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Abstract 

As people are living longer, neurodegenerative disorders such as Alzheimer’s disease 

(AD) are becoming more prevalent but the pursuit for treatments has yet to deliver 

satisfactory results. By the time AD is diagnosed, the typical hallmarks of neurofibrillary 

tangles and senile plaques are present and cognitive decline has occurred, pointing future 

research towards the early stages of the disease. Indeed, recent research has unearthed 

cell-autonomous atrophy of astrocytes in the early stages of AD, characterised by 

decreased cell size and loss of processes. This aberrant astrocyte morphology was present 

in both sporadic and familial AD models and manifests independently of senile plaques. 

These findings challenge the neuron-centric view of AD, granting glial cells an 

undeniable role in neurodegeneration. The exact mechanisms underlying aberrant 

astrocyte morphology are entirely unexplained. This thesis explores how the Cas-

proteins, previously identified by genome-wide association studies as genetic risk-factors 

for late-onset AD, NEDD9 and CASS4 act as regulators of astrocyte morphology and 

function. This could potentially unearth mechanisms that lead to astrocyte atrophy in AD.  

This was achieved by transiently transfecting primary human cortical astrocytes in vitro 

with vectors mediating the overexpression or siRNA-induced knock-down of either 

NEDD9 or CASS4. Concurrent expression of GFP, which localised throughout the entire 

cell, permitted the visualisation of complete cellular morphologies, including fine 

processes. Morphological analysis by visual binning into morphological subtypes or 3D 

reconstruction followed by morphometric quantifications (e.g. surface area, volume) 

revealed that overexpression or knock-down of either NEDD9 or CASS4 induced 

significant changes in astrocyte morphology compared to controls and, specifically, 

depletion of the proteins lead to astrocyte atrophy, mimicking a phenotype previously 
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found in other studies of AD models. Moreover, manipulation of Cas-protein levels 

induced altered expression and sub-cellular distribution of key astrocyte functional 

markers, including glial fibrillary acid protein (GFAP) and the calcium-binding protein, 

S100B; further mimicking the pathological phenotype reported in human iPSC astrocyte 

models of AD. 

Hence, it appears that both NEDD9 and CASS4 are capable of inducing morphological 

and functional changes in human astrocytes and may therefore contribute to astrocyte 

pathology in AD. This implies that the Cas-proteins or binding partners are potentially 

contributing to astrocyte atrophy in AD. This thesis delivers ample grounds for further 

research which could identify yet unexplored pathways, which could be used for new 

early diagnostic tests or therapeutic measures. 
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1 Chapter 1 – Introduction 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD), first described by Alois Alzheimer (Alzheimer, 1910), is a 

progressive neurodegenerative disorder and the leading cause of dementia worldwide 

(Feigin 2019). The World Health Organisation (WHO) reported 81.1 million cases of 

Alzheimer’s disease last year and estimates 152 million people will be suffering from 

dementia by 2050 (Patterson, 2018). These figures and the associated cost of health care 

demonstrate the need for continuing research into AD. 

AD in its familial or sporadic form manifests over several years; ranging from short-term 

memory loss to severe cognitive decline, ultimately leading to complete loss of bodily 

functions and thus death. Pathophysiologically, AD is characterised by synaptic 

dysfunction, accumulation of β-amyloid (Aβ) aggregates (“senile plaques”) and 

intracellular neurofibrillary tangles of hyperphosphorylated tau, and eventual neuronal 

loss (Braak et al., 1989, Hardy and Selkoe, 2002, Holtzman et al., 2011). 

Neurodegeneration arises in the entorhinal cortex, advances to the hippocampus and 

finally manifests in the frontal, temporal and parietal lobes, leading to extensive loss of 

grey matter (Karas et al., 2004, Thompson et al., 2003, Janke et al., 2001).  

Hypotheses on how exactly AD begins and progresses are plentiful, with most centred on 

the archetypical hallmark of extracellular Aβ plaques. This aberrant protein interferes 

with cell signalling, particularly intracellular calcium signalling, and protein synthesis, 

ultimately leading to inflammatory and stress responses and thus cell death (Abramov et 

al., 2003). The amyloid hypothesis posits that Aβ aggregates trigger the onset of AD. 
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First suggested by Glenner in 1984, this hypothesis was widely accepted (Glenner et al., 

1984, Masters et al., 1985, Hardy and Allsop, 1991) and over three decades, research has 

focused on senile plaques as a therapeutic target (Braak et al., 1989, Chen et al., 2000, 

Haass and Selkoe, 2007, Hsiao et al., 1996). Unfortunately, treatments targeted to Aβ 

have yet to yield satisfactory clinical results, prompting criticism within the field that a 

shift in the focus of AD research is necessary and overdue (Golde et al., 2011, Castello 

et al., 2014, Moreno-Treviño et al., 2015, Kametani and Hasegawa, 2018). 

There are several pitfalls with amyloid deposits as diagnostic and therapeutic targets for 

AD. Aβ plaques are also found in the healthy aging brain, in the absence of pathologies, 

diminishing diagnostic value of amyloid plaques (Davis et al., 1999, Fagan et al., 2009). 

Furthermore, the appearance of senile plaques correlates poorly with cognitive decline; 

hence the anti-Aβ treatments developed to date have only been used at the symptomatic 

stage, when cognitive decline has already occurred, hence limiting their curative potential 

(Rygiel, 2016, Kametani and Hasegawa, 2018). Moreover, it has been suggested that 

plaque formation might actually be a protective mechanism to corral the highly toxic 

soluble Aβ species to a larger insoluble mass (Gandy et al., 2010, Lublin and Gandy, 

2010); and prevention of this mechanism might actually exacerbate AD pathology. 

The second hallmark of AD, tau neurofibrillary tangles (NFT) appear to provide a 

superior diagnostic and therapeutic target. Tau is a soluble phosphoprotein 

predominantly, but not exclusively, found in neurons of the healthy brain (Weingarten et 

al., 1975), where it interacts with and stabilises microtubules. Tau activity is regulated by 

splicing (six isoforms) and post translational modifications, such as phosphorylation 

(Lindwall and Cole, 1984, Alonso et al., 1994, Wray et al., 2008). In AD, tau is 

hyperphosphorylated, which is believed to induce insoluble aggregates (Bancher et al., 

1989, Hanger et al., 1991, Kopke et al., 1993). Hyperphosphorylated tau is not only a 
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hallmark of AD but occurs in several neurodegenerative diseases (tauopathies), such as 

Pick disease, progressive supranuclear palsy and Parkinsonism with fronto-temporal 

dementia (Irwine, 2017, Goetz et al., 2018). Hyperphophorylated tau is believed to 

propagate from cell to cell in a prion-like manner (Clavaguera et al., 2009, Nonaka et al., 

2010, Goedert and Spillantini, 2017) and correlates with cognitive impairment (Braak and 

Braak, 1991, Bejanin et al., 2017), giving tau accumulation superior diagnostic value than 

Aβ. Although significant progress has been made, the exact mechanisms involved in the 

generation of aggregated tau remain unknown, hampering efforts to utilise tau as a 

therapeutic target (Himmelstein et al., 2012, Kametani and Hasegawa, 2018).  

The microtubule associated protein tau (MAPT) gene encodes tau and several tauopathies 

can be traced back to mutations in the MAPT gene, such as Pick’s disease (Pollock et al., 

1986, Sergeant et al., 2005). Although abnormal phosphorylation of tau is an early 

hallmark of neurodegeneration, AD is the most common secondary tauopathy with no 

known mutations of MAPT (Simic et al., 2016, Terry, RD., 1996). Moreover, the exact 

mechanisms leading to these hallmarks are yet to be fully elucidated. Hence, there is a 

renewed research focus on understanding the causes and pathogenesis of AD in a bid to 

reveal alternative therapeutic and diagnostic targets.  

 

1.2 Established risk genes of Alzheimer’s disease 

The vast majority of cases of AD are of a sporadic or late (>65 years) onset (LOAD) in 

nature. Much of what is known is based on the familial or early-onset form of AD 

(EOAD), which accounts for less than 2% of AD cases (Rosenthal and Kamboh, 2014). 

Almost all cases of EOAD are familial in nature and can be traced to several known 

mutations within three genes, APP (amyloid precursor protein), PSEN1 and PSEN2 
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(presenilins 1 and 2) (Bagyinszky et al., 2016, Lanoiselee et al., 2017, Sherrington et al., 

1995, Campion et al., 1999). Previously thought to be idiopathic, it is now understood 

that late-onset Alzheimer’s disease (LOAD) also entails a genetic component and several 

genes which confer increased risk of developing the disease have been identified (Bertram 

et al., 2008, Piaceri et al., 2013). 

The most widely established and strongest genetic risk for LOAD is the ε4 allele of the 

APOE gene. Encoding apolipoprotein E (ApoE), a vital component and regulator of lipid 

metabolism and involved in Aβ clearance. The ε4 allele has been shown to correlate with 

an increased risk of both familial/early and sporadic/late forms of AD (Chartier-Harlin et 

al., 1994, Kim et al., 2009, Corder et al., 1993, Morris et al., 2010). While this is a major 

advancement for our understanding of LOAD risk, only around half of individuals 

developing LOAD carry the APOE ε4 allele (Huang et al., 2004, Naj et al., 2011), raising 

the question of the aetiology in the rest of LOAD cases.  

 

1.3 Emerging Alzheimer’s disease risk genes 

In a quest to elucidate the pathogenesis of LOAD, genome-wide association studies 

(GWAS) were used to search for LOAD risk genes (Lambert et al., 2009; Harold et al., 

2009; Seshadri et al., 2010; Naj et al., 2011; Hollingworth et al., 2011; Lee et al., 2011; 

Reitz et al., 2013) These studies have led to the identification of almost 30 susceptibility 

loci harbouring single nucleotide polymorphisms (SNPs) which correlate with an 

enhanced risk of developing LOAD. Since the identification of these risk genes, very few 

studies have attempted to define how they might actually influence LOAD development. 

Those which have been published have focused on functions and pathways known to be 

affected or altered in LOAD. These include genes implicated with the immune system, 
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CD33, CR1, HLA-DRB1-DRB5, MS4A, MEF2C, TREM2 (Bradshaw et al., 2013, Kok et 

al., 2011, Lambert et al., 2013, Antúnez et al., 2011, Tang et al., 2016, Jonsson et al., 

2013); lipid transport and cholesterol metabolism, ABCA7, CLU, PLD3, SORL1 

(Hollingworth et al., 2011, Harold et al., 2009, Cruchaga et al., 2014, K et al., 2008) and 

endocytosis BIN1, PICALM, CD2AP, EPHA1, SLC24A4/RIN3 (Chapuis et al., 2013, 

Harold et al., 2009, Chen et al., 2015, Lambert et al., 2013, Rosenthal and Kamboh, 

2014). 

 

Among the identified LOAD risk loci are polymorphic variants within NEDD9 (Neural 

precursor cell expressed developmentally down-regulated protein 9) and CASS4 (Cas 

Scaffolding Protein Family Member 4) (Li et al., 2008, Lambert et al., 2013). Follow-up 

studies showed that one SNP in NEDD9 (rs760678) and three SNPs in CASS4 

(rs7274581, rs16979934 and rs6024870) had the strongest association with LOAD 

development (Li et al., 2008, Fu et al., 2012, Xing et al., 2011, Wang et al., 2012, 

Rosenthal and Kamboh, 2014). These polymorphisms appear in non-coding regions of 

NEDD9 and CASS4, including transcription factor binding sites and intron splice sites, 

hence it is predicted that these SNPs confer altered (likely reduced) expression of these 

proteins in carrier individuals (Beck et al., 2014). 

Interestingly, both NEDD9 and CASS4 are members of the same Cas-proteins family, 

one which has not previously been linked to AD. That both of these paralogous proteins, 

together with a shared interacting partner in the form of Protein Tyrosine Kinase 2 Beta 

(PTK2B), were identified by multiple groups working independently is intriguing and 

would be expected to generate significant interest. However very few studies have 

focused on NEDD9 or CASS4 involvement in LOAD or its functions in normal brain 

physiology. This may be owed to low frequencies of the risk variants in populations, as 



25 

 

NEDD9 rs760678 occurs with an average frequency of 34% and CASS4 variants are even 

less common with rs7274581 (10%), rs16979934 (5%), and rs6024870 less than 1% 

(Wang et al., 2012, Xing et al., 2011, Laumet et al., 2010, Lin et al., 2017). Although 

more studies are needed, so far, NEDD9 and CASS4 SNPs have been shown to correlate 

with only a low risk of developing LOAD (Chaudhry et al., 2015, Rosenthal et al., 2014, 

Wang et al., 2015) and are less frequently found than other risk variants, such as APOE. 

However, at the beginning of this thesis, the Cas-proteins were the only proteins, 

implicated as LOAD ‘risk genes’, involved in cell morphology and hence of interest in 

the investigation of astrocyte atrophy. 

1.4 Cas-proteins 

The Cas-protein, NEDD9/CasL/Hef1 (Law et al., 1996, Minegishi et al., 1996), 

CASS4/HEPL (Singh et al., 2008), p130Cas/BCAR1 (Sakai et al., 1994) and EFS/Sin 

(Ishino et al., 1995) make up a family of scaffolding proteins and are highly involved in 

signalling pathways, acting as central ‘nodes’ for various processes including cell growth, 

cell survival, migration and adhesion (Beck et al., 2014).  

Although lacking enzymatic activity, Cas-proteins harbour four distinct domains, 

including the SH3 (Src homology 3) which facilitates the binding of protein substrates 

such as the tyrosine kinases protein tyrosine kinase 2 Beta (PTK2B) and focal adhesion 

kinase (FAK), Figure 1.1 (Tikhmyanova et al., 2010). Adjacent to the SH3 domain is a 

highly conserved largely unstructured substrate binding domain containing varying 

numbers of YxxP motifs, which create binding sites upon phosphorylation for partners 

with SH2 domains; predominantly adaptor molecules such as the proto-oncogene Crk 

(Roselli et al., 2010, Sawada et al., 2006), Next is a highly variable four-helix bundle 

which provides further docking sites for other interacting partners such as molecular 

chaperones and signalling adaptor proteins (Briknarova et al., 2005, Vuori et al., 1996). 
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Finally, at the C-terminus is highly conserved and might mediate homo- or 

heterodimerization with other Cas-proteins (Law et al., 1999) and is predicted to mediate 

binding to a raft of other proteins including those containing helix-loop-helix domains 

and E3 ubiquitin ligases (Tikhmyanova et al., 2010, Singh et al., 2007).  

 

Figure 1.1 General structure of the Cas-proteins family members 

All Cas-proteins comprise four distinct similarly structured domains including 

an SH3 domain, unstructured substrate binding domain, four-helix bundle and 

C-terminal domain (A). B indicates where some of the key Cas-proteins 

interacting partners have been found to bind. Note, while CASS4 and NEDD9 

retain this overall domain structure, not all identified binding proteins are 

known to interact with these two family members. (Tikhmyanova et al., 2010) 
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Despite their overall structural similarities, the individual domains do vary somewhat 

between Cas-protein family members and hence so do their ability to bind other proteins. 

Moreover, their varied tissue-specific expression and subcellular localisations suggests 

that each of the Cas-protein may be capable of contributing to distinct cellular processes 

(Law et al., 1996, Singh et al., 2008, Tikhmyanova et al., 2010). 

 

 Neural precursor cell expressed developmentally down-regulated 

protein 9 (NEDD9) 

NEDD9 (also known as HEF1) is abundantly expressed in many tissues (Fashena et al., 

2002, Minegishi et al., 1996, Aquino et al., 2008, Chang et al., 2012), although expression 

levels are thought to vary greatly (Law et al., 1998). NEDD9 (isoform 1) has a molecular 

weight of 93kDa, which occurs as two larger, phosphorylated versions of 105kDa and 

115kDa (Singh et al., 2007) and three cleaved isoforms of the protein 65, 55 and 28kDa 

have been identified and (Law et al., 2000); expression of these isoforms is cell cycle 

dependant (Fashena et al., 2002, Singh et al., 2007). 

Similar to other Cas-proteins, NEDD9 functions as a scaffold protein and regulates the 

assembly of signalling molecules in a number of cellular signalling cascades (Law et al., 

1996, Law et al., 1998, Pugacheva and Golemis, 2005, Manie et al., 1997). Binding 

partners of NEDD9 include kinases, such as aurora kinase A (AURKA), FAK and 

PTK2B; involved in apoptosis, adhesion, invasion and migration (Beck et al., 2014, Singh 

et al., 2007, Tikhmyanova et al., 2010). Kinase activation depends on NEDD9 expression 

levels, which themselves are cell cycle regulated (Law et al., 1998). Increased expression 

leads to phosphorylation of NEDD9 motifs by the proto-oncogene tyrosine-protein 

kinase, Src, to create additional docking sites for SH2 domain-containing partner proteins, 
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such as Crk. This results in the assembly of signalling complexes, capable of structurally 

rearranging the cytoskeleton (Aquino et al., 2008, Deneka et al., 2015, Manie et al., 

1997). Furthermore, believed to be anchored to focal adhesions and the cytoskeleton, 

NEDD9 has been shown to be sensitive to mechanical forces via its C-terminus; exposing 

yet more binding domains in response to cell stretching (Tamada et al., 2004). As such, 

NEDD9 is essential for the maintenance of structural plasticity (Dent, 2017, Haseleu et 

al., 2013) and plays an important role in translating internal and external signals to 

alterations in cellular morphology via regulation of the cytoskeleton (Law et al., 1998). 

Previously believed to be primarily cytoplasmic, NEDD9 is active in several cellular 

compartments (including the nucleus, Golgi and endoplasmic reticulum) and hence plays 

a role in coordinating signalling between them (O'Neill and Golemis, 2001, Singh et al., 

2007, Law et al., 1998). Evidence has been found that NEDD9 is able to couple cell cycle 

regulation to morphological alterations, notably adhesion and migration (Law et al., 1998, 

Dadke et al., 2006, Rousseau et al., 2015). Unsurprisingly therefore, NEDD9 has received 

a great deal of attention in regard to its role in cancer. 

By far the majority of published studies on NEDD9 have centred on its role in the 

progression of various cancers, revealing this Cas-protein to be a major determinant of 

cancer metastasis (Nikonova et al, 2014). Overexpression of NEDD9 has been shown to 

promote cancer cell migration and invasion (Gabbasov et al., 2018, Feng et al., 2015, Li 

et al., 2011, Izumchenko et al., 2009), and induce the growth of cellular processes in 

epithelial-derived cancer cells (Bargon et al., 2005). Related to the brain, NEDD9 has 

been identified as a regulator of invasion in glioblastoma, where a high expression of the 

protein correlates with a decrease in progression-free survival (Speranza et al., 2012). 

Other studies have also confirmed a correlation between high NEDD9 expression and 
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poor survival in glioma and neuroblastoma; whereby NEDD9 depletion decreases cell 

migration (Zhong et al., 2014, McLaughlin et al., 2014, Kondo et al., 2012).  

Outside of cancer, NEDD9 has been shown to regulate neural crest cell migration during 

embryogenesis, a process vital for proper brain development (Aquino et al., 2008, Merrill 

et al., 2004). Additionally, the same study proposed NEDD9 expression as a master 

switch for cell morphology; inducing cell rounding when depleted and elongation when 

highly expressed (Aquino et al., 2008), implicating NEDD9 expression in cell 

morphology. Moreover, via its activation of AURKA, NEDD9 plays a role in both 

centrosome formation and primary cilia disassembly (Pugacheva and Golemis, 2005, 

Pugacheva et al., 2007). Taken together, these studies clearly implicate NEDD9 as a 

major regulator of cell morphology determination. 

 

 Cas Scaffolding Protein Family Member 4 (CASS4) 

CASS4 (also known as HEPL) is the most recent addition to the Cas-proteins family 

(Singh et al., 2008). Sharing some structural homology with its paralogues, its activity is 

believed to be dependent on the presence of other Cas-protein, although this is not yet 

conclusively proven (Deneka et al., 2015). There are three known isoforms of CASS4 

87kDa (isoform 1), 74kDa (isoform 2) and 38kDa (isoform 3). It is not known if highly 

phosphorylated or cleaved isoforms, comparable to paralogue NEDD9, exist or if these 

are also cell cycle related. Very little is known about the biological functions of CASS4, 

but it is assumed to act in a similar manner to its paralogues. As for NEDD9, 

overexpression of CASS4 has been suggested to correlate with tumour severity and poor 

prognosis in cancers, although direct mechanistic studies are lacking (Li et al., 2016, Miao 

et al., 2013). Determination of discrete roles for CASS4 is complicated by the abundant 

cellular expression of other Cas-proteins, such as NEDD9 and BCAR1. Nonetheless, its 
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subcellular localisation implies CASS4 activity at focal adhesions, and interactions 

between CASS4 and FAK and Src kinases have been experimentally confirmed, despite 

CASS4 lacking a common site found in other Cas-proteins which facilitates Src binding 

(Hassan et al., 2018, Singh et al., 2008, Tikhmyanova et al., 2010). Furthermore, 

overexpression of CASS4 has been demonstrated to be sufficient to induce FAK 

phosphorylation, leading to cell spreading, albeit to a lesser degree than for NEDD9 (Li 

et al., 2016, Singh et al., 2008). Interestingly, CASS4 exerted a bimodal effect on cell 

migration; enhancing migration in a subset of cells, while impeding it in another. While 

the reason for this has not been explored, it may suggest that CASS4’s effects might 

depend upon the relative amounts of other Cas-proteins in each cell, further supporting 

the idea of cell type-specific roles. 

During the initial identification of CASS4, real-time PCR (RT-PCR) revealed high 

expression of CASS4 mRNA in spleen and lungs as well as in leukaemia and ovarian 

cancer cells (Singh et al., 2008). CASS4 mRNA expression, and particularly the protein 

expression has since been described in other tissues, including neuronal cells in the 

cerebral cortex and hippocampus (Kim et al., 2014) and in microglia (Skene and Grant, 

2016). Notwithstanding, a lack of basic knowledge regarding CASS4 tissue expression 

levels remains.  

 

 NEDD9 and CASS4 in Alzheimer’s disease 

Although a recent study employing the expression weighted cell-type enrichment method, 

found that CASS4 was the only protein with a lower expression in glial cells than 

expected in AD brain samples (Skene and Grant, 2016), there is no empirical data to 

confirm the expression levels of CASS4 in glial cells in LOAD.  
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CASS4 has been implicated as a modulator of tau in a drosophila model (Dourlen et al., 

2016) and meta-analysis of neuropathologic features of AD found CASS4 to be 

associated with tau neurofibrillary tangles in brains with AD (Beecham et al., 2014), 

which was confirmed in a population study of 601 participants (Makela et al., 2018).  

One recent study investigated the effect of NEDD9 on brain function using NEDD9 

knock-out mice (Knutson et al., 2016). These mice suffer extensive dendritic spine loss 

in the dentate gyrus and CA1 regions of the hippocampus and hence display significant 

deficits in learning ability in the Morris water maze test, mimicking some of the deficits 

usually seen in AD transgenic mouse models (Martinez-Coria et al., 2015, Stimmell et 

al., 2019). The study concluded that NEDD9 is essential for hippocampal spine 

maintenance, a role which is heavily influenced by astrocytes. 

Very few studies have explored the role of NEDD9 and CASS4 in LOAD and there is no 

knowledge of the Cas-protein expression or role in astrocytes. This thesis is the first 

attempt to establish NEDD9 and CASS4 expression in astrocytes, to identify a possible 

role of the proteins in cell morphology and how the risk variants may contribute to LOAD 

pathology. 

 

1.5 Astrocytes 

Astrocytes (also known as astroglia) are among the most heterogenous cells in the human 

brain. This subset of glial cells has several roles in the central nervous system (CNS). 

Astrocytes are critical during development, as they modulate synapse formation (Casse 

et al., 2018). These cells continue to support, maintain and influence synaptic function 

(Fields et al., 2015, Nishida and Okabe, 2007), they enwrap pre- and postsynaptic 

membranes, building a functional unit termed the tripartite synapse (Perrera et al., 2009), 
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which permits control of homeostasis in the neural tissue (Mohamet et al., 2018). 

Furthermore, these cells are part of the glymphatic pathway via the astrocyte endfeet, a 

connection to the vascular system, allowing transport and clearance of metabolites 

(Bushong et al., 2004, Perez-Alvarez et al., 2014, Nedergaard et al., 2002, Iadecola and 

Nedergaard, 2007); astrocyte endfeet are an integral part of the blood brain barrier (BBB). 

On the whole, astrocytes are essential for the proper functioning of neurones, are 

fundamental to memory formation and are crucial components in the adaptive plasticity 

of the CNS (Verkhratsky and Nedergaard, 2018).  

 Astrocyte morphology 

As the name suggests, astrocyte morphology is roughly stellate, typically consisting of a 

cell body with numerous, often branching, processes. As recognised by Ramón y Cajal 

over 100 years ago, astroglial morphologies are highly varied (Garcia-Lopez et al., 2010). 

These morphologies roughly correlate with neuroanatomical location and specific 

functions (Parpura et al., 2012, Zorec et al., 2015). Astrocytes can be generally 

categorised into the protoplasmic of the grey matter (Figure 1.3, A), which possess 

thicker, defined processes splitting into finer branches; and fibrous astrocytes of the white 

matter (Figure 1.3, B), morphologically differing by copious fibrous processes 

(Rodriguez et al., 2009, Sofroniew and Vinters, 2010). Additionally, several subtypes of 

the above have been identified, including interlaminar astrocytes (Colombo and Reisin, 

2004), varicose projection astroglia (Oberheim et al., 2009), Bergmann glia and Mϋller 

glia (Eroglu and Barres, 2010). It is generally accepted that further subpopulations of 

astrocytes are yet to be defined and likely play diverse roles in health and disease (Miller, 

2018). 
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Figure 1.2 Diagram showing gross morphologies of protoplasmic (A) and fibrous (B) 

astrocytes 

(Adapted from Carson et al., 2018) 
 

 

 Astrocyte function 

The unique morphology of astrocytes is integral to abundant functions in the central 

nervous system (CNS). Numerous processes allow them to form gap junctions with other 

astrocytes and connect to the vascular system via endfeet (Bushong et al., 2004, Perez-

Alvarez et al., 2014, Nedergaard et al., 2002, Iadecola and Nedergaard, 2007), permitting 

transport, clearance and release of ions, hormones, neuromodulators, metabolites and 

neurotransmitters, such as GABA, glutamate and D-serine (Cheung et al., 2015, 

Martineau et al., 2014, Parpura et al., 2012). This exchange, release and uptake of 

molecules is regulated via numerous transporters and by exocytosis (Parpura et al., 2012, 

Lalo et al., 2011, Walz, 2000). Importantly, astroglia have been shown to modulate 

synaptic function and plasticity by stimulating synaptogenesis and altering the structural 

characteristics of dendritic spines, including the stabilisation of individual dendritic 

protrusions and subsequent maturation into spines (Fields et al., 2015, Nishida and 
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Okabe, 2007). The above is dependent on the ability of astrocyte processes to directly 

contact synapses, coupling morphology to function (Hama et al., 2004). Hence, astrocyte 

processes are structurally interwoven with the pre- and post-synaptic membranes, 

forming a functional unit known as the tripartite synapse, Figure 1.3 (Perea et al., 2009). 

 

 

Figure 1.3 Scheme of the tripartite synapse 

Figure representing the transfer of information between neuronal elements and 

astrocyte at the tripartite synapse. (Perea et al., 2009) 

 

 

Despite some original scepticism within the research community, numerous studies have 

now shown that astrocytes actively influence synaptic activity (Baldwin and Eroglu, 

2018, Santello et al., 2019, Perez-Alvarez et al., 2014, Zorec et al., 2015). Astrocytes 

support and maintain the synaptic plasticity required for learning and memory formation 
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(Zovkic et al., 2013, Alberini et al., 2018). To fulfil synaptic requirements, astrocytes 

exhibit enormous structural plasticity, allowing these cells to remodel processes (Perez-

Alvarez et al., 2014). Such structural plasticity requires intracellular signalling inducing 

extensive cytoskeletal rearrangement (Bernardinelli et al., 2014, Heller and Rusakov, 

2015). 

 

 Astrocytes in Alzheimer’s disease 

Although astrocyte pathologies have long been ignored, aberrant astrocyte morphology 

and function have been reported for several neurological disorders, such as Amyotrophic 

Lateral Sclerosis, Parkinson’s disease and AD (Robinson et al., 2016, Pehar et al., 2017, 

Kohutnicka et al., 1998, Verkhratsky et al., 2014). Neurons are more susceptible to injury 

and rely on astroglial protection (Verkhratsky and Nedergaard, 2018), highlighting the 

importance of astrocytes in neurological disorders. As with healthy astrocytes, 

astrogliopathologies are equally as hetereogeneous and complex and astrocytes contribute 

to neurological diseases in several different ways. 

Pathological changes of astrocytes include remodelling, atrophy and hypertrophy 

(Verkhratsky et al., 2017). Hypertrophic astrocytes are characterised by enlarged somata 

and thicker membrane processes, which coincide with an upregulation of GFAP and 

vimentin (Pekny and Pekna, 2014, Zhang et al., 2017). Hypertrophic astrocytes are 

inherent to reactive astrogliosis and a direct consequence of brain injury (Schiweck et al., 

2018). Astrogliosis is scar forming defence mechanism to confine the affected area, 

increase neuroprotection and aid lesion regeneration (Pekny et al., 2016). Inhibition of 

pathways, triggering astrogliosis, such as the Signal transducer and activator of 

transcription 3 (STAT3) pathway, including downstream pro-inflammatory messengers 

such as interleukin 6 (IL6) or Leukaemia inhibitory factor (LIF), has been shown to result 
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in larger lesions (Herman et al., 2008, Sriram et al., 2004), indicating a neuroprotective 

role for astrogliosis. But reactive astrocytes have also been shown to lead to neurotoxicity 

after prolonged damage (Pekny and Pekna, 2014) as they show varying characteristics in 

different disorders (Matias et al., 2019). In neurodegenerative disorders, they are induced 

by microglia (Liddelow et al., 2017), suggesting that reactive/hypertrophic astrocytes are 

not a single manifestation, but rather a group of manifestations with differing roles, 

dependent on the cause of activation.  

In AD, hypertrophic astrocytes have been found in in vitro studies, human post-mortem 

brain samples and in animal models, such as the triple transgenic mouse model of AD 

(3xTg-AD), which contains three mutations associated with familial Alzheimer's disease 

(Olabarria et al., 2010, Verkhratsky et al., 2016, Vijayan et al., 1991, Perez-Nievas and 

Serrano-Pozo, 2018). In AD, hypertrophy/reactivity of astrocytes, believed to be induced 

by activated microglia in response to the presence of amyloid β plaques (Abramov et al., 

2003, Grolla et al., 2013). It is unclear how these astrocytes contribute to synaptic loss 

(Lidelow et al., 2017) but disruption of astrocyte calcium and glutamate signalling by 

amyloid plaques may play a role (Vincent et al., 2010). A similar mechanism of reactive 

astrocytes is also indicated in Parkinson’s disease, where accumulation of α-synuclein 

disrupts astrocyte glutamate transport (Gu et al., 2010) and Amyotrophic Lateral 

Syndrome (ALS), where aberrant glutamate signalling leads to cell death (Martorana et 

al., 2012). Astrogliosis being a robust hallmark of several neurodegenerative disorders, 

highly hypertrophic astrocytes manifest during the later, symptomatic stages of AD 

(Olabarria et al., 2010, Rodriguez-Arellano et al., 2016, Vijayan et al., 1991, Heneka et 

al., 2015).  

Recent studies focus on the presence of atrophic astrocytes in AD, as these have been 

shown to accumulate in amyloid plaques-free areas and prior to neurodegeneration 
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(Kulijewicz-Nawrot et al., 2012, Olabarria et al., 2010, Yeh et al., 2011) but have also 

been shown to be induced by intracerebral injection with Aβ oligomers in mice (Diniz et 

al., 2017). Astrocyte atrophy manifests during the early stages of AD, as found in the 

3xTg-AD mouse model, PDAPP-J20 transgenic mice (Pomilio et al., 2016, Kulijewicz-

Nawrot et al., 2012, Olabarria et al., 2010, Yeh et al., 2011). Most recently, AD-

associated astrocyte atrophy has been demonstrated in human induced pluripotent stem 

cell (iPSC)-derived astrocytes from both EOAD and LOAD patients (Jones et al., 2017), 

which revealed the same phenotypic changes in both forms of the disease. Atrophic 

astrocytes are characterised by reduced somata volumes and process shrinkage 

(Verkhratsky et al., 2010). What exactly leads to this aberrant astrocyte morphology 

remains unknown. As atrophic astrocytes present with a decreased level of glial fibrillary 

acidic protein (GFAP), as well as other cytoskeletal proteins (Jones et al., 2017, Olabarria 

et al., 2010, Rodriguez-Arellano et al., 2016), mechanisms involved in cytoskeletal 

structure and motility may be affected in AD. It remains unknown if atrophic astrocytes 

become hypertrophic during later stages of the disease, if either are brain region 

dependent or whether there is a relationship between hypertrophic and atrophic astrocytes 

at all; hypertrophic and atrophic astrocytes may well be completely independent 

manifestations in the AD brain. It could be hypothesised, that atrophic astrocytes become 

reactive/hypertrophic due to β-amyloid plaques, as atrophic cells lose functions and may 

thus be unable to deal with the plaque burden. Furthermore, the loss of membrane 

processes, as described by Jones et al. (2017) would suggest that these astrocytes are 

unable to retain contact with synapses, leading to loss of homeostasis and ultimately loss 

of these synapses. However, this remains speculative and requires more research as no 

study to date has revealed mechanisms leading to astrocyte atrophy or determined 

functional consequences. 
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As proper morphology is vital to astrocyte function, astrocyte dystrophy coincides with 

aberrant cell function. A study of AD animal models has identified dynamics of astroglial 

functional marker profiles during different stages of AD (3, 9, 18 and 24 months disease 

development). This study employed assessment of GFAP (intermediate filament, 

primarily expressed in astrocytes), glutamine synthetase (enzyme responsible for 

metabolic regulation of glutamate) and S100 calcium-binding protein B (s100β), in 

atrophic astrocytes, which were found to be distinctively expressed during different stages 

of the disease (Rodriguez et al., 2014). This appeared to be region-dependent; as atrophy 

appeared first (at 1 month of age) in the entorhinal cortex, around 6 months of age in the 

prefrontal cortex and ~12 months of age in the hippocampus, implicating how astrocyte 

morphology and function changes during disease development. Furthermore, a recent 

study by Jones et al. (2017), also established a change of key markers in iPSC derived 

astrocytes from AD patients, detecting decreased GFAP, glutamate transporters and GS 

in the iPSC astrocytes. Altered expression of key markers in AD astrocytes implicate 

aberrant function, which is particularly interesting as the iPSC astrocytes were 

investigated in an autonomous culture, hence free of any environmental influences, such 

as dysfunctional neurons or aberrant proteins. As these astrocytes showed aberrant 

morphology, a change in cytoskeletal proteins, such as GFAP, is a likely consequence. 

The decrease in glutamate transporters and GS indicates that these cells may have lost 

their ability to maintain glutamate homeostasis, which could lead to neurotoxicity and 

subsequently loss of synapses.  

A known altered function in astrocytes is abnormal calcium signalling (Abramov et al., 

2003, Grolla et al., 2013, Rodriguez-Arellano et al., 2016). Conflicting studies argue that 

abnormal Aβ is the cause of aberrant calcium signalling in astroglia (Alberdi et al., 2013, 

Abramov et al., 2003, González-Reyes et al., 2017), yet others report no effect (Casley et 
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al., 2009, Toivari et al., 2011). To date, nothing is known about the cause of aberrant 

calcium signalling in atrophic astrocytes, found during early stages of AD development. 

The aforementioned iPSC study also found that the calcium binding protein100β was not 

only reduced, but mislocated to the nucleus. Why or how such mislocation occurs and 

whether it is cause or effect of aberrant calcium signalling, remains to be fully elucidated 

and highlights how much about AD aetiology is yet to be discovered. The findings of 

Jones et al. (2017) provide a new role of astrocytes in AD. Identifying the underlying 

mechanisms leading to this manifestation could lead to the discovery of new therapeutic 

targets in the early stages of AD, prior to cognitive decline. This thesis proposes a possible 

mechanism leading to atrophic astrocytes.  

 

1.6 Aims and objectives 

This thesis aims to explore if altered expression of the Cas-proteins leads to AD-

associated aberrant morphology and function of astrocytes, predicated on a number of 

lines of evidence: 

• GWAS has identified both NEDD9 and CASS4 as risk factors for AD. 

• Although less frequent than other risk factors, NEDD9 and CASS4 are the only 

LOAD risk factors involved in cytoskeletal arrangement and thus morphology. 

• CASS4 and NEDD9 have both been shown to have roles in the control of cellular 

morphology and during preliminary experiments, it was found overexpression of 

both NEDD9 and CASS4 induced morphological changes in epithelial cells, 

including the generation of cellular processes atypical for this cell type 

(Ulzheimer and Jones, 2016; unpublished data), further confirming the impact of 
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Cas-protein expression on morphological changes and hence a possible role in 

aberrant astrocyte morphology in AD. 

• Astrocytic atrophy and process loss are early factors of AD pathology, exhibiting 

reduced cell size and loss of processes. This likely impairs the ability to support 

neurones and maintain synapses. The cause is unknown. 

• NEDD9 knockout mice display extensive hippocampal dendritic spine loss, 

suggesting that downregulation of the Cas-protein may also cause atrophy in 

astrocytes and hence play a part in AD.  

 

Specific objectives 

The overarching aim of this thesis is to find a therapeutic way of reverting atrophic 

astrocytes to a healthy phenotype. In order to achieve this, first, the unknown mechanisms 

leading to atrophy must be unearthed.   

Based on the above, the specific objectives of this thesis are as follows: 

1. To test if NEDD9 and CASS4 are expressed in normal human cortical astrocytes, 

glial cell lines using immunofluorescence and western blotting. As NEDD9 and 

CASS4 expression has not been tested in astrocytes to date, this thesis aims to 

establish robust expression of the proteins in the glial cells. 

2. To establish expression of NEDD9 and CASS4 in the adult brain. Although the 

Cas-proteins have been identified as LOAD risk genes, which signifies expression 

in the adult brain, previous studies had recorded low or no expression in the adult 

brain. As primary human astrocytes are foetal and human brain tissue was not 
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available for this thesis, expression of NEDD9 and CASS4 will be tested in adult 

mouse brain tissue to further validate this model. 

3. Construct overexpression and knock-down in vitro models of both NEDD9 and 

CASS4 in normal human astrocytes via transient transfection of CMV-driven 

plasmids for overexpression or siRNA-encoding plasmids for knock-down of the 

genes. Overexpression and knock-down will be validated via 

immunocytochemistry (measuring fluorescence intensity) and western blotting, 

followed by densitometry analysis. These models will be the foundation for the 

investigation into the effect of altered expression on astrocyte morphology and 

function. 

4. Investigate if altered expression of NEDD9 or CASS4 affects astrocyte 

morphology. This will be assessed via visual analysis (deconvolution microscopy) 

categorising of cell morphology to evaluate the distribution of morphologies 

under different transfection conditions. Additionally, 3D isoSurface renders of 

confocal Z-stacks will be constructed for morphometric quantitative analysis. This 

will establish how overexpression or downregulation of the Cas-proteins will 

affect astrocyte morphology and if these changes are implicated in LOAD 

pathology. 

5. Investigate whether altered expression of NEDD9 or CASS4 might affect 

astrocyte function. This will be assessed by immunostaining for astrocyte 

functional markers (GFAP, s100B, EAAT2, Actin, Tubulin), followed by 

comparison of fluorescence intensity under different transfection conditions and 

visual inspection of marker subcellular localisation. This will be the first step in 

functional assessment of the NEDD9/CASS4 overexpression and knockdown 
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models and give an indication of how the Cas-proteins may be involved altered 

astrocyte function in LOAD. 
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2 Chapter 2 – Materials and Method 

2.1 Materials 

Unless otherwise stated, all laboratory reagents were purchased from Fisher Scientific 

(Loughborough, UK). All solutions were made up with de-ionised water (dH2O).  

 

 Plasmids  

The pcEGFP-C1 expression vector was obtained from Clontech laboratories (Saint-

Germain-en-Laye, France). NEDD9 Lentiviral Vector (pLenti-GIII-CMV-GFP-2A-

Puro), CASS4 Lentiviral Vector (pLenti-GIII-CMV-GFP-2A-Puro), CASS4 set 

siRNA/shRNA/RNAi Lentivector, NEDD9 set siRNA/shRNA/RNAi Lentivector, 

Scrambled siRNA control vector and blank control vector were sourced from Applied 

Biological Materials Inc (Richmond, BC, Canada). Descriptions of the gene of interest 

encoded in each plasmid, tags and abbreviated names used throughout this thesis may be 

found in Table 2.1. A generic plasmid map for the pLenti-GIII-CMV-GFP-2A-Puro 

lentiviral expression vector backbone is outlined in Figure 2.1. 
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Table 2.1 Plasmids  

Official name Encoded 

Gene 

Description Tag Abbreviation 

pEGFP-C1 EGFP Induce expression of 

EGFP via CMV 

promoter 

EGFP (N-

terminal) 

GFP plasmid 

CASS4 Lentiviral Vector 

(Human) (CMV) (pLenti-

GIII-CMV-GFP-2A-Puro) 

CASS4 Induce 

overexpression of 

CASS4 via CMV 

promoter 

CopGFP CASS4 LV-

CMV 

NEDD9 Lentiviral Vector 

(Human) (CMV) (pLenti-

GIII-CMV-GFP-2A-Puro) 

NEDD9 Induce 

overexpression of 

NEDD9 via CMV 

promoter 

CopGFP NEDD9 LV-

CMV 

Blank pLenti-GIII-CMV-

GFP-2A-Puro 

Empty Blank vector control. 

Induce expression of 

CopGFP only via 

CMV promoter 

CopGFP Blank vector 

CASS4-set 

siRNA/shRNA/RNAi 

Lentivector (Human) 

siRNA 

against 

CASS4 

Knock down of 

CASS4 expression 

CopGFP CASS4 

siRNA 

NEDD9-set 

siRNA/shRNA/RNAi 

Lentivector (Human) 

siRNA 

against 

NEDD9 

Knock down of 

NEDD9 expression 

CopGFP NEDD9 

siRNA 

Scrambled siRNA GFP 

Lentivirus 

Scrambled 

siRNA 

Knock down control CopGFP Scramble  
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Figure 2.1 pLenti-CMV-GFP-2A-Puro-Blank plasmid map 

Vector map (Applied Biological Materials Inc); www.abmgood.com 

 
 

 

 

 Cell culture reagents 

The SVG p12 human foetal astrocyte cell line and the HeLa human epithelial cervical 

adenocarcinoma cell line were obtained from ATCC (Manassas, USA), while the 1321N1 

human astrocytoma cell line was obtained from European Collection of Authenticated 

Cell Cultures (Porton Down, UK). Normal human astrocytes (NHA) cells from three 

separate male donors were purchased from LONZA (Slough, UK). 

Media, cell culture reagents and supplements for cell lines were purchased from Fisher 

Scientific (Loughborough, UK). Media for primary cells (NHA) were purchased from 

Fisher Scientific (Loughborough, UK), while cell culture reagents and supplements for 

NHA culture (trypsin EDTA and trypsin neutralising solution) were purchased from 

LONZA (Slough, UK).  

Phosphate buffered saline (PBS) was made with 10 mM phosphate, 137 mM NaCl, 2.7 

mM KCl, the pH was adjusted to 7.4. 
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 SDS-PAGE and Western blotting buffers 

RIPA buffer was prepared containing 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.5 % 

(w/v) sodiumdeoxycholate and 1 % (v/v) Triton X-100. Prior to use, Halt™ Protease 

Inhibitor Cocktail was added. 

Laemmli buffer was prepared containing 125 mM Tris-HCl, 4 % (v/v) SDS, 10 % (v/v) 

mercaptoethanol, 20 % (v/v) Glycerol and 0.004 % (w/v) bromophenol blue. The pH was 

adjusted to 6.8.  

SDS-PAGE running buffer was prepared containg 25 mM Tris base, 190 mM glycine and 

0.1 % (v/v) sodium dodecyl sulphate (SDS), aiming for a pH of 8.3.  

Western blot transfer buffer was prepared containing 2.5 mM Tris base and 19 mM 

glycine. Prior to use 20 % (v/v) methanol was added to the buffer. 

TBS-T was prepared containing 20 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.1 % (v/v) 

Tween®. 

Blocking buffer was made fresh with TBS-T, containing 5 % (w/v) non-fat dry milk 

powder. 
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 Antibodies 

Primary and secondary antibodies used for immunocytochemistry (ICC) or Western blot 

(WB) are listed in Table 2.2, together with working dilution factors and sources. 

Table 2.2 Primary and scondary antibodies 

Target Species Isotype Clone Dilution Source 

CASS4 Rabbit IgG mono 1:100 (ICC), 

1:1000 (WB) 

Abcam, 

Cambridge, UK 

NEDD9 Mouse IgG1 mono 1:100 (ICC), 

1:1000 (WB) 

Abcam, 

Cambridge, UK 

GFAP Rabbit IgG poly 1:250 (ICC), 

1:5000 (WB) 

Sigma Aldrich, 

Irvine, UK 

β actin Mouse IgG1 mono 1:250 (ICC), 

1:5000 (WB) 

Abcam, 

Cambridge, UK 

α tubulin Rabbit IgG mono 1:250 (ICC), 

1:5000 (WB) 

Abcam, 

Cambridge, UK 

EAAT1 Rabbit IgG Poly 1:250 (ICC), 

1:5000 (WB) 

Abcam, 

Cambridge, UK 

S100B Rabbit IgG Mono 1:250 (ICC), 

1:5000 (WB) 

Abcam, 

Cambridge, UK 

Alexa Fluor 

555 

Goat IgG _ 1:500 (ICC) Abcam, 

Cambridge, UK 

Alexa Fluor 

555 

Goat IgG _ 1:500 (ICC) Abcam, 

Cambridge, UK 



49 

 

Anti-Mouse 

IgG H&L 

(HRP) 

Rabbit IgG Poly 1:5000 (WB) Abcam, 

Cambridge, UK 

Anti-Mouse 

IgG H&L 

(HRP) 

Goat IgG Poly 1:5000 (WB) Abcam, 

Cambridge, UK 

 

 

 

2.2 Molecular Biology 

 Bacterial work 

Aseptic technique was adhered to at all times when working with bacteria and when 

preparing any reagents or growth media for use with bacteria. 

 Lysogeny broth 

Lysogeny broth (LB) was prepared by adding Miller’s LB base powder to de-ionised 

water at a final concentration of 20 g/L and autoclaved. The sterile broth was then stored 

in sealed bottles at room temperature. Antibiotics were added to the broth immediately 

prior to use. 

 Agar plates 

LB agar plates were prepared as follows; 32 g/L of LB agar powder was added to de-

ionised water and autoclaved. When the agar solution was hand-hot, antibiotics were 

added and the mixed solution poured into 10cm petri dishes and allowed to set. After 
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setting, the agar plates were dried in a 37 °C oven and stored upside-down at 4 °C until 

use. 

 Super optimal broth with catabolite repression 

Super optimal broth with catabolite repression (SOC) consisted of LB broth 

supplemented with 2.5 mM KCl, 10 mM MgCl2.6H2O and 20 mM glucose. Supplements 

were filtered with 0.22 µm filter into autoclaved LB broth to avoid glucose burning. 

 Antibiotics 

Antibiotics were used where appropriate to select for transformed bacteria. All constructs 

used in this thesis contained kanamycin resistance genes. Hence, kanamycin sulphate 

(Sigma Aldrich, Gilingham, UK) was added to growth media where required at a 

concentration of 50 µg/ml. 

 Bacterial transformations 

Plasmids were amplified by transformation of STBL3 competent E.coli cells, obtained 

from Thermo Fisher, Altrincham, UK. Competent E.coli (50µl) were thawed on ice and 

100 ng of plasmid DNA was gently added. Following gentle swirling, the mixture 

incubated on ice for 30 minutes. The mixture was then heat-shocked for exactly two 

minutes at 42 °C before being placed on ice for a further two minutes to restore the cell 

membrane. 250 µl of warm SOC medium was added and the transformation mixture 

incubated at 37 °C, shaking at 225rpm for a minimum of one hour for recovery. 50-100 

µl of transformed cells were spread on agar plates, containing 50 µg/ml kanamycin. Plates 

were sealed with para-film and incubated upside-down overnight at 37 °C. 

 Plasmid purification 

In preparation for plasmid maxi-preps, single bacterial colonies were picked from fresh 

agar plates and added to 200 ml LB broth, containing 50µg/ml kanamycin. Each broth 
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was incubated at 37°C in a shaker (200-250rpm) for 24 hours. Plasmids were extracted 

from these overnight cultures using Hi-speed plasmid maxiprep kits (Qiagen, Crawley, 

UK) as per the manufacturer’s instructions. Such preparations provided, typically, 900 µl 

of plasmid DNA solution at a concentration of 150-1000 ng/µl. 

 Measuring DNA concentrations 

The concentration of purified DNA was determined using a NanoDrop ND-1000 

spectrophotometer (Labtech International Ltd., Ringmer, UK). Absorbance was measured 

at 260nm (A260) and concentration was estimated based upon an A260 of 1.0 being 

equivalent to 50 µg/ml double-stranded DNA. A260/280 ratios were also calculated to 

determine DNA purity, with ratios of >1.8 being deemed acceptable for transfections. 

2.3 Mammalian cell culture 

Expression of NEDD9 and CASS4 has not been confirmed in astrocytes. To establish 

which cell line expresses the proteins and would be best suited as a model for this thesis, 

several astrocyte cell lines were used. Expression of the Cas-proteins had been confirmed 

in cervical cancer, HeLa cells were thus used as positive control. 

 Cell culture 

The SVGp12 (human foetal astrocytes) and HeLa (human epithelial cervical 

adenocarcinoma) cell lines were maintained in Eagle's minimal essential medium, 

supplemented with 10 % (v/v) Foetal Bovine Serum (FBS), 2 mM L-glutamine, 1 % (v/v) 

non-essential amino acids (NEAA), 1 mM sodium pyruvate and 1 % (v/v) 

penicillin/streptomycin. 1321N1 cells were maintained in Dulbecco’s Modified Eagle’s 

Medium, plus 10 % (v/v) FBS, 2 mM L-glutamine and 1 % (v/v) penicillin/streptomycin. 

All cell lines were incubated in a humidified incubator at 37 °C with 5 % CO2. Cells were 

grown in tissue culture-treated vented T75 culture flasks (ThermoFisher, Altrincham, 
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UK) and passaged at 80 % confluency (approximately twice weekly). Cells were rinsed 

with PBS to remove excess medium before the addition of 2 ml 1 % (v/v) trypsin in PBS. 

The flask was returned to the incubator for sufficient time for cells to begin to detach 

from the flasks (as determined by viewing down a tissue culture microscope). Trypsin 

activity was immediately quenched by the addition of 20 ml fresh complete culture 

medium. The cell/medium mix was centrifuged at 800 xg for 5 minutes to gently pellet 

cells. The supernatant was carefully discarded and the pellet gently re-suspended in fresh 

warm culture medium, prior to re-seeding into T75 flasks at a cell-appropriate density. 

Typically, 1:4 to 1:6 seeding ratios were appropriate for all cell lines to reach 80 % 

confluency in 3-4 days. Cell lines were only utilised up to a maximum number of 20 

passages. 

 Primary cell culture 

Normal (cortical) human astrocytes, obtained from LONZA (Slough, UK), were 

maintained in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (1:1), 

supplemented with 10 % (v/v) FBS and 2 mM L-glutamine. Culture medium was 

exchanged every other day and the volume increased as cells became more confluent. 

Cells were initially resurrected into T25 flasks until good growth was established, and 

thereafter grown in T75 flasks. Flasks were incubated with 5% CO2 in a humidified 

incubator at 37 °C and passaged when a confluency of 80 % was reached – typically once 

every two weeks. Cells were detached from flasks using 0.25 % (w/v) trypsin and 1 mM 

EDTA in Hank’s buffered saline solution, quenched with trypsin neutralising solution 

and centrifuged at 800 xg for 4 minutes. Supernatants were discarded and cells gently re-

suspended in fresh warm culture medium, counted and reseeded in T75 flasks at a seeding 

density of 5000 cells/cm2. Cell lines were only utilised up to a maximum number of 5 

passages.  
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 Transfections and puromycin selection 

Prior to transfection, cells were seeded directly onto sterile No. 1.5 glass cover slips 

(Scientific Laboratory Supplies Limited, Nottingham, UK) in 24-well tissue culture plates 

(Thermo Fisher, Altrincham, UK) and incubated at 37 °C for a minimum of 24 hours, 

until a confluency of 60-70 % was reached. Culture medium was exchanged on the 

morning of transfection. Transfection was achieved using the Lipofectamine™ 3000 

Transfection Reagent (Thermo Fisher, Altrincham, UK) for all plasmids at optimised 

concentrations, based on manufacturer’s guidelines. Culture medium was exchanged 6 

hours after transfection to avoid DNA-reagent complex-induced toxicity. pEGFP-C1, 

blank vector or scramble vector were used as positive transfection controls in all cases. 

Negative controls included non-transfected and Lipofectamine-only (no DNA) cells. 

Population enrichment for Western blotting was achieved by adding 5µg/ml puromycin 

to the cell growth medium 24 hours after transfection. The optimal concentration for 

puromycin selection was established with a puromycin kill curve experiment, whereby 

varying concentrations of puromycin (1-5µg/ml) were added to cells, followed by cell 

counts at 24, 48 and 72 hours to establish cell viability. Knock-down was achieved 48 

hours post transfection, but cells would detach by 72 hours; hence the ideal concentration 

would require sufficient enrichment of transfected cell populations sufficiently, 24 hours 

after supplementing medium with puromycin (48 hours post transfection). Non-

transfected cell numbers were sufficiently and consistently reduced with 5µg/ml 

puromycin after 24 hours, to validate knock-down via Western blotting. 

Transfection efficiency was established by counting GFP+ cells in >10 random fields of 

view in comparison to total cell numbers (DAPI channel), enabling calculation of 



54 

 

transfection efficiency percentage. This experiment was repeated with cells from three 

donors with three repeats within each experiment.  

2.4 Fixation and Immunocytochemistry 

Mammalian cells grown on coverslips were washed twice in PBS prior to fixation with 4 

% (v/v) formaldehyde in PBS for 10 minutes. Cells were then treated with 0.1 M glycine 

in PBS to quench formaldehyde cross-linking and permeabilised with 0.1% (v/v) Triton 

X-100 in PBS. Cells were blocked for 1 hour at 4 °C with 1 % (w/v) bovine serum albumin 

diluted in PBS (“blocking solution”) to prevent non-specific antibody binding. All 

antibodies were diluted in blocking solution. Primary antibodies were either applied for 

1 hour at room temperature or incubated at 4˚C overnight (for anti-NEDD9 and anti-

CASS4), as appropriate. In either case, coverslips were placed cell side-down onto a 50 

µl drop of diluted antibody placed on parafilm in a home-made humidity chamber. 

Subsequently coverslips were washed in excess PBS and a mixed solution of the 

appropriate fluorophone-conjugated secondary antibody diluted in PBS also containing 

0.1 µg/ml 4',6-diamidino-2-phenylindole (DAPI) was applied and incubated for 30 

minutes at room temperature in the dark. Immunostained cells were mounted onto glass 

microscope slides with ProLong Diamond mountant (Thermo Fisher, Altrincham, UK) 

and cured overnight at room temperature prior to being sealed with nail varnish. 

2.5 Cell fixation for flow cytometry 

Cells were fixed in solution with 4% (v/v) formaldehyde in PBS as described above. Cells 

were centrifuged at 800 xg for 5 minutes in between each step. Cell pellet was 

resuspended in primary antibody diluted 1 % (w/v) bovine serum albumin (in PBS) and 

incubated at 4˚C overnight. Cells were washed with PBS and centrifuged at 800 xg for 5 

minutes, followed by incubation with a secondary antibody, diluted in 1 % (w/v) bovine 
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serum albumin (in PBS), for one hour at room temperature. Cells were washed and 

centrifuged once more and stored in PBS at 4˚C until use (maximum of 24 hours). 

2.6 Mouse brain tissue 

Despite being identified as LOAD ‘risk genes’, NEDD9 and CASS4 expression had 

previously been questioned in the adult brain. Wild type adult mouse brain tissue was 

used to confirm NEDD9 and CASS4 expression in the adult brain, as human brain tissue 

was unavailable for this thesis. 

All mouse brain tissues were obtained for secondary use from Dr Donna Daly (University 

of Central Lancashire) and in accordance with local ethical approvals. Male C57BL/6 

wildtype mice were purchased from Charles River (Harlow, UK) and sacrificed aged 24 

weeks under Schedule 1 of the Animals (Scientific Procedures) Act 1986. Mouse brain 

tissues were excised and entorhinal cortices were flash frozen on dry ice by Mr Atte 

Räsänen (University of Central Lancashire). Brain tissue was lysed with CelLytic M 

(Sigma Aldrich, Gilingham, UK) according to manufacturer’s guidelines and stored at -

20 °C until use. 

 

2.7 Fluorescence microscopy and flow cytometry 

 Deconvolution microscopy 

Initial visualisation of immunofluorescently stained cells, morphological binning (see 

morphological analysis, Table 2.3) and transfection efficiency calculations were 

undertaken using a Zeiss cell observer Axio Z1 system, equipped with a colibri LED light 

source (25% intensity), AxioCam and ZEN software (Carl Zeiss, Cambridge, UK). Cells 

were visualised using 20x PL Apo (0.8 NA), 40x LD Plan-Neofluar (0.6 NA) and 63x PL 

Apo (1.4 NA) oil objectives and GFP/dsRed/DAPI filter sets. All images were taken with 
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the same exposure time (DAPI: 63 msec; GFP: 400 msec; dsRED: 800 msec). 

Deconvolution of images was carried out using the constrained iterative method with a 

maximum of 10 iterations. Total and GFP+ cells were counted from a minimum of 5 

fields of view at 20x magnification per coverslip to estimate mean transfection 

efficiencies.  

 

 Confocal microscopy 

Individual cell images for later morphometric analysis were collected on a Leica TCS 

SP8 AOBS inverted confocal microscope using a 100x Plan Fluotar (1.40 NA) objective 

and Hybrid photon detectors. Images were collected using the following detection mirror 

settings; DAPI 400-460 nm; Alexa Fluor 488 480-550 nm; Alexa Fluor 555, 555-590 nm 

using 488nm (5 % power), 594nm (10 % power) and 633 nm (10% power) laser lines 

respectively. Image acquisition confocal settings were identical for all experiments, as 

follows; pinhole - 1 airy unit, scan speed – 600 Hz unidirectional scan, confocal zoom – 

0.75x, and format - 1024 x 1024 pixels. Z stacks were acquired using the Leica 

Application Suite X to determine the optimal number of slices per cell for offline 3D 

reconstruction. The top and bottom of each stack was carefully set to ensure none of the 

cell was lost, which would negatively influence later morphometric analyses. 

 Flow cytometry 

Fixed and stained cells in suspension (PBS) were analysed with the Amnis ® 

ImageStreamx Mk2. Cells were detected using lasers at 488nm (GFP, green) and 561nm 

(Alexa Fluor 555, red). This method was unsuccessful. 
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2.8 Image Processing 

 Fluorescence intensity analysis 

Relative expression levels of individual proteins were analysed semi-quantitatively 

through calculation of the relative fluorescence density of immunofluorescently stained 

cells using FIJI ImageJ (Schindelin et al., 2012, Rueden et al., 2017). Fluorescence 

density was measured from at least ten cells (selected at random in the DAPI channel) 

from a minimum of three separate experiments. Individual cells were selected using the 

freehand selection tool to draw around the entire cell. The measure tool was then used to 

calculate cell area and integrated pixel density (conceptually equivalent to ‘total 

fluorescence’) per selected cell. Background fluorescence was calculated from a 

minimum of five fields of view from unstained control cell coverslips. Fluorescence 

intensity was corrected for background levels as follows: 

Corrected integrated density = measured integrated density – (area of selected cell x mean 

background fluorescence). 

 Morphological analysis 

Morphological analysis of transfected normal human astrocytes was performed by 

visually binning observed cells into four categories: fibroblast-like cells; polarised cells; 

arborised cells; and atrophic cells. Each category was defined as outlined in Table 2.3. 
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Table 2.3 Astrocyte morphology types 

Morphological type Characteristics 

Fibroblast-like Flattened, process-devoid, oblong to 

triangular shape 

Polarised Elongated, polarised apical domains, 

process-devoid 

Arborised Process bearing, > three branching 

processes 

Atrophic Process-devoid or elongated with soma 

width < 20µm 

 

Binning was carried out in a blinded manner. Microscope slide annotations (indicating 

transfection conditions) were obscured by an independent third party prior to visualisation 

and binning. 

 Morphometric quantification 

Confocal z stacks of individual cells were assessed with IMARIS 9.1 (Bitplane AG, 

Zurich, Switzerland) as described by Jones et al. (2017). 3D isosurface renders were 

created based on the extent of GFP within the cell (to reveal the entire cell morphology) 

or immunofluorescent staining of GFAP (to reveal the GFAP cytoskeleton morphology, 

as per Olabarria et al., 2010 and related methods). The edges of the fluorescence signal 

were carefully demarcated to include the entire cell and voxels were removed. These 3D 

renders then allowed the calculation of morphometric measurements including surface 

area, volume, axis lengths and sphericity. Analysis were carried out on CASS4 and 

NEDD9 overexpression and knock-down models of normal human astrocytes together 
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with controls, for comparison. A minimum of 10 cells were analysed per experiment with 

three individual experiments carried out for each of the three NHA donors per transfection 

condition. 

 

2.9 Protein Biochemistry 

 Whole cell lysate preparation 

Cells were detached with trypsin (as for the start of the cell culture protocol, section 2.3) 

and pelleted at 800 xg for 5 minutes, washed with cold PBS and pelleted 14,000 xg for 1 

minute. The pellet was placed on ice and resuspended in cold RIPA buffer supplemented 

with EDTA-free Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher, 

Altrincham, UK). The cell suspension was kept on ice for 30 minutes whilst being 

vortexed every 5 minutes to allow for lysis. Lysates were spun in a pre-cooled (4˚C) 

centrifuge at 16,000 xg for 20 minutes to remove unlysed cells and large membrane 

fragments. Protein-containing supernatants were collected and stored at -20 °C. Protein 

content was measures just prior to use with Pierce BCA Protein Assay Kit. 

 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed using the Bio-Rad Mini-PROTEAN® vertical electrophoresis system and 

PowerPac Basic power supply with pre-cast 10 % mini-PROTEAN® TGX acrylamide 

gels (Bio-Rad, Watford, UK). Whole cell lysates were mixed with 2x Laemmili loading 

buffer (1:1, v/v) and boiled to 95 °C for 5 minutes prior to loading. 5-20 µg of lysate were 

loaded per well. Running buffer (25mM Tris, 190mM glycine, 0.1% SDS) was added to 

the gel tank and the apparatus checked for leaks. Gels were run at 50 V for 5 minutes to 
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allow the proteins to pass the stacking gel, followed by a constant of 100 V for 80 minutes 

to achieve protein separation. 

 Western blotting 

Transfer of resolved proteins to nitrocellulose was achieved at 300 mA for 80 minutes in 

transfer buffer using the Bio-Rad Mini Trans-Blot® Module. Membranes were 

subsequently treated with blocking buffer (5 % milk in TBS-T) for 1 hour at RT and then 

incubated with appropriate primary antibody diluted as per Table 2.2 in blocking buffer 

overnight at 4°C.  After three 10 minute washes TBS-T, primary antibodies were detected 

using species-matched horseradish peroxidase (HRP)-conjugated secondary antibodies, 

diluted 1:5000 in blocking buffer, for one hour at room temperature. The immunoblot 

membranes were then washed extensively with TBS-T. Blots were developed using the 

SuperSignal™ West Pico PLUS Chemiluminescent ECL kit (Thermo Scientific, 

Loughborough, UK). The membrane was imaged with a Bio-Rad ChemiDoc XRS+, 

equipped with Image Lab™ Software. Membranes were stripped with a mild stripping 

buffer (0.2 M glycine, 3.5 mM SDS, 0.1% (v/v) Tween, pH 2.2), re-blocked in 5% 

milk/TBS-T and re-probed for β-actin as a loading control. 

 Densitometric analysis 

Densitometric analysis of Western blots was performed with FIJI ImageJ. Images were 

converted to 8-bit grey scale prior to measuring relative band intensities. Relative 

densities of target proteins were calculated by dividing measured intensities by intensity 

of the β actin loading control. 

2.10 Statistical analysis 

Statistical analyses were performed using IBM SPSS 22 (IBM Corporation, Armonk, 

USA). Data are presented as mean ± SEM unless otherwise stated. SEM is preferred over 
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SD when comparing populations (Altman and Bland, 2005). A p-value of ≤ 0.05 was 

considered significant throughout this thesis. All data sets were tested for normality using 

the Shapiro-Wilks test prior to selection of the appropriate statistical test. 

 Comparison of fluorescence intensities 

Comparison of integrated fluorescence densities between overexpression and blank-

transfected cells or knock-down vs scramble cells was carried out via independent sample 

Student’s t-tests. 

 Comparison of morphometric measurements 

Comparison between groups was carried out by either Kruskal-Wallis, followed by 

pairwise comparison via Dunn-Bonferroni method (where data were found to be non-

parametric) or one-way ANOVA (for parametric data), followed by Tukey-HSD (equal 

variance) or Games-Howell (non-equal variance) post hoc to identify significant 

differences. The Levene’s F test was used for testing homogeneity of variance between 

groups. 

 Comparison of density measurements 

Comparison of normalised values (density) of Western blot bands from overexpression 

and knock-down experiments was carried out via independent sample Student’s t-tests. 
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Chapter 3 

Endogenous expression of NEDD9 and CASS4  
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3 Chapter 3 – RESULTS: Endogenous expression of CASS4 

and NEDD9  

3.1 Background 

While endogenous expression of CASS4 and NEDD9 in adult human astrocytes is 

predicted by several studies, confirmation of Cas-protein expression is lacking in the 

literature. As outlined in the introduction to this thesis, no studies have confirmed 

expression in astrocytes to date and expression in the adult brain varies between studies 

(Law et al., 1998). Hence, at the outset of this thesis it was necessary to undertake 

experiments to detect CASS4 and NEDD9 via western blot and immunocytochemistry in 

glial cell lines, primary human astrocytes to determine which cell line is most suited for 

further investigations. Additionally, NEDD9 and CASS4 expression was tested in adult 

mouse brain tissues to validate expression in the adult brain, as this has previously been 

challenged. Ideally, human brain tissue should be tested, but was not available for this 

thesis. 

 NEDD9 expression 

The majority of published studies related to NEDD9 have focused on its role as a 

promoter of metastasis in cancer (Beck et al., 2014, Shagisultanova et al., 2015). As such, 

the expression of NEDD9 has been demonstrated in numerous cancers including 

leukaemia, lymphoma, breast cancer, lung cancer, and brain tumours including 

glioblastoma and neuroblastoma (Shagisultanova et al., 2015, Jurcic et al., 2019, 

Gabbasov et al., 2018, Xu et al., 2019). These studies have revealed that NEDD9 has 

influences in both cancer initiation and progression, implicating a correlation between 
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NEDD9 expression and cellular changes (Izumchenko et al., 2009, Li et al., 2011, Deng 

et al., 2013, Wang et al., 2017). Given the robust expression of NEDD9 in most cancers, 

it is unsurprising that it has been detected in many cancer cell lines, including HeLa cells 

(Sima et al., 2013), offering another means for experimentation which was exploited 

within this thesis. 

Unlike its paralogue CASS4, much more is known about NEDD9 expression and the 

protein is abundant in many tissues (Fashena et al., 2002, Minegishi et al., 1996), 

including the brain, where it has been shown to regulate neural crest cell migration during 

embryogenesis, a process vital for proper brain development (Aquino et al., 2008).  

NEDD9 is believed to be highly expressed during development but has been suggested 

to be downregulated in the adult brain (Kumar et al., 1992, Law et al., 1996); hence its 

name ‘neurally-expressed, developmentally-downregulated 9’. These findings, however, 

are based only on mRNA expression rather than actual protein expression. It is known 

that cellular protein levels can differ markedly from transcript levels (Liu et al., 2016). 

This is attributed to a number of factors including the predominant control of protein 

expression at the level of translation and highly variable protein half-lives 

(Schwanhausser et al., 2011). Accordingly, Li et al., 2008, determined significant 

NEDD9 expression in adult human brain tissue via immunohistochemistry, although they 

did not explore expression in glia. 

 

 CASS4 expression 

CASS4 is the most recent addition to the Cas-proteins family, hence relatively little is 

known about its canonical functions or tissue expression (Singh et al., 2008). CASS4 

shares much structural homology with NEDD9 and other members of the Cas-proteins 
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family (Beck et al., 2014). While its exact functions or expression patterns remain largely 

unknown, its activity is believed to be dependent on the presence of other Cas-protein 

(Deneka et al., 2015), suggesting expression in similar tissues. 

During the initial identification of CASS4, RT-PCR revealed high expression of  mRNA 

in the spleen and lungs as well as in leukaemia and ovarian cancer (Singh et al., 2008). 

CASS4 transcripts have since been detected in a number of other tissues, including the 

cerebral cortex and hippocampus; albeit at rather low levels (Kim et al., 2014). As 

discussed above, although a correlation between mRNA levels and protein expression is 

often assumed, mechanisms involved in translation are complex; hence cellular protein 

levels are difficult to predict from mRNA transcript levels (Greenbaum et al., 2003, Liu 

et al., 2016). 

 

3.2 Results 

 Basal expression of CASS4 & NEDD9 in cell lines 

 HeLa - cervical cancer cell line 

Given the reported expression of both CASS4 and NEDD9 in a number of cancers, 

including gliomas, initial confirmation of expression was undertaken in the astroglial cell 

line 1321N1 (human stage 2 astrocytoma). The SVG p12 human foetal astrocyte cell line, 

which is also an astroglial cell line, was tested alongside. The HeLa (human epithelial 

cervical adenocarcinoma) has previously been shown to express NEDD9 (Sima et al., 

2013) and hence was employed as both a positive control and as a non-glial control cell 

line. 

Western blotting (WB) of HeLa lysates using an anti-NEDD9 antibody revealed two 

bands at 65 kDa and 55 kDa (Figure 3.1, A). Protein loads between 5 and 20 µg were 
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trialled, with both bands being visible at all loads, suggesting a robust expression of 

NEDD9 in HeLa cells, as expected. Both visible bands correlate with known isoforms of 

NEDD9, which are cleaved from the full length protein (93 kDa) (Deneka et al., 2015, 

Law et al., 1998). Full-length NEDD9 is known to undergo post-translational 

modifications, particularly phosphorylation, leading to two species of 105 kDa and 115 

kDa; however, these two bands were not seen in HeLa cell lysates. 

 

 

Figure 3.1 Western blotting of HeLa whole-cell lysates confirms expression of both NEDD9 

and CASS4 

Following separation by SDS-PAGE and blotting, two bands for were apparent 

using antibodies against NEDD9 (55 kDa, 65 kDa) (A) and two bands using anti-

CASS4 antibodies (76 kDa, 230 kDa) (B), confirming expression of both proteins 

in this cell type. Actin used as loading control. N=3. 
 

 

Western blotting for CASS4 at revealed two bands at 230 kDa and 76 kDa in the HeLa 

cell lysates (Figure 3.1, B). 76 kDa coincides with the size of a known isoform of CASS4 
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(isoform 2). 230 kDa does not correlate with any known CASS4 isoform and may be the 

result of dimerisation and/or post translational modifications, such as glycosylation or 

phosphorylation. Bands were not seen at 87 kDa or 38 kDa, which are other known 

isoforms of CASS4. As with NEDD9, bands were visible at protein loads as low as 5-10 

µg, suggesting a robust expression of CASS4 in HeLa cells. This is in keeping with the 

prediction that CASS4 expression follows that of its paralogue, NEDD9. 

To further validate the expression of NEDD9 in HeLa cells, immunofluorescence staining 

was undertaken with the same NEDD9 primary antibody together with an Alexa Fluor 

555 secondary antibody (Figure 3.2). Fluorescence imaging revealed fluorescence in all 

cells, indicating the expression of NEDD9. The pattern of fluorescence was slightly 

punctate and extended throughout the entire cell, consistent with expected cytosolic 

localisation of NEDD9. Omission of the primary antibody revealed no fluorescence, 

confirming that the staining observed was due to the specificity of the primary antibody. 
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Figure 3.2 Immunofluorescence staining of HeLa cervical cancer cells reveals NEDD9 

expression. 

HeLa cells were stained using a primary antibody against NEDD9 followed by 

an Alexa Fluor 555 secondary antibody, revealing a slightly punctate pattern 

of staining throughout the cell (Left). Secondary antibody (only) used as control 

(Right). N=3. Scale bar = 20µm. 
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The expression of CASS4 was also established via immunofluorescence staining using 

the same antibody as for the Western blot, followed by an Alexa Fluor 555 secondary 

antibody (Figure 3.3). As expected, based upon the Western blot, fluorescence imaging 

revealed CASS4 expression within the HeLa cells. This followed a similar pattern to 

NEDD9, with the addition of some small cellular inclusions, which may possibly be 

related to the unknown higher molecular weight species (230 kDa) seen on the blot 

(Figure 3.1, B). 
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Figure 3.3 Immunofluorescence of fixed HeLa cervical cancer cells validates CASS4 

expression. 

Fixed HeLa cells were stained using an anti-CASS4 primary antibody followed 

by Alexa Fluor 555 secondary revealing a punctate pattern of staining 

throughout the cell with small intracellular inclusions (Left). Secondary 

antibody (only) used as control (Right). N=3. Scale bar = 20µm. 
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 1321N1 – astrocytoma cell line 

Western blotting of 1321N1 whole-cell lysates and probing for CASS4 and NEDD9 

revealed that both Cas-proteins are expressed in 1321N1 cells (Figure 3.4). In the case of 

NEDD9 (Figure 3.4, A), two bands were clearly visible corresponding with the known 

cleaved isoforms at 55 kDa and 65 kDa. Neither the full-length protein (93 kDa) nor its 

phosphorylated forms (105 kDa and 115 kDa) were seen in the 1321N1 lysates. This is 

in keeping with the result obtained for the HeLa cell line. Blotting for CASS4 revealed 

the 76 kDa isoform 2 and the unexplained heavy band of 230 kDa, again echoing the 

results from the HeLa cells. These bands were visible with as little as 5 µg protein load, 

suggesting a robust expression of CASS4 in this astrocytoma cell line. 
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Figure 3.4 Western blotting of 1321N1 human astrocytoma whole-cell lysates confirms 

expression of both NEDD9 and CASS4. 

Following separation by SDS-PAGE and blotting, two bands for were apparent 

using antibodies against NEDD9 (55 kDa, 65 kDa) (A) and two bands using 

anti-CASS4 antibodies (76 kDa, 230 kDa) (B), confirming expression of both 

proteins in this cell type. Actin used as loading control. N=3. 

 

 

 

To further validate NEDD9 expression in the 1321N1 cell line, immunofluorescence 

staining was undertaken (Figure 3.5). This revealed the same slightly punctate pattern of 

NEDD9 staining throughout the entire cell as was seen in HeLa cells, consistent with 

expected cytosolic localisation. Omission of the primary antibody revealed no 

fluorescence, confirming that the staining observed was due to the specificity of the 

primary antibody. 
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Figure 3.5 Immunofluorescence staining of 1321N1 human astrocytoma cells validates 

NEDD9 expression. 

Fixed 1321N1 cells were stained for NEDD9 followed by Alexa Fluor 555 

secondary antibody revealing a slightly punctate pattern of staining throughout 

the cell (Left). Secondary antibody (only) used as control (Right). N=3. Scale 

bar = 20µm. 
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Immunofluorescence staining using the CASS4 antibody followed by an Alexa Fluor 555 

secondary antibody was also used to validate the expression of CASS4 in the 1321N1 

cells (Figure 3.6). A slightly punctate pattern of staining was evident in all cells. Many 

cells also exhibited small cellular CASS4+ inclusions towards the centre of the cell. 

Omission of the primary antibody revealed no fluorescence. 
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Figure 3.6 Immunofluorescence image of 1321N1 cells, showing CASS4 expression. 

1321N1 cells were stained using an anti-CASS4 antibody, followed by Alexa Fluor 

555 secondary antibody revealing a slightly punctate pattern of staining 

throughout the cell (Left). Secondary antibody (only) used as control (Right). 

N=3. Scale bar = 20µm. 
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 SVG p12 – Human foetal glial cell line 

Western blotting of SVG p12 lysates using the NEDD9 antibody revealed two bands at 

65 kDa and 55 kDa (Figure 3.7, A), correlating to the known isoforms seen in HeLa and 

1321N1 cell lysates. These bands were clearly visible at loads as low as 5 µg. Again, full-

length (93 kDa) and phosphorylated forms (105 kDa and 115 kDa) of NEDD9 were 

absent in the SVG p12 lysates. 

 

 

Figure 3.7 Western blotting of SVGp12 lysates, using antibodies to NEDD9 and CASS4. 

Following separation by SDS-PAGE and blotting, two bands for were apparent 

using antibodies against NEDD9 (55 kDa, 65 kDa) (A) and two bands using anti-

CASS4 antibodies (76 kDa, 230 kDa) (B), confirming expression of both proteins 

in this cell type. Actin used as loading control. N=3. 
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Blotting for CASS4 revealed a large sized doublet at around 230 kDa (Figure 3.7, B), 

which was not seen in any of the cancer cell lines. The lower molecular weight isoform 2 

band (76 kDa) seen in both HeLa and 1321N1 lysates was absent in this human foetal 

astrocyte cell line. These findings suggest some cell-type specific isoform expression. 

 

To further validate the expression of NEDD9 in the foetal astrocyte cell line SVGp12, 

immunofluorescence staining with the same NEDD9 antibody was undertaken (Figure 

3.8). This revealed a slightly punctate pattern of NEDD9 staining throughout the entire 

cell, consistent with the cytosolic localisation seen in the other cell lines. Omission of the 

primary antibody revealed no fluorescence, confirming that the staining observed was 

due to the specificity of the primary antibody. 

 



78 

 

 

Figure 3.8  Immunofluorescence staining of SVG p12 cells reveals NEDD9 expression. 

SVG p12 cells were fixed and stained with an anti-NEDD9 primary antibody, 

followed by an Alexa Fluor 555 secondary antibody, revealing a slightly 

punctate pattern of staining throughout the cell (Left, arrow). Secondary 

antibody (only) used as control (Right). N=3. Scale bar = 20µm. 
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CASS4 expression in SVG p12 cells could also be validated using immunofluorescence 

staining of fixed cells (Figure 3.9). As seen in other cell lines, CASS4 revealed a similar 

punctuate pattern of staining as for NEDD9 with the addition of a number of small cellular 

inclusions, towards the centre of the cells. A negative control by omission of the primary 

antibody exhibited no fluorescence. 
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Figure 3.9 Immunofluorescence staining of SVG p12 human foetal glial cells confirms 

CASS4 expression. 

Fixed SVG p12 cells were immunofluorescently stained using an anti-CASS4 

antibody, followed by Alexa Fluor 555 secondary antibody, revealing a slightly 

punctate pattern of staining throughout the cell (Left). Secondary antibody 

(only) used as control (Right). N=3. Scale bar = 20µm. 



81 

 

 Basal expression in primary human astrocytes 

Although expression of the Cas-protein was confirmed in the astroglial cell lines SVGp12 

and 1321N1, expression profiles often differ markedly between cell lines and primary 

cells (Pan et al., 2009). NEDD9 and CASS4 expression was thus next examined in 

primary human cortical astrocytes (NHA). Expression of the Cas-protein was determined 

in NHAs from three separate male donors; representative results are shown. 

 

Western blotting of NHA whole-cell lysates for NEDD9 revealed three bands at 65 kDa, 

105 kDa and 115kDa, all correlating with known isoforms (Law et al., 1998) (Figure 

3.10, A). The 65 kDa band was rather faint and only visible at a high protein load of 20 

µg. This band corresponds to the cleaved isoform which was previously found in the cell 

lines. The 55 kDa band seen in all the cell lines was absent from the NHA lysates. The 

105 kDa band was most evident on the blot and, along with the fainter 115 kDa band, 

corresponds to phosphorylated forms of the full-length protein. These two bands were not 

seen in any of the cell lines. These results suggest that NEDD9 expression differs 

substantially in primary human astrocytes in comparison to the astroglial cell lines. 
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Figure 3.10 Western blotting of NHA lysates reveals expression of NEDD9 and CASS4. 

Following separation by SDS-PAGE and blotting, three bands for were apparent 

using antibodies against NEDD9 (65 kDa, 105 kDa, 115 kDa) (A) and two bands 

using anti-CASS4 antibodies (76 kDa, 230 kDa) (B), confirming expression of 

both proteins in this cell type. Actin used as loading control. N=3. 

 

Western blotting of NHA lysates for CASS4 revealed two bands of 76 kDa and 230 kDa 

(Figure 3.10, B), which had also been seen in the cell lines. As with the cell lines, protein 

loads between 5 and 20 µg were trialled, with both bands being visible in all cases, 

suggesting a robust expression of CASS4 in primary human astrocytes.  

 

To further validate NEDD9 expression in primary human astrocytes, 

immunofluorescence staining was performed using the same antibody as for the Western 

blot (Figure 3.11). This revealed a slightly punctate pattern of NEDD9 staining which 

extended throughout the entire cell, consistent with expected cytosolic localisation. All 

cells observed exhibited NEDD9 staining. Omission of the primary antibody revealed no 

fluorescence, confirming the specificity of the primary antibody. 
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Figure 3.11 Immunofluorescence staining of primary human astrocytes (NHA) confirms 

NEDD9 expression. 

Fixed NHA were stained using an anti-NEDD9 primary antibody, followed by 

Alexa Fluor 555 secondary antibody revealing a slightly punctate pattern of 

staining throughout the cell (Left). Secondary antibody (only) used as control 

(Right). N=3. Scale bar = 20µm. 
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Immunofluorescence staining of primary human astrocytes with CASS4 revealed a 

similar punctuate cytosolic pattern as for NEDD9, although somewhat fainter (Figure 

3.12). The small cellular inclusions seen in the cell lines, were clearly visible in this cell 

type and appear more frequent than in the cell lines, suggesting that CASS4 localisation 

may differ in primary human astrocytes. Omission of the primary antibody revealed no 

fluorescence. 
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Figure 3.12  Immunofluorescence staining of primary human astrocytes (NHA) reveals 

expression of CASS4. 

Fixed NHA were stained using a primary antibody for CASS4 followed by an 

Alexa Fluor 555 secondary antibody revealing a slightly punctate pattern of 

staining throughout the cell and numerous cellular inclusions (Left). Secondary 

antibody (only) used as control (Right). N=3. Scale bar = 20µm. 
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 Basal expression in the adult mouse brain 

Expression of CASS4 and NEDD9 was clearly evident in the cell lines tested and in 

normal human astrocytes. Notwithstanding, it could be argued that the cells types tested 

were of an ‘immature’ form. For example, cancer cells tend to revert back to stem-cell 

like states (Holmberg et al., 2011, Hattermann et al., 2016), and the NHAs utilised are 

derived from foetuses. Thus, to overcome the claims that NEDD9 (and by association, 

CASS4) is not expressed in the adult brain, it was necessary to test for expression in the 

adult brain. 

As there were no human brain samples available to the project, expression of both CASS4 

and NEDD9 was examined in adult mouse brain. Specifically, expression in the 

entorhinal cortex was tested as it is one of the primary regions which exhibits astrocytic 

atrophy in the 3xTg-AD mouse model (Yeh et al., 2011). 

Western blotting was carried out on pooled mouse entorhinal cortex lysates from three 

animals aged between three and four months. Staining of the blot with antibodies against 

NEDD9 revealed four bands at 19 kDa, 70 kDa, 105 kDa and 115 kDa (Figure 3.13, A). 

The two larger bands correlated with the phosphorylated forms of the full-length protein 

which were also found in the NHA lysates. The band at around 19 kDa likely corresponds 

to NEDD9 isoform 2. This band was not seen in any of the cell types. The final 70 kDa 

band had previously not been found in any of the cell lines or the primary human 

astrocytes but is likely a post-translationally modified version of the cleaved 65 kDa 

isoform.  
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Figure 3.13 Western blotting of Mouse entorhinal cortex lysates reveals expression of 

various NEDD9 and CASS4 isoforms. 

Following separation by SDS-PAGE and blotting, four bands were seen using 

antibodies against NEDD9 (19 kDa, 70 kDa, 105 kDa, 115 kDa) (A), and two 

bands using anti-CASS4 antibodies (76 kDa, 230 kDa) (B), confirming 

expression of both proteins in the adult mouse brain. Actin used as loading 

control. Pooled lysates from N=3 mice. 

 

 

 

Western blotting of mouse entorhinal cortex lysates for CASS4 revealed a doublet at 

around 76 kDa and a single, fainter band at 230 kDa (Figure 3.13, B). While the 

unexplained 230 kDa band had been seen in all blots from the cell lines and human 

astrocytes, the usual single band at 76 kDa (corresponding to CASS4 isoform 2) was 

replaced by a doublet, potentially indicating some alteration of post-translational 

processing. As with cell lines and NHAs, protein loads between 5 and 20 µg total protein 

were trialled, with bands being visible in all cases, suggesting a robust expression of 

CASS4 in the entorhinal cortex of the adult mouse brain. Notably, the smaller isoform 
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(76 kDa) appears to be stronger expressed than the unexplained larger form (230 kDa), 

contrary to the findings in human cells, where the larger form appeared to be the more 

prominent.  

 

 

3.3 Discussion 

While NEDD9 and CASS4 have previously been reported to be expressed in many tissues 

(Deneka et al., 2015), the evidence from the brain has been limited. NEDD9 was found 

to be expressed in neural progenitor cells in the mouse brain (Aquino et al., 2008, Kumar 

et al., 1992), but these and other earlier studies found that NEDD9 was absent or 

downregulated in the adult brain (Kumar et al., 1992, Law et al., 1996). CASS4 

expression in the brain has also been dismissed as almost negligible (Kim et al., 2014). 

Yet, these adult brain findings have been based on mRNA expression alone. The 

correlation between mRNA and protein expression is not straight forward and involves 

complex translational mechanisms, which are varied and hence difficult to predict 

(Greenbaum et al., 2003, Liu et al., 2016). Only one study to date found NEDD9 

expression in human brain tissue (Li et al., 2008) and no study has explored CASS4 

expression in the human brain. Furthermore, expression of neither of the Cas-protein had 

not been confirmed in astrocytes. 

Here it was found that both Cas-protein are expressed in cancer-derived cells (HeLa & 

1321N1) as well as foetal human astrocytes (SVG p12), normal human astrocytes and the 

entorhinal cortex of the adult mouse brain. Basal expression was confirmed via 

immunocytochemistry and western blotting. 
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Western blotting for NEDD9, which has an actual molecular weight of 93 kDa, but exists 

as phosphorylated versions of 105kDa and 115kDa (Singh et al., 2007) revealed muliple 

bands of different weights. In addition to the full length versions, a band of 65 kDa, 

correlating with the size of a known isoform (Deneka et al., 2015) and a 55kDa band, 

correlating with a splice variant (Law et al., 2000) that was observed in all cell line 

lysates. 

Blotting of NHA lysates also revealed the 55 kDa NEDD9 band, as well as two additional 

bands at around 105 kDa and 115k Da. The bands of 105 kDa and 115 kDa correspond 

to phosphorylated isoforms of the full-length protein, which had previously been 

identified (Law et al., 1998, Bradshaw et al., 2011). The 65 kDa isoform, however, was 

not present. This reveals key differences between the immortalised glial cell lines and the 

primary astrocytes. It is unclear why these differences, particularly between the 

immortalised cell lines and primary astrocytes, occur, but different NEDD9 splice 

variants might serve different roles within each cell type and might arise from cell type-

specific post-translational modifications. This indicates that glial cell lines are likely not 

suitable for the investigation of the role of NEDD9 in astrocyte atrophy and that NHAs 

themselves are likely the best model for the investigation as primary cells are more likely 

to resemble cells in vivo. 

Blotting of adult mouse entorhinal cortex lysates revealed the two phosphorylated forms 

(105 kDa and 115 kDa) of the full-length NEDD9 protein as was seen in the NHAs, as 

well as a band at 70 kDa, which is likely a phosphorylated version of the 65 kDa isoform 

(not present in the NHAs). Additionally, a 19 kDa band was found in the mouse lysate, 

which had not been found in any human cell types. This corresponds to the NEDD9 

isoform 2 and as Cas-protein are known to undergo extensive phosphorylation (Singh et 

al., 2007), this could lead to these heavier forms of the protein. The myriad of NEDD9 
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isoforms is regulated by cell cycle phases and influenced by integrin binding (Law et al., 

1998, Singh et al., 2007). It is hence impossible to establish which forms may be 

expressed in a cell population or tissue at any given time. However, the varied expression 

of NEDD9 isoforms in different tissues, suggests that the protein expression is also tissue 

specific. 

In the case of CASS4, two bands were consistently seen in all cell lines, NHAs and in 

mouse brain tissue. The first band of 76 kDa corresponds with a known isoform of the 

protein appeared as a single strong band in all cases, with the exception of the mouse 

brain tissue, where it appeared as a doublet. This might suggest that there is some 

additional modification in brain tissue, or it might be a form which is seen in non-

astrocyte cell type, such as neurones, as whole tissue lysates were used. Determining 

astrocyte specific expression of CASS4 (or NEDD9) in the adult mouse brain would 

require immunohistochemistry. This would allow to use double staining, to identify 

astrocytes in situ and determine Cas-protein expression of this specific cell type in the 

adult mouse brain. Immunohistochemistry was not within the scope of this thesis but 

could be beneficial, particularly for human brain tissue, to further validate the Cas-protein 

expression in the future. 

A second CASS4 band was observed at 230 kDa in all lysates. This does not correlate 

with any known isoform of CASS4, nor to the full-length protein (87 kDa). Given the 

very large molecular weight of this band, it is unlikely that this is due to phosphorylation 

or other post-translational modifications and is more likely a complex, although it did 

resist attempts to break up with harsher denaturing conditions. Intriguingly, this heavier 

CASS4 band has also been observed in the laboratories of Dr Mahendra Singh and Prof 

Erica Golemis (personal correspondence). One possibility is that the band might be a 

tightly-bound complex of CASS4 with an associated kinase such as Abelson murine 
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leukaemia (Abl) kinase (Witte et al., 1980, Shagisultanova et al., 2015), which would 

require further research. 

 

 

Despite the fact that the large size of CASS4 remains unexplained and the expression of 

NEDD9 isoforms varies, these results nonetheless confirm: 

a) NEDD9 and CASS4 are expressed in cell lines of different tissue origin (cervical 

cancer, astrocytoma, foetal astrocytes) 

b) NEDD9 and CASS4 are expressed in primary cortical human astrocytes 

c) NEDD9 and CASS4 are expressed in the adult mouse brain (entorhinal cortex) 

 

Although immortalised cell lines can often provide a good basis for an in vitro model, as 

they are robust, highly proliferative and easy to culture, they have been shown to differ 

genotypically and phenotypically from the tissue origin (Alge et al., 2006, Pan et al., 

2009). Primary cells are only maintained in culture for a relatively short period of time, 

in order to retain native phenotype and are hence more reflective of an in vivo 

environment. While the CASS4 results were similar across all cells/tissues tested, the 

expression results from NEDD9 show marked differences in protein isoforms present in 

the cell lines compared to the primary astrocytes. Thus, the remainder of this thesis will 

utilise NHAs as a model for the investigation of the influence of the Cas-proteins in 

astrocyte morphology and function. 

 

  



92 

 

 

 

 

 

 

Chapter 4 

Overexpression and knock-down models of NEDD9 & 

CASS4 in normal human astrocytes 
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4 Chapter 4 – RESULTS: Overexpression and knock-down 

models of NEDD9 & CASS4 in normal human astrocytes 

4.1 Background 

Several GWAS studies have found that several SNPs in the genes NEDD9 (Li et al., 

2008) and CASS4 (Lambert et al., 2013), which encode the Cas-proteins NEDD9 and 

CASS4, are associated with a risk of developing AD. Follow-up studies tested the 

significance of these SNPs and found that NEDD9 SNP rs760678 showed the strongest 

association with LOAD development (Li et al., 2008, Fu et al., 2012, Xing et al., 2011). 

In 2013, Lambert et al. found that SNP rs7274581 of the CASS4 gene reached genome-

wide significance. Two more susceptibility loci were since added to the list of CASS4 

LOAD risk variants, rs16979934 (Wang et al., 2015) and rs6024870 (Rosenthal et al., 

2014). The SNPs in both NEDD9 and CASS4 are not within exons, suggesting that the 

gene products are not affected; the proteins are not mutated and retain normal biological 

function. Instead, the SNPs are found in transcription factor (TF) binding sites (Chapuis 

et al., 2008, Rosenthal and Kamboh, 2014). Specifically, the rs760678 polymorphism of 

NEDD9 maps near a GATA1 transcription factor binding site (Li et al., 2008). SNPs in 

this region would be expected to lead to a decrease in expression if a transcription factor 

(TF) cannot bind or an increase if a TF repressor cannot bind (Beck et al., 2014, Gan et 

al., 2018, Kamanu et al., 2012, Tugrul et al., 2015). Based on this, both, overexpression 

and knock-down models of NEDD9 and CASS4 in primary human astrocytes were 

generated to investigate the effect of altered expression of the Cas-proteins on astrocytes. 
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Mammalian overexpression systems generally rely on the use of a plasmid expression 

vector containing the gene of interest (GOI); here, NEDD9 or CASS4, together with a 

strong promoter to drive expression. The expression vectors used in this thesis were based 

on a commercially-available pLenti-GIII-CMV-GFP-2A-Puro backbone which has 

several advantageous features: (1) A cytomegalovirus (CMV) promoter; a long-

established method to drive robust expression of the GOI (Rotonardo et al., 1996); (2) An 

internal ribosomal entry site (IRES) to allow bicistronic expression of the GOI alongside 

a reporter gene (Mansouri et al., 2016, Kim et al., 2004); (3) a soluble green fluorescent 

protein (GFP) in the form of CopGFP (also known as ppluGFP2) (Shagin et al., 2004) to 

both signal which cells have taken up the vector and serve as a means to fluorescently 

visualise the cell; (4) a puromycin resistance gene, allowing selection of transfected cells 

where necessary; and, (5) lentiviral vector packaging signals to permit the plasmid to be 

used to create lentiviral vector particles for virus-mediated gene delivery, if necessary 

(Follenzi and Naldini, 2002). 

Primary cells, particularly neural cells, are notoriously difficult to transfect (Gresch and 

Altrogge, 2012, Alabdullah et al., 2019). Viral delivery methods, such as lentiviral 

transduction, have shown to yield high efficiencies in primary cells and allow to produce 

stable transfection of the target gene (Jakobsson et al., 2006, Merienne et al., 2013, 

Fassler et al., 2013). This method is not without pitfalls, as it can introduce insertions and 

lead to inactivation of tumour suppressor genes (Bett et al., 1993, Shearer and Saunders, 

2015). Furthermore, viral delivery systems are time consuming, require specific 

laboratory safety procedures and are subject to a limited cargo load (Mansouri et al., 

2016). Hence, viral delivery methods should only be utilised where needed. On the 

contrary, while transient transfection methods, particularly lipid-mediated delivery, yield 

generally lower transfection efficiencies in primary cells, they do not require extensive 
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safety procedures, are less time consuming and easily reproducible (Shi et al., 2018, 

Alabdullah et al., 2019). Based on this, transient transfection via lipid-mediated delivery 

was initially trialled to achieve overexpression Cas-proteins. 

A well-established method of depleting levels of a protein of interest in target cells is to 

utilise RNA-interference (RNAi). RNAi is a process in eukaryotes that regulates silencing 

of genes post transcription by utilising double stranded RNA (dsRNA). The dsRNA is 

then cleaved into a shorter, small interfering RNA (siRNA) by the RNase III 

endonuclease Dicer (Zhang et al., 2004). The dicer complex then aids the small siRNAs 

to bind to other proteins, including Ago-2, an argonaute protein which harbours a catalytic 

domain for cleavage of the RNA (Meister et al., 2004), to form a multiprotein complex, 

RISC. Through Ago-2 activity, the double stranded siRNA is unwound into single 

stranded RNA with a high binding affinity for the target gene mRNA. The RISC complex 

then targets the complementary mRNA and silences the gene by inducing cleavage and 

degradation of the transcript (mRNA) (Almeida and Allshire, 2005). This biological 

process can be ‘hijacked’ and used to silence genes of interest through the introduction 

of exogenous siRNAs. This can be achieved via direct transfection of cells with siRNA 

which produces transient gene silencing, or by transfection with a siRNA-encoding 

expression vector. Using a vector is superior in that it produces longer-lasting effects 

(since the siRNA will be produced for as long at the expression plasmid remains in the 

cell), and selection markers and fluorescent transporters can be inserted into the vector to 

co-express alongside the siRNA. Simultaneous transfection of several vectors which 

encode siRNAs complimentary to various target sequences within the same transcript are 

known to provide enhanced gene silencing (Parsons et al., 2009). SiRNA vectors built on 

the same pLenti-GIII-CMV-GFP-2A-Puro backbone as the overexpression vector were 

employed, whose GOI was either siRNA against NEDD9 or CASS4. In all cases, pools 
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of vectors encoding four siRNAs targeted against different regions of each Cas-protein 

transcript were transiently transfected into the NHAs using a lipofection method, as it has 

been shown to yield positive results in astrocytes (Ishii et al., 2017, Youn et al., 2015). 

Each siRNA was transfected at a relatively low level to minimise off-target effects. 

 

4.2 Results 

 Cas-protein overexpression models 

Overexpression of the Cas-proteins in NHAs in vitro was achieved via transiently 

transfecting CASS4 or NEDD9 encoding plasmids (pLenti-GIII-CMV-GFP-2A-Puro), 

which are driven by CMV promoters to induce overexpression of the Cas-proteins. An 

empty/blank pLenti-GIII-CMV-GFP-2A-Puro vector was transiently transfected into 

control NHAs. Biscistronic expression of GFP alongside the target gene which permitted 

confirmation of transfection as well as the visualisation of entire cells for subsequent 

morphometric analysis. Immunofluorescent staining with primary antibodies against 

CASS4 or NEDD9 followed by an Alexa Fluor 555 (red) secondary antibody permitted 

assessment of intracellular levels of the Cas-proteins. Cells were counted and assessed in 

20 random fields of view at x40 magnification in three repeats of the experiment (N=3). 
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Overexpression model of NEDD9 in normal human astrocytes 

Transfection of NHAs with Cas gene-containing LV-CMV vectors yielded comparable 

results as transfection with the GFP-only blank vector, in that GFP spread through the 

entire cell, permitting visualisation of cell morphologies. Transfection efficiencies also 

averaged 30-50% with no signs of toxicity. There is no standard for sufficient transfection 

efficiencies. Although on the lower end of the spectrum, the achieved 30-50% were 

sufficient to visualise cells via microscopy, as transfected cells are GFP positive and could 

thus be chosen for analysis. Transient transfection of the LV-CMV vectors for NEDD9 

and CASS4 via lipid-mediated delivery was thus deemed suitable for undertaking the 

planned experiments for this thesis. 

NHAs transfected with the NEDD9 LV-CMV overexpression vector or blank vector 

control were immunostained for NEDD9 (Figure 4.1). Fluorescence imaging revealed a 

slightly punctate staining pattern throughout the cytosol for NEDD9 in both transfection 

conditions, consistent with that observed in non-transfected cells (Chapter 3). An increase 

in NEDD9 fluorescence could be visually observed in the NHAs transfected with a 

NEDD9 overexpression vector in comparison to control cells (Figure 4.1). 
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Figure 4.1 Fluorescence of NEDD9 is increased in NHAs transfected with the NEDD9 LV-

CMV vector in comparison to the blank vector control. 

Fixed NHA were stained using a primary antibody for NEDD9 followed by an 

Alexa Fluor 555 secondary antibody revealing increased NEDD9 fluorescence 

in the cells transfected with NEDD LV-CMV in comparison to the blank vector 

transfected control. N=3 (donors), three technical repeats. Scale bar = 20µm. 
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Fluorescence intensities (NEDD9) of NHAs transfected with NEDD9 LV-CMV and a 

blank vector control were measured and compared (Figure 4.2). An independent-samples 

t-test showed that there was a significant increase of fluorescence t(4)= 12.485, P< 0.001) 

between the cells, transfected with a blank vector control (M= 135.66, SD= 8.36)  and the 

cells, transfected with NEDD9 LV-CMV (M= 471.67, SD= 45.85), indicating that 

transfection of NHAS with NEDD9 LV-CMV induces increased NEDD9 expression. 

 

 

 

Figure 4.2 Transfection of NHAs with NEDD9 LV-CMV leads to increased fluorescence 

Fluorescent images of NHAs, transfected with either NEDD9 LV-CMV or a 

blank vector control were analysed with ImageJ. Measured fluorescence 

intensity was compared between the two groups, showing a significant increase 

in the NEDD9 LV-CMV cells. N=3, three technical repeats. Error bars ± 2 

SEM. *** p≤ 0.001 
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To further validate the overexpression of NEDD9, Western blotting of whole-cell lysates 

from NHAs transfected with the NEDD9 LV-CMV or blank vector, was performed, 

followed by densitometric analysis with ImageJ. Relative density data were normalised 

to the β- actin loading control and statistically compared. All bands previously identified 

as endogenously expressed in NHAs (65, 105 and 115 kDa) were still evident in the 

NEDD9 LV-CMV transfected NHAs (Figure 4.3, A). All bands appeared to be enriched 

in the NEDD9 LV-CMV transfected cells compared to controls. This was particularly 

clear for the 115 kDa isoform band. Following normalisation, densitometric analysis of 

all bands together revealed a significant increase of NEDD9 expression is NHAs  

transfected with NEDD9 LV-CMV (M= 1.45, SD= 0.079) in comparison to the NHAs, 

transfected with the blank vector control (M= 0.58, SD= 0.02) (t(4)=18.16, P<0.001; 

Figure 4.3, B) suggesting that overexpression of NEDD9 was achieved. 

 

 

 

 

Figure 4.3 Overexpression of NEDD9 was achieved in normal human astrocytes 
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Western blotting of lysates from NHAs, transfected with NEDD9 LV-CMV show 

a visible stronger band at 115kDa comparison to lysates from cells transfected 

with a blank vector control; loading control: β actin (A) Densitometric analysis 

revealed a significant increase of density in the NEDD9 LV-CMV band in 

comparison to the control band (B). Error bars ±  SEM. *** p≤ 0.001 

 

 

Overexpression model of CASS4 in normal human astrocytes 

NHAs transfected with the CASS4 LV-CMV overexpression vector or blank vector 

control were immunostained for CASS4 (Figure 4.3). Fluorescence imaging revealed a 

staining pattern throughout the cytoplasm for CASS4 in both transfection conditions, 

consistent with that observed in non-transfected cells (Chapter 3). A clear increase in 

CASS4 fluorescence was observed in the NHAs transfected with a CASS4 

overexpression vector in comparison to control cells (Figure 4.4). 
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Figure 4.4 Fluorescence of CASS4 is increased in NHAs transfected with the CASS4 LV-

CMV vector in comparison to the blank vector control. 

Fixed NHA were stained using a primary antibody for CASS4 followed by an 

Alexa Fluor 555 secondary antibody revealing increased CASS4 fluorescence 

in the cells transfected with CASS4 LV-CMV   in comparison to the blank vector 

transfected control. N=3, three technical repeats. Scale bar = 20µm. 
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Image analysis, measuring integrated density of cells in both transfection conditions 

revealed a rise in fluorescence for NHAs, transfected with CASS4 LV-CMV. When 

compared to blank vector transfected control cells, CASS4 LV-CMV transfected cells 

showed a significantly higher amount of CASS4 fluorescence intensity (Figure 4.5). 

Independent-sample t-Test; CASS4 LV-CMV cells (M= 529.17, SD= 27.83) versus blank 

vector transfected control (M= 135.66, SD= 8.36); t(4)= 23.542, P= <0.001, suggesting 

that transfection of NHAs with CASS4 LV-CMV induces increased expression of 

CASS4. 

 

 

Figure 4.5 Transfection of NHAs with CASS4 LV-CMV leads to increased fluorescence 

Fluorescent images of NHAs, transfected with either CASS4 LV-CMV or a 

blank vector control were analysed with ImageJ. Measured fluorescence 

intensity was compared between the two groups, showing a significant increase 

in the CASS4 LV-CMV cells. N=3, three technical repeats. Error bars ± 2 SEM. 

*** p≤ 0.001 
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To further validate the overexpression of CASS4, Western blotting of whole-cell lysates 

from NHAs transfected with the CASS4 LV CMV or blank vector was performed, 

followed by densitometry analysis with ImageJ. Relative density data were normalised to 

the loading control (β-actin) and compared. Both bands previously identified as 

endogenously expressed (76 and 230 kDa), but only the 230kDa was seen to become 

thickened in the CASS4 LV-CMV transfected cells (Figure 4.6, A). Densitometry 

analysis of all bands revealed a significant increase of expression of CASS4 for NHAs 

transfected with CASS4 LV-CMV (M= 1.49, SD= 0.49) compared to NHAs transfected 

with the blank vector control (M= 0.46, SD= 0.11) (t(4)=14.59, P<0.001; Figure 4.6, B), 

suggesting that overexpression of CASS4 in primary astrocytes was achieved and 

confirming the immunofluorescence analysis results. 

 

 

Figure 4.6 Overexpression of CASS4 was achieved in normal human astrocytes 

Western blotting of lysates from NHAs, transfected with CASS4 LV-CMV show 

a visible stronger band at 115kDa comparison to lysates from cells transfected 

with a blank vector control; loading control: β actin (A) Densitometric analysis 

revealed a significant increase of density in the CASS4 LV-CMV band in 

comparison to the control band (B). Error bars ±  SE. *** p≤ 0.001 
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 Cas-protein knock-down models 

Depletion of Cas-protein expression was achieved by transiently transfecting a set of four 

piLenti-siRNA-GFP vectors encoding siRNAs targeted to NEDD9 or CASS4 transcripts. 

The siRNA vectors were bicistronic; expressing GFP alongside the siRNA to allow for 

visualisation of the entire cell. A vector encoding a scramble siRNA designed not to target 

any cellular transcript was used as a control. Cells were immunofluorescently stained for 

CASS4 and NEDD9 to assess whether knock down of CASS4 or NEDD9 had been 

achieved. Cells were counted and assessed in 20 random fields of view at x40 

magnification in three repeats of the experiment (N=3). Image analysis with ImageJ was 

performed to measure fluorescence intensity and compare the NEDD9 and CASS4 KD 

cells to cells, transfected with a scramble control. 

 

Knock-down model of NEDD9 

Transient transfection of NHAs with a NEDD9 siRNA-encoding plasmids induced no 

change in the subcellular distribution of NEDD9 (Figure 4.7). A reduction in NEDD9 

fluorescence intensity in comparison to the control cells transfected with a scramble 

control, suggesting a downregulation of NEDD9 expression. Of further note was that by 

48 hours of transfection cells transfected with NEDD9 siRNA had begun to detach from 

the cultureware, limiting the ability to maintain them in culture for any prolonged period 

of time. 
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Figure 4.7 Fluorescence of NEDD9 is reduced in NHAs transfected with the NEDD9 siRNA 

in comparison to the scramble control. 

Fixed NHA were stained using a primary antibody for NEDD9 followed by an 

Alexa Fluor 555 secondary antibody revealing reduced NEDD9 fluorescence 

in the cells transfected with NEDD siRNA in comparison to the scramble 

transfected control. N=3, three technical repeats. Scale bar = 20µm. 
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Comparing integrated density measurements of NEDD9 immunofluorescence in NHAs 

transfected with NEDD9 siRNA or a scramble control revealed a significant reduction of 

NEDD9 fluorescence intensity in the NEDD9 siRNA transfected cells (M=27.38, 

SD=1.87) in comparison to the scramble control (M=124.74 , SD=5.23) (t(4)= 30.338, 

P< 0.001; Figure 4.8), indicating that transfection with a set of NEDD9 siRNA encoding 

vectors induced a reduction of NEDD9 expression. 

 

 

Figure 4.8 Transfection of NHAs with NEDD9 siRNA leads to reduction of fluorescence 

Fluorescent images of NHAs, transfected with either NEDD9 siRNA or a 

scramble control were analysed with ImageJ. Measured fluorescence intensity 

was compared between the two groups, showing a significant decrease in the 

NEDD9 siRNA cells. N=3, three technical repeats. Error bars ± 2 SEM. *** 

p≤ 0.001 
 

 

To further validate these findings, Western blotting of lysates from NHAs, transfected 

with NEDD9 siRNA encoding vectors or a scramble control and enriched via puromycin 

selection, were performed, followed by densitometric analysis. Initially, the transfection 
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efficiency achieved by transient transfection proved problematic as endogenous Cas-

protein expression in un-transfected cells masked the knock-down, since WB is not 

sensitive enough to pick up modest changes in expression levels. In order to achieve 

unambiguous results, enrichment of transfected (i.e. knocked-down) cells via puromycin 

selection was performed. Cells were exposed to medium, supplemented with puromycin 

for 24 hours to reduce the number of non-transfected cells, which caused an adequate 

reduction of non-transfected cells to detect the knock-down. To establish the optimal 

concentration of puromycin to select transfected cells, a dose response experiment 

(puromycin kill curve) was conducted (Figure 4.9).  
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Figure 4.9 Growth curve for NHA in presence of increasing concentrations of puromycin 

Increasing concentrations of puromycin (0-5µg/ml) were added to cell medium. 

Cells were counted at 24, 48 and 72 hours. N=3, three technical repeats. Error 

bars= SEM 

 

All concentrations of puromycin tested were effective in reducing the growth of NHAs in 

culture in a dose-dependent manner. Both 4 µg/ml and 5 µg/ml had all but killed all NHAs 

within 48 hours. As outlined above, by 48 hours NEDD9 siRNA transfected NHAs had 

started to detach from the growth surface and hence could not be grown for this period. 

Hence a concentration of 5 µg/ml was chosen, as this induced an adequate effect after 

only 24 hours, reducing non-transfected cells sufficiently to conduct WB. 
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Western blotting of lysates from NHAs transfected with a scramble control showed two 

bands for NEDD9 (115 kDa and 105 kDa); both bands are visibly fainter in the NEDD9 

siRNA lysates. The NHA NEDD9 siRNA lysates unusually revealed the known isoform 

of 65kDa, which was absent in the control (Figure 4.10, A) and only faintly visible in the 

endogenous expression experiments (Chapter 3). Densitometric analysis of the combined 

bands in the blots showed a significant decrease of expression between in the NEDD9 

siRNA NHAs (M= 0.47, SD= 0.545) compared to the scramble control (M= 2.51, SD= 

0.103) (t(4)= 3.404, P= 0.027; Figure 4.10, B), suggesting that a NEDD9 knock-down 

was achieved in normal human astrocytes. The large error bars of the scramble 

densitometric data reflects the variation of Cas-protein expression in the NHA control 

cell population. 
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Figure 4.10 Knock-down of NEDD9 was achieved in normal human astrocytes 

WB of lysates from NHAs, transfected with NEDD9 siRNA show a visibly lighter 

band at 115kDa comparison to lysates from cells transfected with a scramble 

control which also showed the 105kDa isoform; loading control: β actin (A) 

Densitometric analysis revealed a significant decrease of density in the NEDD9 

siRNA band in comparison to the control band (B). Error bars ± 2 SEM. * p≤ 

0.05 

 

 

 

Knock-down-model of CASS4 

Transient transfection of NHAs with a CASS4 siRNA-encoding plasmids induced no 

change in the subcellular distribution of CASS4 (Figure 4.11). A decrease in CASS4 

fluorescence intensity in comparison to the control cells transfected with a scramble 

control, suggesting a downregulation of CASS4 expression. Of further note, as was the 

case in the NEDD9 knock-down cells, by 48 hours of CASS4 siRNA transfection, cells 

had begun to detach from the growth surface, limiting the ability to maintain them in 

culture for any prolonged period of time. 
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Figure 4.11 Fluorescence of CASS4 is reduced in NHAs transfected with the CASS4 siRNA 

vectors in comparison to the scramble control. 

Fixed NHA were stained using a primary antibody for CASS4 followed by an 

Alexa Fluor 555 secondary antibody (red) revealing decreased CASS4 

fluorescence in the cells transfected with CASS4 siRNA in comparison to the 

scramble transfected control. Transfected GFP+ cells, green. N=3, three 

technical repeats. Scale bar = 20µm. 
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Comparing measurements of CASS4 fluorescence in NHAs transfected with either 

CASS4 siRNA encoding vectors or a scramble control, revealed a significant reduction 

of CASS4 fluorescence intensity in the CASS4 siRNA transfected cells (M=26.60, 

SD=0.92) in comparison to the scramble control (M=124.74, SD=5.23); t(4)= 31.987, 

P<0.001;Figure 4.12), indicating that transfection with a set of CASS4 siRNA encoding 

vectors induced a reduction of CASS4 expression. 

 

 

 

Figure 4.12 Transfection of NHAs with CASS4 siRNA leads to a reduction of fluorescence 

Fluorescent images of NHAs, transfected with either CASS4 siRNA or a 

scramble control were analysed with ImageJ. Measured fluorescence intensity 

was compared between the two groups, showing a significant decrease in the 

CASS4 siRNA cells. N=3, technical repeats. Error bars ±  SEM. *** p≤ 0.001 
 

 

To further validate these findings, WB of lysates from NHAs, transfected with CASS4 

siRNA encoding vectors or a scramble control and enriched via puromycin selection, 
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were performed, followed by densitometric analysis. Western blotting of the scramble 

control revealed two bands for CASS4 (230 kDa and 76 kDa; Figure 4.13, A), as was 

seen in the endogenous expression chapters (Chapter 3). The same bands were also in the 

lysates from NHAs transfected with CASS4 siRNA, although they were fainter than in 

the control. Comparison of density revealed a significant reduction between the scramble 

control (M= 1.19, SD= 0.045) and the CASS4 knock-down cells (M= 0.76, SD= 0.036) 

(t(4)= 12.553, P< 0.001; Figure 4.13, B) indicating that a CASS4 knock-down was 

successfully achieved. 

 

 

 

Figure 4.13 Knock-down of CASS4 was achieved in normal human astrocytes 

WB of lysates from NHAs, transfected with CASS4 siRNA show a visibly lighter 

band at 230kDa comparison to lysates from cells transfected with a scramble 

control; loading control: β actin (A) Densitometric analysis revealed a 

significant decrease of density in the CASS4 siRNA band in comparison to the 

control band (B). Error bars ± 2 SEM. *** p≤ 0.001 
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4.3 Discussion 

The main aim of this thesis was to investigate the effect of altered NEDD9 or CASS4 

expression on astrocyte morphology and function in vitro. In order to undertake such 

assessments, NEDD9 and CASS4 overexpression and knock-down models in normal 

human astrocytes were designed. As outlined in the introduction to this chapter, primary 

cells are difficult to transfect (Alabdullah et al., 2019, Gresch and Altrogge, 2012) but 

based on the findings of the previous chapter, primary human astrocytes delivered the 

only viable model for this investigation. 

Transient lipid-mediated transfection yielded sufficient transfection efficiencies to 

validate both overexpression and knock-down via immunocytochemistry, as transfected 

cells express GFP and could hence be visualised and selected for analysis, even with low 

transfection efficiencies. This revealed a significant increase of NEDD9 or CASS4 

expression in the cells transfected with the LV-CMV overexpression vectors and a 

significant reduction of expression in the cells transfected with the siRNA-encoding 

vectors. As the measurement of immunofluorescence is only a semi-quantitative measure 

for protein expression, confirmation of overexpression and knock-down was also 

conducted via Western blotting. Here the relatively low transfection efficiency (30%) led 

to complications. With non-transfected cells forming the majority of the NHA population 

used for producing lysates, WB was not initially able to reveal modest changes in overall 

expression levels (i.e. the endogenous expression of the Cas-proteins in the non-

transfected cells masked the knock-down). Puromycin selection for 24 hours was 

sufficient to reduce the number of non-transfected cells low enough to detect the knock-

down. Densitometric analysis of the blots revealed significant reductions in Cas-protein 

expression in the transfected cells in comparison to the control cells transfected with 

scramble RNA. 
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Validation of overexpression and knock-down via immunocytochemistry is a relatively 

simple and fast way to get an indication of expression changes and is often paired with 

Western blotting, which is a standard and commonly used method to validate 

overexpression or knock-down (Erustes et al., 2018, Kikuno et al., 2007, LaRocca et al., 

2019, Liu et al., 2009). Both immunocytochemistry and WB delivered agreeing results 

here, with a knockdown of 48% for CASS4 and 88% for NEDD9. Transient knockdown 

at the protein level is highly variable, depending on the affinity of siRNA to the target 

sequence and protein turnover times but should be sufficient to explore the consequences, 

such as morphological and functional changes (Mocellin and Provenzano, 2004, Abel and 

Redersdorff, 2015). Knockdown efficiencies can thus vary greatly and reach from 20-

90% (Pachernegg et al., 2018, Burnell et al., 2018, Wu et al, 2004), placing the 

knockdown efficiencies of this thesis within the acceptable spectrum. Comparison of 

expression in transfected cells versus non-transfected cells was not undertaken. Although 

this would be of interest, the blank vector and scramble controls deliver a better base line 

for comparison, as these cells were treated with the same reagents under the same 

conditions as the overexpression and knockdown cells.  

Overexpression and knock-down are also routinely validated using qRT-PCR (Sato et al., 

2018, Zhao et al., 2018), which could add to the validation of the NHA models. However, 

as outlined in the introduction to the previous chapter, this method cannot predict actual 

protein expression (Greenbaum et al., 2003, Liu et al., 2016) due to control of protein 

expression at the level of translation and highly variable protein half-lives 

(Schwanhausser et al., 2011). Moreover, since qRT-PCR-based methods have previously 

concluded that NEDD9 is absent from the adult brain, a result contradicted by the 
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endogenous expression experiments presented in Chapter 3, this method was not 

considered to be suitable for the purpose of this project. 

 

The combined results of this chapter confirm that: 

a) Overexpression of both NEDD9 and CASS4 was achieved in primary human 

astrocytes in vitro via transient transfection cells with CMV promoter driven 

vectors. 

b) Knock-down of both NEDD9 and CASS4 was achieved via transient transfection 

of NHAs in vitro with a set of four siRNA encoding bicistronic vectors. 

c) Overexpression and KD models of NEDD9 and CASS4 in human astrocytes were 

successfully created and could be used as a model to investigate Cas-protein 

effects on astrocyte morphology and function. 
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Chapter 5 

Morphological analyses 
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5 Chapter 5 – RESULTS: Morphological analyses 

5.1 Background 

As outlined earlier, astrocytes are the most abundant and heterogeneous cells in the 

human brain. Astrocyte morphogenesis and the development from radial glial precursor 

cells to complex mature astrocytes remains incompletely understood (Zhou et al., 2019) 

but requires extensive cytoskeletal remodelling (Schiweck et al., 2018). Most of what is 

known is based on animal models, which delivers another challenge as human astrocytes 

differ greatly to rodent or murine astrocytes (Oberheim et al., 2009, Verkhatsky et al., 

2019). The unique astrocyte morphology is integral to copious functions in the central 

nervous system (CNS). Owing to this exceptional morphology, it is speculated that a 

single astrocyte may contact over 2 million synapses (Oberheim et al., 2009). Moreover, 

each astrocyte forms many gap junctions with other astrocytes to form functional 

syncytia, able to integrate and carry information from synapse to synapse outside of the 

neurone (Mohamet et al., 2018). As part of the tripartite synapse, astrocytes support and 

maintain synaptic plasticity, required for learning and memory formation (Zovkic et al., 

2013, Zorec et al., 2015). To fulfil synaptic requirements, astrocytes exhibit enormous 

structural plasticity, allowing these cells to remodel cell processes rapidly (Perez-Alvarez 

et al., 2014). Such structural plasticity requires extensive intracellular signalling inducing 

cytoskeletal rearrangement (Heller and Rusakov, 2015, Schiweck et al., 2018a); a 

process, as mentioned in the previous chapter, which involves scaffolding proteins such 

as NEDD9 and CASS4. 
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Given the above, it is not surprising that aberrant astrocyte morphologies have been linked 

to several neurological pathologies, including Amyotrophic Lateral Sclerosis, 

Parkinson’s disease and AD (Kohutnicka et al., 1998, Verkhratsky et al., 2014, 

Yamanaka and Komine, 2018). Aberrant astrocyte morphology will inevitably have 

functional consequences as aberrant cells are likely unable to maintain homeostasis of 

neurotransmitters, amyloid clearance and lose control of neuronal synaptic transmission, 

leading to neurotoxicity and hence synaptic loss (Hefendehl et al., 2016, Woltjer et al., 

2010).  

Two morphological phenomena of astrocytes are present in the AD brain: 

reactive/hypertrophic astrocytes and atrophic astrocytes (Olabarria et al., 2010). 

Hypertrophic astrocytes are characterised by enlarged somata and thicker membrane 

processes and have been found in in vitro studies, animal models (e.g. 3xTg-AD) and 

post-mortem brain samples of AD patients (Olabarria et al., 2010, Verkhratsky et al., 

2016, Vijayan et al., 1991). Astrocytes become activated/hypertrophic as a result to 

injury, which can be in form of a traumatic brain injury (Robinson et al., 2016), oxidative 

stress and inflammation (Gonzales-Reyes et al., 2017).  The exact mechanisms remain 

largely unknown, but Notch signalling, the NF-κB (nuclear factor kappa-light-chain-

enhancer of activated B cells) pathway and MAPK (mitogen-activated protein kinase) 

activation are likely to play a role (Acaz-Fonseca et al., 2019). In AD 

reactivity/hypertrophy is believed to be induced by the presence of Aβ plaques (Abramov 

et al., 2003, Grolla et al., 2013), but has been shown to have a neurotoxic as well as a 

neuroprotective role (Liddelow et al., 2017). Hypertrophic astrocytes are evident only in 

the later stages of AD (Olabarria et al., 2010, Rodriguez-Arellano et al., 2016, Sofroniew 

and Vinters, 2010).  
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More recent studies focus on the presence of atrophic astrocytes in AD. These precede 

amyloid plaques and neurodegeneration, manifesting during the early stages of AD, as 

found in the 3xTg-AD mouse model and iPSC-derived astrocytes from AD patients 

(Jones et al., 2017, Verkhratsky et al., 2016, Yeh et al., 2011).  

Atrophic astrocytes are characterised by somata and process shrinkage. IPSC studies have 

revealed that these are cell autonomous effects, but what exactly leads to this aberrant 

astrocyte morphology remains unknown (Jones et al., 2017). As atrophic astrocytes 

present with a decreased level of glial fibrillary acidic protein (GFAP), as well as other 

cytoskeletal proteins (Olabarria et al., 2010, Rodriguez-Arellano et al., 2016), 

mechanisms involved in cytoskeletal structure and motility may be affected in AD. 

As mentioned above, NEDD9 and CASS4 have been implicated in such pathways. 

Appropriate microtubule assembly is essential to maintain structural plasticity. NEDD9 

interacts with AURKA responsible for microtubule assembly and mitotic spindle 

organisation (Nikonova et al., 2013, Pugacheva and Golemis, 2005). Further, studies have 

shown how overexpression of NEDD9 promotes process formation in epithelial derived 

cancer cells (Bargon et al., 2005) and, during preliminary experiments, we found 

overexpression of both NEDD9 and CASS4 induced morphological changes in epithelial 

cells, generating processes atypical for this cell type (Ulzheimer & Jones, 2016; 

unpublished data). 

Only one study to date has investigated the effect of NEDD9 on brain function; finding 

that NEDD9 knock-out mice suffer extensive dendritic spine loss in the dentate gyrus and 

CA1 regions of the hippocampus (Knutson et al., 2016). Consequently, these NEDD9 

null mice displayed deficits in learning and memory via the Morris water maze test. 

Unfortunately, astroglial function was not directly assessed in this study. However, it is 

clear that a NEDD9 knock out alters synaptic integrity; a process heavily shaped by 
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astrocytes. Altered expression of NEDD9 or its paralogue CASS4 are likely to induce 

morphological changes in astrocytes and based on the evidence above, could be involved 

in aberrant astrocyte morphology in AD, identifying a new mechanism of morphological 

control in these cells. Identifying pathways, leading to aberrant astrocyte morphology, 

could lead to the identification of new therapeutic targets. 

 

5.2 Heterogeneous morphology of astrocytes in vitro 

Astrocytes are known to be highly heterogeneous in vivo (Miller, 2018, Matyash and 

Kettenmann, 2010, Olude et al., 2015), but it is unknown if the normal human astrocytes 

exhibit the same heterogeneity in a 2D culture. To test the morphological characteristics 

in vitro, normal human astrocytes were transiently transfected with pEGFP-C1 (a vector 

expressing only EGFP) to permit visualisation of the full extent of the cell. Untransfected 

cells are difficult to assess, as no stain allows visualisation of entire cell morphology 

comparable to GFP. Brightfield microscopy or a cell membrane stain could be used, to 

visualise untransfected cells, but such methods are not suitable for morphometric 

quantification and hence unsuitable for this thesis.  

The gross morphology of fixed primary human astrocytes was assessed in 20 random 

fields of view each from three separate donor pools. As expected, EGFP filled the entire 

cell, including all processes and soma (Figure 5.1). Four distinct morphologies were 

evident, and cells were thus binned into four categories: fibroblast-like (A - large >20 µm, 

process-devoid), polarised (B - exhibiting a single, usually thick, process), arborised (C - 

consisting of a small soma with multiple ramified processes), and atrophic (D - process-

devoid with reduced soma width, <10 µm). 
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Figure 5.1 NHAs transfected with pEGFP-C1 exhibit four distinct morphological types. 

Representative images of Fibroblast-like, process devoid cells (A), polarised, 

asymmetric cells (B), arborised cells (C) and atrophic cells with reduced soma 

width (D). Scale bar = 20µm 

 

The populations of astrocytes transfected with pEGFP-C1 revealed an uneven distribution 

of morphologies, whereby most cells exhibited fibroblast-like morphology 37.7±0.9 % or 

polarised morphology 36.7±1.2 %.  Fewer arborised cells 18.0±0.8 % were seen, and only 

a small number of cells with an atrophic morphology 7.5±1.1 % could be observed in this 

cell population (Figure 5.1), indicating that, although some heterogeneity exists, healthy, 

untreated human astrocytes in vitro display primarily fibroblast-like and polarised 

morphologies.  
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Figure 5.2 NHA distribution of morphologies in vitro 

Astrocytes in vitro display mainly fibroblast-like 37.7±0.9 % and polarised 

36.7±1.4 % morphologies. Arborised cells made up 18.0±0.8 % and few 

atrophic cells 7.5±1.1 % were found in NHAs transfected with a GFP 

expressing plasmid (control group), N=3, three repeats per N. Error bars ± 

SEM. 

 

 

The visual binning of NHAs into morphological groups reveals that these cells exhibit 

heterogeneity in vitro. Although most cells displayed a fibroblast-like morphology, as can 

be expected in 2D cultures, almost as many cells revealed a polarised shape and just over 

a quarter of cells exhibiting different morphologies, showing how diverse astrocytes are, 

even grown in culture.  

 

 



125 

 

5.3 Overexpression of the Cas-proteins in normal human astrocytes 

 Morphological distribution in NEDD9 and CASS4 overexpression 

models 

To determine the effect of overexpressing the Cas-proteins on primary human astrocyte 

morphology, fixed primary astrocytes, which had been transfected with NEDD9 LV-

CMV, CASS4 LV-CMV or the blank GFP-only vector were visually binned into the 

previously established morphological categories. Importantly, the LV-CMV expression 

vectors bicistronically co-express a GFP (CopGFP2) alongside either NEDD9 or CASS4 

to permit both the identification of transfected cells and the visualisation of the entire cell. 

The gross morphology of fixed primary human astrocytes was assessed in 20 random 

fields of view each from three separate donor pools for each of the transfection conditions. 

Analysis was undertaken in a blinded manner (a third party obscuring all slide labels) to 

avoid any bias. 

The control group (Blank GFP-only LV vector) exhibited each of the four morphologies 

identified with the pEGFP-C1-transfected cells. Again, the distribution of morphologies 

was uneven and was indistinguishable to that seen with pEGFP-C1 (Figure 5.2), 

suggesting that the CopGFP2-expressing vector did not cause any morphological changes 

to the NHAs compared to the more widely utilised pEGPF-C1. Specifically, the blank 

vector transfected cells comprised predominantly fibroblast-like (37.7±0.4 %) (Figure 

5.3) and polarised cell (34.3± 1.5 %) morphologies, with significantly fewer arborised 

(19.3 ±1.5 %) and atrophic (9.3 ±0.6 %) cells (Kruskal-Wallis; H(3)= 88.021, P<0.001; 

Dunn-Bonferroni pairwise comparisons; fibroblast vs arborised or atrophic, P<0.001; 

polarised polarised vs arborised or atrophic, P< 0.001). It was vital to establish the 

statistical significance between the morphology groups within the control cell population 

in order to compare these findings with the data of NEDD9 or CASS4 overexpressing or 
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depleted cell populations. This allows a comparison of morphology distributions within 

and across populations and whether the differences are statistically significant. 

 

Figure 5.3 Distribution of morphologies in the blank vector control group 

Visual binning into morphological categories and comparison of the distribution 

revealed that populations of NHAs, transfected with a blank vector display 

significantly fewer arborised and atrophic cells than fibroblast-like and polarised 

cells. N=3 donors, three repeats per N. Error bars ± SEM. *** p≤ 0.001.  

 

 

 

 

 

 

As with the blank GFP-only transfected cells, the CopGFP2 expressed alongside either 

NEDD9 or CASS4 from the LV-CMV expression vectors filled the entire cell and 

permitted visualisation of all processes (e.g. Figure 5.1). 

Cells overexpressing NEDD9 retained heterogeneity of morphology, exhibiting all four 

morphological classifications (Figure 5.4). Similar to control cells, the distribution of 

these morphologies was not even (Kruskal-Wallis; H(3)=35.7, P<0.001), however the 

NEDD9 overexpressing NHAs were predominantly arborised (36.1±1.3 %), with a 

significantly greater proportion compared to fibroblast-like (19.9±1.0 %) cells (Dunn-
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Bonferroni pairwise comparison, P= 0.005). There were also significantly fewer atrophic 

cells (7.3±1.3 %) than any other morphological type (Dunn-Bonferroni pairwise 

comparison, P<0.001, all other morphology groups). 

 

 

 

Figure 5.4 Distribution of morphologies in NHAs overexpressing NEDD9 

Visual binning into morphological categories and comparison of the 

distribution revealed that populations of NHAs, overexpressing NEDD9 display 

significantly fewer fibroblast-like cells and significantly more arborised cell.s 

N=3 donors, three repeats per N. Error bars ± SEM.  ** p≤ 0.01, *** p≤ 0.001. 

 

 

 

 

 

Astrocytes overexpressing CASS4 also retained a heterogenous set of morphologies 

(Figure 5.5; Kruskal-Wallis; H(3)=48.485, P< 0.001). Crucially, this distribution of 

morphologies was distinct to that of the blank control cells; but very similar to the NEDD9 

overexpressing cells. Again, like the NEDD9 overexpressing cells, CASS4 
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overexpression induced a predominantly arborised morphology (Figure 5.5), with a 

significantly greater proportion of these cells compared to fibroblast-like cells (Dunn-

Bonferroni pairwise comparison, P< 0.001). Conversely, there was a significantly 

reduced number of atrophic cells compared to all other morphological categories (Dunn-

Bonferroni pairwise comparison, P< 0.001). 

 

 

Figure 5.5 Distribution of morphologies in NHAs overexpressing CASS4 

Visual binning into morphology categories and comparison of the distribution 

revealed that populations of NHAs, overexpressing CASS4 display significantly 

less fibroblast-like cells and significantly more arborised cells. N=3, with three 

repeats per N. Error bars ± SEM. *** p≤ 0.001 

 

 

The above data suggested that NEDD9- and CASS4-overexpressing cells exhibited 

patterns of morphologies which were similar to one another and clearly distinct from 

control cells. To investigate, the relative proportions of each morphological type were 

compared across each of the transfection groups (Figure 5.6).  
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It was found that the distribution differed between the groups (ANOVA; F(2,6)= 134.945, 

P< 0.001), suggesting that CASS4 and NEDD9 expression plays a role in astrocyte 

morphology. The control blank vector group comprised a significantly greater number of 

fibroblast-like cells than the cells overexpressing either CASS4 or NEDD9 (Tukey post 

hoc, P <0.001, for both). No significant difference in the distribution of polarised or 

atrophic cells was seen across the transfection groups (Tukey post hoc, P= NS, for all 

comparisons). NEDD9 and CASS4 overexpression did induce a significant increase in 

the proportions of arborised NHA cells in comparison to the control group (Tukey post 

hoc, P= 0.015 and P= 0.045, respectively), suggesting that overexpression of the Cas-

protein is capable of promoting process formation in astrocytes in vitro. 

 

. 

 

Figure 5.6 Distribution of morphologies of cells overexpressing NEDD9 or CASS4 differs 

significantly from the blank vector control population.  

Distribution of morphologies was compared across groups, showing a 

decreased number of fibroblast-like and polarised cells and an increase of 

arborised cells in populations overexpressing NEDD9 or CASS4 compared to 

the blank vector transfected control population. Error bars ± SEM. *p≤ 0.05; 

*** p≤ 0.001  
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 Morphometric analysis of NEDD9 & CASS4 overexpression models 

Although bias was avoided by numbering slides whilst assessing the distribution of 

morphologies under different transfection conditions, this method of morphological 

assessment remains somewhat subjective and is only semi-quantitative. To quantify any 

morphological changes induced by the overexpression of NEDD9 or CASS4, 

overexpressing NHAs and control cells were imaged using confocal microscopy to 

generate 3D images suitable for morphometric analyses. In all cases, z-stacks of entire 

cells were collected from a minimum of 20 cells from each of three separate donor NHA 

pools. This permitted the creation of 3D isosurface renders, which could be analysed for 

morphometric characteristics. 

Initial visualisation of 3D isosurface renders of cells overexpressing NEDD9 or CASS4 

appeared markedly larger in comparison to the blank vector transfected control, although 

the tendency towards arborisation was not as readily apparent (Figure 5.7). 

 

 

Figure 5.7 Overexpression of NEDD9 or CASS4 induces larger cells sizes compared to 

controls 

Representative 3D isosurface renders of transfected NHAs expressing GFP 

permitted visualisation of the entire cell. Optical z-stacks were compared to 3D 

vectors and revealed an increase in size of NHAs overexpressing NEDD9 (B) 

or CASS4 (C) in comparison to the blank vector control (A). Scale bar = 20µm.  
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Morphometric analysis of 3D isosurface renders from normal human astrocytes, 

overexpressing NEDD9 revealed a significant increase in both cell surface area 

(ANOVA, F(2,6)= 14.041, P= 0.005) and a Tukey post hoc test revealed that cell surface 

area of cells overexpressing NEDD9 (13740.66±1077.79 µ2) was significantly larger (P= 

0.008) than the blank vector transfected control (5817.56±472.61 µ2). There was also a 

significant difference of volume (ANOVA, F(2,6)= 10.097, P= 0.12) and a Tukey post 

hoc test revealed that cell volume of cells overexpressing NEDD9 (17356.31±1392.75 

µ3)  was also significantly increased (P= 0.01) versus blank vector transfected control 

NHAs (8027.5±1674.8 µ3), (Figure 5.10). The same was found for CASS4 

overexpressing cells, which also showed significant increases in both cell surface area 

(13549.4±1725.9 µ2 ) and volume (13543.4±1338.3 µ3 ) versus blank vector transfected 

control NHAs (5817.5±472.6 µ2 and 8027.5±1674.8 µ3, respectively) (Figure 5.10; P= 

0.009 and P= 0.029). Taken together this finding suggests that both Cas-proteins are able 

to influence astrocyte morphology when overexpressed.  

A comparison of cell surface area to volume (SA:V) ratio revealed no significant changes 

between cells overexpressing either of the Cas-protein in comparison to the blank vector 

transfected controls (Figure 5.8, C), suggesting that surface area and volume increase in 

relation; overexpression of CASS4 and NEDD9 produces proportionately larger cells. 
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Figure 5.8 Overexpression of NEDD9 or CASS4 increases cell surface are and volume 

Morphometric analyses of 3D isosurface renders of NEDD9 or CASS4 

overexpressing NHAs showed that cell surface area and volume are 

significantly increased in the NHAs overexpressing either of the Cas-protein in 

comparison to control NHAs. Surface to volume ratio remained the same across 

all transfection groups. N=3 donors, two technical repeats.  Error bars ± SEM. 

*p≤ 0.05; ** p≤ 0.01.  
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5.4 Knock-down model 

 Morphology distribution in NEDD9 & CASS4 knock-down models 

To determine the effect of NEDD9 or CASS4 knock-down on primary human astrocyte 

morphology, fixed primary astrocytes (N=3) were assessed in >20 random fields of view. 

Prior to analysis, transfection conditions were obscured by randomly numbering all slides 

to avoid any bias. The distribution of morphologies within groups of transfection 

conditions a) Scramble RNA, b) NEDD9 siRNA, c) CASS4 siRNA was assessed and 

compared to determine the how knock-down of the Cas-proteins affects astrocyte 

morphology in vitro. 

The control group (scramble) presented with a heterogeneous distribution (Figure 5.9) of 

morphologies but presenting with a large number of fibroblast-like (34.2±1.9 %) and 

polarised cells (39.7±0.8 %) and significantly less arborised (16.9±2.2 %) and atrophic 

cells (9.1±0.6 %) (Kruskal-Wallis; H(3)= 44.985, P<0.001), reflecting the discrepancies 

between fibroblast-like and arborised or atrophic cells (Dunn-Bonferroni pairwise 

comparison, P= 0.022, P= 0.003; respectively). As well as significantly less arborised 

and atrophic cells in comparison to polarised cells (Dunn-Bonferroni pairwise 

comparison, P< 0.001; both), reflecting the distribution of morphologies in the blank 

vector control group in the overexpression experiment. 

 



134 

 

 

Figure 5.9 Distribution of NHA morphologies in the scramble control group 

Visual binning into morphology categories and comparison of the distribution 

revealed that populations of NHAs, transfected with a scramble control display 

significantly less arborised and atrophic cells than fibroblast-like and polarised 

cells. N=3 donors, two technical repeats. Error bars ± SEM. *p≤ 0.05; ** p≤ 

0.01. 

 

 

NEDD9 knock-down NHAs presented with a distribution of morphologies distinctly 

different from the scramble control group (Figure 5.10). Although all four morphologies 

were still evident (Kruskal-Wallis; H(3)= 9.801, P= 0.02), the atrophic morphological 

phenotype predominated. A significant increase of atrophic cells (39.1±0.7 %) could be 

found in comparison to fibroblast-like (15.8±1.6 %) or arborised cells (18.8±0.8 %). 

(Dunn-Bonferroni pairwise comparison, P= 0.002 and P< 0.001, respectively). These 

data suggest that knock-down of NEDD9 promotes atrophic morphologies in astrocytes. 
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Figure 5.10 NEDD9 knock-down leads to a significant increase of atrophic cells 

Visual binning into morphology categories and comparison of the distribution 

revealed that populations of NHAs, depleted of NEDD9 display significantly 

more atrophic cells and significantly less of any other morphology type. N=3 

donors, two technical repeats. Error bars ± 2 SE.  ** p≤ 0.01; *** p≤ 0.001 
 

 

 

CASS4 knock-down NHAs demonstrated a similar distribution as for NEDD9 knock-

down; specifically a robust shift towards atrophic morphologies (Figure 5.11). 

Comparison of morphologies across the CASS4 knock-down group were revealed a 

significantly uneven distribution (Kruskal-Wallis; H(3)= 48.2, P< 0.001), indicating that 

morphological heterogeneity persisted. A significantly increased number of atrophic cells 

(39.7±1.1 %) was found in comparison to the other morphology types of fibroblast-like 

(18.5±0.7 %), polarised (24.7±1.2 %) and arborised (17.0±1.0 %) (Dunn-Bonferroni 

pairwise comparison, P< 0.001; for all), suggesting that CASS4 depletion promotes an 

atrophic morphology of astrocytes, similar to its paralogue NEDD9. 

 



136 

 

 

Figure 5.11 CASS4 knock-down leads to a significant increase of atrophic cells 

Visual binning into morphological categories and comparison of relative 

proportions revealed that populations of NHAs depleted of CASS4 display 

significantly more atrophic phenotypes and significantly fewer of any other 

morphology type. N=3 donors, two technical repeats. Error bars ± SEM.  *** 

p≤ 0.001 

 

 

As was seen with the overexpression studies, these data suggested that knock-down of 

NEDD9 and CASS4 in NHAs induce similar morphological changes (i.e. a shift towards 

the atrophic cellular phenotype), which are markedly distinct from scramble cells. To 

investigate, the relative proportions of each morphological type were compared across 

each of the transfection groups (Figure 5.12; ANOVA; F(2,6)= 55.732, P< 0.001).  

The number of fibroblast-like cells was significantly reduced upon knock-down of either 

NEDD9 or CASS4 compared to scramble controls (Tukey post hoc, P< 0.001 for both). 

A similar pattern was seen for polarised cells, the proportions of which were significantly 

decreased in either Cas-protein knock-down versus the scramble control (Tukey post hoc, 

P< 0.001 for both). This indicated that depletion of the Cas-proteins drives reduction of 

the two dominant NHA morphologies, fibroblast-like and polarised, found predominantly 
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in control NHA groups. No significant difference of distribution of arborised cells was 

found across the groups. As anticipated, a significant difference was found in the 

distribution of atrophic cells, which had been near absent in the control NHAs, but 

predominated in either NEDD9 or CASS4 knock-down cells (Tukey post hoc, P< 0.001 

for both). Taken together these data suggest that depletion of either Cas-proteins leads to 

a rise of atrophic astrocyte profiles. 

 

 

 

Figure 5.12 Distribution of morphologies of cells depleted of NEDD9 or CASS4 differs 

significantly from the control population. 

The distribution of morphologies was compared across groups, showing a 

significant increase of atrophic cells in the populations depleted of NEDD9 or 

CASS4 in comparison to the scramble transfected control population. Error 

bars ±  SEM.  *** p≤ 0.001 
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 Morphometric analysis of NEDD9 & CASS4 knock-down model 

As outlined in the previous section, it is impossible to completely avoid any bias when 

assessing morphologies via visual binning; the method only delivers semi-quantitative 

results. To quantify any morphological changes, induced by the knock-down of NEDD9 

or CASS4, Z-stack images of cells (>10 fields of view, N=3) were taken. This permitted 

the creation of 3D isosurface renders, which could be analysed for morphometric 

characteristics. 

Observations of NEDD9 and CASS4 KD cells revealed a great amount of small atrophic 

cells, as found in the previous experiment of binning cells based on morphology. NHAs, 

depleted of NEDD9 or CASS4 appeared process-devoid and atrophic in comparison to 

the scramble control cells (Figure 5.13). 

 

 

Figure 5.13 Knock-down of NEDD9 or CASS4 induces small, process-devoid cells compared 

to scramble controls 

Representative 3D isosurface renders of optical stacks reveal a decrease in 

surface area and volume in NHAs depleted of NEDD9 (B) or CASS4 (C) in 

comparison to the scramble control (A). Scale bar = 20µm 
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Morphometric analysis revealed a difference of cell surface area and cell volume between 

groups (ANOVA, F(2,6)= 12.8, P= 0.007). Although there was a tendency towards a 

reduction in cell surface area (40.68±849.34 µ2) and volume (5247.41±1027.60 µ3) in 

NHAs depleted for NEDD9 compared to the scramble control (6961.49±12.41 µ2 and 

8344.13±43.44 µ3, respectively), these reductions did not reach statistical significance 

(Games-Howell post hoc, P= 0.136 and P= 0.167, respectively). On the other hand, 

analysis of NHAs with a CASS4 knock-down did reveal significant decreases in cell 

surface area (3761.99±93.87 µ2; P=0.001) and cell volume (4893.0.1±129.93 µ3; 

P=0.001) in comparison to cells transfected with a scramble control. Although no 

significant difference was found between KD CASS4 astrocytes and KD NEDD9 

astrocytes in cell surface area (P= 0.901) or cell volume (P= 0.909), this suggests that 

depletion of CASS4 is capable of inducing morphological changes in astrocytes and may 

do so a greater extent than NEDD9 depletion.  

A comparison of surface to volume ratio revealed no significant differences between the 

Cas-proteins knock-downs and the scramble control, suggesting a proportionate 

relationship between cell surface and cell volume. This might suggest that depletion of 

CASS4, and to some degree NEDD9, leads to proportionately smaller cells. 
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Figure 5.14 Knock-down of NEDD9 or CASS4 reduces cell surface are and volume 

Morphometric analyses of 3D isosurface renders showed an increase of small, 

process-devoid cells in the KD models in comparison to the control population. 

Cell surface area and volume are significantly decreased in the NHAs depleted 

of the Cas-protein in comparison to the control. Surface to volume ratio 

remained the same across populations. N=3 donors, two technical repeats. 

Error bars ± 2 SEM.  ** p≤ 0.01 
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5.5 Discussion 

Previous studies have shown that altered expression of NEDD9 and CASS4 affect 

essential cellular mechanisms, including cell growth, migration and adhesion (Beck et al., 

2014, Singh et al., 2008, Tikhmyanova et al., 2010). Upregulation of the Cas-protein have 

been shown to promote migration, metastasis and invasion in numerous cancers (Zhou et 

al., 2017, Li et al., 2016, Wang et al., 2017), including epithelial to mesenchymal 

transition in mammary epithelial cells (Kong et al., 2011). All of these cellular processes 

exploit the Cas-protein abilities to induce changes in cellular morphology.  

Here it was found that overexpression of either NEDD9 or CASS4 is capable of directing 

astrocyte morphology, a phenomenon not previously demonstrated, implicating a new 

role for the Cas-proteins in the regulation of astrocyte morphology. This indicates, that 

the proteins may play a role in astrocyte dystrophy in AD and could unearth mechanisms, 

which could be exploited as therapeutic targets.  

Initially, the changes found between NEDD9 and CASS4 overexpression promoted a shift 

towards an arborised cell phenotype and a decrease in fibroblast-like cells. This is in 

keeping with previous findings that upregulation of NEDD9 promotes process formation 

in epithelial cancer cells (Bargon et al., 2005), albeit under different conditions (in 

presence of Rho inhibitor) and in non-glial cells. Although the findings of this work 

suggest overexpression of the Cas-proteins promotes process formation in astrocytes and 

thus increasing the arborised cell types, the method of visually assessing cell morphology 

is limited by subjectively categorising cell morphologies.  

On the contrary, the morphometric quantitative analysis revealed that overexpression of 

both, NEDD9 and CASS4 leads to generally larger cells, based on the measurements of 
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volume and cell surface. Yet no significant difference in surface to volume ratio was 

found, which indicates that the morphology is not necessarily more complex in the 

overexpressing cells, compared to the control group; a small soma with several processes 

would lead to a higher surface to volume ratio in comparison to cells of a less complex 

nature as fibroblast-like cells. As mentioned earlier, the initial assessment of 

morphologies revealed that overexpression of the Cas-proteins promoted process 

formation, leading to an increase of arborised cells in these populations, yet the surface 

to volume ratio comparison does not reflect these results. This may be as a result of some 

overlapping between the morphology categories or due to cells appearing more/less 

complex in 2D images than the actual 3D shape; isosurface renders used for 

morphometric analysis reflect the actual cell shape to a greater degree. On the contrary, 

software to create isosurface renders of cells may be unable to detect finer processes, 

which can be detected by the human eye. Both methods were used to gain a broader 

perspective on the morphological changes induced by NEDD9 and CASS4. To answer 

the question whether the Cas-proteins induce process formation, a third method, a 

modified method (ImageJ) of Scholl analysis was trialled. Scholl analysis is a quantitative 

method, which was originally used to assess neuron morphology, measuring dendritic 

processes and the number and size of branching processes to assess arborisation (Longair 

et al., 2011, Sholl, 1953).  This method proved to be unsuitable for the assessment of 

astrocytic processes in 2D culture. Although a modified Sholl method has recently been 

applied to astrocytes, this was in whole tissue sections; where astrocytes exhibit native 

3D conformations that include much finer processes emanating in all dimensions 

(Tavares et al., 2017).  
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Morphological analyses of the NEDD9/CASS4 knock-down model also confirmed that 

altered expression of the Cas-protein induces changes in astrocyte morphology. The 

results show that depletion of either of the proteins promotes atrophic cellular phenotypes. 

Morphometric quantitative analysis reflected these results, although depletion of CASS4 

had a greater effect. In either case there was a tendency for the morphological 

heterogeneity of the cell population to be reduced in comparison to the control population. 

It had previously been shown that depletion of NEDD9 induces cell rounding in mouse 

embryo fibroblasts (Zhong et al., 2012) and is capable of inducing dendritic spine loss of 

hippocampal neurons in mice (Knutson et al., 2016).  

These studies indicate that depletion of NEDD9 can inhibit the formation or maintenance 

of membrane protrusions, such as processes, as seen here. Intriguingly, these atrophic 

cells mimic the atrophic phenotype of astrocytes found in AD models of astrocytes (Jones 

et al., 2017, Verkhratsky et al., 2016, Yeh et al., 2011). 3D isosurface renders of NHAs, 

depleted of NEDD9 and CASS4 (representative exemplar shown, Figure 5.15) display 

the same aberrant morphology as iPSC derived astrocytes of patients, carrying either 

EOAD (PSEN1 M146L) or LOAD (ApoE4+/+ ) mutations (Figure 5.15). 
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Figure 5.15 NHAs depleted of NEDD9 or CASS4 mimic atrophic phenotype of astrocytes 

found in AD models of astrocytes 

Exemplar 3D isosurface renders constructed from serial confocal z-stacks of 

NHAs depleted of NEDD9 or CASS4 (top) display the same aberrant 

morphology found by Jones et al., 2017 in iPSC derived astrocytes of 

PSEN1 M146L LOAD and ApoE4+/+ EOAD patients (bottom). Scale bar (top) 

= 20µm; Scale bar (bottom) = 10µm.  

 

 

The NHAs, depleted of NEDD9 or CASS4 display a morphology almost 

indistinguishable from the iPSPC derived astrocytes. Both are characterised by soma 

shrinkage and complete loss of cellular processes.  

The iSPC model Jones et al. (2017) employed, originates from patients with mutations 

known to cause AD. Yet it is unclear how and if these mutations lead directly to this 

(atrophic) phenotype. In LOAD, only around 50% of patients are homozygous for the 

APOE ε4 allele (Huang et al., 2004), so it is unclear whether astrocyte atrophy would be 

present in patients with LOAD who do not carry the gene. Testing this, is currently not 
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possible due to atrophy manifesting prior to symptoms; brain samples from deceased 

patients and hence late stage disease development would not display this astrocyte 

phenotype. Although an in vivo model of NEDD9-/- or CASS4 -/- may deliver some vital 

clues, as knock-down of the proteins alone caused clear phenotypical changes in this 

model. Furthermore, testing the expression levels of NEDD9 and CASS4 in iPSC derived 

astrocytes, originating from AD patients could indicate whether the Cas-proteins play an 

additional role. 

 

Although it remains unknown how exactly altered expression of NEDD9 and CASS4 

induces changes in astrocyte morphology, these results show that: 

a) Both NEDD9 and CASS4 direct astrocyte morphology in vitro 

b) Overexpression of the Cas-proteins leads to larger, possibly more arborsied cells 

c) Depletion of CASS4 leads to atrophic astrocyte morphology (and NEDD9 

depleted astrocytes tend towards being atrophic) 
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Chapter 6 

Analyses of functional markers 
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6 Chapter 6 – RESULTS: Analysis of astrocyte functional 

markers  

6.1 Background 

Astrocyte morphology and function are inexorably connected. As proper morphology is 

vital to astrocyte function, astrocyte dystrophy coincides with aberrant cell function 

(Dossi et al., 2018, Matias et al., 2019, Zhou et al., 2019). In order to indicate altered 

astrocytic function, several functional markers may be assayed, such as glial fibrillary 

acidic protein (GFAP), s100 calcium-binding protein B (S100B) and transporters such as 

the excitatory amino acid transporter 2 (EAAT2). An increase of s100B could initiate 

proliferation and inflammatory responses, similar to GFAP, but has also been shown to 

induce apoptosis in other cell types (Xia et al., 2018). A downregulation of s100B has 

been indicated in a reduced inflammatory response (Ohtaki et al., 2007), suggesting that 

a decrease of s100B in astrocytes may hamper the neuroprotective role of astrocytes to 

brain insults, such as amyloid plaques or NFTs. Downregulation of the glutamate 

transporter EAAT2, which is responsible for removing excess glutamate from the 

synaptic cleft, would lead to a glutamate ‘overspill’, inducing neurotoxicity and thereby 

synaptic loss.  

To investigate the astrocyte function in the model of this thesis, functional tests would be 

required, but were not within the scope of this thesis. Furthermore, as it is not known 

which functions may be affected, assessing the expression and localization of key markers 

could identify which functional tests should be undertaken in follow-up experiments. An 
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increase of functional markers, such as GFAP is a feature of reactive/hypertrophic 

astrocytes, which are a typical manifestation in neurodegenerative diseases such as AD. 

GFAP is an intermediate filament and expressed almost exclusively in astrocytes 

(Brenner, 1994, Hol and Pekny, 2015, Sofroniew and Vinters, 2010). This protein is 

widely established as the typical marker for astroglia (Janke et al., 2001, Moon et al., 

2011, Schitine et al., 2015). Changes in the expression of GFAP have been linked to 

numerous neurological disorders such as schizophrenia, (Johnston-Wilson et al., 2000), 

Parkinson’s disease (Tong et al., 2015), amyotrophic lateral sclerosis (Benninger et al., 

2016). Upregulation of GFAP is a typical hallmark of astrogliosis (Yang and Wang, 2015, 

Wakasa et al., 2009), an ill-defined yet ubiquitous context-dependent defensive process 

in which astrocytes adopt a so-called ‘reactive’ phenotype that includes hypertrophic 

cellular re-modelling and altered gene expression, outlined in the previous chapter 

(Liddelow et al., 2017, Pekny and Pekna, 2004). This astrocyte response is established 

with the later, symptomatic stages of AD (Osborn et al., 2016, Colangelo et al., 2014). 

Although found in some other cells, S100B is primarily produced in astrocytes in the CNS 

(Donato et al., 2013, Yardan et al., 2011). Not all functions of S100B are known, but it is 

believed to be involved in cell proliferation, migration and differentiation, and as an 

inhibitor of apoptosis (Brozzi et al., 2009, Lin et al., 2010, Raponi et al., 2007). In 

astrocytes, it has been shown to stimulate proliferation and inflammatory responses when 

overexpressed (Van Eldik and Wainwright, 2003) and altered expression has been 

implicated in several inflammatory and psychiatric diseases neurodegenerative disorders 

(Sathe et al., 2012, Yardan et al., 2011). 

Glutamate is the principle excitatory neurotransmitter of the brain. Astrocytes play a 

crucial role in the production of glutamate; supplying neurones with the precursor 

glutamine via the glutamate-glutamine shuttle (Hertz, 2013). Moreover, astrocytes 
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rapidly scavenge glutamate from the synaptic cleft via several specific transporters, 

protecting neurons from excitotoxicity. EAAT2 is specifically expressed on astrocytic 

processes which ensheath synapses (Holmseth et al., 2009) and is responsible for around 

90% of glutamate uptake from the synaptic cleft (Kim et al., 2011, Nedergaard et al., 

2002), meaning altered expression of this transporter will inevitably therefore lead to 

unbalancing glutamate homeostasis in the brain. Indeed, altered expression has been 

linked to several diseases, such as amyotrophic lateral sclerosis (Rattray and Bendotti, 

2006), Huntington’s disease (Arzberger et al., 1997) and AD (Garcia-Esparcia et al., 

2018). It is hence of interest to establish if altered expression of NEDD9 or CASS4 and 

the corresponding morphological changes lead to a change of EAAT2 expression. 

Altered expression of a wide array of functional astrocyte markers have been suggested 

to play a role in AD. Studies of AD murine models has identified variously changing 

astroglial profiles during different stages of AD (3, 9, 18 and 24 months disease 

development). Yeh et al (2011) reported alterations in GFAP, glutamine synthetase (GS) 

and S100B expression in 3xTg-AD mice, implicating astrocyte functional changes in AD. 

Furthermore, a recent study by Jones et al. (2017) established a change in key markers of 

induced pluripotent stem cell (iPSC)-derived astrocytes from AD patients, detecting 

decreased GFAP, excitatory amino acid transporter-1 (EAAT1) and GS compared to 

controls. Altered expression of key markers in AD astrocytes imply aberrant function, 

which is particularly interesting as the iPSC astrocytes were investigated in an 

autonomous culture, hence free of any environmental influences, such as dysfunctional 

neurons or aberrant proteins. The mechanisms underlying such changes are as-yet 

unexplored. Given that altered expression of NEDD9 and CASS4 are sufficient to 

recapitulate some of the aberrant morphological changes associated with AD, 

experiments were undertaken to establish whether the Cas-proteins were capable of 
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influencing established markers of aberrant function (namely GFAP, S100B and EAAT 

2) also.  

In addition to GFAP, S100B and EAAT 2, the expression of cytoskeletal proteins β-actin 

and α-tubulin was assessed. As outlined in the previous chapter, Cas-proteins are known 

to play a role in cytoskeletal arrangement. NEDD9 activates AURKA, which leads to 

microtubule assembly and mitotic spindle arrangement (Pugacheva et al., 2007) and 

depletion of NEDD9 has been shown to downregulate AURKA, hence leading to 

destabilisation of the cytoskeleton (Ice et al., 2013). Furthermore, NEDD9 regulates 

remodelling of microtubules neurite extension via AURKA activation, (Mori et al., 2009, 

Pugacheva and Golemis, 2005), whereby depletion of NEDD9, demonstrated in a murine 

knockout study, causes dendritic spine loss (Knutson et al., 2016). Also unknown to date, 

CASS4 is a paralogue of NEDD9 and is likely to have similar functions in the regulation 

of the cytoskeleton.  

Actin filaments and microtubules are considered the master regulators of cell 

morphogenesis (Bouchet and Akhmanova, 2017). The actin cytoskeleton, composed of 

various distinct arrays of branched actin filaments, is considered the primary driver of 

cellular morphology. Growth of these filaments beneath the plasma membrane exerts a 

physical force which drives the production of protrusions, such as lamellipodia (Pollard 

and Borisy, 2003). Microtubules are rigid, hollow tubes composed of α- and β-tubulin 

heterodimers. The integrity of the microtubule network is considered secondary to that of 

actin; coordinating actin filament assembly, especially during cell migration (Etienne-

Manneville, 2013). Interestingly, however, in some cell types, including human 

glioblastoma cells, cell motility occurs independently of actin, with the microtubule 

network playing the dominant role (Panopoulos et al., 2011). Moreover, microtubules 

have specifically been shown to be responsible for generating membrane protrusions in 
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primary rodent astrocytes (Ellenbroek et al., 2012, Etienne-Manneville and Hall, 2001) 

although the exact mechanisms underlying astrocyte protrusion formation remain 

unexplored. 

The involvement of NEDD9 in cytoskeletal arrangement and the morphological changes 

in both, the overexpression and KD model are likely to influence cytoskeletal structure in 

astrocytes. The effect on the cytoskeleton and its major components, tubulin and actin, 

has not been investigated to date. Astrocyte dystrophy is likely linked to cytoskeletal 

arrangement. Unearthing mechanisms, leading to astrocyte atrophy in AD, could aid the 

hunt for new and much needed therapeutic targets in AD. 

 

 

6.2 Results 

To assess the expression of astroglial functional markers, NHAs overexpressing either 

NEDD9 or CASS4, and NHAs depleted of NEDD9 or CASS4 were fixed and immuno-

stained with target-specific primary antibodies (against GFAP, S100B, EAAT1, EAAT2 

and GS) together with an Alexa Fluor 555 secondary antibody. Omission of the primary 

antibody was used as control to confirm the specificity of the primary antibody. As 

outlined in chapter four, co-expression of GFP permitted the identification of transfected 

cells. Transfected cells were imaged at x40 magnification in >10 random fields of view 

per experiment, for a total of three experiments each for three separate donor pools. 

Fluorescence intensity measurements of each marker were calculated using FIJI ImageJ. 

Despite adherence to published protocols (e.g. Jones et al., 2017) and subsequent attempts 

at optimisation; immunofluorescent staining for EAAT1 and GS was ultimately 
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unsuccessful. Limitations in the availability of the primary NHAs meant that further 

attempts at optimising the staining protocol were not possible. 

 

 Glial fibrillary acidic protein 

Immunocytochemical staining of NHAs with anti-GFAP revealed a pattern of 

fluorescence which localised to filamentous structures throughout the entire cell, 

consistent with its expected localisation to intermediate filaments. No difference of GFAP 

localisation could be detected in NHAs overexpressing NEDD9 or CASS4 compared to 

the blank vector control group (Figure 6.1). 
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Figure 6.1 Overexpression of NEDD9 or CASS4 has no effect on GFAP fluorescence or 

localisation 

Fixed NHAs were stained using an anti-GFAP primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly striated staining 

throughout the cell consistent with localisation to intermediate filaments. No 

alteration in staining was evident in cells overexpressing NEDD9 or CASS4 

compared to blank vector controls. GFP+ transfected cells, green. N=3 donors. 

Scale bar = 20µm. 

 

GFAP fluorescence intensities were calculated and compared between the blank control 

cells (1073.83±43.14 a.u.) and cells overexpressing NEDD9 (993.72±24.61 a.u.) or 

CASS4 (988.56±9.31 a.u.) (Figure 6.2). No significant difference of fluorescence 
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intensity was found (ANOVA, F(2,6)= 2.685, P= 0.147), suggesting that overexpression 

of the Cas-proteins does not influence GFAP expression in these astrocytes. 

 

 

Figure 6.2 Overexpression of NEDD9 or CASS4 has no effect on GFAP expression 

Mean fluorescence intensity of GFAP staining in NEDD9 or CASS4 

overexpressing NHAs in comparison to the blank vector control. Error bars ±  

SEM. N=3 donors. P=NS. 

 

 

 

As discussed in Chapter 5, NHAs depleted of NEDD9 or CASS4 exhibit reduced size, 

complicating comparison of the pattern of GFAP staining in comparison to scramble 

siRNA transfected controls. Nonetheless, a faint filamentous pattern of staining could be 

seen in those cells which had some form of process (e.g. polarised cells), (Figure 6.3). 
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Figure 6.3 GFAP fluorescence is reduced in NHAs depleted of NEDD9 or CASS4  

Fixed NHAs were stained using an anti-GFAP primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly striated staining 

throughout the cell in the control and reduced staining in the KD cells. GFP+ 

transfected cells, green N=3 donors. Scale bar = 20µm. 

 

 

Initial observations seemed to indicate that GFAP fluorescence was less intense in the 

Cas-protein-depleted cells compared to the scramble control. Hence, quantification and 

comparison of fluorescence was undertaken (Figure 6.4). It should be noted that the 

method of quantification employed takes into account the size of each cell, such that there 
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is no bias against smaller cells. This analysis revealed a significant reduction of GFAP 

fluorescence in both the NEDD9 (137.87±6.34 a.u.) and CASS4 (133.62±3.28 a.u.) 

depleted cells compared to the scrambled control (970.97±40.18 a.u.),  (ANOVA, F(2,6)= 

418.826, P< 0.001; Tukey post hoc P< 0.001 for both); indicating that depletion of either 

of the Cas-proteins induces reduced GFAP expression in primary human astrocytes in 

vitro. 

 

 

 

Figure 6.4 Knock-down of NEDD9 and CASS4 induces down regulation of GFAP 

Mean fluorescence intensity of GFAP in NEDD9- and CASS4-depleted NHAs 

in comparison to the scramble control. Error bars ±  SEM. N=3 donors. *** 

p≤ 0.001 
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 S100 calcium-binding protein B  

Fluorescence imaging of NHAs immunocytochemically treated with an anti-S100B 

antibody revealed staining throughout the cytosol, consistent with the expected 

localisation of S100B. As with GFAP, no difference of S100B localisation could be 

detected between the blank vector control and the NHAs, overexpressing either NEDD9 

or CASS4. (Figure 6.5). 
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Figure 6.5 Overexpression of NEDD9 or CASS4 has no effect on S100B fluorescence or 

localisation 

Fixed NHAs were stained using an anti-S100B primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly punctate staining 

throughout the cell under all transfection conditions. GFP+ transfected cells, 

green N=3 donors. Scale bar = 20µm. 

 

Comparison of the S100B fluorescence between the blank vector control cells 

(656.35±17.96 a.u.) and cells overexpressing either NEDD9 (630.13±24.87 a.u.) or 

CASS4 (637.00±43.37 a.u.) revealed no significant difference (ANOVA, F(2,6)= 0.197, 
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P= 0.827) of S100B fluorescence (Figure 6.6), suggesting that overexpression of the Cas-

protein has no effect on S100B expression in astrocytes. 

 

 

Figure 6.6 Overexpression of NEDD9 or CASS4 has no effect on S100B expression 

Mean fluorescence intensity of S100B in NEDD9 or CASS4 overexpressing 

NHAs in comparison to the blank vector control. Error bars ±  SEM. N=3 

donors. P=NS.  

 

 

On the contrary, a marked reduction of  S100B fluorescence was observed between the 

scramble control cells and the NEDD9 KD or CASS4 KD population, presenting with a 

reduction of S100B fluorescence in both KD populations (Figure 6.7). 
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Figure 6.7 Knock-down of NEDD9 or CASS4 shows a reduction of S100B fluorescence  

Fixed NHAs were stained using an anti-S100B primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly punctate staining 

throughout the cell under control conditions and staining adjacent to the nuclei 

in both KD populations. GFP+ transfected cells, green. N=3. Scale bar = 

20µm. 

 

 

Additionally, an unusual cellular localisation of S100B could be observed in both knock-

down populations when observed by high-resolution confocal microscopy (Figure 6.8). 

S100B ordinarily localises throughout the cytosol, which could be observed in the NHAs 
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transfected with the scramble control (red, left panel). Yet in the cells depleted of NEDD9 

or CASS4, S100B appears to localise in a distinctive ring shape around the nucleus (red, 

centre and right panels, respectively), suggesting that depletion of the Cas-proteins may 

induce re-localisation of the calcium binding protein, possibly to the nuclear envelope. 

 

 

Figure 6.8 NEDD9 and CASS4 knock-out induce aberrant subcellular localisation of S100B 

Fixed NHAs were stained using an anti-S100B primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing punctate staining in the 

control and aberrant circular staining, adjacent to the nuclei (arrows) in both 

KD populations. GFP+ transfected cells, green. Scale bar = 10µm. N=3 

donors. 

 

 

Fluorescence intensities of S100B staining were quantified and compared between NHAs 

depleted of NEDD9 or CASS4 and the scramble control (Figure 6.9). A significant 
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reduction of S100B fluorescence was revealed in the NEDD9 (132.48±5.45 a.u.) and 

CASS4 knock-down (150.38±2.30 a.u.) NHAs compared to scrambled controls 

(675.16±5.97 a.u.),  (ANOVA, F(2,6)= 4027.529, P< 0.001; Tukey post hoc P< 0.001 for 

both), suggesting that KD of NEDD9 or CASS4 downregulates S100B expression in 

primary human astrocytes in vitro. 

 

 

 

Figure 6.9 Knock-down of NEDD9 and CASS4 downregulates S100B expression 

Mean fluorescence intensity of S100B is significantly reduced in NEDD9 or 

CASS4 knock-down NHAs in comparison to the scramble control. Error bars ± 

2 SEM. N=3 donors *** p≤ 0.001. 

 

 

 

 Excitatory amino acid transporter 2 

Fluorescence imaging of NHAs immunocytochemically stained for EAAT 2 revealed a 

slightly punctate pattern of staining throughout the cell, consistent with its expected 

localisation in the cytosol. No difference of subcellular localisation or fluorescence could 
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be observed between cells overexpressing NEDD9 or CASS4 in comparison to the blank 

vector control (Figure 6.10). 

 

 

Figure 6.10 Overexpression of NEDD9 or CASS4 has no effect on EAAT2 fluorescence or 

localisation 

Fixed NHAs were stained using an anti-EAAT2 primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing staining throughout the 

cell. GFP+ transfected cells, green. N=3 donors. Scale bar = 20µm 
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Quantification and comparison of EAAT2 fluorescence revealed no significant difference 

between cells overexpressing either NEDD9 (262.67±4.89 a.u.) or CASS4 (249.79±1.27 

a.u.) and the blank vector control (271.11±10.06 a.u.) (ANOVA, F(2,6)= 5.422, P= 

0.147), suggesting that overexpression of the Cas-proteins has no effect on EAAT2 

expression in astrocytes (Figure 6.11). 

 

 

Figure 6.11 Overexpression of NEDD9 or CASS4 do not affect EAAT2 fluorescence 

Mean fluorescence intensity of EAAT2 in NEDD9 and CASS4 overexpressing 

NHAs in comparison to the blank vector control. N=3 donors. Error bars ± 2 

SEM. P=NS 

 

 

In contrast to the overexpression model, a reduction of EAAT2 fluorescence could be 

observed in the NEDD9 (118.01±1.51 a.u.) or CASS4 (162.97±8.58 a.u.) knock-down 

NHAs when compared with the scramble control (263.40±5.29 a.u.), (Figure 6.12). 
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Figure 6.12 Knock-down of NEDD9 or CASS4 shows a reduction of EAAT2 fluorescence  

Fixed NHA were stained using an anti-EAAT2 primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing staining throughout the 

cell. GFP+ transfected cells, green. N=3 donors. Scale bar = 20µm. 

 

 

Comparing measurements of EAAT2 fluorescence in these cells revealed that this 

reduction was statistically significant (Figure 6.13; ANOVA, F(2,6)= 159.709, P< 0.001; 

Tukey post hoc P< 0.001 for both). This suggests that depletion of either of these Cas-

proteins stimulates a downregulation of this glutamate transporter in human astrocytes in 

vitro. 
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Figure 6.13 Knock-down of NEDD9 and CASS4 downregulates EAAT2 expression 

Mean fluorescence intensity of EAAT2 is significantly reduced in NEDD9 and 

CASS4 knock-down NHAs in comparison to the scramble control. N=3 donors. 

Error bars ± 2 SEM. *** p≤ 0.001. 

 

 

 

 β Actin 

Fluorescence imaging of NHAs stained for β-actin revealed striated staining throughout 

the cytosol and enriched in various stretches of the cell membrane, consistent with its 

cytoskeletal localisation (Figure 6.14). A difference of β-actin fluorescence or localisation 

could not be seen between the cells overexpressing NEDD9 or CASS4 and the blank 

vector control. 
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Figure 6.14 Overexpression of NEDD9 or CASS4 has no effect on βactin fluorescence or 

localisation 

Fixed NHA were stained using an anti-βactin primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly striated staining 

throughout the cell. GFP+ transfected cells, green. N=3 donors. Scale bar = 

20µm. 

 

Quantification and comparison of β-actin fluorescence revealed no significant changes 

between the overexpressing population (NEDD9 217.42±19.46; CASS4 304.17±15.05 

a.u.) and the control population (216.57±36.77 a.u.) of NHAs (Figure 6.15; ANOVA, 

F(2,6)= 3.881, P= 0.083), suggesting that overexpression of the Cas-proteins does not 

influence expression of the actin filament. 
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Figure 6.15 Overexpression of NEDD9 or CASS4 has no effect on βactin expression 

Mean fluorescence intensity of β-actin in NEDD9 or CASS4 overexpressing 

cells in comparison to the blank vector control. Error bars ± 2 SEM. N=3 

donors. P=NS.  

 

 

As seen in the overexpression cells, NEDD9 or CASS4 KD did not appear to change β-

actin fluorescence or cellular localisation in NHAs, depleted of either NEDD9 or CASS4 

in comparison to the scramble control (Figure 6.16). 
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Figure 6.16 Knock-down of NEDD9 or CASS4 has no effect on βactin fluorescence or 

localisation 

Fixed NHAs were stained using an anti-βactin primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly striated staining 

throughout the cell. GFP+ transfected cells, green. N=3 donors. Scale bar = 

20µm. 

 

Comparing β-actin fluorescence of NHAs depleted of NEDD9 (242.57±43.30 a.u.) or 

CASS4 (214.13±31.73 a.u.) to the scramble control (272.72±4.064 a.u.) revealed no 

significant changes between these populations (Figure 6.17; ANOVA, F(2,6)= 0.568, P= 

0.595), suggesting that depletion of NEDD9 or CASS4 does not affect β-actin expression 

in these astrocytes. 
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Figure 6.17 Knock-down of NEDD9 or CASS4 does not affect βactin fluorescence 

Mean fluorescence intensity of β-actin in NEDD9 and CASS4 depleted NHAs 

in comparison to the blank vector control. Error bars ±  SEM. N=3 donors 

 

 

 α Tubulin 

Fluorescence imaging of NHAs immunocytochemically stained for α-tubulin revealed a 

striated pattern of staining, similar to β-actin, throughout the cytosol, consistent with the 

expected cytoskeletal localisation of this tubulin. Cells overexpressing NEDD9 or CASS4 

appeared to display a slightly increased α-tubulin fluorescence in comparison to the blank 

vector control but with no apparent change in subcellular localisation (Figure 6.18). 
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Figure 6.18 Overexpression of NEDD9 or CASS4 leads to an increase of α tubulin 

fluorescence 

Fixed NHA were stained using an anti-tubulin primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly striated staining 

throughout the cell under all transfection conditions. GFP+ transfected cells, 

green. N=3 donors. Scale bar = 20µm. 

 

Quantification and subsequent comparison of α-tubulin immunofluorescence revealed 

that the increase in fluorescence upon NEDD9 (2003.81±58.97 a.u.) or CASS4 

(2290.29±45.53 a.u.) overexpression was statistically significant (Figure 6.19; ANOVA, 

F(2,6)= 68.184, P< 0.001; Tukey post hoc, P≤ 0.001) in comparison to the blank vector 
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control (1537.32±31.32 a.u.) suggesting that both NEDD9 and CASS4 are influencing α 

tubulin expression in these NHAs. 

 

 

Figure 6.19 Overexpression of NEDD9 and CASS4 upregulates α tubulin expression 

Mean fluorescence intensity of α-tubulin is significantly increased in NEDD9 

and CASS4 overexpressing NHAs in comparison to the blank vector control. 

N=3 donors. Error bars ±  SEM. ** p≤ 0.01; *** p≤ 0.001 

 

 

Fluorescence imaging of the KD NHA groups stained for α tubulin revealed a slightly 

reduced fluorescence for the globular protein in cells, depleted of CASS4 in comparison 

to the cells depleted of NEDD9 and the scramble control (Figure 6.20). 
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Figure 6.20 Knock-down of CASS4 shows a reduction of αtubulin fluorescence  

Fixed NHAs were stained using an anti-αtubulin primary antibody, followed by 

Alexa Fluor 555 secondary antibody (red) revealing slightly striated staining 

throughout the cell and a reduction of α-tubulin in the CASS4 KD cells (arrow). 

GFP+ transfected cells, green. N=3. Scale bar = 20µm. 

 

 

Comparison of the measured α-tubulin fluorescence confirmed that there was a significant 

reduction in fluorescence in the CASS4 (722.74±12.34 a.u.) depleted NHAs compared to 

scrambled controls (1507.65±248.88 a.u.) (ANOVA, F(2,6)= 8.444, P= 0.018; Tukey 

post hoc, P= 0.024) but not for the NEDD9 knock-down (1457.98±81.11 a.u.) (Tukey 
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post hoc, P= 0.917) in comparison to the scramble control cells (Figure 6.21), indicating 

that only CASS4 has an effect on α tubulin expression when depleted. 

 

 

Figure 6.21 Knock-down of CASS4 downregulates αtubulin expression 

Mean fluorescence intensity of α-tubulin is significantly reduced in CASS4 

depleted cells in comparison to the scramble control. NEDD9 knock-down 

NHAs show no change in α-tubulin levels. N=3 donors. Error bars ± 2 SEM. 

*p≤ 0.05. 

 

 

6.3 Discussion 

As outlined previously, cell morphology and function are not separate entities but rather 

a unified system in which one influences the other. While overexpression of NEDD9 and 

CASS4 promoted an increase of cell volume and surface area; it had no effect on β-actin 

localisation or expression. Only α-tubulin was altered, with astrocytes overexpressing 

either NEDD9 or CASS4 experiencing increased expression of α-tubulin (although no 

change in subcellular distribution was evident). This may be in keeping with the earlier 

findings that the microtubule network, rather than actin filaments, play a particular role 

in morphological changes in astrocytes and glial cell lines (Ellenbroek et al., 2012, 
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Etienne-Manneville and Hall, 2001, Panopoulos et al., 2011). Development of the 

microtubule network is necessary for cells to increase in size (Lacroix et al., 2018). As 

one of the two major components of microtubules, enhanced expression of α-tubulin 

would be expected in larger cells. Moreover, changes of the microtubule network would 

be expected to occur due to the role of Cas-proteins in cytoskeletal arrangement: NEDD9 

has been shown to regulate AURKA (Bargon et al., 2005), which in turn controls 

microtubule remodelling (Yamada et al., 2010); and both NEDD9 and CASS4 are also 

known to have roles in mediating integrin-dependent signalling, maintaining focal 

adhesion integrity and regulating cell spreading and migration (Singh et al., 2008). This 

finding suggests, that overexpression of the Cas-proteins promotes astrocyte process 

formation and could hence even have a protective role in synapse support. Process 

formation is vital for contact with pre- and postsynaptic membrane, building the tripartite 

synapse, enabling bidirectional communication between neurons and astrocytes (Zovkic 

et al., 2013, Zorec et al., 2015). To investigate the effects of the larger astrocytes and the 

upregulation of tubulin on neuronal function would require co-cultures. Measuring 

neuron function in presence of NEDD9/CASS4 overexpressing astrocytes could provide 

evidence for a protective or damaging role. 

Interestingly, in the knock-down model, only depletion of CASS4 led to decreased levels 

of α-tubulin; NEDD9 depletion did not alter α-tubulin expression. This finding is 

somewhat at odds with reports that CASS4 may be less biologically active than NEDD9 

in mediating integrin-dependent signalling (Singh et al., 2008), possibly due to reduced 

Src binding (Tachibana et al., 1997). The relative activities of the Cas-proteins in 

astrocytes have not yet been explored, however, so this could potentially be reflective of 

an astrocyte-specific preference. Decreased expression of tubulin coincides with the loss 

of processes seen in the KD model and may reflect the inability of these cells to maintain 
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the tripartite synapse and hence loss of synaptic support, which could contribute to 

synaptic loss in the early stages of AD. 

Notably, overexpression of the Cas-proteins did not induce an increase of GFAP, 

suggesting that the increased cell size and process formation seen in the previous chapter 

was not due to an induction of reactivity, as outlined in the introduction, 

reactive/hypertrophic astrocytes present with increased GFAP expression and are a direct 

result to injury (Robinson et al., 2016, Gonzales-Reyes et al., 2017), such as amyloid 

plaques.  

Depletion of NEDD9 and CASS4, on the other hand, induced a marked decrease in GFAP 

expression. Although upregulation of GFAP as part of the astroglial reactive response is 

a hallmark of several neurodegenerative diseases (Pekny and Pekna, 2004, Ross et al., 

2003, Yang and Wang, 2015, Verkhratsky et al., 2013); in AD, reactive astrocytes are 

only evident during later symptomatic stages of the disease (Verkhratsky et al., 2017). 

During the early, asymptomatic stages of AD, astrocytes exhibit atrophy and present with 

a decreased GFAP expression (Beauquis et al., 2014, Jones et al., 2017, Olabarria et al., 

2010). Hence, NEDD9- or CASS4-induced reduction in GFAP concurrent with decreased 

cell size and arborisation in NHAs mirrors the early AD astrocyte phenotype. 

Neither overexpression of NEDD9 or CASS4 showed a significant difference in s100B 

or EAAT2 expression or localisation. Conversely, in Cas-protein-depleted cells, both of 

these markers were significantly downregulated. Reduced expression of the glutamate 

transporter EAAT2 could be a direct consequence of knock-down induced atrophy but 

may also be a result of reduced GFAP expression, as GFAP has previously been 

implicated as a regulator of EAAT2 (Hughes et al., 2004, Simpson et al., 2010). This is 

contrary to the finding that the mouse orthologue of EAAT2, GLT1, only displayed a 

slight, non-significant reduction in astrocytes of the prefrontal cortex in the 3xTg-AD 
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murine model (Kulijewicz-Nawrot et al., 2013), despite the pronounced atrophy evident 

in these cells (Kulijewicz-Nawrot et al., 2012). This disparity might be due to differences 

in the brain regions tested as the NHAs utilised herein being harvested from across the 

cortex, while Kulijewicz-Nawrot and colleagues specifically focused on the medial 

prefrontal cortex. Additionally, GFAP expression in 2D culture of astrocytes can vary 

greatly, depending on culture methods, from their counterparts in vivo (Lange et al., 

2012). This is a limitation of cells in 2D culture but alternatively, it may simply be due to 

inherent differences between mouse and human astrocytes (Mohamet et al., 2018). 

Although in vivo models are generally superior to in vitro, murine astrocytes differ greatly 

to human astrocytes (Zhang et al., 2013, Vasile et al., 2017, Verkahratsky et al., 2017), 

suggesting that primary astrocyte models are a more viable option for this investigation. 

Jones et al. (2017) previously reported reduced expression of another member of the 

EAAT family of glutamate transporters, EAAT1, in human astrocytes derived from AD 

patients. EAAT1 and EAAT2 share significant sequence homology (Arriza et al., 1994) 

and are both found almost exclusively on astrocyte processes which ensheath synapses, 

although they may exhibit some functional differences and brain region-specific 

expression variation (Valtcheva and Venance, 2019). Unfortunately, EAAT1 expression 

could not be tested in this thesis owing to the technical difficulties with the staining and 

a limited number of primary astrocytes available for optimisation. In the absence of any 

published literature suggesting otherwise, it is reasonable to speculate that the factors 

which impact upon the expression of one paralogue will have a similar effect on the other. 

Parallels may thus be drawn between the downregulation of EAAT1 seen in AD patient-

derived astrocytes and the downregulation of EAAT2 induced by NEDD9 or CASS4 

depletion. In both cases, loss of synapse-associated astrocytic glutamate transporters 

could be indicators of impaired synaptic glutamate homeostasis. 
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S100B was also significantly downregulated in NHAs depleted of either NEDD9 or 

CASS4. Reduced expression of s100B has previously been reported in iPSC-derived 

astrocytes of AD patients (both LOAD and EOAD) (Jones et al., 2017). The atrophic 

astrocytes also displayed a nuclear localisation of s100B, which was exclusively detected 

in the nucleolar region instead of the usual cytoplasmic subcellular localisation. A similar, 

though less extreme, mis-localisation of S100B was observed in the cells depleted of 

NEDD9 or CASS4, wherein the protein localised in a ring shape surrounding the nuclei 

with reduced prevalence in the cytoplasm. Nuclear accumulation of s100B has been 

reported in astrocytes previously, and also in adult oligodendrocyte progenitor cells, 

where those which exhibit nuclear S100B immunoreactivity go on to produce dense 

processes, while those which do not express S100B fail to achieve stellation (Deloulme 

et al., 2004). Depletion of s100B has previously been reported to result in a loss of typical 

morphology and the development of a fibroblast-like shape in the rat C6 glioma cell line 

and the GL15 astrocytoma cell lines, akin to that seen upon Cas-protein depletion (Brozzi 

et al., 2009, Selinfreund et al., 1991). Selinfreund and colleagues suggested that S100B 

might play a role maintaining proper astrocyte stellation through its interaction with Src 

kinase. As Src is a known binding partner of NEDD9 and CASS4, this might be another 

potential mechanism through which the Cas-proteins can exert influence on astrocyte 

morphology. Expression of s100B may also be linked to calcium signalling, but remains 

a limited aspect of such and further functional testing is required to determine the effects 

on calcium signalling in this model; this could be done with calcium labelling and live 

cell imaging. But s100B is also implicated in cell migration, proliferation and 

inflammatory response, whereby s100B downregulation reduces these effects (Xia et al., 

2018). Hence cells, depleted of s100B, are unable to respond to brain insults, suggesting, 
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that these astrocytes may not be able to deal with accumulating plaques and NFTs, leading 

to disease progression in AD.  

Overall, the changes of astrocyte functional markers in the NEDD9/CASS4 

overexpression model have been minimal and clearly coincide with the increased cell 

size, as cytoskeletal protein tubulin is expected to increase with increasing cell size and 

might even provide protective properties. Contrary to this, the KD model presented with 

drastic changes in functional markers, which as outlined above, suggests that the 

physiological functions of these cells are impaired. This is likely to lead to loss of the 

neuroprotective role of astrocytes to injury, such as plaques, and the role in homeostasis, 

such as clearing glutamate from the synaptic cleft. Protein aggregates, such as amyloid or 

tau, and loss of synapses are known AD pathologies and based on the above, atrophic 

astrocytes may be an early contributor to these manifestations. If further tests confirm 

NEDD9 and CASS4 as regulators of astrocyte atrophy in AD, the Cas-proteins could be 

used as therapeutic targets in the future.  
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Chapter 7 

General discussion 
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7 Discussion 

The overall aim of this thesis was to investigate whether altered expression of NEDD9 

and CASS4 induce morpho-functional changes in astrocytes and to explore if the altered 

expression links to a role in astrocyte dystrophy in AD. Initially it was necessary to 

confirm endogenous expression of these proteins, as this had previously not been 

demonstrated. Robust expression of both NEDD9 and CASS4 was confirmed via 

immunocytochemistry and Western blotting in glial cell lines and in primary human 

cortical astrocytes. Ideally, expression would also have been determined in the human 

adult brain, which had only been demonstrated in one previous study (Li et al., 2008), as 

the primary astrocytes used for this thesis are derived from foetal sources. 

Notwithstanding, the NHAs employed did express mature astrocyte markers, including 

s100B which has been reported to be a marker for terminally differentiated cortical 

astrocytes (Raponi et al., 2007). Human brain tissue was not available for this 

investigation (although ethical approvals are being sought to undertake this work, see 

future directions section), however expression was confirmed in the entorhinal cortex of 

adult mice. As the whole brain homogenate contains all brain cell types, conclusions may 

not be drawn about astrocyte expression in isolation. Nonetheless, these data indicate that 

both Cas-proteins are expressed in the mature murine brain. Taken together with the data 

from individual primary astrocyte cultures, it is highly likely, that the proteins are 

expressed in mature astrocytes in situ.  

Normal human astrocytes were selected as the model system in which to test the effects 

of the Cas-proteins. Although CASS4 isoforms were consistent across glial cell lines and 

the primary human astrocytes, blotting of whole cell lysates for NEDD9 revealed key 

differences in the expression of NEDD9 isoforms between the cell lines and primary 
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astrocytes. While cell lines expressed two cleaved forms of the full-length protein (55 

kDa and 65 kDa), NHA lysates contained only one of these isoforms (55 kDa) together 

with two phosphorylated isoforms of the full-length protein (105 kDa and 115k Da) 

(Bradshaw et al., 2011, Law et al., 1998). It may be that these differences are part of the 

altered NEDD9 expression profiles in the cancer cells from which the cell lines are 

derived (Gabbasov et al., 2018, Feng et al., 2015, Li et al., 2011, Izumchenko et al., 

2009). Although, as outlined in chapter four, primary cells are difficult to transfect 

(Alabdullah et al., 2019, Gresch and Altrogge, 2012), it is likely that the different NEDD9 

splice variants may serve different roles and might arise from cell type-specific post-

translational modifications. These differences meant that the primary human astrocytes 

were a superior option on which to base the expression models to permit better translation 

of findings to humans. Hence, immortalised cell lines were omitted from further 

experiments. 

When blotting cell lysates for CASS4, a band was never seen at the predicted size of 87 

kDa in any cell type. Instead, the truncated isoform 2 (76 kDa) was evident, together with 

an unusually large band at 230 kDa was seen in all cell types. This large molecular weight 

species does not correlate with any known isoform of the protein; however, it was 

consistently observed in all lysates, including the cell lines, NHA and mouse brain, 

indicating that the band is representative of CASS4 expression. Additionally, as 

previously indicated, this heavier CASS4 band has also been observed in the laboratories 

of Dr Mahendra Singh and Prof Erica Golemis (personal correspondence), although they 

have never published this finding. Although Cas-proteins undergo extensive 

phosphorylation, the very large size makes this unlikely to explain this size difference. 

The protein may form homo- or heterodimers via the C-terminal domain, as has been 

previously reported for NEDD9 (Law et al., 1999), although the size would be closer to 
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a trimerization, which has not been described for these proteins previously. Alternatively, 

this might represent a complex of CASS4 with one of its larger binding partners, such as 

Abl, which at 123 kDa would provide roughly the correct size band (Shagisultanova et 

al., 2015, Witte et al., 1980). Notwithstanding, this large molecular weight species 

resisted all attempts at disruption, including exposure to heat, additional reducing agents 

and chemical denaturants including urea. Interestingly, it was this band which was 

primarily enriched upon overexpression of CASS4 and knocked-down by siRNA; 

isoform 2 was largely unchanged in either case. This would indicate that a change in 

expression does not influence binding of CASS4 to its ‘mysterious’ binding partner. 

Identifying this binding partner may reveal new insights into CASS4-specific functions, 

since NEDD9 does not appear to form this same complex. Unfortunately, preliminary 

attempts at immunoprecipitation were unsuccessful and, since they were not a central 

objective of this thesis, will have to be left for future work. 

 

The NEDD9 and CASS4 overexpression and knock-down models in NHAs were created 

via transient transfection. This was initially considered to provide a sufficient transfection 

efficiency for subsequent experiments including the planned morphometric analyses. 

Stable transfection of NHAs may have aided this work as a continuous stock could have 

been created, readily available for follow-up experiments and longer-term experiments 

could have been undertaken (although maintenance of primary cells in culture for 

extended periods is not recommended as they become ‘culture adapted’ and start to 

exhibit altered phenotypes (Hayflick, 1979). The procedures of viral design and 

establishing stable transfection, however, are time consuming and require specific safety 

requirements, which would have limited the scope of this project. The transfection 

efficiency was suitable for preliminary validation of overexpression and knock-down via 
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immunocytochemistry. Western blotting, however, is the gold-standard and most 

commonly used method to validate overexpression and knock-down (Kikuno et al., 2007, 

LaRocca et al., 2019, Liu et al., 2009, Zhao et al., 2018). A stable line may have been 

advantageous in this validation via Western blot, as the relatively low transfection 

efficiency generated by the transient transfections meant that endogenous expression of 

the Cas-proteins in the non-transfected cell pool masked the knock-down. This was 

overcome by enrichment via puromycin selection for 24 hours, which produced sufficient 

enrichment by killing off the non-transfected cells in the culture, permitting knock-down 

confirmation. Selection of transfected cells via fluorescence-activated cell sorting 

(FACS) was also trialled, however both the low total numbers of primary cells available 

and the larger-than-average size of the NHAs meant that this method was unsuccessful 

and without results. Given more time for optimisation, FACS would be a suitable method 

to further validate KD and overexpression and improve this model. Other means to 

confirm the knock-down could have included qRT-PCR to quantify NEDD9 or CASS4 

mRNA levels; although this method only indicates the level of the transcript which, as 

described earlier, may not be a reliable indicator of the level of the protein product (Liu 

et al., 2016, Schwanhausser et al., 2011). Nevertheless, the combined results of 

confirmation via quantification of immunofluorescence and Western blot, combined with 

the observation of clear phenotypic changes in the transfected NHAs from three different 

donors, provided sufficient validation of Cas-protein overexpression and knock-down 

within the scope of this project. This thesis is the first study to create overexpression and 

knock-down models of the Cas-proteins in astrocytes as their effect on this cell type, or 

any neuronal cells, has not been tested to date. This permits a novel insight to regulation 

of morphology and physiology of astrocytes and a possible mechanism for astrocyte 
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atrophy in AD. Furthermore, it provides insights to the effect of GWAS identified risk 

variants on clinically relevant cells.  

 

Overexpression and knock-down experiments provided clear evidence that both NEDD9 

and CASS4 are capable of inducing morphological changes in astrocytes, achieving one 

of the main objectives of this thesis. Initial observation and visual binning of cells 

overexpressing either of the Cas-proteins showed a general shift towards a more stellate 

cell phenotype and a decrease in fibroblast-like morphologies. This is reflective of 

previous findings that upregulation of NEDD9 promotes process formation in epithelial 

cancer cells (Bargon et al., 2005). The morphometric quantitative analysis revealed that 

overexpression of NEDD9 or CASS4 leads to generally larger cells, based on the 

measurements of volume and cell surface, but no significant difference in surface to 

volume ratio was found. This would indicate, however, that the cellular morphology is 

not necessarily more complex in the overexpressing cells, compared to the control group; 

a small soma with several processes would lead to a higher surface to volume ratio in 

comparison to cells of a less complex nature as fibroblast-like cells (Jones et al., 2017). 

This discrepancy may be down to a number of factors. The method of visually assessing 

cell morphology is limited by subjectively categorising cell morphologies, whereas 

isosurface renders, used for morphometric analysis, are more quantitative and less prone 

to subjective influences. Moreover, despite best efforts at blinding when visually binning 

cell morphologies, the marked change in cell size was rather obvious to the observer, thus 

potentially compromising the blinding. However, the methodology used to image and 

render cells in 3D for the morphometric analysis could be considered less sensitive to 

detect finer processes. Such processes would contain limited amounts of GFP, making 

them relatively dim. Confocal microscopy (even the high-end systems with hybrid 
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detectors employed here) notoriously struggle to deal with low levels of fluorescence 

since the principles used to collect individual optical z-sections mean much of the light 

from the specimen fails to pass through the pinhole to the detector. A widefield 

fluorescence microscope of the sort used to conduct the visual binning experiments, 

however, collects all of the light from the specimen (even that which is out of focus) 

(Lichtman and Conchello, 2005). This combined with the cells being visualised using the 

human eye (which despite huge advances in the field is still considerably better dynamic 

range than a CCD camera or other digital detector) would offer a superior ability to 

identify fine, dim processes emanating from larger, brighter cell bodies. Alternatively, 

this difference may be the result of using a relatively crude measure of cellular complexity 

in the form of the surface area to volume ratio. It could be that a form of Sholl analysis, 

which was originally developed to quantify neuronal dendritic arborisation (Longair et 

al., 2011, Sholl, 1953), modified to take into account the thicker processes of astrocytes 

might provide a more sophisticated approach to quantifying such complex morphologies. 

Although a modified Sholl method has recently been applied to astrocytes, this was in 

mouse brain sections; where astrocytes exhibit native 3D conformations that include 

much finer processes emanating in all dimensions (Tavares et al., 2017). Attempts to 

apply the method to human astrocytes in culture during this thesis were unsuccessful, 

probably owing to differences in cellular morphology between the 2D culture system and 

the in vivo morphologies upon which the analysis method was based. Nonetheless, 

modification of this morphometric approach might prove beneficial to future studies on 

astrocytes in 2D culture. 

Morphological analyses of the NEDD9 and CASS4 knock-down model presented a 

somewhat clearer picture; visual evaluation and binning cells into morphology types and 

morphometric analysis both revealed that astrocytes depleted of either of the Cas-proteins 
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exhibit an atrophic morphology. These cells presented with a decreased somata width and 

were process devoid. Similarly, morphometric analyses showed a significant decrease in 

cell surface area and volume and no difference in surface to volume ratio, indicating that 

depletion of NEDD9 and CASS4 promotes smaller cells. This is also in keeping with 

previous findings, were NEDD9 depletion has induced cell rounding in mouse embryo 

fibroblasts (Zhong et al., 2012) and is capable of inducing dendritic spine loss of 

hippocampal neurons in mice (Knutson et al., 2016).  

Taken together these data indicate that depletion of NEDD9 and CASS4 can inhibit the 

formation and/or maintenance of membrane protrusions, such as processes, a 

phenomenon which has not previously been reported for CASS4 in any cell type.  

 

The molecular mechanisms underlying Cas-protein-induced morphological changes were 

not explored as part of this thesis, however previous studies provide some insight. 

NEDD9 is known to be involved in several signalling pathways which could lead to 

morphological changes. NEDD9 regulates AURKA activity, which is essential for proper 

arrangement of the microtubule network (Mori et al., 2009, Pugacheva and Golemis, 

2005). Microtubules, rather than the actin cytoskeleton, have previously been especially 

implicated in astrocyte morphogenesis (Ellenbroek et al., 2012, Etienne-Manneville and 

Hall, 2001, Panopoulos et al., 2011). During this process, phosphorylation of the 115 kDa 

NEDD9 isoform is increased (Sakai et al., 1994). This isoform was overexpressed in the 

NHAs transfected with NEDD9 LV-CMV and it is plausible that overexpression triggers 

a similar pathway in astrocytes, inducing process formation, discussed in in chapter 5. 

Additionally, the 115 kDa isoform was depleted in the KD cells and may inhibit such 

pathways, hence inhibit process formation. As cells depleted of CASS4 exhibit a similar 

phenotype, it is likely that the protein acts in the same manner as its paralogue. 
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Alternatively, these morphological changes might be mediated by s100B, whose levels 

appear to be influenced by the Cas-proteins via Src and has been reported to play an 

important role maintaining proper astrocyte stellation (Brozzi et al., 2009, Selinfreund et 

al., 1990). 

One particularly interesting find was that the astrocytes depleted of NEDD9 or CASS4 

mimic the atrophic phenotype of astrocytes found in both mouse and human models of 

AD (Jones et al., 2017, Kulijewicz-Nawrot et al., 2012 Olabarria et al., 2011, Yeh et al., 

2011). Cell morphology in both models are characterised by soma shrinkage and 

complete loss of cellular processes, as was the morphological phenotype induced by Cas-

protein depletion presented here. As astrocyte atrophy in AD remains unexplained and 

polymorphisms in both NEDD9 and CASS4 which likely alter expression have been 

linked to an increased risk of LOAD, it is reasonable to suggest that this might be a 

potential mechanism through which atrophy might manifest and requires further 

investigation. Atrophic, process-devoid astrocytes are likely unable to be in contact with 

synapses, hence losing the ability to support them. This could lead to an increase of toxins, 

such as glutamate, in the synaptic cleft and ultimately synaptic loss. Synaptic loss is a 

manifestation in AD, uncovering mechanisms leading to these hallmarks, such as Cas-

protein induced atrophy, could aid the understanding of pathogenesis and identify new 

therapeutic targets in the future. 

 

The change of astrocyte functional markers induced by Cas-protein depletion also 

correlated with findings from AD models. Jones et al (2017) have reported the 

downregulation of GFAP, s100B, EAAT1 and GS in their atrophic human iPSC-derived 

AD astrocytes. Here a reduction in GFAP and s100B accompanied NEDD9 or CASS4 

knock-down. Crucially, overexpression of the Cas-proteins induced no change in GFAP 
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or s100B levels, indicating that the enlarged morphological phenotype induced was not 

due to astrocyte reactivity, which is associated with upregulation of both of these proteins 

(Pekny and Pekna, 2014). Depletion of s100B has previously been reported to result in a 

loss of typical morphology and the development of a fibroblast-like shape in glial cell 

lines (Brozzi et al., 2009, Selinfreund et al., 1990). Furthermore, downregulation of 

s100B has been shown to inhibit the inflammatory response in other cell types (Ohtaki et 

al., 2007), suggesting that a decrease of s100B may hamper the ability of astrocytes to 

respond to brain insults, such as amyloid plaques or NFTs.  

The downregulation of S100B and its aberrant cellular mis-localisation provided another 

parallel to the studies of atrophic astrocytes in AD, as a reduced expression was reported 

in 3xTg-AD mice and human iPSC-derived AD astrocytes (Jones et al., 2017, Yeh et al., 

2011). The atrophic iPSC-derived AD astrocytes also displayed a mis-localisation of 

s100B, which was exclusively detected in the nuclei instead of the usual cytoplasmic 

subcellular localisation. A similar redistribution of s100B was observed in the NHAs 

depleted of NEDD9 or CASS4 here with the protein localising in a ring shape surrounding 

the nucleus. It remains unclear how the dysregulation and mis-localisation of s100B 

occurs. S100B binds to GFAP, hence the reduction of GFAP and aberrant cytoskeletal 

arrangement in the Cas-protein KD cells could potentially influence s100B localisation. 

To completely elucidate the morphological and functional changes induced by altered 

expression of the Cas-proteins will require additional research. Notwithstanding, NEDD9 

or CASS4 depletion alone appears to induce a similar s100B cellular phenotype to that 

seen in AD models.  

 

Downregulation of the astrocytic glutamate transporter EAAT2 was also reported upon 

depletion of either Cas-protein. Kulijewicz-Nawrot et al. (2013) also reported a slight 
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decrease in EAAT2 in astrocytes of the prefrontal cortex in the 3xTg-AD murine model, 

although this was deemed non-significant, and Jones and colleagues (2017) showed a 

downregulation of EAAT1, a related paralogue of EAAT1 (Arriza et al., 1994). 

Determination of EAAT1 levels in the overexpression and knock-down models was 

attempted, however it was not possible due to difficulties with the optimisation of the 

staining protocol and the limited number of primary cells. The same problem occurred 

for glutamine synthetase, which has also been reported to be reduced in AD (Jones et al., 

2017, Kulijewicz-Nawrot et al., 2013, Rodriguez-Arellano et al., 2016). Notwithstanding, 

these data point to an impairment of astrocyte functional markers upon Cas-protein 

depletion, implying a key role for both NEDD9 and CASS4 in maintaining astroglial 

functions. For example, EAAT2 is responsible for the majority of glutamate uptake by 

astrocytes (Kim et al., 2011, Nedergaard et al., 2002) and hence a reliable marker of 

astrocytic function. Altered expression of the transporter as reported here would 

inevitably lead to unbalancing glutamate homeostasis in the brain. Indeed, altered 

expression has been linked to several neurological diseases, such as amyotrophic lateral 

sclerosis (Rattray and Bendotti, 2006), Huntington’s disease (Arzberger et al., 1997) and 

AD (Garcia-Esparcia et al., 2018). The reduction of EAAT2 could be a direct 

consequence of KD-induced atrophy but may also be a result of reduced GFAP 

expression, as GFAP has previously been implicated as a regulator of EAAT2 (Hughes 

et al., 2004, Simpson et al., 2010). A downregulation of EAAT2 would indicate that 

glutamate transport of the KD cells is affected and may hence lead to unbalanced 

glutamate homeostasis and reduced uptake at the synapse, potentially exposing neurons 

to excitotoxic damage (Kim et al., 2011, Nedergaard et al., 2002). Collectively, the 

dysregulation, particularly the downregulation of functional markers in the KD 

astrocytes, give imply that the function of these cells is affected. This downregulation 
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mirrors the atrophic AD phenotype, identified in earlier studies (Jones et al., 2017), 

further implicating altered expression of the Cas-proteins as a possible mechanism in 

astrocyte atrophy in AD. However, immunocytochemistry alone is not sufficient and 

direct functional assessments, such as glutamate uptake assays, should be employed to 

validate these findings.  

Collectively, the functions of atrophic astrocytes, such as the NEDD9/CASS4 KD model, 

are likely to be impaired and play a role in AD pathogenesis. The downregulation of 

glutamate transporters could ultimately lead to synaptic loss due to glutamate 

neurotoxicity, but the mechanisms by which early synaptic impairment is caused in AD 

remain elusive, however given the dependence of many synapses on close physical 

contact with astrocytes (Hama et al., 2004, Hennenberger et al., 2010), astroglial atrophy 

is likely be a contributing factor in synaptic dysfunction in AD. Furthermore, atrophic 

astrocytes are likely unable to deal with amyloid or NFT load, hence contributing to AD 

pathology. It remains unclear if atrophic astrocytes become reactive during later stages of 

the disease but are likely an independent early hallmark and hence playing a different, yet 

unknown role in disease progression.  

While the mechanisms are not yet fully understood, this thesis demonstrates, that altered 

expression of the Cas-proteins, NEDD9 and CASS4 (implied by GWAS as a risk factor 

for AD) are capable of recapitulating many of the morphological and functional deficits 

seen in atrophic astrocytes in AD. These results build upon the astrocyte atrophy during 

early, asymptomatic AD stages, identified by Jones et al. (2017) and propose a new 

mechanism for this manifestation.  
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7.1 Concluding statement 

In summary, this work provides valuable insights of how NEDD9 and CASS4 may be 

involved in astrocyte pathology and provides solid grounds for further research. This 

work confirms that altered expression of the Cas-proteins leads to morpho-functional 

changes in astrocytes, which may uncover mechanisms leading to astrocyte atrophy in 

AD. This thesis is a step towards elucidating pathologies in AD but harbours some 

limitations, such as the NHA model of foetal tissue origin. Although there are no adult 

astrocyte models available, testing human brain samples alongside the in vitro model 

could have improved this thesis. Furthermore, much time was spent on the validation of 

the models, particularly via FACS, when validation had already been achieved via IF and 

western blotting. This time could have been used to pursue functional tests, thus greatly 

enhanced the last result chapter. Due to the novelty of this work and lack of literature, 

much optimisation was required, which limited time for testing the model. Nonetheless, 

this thesis contributes to the understanding of astrocyte dystrophy in AD and could, with 

some additional work, unearth new therapeutic targets in the future. 
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8 Future directions 

First of all, some work of this thesis could be refined, repeated and extended, such as the 

model validation or the investigation of functional markers, however, this is already 

outlined in the general discussion. The role of NEDD9 and CASS4 in AD development 

has previously not been studied. Based on this, there is copious future work which could 

build upon the findings of this thesis 

A good starting point would be to genotype the NHAs, used in this thesis, as there is the 

possibility of the (NHA) donors carrying the SNPs indicated as LOAD risk factors. 

Although the SNPs are rare and the results have been congruent across all donors, it is a 

vital investigation, which was not possible due to lack of resources for this thesis.  

Once the absence of the indicated SNPs is established, rescue studies should be employed 

to fully exclude the possibility of off-target effects and confirm that KD of NEDD9 and 

CASS4 is indeed the cause for the atrophic phenotype. This work would require the 

development of siRNA-resistant expression vectors which would be used to rescue the 

levels of each Cas-protein following knock-down. Although this would be vital to 

validate the KD, the low transfection efficiency may lead to difficulties as a second 

transfection with siRNA-resistant vectors is unlikely to be successful in all KD cells, if at 

all. This could be overcome with stable transfection, but as outlined in this thesis, is time 

consuming and may cause further off-target effects. Nonetheless, rescue experiments 

should be trialled, including crossover studie, to see if overexpression of CASS4 could 

rescue the phenotype induced by KD of NEDD9, and vice versa. In this way overlapping 

functions could be uncovered.  
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Next functional assessment of the astrocyte models should be undertaken. The findings 

of changed marker expression, particularly the downregulation in the KD model, points 

to aberrant function of these cells. To actually determine this, functional tests could be 

performed. The downregulation of the glutamate transporter EAAT2 is likely to affect 

glutamate homeostasis; a glutamate uptake assay would be a relatively simple but 

effective way to test if glutamate uptake is impaired in these cells. Furthermore, the 

dysregulation and mislocalisation of s100B indicates that calcium signalling may also be 

affected in these cells. To determine calcium signalling in this model, calcium immuno-

labelling, such as Rhod-2, would be required for live cell imaging. Live cell imaging has 

not been undertaken, as the experiments of this thesis required fixed cells. The transient 

overexpression and knockdown would be time limiting but it would also show how these 

cells function over a, although short, time period. 

As KD of NEDD9 or CASS4 leads to smaller cells which reflects the atrophic phenotype 

found in iPSC-derived astrocytes from EOAD and LOAD patients, it would be of great 

interest to determine the expression of the Cas-proteins in these cells. This would 

conclusively establish whether there, expression of the Cas-proteins is indeed reduced in 

AD. The same phenotype had been found in transgenic mouse models of AD, it would 

thus also be of interest to test the expression of the Cas-proteins in AD mouse brain tissues 

in comparison to a wild-type control. 

Furthermore, NEDD9 and CASS4 knockout (KO) murine models would also be a valid 

path of investigation. It has previously been shown that mice null for NEDD9 display 

dendritic spine loss in neurons (Knutson et al., 2016), yet astrocytes were not investigated 

in this study and no such model exists for CASS4. Gaining access to brain tissues from 

the NEDD9 KO model and, in the longer term, establishing a CASS4 KO model would 
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provide significant insight to how altered expression of the Cas-proteins affects astrocytes 

(and other neural cells) in vivo. 

There is little knowledge on how atrophic astrocytes affect neurons. To determine this, 

growing co-cultures of primary neurons alongside astrocytes with altered 

NEDD9/CASS4 expression could give some insight and follow-up testing of neuron 

morphology and function may provide vital clues on synaptic loss in AD.  

Finally, it would be of interest to investigate the large CASS4 (230 kDa) band seen in 

WB and to establish its binding partner. This could be undertaken via 

immunoprecipitation followed by mass spectrometry. This may not relate directly to AD, 

but may yield more knowledge of the Cas-protein individual function, which would 

ultimately aid the investigation of its role in LOAD. 

If the role of NEDD9 and CASS4 in LOAD can be confirmed, it would be of interest to 

test various compounds which may reverse the phenotype caused by dysregulation 

(possibly downregulation) of the Cas- protein expression. Drugs, known to stabilise the 

cytoskeleton, such as Paclitaxel (used in cancer treatment), could also be administered to 

see if they might aid the reverse to a healthy astrocyte phenotype.  

Collectively, there is a myriad of future work which could be conducted based on the 

findings in this thesis which might provide insight into not only the specific functions of 

the Cas-proteins in astrocytes but also their role in the development of LOAD. Several 

steps must be undertaken to determine their role and definite function, but once achieved, 

the Cas-proteins could deliver new therapeutic targets for the treatment of LOAD. 

Furthermore, if the proteins indeed play a role in astrocyte atrophy during the 

asymptomatic stages of AD, they could even deliver targets for preventative measures in 

the future.  
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9.1 Appendix 1 – Exemplar western blot including loading controls 

 

Figure 9.1 Exemplar western blot including lysis buffer controls 

All ten lanes are shown. Lane 1, protein marker (ladder); Lane 2-4, NHA lysate; 

Lane 5 and 6, lysis and loading buffer only (RIPA); Lane 7-9, NHA lysate; Lane 

10, loading buffer (Laemmli) only. Blot stained for CASS4, no visible staining 

in the lanes with lysis buffer or/and loading buffer. 
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