than at the IL/vacuum interface. Previous 

work into the surface interactions between water and ILs by Deyko and Jones 
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[34] suggest that water present on the surface of the analogous [C8C1Im][BF4] 

experiences greater interaction with itself than with the IL surface, behaving as 

though it were adsorbed on a hydrophobic surface. While this may be 

consistent with our proposition of water adsorbing on the surface of the IL, the 

system used by Deyko and Jones had been cooled prior to measurements, so 

was in fact a glassy solid rather than a liquid film. As water vapour is removed 

from the NAP cell, the shape of the C 1s peak begins to change again (see 

Figure 3.10c). The contribution from the alkyl chain now increases relative to 

the contribution from the imidazolium ring, and the C 1s region begins to 

resemble the shape of the region prior to water exposure, but the data does not 

show a complete reversal. This indicates that the ions at the surface begin to 

return to their original structure as the pressure in the cell returns to high 

vacuum. 
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Figure 3.11: O 1s region before exposure to water (a), O 1s region at 70% RH (b), and the O 1s 
spectrum from PS 1 to PS 3 (represented by the cyan, amber and magenta lines respectively) 
(c), together with the O 1s spectrum taken before exposure (represented by the dashed black 

line). 

Figure 3.11a and Figure 3.11b show the O 1s spectrum for the IL/rutile TiO2 

sample before and during exposure to water respectively. Before exposure to 

water, the region can be fitted with three distinct component peaks. At the lower 
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BE edge, the peak at 530.2 eV is assigned to the TiO2 lattice oxygen peak [19, 

22]. Numerous hydroxyl species can manifest peaks at higher binding energies 

than the lattice O, including C-OH groups [23] and bridging hydroxyls on the 

rutile TiO2 (110) surface [20], some of which can arise from water in the 

background vacuum even at high vacuum pressures [21].  Thus, the peaks at 

531.5 eV and 533.0 eV are assigned as Ti-OH and C-OH species, respectively. 

Upon exposure to water, two new peaks appear at the higher BE edge of the O 

1s spectrum. The peak at 535.9 eV is attributed to gas-phase water, i.e. water 

vapour surrounding the sample [24, 35]. The peak at 533.3 eV (0.2 eV higher 

BE than that arising from C-OH), has been assigned to molecular water 

adsorbed on the IL film [25, 26]. Although the peaks assigned to hydroxyl 

species and molecular water are close in BE, two separate peaks were needed 

to properly fit the spectrum. Furthermore, in the NAPXPS measurements 

recorded of the water/IL system on anatase TiO2 (101) the peak assigned to 

molecular adsorbed water is more prominent in the O 1s spectrum due to less 

attenuation of the signal by gas-phase water. The O 1s assignments from those 

measurements further support the BE assignments here. When water is 

evacuated from the NAP cell, the gas-phase water peak disappears whereas 

the adsorbed water peak is present until the final scan (which was recorded at a 

background pressure of ≤1×10-7 mbar). While the corresponding changes in the 

O 1s region are small, they can be seen in the raw data presented in Figure 

3.11c. The prolonged presence of the molecular water peak through PS 1 and 2 

indicates water becomes trapped on top of the IL layers for some time. 

Furthermore, this indicates that the ultrathin IL deposition can stabilise a small 

amount of water at its surface even in UHV for a period of time. 



129 
 

 

Figure 3.12: N 1s region before exposure to water (a), N 1s region at 70% RH (b), and the N 1s 
spectrum from PS 1 to PS 3 (represented by the cyan, amber and magenta lines respectively) 
(c), together with the N 1s spectrum taken before exposure (represented by the dashed black 

line). 

Figure 3.12a shows the N 1s spectrum before exposure to water, and is 

dominated by a peak at 402.3 eV. This peak is assigned to N in the imidazolium 

ring of the cations [19][6]. There appears to be a slight shoulder on the lower BE 

edge, which, as also discussed for the IL multilayers on anatase TiO2 (101), is 

attributed to beam damage species. 

Figure 3.12b shows the N 1s spectrum at 70% RH. Two peaks appear at 400.9 

eV and 399.6 eV. These are attributed to beam damage, and are labelled as 

‘Beam damage species’ in Figure 3.12b. The peaks in the N 1s spectrum do not 

show any indication of returning to their original intensity values during PS 1 to 

PS 3. This confirms that these peaks are a result of damage to the sample from 

prolonged X-ray exposure. Rastered measurements were taken to minimise 
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sample beam damage, and it can be seen from the N 1s spectra that no extra 

peaks appear to manifest in the region throughout the experiment. This 

demonstrates that rastered measurements do somewhat reduce beam damage 

to IL films. In addition, the peak associated with the N in the imidazolium ring 

dominates the region throughout the experiment, which shows that that the vast 

majority of the [C4C1Im]+ cations of the IL film remain intact. 

 

Figure 3.13: F 1s region before exposure to water (a), F 1s region at 70% RH (b), and the F 1s 
spectrum from PS 1 to PS 3 (represented by the cyan, amber and magenta lines respectively) 
(c), together with the F 1s spectrum taken before exposure (represented by the black dashed 

line). 

Figure 3.13 shows the F 1s spectrum before exposure to water, and can be 

fitted with two peaks: the peak at 686.4 eV arises from the F in the 

tetrafluoroborate ion [19, 28]. As mentioned previously, the smaller peak at 

684.3 eV is thought to arise from F-Ti bonding at the IL/TiO2 interface [19]. In 

the work by Wagstaffe et al with the same IL on anatase TiO2 (101) [19], the 

peak associated with F-Ti bonding makes up approximately 56% of the F 1s 
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signal. In our study, this peak only makes up approximately 9% of the F 1s 

signal, which emphasises that the thickness of our IL film is greater than the 

(approximately) monolayer IL film studied by Wagstaffe. 

Upon water exposure, the relative intensity of the peak associated with the 

anion increases (from 91% to 93%), while the peak associated with the F-Ti 

bonding decreases (from 9% to 7%). The decreased relative intensity could be 

the result of an attenuation effect, whereby the adsorbed water has increased 

the depth of the sample, resulting in an attenuation of the F-Ti signal from the 

buried IL/TiO2 interface. As water is evacuated from the system, the molecular 

adsorbed water eventually desorbs from the surface, and the peak associated 

with the [BF4]- anion begins to decrease. 

Cammarata et al [36] showed, using attenuated total reflectance infrared 

spectroscopy, that water interacts with the [BF4]- anion via hydrogen bonding, 

both in imidazolium- and non-imidazolium-based ILs. This finding was also 

corroborated by Baldelli’s group [37] using the more surface sensitive technique 

of sum frequency generation spectroscopy, who examined the interactions and 

surface orientation of [C4C1Im][BF4] and water. Ridings et al [16] used neutral 

impact collision ion scattering spectroscopy to show that small amounts of water 

in an imidazolium-based IL (1-hexyl-3-methylimidazolium chloride, 

[C6C1Im][Cl],) can influence the composition of the IL surface. They found that 

at higher water concentrations the anion showed an increased presence at the 

IL surface, with the alkyl chains of the cation moving towards the bulk. Hence, 

as the water content is increased the charge at the surface becomes more 

negative. They attribute this behaviour to the influence of water on the 

hydrogen-bonding network in the IL, specifically hydrogen bonding between the 

anions and water. While we do not see any evidence of bonding between the 

water and the [BF4]- ions in the F 1s spectra, we do observe a relative intensity 

change that suggests a rearrangement of the anion preferentially towards the 

IL/water interface. This somewhat corroborates the idea that water adsorbed on 

the IL influences the composition of the surface ions, bringing the anion and 

imidazolium ring toward the IL/water interface. 
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3.4.4 Discussion 

The ordering at the topmost surface undoubtedly plays a role in the sorption 

mechanics of ILs, but questions remain as to what kind of interactions occur at 

the IL/water interface. As mentioned previously, water molecules are known to 

interact with imidazolium-based ILs via dipole-dipole interactions and hydrogen 

bonding [14]. In that study, water was allowed to stabilise in a bulk IL, so the 

interactions and adsorption mechanisms at the IL/water interface were not 

studied directly. Our study, using an ultrathin film rather than bulk IL, shows that 

the cations of the water-miscible [C4C1Im][BF4] experience an interaction with 

water molecules at the IL/water interface, possibly through hydrogen bonding 

and dipole-dipole forces with the imidazolium groups. However, there appears 

to be no reaction with the imidazolium N atoms (see Figure 3.12). The 

interaction appears instead to influence a reorganisation of the molecules at the 

IL surface, where the imidazolium ring becomes more prominent. An in situ XPS 

study carried out by Broderick et al [35] investigated the interactions between 

water and a different water-miscible IL with the same cation. They also suggest 

that a rearrangement of ions occurs, but rather alkyl chains become more 

prevalent in the IL/water interfacial region at a water mole fraction of 0.6. 

However, the system in question was arguably a bulk film, able to absorb and 

stabilise a relatively large quantity of water in the bulk liquid. Numerous 

theoretical studies have been conducted into the interactions between 

[C4C1Im][BF4] [38, 39], and many of its analogues [40, 41], with water; and 

while local structuring within the bulk liquid has been considered carefully, few 

have probed the structure and interactions that take place at the IL/water 

interface upon adsorption.  

It may be the case that the [C4C1Im][BF4] deposition investigated here was 

sufficiently thin to not have allowed the water molecules at the interface to be 

absorbed and stabilise between the layers. In a recent study by Buckley et al 

[42] of the interactions with water and [C8C1Im][BF4], it was found that more 

than 68 water molecules could be stabilised per IL pair due to long-range 

interactions with IL ions. This finding supports the idea that water is interacting 

with, and possibly even being stabilised by, the ultrathin IL film examined here. 

However, the ability for an IL thin film to adsorb water for a significant period 

may have a negative impact on IL thin film catalysis applications (such as SILP 
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and SCILL). If the surface structure determines how gases are ad/absorbed into 

ILs, the presence of water could therefore alter the surface ordering of the IL 

thin films in these systems. This could then inhibit the reaction kinetics through 

inhibition of sorption of gaseous reactants and products. As a result, this could 

diminish the reaction rate and furthermore, diminish the efficiency of these 

systems. 

3.5 Conclusion 

The interaction of water with IL multilayers, and water-induced reordering in an 

ultrathin film of the IL [C4C1Im][BF4] have been observed using near-ambient 

pressure X-ray photoelectron spectroscopy. Similar behaviour is seen in both 

the IL multilayer and IL ultrathin film. The results indicate that water is adsorbed 

on the ultrathin IL surface, involving an interaction between water and the 

cations, which leads to a reorganisation of the ions at the surface. 

Reorganisation is observed for both the IL multilayer and IL ultrathin film 

system, but is more pronounced for the ultrathin IL film. When the IL/anatase 

TiO2 (101) system is exposed to water, the ad/absorbed water peak in the O 1s 

region is much more prominent than the adsorbed water peak in the O 1s 

region recorded for the ultrathin IL film at 70% RH. It is seen for the water/IL on 

rutile TiO2 (110) system that water initially remains trapped on the IL surface 

even as water vapour is pumped out of the near-ambient pressure cell. The 

water eventually desorbs from the IL ultrathin film when the cell has been under 

UHV for some time. The combination of water-induced reordering of the ions at 

the IL surface and the prolonged presence of molecular water under vacuum 

conditions could have negative implications for IL thin film catalysis. This insight 

into the behaviour at the interface provides some understanding of the 

interaction of water with ILs under realistic conditions, and provides a basis for 

understanding adsorption and absorption mechanisms found in SCILL/SILP 

catalysis and gas capture/separation applications. 
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4 Reversible CO2 Reaction with a Superbasic 

Ionic Liquid 

Ionic liquids (ILs) have emerged in recent years as potential CO2 capture 

agents, since they display good CO2 capacity, and are known for their 

capabilities in gas selectivity. Functionalisation of ILs can be useful for a 

number of applications, including CO2 capture and uptake, but can sometimes 

lead to complications. In the case of amine-functionalised ILs, they display 

improved CO2 capacity over ILs, but struggle with physicochemical changes, in 

particular their viscosity, which ultimately hinder their ability to uptake CO2. 

Within the last five years, superbasic ILs have presented superior CO2 uptake, 

with negligible changes in viscosity. However, superbasic ILs have shown a 

decreased capacity in the presence of water, which is problematic when real-life 

applications in CO2 capture involve mixed gases that contain water vapour.  

Recent developments allow the surface-sensitive technique, X-ray 

photoelectron spectroscopy, to be used under near-ambient pressure 

conditions, allowing for further investigation into the interactions between ILs 

and gases. Presented in this Chapter is a near-ambient pressure X-ray 

photoelectron spectroscopy investigation into the interactions between a 

superbasic IL and various gases: CO2, water vapour, and mixtures of both. 

4.1 Introduction 

International commitments to a reduction in global CO2 emissions could be in 

part met by CO2 sequestration and storage, or utilisation [1-3]. As a result, there 

is a pressing desire to identify stable, practical and economically viable methods 

to achieve this. Currently, the most widely used industrial solution is 

monoethanolamine (MEA) [4, 5]. When MEA reacts with CO2, it forms a 

carbamate species (COO-) and a protonated MEA species (see Scheme 4.1). 

MEA is relatively cheap as a bulk solvent, but is extremely corrosive and 

requires a relatively large amount of energy to regenerate it following CO2 
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capture [6]. Both of these factors contribute to increased costs where CO2 is 

required to be removed. 

Ionic liquids (ILs) have been widely investigated as potential CO2 capture 

agents due to their advantageous properties, including ultra-low vapour 

pressures and excellent thermal stability. They are relatively easy to handle, 

and the regeneration of ILs after CO2 capture is a relatively low energy process 

[6, 7]. ILs can capture CO2 via chemisorption or physisorption, and in previous 

years, attempts to improve the CO2 capture capabilities of ILs have been 

successful with the addition of amine functional groups [8]. These react with 

CO2 in much the same way as MEA (see Scheme 4.1). However, a problematic 

repercussion of CO2 absorption in amine-functionalised ILs is an increase in 

their viscosity, which tends to inhibit further CO2 absorption. 

 

Scheme 4.1: Reaction between amine and CO2 to form carbamate (R-NHCOO-) and an 
ammonium (R-NH3+) species. In the case of MEA, the group R represents ethanol 

(CH2CH2OH), and in the case of amine-functionalised ILs, the group R can represent either a 
cationic or an anionic substituent. 

Current research also suggests that the presence of water in the gas stream 

can assist or hinder the ability of an IL to capture CO2, depending on the 

constituent IL ions and the concentration of water. While the addition of water in 

amine-functionalised ILs reduces their viscosity, it also results in a decrease in 

CO2 uptake [9]. The decrease in CO2 uptake is attributed to protonation of the 

pyridine-like N group, which reduces the number of available sites for CO2 to 

chemically bind [9]. The addition of small amounts of water has shown to 

improve the CO2 capture capabilities of some ILs. Phenolate-based ILs, for 

example, capture CO2 through chemisorption, and the addition of 2 wt% H2O 

almost doubled the molar CO2 absorption [10]. For acetate-based ILs, which 

capture CO2 through physisorption, the molar absorption increased eightfold 

with the addition of 0.35 mole fraction of H2O [11].  

In recent years, superbasic ILs have attracted particular interest. These ILs 

consist of an imidazolide anion (a deprotonated and negatively charged 

aromatic ion). Reaction with CO2 leads to the exothermic formation of 
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carbamate at one or more of the deprotonated amine sites [6, 12]. Studies of 

superbasic ILs by various groups have shown an excellent capacity for CO2 

capture, with molar ratios (nx) of up to 1.6:1 (nCO2:nIL) [6]. In addition, these 

superbasic ILs do not undergo a large increase in viscosity upon CO2 

saturation, which makes them potentially useful in large-scale applications. An 

experimental and theoretical study of superbasic ILs showed that the IL, 

trihexyl-tetradecylphosphonium benzimidazolide ([P66614][benzim] - see Figure 

4.1), was able to absorb equimolar quantities of CO2 in the dry state, but 

exhibited a reduced capacity for CO2 absorption if the IL was pre-wetted [6, 12]. 

This could be problematic if they are to be considered for CO2 capture on an 

industrial scale, since industrial flue gases consist of a complex mixture of gas 

molecules, including CO2 and H2O. 

 

Figure 4.1: Chemical structure diagram of the superbasic IL, trihexyl-tetradecylphosphonium 
benzimidazolide, or [P66614][benzim]. The labels C1 to C5 highlight the different carbon 

environments in the IL pair. 

X-ray photoelectron spectroscopy (XPS) has been a useful tool in the analysis 

of surface reactions, and surface electronic structure of solids for many years 

[13, 14]. The extremely low vapour pressure of ILs has also meant that in recent 

years studies of liquid surfaces have been possible [15-18]. Interactions 

between gases and ILs have been studied using XPS, but at low temperatures. 

The gas and the IL need to be cooled together (which forms a glassy structure), 



142 
 

then gently heated to monitor gas desorption from the IL [19]. This process is 

necessary because, at the extremely low pressures required for XPS, gases 

often do not remain trapped or ad/absorbed in any appreciable amount at 

ambient temperatures. Rivera-Rubero and Baldelli, for example, showed that 

water can be removed from the IL 1-butyl-3-methylimidazolium tetrafluoroborate 

([C4C1Im][BF4]) at pressures of <1×10-5 mbar at room temperature [20]. The 

recent availability of near-ambient pressure XPS (NAPXPS) has opened up the 

possibility of measurements of liquid surfaces in gas pressures of up to a few 

tens of mbar [4, 8, 21-23]. Presented in this Chapter is a NAPXPS investigation 

into the reaction of the superbasic IL, [P66614][benzim], with CO2, H2O and two 

mixed CO2/H2O vapour regimes using NAPXPS. 

4.2 Experimental section 

The IL, [P66614][benzim] was prepared using a two-step synthesis described in 

previous work by Taylor et al [6], which is outlined in Appendix B of this thesis. 

The IL was dried under vacuum (0.01 mbar at 50°C) and then transferred to a 

vial sealed with a rubber septum in a dry argon-filled glovebox prior to use. 

Around 0.5 ml of IL was deposited dropwise by syringe onto a Ta sample plate 

in ambient laboratory conditions. The plate was transferred to a vacuum load 

lock and the load lock pumped down and left to reach <1×10-6 mbar before 

transferring to the near-ambient pressure (NAP) cell for analysis. During the 

preparation process, the sample was exposed to ambient lab atmosphere for 

around 5 minutes. 

XPS analysis was carried out using the SPECS NAPXPS system at the 

University of Manchester (see Chapter 2.10.1 for equipment details). CO2 (CK 

Gases, purity 99.9995%) was further purified by passing it through a scrubber 

(SAES Microtorr) to remove trace impurities, particularly of CO. Doubly distilled 

water was purified by repeated freeze-thaw-pump cycles until no gas bubbles 

were observed in the water under a vacuum of 1×10-6 mbar. Spectra were 

recorded with electron emission normal to the surface from the top edge of the 

IL film to minimise the possibility of sample charging. Normal emission and 

grazing emission XPS measurements were carried out in ultra-high vacuum 

(UHV) conditions (at a pressure of approximately 10-9 mbar) before being 

transferred to the NAP cell. 
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Scheme 4.2: Flow chart illustrating the stages of the experiment in the NAP cell, numbered 1 to 
7. The annotations between the stages describe which gases are introduced or removed. 

Measurements were taken at each stage. 

NAPXPS measurements were carried out over seven stages in the NAP cell, as 

outlined in Scheme 4.2. During Stage 1, measurements were recorded from the 

as-presented IL. In Stage 2, the IL was exposed to 0.5 mbar of CO2. For Stage 

3, the CO2 was pumped out of the NAP cell and measurements were taken 

when the pressure had stabilised at approximately 10-8 mbar, i.e. the IL was 

under high-vacuum conditions once again. Measurements taken at Stages 1 

through 3 were to determine whether or not the CO2 capture by the IL was 

reversible through pressure reduction. In measurements taken after Stage 3, 

the IL is referred to as ‘regenerated’. Stage 4 involved exposing the regenerated 

IL to 3 mbar of CO2. In stage 5, 2 mbar H2O vapour was introduced into the 

NAP cell, creating the first mixed-gas regime. During Stage 6, the CO2 flow was 

turned off, leaving the IL exposed only to 2 mbar of H2O vapour and 

measurements were taken when the pressure in the NAP cell had stabilised at 

2 mbar. For the final stage, Stage 7, 3 mbar of CO2 was reintroduced into the 

system giving a total CO2 and water pressure of 5 mbar for the second mixed-

gas regime. 

Each NAPXPS spectrum was recorded from a different position on the sample 

surface to avoid damage due to prolonged X-ray exposure. Each measurement 

took approximately one hour, and all measurements were taken at room 
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temperature. Spectra are aligned on the binding energy (BE) scale relative to 

the alkyl C 1s signal at 285.0 eV [24], with all BEs quoted to ± 0.1 eV. XPS core 

level peak fitting was carried out using CasaXPS software with a linear 

background and 70:30 Gaussian:Lorentzian lineshapes [25]. 

4.3 Results and discussion 

4.3.1 XPS of [P66614][benzim] under UHV 

 

Figure 4.2: Survey spectra taken of the IL at normal emission (top, represented by a black line) 
and at a grazing emission angle of 60° (bottom, represented by a red line). 

The XPS spectra for the IL, trihexyltetradecyl-phosphonium benzimidazolide 

([P66614][benzim]) in ultra-high vacuum (UHV) conditions (pressure 

approximately 10-9 mbar) are shown in Figure 4.2, at normal emission (NE, 

represented by a black line) and grazing emission (GE, at 60°, represented by a 

red line). All measurements were taken on the same part of the IL. The survey 

spectra are annotated with labels of the regions associated with the IL (C 1s, N 

1s, and P 2p), as well as the O 1s region. Ta from the sample plate is not 

visible, indicating the IL layer is thicker than the sampling depth of XPS (> 100 

Å). Also annotated are the Si 2s and Si 2p peaks. These are thought to be due 

to Si-based contamination from synthesis [26]. 
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Figure 4.3: C 1s region (a) and N 1s region (b) recorded of the IL in UHV. The normal emission 
spectra (represented by black lines) and grazing emission spectra (represented by red lines) for 

each region are plotted on the same axes. Each spectrum is normalised to the height of the 
largest peak in the region. 

Figure 4.3 shows the C 1s and N 1s, regions taken of the IL in UHV. The C 1s 

region (Figure 4.3a) does not significantly change shape at GE compared to 

NE. However, the N 1s appears to have a slightly different shape at GE. The N 

1s region (Figure 4.3b) appears to have a more prominent feature at the higher 

BE edge at NE than at GE, which suggests the species responsible is present 

in the bulk of the IL rather than at the surface. The origin of these peaks is 

explored in more depth later in the discussion. 

 

Figure 4.4: P 2p region (a) and O 1s region (b) recorded of the IL in UHV. The normal emission 
spectra (represented by black lines) and grazing emission spectra (represented by red lines) for 

each region are plotted on the same axes. Each spectrum is normalised to the height of the 
largest peak in the region. 
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Figure 4.4 displays the P 2p and O 1s regions recorded from [P66614][benzim] 

under UHV conditions. The P 2p region (Figure 4.4a) demonstrates the most 

striking change at GE compared to NE. The main features at 132.5 eV and 

133.4 eV are attributed to the P 2p3/2 and P 2p1/2 of the P 2p doublet originating 

from the [P66614]+ cation. There appears to be a shoulder at the lower BE edge 

of the region that is much more prevalent at GE than at NE. This is indicative of 

a P species located nearer to the surface of the IL. The exact nature of the 

species is not known, but it is speculated that it may be the result of X-ray beam 

damage. The UHV measurements were taken at the same position on the IL 

and were not rastered. In the O 1s region (Figure 4.4b), there appears to be one 

dominating signal at 532.4 eV. This feature is likely to be due, predominantly, to 

silicon grease. In the survey spectra, the O 1s feature is slightly more intense at 

GE than at NE, when compared to the N 1s peak in both cases. This is also the 

case for the Si 2s and Si 2p peaks. These observations corroborate the 

assignment of Si grease contamination, which is typically found at the surface of 

the IL rather than in the bulk [26]. While Si contamination at the surface of the IL 

may affect the rate of gas sorption, it is unlikely to influence the chemical 

reactions that take place in the IL. Its presence, however, overlaps significantly 

with peaks associated with hydroxyl groups and with water molecules adsorbed 

on ILs (see Chapters 3.3 and 3.4 for those BE assignments) and makes a 

definitive deconvolution of the region impossible. 
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4.3.2 NAPXPS: Stages 1 to 3 

 

Figure 4.5: The C 1s region (a), and N 1s region (b) of the unexposed IL (Stage 1, black line), of 
the IL during exposure to 0.5 mbar of CO2 (Stage 2, red line), and of the regenerated IL (Stage 

3, amber line). Each N 1s spectrum has been normalised to the total area, and each C 1s 
spectrum has been normalised to the height of the IL carbon peak. The intensity of the spectra 

in the inset figures have been normalised to the most intense peak. 

The C 1s and N 1s photoelectron spectra recorded from the IL during Stages 1 

through 3 are shown in Figure 4.5, represented by the black, red and amber 

lines, respectively. In each region, the spectrum post-exposure is almost 

identical to the spectrum of the unexposed IL (see inset of Figure 4.5a and 

Figure 4.5b). This demonstrates that any interaction between the IL and CO2 is 

reversible when the pressure in the NAP cell is reduced. Furthermore, these 

data suggest that the IL can be largely regenerated through a reduction in 

pressure. The C 1s shows very little discernible change upon exposure to 0.5 

mbar CO2 and following regeneration by evacuation of the gas cell (see inset of 

Figure 4.5a). The N 1s, however, shows more significant changes in the 

presence of the gas with a broadening of the peak near 397.5 eV and the 

growth of a second feature at around 400 eV. The peak at 397.5 eV, which 

dominates the spectrum recorded from the unexposed film, is attributed to the 

nitrogen atoms of the [benzim]- anion. Due to resonance effects the two N 
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atoms in the [benzim]- anion can be considered chemically equivalent [16, 17]. 

The small feature at around 400 eV has been attributed to the presence of 

protonated benzimidazole. The growth of this peak and the associated 

broadening of the lower binding energy feature on exposure to CO2, coupled 

with the loss of these features on removal of CO2, indicate these features are 

associated with the interaction with CO2. In order to investigate the origin of 

these features the regenerated IL was exposed to CO2 and H2O in stages as 

described in Scheme 4.2. 

4.3.3 NAPXPS: Stages 3 to 7 

 

Figure 4.6: C 1s spectrum taken of the regenerated IL (Stage 3, amber line), of the IL during 
exposure to 3 mbar CO2 (Stage 4, green line), during exposure to the first mixed-gas regime 

(Stage 5, blue line), during exposure to 2 mbar H2O (Stage 6, violet line), and during exposure 
to the second mixed-gas regime (Stage 7, magenta line). The data between 291.0 eV and 287.5 
eV is ×20 magnified. The term gas-phase is abbreviated to ‘G-P’, and carbamate is shortened to 

‘Carb’. Each spectrum has been normalised to the IL C peak at 285.0 eV. 
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Figure 4.6 shows the C 1s spectra recorded through Stages 3 to 7. All of the C 

1s spectra feature a strong, slightly asymmetric signal at 285.0 eV. This signal 

is attributed to the carbon atoms in [P66614][benzim]. Blundell and Licence [24] 

studied other ILs with the same cation using XPS. They resolved the 

asymmetrical peak associated with the [P66614]+ cation into two components: 

one attributed to the hetero (C-P) carbon, and one attributed to the alkyl (C-C) 

carbon (the hetero carbons and alkyl carbons are labelled as C4 and C5 

respectively in Figure 4.1). The C 1s signal in this work will consist of 

contributions from these carbon environments, in addition to contributions from 

the aromatic carbon species of the anion (labelled C1 to C3 in Figure 4.1). 

However, none of the contributions from either the cation or the anion have 

been fitted here, since fitting any components to this peak would be speculative 

at best given the broad nature of the peak. Upon exposure to 3 mbar CO2 

(Stage 4, represented by the green line), two more signals appear in the region. 

The peak at a BE of 293.4 eV is attributed to gas phase CO2 and the peak 

observed at a BE of approximately 289.0 eV is attributed to carbamate 

formation [27]. These peaks do not change significantly in shape upon exposure 

to water during the first mixed-gas regime (Stage 5, represented by the blue 

line), but there is a slight upward shift in BE for the carbamate peak from 288.8 

eV to 289.1 eV. In numerous studies, the BE of peaks associated with 

ad/absorbed gas species tend to shift with increased coverage (in the case of 

adsorbates), or increased gas pressure [28-31]. Since the IL was subject to 

further CO2 exposure during Stage 5, it is, therefore, likely that this shift is due 

to an increase in carbamate groups in the IL. During Stage 6 (2 mbar H2O 

vapour only, represented by the violet line), the signal attributed to absorbed 

CO2 is no longer present, indicating desorption of CO2 from the IL. When 3 

mbar of CO2 is then reintroduced into the NAP cell (Stage 7, represented by the 

magenta line) the peak at ~289.0 eV returns with a similar intensity to that seen 

in Stage 5. The peak assignments are summarised in Table 4.1. 
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Table 4.1: Assignments and binding energies of all peaks in the C 1s and N 1s regions 
throughout the experiment. 

Region Binding Energy (eV) 
(±0.1 eV) Assignment 

C 1s 
285.0 IL C 
289.0 Carbamate C 
293.4 Gas-phase CO2 

N 1s 
397.5 Imidazolide N (NIm) 
298.5 Unreacted N (NU) 
400.0 Reacted N (NR) 

 

 

Figure 4.7: N 1s spectrum taken of the regenerated IL (Stage 3, amber line), of the IL during 
exposure to 3 mbar CO2 (Stage 4, green line), during exposure to the first mixed-gas regime 

(Stage 5, blue line), during exposure to 2 mbar H2O (Stage 6, violet line), and during exposure 
to the second mixed-gas regime (Stage 7, magenta line). The label NIm refers to the imidazolide 
N. The labels NU and NR refer to the unreacted and reacted N respectively. Each spectrum has 

been normalised to the total area of the region. 
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Figure 4.7 shows the N 1s spectrum through Stages 3 to 7 of the experiment. 

The spectrum of the regenerated IL (amber line) can be fitted with three peaks 

at binding energies of 397.5 eV, 398.5 eV and 400.0 eV. The peak at 397.5 eV 

is assigned to the imidazolide N atoms, as described above. The two peaks at 

higher BE are seen to increase in intensity when the IL is exposed to 3 mbar of 

CO2 in Stage 4 (green line). They are, therefore, attributed to the reaction 

between the IL and CO2. The peak at 400 eV is attributed to the formation of 

carbamate, and has been labelled NR, to mean ‘reacted’ N. Once a [benzim]- 

anion has reacted with CO2, the N atoms in the anion can no longer be 

considered as chemically equivalent. The reaction of the imidazolide ion with 

CO2 will also mean the two N atoms in the anion will have a different charge 

density and therefore a different BE. As a result, the signal at 398.5 eV is 

attributed to a BE shift in this ‘unreacted’ N atom in the [benzim]- anion that has 

reacted with CO2 (labelled NU in Figure 4.7). 

When 2 mbar of H2O is introduced to create the first mixed-gas regime (Stage 

5, blue line), the NU and NR peaks continue to increase in intensity. This is likely 

to be due to continued reaction with CO2, reaction between the IL and H2O, or 

a combination of both. Imidazolide-based anions react with water to form an 

imidazole (protonated imidazolide) and a hydroxide anion ([OH]-) [32] (see 

Scheme 4.3). This reaction is seen in 1H NMR spectra of [P66614][benzim]/H2O 

mixtures, manifesting as a downward chemical shift [6]. Morales-Gil et al [33] 

reported, for mercaptobenzimidazole, a BE difference of 1.6 eV between 

pyridine-like (N) and the pyrrole-like (NH) nitrogen atoms. This BE difference is 

consistent with the BE difference between our NU and NR peaks. In addition, 

Tenney et al [4] showed only a small shift of 0.3 eV BE between the carbamate 

N and protonated N in an XPS study of 3-amino-1-propanol and CO2. 

Therefore, on exposure to water we attribute the additional intensity of the NU 

and NR peaks to unreacted (non-protonated) N and reacted (protonated) N, 

respectively, as a result of the reaction between the IL and H2O. To clarify, the 

NR peak is attributed to a combination of N-COO- and NH signals, and the NU 

peak is attributed to the unreacted N atom in the ring of a ‘reacted’ anion. 
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Scheme 4.3: Proposed reaction between a benzimidazolide ([benzim]-) anion and CO2 (top), 
generating a carbamate group bound to the previously negatively-charged N, forming 

benzimidazole carbamate. The proposed reaction between a benzimidazolide anion and H2O is 
shown (bottom), where the anion is protonated (forming imidazole) and generates a hydroxide 

anion. The violet circles highlight the imidazolide N (labelled NIm), the amber circles highlight the 
reacted N of both the carbamate and imidazole (labelled NR), and the green circles highlight the 

unreacted N of both reactions (labelled NU). 

When the IL is exposed to only 2 mbar H2O (Stage 6), the NU and NR peaks 

both decrease in intensity. This further supports the theory that the IL can be 

regenerated through a reduction in surrounding CO2 partial pressure. The 

intensities of these peaks, however, do not completely return to the same 

values as those from the regenerated IL, confirming that there is an interaction 

between the IL and H2O vapour. Since the NU and NR peaks are much less 

intense when only exposed to H2O, this seems to indicate a preferential 

reaction with CO2 over H2O. During the second mixed-gas regime (Stage 7), 

when the IL is exposed to 2 mbar H2O and 3 mbar CO2 once again, the NU and 

NR peaks increase in intensity, with similar peak area ratios as those in Stage 5. 

From the assignments above one would expect that the NR and NU peaks 

should have a roughly equal intensity. 
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Figure 4.8: Displayed on the left axis: peak area ratios of NU/NIm (green squares) and NR/NIm 
(amber circles), where NU refers to unreacted nitrogen, NR refers to reacted nitrogen, and NIm 

refers to imidazolide nitrogen. Displayed on the right axis: the peak area ratio of CCarb/CIL (black 
diamonds), where CCarb refers to carbamate carbon and CIL refers to IL carbon. 

Figure 4.8 shows the peak area ratios of NU/NIm and NR/NIm for each stage of 

experiment. The peak area ratios were calculated by dividing the area of the NU 

or NR peak by the area of the NIm peak at each stage. The NU and NR peaks in 

the N 1s spectra for the unexposed IL and the regenerated IL have been 

accounted for in the calculations for the ratios calculated for Stages 2, and 

Stages 4 to 7. Specifically, the areas of the NU and NR peaks from the 

unexposed IL and the regenerated IL have been subtracted from the areas of 

the NU and NR peaks from later stages. Through Stages 3 to 7, it can be seen 

that NU/NIm > NR/NIm. This means the area of the NU peak is consistently 

greater than that of NR throughout these stages, which means a peak area ratio 

of 1:1 is not maintained. The reasons for this are unclear. One possibility is that 

some of the absorbed CO2, rather than forming a carbamate group, weakly 

interacts with the benzimidazolide anion, causing a shift in the imidazolide N 

peak to a higher BE. This could account for the consistently greater intensity of 

NU compared to NR, since increased gas exposure would lead to more CO2 

absorption (via both physisorption and chemisorption) and a greater number of 

these weak interactions between the anion and CO2 molecules. It is possible 
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that X-ray beam damage occurs, although this is usually indicated by the 

presence of a feature at low binding energy (~397 eV) [16]. From the data here, 

it is not possible to unambiguously identify the origin of this apparent 

discrepancy. Further work utilising angle resolved photoemission (to vary the 

depth) and near edge X-ray absorption fine structure (see Chapter 7) may prove 

useful in elucidating the source of the increased intensity. The peak area ratio 

CCarb/CIL at each stage of the experiment is shown on the right axis of Figure 

4.8. The C 1s peak intensities are normalised to the IL carbon peak, allowing for 

comparison of changes in the carbamate carbon peak intensity throughout the 

experiment. This ratio describes the change in intensity of the carbamate signal 

only, while both of the ratios of NU/NIm and NR/NIm describe intensity changes 

associated with both carbamate formation and benzimidazole formation. 

CCarb/CIL does not increase as significantly as NU/NIm or NR/NIm when the IL is 

exposed to H2O in the first mixed gas regime (Stage 5). This confirms that the 

increase in NU and NR from Stage 4 to Stage 5 is largely due to the reaction 

with water. CCarb/CIL decreases significantly when the IL is exposed to only H2O 

(Stage 6), which reflects the trend displayed by both NU/NIm and NR/NIm. Once 

the IL is exposed to the second mixed-gas regime (Stage 7), CCarb/CIL 

increases, again reflecting the trend displayed by both NU/NIm and NR/NIm. This 

supports the idea that the IL continues to react with CO2 despite initially 

exposing the IL to H2O vapour. 
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Figure 4.9: Molar uptake ratio, nCO2:nIL, at each stage of the experiment, calculated using the N 
1s region (black pentagons) and the C 1s region (cyan hexagons). 

The molar uptake ratio, nCO2:nIL was calculated using the area of the NR peak in 

the N 1s region, and the area of the whole N 1s region. For comparison, a 

separate value for the molar uptake ratio was calculated using the area of the 

carbamate peak and the area of the whole C 1s region (excluding gas-phase 

signals). Similarly to the N 1s area ratios, the NU and NR peaks from the 

unexposed IL and regenerated IL have been accounted for in the calculation of 

the molar uptake ratio at each Stage. These values of nCO2:nIL at each stage 

have been plotted in Figure 4.9. In the study by Taylor et al [6], the molar 

uptake ratio of CO2 in dry [P66614][benzim] (at saturation) was calculated to be 

1.2:1. It is likely that the chemisorption of CO2 occurs at a ratio of 1:1, but can 

exceed capacity by ‘trapping’ physisorbed CO2. It was found the addition of 

water reduced the molar uptake ratio of CO2 to 1:1, which indicates saturation 

of the IL with water diminishes its capacity for physisorbed CO2. Throughout all 

stages of our experiment the ratio nCO2:nIL is always <1 which is expected since 

the imidazolide signal is always present in the N 1s region, and therefore some 

unreacted anions remain in the IL. The molar uptake ratio calculated using 

these regions follow a similar trend, but nCO2:nIL for the C 1s region is always 



156 
 

less than that calculated using the N 1s region at every stage (with the 

exception of Stages 1 and 3, where the corrections to NU and NR mean the ratio 

is zero). There are two reasons for this. Firstly, the reaction with H2O leads to 

an increase in the intensity of the NR peak. As a result, the molar uptake ratio 

calculated using the N 1s region is overestimated. Secondly, the presence of 

any contaminant C at the surface, likely as a part of silicon grease (see Section 

4.3.1), has not been taken into account [34, 35]. The signal would overlap with 

that of the IL, and so would contribute to the intensity of the IL carbon peak. 

This intensity inflation consequently reduces the apparent relative intensity of 

the carbamate peak, causing the molar uptake ratio calculated using the C 1s 

region to be underestimated. 

The values of nCO2:nIL calculated using the N 1s region averages at ~0.5, 

irrespective of CO2 partial pressure. A consistent uptake ratio may be explained 

by the existence of a threshold of ‘surface saturation’, where reacted species 

move to the bulk of the IL, and a portion of unreacted species are present at the 

surface. An XPS investigation into the reaction between a solution of MEA and 

CO2 by Lewis et al [36] demonstrated that the concentration of reacted species 

was greater in the bulk of the solution, whereas the concentration of the 

unreacted MEA was greater at the surface. The IL film studied here is greater 

than the sampling depth of XPS, and is therefore considered a bulk system. It 

may be the case for [P66614][benzim] that the anions that have reacted with CO2 

move to the bulk of the IL, and unreacted anions become more prevalent at the 

surface of the IL. If a portion of unreacted species consistently populates the 

IL/CO2 interface, this would facilitate continuous reaction between the IL and 

CO2 until saturation. However, [P66614][benzim] is significantly more viscous 

than MEA [6, 37, 38], which is likely to hinder transport of reacted species in the 

IL. In previous studies, the IL was subject to saturation of CO2/H2O [6], but at 

these pressures, we are predominantly investigating absorption phenomena via 

chemisorption due to changes in the N 1s following reaction between CO2 and 

the IL. While physisorption of CO2 cannot be ruled out, the C 1s and O 1s 

spectra recorded in this work cannot be deconvoluted sufficiently to determine 

the presence of physisorbed or absorbed CO2. 

It is evident from the signals attributed to carbamate formation in both the C 1s 

and N 1s regions that IL continues to react with CO2, irrespective of whether it 
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is exposed to CO2 or H2O vapour first. This demonstrates that its ability to react 

is not significantly inhibited by exposure to H2O vapour. As mentioned 

previously, in the study by Taylor et al [6], the capacity for chemisorbed CO2 

was maintained (i.e. 1:1 ratio of CO2 molecules to IL pairs), but the capacity for 

physisorbed CO2 (‘trapped’ CO2, the remaining 0.2 of the dry IL molar uptake 

ratio) was reduced. This is also reflected in our data, whereby the molar uptake 

ratio (which is likely to be dominated by chemisorption) is a similar value in both 

mixed-gas regimes, demonstrating that the capacity for chemisorption, under 

these conditions, was not significantly affected by initial exposure to H2O 

vapour. The peak area ratios NU/NIm, NR/NIm, and CCarb/CIL in the second 

mixed-gas regime (Stage 7) are consistent with those in the first mixed-gas 

regime (Stage 5). This means that the IL reacts with CO2 and forms a similar 

proportion of carbamate groups irrespective of whether the IL has been 

exposed initially to H2O vapour or CO2 gas. The idea that a similar number of 

carbamate groups formed in Stages 5 and 7 suggests that H2O does not 

displace CO2, but CO2 molecules do displace the hydrogen bonds formed via 

the reaction between the IL and H2O. 

In previous work, the superbasic ILs were regenerated through heating to 80°C, 

and removing the desorbed CO2 under a flow of N2 [6]. The measurements 

discussed here have shown that [P66614][benzim] can be regenerated by 

reducing the CO2 partial pressure surrounding it. This might also suggest that 

when working at such low pressures (compared to those employed by Taylor et 

al) the IL is more easily deprotonated allowing the reaction with CO2 to proceed. 

The measurements here clearly demonstrate that the CO2 capture capabilities 

of superbasic ILs are not diminished after regeneration for both dry and pre-

wetted superbasic ILs. 

4.4 Conclusion 

In summary, the reaction of CO2 with [P66614][benzim] has been studied by 

NAPXPS and indicates reaction between the CO2 and benzimidazolide N 

atoms to form a carbamate species. The results obtained during exposure to 

both H2O vapour and CO2 indicate that the ability of the IL to react with CO2 is 

not inhibited significantly by the presence of H2O, and that CO2 appears to 

preferentially bind to the IL, even after exposure to H2O vapour. The upper limit 



158 
 

of the molar uptake ratio, nCO2:nIL, is calculated to be approximately 0.5. 

Additionally, the CO2 reaction with the anion appears to be reversible simply by 

reducing the surrounding CO2 pressure, showing that [P66614][benzim] can be 

regenerated in situ. 
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5 Surface Phenomena and Thermal Stability of 

Ionic Liquid Multilayers on Polar and 

Nonpolar Zinc Oxide 

Understanding how the constituent ions of ionic liquids (ILs) arrange themselves 

and interact with oxide surfaces is important for a wide variety of applications. 

Of particular relevance to the theme of this thesis are oxides as a part of 

photovoltaic (PV) systems and as catalysts. 

The arrangement of IL ions on oxide surfaces is dependent on their size and 

shape, as well as the interactions they experience with the atoms at the oxide 

surface. The ordering and interactions of ionic liquids (ILs) have previously been 

investigated on a number of metal [1-3] and metal oxide [4-7] surfaces, but few 

studies exist that investigate their behaviour specifically on ZnO. Various groups 

have incorporated ILs into ZnO-based PV devices to improve performance [8, 

9]. ILs have shown to be beneficial for various catalysis systems by improving 

selectivity [10], and avoid loss of solvent during reaction due to their low vapour 

pressures [11]. 

Presented in this chapter is a two-part study into the structure and interactions 

of two imidazolium-based ILs on ZnO. The first part investigates the ordering 

and interactions of an IL on two ZnO surfaces using a combination of X-ray 

photoelectron spectroscopy and near-edge X-ray absorption fine structure 

spectroscopy with a view toward PV applications. The second investigates the 

thermal stability of an IL on ZnO using X-ray photoelectron spectroscopy, with a 

view toward catalysis applications. 

5.1 Introduction 

Zinc oxide (ZnO) is an inorganic semiconductor material with a wide band gap 

of ~ 3.3 eV, and has a hexagonal-wurtzite structure (see Figure 5.1). The low-

index surfaces of ZnO can be categorised into two types: polar and non-polar. 

These are differentiated by the concentration of Zn2+ and O2- ions at the free 
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surface: specifically, non-polar surfaces have an equal number of Zn2+ and O2- 

ions, while polar surfaces are dominated by either Zn2+ or O2-, and are referred 

to as being either Zn-terminated or O-terminated respectively. The 

concentration of surface ions results in differing chemical properties between 

the polar and non-polar surfaces of ZnO. 

 

Figure 5.1: Diagram of the wurtzite crystal structure of ZnO, where the ZnO (0001), ZnO (000-1) 
(polar faces), and ZnO (10-10) (non-polar face) terminations are highlighted. On the right shows 

the position of the Zn atoms (large green spheres) and the O atoms (small red spheres), and 
the unit cell with lattice parameters a (3.3 Å) and c (5.2 Å). The dimension u is an internal 

constant that describes the Zn-O displacement along c, which, for a perfect ZnO unit cell, is 3/8. 
Figure adapted from [12]. 

ZnO is a desirable candidate material for photovoltaic applications due to its 

good electrical and optical properties, whilst also being stable, non-toxic and 

relatively cheap to manufacture in bulk quantities [13, 14]. ZnO catalysts consist 

of ZnO in its nanoparticulate form, and can be utilised for a variety of 

applications, including methanol synthesis [15], water treatment [16] and 

H2O/CO2 splitting [17]. 

In PV systems, charge transfer between composite layers is of vital importance 

to their efficiency. For organic-based PV in particular, challenge lies in lowering 

the charge transfer barrier between the active layer (where current is 

photogenerated in a photovoltaic cell) and the metal oxide layer. This is done 

through engineering the energy difference between the conduction band of the 

metal oxide and the LUMO of the active layer. This can be done using an 

organic electrolyte, located between the metal oxide and the active layer, to 

enhance charge transfer. Charge transfer across an interface is closely linked to 

the arrangement of atoms or molecules at the interface in question. Lee et al [8] 

used a monolayer of IL electrolyte (specifically 1-benzyl-3-methylimidazolium 
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chloride) to enhance the performance of hybrid organic-inorganic solar cells, 

containing ZnO for the metal oxide layer and ‘Super Yellow’ as the active layer. 

The IL ions arranged themselves preferentially, with the Cl anions located at the 

ZnO surface, and the 1-benzyl-3-methylimidazolium cations at the active layer. 

This dipole arrangement shifted the band edge of ZnO closer to that of the 

active layer, subsequently causing a decrease in the ZnO work function and the 

charge transfer barrier. The self-assembling ionic nature of ILs provides an 

advantage for their potential use in PV systems over other organic electrolytes. 

In catalysis systems such as supported ionic liquid phase (SILP) and solid 

catalyst with ionic liquid layer (SCILL), the addition of IL exists to enhance the 

catalysts’ selectivity of reactants and thus, in theory, improve the efficiency of 

these systems, but interactions with the IL and the catalyst itself could alter the 

adsorption and/or reaction properties of the catalyst. Sobota et al [18, 19] 

conducted a combined IR absorption and X-ray photoelectron spectroscopy 

(XPS) study into the effects of 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulphonyl)imide ([C4C1Im][Tf2N]) on CO adsorption of Pd 

nanoparticles immobilised on an Al2O3 support. The addition of IL to the system 

reduced CO adsorption at bridge sites on the catalyst, but stabilised adsorption 

on the hollow sites of facet features on the catalyst. More pertinently, they found 

that the IL decomposed when the system was heated, and the products of the 

decomposition blocked the majority of the CO adsorption sites on the Pd 

catalysts. The XPS revealed that the decomposition species (which were 

cation-derived) were preferentially located on the catalysts, and not on the 

Al2O3 support. By blocking adsorption sites for reactants, the presence of 

decomposition species is likely to have a negative impact on rate of reaction 

and reaction kinetics. 
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Figure 5.2: Chemical structures of the [C8C1Im]+ and [C4C1Im]+ cations, and of the [BF4]- anion. 

Presented here is an investigation into the structure and ordering of 1-octyl-3-

methylimidazolium tetrafluoroborate ([C8C1Im][BF4]) on ZnO (0001) and ZnO 

(10-10), followed by an investigation into the thermal stability of the analogous 

1-butyl-3-methylimidazolium tetrafluoroborate [C4C1Im][BF4] on ZnO (0001). 

5.2 Experimental section 

5.2.1 [C8C1Im][BF4] on ZnO (0001) and ZnO (10-10) 

 

Figure 5.3: ZnO (0001) crystal mounted onto the Ta sample plate with Ta wire at the ANTARES 
beamline at Soleil. The ZnO (10-10) crystal, of the same dimensions, was mounted in a similar 

fashion. 

The ZnO (0001) and (10-10) single crystal surfaces (5 mm × 10 mm, PI-KEM) 

were mounted onto Ta sample plates and fixed into place with Ta wire (see 

Figure 5.3). They were cleaned via several Ar+ sputter-anneal cycles (sputtering 
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at 1 keV for 15 minutes and annealing at 700°C for 20 minutes) with a final 

anneal in 10-6 mbar O2 for five minutes. The cleanliness of the surfaces was 

then determined by X-ray photoelectron spectroscopy (XPS) scans (see Figure 

5.5 for these spectra). Additionally, a low-energy electron diffraction (LEED) 

pattern was acquired for the ZnO (0001) surface (using an incident energy of 

74.0 eV) to confirm the cleanliness of the surface, as well as check for the 

correct pattern for the (0001) termination. The LEED pattern was not heavily 

obscured by background noise, indicating a smooth (0001) surface with few 

defects (see Figure 5.4). 

 

Figure 5.4: LEED pattern taken from the clean ZnO (0001) surface at 74.0 eV. The hexagonal-
shaped pattern shows that the surface has the correct surface termination. 

The IL, 1-octyl-3-methylimidazolium tetrafluoroborate ([C8C1Im][BF4], Sigma 

Aldrich, >97%, chemical structure shown in Figure 5.2) was degassed in a 

modified Knudsen cell at 120°C for approximately 3 hours to remove water and 

impurities. The IL was heated to ~350°C for deposition. The deposition time 

was 20 minutes for the ZnO (0001) substrate, and 420 minutes for the ZnO (10-

10) substrate. The dosing time needed to be increased due to the experimental 

setup used on the beamline. The substrate was cooled to ~-150°C to prevent 

beam damage. For IL/ZnO (0001), the substrate was cooled after IL deposition; 

and for IL/ZnO (10-10), the substrate was cooled prior to IL deposition. 
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Figure 5.5: XPS surveys of clean ZnO (0001) (photon energy, hν = 700 eV) (a), and of clean 
ZnO (10-10) (hν = 800 eV) (b). 

XPS and N K-edge near-edge X-ray absorption fine structure (NEXAFS) 

measurements were taken at the ANTARES beamline at the SOLEIL 

synchrotron in France. All XPS measurements were taken at normal emission 

(photoelectron emission 90° relative to sample surface) and have been 

calibrated on the BE scale to the O 1s region at 530.0 eV [20]. All core level 

XPS BEs are quoted to ±0.1 eV. On the ZnO crystals, each XPS spectrum was 

taken at a new position on the sample surface. The same procedure was 

carried out for the N K-edge NEXAFS spectra. A set of seven scans were taken, 

each with 0.5 eV steps, scanning the N absorption edge with a total range of 

390 eV to 430.5 eV. The seven spectra were then merged, and produced a 

spectrum spanning 390 eV to 430.5 eV, with a step size of 0.1 eV. The 

NEXAFS spectra were recorded by monitoring the N auger peak at a kinetic 

energy of 375 eV; with the beam at normal incidence (NI, beam at 90° relative 

to the sample surface) and grazing incidence (GI, beam 30° relative to the 

sample surface). An additional NEXAFS spectrum was recorded for the IL/ZnO 

(0001) system with the beam at an angle of 50° relative to the surface. The XPS 
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and NEXAFS spectra were recorded at different positions on the surface in 

order to prevent sample beam damage. XPS spectra of the clean ZnO (0001) 

and ZnO (10-10) surfaces are shown in Figure 5.5, with peaks associated with 

the substrate labelled. An O KLL Auger feature appears at ~200 eV in the ZnO 

(0001) survey, and at ~300 eV in the ZnO (10-10) survey. Table 5.1 outlines the 

photon energies used in acquiring the XPS spectra. 

Table 5.1: Photon energies used in acquiring the XPS spectra on the ANTARES beamline 

Region Photon energy, hν (eV) 
C 1s 700 
O 1s 700 
N 1s 700 
F 1s 800 
B 1s 300 

 

5.2.2 [C4C1Im][BF4] on ZnO (0001) 

The ZnO (0001) single crystal substrate (5 mm × 5 mm, PI-KEM) was mounted 

onto a Ta sample plate, held in place using Ta strips that were spot-welded into 

place. The substrate was prepared via two Ar+ sputter-anneal cycles (sputtering 

at 1 keV for 15 minutes and annealing at 700°C for 20 minutes). The final 

anneal was carried out in ~10-6 mbar O2 for five minutes. Similar to the ZnO 

substrates in the previous section, a LEED pattern was acquired for the ZnO 

(0001) crystal at an energy of 71.3 eV (see Figure 5.6). The LEED pattern 

shows that the ZnO (0001) has the correct surface termination, and its 

sharpness confirms that the surface has few defects. 

 

Figure 5.6: LEED pattern taken from the clean ZnO (0001) surface at 71.3 eV. The hexagonal-
shaped pattern shows that the surface has the correct surface termination. 
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The IL, 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1Im][BF4], Sigma 

Aldrich, >97%, see Figure 5.2 for the chemical structure) was degassed in a 

modified Knudsen cell at ~120°C for three hours to remove water and 

impurities, during which time the ZnO (0001) substrate was cooled to -150°C. 

The IL was then heated to 180°C for physical vapour deposition under ultra-high 

vacuum (UHV) conditions for 25 minutes. XPS measurements were taken at the 

AU-MATline beamline of the ASTRID storage ring at the Danish synchrotron 

facility, ISA. 

XPS spectra were recorded as the sample was heated from -150°C, through the 

glass transition temperature of [C4C1Im][BF4] (-97°C [21]), up to 200°C. At each 

temperature, spectra were taken at normal emission (NE, with photoelectron 

emission angle at 90° relative to the sample surface), and at grazing emission 

(GE, with photoelectron emission angle 45° relative to the sample surface). 

Measurements at these angles possess approximate sampling depths of 1.5 nm 

and 1.0 nm respectively (using a derivation of the Beer-Lambert law [22]), and 

thus the GE spectra are more surface-sensitive. Binding energies of all core 

level XPS peaks are quoted to ±0.1 eV and have been calibrated to the Zn 3p3/2 

peak at 88.6 eV [23]. Table 5.2 outlines the photon energies used in acquiring 

the XPS spectra. 

Table 5.2: Photon energies used in acquiring the XPS spectra on the AU-MATline beamline 

Region Photon energy, hν (eV) 
C 1s 370 
O 1s 610 
F 1s 770 
B 1s 270 

5.3 Results 

The ordering and interactions of [C8C1Im][BF4] on polar and nonpolar ZnO were 

investigated using XPS and N K-edge NEXAFS. The C 1s XPS spectrum for 

[C8C1Im][BF4] on ZnO (0001) is shown in Figure 5.7a(i) (red line). The C 1s 

region for [C8C1Im][BF4] on ZnO (0001) possesses the characteristic two-peak 

shape, with a dominating feature at 284.8 eV, which is attributed to the alkyl 

chains of the IL cations. The BE of this feature is in correlation with literature 

values [24]. The shoulder at approximately 286.0 eV is therefore attributed to 

the amalgamation of signals arising from the carbon in the imidazolium ring of 
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the cation. The C 1s region recorded for [C8C1Im][BF4] on ZnO (10-10) is 

shown in Figure 5.7a(ii), also represented by a red line. The signal does not 

have the characteristic two-peak shape, but instead has a more asymmetrical 

line shape. This could indicate the presence of carbon species in addition to the 

IL carbon, all of which produce signals that overlap one another. This may be 

due to decomposition of the IL during deposition.  
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Figure 5.7: Core level XPS spectra of [C8C1Im][BF4] on ZnO (0001) (i), and of [C8C1Im][BF4] on 
ZnO (10-10) (ii). A summary of binding energies and assignments of peaks is featured in Table 

5.3. 
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The O 1s spectrum of the IL on ZnO (0001) is shown in Figure 5.7b(i), 

represented by the amber line. This spectrum has been fitted with three peaks 

(a summary of binding energies and assignments of peaks is featured in Table 

5.3). The first, at ~530 eV, is attributed to the lattice O peak of the substrate 

[20]. The second, at approximately 531.3 eV is attributed to surface hydroxyl 

groups, the presence of which are typical for the polar surfaces of ZnO [25-27]. 

The BE of the third peak (~532.5 eV) is consistent with that of molecular 

adsorbed water [28]. Water may have adsorbed on the surface of either the IL, 

the ZnO, or both when the substrate was cooled after IL deposition. The 

adsorption of water on the ZnO surface may have also contributed to the 

existence of hydroxyl groups via dissociation [27]. Babucci et al [29] 

investigated the interactions between the analogous IL [C4C1Im][BF4] and a 

variety of oxides, including ZnO, using Fourier transform infrared (FTIR) 

spectroscopy. The study revealed that CH at the C4 position in the imidazolium 

ring interacts and bonds with with O2- in the ZnO surface- a mechanism 

supported by other works [30]. This kind of interaction is likely to manifest a 

peak in the O 1s region at a higher BE than the lattice O, as the bond formation 

will cause a change in electron density. Therefore, a portion of the signal at 

~532.5 eV is attributed to the interaction between the C4 carbon of the cation 

and O2- at the ZnO surface. Scanning tunnelling microscopy (STM) 

investigations into the ZnO (0001) surface by Diebold’s group [25, 27] revealed 

that the (0001) surface termination possesses a nanoscale roughness that 

culminates from a large number of small, irregularly spaced, triangular holes. 

The surface maintains the 1×1 periodicity, and therefore still generates the 

expected LEED pattern for the (0001) termination [27]. The ZnO (0001) surface 

itself is Zn-terminated, but step edges on the ZnO (0001) surface are O-

terminated. Because there are many of these O-terminated step edges, it is 

likely that interaction between the IL cation and the substrate occurs at these 

sites. The O 1s region for [C8C1Im][BF4] on ZnO (10-10) is shown in Figure 

5.7b(ii). This region has also been fitted with three composite peaks, with those 

at higher BEs displaying a greater intensity than those in the O 1s region for the 

same IL on ZnO (0001). The signal at approximately 530 eV is assigned to the 

lattice O of the substrate. The peak at ~531.3 eV has been attributed to surface 

hydroxyl groups. STM investigations of stoichiometric ZnO (10-10) surfaces [25] 

show that they are made up of flat, well-defined terraces, consisting of an equal 
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number of Zn and O atoms per unit area. This therefore means that interactions 

between the cation and the substrate could theoretically take place anywhere 

on the crystal surface, rather than specifically at step edges. Similarly to IL/ZnO 

(0001), the BE of the signal at 532.5 eV is consistent with that of adsorbed 

water [28], and thus may contain a contribution from water molecules that have 

adsorbed on the surface. It may be the case that that the presence of hydroxyl 

groups and adsorbed water is greater for IL/ZnO (10-10) than for IL/ZnO (0001), 

due to the substrate being cooled prior to IL deposition. Because of this, water 

from the background vacuum is likely to have condensed on the ZnO crystal 

surface and facilitated the formation of hydroxyl species via water dissociation 

at O-vacancy sites [27], as well as adsorbed as molecular water on the surface 

[31]. Conversely, for IL/ZnO (0001), the IL was deposited onto the substrate at 

room temperature, and then the whole sample was cooled. In that case, IL film 

may have subsequently ‘protected’ the ZnO (0001) surface from water 

molecules, and resulted in less hydroxyl formation. While it is possible that there 

may be a greater concentration of surface hydroxyl groups on the ZnO (10-10) 

surface, there may not necessarily be a mutually greater concentration of 

adsorbed water. The strength of the signal at ~532.5 eV could also be 

explained by a greater intensity of the signal associated with cation-substrate 

interaction [5]. This would be the case if the IL deposition on the ZnO (10-10) 

substrate was an ultrathin film, whereby the interaction between the IL and the 

substrate would be more ‘visible’, and not obscured beneath multilayers, 

leading to a more intense signal associated with that interaction. Using a 

combination of the TPP-2M calculation for the inelastic mean free path for 

organic materials [32], and the Beer-Lambert relation for photoelectron 

attenuation in thin films [22], the thicknesses of the deposited IL layers on ZnO 

(0001) and ZnO (10-10) were calculated. The IL deposition on ZnO (0001) was 

found to be approximately (11.26 ± 0.08) Å, corresponding to an estimated 1.6  

IL layers, assuming the ‘thickness’ of one [C8C1Im][BF4] pair to be ~7 Å [33]. 

Meanwhile, the deposition on ZnO (10-10) was found to be almost half the 

thickness of the deposition on ZnO (0001), at approximately (6.30 ± 0.08) Å (the 

calculation for IL deposition thickness can be found in Appendix A). This 

corresponds to approximately 0.9 IL layers, suggesting a sub-monolayer 

coverage. The presence of adsorbed water in both cases may cause a more 
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intense O 1s signal, which would lead to an underestimation in the calculation 

for the thickness of the IL films. 

 

Figure 5.8: N K-edge NEXAFS spectra recorded for [C8C1Im][BF4] on ZnO (0001) (a), and for 
[C8C1Im][BF4] on ZnO (10-10) (b). The schematic diagrams to the left of the angle labels 

indicate the beam’s incidence on the sample surface. 

X-ray absorption techniques are particularly sensitive to molecular ordering, and 

while they (at the very least) can be used to affirm the existence of ordered thin 

films of ILs (as opposed to thicker IL films where molecular ordering is lost), X-

ray absorption can be used to determine the orientation of any composite 

resonant structures. The N K-edge NEXAFS spectra for [C8C1Im][BF4] on ZnO 

(0001) at incidence angles of 30°, 50°, and 90° are shown on in Figure 5.8a. 

The N K-edge NEXAFS spectra at incidence angles of 30° and 90° for 

[C8C1Im][BF4] on ZnO (10-10) is shown in Figure 5.8b. The π* feature in the 

NEXAFS spectrum for the IL on ZnO (0001) does not change significantly in 

intensity relative to the σ* feature at 30°, 50° or 90°. The lack of change in 

intensity indicates that there is no ordering at the surface, and is therefore 

indicative of a thicker IL deposition [5]. However, for IL/ZnO (10-10), the π* 

feature is more intense than the σ* feature when the incident beam is 90° to the 

surface. Conversely, when the beam is incident at the grazing angle of 30° 

relative to the surface, the π* feature is smaller than the σ* feature. This 

indicates a preferential orientation of the imidazolium ring of the cation on the 

ZnO (10-10) surface, and thus indicates the existence of a thin and ordered IL 

layer. This supports the assessment of the O 1s XPS data and the calculations 

made for the thicknesses of the respective IL layers. Furthermore, in Figure 

5.8b, the greater intensity of the π* feature with the beam at normal incidence 

would indicate that the imidazolium ring of the cation is oriented at an angle that 



177 
 

is closer to the surface normal (and therefore more ‘upright’ relative to the 

surface), rather than oriented at an angle that is closer to the surface itself. In 

order to ascertain a more precise orientation, more higher-quality X-ray 

absorption spectra at a greater variety of angles would need to be recorded. 

Evidence suggesting the imidazolium ring orientates in a more ‘upright’ position 

on ZnO (10-10) would offer an interesting contrast to that observed for thin 

depositions of [C4C1Im][BF4] on TiO2 (101) [5], where the imidazolium ring 

orients at an angle of ~32° to the surface. 

The N 1s spectrum of the IL on ZnO (0001), represented by the green line, is 

shown in Figure 5.7c(i). While the [C8C1Im]+ cation consists of two nitrogen 

atoms, they can be considered chemically equivalent due to resonance effects 

[24], and thus produce one signal in the N 1s region. The N 1s spectrum in 

Figure 5.7c(i) has been fitted with three peaks. The peak at ~401.6 eV is 

attributed to the nitrogen in the [C8C1Im]+ cation [5, 24]. The other two signals, 

at ~400.0 eV and 399.0 eV respectively are likely to be the result of beam 

damage. The appearance of beam damage peaks in the N 1s region is reported 

in numerous works involving ILs [2, 5, 34]. Furthermore, ANTARES is a 

powerful undulator beamline, and it is likely that the flux of the beam was great 

enough to cause some damage to the IL films despite changing positions on the 

sample after every scan and cooling the substrate. The N 1s region for IL/ZnO 

(10-10) (Figure 5.7c(ii)) displays a different shape to that of IL/ZnO (0001), and 

features associated with beam damage are more intense than for IL/ZnO 

(0001). Despite the same raster process being applied to the spectra as for 

IL/ZnO (0001), it appears that significant damage due to prolonged X-ray 

exposure has been sustained by this system. This behaviour is consistent with 

that of a thin IL film, which are known to be more susceptible to beam damage 

than thicker films of IL [2, 34].  

The F 1s spectrum of the IL on ZnO (0001), shown in Figure 5.7d(i), is 

represented by the blue line and is composed of just one signal. The BE of this 

peak is consistent with that of the [BF4]- anion, and is therefore attributed to 

[BF4]-. In an XPS study of the same IL on a Cu (111) substrate by Syres and 

Jones [35], the [BF4]- anion reacted with the Cu, forming chemisorbed fluorine 

(Cu-F) and boron trifluoride (BF3). The gaseous BF3 simply desorbed, leaving a 

single F species on the Cu substrate. While there may be weak interaction 
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between the anion and ZnO substrate, previous works investigating the 

interactions between [BF4]--containing ILs and ZnO do not seem to suggest any 

kind of chemisorption of F or B [29]. The F 1s spectrum for [C8C1Im][BF4] on 

ZnO (10-10) is shown in Figure 5.7d(ii), and is slightly broader than that shown 

in Figure 5.7d(i). This may indicate the presence of a second peak alongside 

that associated with [BF4]-, but is difficult to resolve, and cannot be fitted without 

ambiguity. Babucci et al [29] suggested that the interaction between the cation 

and O2- of ZnO weakened the cation-anion interactions, which subsequently 

strengthened the B-F bonds in the anion. It is difficult to de-convolute the C 1s 

region, and thus it cannot be determined whether the cation interacts differently 

with ZnO (0001) than ZnO (10-10) (or vice versa). It may be the case, however, 

that a stronger cation-substrate interaction would lead to a weaker cation-anion 

interaction, and thus lead to a strengthening of the B-F bonds of the anion. This 

would then result in the peaks associated with the anion shifting to a higher BE. 

It can be seen for both the F 1s and B 1s regions that there is a clear difference 

in BE between each system. When compared to the F 1s signal from IL/ZnO 

(0001), the F 1s signal from IL/ZnO (10-10) is shifted to a lower BE by 

approximately 1 eV. Similarly, the B 1s signal for the IL on ZnO (10-10) (Figure 

5.7e(ii)) is shifted to a lower BE by approximately 2 eV compared to the IL on 

ZnO (0001) (Figure 5.7e(i)). Slight shifts are also seen in the regions associated 

with the cation. The C 1s and N 1s signals both appear to be shifted to a lower 

BE than those for IL/ZnO (0001), by approximately 0.5-1.0 eV. Under the 

assumption made above, this would mean the cation is interacting more 

strongly with the (0001) surface than with the (10-10). In order to investigate 

whether or not the cation experiences a stronger interaction with the (0001) 

surface, theoretical calculations could be undertaken to explore any differences 

in binding energies of IL/substrate bonds. 
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Table 5.3: Summary of fitted peak assignments of [C8C1Im][BF4] on ZnO (0001) and on ZnO 
(10-10), together with their respective binding energy (BE) values. 

Substrate Region BE (eV) 
(±0.1 eV) Assignment 

Zn
O

 (0
00

1)
 O 1s 

530.0 O2- of ZnO 
531.3 OH groups 
532.5 H2O, cation-substrate interactions 

N 1s 
401.6 Imidazolium N of [C8C1Im]+ cation 
400.0 Beam damage species 
399.0 Beam damage species 

F 1s 685.7 F of [BF4]- anion 

Zn
O

 (1
0-

10
) O 1s 

530.0 O2- of ZnO 
531.3 OH groups 
532.5 H2O, cation-substrate interactions 

N 1s 
401.6 Imidazolium N of [C8C1Im]+ cation 
400.0 Beam damage species 
399.0 Beam damage species 

F 1s 685.3 F of [BF4]- anion 
 

Babucci et al [29] investigated the thermal stability of the analogous IL 

[C4C1Im][BF4] on ZnO as well as other transition metals, using 

thermogravimetric analysis (TGA) and FTIR spectroscopy. They found that the 

decomposition of the IL starts with the weakening of the bond between the 

cation and the substrate. This subsequently influences the interactions between 

the imidazolium ring and the butyl group, as well as affecting the bonds within 

the ring itself. Furthermore, they suggest that the weakened cation-substrate 

interaction has a knock-on effect on the cation-anion interactions, whereby 

anion-substrate interactions develop, resulting in a structural loss of the IL. 

As previously mentioned, cation-substrate interactions may influence the 

strength of the bonds within the [BF4]- anion, leading to an upward shift in XPS 

core level binding energies in the F 1s and B 1s region. Furthermore, were 

cation-substrate interactions to weaken, it follows that the subsequent influence 

on the cation-anion interactions would also cause the B-F bonding in the anion 

to weaken. This could then cause a shift in the F 1s and B 1s core XPS regions 

toward lower binding energies. 

The thermal stability of [C4C1Im][BF4], and its subsequent effects on 

IL/substrate interactions, was investigated on the polar surface ZnO (0001) 

using XPS. The C 1s region at NE and GE at each temperature are shown in 

Figure 5.9. The shape of the region should be similar to that of the analogous 
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[C8C1Im][BF4], where superimposed signals create the characteristic two-peak 

shape of the region. Because the [C4C1Im]+ cation has a shorter alkyl chain, the 

lowest BE peak is smaller in relative intensity [24, 36]. At -150°C, four peaks 

can be fitted to the NE and GE spectra (a summary of binding energies and 

assignments of peaks is featured in Table 5.4). The peak at 284.4 eV is, 

assigned to the alkyl chain of the IL in corroboration with literature [5, 24]. The 

peak at 286.2 eV arises from a combination of signals attributed to the carbon 

atoms just outside the imidazolium ring (denoted C2 in Figure 5.2 of the 

structure of the [C4C1Im]+ cation), and the carbon atoms, C3, inside the 

imidazolium ring. The peaks attributed to the C2 and C3 carbons are close in BE 

(typical separation of 0.2 eV - 0.4 eV [5, 24]; and to illustrate BE fluctuations in 

later spectra, it can be fitted with one, slightly wider, peak (full width at half 

maximum of this peak at -150°C ~ 1.6 eV). The peak at 287.0 eV is attributed to 

the C4 carbon, between the two N atoms inside the imidazolium ring. A shoulder 

is also present at ~288.4 eV in both the NE and GE C 1s spectra, but is more 

prevalent at NE. This indicates an extra C species, which likely to be beneath 

the IL rather than on the surface since the NE spectra are more sensitive to 

signals from deeper within the sample than GE. This signal could be due to 

adsorbed contaminant CO on the ZnO surface, as CO tends to adsorb onto 

oxide surfaces at very low temperatures (<-120°C) [37, 38]. This feature was 

not seen in the C 1s spectrum for [C8C1Im][BF4]/ZnO (0001), but the 

[C8C1Im][BF4]/ZnO (0001) sample was cooled after IL deposition. It is difficult to 

determine whether or not this feature is present in the C 1s region for 

[C8C1Im][BF4]/ZnO (10-10). The deposition of [C8C1Im][BF4] is considered 

ultrathin, and thus a C 1s signal arising from CO absorbed on the ZnO (10-10) 

surface would be, in all likelihood, intense enough to be resolved. This does not 

appear to be the case, which may indicate that there was some contaminant 

species in the background vacuum of the analysis chamber on the AU-MATline 

beamline, and minimal contamination from the background vacuum of the 

analysis chamber on the ANTARES beamline. The shoulder disappears when 

the sample is heated to -80°C, which could be indicative of CO desorption from 

the ZnO surface. 
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Figure 5.9: C 1s spectra recorded at normal emission (NE, left) and at grazing emission (GE, 
right) for [C4C1Im][BF4] on ZnO (0001); for temperatures ranging from -150°C (bottom, shown 

in purple), to 200°C (top, shown in red). 

At RT, the separation between the alkyl peak at 284.4 eV and the C2+C3 peak 

at 286.2 eV in the NE spectrum decreases by approximately 0.4 eV. The 

evident shift could be indicative of a phase transition of the IL; from a glassy 

solid to a liquid. Evidence of this kind of phase transition in an imidazolium-

based IL in XP spectra has been seen previously on a metal surface [35]. 

Throughout the increase in temperature from -150°C to RT, the peak associated 
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with the alkyl chain is consistently dominant, particularly in the GE spectra, 

indicating the preferential orientation of the alkyl chain out towards vacuum (a 

phenomenon seen previously in this IL [39-42]) even at low temperatures. 

As the sample is heated to 88°C, there is a change in the shape of the C 1s 

region, and devolves from two distinct peaks (the intensity of the alkyl peak 

approximately twice that of the peak associated with the imidazolium ring 

carbons) to one asymmetrical peak at ~284.6 eV. This indicates BE shifts of 

existing peaks and/or development of new peaks in the region, both associated 

with changes in bonding within the cation and the formation of other carbon 

species. This could therefore indicate decomposition of the IL on the ZnO 

(0001) surface. Babucci et al [29] demonstrated that [C4C1Im][BF4] on ZnO 

decomposes when the system is kept at a constant temperature of 250°C for 

periods of 6, 10, and 24 hours; displaying more advanced decomposition for 

longer time periods. In that study, powder-form ZnO was used, which will have 

contained a variety of surface terminations [43-46]. It can, therefore, be 

assumed that in their study, interactions between the IL and the ZnO would 

have taken place on many different terminations of ZnO. It may be the case that 

certain terminations of ZnO reduce the thermal stability limits of ILs more than 

others, and the findings of Babucci et al are averaged from various ZnO surface 

terminations. Therefore, it may be possible that the ZnO (0001) termination acts 

like a catalyst, reducing the thermal stability limit to below 100°C. This catalytic 

effect on the thermal stability limits may have also influenced decomposition of 

[C8C1Im][BF4]/ZnO. 

The change in the shape of the C 1s region continues to 200°C. One possible 

decomposition mechanism for [C4C1Im][BF4] is C-N bond cleavage on the alkyl 

side of the imidazolium ring (see Scheme 5.1a), which causes the IL to break 

down into a variety of hydrocarbon species [47]. Combined with decomposition 

of the anion, various alkylfluoride species (such as 2-propylfluoride and 1-

fluorobutane) could also be formed [48]. This kind of decomposition would 

manifest itself as a shift in the binding energy in the F 1s and B 1s spectra as 

well as forming new peaks in the C 1s, and thus changing the shape with further 

degradation of the IL. The F 1s and B 1s spectra are discussed later in this 

chapter. The change in shape of the C 1s region is consistent with the idea that 

the IL is breaking at the alkyl-side C-N bond, forming, at least, various 
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hydrocarbon species. However, the emergence of extra species means the C 

1s cannot be de-convoluted without ambiguity. 

 

Scheme 5.1: Diagram showing decomposition pathways of [C4C1Im][BF4] via cleavage of the 
alkyl chain (a), or via cleavage of the methyl group (b). As described in the text, a variety of 

hydrocarbon species (a), some alkylfluoride species (a and b), some alkylimidazole species (a 
and b), and boron trifluoride (b) may form as a result of decomposition. 
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Figure 5.10: O 1s spectra recorded at normal emission (NE, left) and at grazing emission (GE, 
right) for [C4C1Im][BF4] on ZnO (0001); for temperatures ranging from -150°C (bottom, shown 

in purple), to 200°C (top, shown in red). 

Figure 5.10 shows the O 1s spectra at each temperature, for both NE (left) and 

GE (right). At -150°C, the region is distinctly different to that of 

[C8C1Im][BF4]/ZnO (0001). There are two peaks in the region: a large peak at 

~532.3 eV, and a smaller peak at 529.1 eV. The peak at 529.1 eV is assigned 

to O in the ZnO substrate [20, 49, 50]. The larger peak is likely to be made up of 

multiple signals arising from various species adsorbed on both the ZnO and IL 

surfaces, and possibly trapped between the IL layers. The peak at 532.3 eV 
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spans a large BE range, which is attributed to a combination of multiple 

overlapped composite peaks (and thus resulting in a peak that is of a greater 

relative intensity than the substrate O peak), and broadening due to sample 

charging. Sample charging is known to occur for ILs below their glass transition 

temperature, since the phase change from a liquid to a glassy solid results in 

the IL behaving more like an insulator than a conductor [51]. There exists some 

discrepancy in assignments of O 1s composite peaks to non-metal oxide 

species on ZnO surfaces. The peak at 532.3 eV is likely to include a signal from 

adsorbed water from the background vacuum due to the substrate being cooled 

prior to IL deposition. Water molecules could have adsorbed at the ZnO surface 

prior to IL deposition [28, 52]. Water could also have co-adsorbed during IL 

deposition, or adsorbed on top of the IL after deposition. It is also likely that 

there are hydroxyl (OH) groups present at the ZnO surface, which tend to 

manifest as peaks at ~1.4 eV-1.6 eV greater than the substrate O [28, 49, 50, 

53]- also seen for [C8C1Im][BF4]/ZnO (0001). As mentioned earlier, in the 

discussion of the C 1s region at this temperature, there may be some 

contribution from CO adsorbed on the surface, as peaks associated with CO 

typically appear at the higher BE edge of the O 1s region [54-56]. Additionally, 

in the discussion for the O 1s region of [C8C1Im][BF4] on ZnO (0001) and ZnO 

(10-10), we postulated that there may also be a signal originating from cation-

substrate interactions, which could manifest at a BE that falls within the range of 

the peak. However, a signal associated with this interaction cannot be resolved 

without ambiguity from the other signals at this temperature.  

As the sample is heated to -80°C, the O 1s region begins to change shape: the 

peak at ~532.3 eV appears to decrease in relative intensity, while the peak at 

~529.1 eV appears to increase in relative intensity. Similarly to the C 1s region, 

these changes support the idea of CO desorbing from the ZnO surface. Water 

multilayers are also likely to desorb from the IL surface at this temperature, 

which could be contributing to the shape change in the O 1s spectra [34, 52]. 

Multilayers of water have been found to desorb from an imidazolium-based IL at 

low temperatures (approximately -90°C), leaving only a monolayer that 

eventually desorbs at a higher temperature (approximately -30°C)[34]. 

Desorption of both CO and water multilayers are consistent with the apparent 

shift of the larger peak by ~0.4 eV toward lower BE, and would account for its 

decrease in relative intensity in both the NE and GE spectra at this temperature. 
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The peaks attributed to hydroxyl groups, water, and cation-substrate 

interactions are likely to still remain at this temperature, but again, these peaks 

cannot be resolved unambiguously. 

As the sample is heated to RT, the peak associated with O in the ZnO substrate 

dominates, and the shoulder at the higher binding energy edge may be 

resolved, with composite peaks attributed to hydroxyl groups and molecular 

water at 530.7 eV and 531.7 eV respectively [28]. These features are of a 

greater intensity at GE than at NE, indicating they are located nearer to the 

surface of the sample. This is consistent with the presence of water within the IL 

multilayers. Water adsorbed on an imidazolium-based IL at low temperatures 

has been seen to absorb into the bulk at approximately -30°C [52], and is 

thought to stabilise in the bulk through interactions with the imidazolium groups 

[57, 58]. This corroborates with the assignment made for the peak at 531.7 eV 

to water from the background vacuum. The signals associated with hydroxyl 

groups and cation-anion interactions are likely to remain as the sample is 

heated beyond RT, but small amounts of water in IL can be removed from ILs 

by heating to ~60-80°C under vacuum [57, 58]. When the sample is heated to 

88°C, the peak at 531.3 eV decreases in relative intensity. The peak has 

disappeared from the spectra recorded at NE, and only makes up 

approximately 6.8% of the region at GE. This supports the idea that water 

trapped within the multilayers has largely desorbed, and it is possible that the 

peak at 531.3 eV mainly arises due to cation-substrate interaction at this 

temperature. Investigating monolayer to multilayer coverage of ILs on surfaces 

using XPS at different photoelectron emission angles has shown that signals 

associated with IL-substrate interaction decrease significantly with additional IL 

layers. For example, Wagstaffe et al [5] investigated the interactions of 

approximately monolayer coverage of [C4C1Im][BF4] on anatase TiO2 (101) 

using XPS. They found that the F in the anion interacted with the Ti in the TiO2 

substrate, which manifested as a signal in the F 1s region. The same feature 

was seen in the work discussed in Chapter 3, of [C4C1Im][BF4] on rutile TiO2 

(110) with a thicker deposition (approximately three layers). In that case, the 

peak associated with the Ti-F interaction was much less intense because of the 

increased IL layer thickness, causing greater attenuation of the photoelectrons 

emitted from atoms involved in those bonds. Using a combination of the TPP-

2M calculation for the inelastic mean free path for organic materials [32], and 
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the Beer-Lambert relation for photoelectron attenuation in thin films [22], the 

thickness of the deposition of [C4C1Im][BF4] on ZnO (0001) was calculated (the 

calculation for IL deposition thickness can be found in Appendix A). It was found 

to be approximately (15.2 ± 0.3)Å, which is more than twice the thickness of the 

deposition of [C8C1Im][BF4] on ZnO (10-10). It therefore stands to reason that 

the peak associated with cation-substrate interaction is much less intense for 

this system, and would be easily obscured by adsorption of any other 

contaminate species. However, in the C 1s region, there was evidence of 

decomposition at this temperature and therefore the signal attributed to cation-

substrate interactions may be less intense due to some IL decomposition at the 

surface of the ZnO (0001). Heating through to 200°C, the peak at 531.3 eV 

disappears from the GE spectrum entirely- indicating further 

decomposition/desorption of the IL. 
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Figure 5.11: F 1s spectra recorded at normal emission (NE, left) and at grazing emission (GE, 
right) for [C4C1Im][BF4] on ZnO (0001); for temperatures ranging from -150°C (bottom, shown 

in purple), to 200°C (top, shown in red). 

The F 1s region is shown in Figure 5.11 at NE from -150°C to 200°C (left) and 

at GE from -150°C to 88°C (right). At -150°C and -80°C, the region is populated 

by only one symmetrical peak at 684.7 eV. This is attributed to the F in the 

[BF4]- anion [24]. As the system is heated through to RT, the peak at 684.7 

becomes less symmetrical, indicating the emergence of a second peak. There 

does not appear to be much difference in the relative intensity of this peak 

between NE and GE, indicating that it is a species present at both the surface 
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and in the bulk. In the discussion of [C8C1Im][BF4] on polar and nonpolar ZnO, 

we theorised that the change in the cation-substrate interactions could influence 

the cation-anion interactions, and subsequently affect the B-F bonding in the 

anion. Therefore, a weakening of the cation-substrate interactions would lead to 

a strengthening of the cation-anion interactions, and a weakening of the B-F 

bonds in the anion. It may be possible that the asymmetrical nature of the F 1s 

region in Figure 5.11 at RT may be due to the nature of those B-F bonds 

weakening, causing a shift toward lower BE. 

As the sample is heated to 88°C, the F 1s region drastically changes shape. 

Rather than being entirely due to a continuing change in cation-substrate 

interactions, this altering shape may be due to IL decomposition, causing other 

F species to form. This would therefore produce another peak or multiple peaks, 

and consequently change the shape of the region. Numerous fluorine species 

can be formed from thermal decomposition of [C4C1Im][BF4] [47, 48]. These 

include: 2-propylfluoride and 1-fluorobutane (Scheme 5.1a, box labelled 

alkylfluoride, top and bottom molecules respectively) from cleavage of the alkyl-

side C-N bond; and methyl fluororide (Scheme 5.1b, box labelled alkylfluoride) 

and boron trifluoride (BF3, also in Scheme 5.1b) from cleavage of the methyl-

side C-N bond [48]. Alkylfluoride species are more likely to manifest as a peak 

at a lower BE than [BF4]- in the F 1s region due to an overall reduced 

electronegativity, which could explain the appearance of a peak at lower BE. 

As the sample is heated to 200°C, the F 1s region continues to change, and 

becomes much less intense than that recorded at 88°C. As shown in Scheme 

5.1, one of the species formed from cleavage of the methyl-side C-N bond is 

BF3. Syres and Jones [35] found that [C8C1Im][BF4] decomposed on Cu (111), 

forming and desorbing BF3 in the process. The formation of BF3 would account 

for the shift in the F 1s region at this temperature (since another F species 

would be formed in conjunction with the formation of BF3) as well as account for 

the reduction of the overall F 1s signal intensity, as BF3 would desorb from the 

surface. 
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Figure 5.12: B 1s spectra recorded at normal emission (NE, left) and at grazing emission (GE, 
right) for [C4C1Im][BF4] on ZnO (0001); for temperatures ranging from -150°C (bottom, shown 

in purple), to 200°C (top, shown in red). 

The changes seen in the F 1s region are corroborated by the B 1s region, but 

with even more extreme BE shifts at temperatures in excess of RT. Figure 5.12 

shows the B 1s region at NE from -150°C to 200°C (left) and at GE from -150°C 

to 88°C (right). At -150°C, the region consists of a single symmetric peak at 

194.3 eV, which is attributed to B in the [BF4]- anion [24]. The region begins to 

change shape at -80°C: the peak at 194.3 eV is no longer symmetrical, and has 

shifted to lower BE in both the NE and GE spectra by approximately 0.3 eV. 
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This change could be the result of a phase change of the IL. If the transition 

from glassy solid to liquid changes the nature of the cation-anion interactions, 

this change in shape may be a consequence of that change in the interactions. 

Conversely, there does not appear to be as significant a change in the F 1s 

region compared to the B 1s region. The peak appears to shift and become 

more asymmetrical as the sample is heated to RT. As postulated for the 

changes in the F 1s region, it may be the case that the nature of the cation-

substrate interactions is causing the change in shape of the B 1s region. 

Heating the sample through 88°C results in an even greater shift toward lower 

BE in the B 1s region, by approximately 1.5 eV compared to the spectrum 

recorded at RT. As was suggested for the F 1s region, these changes could be 

due to IL decomposition. If decomposition of the anion results in BF3 and 

separate F species only (i.e. no other B species), the intensity of the B 1s signal 

would continue to decrease until the IL completely decomposed. There is a 

decrease in the intensity in the B 1s region at higher temperatures, with the 

intensity at 200°C much less than that recorded at 88°C, and this is attributed to 

the formation and desorption of BF3. A peak still remains in the B 1s region, 

which indicates that the IL does not decompose completely. This asymmetrical 

peak is therefore still attributed to the [BF4]- anion, but the shift of this peak 

toward lower BE is attributed to IL decomposition and its subsequent effects on 

cation-anion interactions. 

Table 5.4: Summary of fitted peak assignments of [C4C1Im][BF4] on ZnO (0001), together with 
their respective binding energy (BE) values. 

Region BE (eV) 
(±0.1 eV) Assignment 

C 1s 

284.4 C1 of [C4C1Im][BF4]* 
286.2 C2 + C3 of [C4C1Im][BF4]* 
287.0 C4 of [C4C1Im][BF4]* 
288.4 Contaminant CO** 

O 1s 
529.1 O2- of ZnO† 
530.7 OH groups† 
531.7 H2O, cation-substrate bonding† 

* BE at -150°C 
** Feature in NE/GE spectra at -150°C condition only 
† BE at RT 
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5.4 Discussion 

Many of the early studies into the decomposition of ILs used fast-scanning 

thermogravimetric analysis (TGA) to determine the temperature of onset of 

decomposition. These methods involved a fast ramp-up in temperature (in 

excess of 10°C/min), heating the ILs to high temperatures for relatively short 

periods of time [21, 59-61]. Therefore, the temperatures at which ILs 

decompose in those conditions are sometimes referred to in the literature as the 

onset temperature, or Tonset [62]. This value is seen as an overestimate of their 

thermal stability in the context of heat-transfer applications; where ILs are 

exposed to lower temperatures than their onset temperature, but for extended 

periods of time. In reality, ILs can undergo significant decomposition if they are 

kept at lower temperatures than Tonset for longer periods. This phenomenon is 

referred to as the long-term thermal stability. The long-term thermal stability of 

an IL will change depending on the desired working temperature for the IL (i.e. 

the temperature at which the IL will be kept for long periods of time), and the 

time for which the IL is kept at that temperature [60, 63, 64]. The rate at which 

the IL is heated will also affect its long-term thermal stability [60]. One property 

often reported to quantify the long-term thermal stability of ILs is T0.01/10h. It is 

defined as the temperature at which 1% of the IL mass is lost over a period of 

10h. Studies into the long-term thermal stability of 1-alkyl-n-imidazolium 

tetrafluoroborate ILs have reported a significant difference between Tonset and 

T0.01/10h, but are still considered very thermally stable since both temperature 

values are high. Cao et al [65] found that for [C8C1Im][BF4], the difference 

between Tonset and T0.01/10h was 198°C, with its value for T0.01/10h at 199°C. For 

the purposes of physical vapour deposition (PVD) in UHV, the IL will need to be 

heated to an appropriate temperature between T0.01/10h and Tonset. This way, the 

IL is heated to a point where it will vaporise and then be carried through the 

pressure gradient to be deposited as ion pairs on the substrate [66, 67]. For 

PVD, the IL should not be heated to such a temperature that the IL begins to 

decompose. Van Valkenburg et al [63] investigated the decomposition rate (in 

%mass/min) of two analogous ILs with the same anion, [C2C1Im][BF4] and 

[C4C1Im][BF4], at isotherms of 250°C to 450°C. They found that the ILs showed 

significant decomposition when heated to, and held at, a temperature of 350°C. 

Furthermore, they calculated the decomposition rate of [C2C1Im][BF4] to be 
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~0.47%/min at 350°C- almost twice that of [C4C1Im][BF4] at 0.24%/min at the 

same temperature. For the investigation into [C8C1Im][BF4] on polar and non-

polar ZnO, the IL was heated with a temperature gradient of ~22°C/min to 

~350°C prior to the deposition on ZnO (0001), and was at ~350°C for 

approximately 20 minutes. For the deposition on ZnO (10-10), however, the 

deposition time was ~420 minutes. When kept at the evaporation temperature 

for several hours (which was the case for the deposition on ZnO (10-10)), 

decomposition of the IL may take place, and therefore may not deposit IL pairs 

intact. This may account for the asymmetrical line shape of the C 1s region for 

[C8C1Im][BF4] on ZnO (10-10). 

The polar ZnO (0001) surface has shown to catalyse the decomposition of 

methanol and formic acid [68, 69], and ZnO-based catalysts are used in 

methanol synthesis [70]. As mentioned earlier, the step edges of the ZnO 

(0001) surface are O-terminated. These step edges are thought to be 

connected to the reactivity of the surface, and therefore connected to the 

reactions that take place at the surface. As evidenced by Babucci et al [29], 

which is supported by our investigation of [C4C1Im][BF4] multilayers on ZnO 

(0001), the thermal stability limits are significantly reduced when 1-alkyl-n-

imidazolium tetrafluoroborate ILs are deposited on ZnO. It is also possible that 

multilayers of IL could be more sensitive to temperature changes than bulk IL, 

and the accelerated decomposition of [C4C1Im][BF4] could actually be due to a 

combination of these factors. Babucci et al [29] investigated the short-term 

thermal stability limits of [C4C1Im][BF4] on ZnO compared to values for bulk 

[C4C1Im][BF4] from literature (i.e. heating at 10°C/min from room temperature to 

600°C and recording the temperature of the onset of decomposition). For bulk 

IL, the thermal stability limit was reported in the literature to be approximately 

400°C, while Babucci et al found in the presence of ZnO it was 333°C. 

Additionally, the approximate thickness of the IL layer on ZnO in their work was 

of a similar order of magnitude as the data discussed here, at a value of 12.4 Å. 

They ruled out the effects of coverage on their findings since the Tonset value 

they measured for one of the thinnest layers of IL was one of the largest values, 

and thus attributed the decrease in thermal stability to the nature of the oxide 

surface, specifically its basicity. It is evident from our data that the polar ZnO 

(0001) surface reduced the thermal stability of [C4C1Im][BF4] to even lower 

temperatures than those observed by Babucci et al, which would support the 
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theory that different terminations of ZnO will reduce the thermal stability of IL 

multilayers to varying degrees. It may be the case that the polar terminations 

reduce the thermal stability more than the non-polar terminations. In order to 

investigate this, XPS spectra at NE and GE could be recorded for a multilayer 

deposition of [C4C1Im][BF4] on ZnO (10-10) under similar temperature 

conditions for comparison with those recorded here.  

The ordering and interactions of an IL on oxide surfaces has significant 

consequences for potential applications involving ILs and oxides, such as IL-

based catalysis, and photovoltaic systems with IL electrolytes. Therefore, a 

large reduction of the thermal stability of 1-alkyl-n-imidazolium tetrafluoroborate 

ILs on ZnO may have a negative impact on the effectiveness of ZnO-based 

catalysts used in systems (such as SILP and SCILL) at higher temperatures. 

5.5  Conclusion 

The structure and ordering of [C8C1Im][BF4] on polar and nonpolar ZnO 

surfaces was studied using XPS and N K-edge NEXAFS. The XPS revealed 

interactions between [C8C1Im][BF4] and the ZnO substrate, characterised by a 

peak at higher BE in the O 1s region. This interaction is suggested to occur 

specifically with the C4 carbon in the imidazolium ring of the cation. Peaks in the 

regions associated with the anion, F 1s and B 1s, were shifted to a higher BE 

for the IL deposition on ZnO (0001) compared to the IL deposition on ZnO (10-

10), inferring a stronger interaction between the IL and the ZnO (0001) 

substrate. The [C8C1Im][BF4] deposition on the ZnO (10-10) substrate was 

found to be approximately (6.30 ± 0.08) Å, just over half the thickness of that 

calculated for ZnO (0001), which was (11.26 ± 0.08) Å. The N K-edge NEXAFS 

for the deposition on ZnO (10-10) revealed a preferential orientation of the 

imidazolium ring, displaying evidence of an ultrathin ordered layer, and 

simultaneously supports the estimation made of the thickness of the IL layer. 

The N K-edge NEXAFS for [C8C1Im][BF4]/ZnO (0001) did not appear to change 

with angle- indicative of a thicker, and more disordered IL layer. 

Additionally, the thermal stability of [C4C1Im][BF4] on the polar ZnO (0001) 

surface was investigated using XPS at normal and grazing photoemission 

angles. At low temperatures, the glassy IL appeared to be insulating, behaviour 

which manifested as broadening of XPS core level peaks, but as it was heated 
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to room temperature, shifts in BE indicate a change in phase from a glassy solid 

to a liquid. As the IL was heated to temperatures in excess of 80°C, the IL 

began to decompose, manifesting as additional peaks in the C 1s and F 1s 

regions, and shifts in the B 1s spectra. The feature associated with cation-

substrate interactions in the O 1s region decreased in relative intensity with 

increasing temperature, indicating desorption of the IL from the ZnO (0001) 

surface. The long-term thermal stability limit of the same IL with powdered ZnO 

is quoted in the literature to be ~300°C, while the IL began to show signs of 

significant decomposition at a much lower temperature. This kind of extreme 

reduction in thermal stability may have negative consequences for the use of 

ZnO catalysts in IL-based catalysis systems such as SILP and SCILL, and for 

the use of [C4C1Im][BF4] in ZnO-based photovoltaic systems under extreme 

solar heating. 
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6 Electrochemical Synthesis of Titanium 

Dioxide Nanotubes using an Ionic Liquid 

Electrolyte 

Titanium dioxide (TiO2) nanotubes, since they were first grown in 1999, have 

shown particular promise for numerous potential applications, including 

batteries and capacitors [1], self-cleaning coatings [2], drug delivery [3] and 

photocatalytic water splitting [4]. One of the more popular methods to 

synthesise TiO2 nanotubes is electrochemically via anodization of Ti. The 

reason for its increasing popularity is its ease of use, as well as its precise 

control over the structure and dimensions of the synthesised nanotubes. 

Numerous groups have used ionic liquids (ILs) as electrolytes in anodization of 

Ti to produce TiO2 nanotubes. They provide simultaneous benefits that organic 

electrolytes provide, including intact nanotube morphology, and diverse 

customisation of the physicochemical properties of the electrolyte. The 

physicochemical properties of the electrolyte, such as conductivity, viscosity 

and chemical composition, has an impact on the morphology of the nanotubes. 

The anodization conditions, such as applied potential, also influence the 

morphology. Within this chapter is a study exploring the effects of the IL 

electrolyte composition and applied anodization potential on nanotubes 

prepared via anodization of Ti. 

6.1 Introduction 

The properties of TiO2 nanotubes, including physicochemical, optical and 

electrical properties, are dependent on their morphology. As well as their size 

and shape, morphology also encompasses the crystallographic structure and 

any defects of the nanotubes. The morphology of TiO2 nanotubes is therefore 

of vital importance to their applications, As a result, there is great scientific 

interest, not only into how their morphology affects the properties of nanotubes, 

but also how to control the morphology to synthesise nanotubes of specific 

dimensions for specific properties. 
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TiO2 nanotube preparation methods include sol-gel synthesis, hydrothermal 

synthesis, and vapour deposition [5], but one of the more favourable ways is 

electrochemical synthesis via anodization of Ti. Synthesis through anodization 

is becoming increasingly popular due to its simplicity and precise control over 

the pore size, length, and wall thickness of the nanotubes. This is particularly 

important for photocatalytic water splitting applications, since those dimensions 

have a direct effect on the optical properties of the nanotubes [6], and will 

therefore impact how well the nanotubes absorb light and, subsequently, their 

catalytic performance. 

Anodization of Ti involves applying a potential between a sample of pure Ti, 

(which is the anode- hence anodization of Ti) and a counter electrode, often 

consisting of a noble metal such as platinum or gold. The anode and counter 

electrode are submerged in an electrolyte. The anodization process begins with 

the formation of a compact oxide, where Ti4+ cations (formed by the applied 

potential) combine with oxygen from the addition of water to form TiO2 [7]: 

Ti → 4e + Ti4+ (1) 

Ti4++ 2H2O → TiO2 + 4H+ (2) 

 

Typical electrolytes contain fluorine, which is crucial to the next part of the 

anodization process. Fluorine is required for the formation of so-called ‘pits’, 

which are pores that are created when the fluorine reacts with the TiO2 layer 

(via chemical dissolution), releasing water-soluble titanium hexafluoride and 

water. This leads to the creation of porous/nanotubular TiO2 [7]: 

TiO2 + 4H+ + 6F- → [TiF6]2-+ 2H2O (3)i 

 

The electrolyte that is used in the anodization of Ti also has an impact on the 

morphology of the nanotubes. Much of the early work into the technique utilised 

aqueous electrolytes that incorporated fluorine through addition of hydrofluoric 

acid (HF) [8, 9]. The resultant nanotubes were approximately 0.5 μm in length, 

while those synthesised using less acidic media (such as diluted fluorinated 

salts) were grown up to 4 μm in length [10]. 
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Figure 6.1: Chemical structure of the IL, 1-butyl-3-methylimidazolium tetrafluoroborate 
([C4C1Im][BF4]). The carbon environments have been labelled C1 to C4. 

In more recent years, the use of organic electrolytes have produced nanotubes 

with lengths of the order of hundreds of µm, and with fewer defects (such as 

wall-cracking) [11, 12]. Electrolytes showing particular promise for TiO2 

nanotube synthesis are ionic liquids (ILs), particularly imidazolium based ILs, 

which have produced nanotubes of varying lengths, diameters, and tube 

thicknesses. The fluorine content in IL-based electrolytes arises from fluorinated 

anions, such as tetrafluoroborate ([BF4]-) or hexfluorophosphate ([PF6]-). 

One of the first groups to demonstrate TiO2 nanotube synthesis via anodization 

using an IL electrolyte was the Schmuki group [13], who anodized Ti foils using 

applied potentials in the range of 3 V to 10 V. They used two IL electrolytes: one 

composed of 1-butyl-3-methylimidazolium tetrafluoroborate, or [C4C1Im][BF4] 

(see Figure 6.1 for a chemical structure diagram); and another composed of 1-

butyl-3-methylimidazolium hexafluorophosphate ([C4C1Im][PF6]). They 

demonstrated the effects of both anodization potential and water content on the 

resultant nanotube arrays. At lower potentials in [C4C1Im][BF4], porous TiO2 

was produced, but at potentials of ~10 V, nanotube arrays were produced. Li et 

al [14] also synthesised TiO2 nanotubes using IL-based electrolytes at much 

higher anodization potentials (up to 50 V) for shorter time periods, producing 

well-separated nanotubes. These were compared to nanotubes grown in an 

ethylene glycol-based electrolyte, which contained more defects than those 

produced using an IL-based electrolyte. Li et al also demonstrated that a 

‘debris’-layer, or barrier layer builds up over time during the anodization 

process, which needs to be cleaved, typically using an adhesive tape (such as 

Scotch tape), to allow for further nanotube growth [14]. 

Mazierski et al [15] proposed that the fluorinated anions react with the TiO2 via 

the following: 
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TiO2 + 4H+ + 6BF4
- → �Ti(BF4)6�

2-+ 2H2O (3)ii 
 

They also proposed that some electrochemical decomposition of the IL may 

occur, where small amounts of boron and nitrogen are incorporated into the 

nanotubes. For investigations into synthesised nanostructures, the ability to 

gain topographical information is vital. Scanning electron microscopy (SEM) is 

particularly favoured for simple acquisition of sub-µm length scale images of 

nanostructures, including TiO2 nanotubes [7, 13-17]. Often coupled with SEM is 

energy dispersive X-ray spectroscopy (EDX), which is used to determine the 

elemental composition of samples. For surface-sensitive information, X-ray 

photoelectron spectroscopy (XPS) is usually employed, and is immeasurably 

useful for probing chemical environments at surfaces and interfaces. XPS has 

been used to investigate a range of TiO2 nanostructures [18-20], including 

nanotubes [15, 21, 22]. However, there is little research utilising this technique 

for IL-synthesised TiO2 nanotubes, particularly for those synthesised using low-

voltage anodization processes. Presented here is a combined SEM/EDX and 

XPS study into the effects of electrolyte composition and applied potential on 

the electrochemical synthesis of TiO2 nanotubes via anodization of Ti. While 

water is known to be important for TiO2 nanotube synthesis [7, 23], the 

combination of morphological and surface-sensitive chemical analysis of the 

resultant nanostructures should provide more insight into the role that water 

plays in these systems. 

6.2 Experimental section 

Prior to anodization, 1.5cm × 6cm strips of Ti foil (99.99%, 50 mm × 50 mm, 

Sigma Aldrich) were cleaned via sonication in acetone. The anodization process 

involved directly applying a voltage between the Ti foil (anode) and a Pt wire 

mesh counter electrode (99.9%, 25 × 25 mm, Alfa Aesar) while submerged in 

IL-based electrolyte (consisting of 1-butyl-3-methylimidazolium 

tetrafluoroborate, [C4C1Im][BF4], >97%, Sigma Aldrich). This was done using a 

custom-design electrochemical cell (see Figure 6.2). A reference electrode was 

not required to grow nanotubes, as determined by previous studies such as Li 

et al [14]. 
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Figure 6.2: A photograph of the custom-built electrochemical cell (left). A schematic diagram of 
the electrochemical cell is shown on the right, and shows how the components of the cell fit 

together. The PTFE halves are housed in a stainless steel casing, as shown in the photograph 
on the left. The black and red crocodile clips in the diagram (attached to the Pt counter 

electrode and the Ti foil anode respectively) connect to the power supply. 

Inside the cell, a strip of Ti foil was sandwiched between two halves of 

polytetrafluoroethylene (PTFE). Approximately 1 ml of the IL-based electrolyte 

was injected via pipette into the well (on top of the Ti). The anodization was a 

two-step process. The Pt electrode was submerged in the electrolyte, and a 

voltage was applied between the Ti anode and the Pt counter electrode. After 

some time (see Table 6.1 for details on sample conditions), the cell was 

disassembled and the Ti anode was removed for cleaning with acetone and 

‘stripping’. The surface of the Ti anode was ‘stripped’ using adhesive tape [14]. 

The anode was washed with acetone to remove adhesive residue. The cell and 

anode were reassembled with fresh electrolyte for the second (and final) growth 

stage. This process was repeated for a number of samples using different 

voltages and electrolyte compositions, which are featured in Table 6.1. Samples 

b and c were both anodized at 10 V, while samples a and d were anodized at 5 

V and 20 V respectively. Samples designated a, b and d were anodized in pure 

[C4C1Im][BF4] (see Figure 6.1 for a chemical structure diagram of 

[C4C1Im][BF4]). Sample c was anodized in an electrolyte consisting of 

[C4C1Im][BF4] and 2.6 wt% of H2O. 

Table 6.1: Summary of experimental conditions of each sample. 

Sample 
designation 

Anodization 
potential (V) Electrolyte used Anodization time (hours) 

Stage 1 Stage 2 
a 5 Pure IL 3 3.5 
b 10 Pure IL 12 2.5 
c 10 IL + 2.6 wt% H2O 2 10.5 
d 20 Pure IL 1 2.5 
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Post-anodization, scanning electron microscopy images were taken of each 

sample surface (using a Zeiss SIGMA VP FEG-SEM, and an acceleration 

voltage between 5 kV and 20 kV) to determine whether any nanostructures 

were present, and an estimate of their diameter. Additionally, energy dispersive 

X-ray (EDX) spectra were recorded using a FEI Quanta 200 series SEM with 

Genesis EDX for sample composition analysis. To gain a better understanding 

of the surface composition, X-ray photoelectron spectroscopy (XPS) was 

employed using a Kratos system at the University of Manchester equipped with 

an Al kα X-ray source (hν = 1486.6 eV). The binding energy (BE) scale of all 

XPS spectra have been calibrated to the C 1s peak at 285.0 eV, and BE values 

are quoted to ±0.1 eV. All XPS core level peaks have been fitted using 

CasaXPS software, with 70:30 Gaussian:Lorentzian (Voigt) lineshapes and a 

Shirley background. 

6.3 Results 

Photographs of the four samples were taken after the second growth stage and 

are shown in Figure 6.3. Each sample was chromatically unique, which implies 

a difference in surface chemistry between the samples. Sample a was a 

coppery-brown colour with a darker patch located off centre. Sample b was 

purple in colour, and consistent across the surface. Sample c was an off-

white/grey with a slight pearlescent pink colouration. Sample d had a central 

vivid blue patch surrounded by light yellow discolouration. Sample c had a 

colouration closest to that of crystalline or powder TiO2. Nanostructural TiO2 

can sometimes display a blue/purple colouration depending on the size of the 

nanostructures produced [24]. This possibility is explored in the SEM/EDX 

analysis. 

 

Figure 6.3: Photographs of samples a, b, c, and d taken after the final anodization. 
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6.3.1 SEM/EDX analysis 

 

Figure 6.4: SEM images taken of samples a (top left), b (top right), c (bottom left), and d (bottom 
right). The magnification of each image is shown in the bottom left corner of each image. 

The SEM images taken of all samples are shown in Figure 6.4. It can be seen 

with a relatively weak SEM magnification (20k ×) that there are structures on the 

surface of sample c. While there appear to be no structures present on the 

surface of sample a or b, each resemble that of an oxide film [14, 25]. The SEM 

image taken from the surface of sample d is quite different, and resembles a 

nanoporous film [14]. It is likely that TiO2 nanotubes have not grown on the 

surfaces of samples a, b, or d due to the lack of available oxygen in the process 

to create TiO2 nanotubes, requiring a small amount of water to be added to the 

electrolyte [23]. Figure 6.5 shows two sets of two SEM images: the first set 

(Figure 6.5(i) and Figure 6.5(ii)) are of sample c, and the second set (Figure 

6.5(iii) and Figure 6.5(iv)) are of sample d. Both sets are of a greater 

magnification than those taken in Figure 6.4. Using the scale bar in Figure 

6.5(ii), the average diameter of the nanotubes grown on sample c is 

approximately 50 nm. Figure 6.5(iii) shows a part of the surface of sample d that 

looks similar to the surfaces of sample a and b, but at a greater magnification. 
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This indicates only partial formation of a nanoporous film on the surface of 

sample d. Using the scale bar in Figure 6.5(iv), the average diameter of the 

pores of the partially-porous surface of sample d is approximately 75 nm. From 

the data presented here, it is not possible to determine the length of the TiO2 

nanotubes of sample c, but an approximation of the average length could be 

determined using SEM at more grazing angles. Paramasivam et al [13] 

synthesised TiO2 nanotubes of similar dimensions using the same IL at a 

similar anodization potential (7 V). However, the group also successfully 

synthesised the nanotubes using an IL-only electrolyte, with a reported water 

content of ~1446 ppm. This approximately corresponds to ~0.01 wt% water 

content, which is significantly less than that used in this work. 

 

Figure 6.5: SEM images of sample c ((i) and (ii)), and of sample d ((iii) and (iv)). Magnifications 
are shown in the bottom left corner of each image. 

From Figure 6.5(i), there are patches on the surface of sample c where 

nanotubes have not grown. It has been shown by Li et al [14] and others [26-28] 

that a ‘debris layer’ tends to grow atop of TiO2 nanotube arrays that are 

synthesised under similar conditions. This layer subsequently requires 

mechanical removal via the Scotch tape method. The patches on the surface of 
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sample c may be parts where this layer was not successfully removed, and may 

even retain some residual adhesive from the tape used to ‘strip’ the surface 

between the first and final anodization stages. 

The EDX spectra of all samples are shown in Figure 6.6. The titanium Kα 

transition peak is seen in all four spectra (~4.51 keV), with additional features at 

lower transition energies (<1.0 keV) that are thought to arise from the Kα 

transitions of carbon, nitrogen, oxygen and fluorine. The Kα transitions of these 

elements occur at 0.277 keV, 0.392 keV, 0.523 keV, and 0.677 keV 

respectively. Features corresponding to transitions at low ex citation energies 

are difficult to resolve with the system used, making quantitative EDX analysis 

of organic materials, including ILs, difficult [29]. However, from inspection of the 

low-energy data displayed in the inset figures in Figure 6.6, we can say 

qualitatively there are differences in composition between the samples. 
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Figure 6.6: EDX spectra of samples a (amber line in (i)), b (red line in (ii)), c (blue line in (iii)) 
and d (cyan line in (iv)). All inset figures show the data between 0 and 1 keV. 
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6.3.2 XPS analysis 

All four samples were analysed using XPS, and spectra were recorded of the 

following core level regions: C 1s, F 1s, N 1s, O 1s, and Ti 2p. Survey spectra 

were also recorded (see Figure 6.7). The aforementioned core level peaks are 

labelled in the survey spectra.  

 

Figure 6.7: Survey XPS spectra of sample a (amber line, top left), sample b (red line, top right), 
sample c (blue line, bottom left), and sample d (cyan line, bottom right). Significant peaks are 

labelled. 

For ease, comparisons are made between the spectra recorded for different 

electrolyte compositions (pure IL electrolyte and IL-based electrolyte), and for 

the different anodization potentials (5 V, 10 V, and 20 V with pure IL electrolyte). 
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Electrolyte composition: pure IL electrolyte and IL-based electrolyte 

 

Figure 6.8: C 1s (i) and F 1s (ii) spectra of sample b (anodized in pure IL, red line) and sample c 
(anodized in electrolyte composed of IL and 2.6 wt% H2O, blue line), both anodized at 10 V. 

Figure 6.8 displays the C 1s and F 1s spectra of samples b and c, which were 

anodized at the same potential of 10 V, but in different electrolytes. The red 

lines represent the spectra recorded for sample b (which was anodized in a 

pure IL electrolyte). Spectra recorded for sample c (which was anodized in an 

electrolyte consisting of IL with 2.6 wt% H2O) are represented by the blue lines. 

The C 1s spectrum for sample c (Figure 6.8(i)) has been fitted with three peaks: 

one at 285.0 eV, one at 286.3 eV and one at 288.7 eV. A summary of binding 

energies and assignments of peaks is featured in Table 6.2. The lowest BE 

peak, at 285.0 eV, is attributed to C=C/C-C bonding, and could have multiple 

sources. C-C bonds are present in the alkyl chains of [C4C1Im]+ cations (see 

Figure 6.1, where the alkyl chain carbons are labelled C1), and therefore a 

portion of this peak may arise from physisorbed/chemisorbed cations. The peak 

at 285.0 eV may also contain a contribution from adventitious carbon, which is 

typically composed of singly-bonded (C-C) or doubly-bonded (C=C) carbon. 

Numerous XPS studies into TiO2 nanotube synthesis have reported high 

carbon content in the resultant nanotubes, regardless of the electrolyte 

composition. Regonini et al [21], who used an inorganic electrolyte composed of 

sodium fluoride and sodium sulphate (NaF/Na2SO4) to synthesise TiO2 

nanotubes, attributed most of the C 1s signal to residual isopropyl alcohol (from 

washing post-anodization) bonding to the nanotubes. Mazierski et al [15], who 
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synthesised TiO2 nanotubes using various imidazolium-based IL electrolytes, 

report a similar carbon content, which they attribute to generic aliphatic (C-C) 

carbon. The samples in the work in this chapter were anodized in an IL-based 

electrolyte and were washed with acetone post-anodization, which has a similar 

structure to isopropyl alcohol, but contains a doubly-bonded oxygen atom rather 

than a hydroxyl group. A portion of the signal at 285.0 eV could be attributed to 

C-C bonding in residual acetone. Similarly, some of the signal at 286.3 eV in the 

C 1s region for sample c could be attributed to C=O bonding in residual 

acetone. In addition, ‘stripping’ the samples between the two anodization stages 

may have left residue on the surface despite washing in acetone afterward. 

Typical adhesives on tapes such as Scotch tape are made up of polymer 

materials containing C-OH/C=O groups. It is possible that some of the adhesive 

remained on the surface where the debris layer was not removed (see SEM 

image of sample c in Figure 6.5(i)), contributing to the intensity of the peak 

associated with C-OH/C=O. Another contributing factor could be exposure of 

the sample to atmosphere, which could increase coverage of hydroxyl (OH) 

groups. The peak at ~288.7 eV is consistent with that of carboxyl (COOH) and 

carboxylate (COO) groups on TiO2 [30, 31], which are also present in the 

adhesives used in adhesive tapes. The peak at ~288.7 eV may be due to 

cation-substrate bonding. Mazierski et al [15] detected a signal in the C 1s 

region at a similar BE of 288.9 eV. They attributed this peak to cation-substrate 

bonding, specifically the imidazolium ring bonded to TiO2 via the CH group at 

the C4 carbon position (see Figure 6.1 for the chemical structure of 

[C4C1Im][BF4] with carbon positions labelled). This kind of interaction has been 

observed in other studies involving nanoparticulate TiO2 [32]. Therefore, the 

peak at 288.7 eV is tentatively assigned to bonding between IL cations and 

TiO2 of the nanotubes. 

The C 1s spectrum for sample b (Figure 6.8(i), red line) is fitted with 4 peaks: 

one at 285.0 eV, one at 286.2 eV, one at 287.1 eV, and one at 289.0 eV. Much 

like sample c, the peaks at 285.0 eV and 286.2 eV could be attributed to 

C=C/C-C bonding and C=O/C-OH bonding respectively. The BE of the peak at 

287.1 eV is in line with that of the C4 carbon in the IL cation [33, 34]. Similarly, 

the peak at 286.2 eV has a BE in line with that of the C2 and C3 carbons in the 

[C4C1Im]+ cation [33, 34]. Therefore, a portion of the peak at 286.2 eV is 

attributed to C2/C3 carbons in the [C4C1Im]+ cation, and the peak at 287.1 eV is 
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attributed to C4 carbon in [C4C1Im]+ cation. The signal arising at 286.2 eV is 

more intense for sample b than for sample c. This could be the case for multiple 

reasons. Sample b was exposed to atmosphere for a greater period of time 

(>24 hours) than sample c (<10 minutes) between anodization stages, which 

would contribute to signals associated with adventitious species. There may 

also be residual adhesive still present on the sample (that is not visible in the 

SEM images) despite washing in acetone, which would also contribute to the 

peak at 286.2 eV. 

The nature of the fluorine detected by EDX can be explored in more depth in 

the F 1s XPS spectra. The F 1s spectrum for sample c (Figure 6.8(ii)) is fitted 

with a single peak at 684.1 eV. The BE of this peak is consistent with that of Ti-

F bonding [34]. A similar feature was observed for [C4C1Im][BF4] on rutile TiO2 

in Chapter 3 of this thesis. Two peaks are fitted for the F 1s spectrum for 

sample b: one at 685.8 eV and one at 684.2 eV. The most intense F 1s peak for 

sample b is at a BE of 685.8 eV, which is more in line with XPS peaks attributed 

to the [BF4]- anion of adsorbed [C4C1Im][BF4] on TiO2 [34], which is also seen 

in Chapter 3 of this thesis. The peak at 684.2 eV is at a BE consistent with Ti-F 

bonding. While nanostructures did not form on the surface of sample b, Ti-F 

bonds may still have formed for a number of reasons. The experiment took 

place under ambient conditions, so a small amount of water will have been 

present in the IL due to its hygroscopic nature. This small amount of water will 

contribute to the formation of oxide (see reaction (1)), and therefore may allow 

some chemical dissolution to take place. This chemical dissolution results in 

[TiF6]2- and consequently Ti-F bond formation (see reactions (2) and (3)). 

Furthermore, evidence of Ti-F bonds has been seen previously in XPS studies 

of [C4C1Im][BF4] on TiO2 [15, 16], and should no oxide have formed through 

reaction (1) on the surface of sample b, there may be some natural oxide from 

exposure to air [35], allowing for anion-substrate interaction, and thus some Ti-F 

bond formation. 



218 
 

 

Figure 6.9: N 1s (i) and O 1s (ii) spectra of samples b (anodized in pure IL, red line) and c 
(anodized in electrolyte composed of IL and 2.6 wt% H2O, blue line). 

Figure 6.9(i) shows the N 1s region for samples b and c (represented by red 

and blue lines respectively). The shapes of the regions are similar to one 

another, and have both been fitted with two peaks. In the N 1s region for 

sample c, the higher BE peak in the N 1s region is situated at 401.4 eV, and the 

lower BE peak is situated at 399.7 eV. The peak at 401.4 eV is at a BE that is 

more in line with adsorbed IL on TiO2 [34]. With regard to the lower BE peak, a 

number of XPS studies into the composition of TiO2 nanotubes synthesised via 

anodization using IL-based electrolytes have reported peaks ~400.0 eV in the N 

1s region, which are typically attributed to Ti-O-N interactions [15, 22].  

However, signals around this BE have also been reported in works using an 

electrolyte void of nitrogen entirely, such as Regonini et al [21]. They attributed 

an N signal at ~400.0 eV to combined contamination from distilled water in the 

electrolyte and exposure to atmosphere. Mazierski et al [15], when they 

synthesised TiO2 nanotubes using a [C2C1Im][BF4]-based electrolyte 

discovered two N signals in the N 1s region: one at approximately 400.0 eV, 

and one at a higher BE of 401.7 eV. They attributed the higher BE peak to 

positively-charged N, which is likely to originate from adsorbed IL. Secondly, 

they attribute the peak at 400.0 eV to Ti-O-N interactions, and also comment 

that peaks associated with both pyrrole- and pyridine-type N manifest around 

this BE. The peaks in the data presented here, at 401.7 eV and 400.0 eV, are 

tentatively attributed to physisorbed IL and Ti-O-N interactions respectively. The 

peaks at ~401.9 eV and ~399.8 eV in the N 1s region for sample b are of a 
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similar BE separation and have similar full width at half-maximum (FWHM) 

values, and are, therefore, attributed to the same sources as those in the region 

for sample c. 

The O 1s region for samples b and c are shown in Figure 6.9(ii), and display 

very different line shapes. The O 1s region for sample c (blue line) has been 

fitted with three peaks. The first peak, at 529.8 eV, dominates the region, and is 

attributed to lattice O of the TiO2 nanotubes [15]. The second peak, at 531.3 

eV, has a BE consistent with hydroxyl groups on Ti (Ti-OH) [15, 21], which are 

likely to have originated from exposure of the nanotubes to atmosphere. The 

third signal, at 532.6 eV, is attributed to organic hydroxyl groups (C-OH) or C=O 

[21]. To reiterate, C=O/C-OH groups may be present due to a combination of 

exposure to atmosphere, use of acetone in post-anodization cleaning, and 

residual adhesive. Ti-O-N interactions may appear at ~532.0 eV, in conjunction 

with the C-OH/C=O peak [36-38], so a portion of the signal at 532.6 eV is 

tentatively also attributed to Ti-O-N interactions. The region for sample b has 

also been fitted with three peaks: one at 530.5 eV, one at 532.2 eV, and one at 

533.7 eV. The peak at 530.5 eV is attributed to O in TiO2. The peak at 532.2 eV 

is attributed to Ti-OH groups. Since features associated with Ti-O-N interactions 

can appear at 532.0 eV, a portion of this peak is additionally attributed to Ti-O-N 

interactions. Finally the peak at 533.7 eV is attributed to C=O/C-OH. Sample b 

consists of a greater contribution from Ti-OH and C-OH/C=O, which may 

indicate more significant contamination. 
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Table 6.2: Summary of peak assignments of samples b and c, together with their respective 
binding energy (BE) values 

Sample Region BE (eV) 
(± 0.1 eV) Assignment 

b 

C 1s 

285.0 C-C/C=C 
286.2 C=O/C-OH; C2/C3 of cation 
287.1 C4 of cation 
289.0 IL-substrate interactions* 

F 1s 685.8 F ([BF4]-) 
684.2 Ti-F 

N 1s 401.9 N ([C4C1Im]+) 
399.8 Ti-O-N* 

O 1s 
530.5 TiO2 
532.2 Ti-OH 
533.7 C=O/C-OH; Ti-O-N 

c 

C 1s 
285.0 C-C/C=C 
286.3 C=O/C-OH 
288.7 IL-substrate interactions* 

F 1s 684.1 Ti-F 

N 1s 401.4 N ([C4C1Im]+) 
399.7 Ti-O-N* 

O 1s 
529.8 TiO2 
531.3 Ti-OH 
532.6 C=O/C-OH; Ti-O-N 

* Assignment debated in Discussion section 

 

Anodization potential: 5 V, 10 V, and 20 V with pure IL electrolyte 

Figure 6.10 shows the core level XPS spectra recorded from samples which 

were all anodized in pure IL electrolyte, but at different anodization potentials. 

Sample a (amber line) was anodized at 5 V, sample b (red line) was anodized 

at 10 V, and sample d (cyan line) was anodized at 20 V. The spectra are plotted 

in Figure 6.10 in order of anodization potential; with spectra recorded from 

sample a at the bottom, and spectra recorded from sample d at the top. A 

summary of binding energies and assignments of peaks is featured in Table 

6.3. 
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Figure 6.10: Core level XP spectra of samples a (anodized at 5 V, amber line), b (anodized at 
1V, red line), and d (anodized at 20 V, cyan line). 

The C 1s spectra taken for samples a, b, and d are shown in Figure 6.10(i) 

(represented by red, amber and cyan lines respectively). The C 1s spectrum for 

sample a (Figure 6.10(i), amber line) has been fitted with 5 peaks.  The peak at 

285.0 eV is attributed to C=C/C-C bonding. The majority of the C 1s region for 

sample a resembles that of an ultrathin IL film on TiO2 [34]. Therefore, the 
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peaks situated at 286.3 eV and 286.6 eV are attributed to the C2 and C3 carbon 

atoms of the [C4C1Im]+ cation, and the peak situated at 287.5 eV is attributed to 

the C3 carbon atom of the [C4C1Im]+ cation. The peak at 289.0 eV is attributed 

to IL-substrate interactions. The C 1s region for sample d (Figure 6.10(i), cyan 

line) is also fitted with five peaks, but has a very different shape to that of 

sample a. The peak at 285.0 eV is attributed to C-C/C=C bonding. The peaks at 

286.3 eV and 287.4 eV could arise from adsorbed IL on the nanoporous 

surface. The peak at 286.3 eV could also contain a contribution from 

contaminant species. Similar to the other C 1s spectra, the region for sample d 

displays a feature at 288.9 eV, which is also attributed to IL-substrate 

interactions. A small shoulder is present at the lower BE edge, at 283.1 eV. The 

origin of this peak is not known, but may be the result of electrochemical 

decomposition of the IL- a topic explored in more depth in the discussion 

section. 

The peak that appears at ~289.0 eV for all samples increases in relative 

intensity with increasing anodization potential (see Figure 6.11(i) for all C 1s 

spectra overlaid). Earlier, this peak was tentatively assigned to cation-substrate 

interactions, but is at a higher BE than those associated with intact IL cations. 

This suggests that a carbon-containing species, separate from any cationic or 

contaminant species, is more prominent on samples anodized at higher 

potentials. It is also interesting to note that the relative intensity of this peak is 

smaller for sample c than it is for sample b. Since both samples b and c were 

anodized at 10 V, this difference in relative intensity suggests that the presence 

of water may inhibit the production of the species generating this peak. 

The F 1s spectrum recorded from sample a (Figure 6.10(ii), amber line) is fitted 

with two peaks: one at 686.3 eV, which is at a BE consistent with the [BF4]- 

anion. The other peak is at 684.7 eV, which is at a BE that is consistent with Ti-

F bonding. The region has a shape that is much like that recorded for sample b, 

but with a more intense signal attributed to Ti-F. The F 1s spectrum for sample 

d (Figure 6.10(ii), cyan line) is the most unique of all four samples, displaying 

two very distinct peaks, one at 684.5 eV, correlating with the BE of peaks 

associated with Ti-F bonding; and one slightly broad peak (FWHM ~2.4 eV) at 

~688.3 eV. The BE of this peak in the F 1s region is consistent with CFx groups 

[33, 39], but C 1s signals attributed to CFx typically appear in the BE range of 
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291 eV to 293 eV [33, 39]. No peaks appear in the C 1s region of any sample at 

>291.0 eV (C 1s region with extended BE range is features in Figure 6.11(i)). 

 

Figure 6.11: C 1s (i) and N 1s (ii) regions of all samples overlaid. The peaks that change in 
intensity with increasing anodization potential for samples a, b, and d have been highlighted. 

The same regions for sample c have been included (represented by a blue dotted line) to serve 
as a comparison. 

In the N 1s region for samples a and d (Figure 6.10(iii), amber and cyan lines 

respectively) have been fitted with two peaks, much like that of sample b. The N 

1s region for sample a consists of a dominating peak at 401.9 eV, consistent 

with that of the N of [C4C1Im]+ cations, as well as a shoulder at 400.2 eV. The N 

1s region for sample d features a dominating feature at 401.5 eV, which is also 

attributed to N in the IL cations, and a shoulder at 399.9 eV. For all samples, 

regardless of electrolyte composition, it appears that the intensity of the peak at 

~400.0 eV increases relative to the peak at ~401.7 eV, with increasing 

anodization potential (see Figure 6.11(ii) for all N 1s spectra overlaid). This 

indicates that the relative intensity of this peak is solely dependent on 

anodization potential, and is not significantly affected by the addition of small 

amounts of water to the electrolyte. As suggested previously, the peak at 

~400.0 eV has been attributed to Ti-O-N interactions. The increased intensity of 

this peak relative to the peak at ~401.7 eV could indicate that the increase in 

anodization voltage results in more cation/substrate interactions. 

The O 1s region for samples a and d are similar in shape to one another (Figure 

6.10(iv), amber line and cyan line respectively), but differ very much from that 

recorded for sample b. The O 1s region for samples a and d both display a 

dominating feature: at 530.5 eV for sample a and at 530.2 eV for sample d. The 

BE values of both of these peaks are in line with those in literature for lattice O 
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of TiO2 [21, 34, 40]. The region for both samples feature a peak at ~532.0 eV, 

which is consistent with the assignment made for both samples b and c of Ti-

OH groups. Similar to the O 1s region recorded for samples b and c, a peak 

appears in the O 1s region for samples a and d at 533.6 eV. These are also 

attributed to C-OH/C=O contaminant species. The O 1s region for sample a 

appears to have a more intense signal at ~532.0 eV (relative to the lattice O 

peak) than sample d; while the O 1s region for sample d has a more intense 

signal at 533.6 eV, relative to the lattice O peak, than sample a. The time that 

elapsed between the first and second anodization stages for sample a was >24 

hours, while for sample d it was <10 minutes, which may contribute to a greater 

intensity of the peak attributed to Ti-OH groups for sample a than sample d. The 

peak attributed C-OH/C=O groups may be more intense for sample d than for 

sample a due to more solvent adsorbed and/or more adhesive residue on the 

sample surface that is not visible in the SEM images. 

Table 6.3: Summary of all peak assignments of samples a, b, and d, together with their 
respective binding energy (BE) values 

Sample Region BE (eV) 
(± 0.1 eV) Assignment 

a 

C 1s 

285.0 C-C (C1 of cation)/C=C bonding 
286.3 C2 of cation 
286.6 C3 of cation 
287.5 C4 of cation 
289.0 IL-substrate interactions* 

F 1s 686.3 F ([BF4]-) 
684.7 Ti-F 

N 1s 401.9 N ([C4C1Im]+) 
400.2 Ti-O-N* 

O 1s 
530.5 TiO2 
532.1 Ti-OH 
533.6 C=O/C-OH; Ti-O-N 

b 

C 1s 

285.0 C-C/C=C 
286.2 C=O/C-OH; C2/C3 of cation 
287.1 C4 of cation 
289.0 IL-substrate interactions* 

F 1s 685.8 F ([BF4]-) 
684.2 Ti-F 

N 1s 401.9 N ([C4C1Im]+) 
399.8 Ti-O-N* 

O 1s 
530.5 TiO2 
532.2 Ti-OH 
533.7 C=O/C-OH; Ti-O-N 

d C 1s 283.1 Species from electrochemical decomposition 
285.0 C-C/C=C 
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286.3 C=O/C-OH; C2/C3 of cation 
287.4 C4 of cation 
288.9 IL-substrate interactions* 

F 1s 684.5 Ti-F 
688.3 CFx* 

N 1s 401.5 N ([C4C1Im]+) 
399.9 Ti-O-N* 

O 1s 
530.2 TiO2 
532.0 Ti-OH 
533.6 C=O/C-OH; Ti-O-N 

* Assignment debated in Discussion section 

6.4 Discussion 

When synthesising TiO2 nanotubes via anodization, various groups have 

subjected IL-based electrolytes to potentials in excess of 50 V for relatively 

short periods of time (<1 hour) [14, 15, 22]. However, subjecting ILs to 

potentials outside of their electrochemical stability window for significantly long 

periods (>1 hour) can result in decomposition: a strong negative potential 

causes oxidation of the anion, and a strong positive potential causes reduction 

of the cation. Theoretical calculations are useful for predicting the 

electrochemical decomposition products of an IL. In a combined theoretical and 

experimental study, it was found that, for [C4C1Im][BF4], reduction of the cation 

occurs via formation of radicals (Scheme 6.1, reaction (4)), where the unpaired 

electron is located at the CH group at the C4 carbon position (see Figure 6.1 for 

chemical structure of [C4C1Im][BF4]) [41]. Subsequently, two radicals can react 

(radical coupling) and form a dimer (Scheme 6.1, reaction (5)i), or undergo 

disproportionation through ‘picking up’ a hydrogen atom from another radical 

(Scheme 6.1, reaction (5)ii). Disproportionation results in neutral 1-butyl-3-

methylimidazole (which has the same structure as [C4C1Im]+, but the methyl-

side nitrogen is no longer doubly bound to the C4 carbon, and is neutral), and 

zwitterionic 1-butyl-3-methylimidazole (same structure as [C4C1Im]+, but 

contains both positive and negative charge, but overall neutral). In the 

zwitterionic molecule, the positive charge is on the butyl-side N atom (rather 

than the methyl-side N atom typical of [C4C1Im]+ cations), and the negative 

charge is on the C4 carbon. 
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Scheme 6.1: Electrochemical decomposition of the [C4C1Im]+ cation, starting with the formation 
of a 1-butyl-3-methylimidazole radical in (4), followed by either dimerization (radical coupling) in 

(5)i, or disproportionation in (5)ii. Based on the schemes featured in [41]. 

In the N 1s spectra for all samples, the shoulder at ~400.0 eV was attributed to 

Ti-O-N interactions. This shoulder increased in relative intensity with 

anodization potential, seemingly irrespective of electrolyte composition. This 

suggests the peak, and by proxy the species responsible for it, shares a 

relationship with the anodization potential. Since all the samples were subjected 

to anodization potentials beyond the upper limit of the IL’s electrochemical 

stability for significant periods, the peak at ~400.0 eV in the N 1s region of each 

sample may be related to decomposition products of the IL. Whether these 

decomposition species exist as dimers, or as the products of disproportionation, 

it follows that they would manifest peaks somewhere in the N 1s region, 

separate from, but possibly overlapping with, the peak attributed to adsorbed IL 

cations. As seen in Chapter 3 of this thesis and in other XPS studies [42], 

evidence of beam damage of ILs can manifest peaks around 400.0 eV in the N 

1s region. Ultrathin depositions of IL are prone to damage from prolonged X-ray 

exposure (see Chapter 3.4.1). For sample a in particular, which may be 

supporting such an ultrathin film, this could explain the intensity of the shoulder 

at 400.0 eV, and thus may actually be beam damage rather than Ti-O-N 

interactions. 
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Samples a and d were anodized for similar periods for the first and second 

anodization stages, where each stage was between 2 hours and 3.5 hours. 

However, the peak at ~400.0 eV is more prominent in the N 1s region for 

sample d than for sample a. Moreover, sample b was subject to a longer initial 

anodization stage (12 hours), while sample c was subject to a longer second 

anodization stage (10.5 hours), but the peak at ~400.0 eV is of a similar relative 

intensity for both samples b and c. These observations support the assessment 

that the relative intensity of the peak is strongly related to anodization potential 

rather than anodization time. It could also be associated with electrochemical 

decomposition of the IL. This means the peak at ~400.0 eV may not necessarily 

originate entirely from Ti-O-N interactions, but may include a contribution from 

electrochemically decomposed IL. 

 

Figure 6.12: Atomic concentration (%) of N, F, and C of all samples acquired from the XPS data 
(i); and the O/Ti atomic ratio of all samples (ii). The dashed line in (ii) represents the 

stoichiometric O/Ti atomic ratio = 2. For reference, the time taken for each anodization stage for 
each sample is illustrated in (iii) with an inset table displaying their respective anodization 

potentials. 

The atomic concentrations of nitrogen, fluorine, and carbon in each of the 

samples are shown in Figure 6.12(i), and were calculated using the total areas 

of the N 1s, F 1s, and C 1s regions, and their respective relative sensitivity 

factors (RSFs).  Figure 6.12(ii) displays the O/Ti atomic ratio of each sample. 

Due to the existence of multiple peaks in the O 1s regions of all samples (and 

by proxy multiple O species on the surface of all samples), the atomic 
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concentration of O calculated from these data is likely to be an overestimate of 

varying degrees. For sample c, the intensities of the peaks at 531.3 eV and 

532.6 eV, relative to the lattice O peak at 529.8 eV, are small, and therefore the 

atomic concentration of O for sample c is only a slight overestimate. On the 

other hand, the atomic concentration of O for sample b is likely to be 

overestimated to the greatest degree due to the peaks in the O 1s region at 

532.2 eV and 533.7 eV being so intense relative to the peak attributed to lattice 

O. Sample c has the closest atomic O/Ti ratio (of 2.27) to the stoichiometric 

value (of 2.0) than any other sample, but is still higher than the stoichiometric 

value due to the presence of contaminant O species. As expected, sample b 

has the highest atomic O/Ti ratio (of 8.93) due to significant contamination 

compared to the other samples. It is expected of successfully synthesised 

nanotubes to possess stoichiometry close to that of pristine TiO2, but always 

contain contaminants; some of which, depending on the source of 

contamination, can skew the calculation of the concentration of O at the surface 

[15, 21, 22]. 

The probing depth of XPS is calculated to be of the order of 60 Å for TiO2 

(using an inelastic mean free path predicted by TPP-2M equation [43] of 

approximately 20 Å in TiO2). The thickness of the oxide layer will be of vital 

importance when calculating the O/Ti ratio. Nanotubes were successfully 

synthesised on sample c, and a nanoporous TiO2 layer was synthesised on 

sample d, but neither samples a or b display any TiO2 nanostructures. The O/Ti 

ratio for sample c is very close to that of stoichiometric TiO2, we can assume 

that the XPS is probing only TiO2. It also follows that the length of the 

nanotubes can be considered to be greater than that of the sampling depth of 

XPS, thus applying a lower limit on their length of ~6 nm. 

The atomic concentrations (Figure 6.12(i)) were calculated without contribution 

from the Ti 2p or O 1s regions in order to allow a proper comparison of nitrogen, 

fluorine, and carbon without any skewing of the concentrations from the 

substrate peaks. Sample b has the lowest concentration of nitrogen and fluorine 

on the surface, but has the greatest concentration of carbon. Sample a has the 

greatest concentration of nitrogen, but has one of the lowest concentrations of 

carbon, alongside sample d. A large concentration of nitrogen at the surface of 

sample a corroborates the shape and fit of the C 1s region recorded for sample 
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a, closely resembling an ultrathin IL film on TiO2. Sample d has the greatest 

concentration of fluorine at the surface. The concentration of nitrogen, fluorine, 

and carbon at the surface of sample c have relatively large uncertainties 

because of their concentration when factoring in the substrate peaks. When the 

contribution from the O 1s and Ti 2p regions is taken into account in the 

concentration of all five elements (N, F, C, O, and Ti), sample c has the lowest 

concentration of nitrogen, fluorine and carbon. 

The O 1s and Ti 2p spectra are shown for all samples (and are overlaid) in 

Figure 6.13(i) and Figure 6.13(ii) respectively. The incorporation of nitrogen into 

TiO2 has been shown to lower the BE of the O 1s and Ti 2p regions [37, 44] up 

to as much as 2 eV compared to undoped TiO2 [45]. The BE differences 

between each of the O 1s (fitted lattice O) signals, and for each of the Ti 2p3/2 

signals, are similar (the BE values of these peaks are shown in Figure 6.13(i) 

and Figure 6.13(ii)). The O 1s and Ti 2p regions for sample a are shifted the 

most toward higher BE, despite having the highest atomic concentration of N at 

9.0%. This corroborates the idea that some IL remains on the surface of the 

sample from the anodization process. Interestingly, the O 1s and Ti 2p regions 

for sample c are shifted the most toward lower BE. This would indicate a greater 

concentration of chemisorbed N (i.e. Ti-O-N interactions) than all the other 

samples, despite possessing the second lowest atomic concentration of N. The 

Ti 2p region (Figure 6.13(ii)) for sample b looks different to that of samples a, c, 

and d. The region for sample b appears to be somewhat broader, and a 

shoulder feature appears at the lower BE end of the region. The shape of the 

region for the other samples is consistent with that of majority Ti4+ ions in TiO2, 

but the region for sample b may have contributions from Ti3+ as well as Ti4+, 

hence the appearance of the lower BE shoulder feature. The Ti3+ features are 

typical of oxygen vacancies of a defective surface [34], but defects can also 

cause BE shifts of all regions to lower BEs [46]. This will affect the calibration, 

and could also be contributing to various BE differences between sample 

spectra. 
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Figure 6.13: O 1s (i) and Ti 2p (ii) regions of all samples overlaid. Each spectrum is annotated 
with the associated sample designation. The binding energy values of the fitted lattice O peak in 
the O 1s for samples a, c, and d are shown on the right in (i). The binding energy values of the 

Ti 2p3/2 peak for samples a, c and d are shown on the right in (ii). On the left side of each 
spectrum describes the order of samples in atomic concentration of N (determined quantitatively 

from the XPS), from sample b (with the least concentration) to sample a (with the greatest 
concentration). 

As described in Chapter 2, XPS is inherently more surface-sensitive due to the 

mean free path of photoelectrons, while EDX can detect X-rays emitted from as 

deep as several μm, so is considered, in this case, to be more bulk-sensitive. 

Therefore, EDX provides insight into the bulk composition, while XPS provides 

insight into the surface composition. Oxygen was unable to be detected in any 

of the samples by the SEM/EDX system used (corresponding to a concentration 

of <0.01%), which suggests that the nanotubes grown are much less than μm in 

length. This actually corroborates with literature, where low voltage anodization 



231 
 

(between 5 and 10 V) how shown to produce nanotubes with lengths < 700 nm 

[13]. 

The surface atomic concentration of fluorine, as determined by XPS, does not 

appear to correlate with either anodization time (of either stage, or total) or 

anodization potential. One possibility is that the concentration of F is dependent 

on the morphology of the surface. As mentioned previously, TiO2 nanotubes 

that have been synthesised via anodization using comparable potentials can 

have lengths in the µm range, which means XPS will only probe the nanotube 

layer. As mentioned earlier, this is likely to be the case for sample c since the 

ratio of O/Ti is close to the stoichiometric value, indicating that XPS is probing 

TiO2 only. For samples where nanotubes have not been synthesised, a small 

amount of oxide may have formed at the surface, or have a naturally occurring 

oxide from exposure to atmosphere. Should there be sufficient oxide for 

dissolution to take place (occurring via reaction (3) between the IL and the 

TiO2), pits may form. This process is likely to have been the mechanism for the 

formation of the nanoporous TiO2 on sample d. So while nanotubes were not 

formed due to insufficient amounts of available oxygen, the initial pits may have 

been synthesised, and the fluorine environments within them detected by XPS. 

This could provide insight into these initial pits, and the chemistry at the root of 

TiO2 nanotubes synthesised via anodization of Ti. 

The reaction that creates the initial pits is thought to be responsible for the 

creation and maintenance of the tube structure of the nanotubes [7]. While 

fluorine is necessary for the TiO2 nanotube formation, its presence in the 

resultant nanotube array could be seen as contamination, since it will alter 

physicochemical properties of the nanotubes and therefore have an effect on 

their function for particular applications. In particular, it could have negative 

consequences such as diminished absorption of dye in dye-sensitised solar 

cells [47, 48], or diminished hydrogen production rate in photocatalytic water 

splitting [49]. However, the concentration of contaminant species (which 

includes N, F, and C) is significantly reduced when TiO2 nanotubes are 

annealed after synthesis [21]. This is the case for TiO2 synthesised via 

anodization using either IL-based [22] or non-IL-based electrolytes [21]. While 

the nitrogen, fluorine and carbon content of sample c was the lowest of all 
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samples, it would be interesting to compare the present composition with the 

composition after an annealing at 400°C. 

Based on this work, it would be interesting to compare the resultant 

compositions via XPS of samples subject to similar anodization potentials 

(namely 5 V and 20 V) whilst also including a small addition of water to all 

electrolytes. The addition of water is the key factor as to whether or not 

nanotubes can be synthesised under these low-potential (≤20 V) conditions. It 

would be interesting to explore whether the addition of water to the electrolyte 

would decrease the fluorine, nitrogen, and carbon contents of any synthesised 

structures at these potentials, and how the concentrations of carbon, nitrogen 

and fluorine at the surface would compare to those of the nanotubes of sample 

c. Furthermore, it could be determined whether or not the XPS features that 

currently adhere to the trend of increasing relative intensity with increasing 

anodization potential would still do so with the addition of water. 

Another interesting avenue of study involves using scattering techniques, such 

as such as grazing incidence small angle X-ray scattering (GISAXS), to gain 

structural information of the nanotubes during anodization. GISAXS is a surface 

sensitive X-ray scattering technique that has been used to study a variety of 

nanostructures [50-52], including TiO2 nanotubes [53-55]. In the case of TiO2 

nanotubes, measurements were only taken of arrays that have already been 

synthesised via anodization of Ti. One of the benefits of GISAXS is that can be 

used in situ, which means it can be employed both under ambient conditions, 

and without needing to remove the electrolyte from the electrochemical cell. 

Because GISAXS measurements can be taken under ambient conditions, there 

is no requirement for a specialist vacuum-safe electrochemical cell. 

Furthermore, since GISAXS can be conducted without needing to remove the IL 

electrolyte, measurements can be taken throughout the anodization process, 

not just after completion. This could provide a unique insight into the structural 

progression of the TiO2 nanotubes during synthesis, which (to the best of our 

knowledge) has not been reported with this technique before. 

6.5 Conclusion 

In order to investigate the effect of anodization potential and electrolyte 

composition on the synthesis of TiO2 nanostructures, four samples of Ti were 
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subject to a two-step anodization method under various anodization conditions 

in a custom-built electrochemical cell. These samples were designated letters a 

to d. Their individual anodization conditions are listed below: 

• Sample a: anodized at 5 V in pure [C4C1Im][BF4] 

• Sample b: anodized at 10 V in pure [C4C1Im][BF4] 

• Sample c: anodized at 10 V in an electrolyte composed of [C4C1Im][BF4] 

and 2.6 wt% H2O 

• Sample d: anodized at 20 V in pure [C4C1Im][BF4] 

The samples were then characterised using SEM/EDX and XPS. From the SEM 

analysis, only sample c displayed the presence of nanotube structures on the 

surface with an average inner diameter of 50 nm. Sample d appeared to have a 

partially-nanoporous surface, with average pore diameter of 75 nm. Samples a 

and b looked similar, but did not appear to support nanostructures. This 

observation demonstrates that the addition of water is essential for the 

successful synthesis of nanotubes. The ratio of O/Ti calculated for sample c 

was close to that of stoichiometric TiO2, which defines a lower limit of 6 nm to 

the length of the nanotubes, equal to the sampling depth of XPS. The EDX 

analysis revealed differences in the composition of the samples, which was 

explored in more depth in the XPS analysis. The XPS revealed trends with 

anodization potential in the C 1s and N 1s regions for all samples. A peak at 

~288.9 eV in the C 1s region increased in relative intensity with anodization 

potential, but was of a smaller intensity for sample c, displaying an additional 

relationship with electrolyte composition. A peak at ~399.9 eV in the N 1s 

region, however, increased irrespective of electrolyte composition. These peaks 

are thought to be related to electrochemical decomposition of the IL, but warrant 

further study with the electrolyte composition as used for sample c. Further 

study could also include GISAXS to monitor structural progress during 

anodization, which to the best of our knowledge has not yet been reported.  
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7 Conclusions and further work 

7.1 Conclusions 

Presented in this thesis were four studies that were conducted into the structure 

and interactions of ionic liquids (ILs) at gaseous and oxide interfaces, each with 

a view toward energy applications. 

In Chapter 3, the interface between 1-butyl-3-methylimidazolium 

tetrafluoroborate ([C4C1Im][BF4]) and water vapour was investigated using both 

IL multilayers and an ultrathin IL film, with near-ambient pressure X-ray 

photoelectron spectroscopy. The IL multilayer system (approximately 27 layers), 

deposited onto an anatase TiO2 (101) substrate, was exposed to water vapour 

at 20% relative humidity (RH) and 60% relative humidity. The ad/absorption of 

water was more evident at 60% RH than at 20% RH, and relative intensity 

changes in the C 1s region indicate possible rearrangement of the cations at the 

surface. These changes were more apparent in the C 1s region for the ultrathin 

IL film. The ultrathin film (approximately 3 layers), was deposited onto a rutile 

TiO2 (110) substrate and exposed to water vapour at 70% RH. Multiple 

measurements were taken after the water vapour was closed off from the near-

ambient pressure cell. Water appeared to remain adsorbed on the ultrathin IL 

film for some time after exposure to water vapour. The intensity changes in the 

C 1s region continued even after the water vapour was closed off from the near-

ambient pressure cell, which could indicate water-induced ionic rearrangement 

at the IL/water interface. The system eventually reversed to its original 

orientation once the surrounding pressure returned to UHV. The prolonged 

presence of water could be problematic for systems requiring dry IL for superior 

ad/absorption of gaseous reactants for catalysis, for example. As the presence 

of adsorbed water affects the structure of the outermost surface of ILs, it will 

also influence ad/absorption kinetics and how the IL interacts with the target 

gas. This could, therefore, have a negative impact on thin-film catalysis 

systems. 



241 
 

The IL/water interfacial region was also investigated in Chapter 4, alongside 

that of IL/CO2 and IL/(CO2/H2O mixture), with the superbasic IL 

trihexyltetradecylphosphonium benzimidazolide, or [P66614][benzim]. The 

interactions in the interfacial region were investigated using near-ambient 

pressure X-ray photoelectron spectroscopy. The reaction between the 

[P66614][benzim] and CO2 forms a carbamate bond, which was shown to be 

reversible via a reduction in the surrounding gas pressure. The anion of the 

superbasic IL also reacts with water to form benzimidazole and a hydroxide 

anion. Under the conditions investigated, the capability of [P66614][benzim] to 

react with CO2 was not hindered by preliminary exposure to H2O vapour, and 

the molar uptake ratio, nCO2/nIL, was calculated to have an upper limit of 0.5, 

regardless of initial exposure to either CO2 or H2O vapour. This suggests that 

the superbasic IL preferentially reacts with CO2, resulting in a consistent uptake 

ratio in both mixed-gas regimes. This property may be useful for gas separation 

applications under humid conditions. This study also demonstrates that 

NAPXPS is a powerful tool for investigating gas uptake in ILs and learning more 

about the interfacial behaviour. 

In Chapter 5, the interactions between ZnO and multilayer depositions of the ILs 

1-octyl-3-methylimidazolium tetrafluoroborate ([C8C1Im][BF4]) and 1-butyl-3-

methylimidazolium tetrafluoroborate ([C4C1Im][BF4]) were studied. Using a 

combination of X-ray photoelectron spectroscopy (XPS) and N K-edge near-

edge X-ray absorption fine structure (NEXAFS) spectroscopy, the interactions 

and ordering of [C8C1Im][BF4] on polar and non-polar faces of ZnO were 

compared. The deposition of [C8C1Im][BF4] on the polar ZnO was 

approximately double the thickness of the deposition on the non-polar ZnO, 

which resulted in a more disorganised IL film, showing no preferential 

orientation of the imidazolium ring in the N K-edge NEXAFS. However, the 

[C8C1Im][BF4] deposition on non-polar ZnO displayed a preferential orientation 

of the imidazolium ring toward the surface normal. The orientation of molecules 

may influence charge transfer, and thus is important for optimising IL-

incorporated optoelectric devices. It appears the IL interacts more strongly with 

the polar ZnO than the non-polar, possibly at the O-terminated step edges. In 

addition to this, the thermal stability of [C4C1Im][BF4] was investigated on polar 

ZnO using XPS. It was found that [C4C1Im][BF4] began to decompose when 

heated to temperatures in excess of 80°C, a much lower temperature than the 
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long-term thermal stability quoted in literature at ~300°C. This indicates that 

ZnO has a catalytic effect on the thermal decomposition of [C4C1Im][BF4]. This 

may have a negative impact on potential use of ILs in photovoltaic ZnO-based 

applications for example, where thermal stability is crucial to device longevity. 

Chapter 6 investigated the influence of IL-based electrolyte composition and 

anodization voltage on the electrochemical synthesis of TiO2 nanotubes via 

anodization of Ti, by studying the morphology and chemical composition of the 

resultant nanostructures. Three of the four samples were anodized in an 

electrolyte composed solely of [C4C1Im][BF4] (at 5 V, 10 V and 20 V), and one 

was anodized in an electrolyte composed of [C4C1Im][BF4] with 2.6 wt% water 

(at 10 V). Nanotubes were synthesised on the sample anodized in 

[C4C1Im][BF4]/water electrolyte, with an average diameter of 50 nm. On a 

sample which was anodized at 20 V with pure IL electrolyte, a nanoporous film 

was synthesised with average pore diameter of 75 nm. The three samples that 

were anodized in pure IL electrolyte at 5 V, 10 V and 20 V showed a trend with 

increasing anodization potential, manifesting as an increase in relative intensity 

of peaks in the C 1s and N 1s regions in the XPS data. The ratio of O/Ti was 

calculated using the Ti 2p and O 1s regions for the synthesised nanotubes, and 

was close to that of stoichiometric TiO2, providing a lower limit for the length of 

the nanotubes at approximately 6 nm. Many factors can influence the outcome 

of electrochemical synthesis, and understanding the effects of electrolyte 

composition and applied anodization potential on subsequent nanotube 

morphology composition is vital for applications such as photocatalytic water 

splitting, where contamination can hinder the catalytic performance of the 

nanotubes. 

7.2 Further work 

A number of further studies have stemmed from the work presented in this 

thesis. We have taken near-edge X-ray absorption fine structure spectroscopy 

and X-ray photoelectron spectroscopy data of multilayer and ultrathin films of 

[P66614][benzim] on rutile TiO2 under near-ambient pressures at a recent 

experiment at the B07 beamline of Diamond Light Source. These data will 

determine the structure and ordering at the interface with vacuum and with CO2 

gas. Also scheduled is an experiment on the HIPPIE beamline at MAX IV, which 
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aims to investigate the structure and ordering of ultrathin layers of 

[P66614][benzim] on rutile TiO2 in the presence of both CO2 and H2O. One of the 

most promising aspects of ILs is their potential for use in gas separation 

applications [1, 2]. Therefore, further work into the CO2 capture and separation 

capabilities of superbasic ILs in the presence of gases such as SO2 could be 

interesting and beneficial from an industrial perspective as well as academic. 

It would be interesting to conduct investigations into the interactions of different 

ILs with ZnO; with nanoparticulate ZnO in particular. ZnO exists in numerous 

nanostructural forms, including nanowires, nanorods, and nano-‘flowers’ [3]. ILs 

have been used as solvents for ZnO nanostructure synthesis [4, 5], and since 

nanoparticulate ZnO has applications in dye-sensitised solar cell (DSSC) 

technology [6], it would be interesting to look into the thermal stability of a 

variety of ILs with nanoparticulate ZnO. 

The composition of electrochemically synthesised TiO2 nanotubes is currently 

being investigated further as part of a MPhys project using a similar method as 

in Chapter 6, but using entirely IL/water electrolytes. As an accompaniment to 

the data from Chapter 6, studies into electrochemical decomposition of ILs 

could be conducted in vacuo and studied using X-ray photoelectron 

spectroscopy [7, 8]. The development of nanotube structure during anodization 

of Ti is of interest from a fundamental perspective. Grazing incidence small-

angle X-ray scattering [9] data was collected on a recent synchrotron 

experiment at the I07 beamline at Diamond Light Source, with measurements 

recorded in situ during nanotube growth. The analysis, to be done in 

collaboration with colleagues at Diamond Light Source and the European 

Synchrotron Radiation Facility (France), may shed light onto the degree of 

ordering taking place at the Ti surface during synthesis. Additionally, a variety of 

fluorine-containing, non-imidazolium based ILs could be investigated. Other 

interesting avenues of study include the use of mixed-IL electrolytes [10], and 

nanotube doping [11, 12]. 
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Appendix A: Calculation of inelastic mean free 

path and deposition thicknesses of ionic 

liquids 

A.1 Inelastic mean free path of photoelectrons in ionic 

liquids 

The calculation for the inelastic mean free path (IMFP) of photoelectrons in ionic 

liquids (ILs) uses the TPP-2M calculation, as given by Equation (1), for 

photoelectron IMFP in organic materials as formulated by Seah [1]: 

λIL=
(4 + 0.44ZIL

0.5 + 0.104E0.872) aIL
1.7

ZIL
0.3  (1) 

 

where λIL is the IMFP of photoelectrons passing through the IL in nm, ZIL is the 

average number of protons in one IL pair, E is the average kinetic energy of the 

photoelectrons of interest in eV, and aIL is the cube root of the atomic volume of 

the IL (aIL is sometimes known as the IL ‘thickness’ or IL ‘length’) in nm. 

The average number of protons per IL pair, ZIL, is calculated using Equation 

(1)i: 

ZIL=
∑(xi ZXi)
∑ xi

 (1)i 

 

where the total number of protons in one IL pair (i.e. the sum of x number of 

atoms of element X, multiplied by the proton number Z for each element within 

the IL pair) is divided by the sum of the total number of atoms (as shown by the 

denominator). For example, in 1-butyl-3-methylimidazolium tetrafluoroborate 

([C4C1Im][BF4]), which has the chemical formula C8H15BF4N2, ZIL for 

[C4C1Im][BF4] is 3.9. 

The average kinetic energy of photoelectrons through the IL layer, E, can be 

calculated using X-ray photoelectron spectroscopy (XPS) data. This is shown in 

Equation (1)ii: 
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E = hν - EBS (1)ii 
 

where hν is the incident photon energy, and EBS is the binding energy of the 

XPS core level feature used for comparison of the substrate before and after IL 

deposition. For example, using a standard Al Kα X-ray source (hν ≈ 1486 eV), 

and EBS of O 1s region in TiO2 ≈ 530 eV, the average kinetic energy from 

photoelectrons emitted from a TiO2 substrate, E ≈ 956 eV. 

The molecular volume in nm3, denoted aIL3, of an IL pair is dependent on the 

molar weight, MIL (in g mol-1), the density of the IL (in g cm-3), and the total 

number of atoms within the IL, as described in Equation (1)iii below: 

aIL
3= 

1021 MIL

ρIL NA (∑ xi)
 (1)iii 

 

where ρIL is the density of the IL and NA is Avogadro’s number. The cube root 

of aIL3 is also given by Equation (1.04) in Chapter 1.3.1 of this thesis (but is 

simply denoted by d in the context of monolayer IL depositions). Using 

[C4C1Im][BF4] as an example, the sum of the individual atomic weights of its 

elemental components gives a molar (molecular) weight of 226.02 g mol-1. At 

room temperature, its density is approximately 1.21 g cm-3, and gives an IL 

volume, aIL3, of approximately 0.0104 nm3. 

Combining all of the quantities calculated from Equations (1)i, (1)ii and (1)iii in 

Equation (1) gives an IMFP, λIL, of photoelectrons emitted from the O 1s levels 

in a TiO2 substrate travelling through a deposition of [C4C1Im][BF4] to be 

approximately 2.60 nm. 

A.1.1 Application of the TPP-2M equation to inorganic materials 

A form of the TPP-2M equation (developed by Tanuma et al [2]) can be applied 

to inorganic materials (such as TiO2) to predict the IMFP (denoted by λIn, and is 

in Å) of photoelectrons in those materials: 

λIn=
E

Ep
2 �β  ln(γ E) - �CE�  - �D

E2��
 (2) 

 

where E is the kinetic energy of photoelectrons, and Ep, β, γ, C and D are 

represented by Equations (2)i, (2)ii, (2)iii, (2)iv and (2)v: 
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β = -0.10 + 0.944 �Ep
2 + Eg

2�
-0.5

 + 0.069 ρ0.1 (2)i 

γ = 0.191 ρ-0.5 (2)ii 

C = 1.97 - 0.91 �
Ep

2

829.4� (2)iii 

D = 53.4 - 20.8 �
Ep

2

829.4� (2)iv 

 

and Ep is the free-electron plasmon energy (in eV), given by: 

Ep = 28.8 �
Nv ρ

M
�

0.5

 (2)v 

 

Eg in (2)ii is the band-gap energy (in eV), Nv in (2)v is the number of valence 

electrons per molecule, ρ is the density (in g cm-3) and M in (2)v is the 

molecular weight (in g mol-1). For example, TiO2 has 16 valence electrons (4 

from Ti, and 6 from each O), a molecular weight of 79.86 g mol-1, a density 

value of approximately 4.2 g cm-3, and a band gap of approximately 3 eV. 

Therefore, Ep for TiO2 is approximately 26.5 eV, and gives an IMFP, λIn, of 

approximately 20 Å for photoelectrons with kinetic energy, E, of 956 eV (using 

Equation (1)ii, and the same values as in the previous subsection). As 

described in Chapter 2.3.4, the IMFP can then be used to calculate the 

sampling depth. Therefore, in TiO2, the sampling depth, d = 3λIn ≈ 60 Å. 

A.2 Calculation for the thickness of an ionic liquid 

deposition 

The thickness of an ionic liquid film on a solid substrate is given by Equation (3), 

which is based on the Beer-Lambert relation of the attenuation of 

photoelectrons in thin films [3]: 

dIL = - λIL ln �
I
I0
� (3) 

 

where dIL is the thickness, or depth, of the IL deposition, λIL is the IMFP of 

photoelectrons traversing though the IL deposition, I0 is the initial intensity of 

the substrate core level XPS peak (the intensity prior to IL deposition), and I is 

the attenuated intensity of the same core level XPS peak after deposition. It 
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follows from this calculation that a rough estimate can be made of the number 

of IL ‘layers’. This done by dividing the thickness of the IL deposition (dIL) by the 

thickness of one IL pair (aIL). 

 

Appendix A References 

[1] M.P. Seah, An Accurate and Simple Universal Curve for the Energy-
Dependent Electron Inelastic Mean Free Path, Surface and Interface Analysis, 

44 (2012) 497-503, D.O.I.: 10.1002/sia.4816 

[2] S. Tanuma, C.J. Powell, D.R. Penn, Calculation of Electron Inelastic Mean 

Free Paths (IMFPs) VII. Reliability of the TPP-2M IMFP Predictive Equation, 

Surface and Interface Analysis, 35 (2003) 268-275, D.O.I.: 10.1002/sia.1526 

[3] J.F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS 

and AES, John Wiley & Sons, (2003). 

 



250 
 

Appendix B: Synthesis of trihexyl-

tetradecylphosphonium benzimidazolide 

The two step synthesis process to obtain the superbasic ionic liquid (IL), 

trihexyl-tetradecylphosphonium benzimidazolide, or [P66614][benzim] (see 

Chapter 4), was carried out by Dr S. F. R. Taylor of the School of Chemical 

Engineering and Analytical Science at the University of Manchester. This 

process is also outlined in [1]. 

The precursors, trihexyl-tetradecylphosphonium chloride ([P66614][Cl]) and 

benzimidazole were purchased from Cytec (97.7%) and Sigma Aldrich (98%) 

respectively. An ion exchange resin (Amberlite IRN-78, OH-form; Sigma 

Aldrich) was used to first synthesise trihexyl-tetradecylphosphonium hydroxide 

(P66614][OH]), by pouring a solution of 35 g of [P66614][Cl] and 25 cm3 of ethanol 

into a column containing the clean exchange resin (the resin itself was washed 

in absolute ethanol to remove air and impurities). The product containing 

[P66614][OH] was then poured into the column again. This was repeated three 

times to ensure complete ion exchange, converting [P66614][Cl] into [P66614][OH]. 

The product was then analysed using nuclear magnetic resonance 

spectroscopy to determine the amount of [P66614][OH] present. From there, a 

sufficient amount of benzimidazole was added to the product to form a 1:1 ratio 

of [P66614][OH] and benzimidazole. The solution was then stirred for 8 hours 

under rotary evaporation and high vacuum at 50°C to obtain pure and dry 

[P66614][benzim]. 
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