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Abstract 

The aims of this project included, synthesis and characterisation of Carbon dots 

(C-dots), surface modification of the C-dots to secure cell penetration and 

enhance Photoluminescence (PL) properties and the development of peptide C-

dot conjugation to improve cell selectivity.  

 Fluorescent C-dots were prepared by the pyrolysis treatment of citric acid 

monohydrate and ethanolamine at 300ºC. PL studies reveal that C-dots display 

excitation-dependent behaviour, show a high level of conjugation on the surface 

and can disperse well in water. A cell penetrating peptide (K7) made up of seven-

lysine amino acids was synthesized using a semi-automated peptide synthesizer 

and purified using HPLC analysis. Based on the as-prepared C-dots, the K7 

peptide was attached onto the surface of the C-dot via two methods to form two 

conjugated systems, C-dotK7A and C-dotK7B, respectively. Method A relies on 

the covalent attachment of C-dot at the end of the uncleaved peptide as grown in 

the synthesizer, whereas in method B the cleaved peptide is used for the 

conjugation. 

Both conjugated systems demonstrate very low levels of haemolytic activity. A 

synergistic effect noticed for both C-dotK7A and C-dotK7B materials when tested 

against E.coli and Staphylococcus bacteria. At very low concentrations (0.01 mg 

ml-1 both materials effectively suppress bacteria colonies. The C-dotK7A material 

killed 43% of E. coli and Staphylococcus colonies and the C-dotK7B material 

killed 63% of E.coli colonies and 43% Staphylococcus colonies. Their unique 

photoluminescent behaviour, their antimicrobial properties and their supreme 

optical properties, makes C-dotK7 promising materials for bioimaging 

applications
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1. Introduction 

Bioimaging is a relatively new diagnostic tool used in research and the medical 

field and allows in vivo imaging of biological processes within a living organism, 

as well as molecular and cellular signalling/interactions and the movement of 

molecules through membranes. It is a highly informative method and can 

accurately track metabolites used as biomarkers for identifying diseases, 

progress of diseases and treatment response. However, there are some 

drawbacks to the currently available materials (Quantum dots (QDs) and organic 

dyes) used in bioimaging such as, toxicity issues, photobleaching, low quantum 

yields, and excitation only in the ultra violet (UV) light region etc.  

Described below in Figure 1, are uses of bio imaging applications for a variety of 

synthesized C-dots, with brief descriptions of other potential applications such as 

drug delivery.  

 

 

 

 

 

 

Figure. 1 – Some of the major bio applications of C- dots.1  

C-dots represent a new type of fluorescent material that has the potential to 

replace traditional materials such as QDs and organic dyes. C-dots are now being 

synthesized using greener methods and show lower toxicity levels, greater 

biocompatibility, higher quantum yields and improved colloidal stability. With 
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respect to bioimaging applications, emphasis is given to the synthesis of C-dots 

with improved quantum yield in the deep-red and near infrared region that ideally 

also exhibit advanced cell selectivity.1,2  

PL compounds are used in many important applications such as bio-imaging, 

photovoltaics, biological labelling, printing inks, chemical imaging and 

photocatalysis.3 For these PL compounds to be used in more demanding 

applications (in-vivo imaging), they need to display good structural and photo 

stability in harsh environments, have a high affinity for certain proteins or cells in 

the body, high absorption, and provide high quantum yields but low toxicity 

levels.4  

Moreover, C-dots show colour tuneability, easy chemical modifications, photo 

bleaching and up-conversion emission.5  Structurally, the carbogenic core can be 

graphitic or amorphous carbon. The elemental composition of C-dots all have 

carbon, hydrogen and oxygen, some also consist of nitrogen, phosphorus and 

sulphur. Carbonyl, epoxy and carboxyl groups are typically found on the surface.1 

By modifying their size, structure and chemical composition, the PL properties of 

C-dots can be tuned with respect to their applications.2  

1.1. Top-down and bottom-up methods of C-dot synthesis 

In general, the synthetic methods for producing carbon-based quantum dots 

(CQDs) are divided into two approaches; “top-down” and “bottom up”. The top-

down approach looks at synthesizing C-dots from materials like graphite, 

graphene, carbon nanotubes (CNT), carbon black, by reducing their sizes until 

the products show characteristics of PL nanoparticles. This can be done by 

electrochemical carbonization/oxidation, oxygen plasma treatment or chemical 

oxidative cutting/ablation.1 Whereas, the bottom-up approach, focuses on 

carbon-rich precursors such as grass, fruit juice, carbohydrates that can be 
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pyrolized under suitable conditions.1 In principle, it is an energy efficient approach 

to create PL carbon-nanoparticles with enhanced colloidal stability and fine-tuned 

surface chemistry.6  

An important characteristic of C-dots to be used in applications is their PL 

emission. In “bottom-up” synthetic methods, the PL properties depend on the 

synthesis pathway, which determines the size and surface functionalisation of the 

resulting nanoparticle. Wei et al, prepared C-dots by using different amino acids 

with glucose followed by microwave pyrolysis. Different amino acids produced 

different sized C-dots and had different wavelength emissions such as blue, 

green and yellow.1  

1.2. Characterisation of C-dots 

C-dots can be characterised using various techniques, in which some are 

described below. Raman spectroscopy is an analytical technique that could be 

used to differentiate whether the carbon core is graphitic or amorphous. X-ray 

photoelectron spectroscopy (XPS) is a surface-sensitive quantitative 

spectroscopic technique that measures the elemental composition and can 

characterise the detailed bonding structure of the C-dots. Elemental analysis also 

can measure the elemental composition. Fourier Transform Infrared 

Spectroscopy (FTIR) is typically employed for the characterization of the surface 

functionalities.7 Transmission Electron Microscopy (TEM) provides information 

about the size and morphology of the nanoparticles. The size distribution can be 

narrowed through post-treatment e.g. dialysis, oftentimes resulting in well-defined 

nanoparticles.  For example; the pyrolysis reaction of citric acid and ethanolamine 

at different temperatures (230⁰C and 300⁰C), give rise to nanoparticles with 

average diameter 19 and 7 nm, respectively, as shown in Figure 2.4  
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Figure 2. TEM images of (a) CNP230 and (b) CNP300 produced by pyrolytic treatment of citric 
acid and ethanolamine at 230 and 300 oC, respectively.4  

 

1.3. Tuning the photoluminescence properties of C-dots 

1.3.1. Size control 

Graphene “is a single-atom thin two-dimensional sheet consisting of hexagonally-

packed carbon atoms”.8 Recent studies have found that when graphene shrinks 

to zero dimension (nanoscale lateral dimensions) it can fluoresce, and it exhibits 

size-dependent emission.9 The anticipation of CQDs to replace current organic 

dyes, semiconductor quantum dots (SQDs) and fluorescent proteins in many 

biomedical applications, is an exciting prospect because of their tuneable PL 

properties, molecular sizes and  good biocompatibility with living tissue to not 

produce a toxic response. etc.8  

1.3.2. Surface functionalization  

C-dots can have PL emissions even without any surface passivation, albeit the 

intensity tend to be rather low. Surface passivation with organic or polymeric 

materials attached onto the surface of C-dots, can help enhance the PL 

properties considerably. The emissions of passivated C-dots can broadly range 
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from the visible region and extend to the near infrared (NIR) region.10 C-dots 

emitting in the NIR region (red) are important for bioimaging applications, since 

this NIR light can penetrate deep body tissue.1  

Examples of C-dot surface functionalization; 

It has been found by Sun et al, that doping the surface of the carbon nanoparticles 

with inorganic salts Zinc Oxide, Zinc Sulfide (ZnO, ZnS) can increase the 

quantum yield and the brightness of fluorescence emissions, compared to un-

doped C-dots.11  

Goh et al. described in vivo and cellular bioimaging of PEG diamine capped C-

dots made via the pyrolysis of citric acid in hot solvent. The C-dots were 

functionalised by linking hyaluronic acid to the surface to improve receptor-

mediated endocytosis and specific delivery into cells of the body.12  

Qiao et al. established a general and simple method to prepare multicolour PL C-

dots. C-dots prepared by treatment of nitric acid with amorphous activated carbon 

and then the C-dots were passivated using amine-terminated compounds. The 

C-dots were good materials for a live-cell fluorescent imaging agent.13  

1.3.3. pH solvent 

The synthesis of sulphur-doped C-dots (S, C-dots) using waste frying oil as the 

precursor has shown pH sensitive PL. It was deduced, when the pH levels 

increase from 3 to 9, the deprotonation degree of the S, C-dots increases, 

producing higher concentrations of carboxyl functional groups on the surface of 

the S,C-dots, enhancing the PL intensity. 

 This can be viewed in Figures 3a and b.  As the concentration of carboxyl groups 

reaches a maximum point, the PL intensity will begin to decrease and this can be 
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determined by measuring the pH value, which will be between (9-12). The pH 

response of PL intensity has been shown to be reversible. S,C-dots are capable 

fluorescent probes for pH monitoring in biomedical applications.14  

 

 

 

 

 

 

Figure. 3 – (a) PL spectra of the S, C-dots dispersion at different pH values (from 2 to 12) with 
excitation at 380nm. (b) A linear relationship between the PL intensity and pH (from 3 to 9).14  

 

1.3.4. Elemental content  

The addition of heteroatoms via pre-doping or post-doping can affect the 

luminescence of C-dots.14 Post-doping refers to treatments that aim to include 

heteroatoms to the surface of already prepared C-dots, pre-doping aims to 

include heteroatoms during the C-dot generation. An example of this is known as 

surface functionalization, were the surface of the C-dots is oxidized such as 

attaching amine groups. In a study by Liu et al, a Mg/N doping strategy was 

introduced that produced highly luminescent CQDs with a quantum yield (QY) of 

83%. After hydrothermal treatment, Mg-carbon quantum dots (Mg-CQDs) were 

synthesized. The introduction of Magnesium (Mg) helped preserve majority of 

carboxyl groups on the surface and with the nitrogen-passivation lead to the high 

increase in the PL of the final CQDs.15 It was also found, that nitrogen-doped C- 

dots (N-C-dots) had improved fluorescent intensity, compared to un-doped C- 

dots and N-C-dots were successful at detecting Fe3+.16  
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1.4. Toxicity and bio imaging of C-dots 

Fluorescent imaging is a widely used technique, to view biological processes 

taking place in living cells, due to its high sensitivity, lack of radioactivity threat, 

better spatial resolution and greater throughout capability.17 Therefore, C-dots 

are a promising prospect for the field of bioimaging, having interesting 

characteristics such as low toxicity, photostability, up-conversion PL, high 

solubility, multicolour wavelength tuned emission and resistance to photo-

bleaching. C-dots are also promising in applications like drug and gene delivery, 

biosensors and optoelectronic devices.18  

In a study by Sun et al, they first used C-dots for bioimaging by labelling E. coli 

cells using the PEG1500N-passivated C-dots. The fluorescent staining of the E. coli 

bacteria cells occurred when they were incubated with the PEGylated C-dots.  

The confocal microscopy images of Figure 4, show that the endocytosed C-dots 

were mostly present in the cytoplasm, with only a small amount penetrating the 

cell nucleus.11,19  

 

 

 

 

 

  

 

Figure. 4 – Confocal fluorescence microscopy images (488 nm excitation) of (a) E. coli and (b) 
Caco-2 cells labelled with C-dot.11  

Two kinds of C-dots using citric acid with 1, 2-ethylenediamine (CD-1) and N-(b-

aminoethyl)-g-aminopropyl methyldimethoxysilane (AEAPMS) (CD-2) were 

synthesized and found to be excellent “turn off” fluorescent probes. They both 
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displayed quantum yields as high as 50-65%, which can be attributed to the 

heteroatom doping on the surface of the dots. The C-dots had low-level 

cytotoxicity and good cell permeability, thus lead to the successful fluorescence 

imaging of NIH-3T3 cells.20  

The synthesis of green C-dots derived from apple juice, have been investigated 

for the imaging of bacteria (Mycobacterium and Pseudomonas aeruginosa) and 

fungal cells (Magnaporthe oryzae) and showed intracellular wavelength tuned 

emission.21 Furthermore, highly soluble nitrogen-doped C-dots were synthesized 

from ethylenediamine tetraacetic acid using hydrothermal treatment. The study 

by Shi et al found a way to boost carbon-carbon double bond synthetic yields and 

show ultrahigh yield synthesis of N-doped C-dots via hydrothermal carbonization. 

22 The group proved that the uptake and metabolism of N-doped C-dots (mostly 

in the digestive system) in zebrafish, where the N-doped C-dots showed excellent 

down-regulation effects for reactive oxygen species (ROS), and good protection 

against H2O2-induced oxidative stress (the ROS content in N-doped C-dots 

treatment groups was reduced by 68%).22 Overall, the anti-oxidative and low toxic 

N-doped C-dots  of this application, could be a step in the right-direction for 

helping age-related diseases.22  

Zheng’s group attached a platinum(VI) based anti-cancer pro drug oxidised 

oxaliplatin (Oxa(VI)-COOH) onto the surface of C-dots via chemical coupling.23 

These CQDs were taken up by cancer cells through endocytosis and the Oxa(VI)-

COOH is reduced to oxaliplatin(II). The fluorescence signals of the CQDs can 

monitor the distribution of the pro-drug conjugated CQDs, to help adapt the 

injection time and dosage of the medicine.  Lastly, the green method of 

hydrothermal treatment (180 ͦC) of soy milk, which not only exhibits intriguing PL 
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properties, but also displays good electro catalytic activity towards the oxygen 

reduction reaction (ORR).24  

Fluorescent carbon nanodots conjugated with folic acid (C-dots-FA) were 

synthesized to distinguish folate-receptor-positive cancer cells from normal cells. 

Confocal laser scanning microscopy was used to investigate the uptake of C-

dots-FA by HeLa cancer cells. The images (Figure 5a-f) below show that the 

HeLa cells incubated with C-dots-FA show bright fluorescence in both the 

cytoplasm and membrane, but not the nucleus. Weaker fluorescence was 

observed when comparing Folic acid receptor (FR)-negative MCF-7 breast 

cancer cells, suggesting C-dots-FA can be transported into cells via a receptor-

mediated endocytosis. No damage to the cells was observed and the colorimetric 

assay for assessing cell metabolic activity (MTT assay) shows the cell viability 

remained intact upon treatment with C-dots-FA, indicating the C-dot material has 

low cytotoxicity.25 The targeting and detection of cancer cells from normal cells 

was successfully completed by culturing and analysing a model cell mixture of 

NIH-3T3 and HeLa cells. NIH-3T3 cells lack FR, while HeLa cells prominently 

overexpress FR. HeLa cells gave bright fluorescent images, whereas, NIH-3T3 

cells did not express any fluorescence.25   
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Figure 5: fluorescence images of different cell samples. A= NIH-3T3 and HeLa cells after 
incubation for 6h. B= control mixture of C-dots-FA (50 μg mL-1). C= only NIH-3T3 cells incubated 
with C-dots-FA at 37ºC for 6h. Differential interference contrast (DIC) images of the corresponding 
samples (D-F), white arrows represent NIH-3T3 cells.25  

 

 

1.5. Bioimaging of C-dots 

Additionally, C-dots passivated with PPEI-EI agent for two-photon microscopy 

was reported by Cao et al. 19 The passivation leads to surface defects on the 

carbon particle surface acting as excitation energy traps, which allow human 

breast cancer MCF-7 cells be brightly illuminated under the microscope with 

excitation at 800nm. The C-dots were able to label both the cell membrane and 

cytoplasm of MCF-7 cells without reaching the cell nucleus in a considerable 

manner.19 
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1.6. Conjugation with bioactive compounds 

Carbon-dot-transferrin-doxorubicin covalent conjugate (C-dot-trans-Dox) was 

synthesized and investigated for the possibility of delivering the anticancer drug 

doxorubicin to treat pediatric brain tumours, via possible transferrin receptor-

mediated transcytosis. 26 Four pediatric cell lines (CHLA-200, Daoy –tumour 

specimen at diagnosis), (CHLA-226, SJGBM2-tumor specimen from patients 

post chemotherapy) studied to compare the efficacy of C-dots-trans-Dox and Dox 

alone.26 Studies reveal that the transferrin receptors (TFR) are overexpressed in 

many tumours.27 The results from the in vitro studies show better uptake of the 

C-dot-trans-Dox material compared to Dox alone, likely due to high levels of 

transferrin receptors on these tumour cells. 26 

The experiment indicated that C-Dots-Trans-Dox at 10 nM was considerably 

more cytotoxic than Dox alone, reducing the cell viability by 45% for some of the 

pediatric brain tumour cell lines. 26   

 

1.7. Toxicity of Quantum dots 

An issue regarding QDs for use in biomedical applications has been their toxicity 

levels. Heavy metals such as Cadmium, Selenide and Zinc Sulphide used to 

synthesize quantum nanoparticles cause the materials to become very toxic.38 

Therefore, when the QDs introduced into the human body to target and kill 

particular cancer/diseased cells, they will unfortunately also destroy normal, 

healthy cells. Some of the methods mentioned in section 1.11, explained how 
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QDs –peptide conjugation is successful, but high toxicity is a great cause for 

concern.  

 

1.8. Toxicity of C-dots 

Carbogenic nanoparticles also named as “C-dots” where first discovered back in 

2004 by Xu et al29 and are environmentally friendly and biocompatible, without 

heavy metal centres or use of toxic elements.5 Toxicity evaluations have been 

performed for C-dots and generally show encouraging results.11 In a study by 

Yang et al, cytotoxicity evaluations on PEGylated C-dots were performed, and 

found that these dots were generally non-toxic to the cell lines.11 The investigation 

by Tao et al, indicated no obvious toxic effects were present in blood tests or 

haematology readings for the in vivo toxicology of C-dots, observed in female 

balb/c mice for 90 days.11 Hela cells were exposed to concentrations between 0-

160 µg/mL of graphene quantum dots. As seen in Figure 6, over 95% of Hela 

cells survived after 24h incubation, even when the concentration of GQD 

increased to 160 µg/mL.30  

 

 

 

 

 

 

       Figure 6. –  Colorimetric assay ( WST-1-assay)   the relationship between the GQD concentration and 

the cell viability.30  
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In one study, polyethylene glycol (PEG) anchored carbon nitride C-dots 

synthesized by a one-step hydrothermal treatment, then functionalized with a 

Nuclear Localization Sequence (NLS) peptide, by using a standard (1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide/N-Hydroxysuccinimide (EDC/NHS) coupling, 

for targeting the cell nucleus. The in vitro cytotoxicity study on the CDs@PEG 

and NLS-CDs using a MTT assay to assess the cell metabolic activity. In figure 

7, it shows the cell viability of Hep G2, MCF7, A549 and L929 cells incubated with 

various concentrations of NLS-CDs.  Roughly, 90% of all cells tested remained 

alive after a 24 h incubation with NLS-CDs, even after increasing the 

concentration of NLS-CDs to 0.5mg mL-1. The cell viability is still above 75% even 

when the concentration of NLS-CDs is increased to 2mg mL-1.  Therefore, the as-

prepared NLS-CDs and CDs exhibit very low cytotoxicity at the tested dose, 

which is also higher than the concentration usually required for cell imaging.31  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The viability of Hep G2, MCF7, A549, and L929 cells incubated with various 
concentrations of NLS-CDs for 24 h.31  
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A tumour-homing penetration peptide iRGD (CRGDKGPDC) conjugated with red 

shift emissive C-dots (iRGD-CDs). C-dots were synthesized by dissolving and 

heating melanin in deionized water and the iRGD added to the cooled solution. 

Different concentrations of iRGD-CDs used to incubate 4T1 mouse breast cells 

for a 24-hour period. Concentrations as high as 64 μg/mL, showed no difference 

between the control and iRGD-CDs treated cells after 24 hours, suggesting 

iRGD-CDs have low cytotoxicity consistent with C-dots. Increasing the 

concentration to 128 μg/ml could inhibit the growth of 4T1 mouse breast cells, 

meaning the iRGD-CDs could be useful at slowing down the cancer cells.33  

 

1.9. Biomedical applications of C-dots conjugated with peptides 

Alzheimer’s disease (AD) is one of the leading cause for dementia and is 

estimated to be a large health risk as society ages. Amyloid plaques found in the 

extracellular matrix are plaques mainly formed by the self-fibrillation of peptides 

known as amyloid beta (Aβ) peptides. Those peptides are produced by proteolytic 

cleavage of a transmembrane protein called the amyloid precursor protein 

(APP).34 The mechanism linking Aβ peptides and the growth of Alzheimer’s 

disease is not fully clear, but it has been widely accepted that the fibrillation of Aβ 

peptides is closely related to their neurotoxicity and development of AD.35  

As mentioned above, one of the most widely accepted theories of AD is the 

amyloid hypothesis, involving aggregation and fibril formation of amyloid-β (Aβ) 

peptides.37  A research group led by Sun Yet sen designed a new nanomaterial 

(GQDG) conjugating a neuroprotective peptide to graphene quantum dots 

(GQDs). The in vitro assays including TEM and ThT (figure 10 a-b) performed to 



15 
 

investigate the inhibition effects of GQDs and GQDG in the aggregation of Aβ42. 

Both GQDs and GQDG exhibited better inhibitory effects on Aβ42 aggregation at 

a concentration of 200 μg/mL compared to the reference compound resveratrol. 

TEM used to confirm the inhibitory effect of GQDs and GQDG. The TEM images 

show high-density long linear Aβ42 fibrils for the samples of untreated Aβ42 

peptides. Whereas, the Aβ42 peptide samples incubated with GQDs and GQDG 

contained only a few short linear fibrils or few amount of amorphous aggregates. 

Thus, GQDs and GQDG could inhibit the aggregation of Aβ42 fibrils.37  

 

 

 

 

 

 

 

   

 

 

 

 

 

 
Figure 8a: ThT fluorescence assay to determine the inhibition of Aβ42 peptide aggregation when 
incubated with resveratrol, GQDG and GQDs at a concentration of 200 µg/mL.37  
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Figure 8b: The morphology effect of GQDG and GQDs on Aβ42 using TEM. Long linear fibrils 
present for the control sample of A β42, whereas the sample of GQDs incubated with Aβ42 show 
fewer shorter fibrils and the GQDG incubated sample shows even fewer short fibrils.37   

 

 In a study by a research group from Singapore, they synthesized C-dots by 

hydrothermal pyrolysis of sucrose in the presence of Polyethylene Glycol 1500 

(PEG 1500) as a surface passivation and were conjugated with amyloid beta 42 

peptides (Aβ42). The functionalized C-dots were assessed with regards to their 

ability to inhibit the amyloid fibrils.35 The C-dots were incubated with SHSY5Y 

neuroblastoma cells to test their biocompatibility and even at a high concentration 

of 2 mg/ml, the cell viability is above 90%. The confocal images (Figure 8) of the 
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SHSY5Y cells below proves the C-dots can be internalized by the cells and 

localized in the cytoplasm.35 The C-dots were mixed with Aβ42 peptides and the 

fibrillation process observed by using Thioflavin (ThT) staining. At its free state, 

ThT exhibits weak fluorescence, but when bound to amyloid fibrils the 

fluorescence increases greatly.36 As shown in figure 9 (a-c), the ThT fluorescence 

signals are much lesser for C-dots treated with Aβ42 compared to the 

fluorescence signals of the control group (Aβ42 alone), implying that the 

fibrillation process is delayed significantly. The difference between the fibrillation 

process can be viewed in the TEM images between untreated Aβ42 fibrils in 

figure 9b and C-dots treated Aβ42 fibrils in figure 9c. The inhibition of amyloid 

fibrils shows the affinity between C-dots and Aβ42 peptides as the fluorescence 

intensities are lower. 35 

 

Figure 9a): Labelling of SHSY5Y cell using C-dots, bright field image, fluorescence image and 
merged image.35  
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Figure 9b). (a) ThT assay of 20 μM Aβ42 incubated with or without 0.01mg/ml of C-dots, and TEM 
images of untreated Aβ42 (b) and C-dots treated Aβ42 (c)after 24 hours incubation.35  

 

 

In comparison, a similar study by Garima Thakur et al proved that amyloid beta 

(Aβ) peptides mixed with and conjugated to dihydrolipoic acid - (DHLA) capped 

CdSe/ZnS QDs can be used to reduce the fibrillation process. The QDs mixed or 

conjugated to Aβ (1-42) show a decrease in the fibrillation as compared to pure 

Aβ (1-42), when incubated at 37ºC for seven days. The morphology and length 

of Aβ (1-42) fibrils vary for the samples viewed in the TEM images (figure 10 a-

d). Large number of short and long-length fibrils (30-1730 nm) observed in the 

pure Aβ (1-42) sample. For the sample, having Aβ (1-42) mixed with QDs the 

TEM exhibited longer fibrils with sizes of 2 micron. Whereas, shorter and thicker 

length fibrils (30-80nm) observed in the sample of Aβ (1-42) conjugated to QDs. 

Analysis using AFM and ThT fluorescence assay also demonstrate that mixed or 

conjugated QDs with Aβ (1-42) successfully inhibit the fibrillation process.38  
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Figure 10: TEM images: (a) Aβ (1-42) (b) DHLA-capped QDs (c) Aβ (1-42) mixed with DHLA-
capped QDs (d) Aβ (1-42) conjugated to DHLA-capped QDs all sample contained in a buffer 
solution of PBS (pH 7.4).38 

 

In another study, C-dots were functionalized with an NLS peptide (NLS-CDs) and 

were tested to transport the anticancer drug Doxorubicin (DOX) into A549 cancer 

cells to inhibit their activity. The survival rate of A549 cells when testing the 

cytotoxicity of Doxorubicin –C-dots (DOX-CD) showed it was over 90% at low 

concentrations (0.01-1 μg mL-1) after 24 hours exposure.32  

The cellular uptake of DOX-CDs was analysed through flow cytometry and 

visualized using confocal laser scanning microscopy. It was interesting to find out 

that the DOX-CD complex group, had an increased cellular uptake compared with 

DOX by itself, and the fluorescence intensity of the complex group was 1.7 times 

higher than DOX after 4 hours incubation. 32 
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Moreover, the DOX-CDs could efficiently induce cell death of A549 cells and 

decrease the free-DOX-induced necrosis. From the figure below, both DOX-CDs 

and free DOX could destroy tumour growth, while DOX-CD group showed higher 

inhibition levels than the free DOX group. The growth inhibition levels were 

calculated to be 41.6% (DOX) and 60.9% (DOX-CD) according to the tumour 

weight. 32 The higher tumour inhibition of DOX-CDs could be due to their ability 

for targeted delivery and efficient accumulation at tumour sites via the enhanced 

permeability and retention (EPR effect).28  

Figure 11: In vivo antitumor efficacy of DOX-CDs in BALB/c mice bearing A549 tumor. (A) The 

tumor growth curve of mice treated with free DOX and DOX-CDs, and mice given saline as a 

control, (B) mice body weight, and (C) tumor weight in different groups.40 
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There are only a few reports regarding C-dots for cell nucleus imaging.17  

 However, researchers have put forward a surface-functionalization method to try 

and effectively target the nucleus by attaching a NLS peptide to a nanoparticle.39  

The NLS peptide was conjugated to the surface of the C-dots for binding to the 

importin and the complex could potentially pass through the core of the nucleus 

and eventually localize in the cell nucleus. The scheme below shows the possible 

method for NLS-CDs complex endocytosis and localisation to the nucleus.   

A confocal laser microscope was used to observe the cellular localization of NLS-

CDs incubated inside MCF7 and then A549 cells. NLS-CDs could enter into the 

cells easily even in the first 0.5 h of incubation and provides a blue light at 405nm. 

The fast uptake of NLS-CDs can be attributed to the small size as well as the 

good biocompatibility of C-dots and they can enter into the cells by means of 

endocytosis.40 It involves the capture of the material from the surface of a cell and 

transport into the cytoplasm. The NLS-CDs brought into the cell inside 

membrane-bound endocytic vesicles that are formed from the phospholipid 

bilayer of the cell’s plasma membrane. The NLS peptide was able to deliver the 

C-dots to cross the nuclear pore and be internalized into the nuclei. Moreover, 

the incubation time was gradually increased in which the cell nucleus exhibited a 

higher fluorescence intensity in the merged images providing a build-up of NLS-

CDs in the nuclei. Large quantities of CDs penetrated into the nucleus and gave 

a stronger blue fluorescence after 4 h incubation compared to at 0.5 h, suggesting 

they gather inside the nucleus. 40 
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1.10. Solid phase peptide synthesis 

To improve the synthesis of peptides, a new synthetic method known as “solid-

phase peptide synthesis” (SPPS) was first developed in the 1960s.41 SPPS is a 

step-wise construction of a peptide chain attached to an insoluble polymeric 

support resin. SPPS allows unreacted reagents to be removed by washing with 

solvent, without loss of product. Using a macroscopic solid support matrix 

(resin/bead) to attach successive amino acids is a main feature in SPPS. Most of 

the solid supports are made from small beads of polystyrene plastic 

approximately 70-400 microns in size. Attached to each functional site of the 

polystyrene core is a linker. There are many linker molecules on the surface of 

each bead, and the number is normally selected by the millimoles of linker per 

gram of beads (mmol/g).42 There are different types of linkers which can control 

the properties of the final product and what particular chemicals the resin bound 

peptide can handle during the reactions and cleavage stage. Wang and Rink are 

the most commonly used linkers in Fmoc-peptide synthesis. The rink resin has a 

polystyrene core with rink linkers attached and will form a peptide amide 

(CONH2), whereas the Wang resin has Wang linkers attached to the core and 

produces a peptide acid (COOH).  The first amino acid attaching to a Wang resin 

is different from the successive amino acid-to-amino acid attachments.43 To 

minimize forming racemic mixtures of amino acids and to make the synthesis 

easier, SPPS techniques synthesize peptides starting from the C-terminus.42,44,45 

The hydroxyl group highlighted in the figure 13 of Wang resin below is the point 

of attachment through an ester linkage to the C-terminal amino acid in the peptide 

chain. The remaining amino acids attach one by one to complete the peptide 

chain.  
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Figure 12: Linkers (in black) attached to functional sites of resin bead and close up of a single 
linker (black wavy line) linking resin to peptide.43 

 

Every amino acid consists of both a carboxylic acid and amine functional group 

in which they potentially can react with each other during synthesis. To stop these 

two groups from reacting together and to make the precise peptide sequence, 

protecting groups need to be enforced. A good strategy known as “Fmoc 

Strategy” involves controlling the coupling reaction by protecting the amine-end 

of the amino acids with a Fluorenylmethoxycarbonyl (Fmoc) group. This prevents 

the amine-end of the amino acid from reacting, therefore only the carboxylic acid 

group on the incoming amino acid and the terminal amine group on the resin will 

couple. The scheme down below shows the general reaction of the Fmoc group 

attaching to amine-end of amino acid.  

 

 

 

 

                                    Figure 13: Synthesis of Fmoc-protected amino acids.42 

 

1.10.1. Steps carried out in SPPS using Fmoc Strategy 

 The fmoc-lys (boc)-Wang resin used has a lysine amino acid already attached. 

Thus, the resin must first be “deprotected” by removing the Fmoc group on the 

first amino acid (C-terminal amino acid) using a base such as piperidine.44,45 The 

second Fmoc-protected amino acid is then attached using a coupling reagent to 

help the reaction (coupling reagents discussed further down). The Fmoc-group 
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removed with pyridine to deprotect the second amino acid, and then a third Fmoc 

amino acid can be coupled. The process continues until the peptide chain length 

has been reached. Then, the peptide undergoes a final deprotection step and can 

be isolated from the solid support. The peptide is cleaved off the Wang resin linker 

using trifluoroacetic acid (TFA) and the carboxylic acid terminus regenerates. 

Lysine has a side chain containing an amine group, which needs protecting 

during the synthesis to prevent any side-reactions from occurring. Tert-

butyloxycarbonyl (Boc) is a good group to protect the side chain groups, as it 

prevents degradation due to good stability in basic conditions. In addition, Boc 

groups are unstable in acid, so they work well with Wang resins as they can be 

removed during the final cleavage of peptide.42 To obtain an efficient reaction 

between an amine group and carboxylic acid to form a peptide bond, a “coupling 

reagent” or “activator” is used. The coupling reagent helps to convert carboxylic 

acids into “activated esters” prior to the reaction in order to aid displacement of 

the O-H by the –NH2 on the end of the growing peptide. The coupling reagent is 

used because the O-H functional group is a poor leaving group.46  

 

1.10.2. Advantages and Disadvantages of SPPS 

Firstly, a large excess of reagents at high concentrations can be used to push 

coupling reactions to completion since the peptide is anchored to a solid support 

and only has one reactive end. Another advantage of SPPS is that filtration and 

washing steps can simply remove side products and excess reagents used after 

each coupling phase.42  

The cost of the solid support resin, the repeated stepwise synthesis and the 

partial number of “linker” groups on the surface of the beads are some 



25 
 

disadvantages of SPPS. Nevertheless, “peptide synthesizers” are commercially 

available instruments which will speed up the procedure. With SPPS, only 

peptides having 30 amino acids or less are synthesized. Even though the reaction 

conditions are quite efficient, if you receive a high percentage of the coupled 

product at each step, after the addition of 30 amino acids, not all of the product 

will have the correct sequence. Longer sequences of peptides tend to be 

achieved through expression by bacterial cells such as E.coli.42,44   

 

1.10.3. K7 peptide 

Short-chained polyLysine peptides known as cell penetrating peptides, have the 

ability to pass through the cellular membrane and deliver types of cargo.47 The 

“cargo” e.g. C-dot is related with the peptide either through chemical linkage via 

covalent bonds or through non-covalent interactions. The cell penetrating 

peptides function to deliver the cargo to cells for use in biomedical applications. 

Poly-Lysine increases electrostatic interaction between negatively charged ions 

of the cell membrane and positively charged surface ions of attachment factors 

on the culture surface. Hence, when the K7 peptide adsorbs to the surface of a 

cell culture, the number of positively charged sites should increase and be 

available for cell binding.48 For the research study “Synthesis of C-dots 

conjugated with a K7 poly-Lysine peptide for biomedical applications” it was 

interesting to design and synthesize a peptide that could help promote transfer 

through the cell membrane of a cell and then attach to solid surfaces in biological 

applications. In addition, for the peptide to conjugate to the surface of a 

nanoparticle and assist in fluorescence imaging. Therefore, designed in this 

project, a K7 poly-Lysine peptide made up of seven-lysine amino acids.  



26 
 

 

1.11. Peptide Quantum Dot conjugation 

C-dots are a new field of research, there are only a limited amount of research 

papers available, describing C-dot to peptide conjugation. However, there are 

close related QD nanoparticles that people have used to conjugate to peptide. A 

few examples are discussed below. 

 Polyethylene glycol (PEG) encapsulated Cadmium selenide/Zinc Sulfide 

CdSe/ZnS (QDs) conjugated with a Tat peptide and introduced into living 

mesenchymal stem cells (MSCs). The PL intensity of the QDs coupled with the 

Tat peptides improves significantly by over 40%. 

The fluorescent images in figure 14 show that MSCs incubated with QD-Tat 

peptides emit fluorescence. A two-step synthetic route designed to create the 

CdSe/ZnS QDs.49 In contrast, the coated QDs were directly incubated with MSCs 

without the attached Tat peptides, leading to no intracellular QD fluorescence 

observation in the MSCs. In addition, the QDs were attached to a random peptide 

but no cellular uptake was observed, meaning the Tat peptide is better at labelling 

MSCs with the attached QDs, than the random peptide. Moreover, the Tat-QDs 

labelled stem cells were further injected into the tail veins of nude mice and the 

tissue distribution of the labelled cells was studied by fluorescence spectroscopy. 

The characteristic fluorescence of QD-Tat peptides was observed mainly in the 

lung, the spleen, and the liver, with no or little QD accumulation in the kidney, 

heart or brain. Therefore, fluorescent imaging can be used to view the labelled 

stem cells and the Tat-QDs could potentially be used in stem cell transportation.50  
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Figure 14: Fluorescent microscopy images of MSCs incubated with DSPE-PEG-coated QDs. 
MSCs labelled by the green QD-Tat peptides are shown in parts a-c. DSPE-PEG coated QDs 
were directly incubated with MSC without the assistance of Tat peptides, the images are shown 
in parts d-f. A control experiment was completed to use QDs with a random peptide, and the 
images are shown in parts g-i. a, d and g are images in the bright field, b, e and h are the 
corresponding fluorescent images and c, f and I are the merged images. 50    

 

In a different study but also using CdSe-ZnS QDs, an insect neuropeptide known 

as allatostatin 1, conjugates to streptavidin-coated CdSe-ZnS QDs. It transfects 

living NIH 3T3 and A431 human epidermoid carcinoma cells and transports QDs 

inside the cytoplasm and even the nucleus of the cells. Allatostatin could be 

useful for high-efficiency cell transfection and nucleus-specific cell labelling and 

transport of QDs inside the nucleus.51 

One research group synthesized dendrimer-modified CdSe QDs and conjugated 

them to arginine-glycine-aspartic (RGD) peptides. The nanoprobes were injected 

into nude mice loaded with melanoma (A375) tumour xenografts via tail vessels. 

The arginine-glycine-aspartic dendrimer modified cadmium selenide quantum 
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dots (RGD-dQDs) nanoprobes can target tumour tissues, the bio distribution 

shows as time increases, the amounts of nanoprobes in blood slowly reduce, but 

the amounts slowly increase in the tumour tissues and are maximised after 3 

hours. This is similar when comparing the in vivo imaging of nude mice, the 

fluorescent signal intensity in tumour sites becomes stronger as time passes. 

Therefore, with RGD-dQDs showing low cytotoxicity and high stability in 

biological environments, they have likely application in tumour diagnosis and 

therapy.52  

     

 

 

 

 

 

Figure 15: Biodistribution of RGD-dQDs nanoprobes in nude mice bearing melanoma.52  
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Figure 16: The images of mice in test group at 0, 1, 3-hour post-injection of 30 pmol RGD-dQDs 
nanoprobes.52 

1.12. Summary of the introduction 

One of the objectives of the research project is to synthesize and characterise C-

dots. Part of the introduction chapter includes research about different ways C-

dots are being synthesized. The materials used in C-dot synthesis are greener 

and renewable compared to QDs, leading to lower toxicity levels. A second 

objective, to modify the surface of the C-dot to secure cell penetration and 

enhance the PL properties. It was of interest, to discover how the surface of the 

C-dot can be modified to tune the PL properties. From literature, the size control, 

surface functionalisation and elemental content were a few techniques 

incorporated into the C-dot synthesis to try and increase the PL intensity, and to 

potentially lead to better cell detection. Another main objective is to develop 

peptide/C-dot conjugation to improve cell selectivity. It was interest to research 

other studies from literature to find out how C-dots can possibly be attached to a 

peptide and how the conjugated systems could potentially be used in bioimaging 

applications. Overall, the literature research described in the introduction chapter, 

provides helpful knowledge for the project work mentioned in the experimental 

and results chapters. 
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2. Experimental Section 

 

2.1. Materials 

All chemicals used in the research project purchased and supplied from either 

Sigma Aldrich or Alfa Aesar.  

Citric acid monohydrate, Ethanolamine, Nitric acid (S.G. 1.42 70%), Fmoc-Lys 

(Boc)-Wang resin (loading mass = 0.4-0.6 mmol), Hydrochloric acid (S.G. 1.16 

32%), Sodium hydroxide, Methanol, Acetonitrile (HPLC graded >=99.8%), 

Methionine, Chloroform-d all supplied from Sigma Aldrich.  

Nepsilon-Boc-Nalpha-Fmoc-L-lysine, Triisopropylsilane (TIS, 98%), 

Trifluroacetic acid (TFA, HPLC graded >=99%), (2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluroniumhezafluorophosphate, Tert-butyl-methyl ether (99%), 1-

methyl-2-pyrrolidinone (NMP, 99+%), Dimethylformamide (DMF, 99.9%), 

Dichloromethane (DCM, 99+%), Piperidine (99%), N-ethyldiisopropylamine 

(DIEA), Formic acid (97%) all supplied from Alfa Aesar.  

 

2.2. Synthesis of C-dot 

The synthesis of the C-dots follows a previously described method, which 

involves the reaction of citric acid monohydrate (30.2122g) and ethanolamine 

(28.3032g) in a molar ratio 1 to 3.4 The mixture was stirred at 180⁰C for 30 mins 

under reflux in air, then the temperature was increased to 230⁰C and the reaction 

continued for 30 minutes without the reflux condenser. Next, the mixture was 

heated inside the furnace for one hour at 300⁰C for further decomposition. Then, 

the product is oxidised thus dispersing in distilled water (200 mL) and a 3M 
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concentration of nitric acid (200 mL), and heated under reflux for 16 hours at 

100⁰C. Subsequently, the product cools to room temperature and placed in a 

snakeskin 3.5K MWCO dialysis tube membrane for twelve weeks, with the 

intention of removing any impurities or by-products that are smaller than 3.5K. 

Finally, the water removed via freeze-drying for 5 days to obtain the pure 

carbongenic product.4  

2.3. Synthesis of K7 peptide 

A Biotage Initiator + SP Wave semi-automated machine was used to synthesize 

K7. The insoluble polymeric support resin used in this synthesis is a pre-loaded 

fmoc-lys (boc)-Wang resin that comes with one lysine amino acid already 

attached. 0.1996g of the resin weighed into reactor syringe and placed inside the 

reactor holder of the machine. The resin swells for an hour to allow for expansion 

and opening of active sites for availability. Next, amino acids solutions prepared 

by adding 1.5 mL of NMP solvent to each vial of 0.14g lysine and 1.425 mL of 

NMP to each vial of 0.11g HBTU. All the solutions dispersed using a vortex to 

make sure all solid dissolved and then, HBTU solutions mixed with lysine 

solutions. After swelling of the resin, it must first be “deprotected” by removing 

the Fmoc group on the first amino acid to allow the second amino acid to join. 

Before, attaching the second amino acid solution, it requires the addition of 0.285 

mL of DIEA stock solution (consists of 3.484 mL DIEA/ 6.516 mL NMP) which 

allows the carbon moiety of the residue to activate. After five minutes, the slightly 

yellowish solution is pipetted into the reactor syringe to undergo a “coupling with 

MW-deprotection reaction.” Each of the lysine amino acids have a blocking group 

attached known as a FMOC group. The α-amino group of the incoming residue 

is temporarily blocked in order to prohibit peptide bond formation at this site. The 
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residue is un-blocked at the start of the next synthesis cycle and the cycle repeats 

until all amino acids attach.53 

2.3.1. Cleaving off polymeric support resin from K7 peptide chain 

The peptide batches split equally into glass vials. A stock solution of TFA: TIS: 

H20 (95:2.5:2.5) were prepared and 15 mL poured into each glass vial. The pale, 

yellow solutions placed inside the shaker and incubated for 3 hours at room 

temperature (30ºC, rpm: 105). Then, using glass teat pipettes with a small 

amount of cotton wool blocking the insides, the precipitated solutions where 

pipetted into round bottom flasks (RBFs) trapping the solid beads inside the glass 

teat pipettes. Using the rotary evaporator roughly halved the amount of TFA stock 

liquid from the peptide solutions and placed the RBFs inside an ice-bath to remain 

cool. Added to the reduced volumes of TFA, a good squeeze of cold tert-butyl-

methyl ether (no more than 40 mL). Each of the solutions gave a white precipitate 

and the solutions transferred to separate labelled falcon flasks, making sure 

RBFs washed out with extra cold ether to obtain all peptide solid. Next, decanted 

off as much of the TFA/ether solution without losing any of the solid. Then, added 

cold ether to each of the falcon flasks and weighed them to attain the same 

weights, before placing them into the centrifuge. Centrifuge settings: 4000 rpm, 

3 minutes, 20ºC. Once the flasks were removed from the centrifuge, decanted off 

all or most of the ether solution and left to dry.54  
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2.4. C-dot-K7 conjugates 

Two protocols established in order to attach the C-dot to the K7 peptide. One 

protocol was aiming to attach the C-dot at the end of the peptide chain. Whereas, 

the other protocol will try to allow the peptide to ravel around the C-dot to shield 

it.  

 

2.4.1 Synthesis of C-dotK7A 

Following a similar method of attaching lysine amino acids to the support resin, 

the C-dot attaches to the end of the peptide chain. Firstly, the peptide batch 

containing the already attached lysines have been deprotected to help swell the 

peptide. Next, the solution of 0.11g HBTU in 1.425 mL NMP and solution of 

0.0021g C-dot in 1.5 mL NMP dispersed and mixed. Both solutions combined 

with stock solution of 0.285 mL DIEA, left for 5 minutes to help activate the 

carbonyl functional group for attachment to peptide. C-dot then attaches via a 

coupling with MW reaction. The polymeric support resin cleaved exactly the same 

way as mentioned above in section 2.1.1. The carbon dot-K7 (C-dotK7) residue 

dispersed in water (20 mL) purifies using a dialysis membrane snakeskin, which 

allows larger, impure materials to disperse from the snakeskin bag, leaving the 

pure C-dotK7 material inside. The snakeskin bag placed into a large beaker (3L) 

filled with e-pure water and the water replaced daily for around 3 months, 

removing any impurities. Finally, the solution freezes to allow sublimation through 

freeze-drying obtaining the carbon dot-K7 peptide material.   
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2.4.2 Synthesis of C-dotK7B 

A solution of 0.0039g of C-dot dispersed in 5 mL of NMP, a solution of 0.2202g 

of HBTU dispersed in 5 mL of NMP and a solution of K7 peptide residue dispersed 

in 10 mL of NMP were prepared. All three solutions were combined together into 

a 45 mL syringe bottle. Then, 0.570 mL of DIEA solution was added and the bottle 

was placed inside the shaker for one hour at room temperature to mix thoroughly. 

The solution of C-dot-peptide from the bottle is transferred into a dialysis 

membrane snakeskin bag. The snakeskin bag is placed into a large beaker (3L) 

filled with e-pure water and the water replaced daily (over a 3-month period), 

removing any impurities. Lastly, the solution freezes to allow sublimation through 

freeze-drying obtaining the pure C-dot-peptide material.   
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 2.5. Diagram of the method for K7 peptide attachment to C-dot  

The figure 17 below shows a possible method for the attachment of K7 peptide 

to the surface of the C-dot. One method suggests that the N-terminus end of the 

K7 peptide will react with a possible oxygen based group on the surface of the C-

dot and attach in an orderly fashion. The second method explains that more than 

one area of peptide reacts with the surface of the C-dot and the peptide wraps 

itself around its surface. Lastly, two units of the peptide may attach to the C-dot 

to form a dimer.  

Figure 17: Protocol reaction scheme for C-dot –K7 peptide attachment. 

 

2.6. Purification method using HPLC analysis 

High performance liquid chromatography (HPLC) is the analytical technique used 

to separate and purify the K7 peptide. The crude K7 peptide contains some 

contaminants from the synthesis reagents, so passing the peptide solution 

through a column under high pressure helps to separate out the individual 

components/analytes. A mobile phase passes through the material in the column, 
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which is called the stationary phase. When the analytes in the K7 peptide pass 

through the column, they interact at different rates with both the stationary and 

mobile phases, predominantly because of the different polarities.55 Therefore, the 

analytes that interact least with the stationary phase or interact most with the 

mobile phase will leave the column fastest. By adjusting the percentages of 

mobile phases and therefore the polarities, will help to separate all components 

of K7 peptide. A UV detector coupled to the HPLC apparatus to characterize the 

analytes as they separate. The first objective of HPLC analysis is to achieve a 

good separation of peaks on the chromatogram in which the pure sample of K7 

peptide can be identified. Once the intensity peak of K7 peptide has been 

identified, the solution containing the pure component can be isolated at the time 

the peak begins and until the peak ends. After five injections, the pure peptide 

solution to be injected into the mass spectrum to obtain the molecular weight of 

peptide. A second objective, to establish a short timed method, to be replicated 

onto the semi prep scale so that several, larger injections can be performed in 

order to achieve a higher yield of pure K7 peptide.  

 

2.7. Analytical Characterisation methods 

2.7.1. Elemental Analysis 

Elemental analysis is an analytical technique to gain information about the 

elemental composition of an unknown material.  Firstly, using Flash 2000 organic 

elemental analyser (CHNS-O analyser) sample of C-dot burned through 

combustion to determine the carbon, nitrogen, hydrogen and sulphur element 

percentages of the material. A known amount of substance is converted to 

simple, known compounds containing the element required to be analysed. For 
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example, carbon and hydrogen will be determined in the materials by conversion 

through combustion to carbon dioxide and water. In table 1, the C-dot material 

listed displays the percentage of each element present.56 The pyrolysis of C-dots 

at 300ºC using citric acid and ethanolamine (same as method in section 2.2) 

reported and the element composition tested using elemental analysis. The 

percentage of the elements of the C-dot material were similar to the C-dots 

prepared in section 2.2, (50.5% C, 3.7% H, and 13.1% N).4 

Table 1: Percentage of element composition of C-dot. 

                                   Percentage of Element Composition (%) 

Sample Nitrogen  Hydrogen  Carbon Sulphur 

C-dot 13.53 7.16 60.14 0 

 

2.7.2. Fluorescence Spectroscopy 

Fluorescence spectroscopy measures the intensity of photons emitted from a 

sample after it has absorbed photons. When a beam of ultraviolet light shines 

onto the sample solution, it excites the electrons of certain molecules within the 

sample and causes them to emit light. For the C-dot, C-dotK7A and C-dotK7B 

samples, 4 mL of each solution placed into a clear cuvette. The cuvette placed 

into the holder inside the Horiba Jobin Yvon fluoromax-4-spectrofluorometer and 

a wavelength range of 350-500 nm set, for the incident photon source to shine 

light onto the solutions.  

The species (related to the sample material) is excited into a higher electronic 

state by absorbing a photon. The excited molecule will then start to lose 

vibrational energy as it collides with other molecules until it reaches the lowest 

vibrational state of the excited electronic state. The molecule will eventually drop 
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back down to the ground state by emitting a photon. Emission happens from the 

ground vibrational level of the excited electronic state and goes to an excited 

vibrational state of the ground electronic state. The fluorescence also measured 

for all of the samples by changing the pH value.57 Hydrochloric acid (32%) used 

to lower the pH of each solution, whereas Sodium hydroxide (1M concentration 

liquid) used to increase the pH values. 

2.7.3. Infra-red spectroscopy 

Infra-red (IR) spectroscopy involves the interaction of infrared radiation with 

material. A very small amount of solid material is placed onto a sample holder 

and a beam of IR light is passed through the sample.58 When the frequency of 

the IR matches the vibrational frequency of a bond or collection of bonds in the 

material58, then absorption occurs and this is observed in graph with 

transmittance (%) versus wavenumber (cm-1). In the analysis section, the IR 

spectrums of all the samples are presented showing the main functional groups.  

2.7.4. UV-Vis 

Ultra-violet spectroscopy refers to the absorption or reflectance spectroscopy in 

the ultraviolet-visible spectral region. The samples dispersed in water (0.1 mg/ml) 

and each solution poured into a 4 ml UV quartz cuvette. Firstly, a blank (just 

water) was ran on the UV spectrometer used as a control/reference point, then 

each sample placed into the holder and UV light is radiated onto each solution. 

The absorbance or reflectance of UV light directly affects the apparent colour of 

the chemical solution. The absorbance of UV light radiation is related with 

excitation of electrons, in molecules and atoms from lower to higher energy 

levels.59  
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2.7.5. Nuclear magnetic resonance 

Nuclear Magnetic Resonance (NMR) spectroscopy is an analytical technique for 

determining the molecular structure of materials.60 Several nuclei have spin and 

all nuclei are electrically charged. An energy transfer can be possible between 

the base energy to a higher energy level, if an external magnetic field is 

introduced. The energy transfer takes place at a wavelength that links to the radio 

frequencies and when the spin returns to its base level, energy is emitted at the 

same frequency. The energy transfer will match a signal and is processed in order 

to yield an NMR spectrum. 60  

2.7.6 Dynamic light scattering using a Nano 3000 series Zetasizer 

Dynamic light scattering (DLS) is a technique that can be used to measure the 

size of particles suspended within a liquid.62 The Brownian motion is measured 

by the DLS and with time,  this helps to identify the size of the particles present 

in the liquid. Brownian motion is described as the random movement of particles 

due to their collisions with other atoms and molecules such as solvent 

molecules.63 These particles diffuse at a speed related to their size, smaller 

particles diffusing faster than larger particles.    

A Nano series Zetasizer (Malvern Instruments) was used to measure the size of 

the particle species present in the K7 peptide. The K7 peptide filtered into a UV 

cuvette through a minisart (0.45μm) filter unit to remove any dust or fine particles. 

The cuvette is placed inside the zetasizer sample holder and a laser beam 

illuminates the K7 solution. The laser beam allows the measurement of the rate 

at which the intensity of the scattered light fluctuates. The rate at which these 

intensity fluctuations happen will depend on the size of the K7 particles.     
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2.7.7. Contact angle 

When an interface exists between a liquid and a solid, the contact angle can be 

calculated between the surface of the liquid and the outline of the contact surface. 

The contact angle is the measure of the wettability of a solid by a liquid.64 A 

contact angle of 0º shows complete wetting and a complete spread of the liquid 

evenly against the solid surface. An angle between 0º and 90º shows the solid is 

wettable and an angle above 90º, the solid is not wettable. The lower the contact 

angle, the greater the hydrophilic interaction of the solid surface with water and 

other polar groups. The contact angle above 90 degrees describes the solid 

surface exhibiting hydrophobic interactions.64   

The method used to measure the contact angles for the solutions of C-dot, K7 

peptide, C-dotK7A and C-dotK7B is the sessile drop technique. In this technique, 

a droplet of each test solution is placed onto a micro glass slide’s surface and an 

image taken using a camera that is fixed into a stationary place to provide an 

accurate image of the droplet. The image of the droplet for each solution is viewed 

onto a screen and the contact angle calculated.  

The pharmacy department at UCLAN did all the sterility, antimicrobial and 

haemolysis tests.  A pH student from the pharmacy department called Ella 

Gibbons did all the sterility, haemolysis and antimicrobial testing on all C-dot, K7 

peptide and C-dotK7 samples. 

2.8. Sterility Test Method 

A single, sterile loop of solution was streaked onto a nutrient agar plate in a zigzag 

manner. The plates incubated at 37 ºC and checked after 24 hours and 48 hours 

for any signs of bacteria growth. The absence of growth indicates sterility, which 

is a necessary property in order to carry out antimicrobial testing.   
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2.9. Liquid Antimicrobial Method 

2.9.1 General Culturing Method 

25 ml of nutrient broth is poured into 250 ml Erlenmeyer flasks and they were 

inoculated with a single colony of bacteria for 24 hours in an orbital shaker set to 

200 rpm and 37 ºC. Next, cultures were prepared by transferring them into 25 ml 

falcon tubes, balanced within 0.1g of each other and then centrifuged at 4000 

rpm for 10 minutes. The supernatant is removed and 20 ml of a ¼ strength 

Ringer’s solution (solution of several salts dissolved in water for the purpose of 

creating an isotonic solution relative to the body fluids of an animal). is added and 

the tubes vortexed. Then, the falcon tubes were centrifuged for a further 10 

minutes at 4000 rpm and the supernatant is removed. Another 2 ml of ¼ strength 

Ringer’s solution is added to each tube and they were vortexed. Finally, the re-

suspended cultures were diluted by a factor of either 1000 for E.coli or 2000 for 

Staphylococcus to obtain an absorbance reading of between 0.05 and 0.08. 

 

2.9.2. Testing Method 

100 μL of bacterial culture was added to Eppendorf’s containing 800 μL of nutrient 

broth and either 100 μL of a ¼ strength Ringer’s solution (control) or 100 μL of 

0.1 mg/mL test sample (test). The samples were incubated in an orbital shaker 

at 200 rpm and at 37 ºC for 20 hours.   

2.9.3. Plate Counting Method:  

Consecutively, 100 μL of each sample was diluted into 900 μL ¼ strength 

Ringer’s solution, 6 times, to obtain dilutions down to 10-6. 100 μL of respective 

sample was spread onto a nutrient agar plate and each dilution being plated in a 
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triplicate layout. The plates were incubated for 20 hours at 37 ºC, and then each 

plate counted for number of bacteria colonies. Plates with 30-300 colonies were 

recorded alongside the respective dilution factor. The % decrease of colonies 

compared to the control was calculated for each test sample.  

2.10. Haemolysis Test Method 

The round end of a blue sterile pipette tip was used to create wells in a horse 

blood agar dish. Each well was filled with 100 μL of the desired test solution. A 

control test was set up using a ¼ strength Ringer’s solution as the negative 

control and 1% Triton X-100 as the positive control. The positive control is always 

there to show what it looks like if the haemolysis is successful and it is most 

important in experiments with lower levels of difference between the positive and 

negative result. Next, the plates were incubated for 20 hours at 25 ºC to observe 

for any haemolytic activity. Results were recorded as either α-haemolysis (partial 

haemolysis), β-haemolysis (complete haemolysis), or γ-haemolysis (no 

haemolysis).61  
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3. Analysis and Discussion  

Firstly, it is important for the research project, to synthesize a C-dot with brilliant 

surface functionality, for the ability of the C-dots surface to be available for the 

attachment of surface functional groups. Described in section 3.1 of “structural 

characterisations of C-dot, K7 peptide and conjugates,” are results in which the 

surface of the C-dot is successfully modified to allow the attachment of K7 peptide 

to form two C-dotK7 conjugates. Secondly, materials which are intended to be 

used in biomedical applications, should possess good optical properties and 

photoluminescence. In section 3.2 of “optical properties of C-dot, K7 peptide and 

conjugates,” the results of both the fluorescence spectroscopy and UV-VIS 

analysis show that the conjugated materials have excellent optical properties. 

Many materials especially nanoparticles used in bioimaging, also express good 

antimicrobial properties, allowing them to be useful at killing bacteria. In part of 

the results chapter, it describes how certain nanoparticles can have both 

bioimaging and antimicrobial behaviour. The C-dotK7 conjugates have very good 

antimicrobial activity against both gram-positive and negative bacteria and the 

statistical results can be seen in section 3.6. Also, in the results section it clarifies 

the conjugates having minimal haemolytic activity however, further cytotoxicity 

tests would need to be performed to assure the materials express no or little 

toxicity.  
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3.1 Structural characterisation of C-dot, K7 peptide and conjugates 

3.1.1 HPLC purification of K7 peptide 

HPLC was used to separate and purify the K7 peptide. The crude K7 peptide 

contains some contaminants from the synthesis reagents, so passing the peptide 

solution through a column under high pressure should help to separate the 

impurities from the peptide, to allow isolation of just pure K7 peptide.  

Free peptides are less responsive to mass-spectrometric analysis and some 

peptides are volatile and can be ionised in the gas phase by electron impact in 

the mass spectrometer. Usually the molecular ions formed in this particular way 

are fragmented in a characteristic way because of the removal of amino-acid 

groups from the C-terminus end of the chain.65 The investigation of predicting the 

electron impact mass spectra for peptides starts with the identification of a 

positively charged site in the molecule that has undergone electron impact. In the 

peptide, the atom with the lowest ionization potential (electron is most easily lost) 

becomes the positive site known as the molecular ion.65 By comparing the 

ionization potentials among common functional groups, the oxygen atom of a 

carbonyl group in a carboxylic acid has the lowest ionization potential. Therefore, 

for a peptide the C-terminal carbonyl group is the more favourable site at which 

a positive charge forms. When a positive site has been established in a peptide 

molecule through electro impact, the molecule will start to break down quickly into 

different fragments known as daughter ions (m1
+, m2

+ etc.).65 In standard mass-

spectrometric analysis, only positive ions are verified on the spectrum graph. 

These ions are formed by fragmentation of the C-terminus of the peptide, and the 

mass spectrum can be viewed to determine and understand the structure of the 

peptide.  
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K7 peptide analysed using the HPLC Agilent Technologies 1220 Infinity II LC. 

The HPLC method (shown in Table 2) researched from literature and used to run 

a sample of K7 peptide. The first sample run which provides results in figure 18a, 

shows a broad peak at a retention time of 18, it is not very narrow or clear it 

appears to merge. The peptide sample diluted down with water (50:50). The first 

dilution of (1:1) had similarity to figure 18a) with a merged peak at the 18th 

retention minute, but the peak slightly narrower. After further diluting the peptide 

sample (25:75 K7: Water) the peak width continued to decrease but remained 

merged for the initial runs (figure 18c). However, after repeating the sample run 

continuously, the merged peak divided into two clear peaks between 15-20 min. 

The mass spectroscopy data mentioned later in the HPLC section, suggests that 

the separation of the peaks could be due to protonation of the peptide.   

In figure 18d), the two peaks at 15 min and 17 min were isolated out separately 

into glass vials.  A direct mass injection of the two samples provided mass data 

for K7. In figures 19a) and 19b), it shows the mass spectrums of the two isolated 

peaks and the fragmentation of these peaks. The assumption is that the first peak 

separated out at the 15 min is the K7 peptide as it exhibits an m/z value of 915, 

matching the molecular weight of the peptide. In addition, the mass spectrum 

exhibits fragment masses, which calculate as cleavage areas of the peptide 

structure. The pattern of mass fragmentation of K7 peptide show similar 

characteristics as explained in the text at the start of the previous page. At certain 

locations on the K7 structure, bonds are broken at either side of the carbonyl 

groups and this shows up in the mass spectrums. (Shown in figure 20). For 

example, in figure 19a), drawn on the mass spectrum is structures of the 

fragments cut off from the peptide sequence. The first peak has structures with 
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molar masses of 915 (m/z), 771, 628, 572 and 514 whereas, in figure 19b), it has 

structures with molar masses of 626 and 578.  

Peaks at 628, 572 and 514 shown in figure 19a) and some of the peaks in figure 

19b), have thicker line widths lower down on the spectrum, which suggests 

fragmentation occurs near and around the peaks.  As K7 peptide consists of side 

chains with amine groups attached, these groups may become protonated during 

analysis on the mass-spectrometer. Therefore, the possible protonation of the 

peptide molecule is a good explanation why two separated peaks present during 

HPLC analysis. The second peak on the HPLC chromatogram in figure 18d) only 

shows two relevant fragment masses linking to the peptide sequence and the 

molar masses slightly shift via the loss/gain of H+ protons. (628-626, 572-578).  

Both mass spectrums have a peak at 458 that does not seem to elucidate to a 

cleavage area on the peptide sequence but with peptides, they may consist of 

isotopes forms and these masses vary and are present in the spectrums but not 

relatable to the K7 peptide structure.  

Table 2: HPLC gradients.66 

 

 

Method 1 

Time (min) A [%] B [%] 

0 98 2 

24 5 95 

24.1 98 2 

26 98 2 
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Table 3: Conditions used for HPLC analysis. 

 

 

Figure 18a: HPLC chromatogram of K7 peptide first run. 

 

 

 

 

 

 

Column  bioZen 3 μm Peptide PS-C18, LC Column 

150 x 4.6 mm 

Mobile phases A – 0.1% TFA in water 

B – 0.1% TFA in acetonitrile 

Flow rate  0.2 ml/min 

UV Detector 220 nm 

Max Pressure Limit  400 Bar 

Peptide sample 

injection  

50 μL 
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Dilution scheme: 

Firstly, the K7 peptide dissolved in 5 ml of water. For the dilution scheme in figure 

18b), 1ml of peptide from the solution consisting of peptide dissolved in 5ml, 

mixed with 1ml of water (50:50).  

Figure 18b): HPLC chromatogram of K7 peptide using (50:50) dilution scheme 

 

For better separation of the peak, 1ml of peptide was added (from the original 

solution of peptide in 5ml) to 3 ml of water (25:75) and injected into the HPLC. 

Initially, the first couple of method runs show one peak at around the 17th min but 

it appears merged. However, once the method has been ran a few times on the 

HPLC, the merged peaks separate out and figure 18d) show two clear separated 

peaks.   
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Figure 18c): HPLC chromatogram of K7 peptide using (25:75) dilution scheme after the first run. 

 

 

Figure 18d): HPLC chromatogram of K7 peptide using (25:75) dilution after a number of runs. 
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Figure 19a: Mass spectrum for peak at 15 min.  
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Figure 19b: Mass spectrum for peak at 17 min. 
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Figure 20: Diagram of the molecular structure of K7 peptide showing the locations around the 
carbonyl bonds were fragments occur. The R group represents the side groups.  

 

HPLC analysis taken of the K7 peptide to work out the purity after the synthesis 

of the peptide synthesizer. To conclude, the sample of K7 peptide ran on the 

HPLC to work out the purification and on average, it exceeds 97%. Even though 

the actual purity of the peptide was not calculated, the HPLC data gave confident 

reading to allow the conjugation to C-dot and further analysis. Further analysis of 

the K7 peptide includes; determination of the molecular structure using NMR 

spectroscopy and the main functional groups present in the peptide, using IR 

spectroscopy.   
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NMR is a useful tool to determine the molecular structure of different materials. 

Therefore, the K7 peptide was analysed once using NMR spectroscopy to 

discover what atoms are bonded together to make up the molecule of K7 peptide. 

Comparing the 1H proton to the literature values for an oligo-poly-l-Lysine 

structure.67 In literature, the oligo-poly-l-Lysine has 5 hydrogen environments with 

a total integration of 9 hydrogen nuclei. The structure in figure 21, illustrates using 
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the letters A-E, the position of the hydrogen environments. The 1H proton NMR 

shows 3 relevant multiplet peaks (excluding the CDCL3 solvent peak at 7.26 ppm) 

at the chemical shift values of 1.95 ppm, 1.28 ppm and 0.86 ppm. At 0.86 ppm, it 

shows the hydrogen region at position (b) NH2-CH2-CH2-CH2-CH2 which appears 

as a multiplet with an integration of 2. The peak at 1.28 ppm shows the hydrogen 

environment at position (c) NH2-CH2-CH2-CH2 which also appears as a multiplet 

with integration of 2.47 (2). Lastly, the most concentrated peak at 1.98ppm 

represents the hydrogen environments of the peak positions (e), (d) and (a). Each 

of the integrations of the individual peaks added up to 5 and matches the 

integration of 4.91 (5). These peaks are positioned closest to the nitrogen atoms. 

By using a 1H proton predictor 68, it demonstrates that a carbon atom closest to 

the nitrogen atom has an increased chemical shift likely due to the higher 

electronegativity of the nitrogen atom.69 The concentrated sample of K7 peptide 

and the size of the structure may be factors that causes the possible merging of 

peak positions.  

1H NMR (400 MHz, Chloroform-d) δ 1.95 (dd, J = 14.1, 5.8 Hz, 5H), 1.33 – 1.23 

(m, 2H), 0.90 – 0.77 (m, 2H). 
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                                Figure 21: Structure of poly-l-Lysine.67 
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Table 4: NMR results. 

 

    

 

 

 

 

 

 

 

 

Hydrogen 

environment 

Integration 

(H) 

Multiplicity Chemical shift 

(ppm) 

CDCL3 (Solvent) n/a n/a 7.26 

E – NH2-CH2 

D - NH2-CH2-CH2 

A       

NH2

NH2

O

R

 

 

4.91 (5) Multiplet 1.95 

C - NH2-CH2-CH2-

CH2 

2.47 (2) Multiplet 1.28 

D - NH2-CH2-CH2-

CH2-CH2 

2 Multiplet 0.86 
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 Figure 22: NMR spectrum of K7 peptide. 
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3.1.3 IR spectroscopy  

The interaction of infrared radiation with a material is known as in-fared 

spectroscopy. This experiment was convenient in the project to determine the 

main functional groups present in all the C-dot, C-dot/K7 peptide materials. It 

allows comparison of the IR spectrums to see the differences between the C-dot 

alone and K7 peptide alone and then how the spectrums appear once the 

attachment occurs to form the conjugated systems. A C-H stretch representing 

an alkane functional group is present in the spectrums of K7 peptide, C-dotK7A 

and C-dotK7B but not in the spectrum of C-dot. A broad COOH region at around 

3300 cm-1 wavelength is present in both IR spectrums of C-dot and C-dotK7B, 

this region not noticeable in the K7 and C-dotK7A spectrums. C-N IR stretch 

indicating presence of an amine functional group present in the C-dotK7B and K7 

IR spectrums but not for the C-dot or C-dotK7A spectrums. O-H bending 

stretches linking to a carboxylic acid and a C-O stretch linking to an alcohol 

functional group shown in all the IR spectrums containing C-dot material but not 

for K7. The absorption peaks roughly at 1500-1700 cm-1 are different for all the 

samples. The C=O stretch represents the presence of a carbonyl group. In the IR 

spectrums for both C-dot and C-dotK7B, the C=O stretch links a carbonyl to an 

acid group, whereas the K7 peptide and C-dotK7A spectrums show a C=O 

stretch linking a carbonyl group to the presence of an amide peptide bond. These 

differences in IR spectrums for the samples show evidence that the C-dot and K7 

peptide conjugation occurs. It shows especially in C-dotK7A that a peptide bond 

forms representing the carbonyl peak at wavelength 1700 cm-1. 
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            Figure 23: A) IR spectrum of C-dot   B) IR spectrum of K7 peptide    C) IR spectrum of  

            C-dotK7B     D) IR spectrum of C-dotK7A. 
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Table 5: Functional groups present in IR spectrums. 

Sample Functional group and wavelength (cm-1) 

C-dot O-H broad region represents COOH wavelength = 3420.68 

O-H bending stretch represents COOH wavelength = 1397.29 

C=O stretch (Acid) wavelength = 1693.73 

C-O stretch represents alcohol wavelength =1059.89 

K7 peptide C-H stretch represents alkane wavelength = 2947.52 

C-N stretch represents amine wavelength =1139.15 

C=O stretch amide 1 band wavelength =1651.35 represents 

peptide bond 

C=O stretch amide 11 band wavelength =1537.79 

C-dotK7A C-H stretch represents alkane wavelength =2923.57 

C-O stretch represents acid wavelength = 1244.56 

C-O stretch represents alcohol wavelength = 1016.61 

C-N stretch represents amine wavelength = 1096.10 

O-H bending stretch represents COOH wavelength = 1455.55 

C=O stretch Amide 1 band wavelength = 1716.35 

C=O stretch Amide 11 band wavelength = 1633.98 

N-H bending amine wavelength = 1651.81 

C-dotK7B O-H broad region represents COOH wavelength = 3300 

C-H stretch represents alkane wavelength = 2922.26 

C-O stretch represents acid wavelength = 1264.02 

C-O stretch represents alcohol wavelength = 1034.73 

C=O stretch (Acid) wavelength =1693.99 

N-H bending amine wavelength = 1644.64 
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3.1.4 Zetasizer 

The intensity distribution can be used as a sensitive detector for the presence of 

large material particles in the K7 peptide. The K7 peptide gave 3 measurements 

each time it was scanned, and the test performed 3 times. In figure 24 down 

below, it appears that the size by intensity distribution of K7 shows one peak 

around 40nm and another peak around 300nm. This indicates two populations 

with hydrodynamic diameter 40nm and 300nm respectively. Poly (L-lysine)-DNA 

complexes diluted with HEPES buffer measured the size of the Poly (L-lysine) 

using a Zetasizer 300 system.78 The size of all the complexes were in the range 

of 55-105 nm diameter 78 and the size of the K7 peptide diameter of 42 nm is 

relatively close to this range. 

 

 

 

Figure 24): Size distribution by intensity for the zetasizer analysis of K7 peptide 
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3.1.5 Contact Angle Measurement 

The results for the contact angle test describe the nature of the interaction of the 

micro glass surface to each of the test solutions, all dispersed in water in the 

same concentrations. Contact angle measurements were performed to explore 

the surface interaction of C-dot conjugated to K7 peptide with water. Firstly, in 

figure 25a) the C-dot material gave the lowest contact angle of 12.30º, therefore 

it spreads more evenly against the glass surface than the other materials. The 

figure 25b) of K7 peptide gave a contact angle of 15.94º and this explains why 

both C-dot and K7 are hydrophilic as they show wettability. The C-dot conjugates 

to the K7 peptide in two different ways to provide the C-dotK7A and C-dotK7B 

systems and the contact angles increase from 12.30º to 23.15º for C-dotK7B in 

figure 25c) and 12.30º to 30.46º for C-dotK7A in figure 25d). Tests against the 

surface found these contact ranges and it seems the conjugated systems have 

greater hydrophobicity, consistent with the nature of K7 peptide.  
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C-dot contact angle = 12.30 degrees 

Figure 25a): Contact angle of C-dot. 

 

 K7 Peptide contact angle = 15.94 degrees 

Figure 25b): Contact angle of K7. 
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 C-dotK7B contact angle = 23.15 degrees 

Figure 25c): Contact angle of C-dotK7B. 

 

C-dotK7A contact angle = 30.46 degrees 

Figure 25d): Contact angle of C-dotK7A.  
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3.2 Optical properties of C-dot, K7 peptide and conjugates 

 3.2.1 Fluorescence properties 

 

The four theoretical photoluminescence mechanisms  

The photoluminescence spectra of the C-dot and the C-dotK7A/C-dotK7B are 

generally broad and show excitation wavelength emissions. The fluorescence 

band maximum shifts slightly with the excitation towards longer wavelengths and 

decrease of emission intensities. This wavelength dependent emission behaviour 

of C-dots is contributed by four possible PL mechanisms. However, the actual 

mechanism of the PL of fluorescent C-dots is still being widely researched and 

investigated. One possible PL contribution arises from the presence of sp2 islands 

within sp3 continuum. 4,71  

The second PL contribution stems from the presence of surface defects coupled 

with the passivation action of external moieties. Increasing the surface oxidation 

or modification of the C-dot surface can result in more surface defects, resulting 

in a red-shift emission. The surface state does not consist of isolated chemical 

groups, but determined by hybridization of the carbon backbone and connected 

chemical groups.72 The first report of synthesized C-dots back in 2004, which 

were an oxidation-cut product with oxygen based chemical groups on the 

surfaces; most PL centres of the C-dots proven to be surface states.73 The 

surface passivation of C-dots using PEG investigated by Sun and co-workers. 

They demonstrated that many organic molecules could provide surface 

passivation, which further proved that surface energy traps controlled the PL 

mechanism.74 Many methods to prepare C-dots, combine oxygen-based groups 

onto the carbon core, which was the primary surface state of the C-dot.72 
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Colourful C-dots derived from oxidizing candle soot obtained by Mao and co-

workers. The PL, which ranged from violet to red region, may have been induced 

by different surface oxidation.75 By using the bottom-up carbonization method, C-

dots with surface-state emission were achieved and by using different reaction 

conditions, the PL could be tuned from blue to green. Pang proved that the 

surface states of electrochemical C-dots were the main responsibility of tuning 

the luminescence.76  

Another PL contribution originates from the presence of fluorophores units 

connected on the surface of the C-dots. These types of C-dots are prepared, 

when small fluorophore molecules are formed at low reaction temperatures. 

When the temperature increases, consumption of the fluorophores or dehydration 

of the initial molecules forms the carbon core. At low temperatures, the C-dots 

have strong PL emission with high QYs, whereas the carbon core state has 

weaker PL behaviour but with good photo stability. The formation mechanism 

investigated by Giannelis and co-workers, for the molecule and carbon core 

states of C-dots made using citric acid (CA) and ethanolamine (EA). The 

materials heated at 180 ºC resulted in a molecular precursor with a strongly 

intense PL and high QY of 50%. When the material further heats to temperatures 

of 230 ºC, a carbogenic core started forming and the PL was due to the presence 

of both molecular fluorophores and the carbon core, but the QY was only 15%. 

The low QY suggests that many of the fluorophore molecules were used as the 

building blocks of the carbon core. The C-dots that had PL emission arising from 

the carbon cores obtained at even higher temperatures (300-400 ºC), and the QY 

decreased. The reduced emission of the PL centres observed in C-dots at high 

temperatures, could be a result of quenching of the carbon core structure.72 

Another PL mechanism theory of wavelength dependent emission of C-dots is 
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the crosslink-enhanced emission (CEE) effect. This explains that a special kind 

of C-dot known as non-conjugated polymer dots (PDs) possess aggregated 

polymer structures and the formation of these polymer aggregations promote PL 

behaviour.77   

 

 

Results of the fluorescence data of C-dot, C-dotK7A and C-dotK7B solutions 

The C-dot, C-dotK7A and C-dotK7B materials were all dispersed separately into 

water to make 0.1 mg/mL solutions. Fluorescence spectroscopy was used to 

analyse the fluorescence properties of the C-dot in each of the solutions. From 

literature, C-dots display high levels of photoluminescence, making them strong 

candidates for imaging applications.  

The C-dots will likely be exposed to different environment conditions, so therefore 

the fluorescence properties were analysed of the C-dot material solutions at 

different pH levels.  

The fluorescence intensity of the C-dot solution at pH 7.36 shown in figure 26 a), 

is roughly twice as high as the intensity of the C-dot solution at a much lower pH 

level of 0.90 (figure 26d). Increasing the acidity of the solution for C-dot seems to 

decrease the fluorescence, at neutral pH the fluorescence reached to over 

160,000 on the intensity scale whereas, the fluorescence at pH 0.90 reached to 

almost half that at 60,000. The intensity at a higher pH of 12.97 viewed in figure 

26 g) reached on the scale to over 120,000, which is much greater, compared to 

a low pH. The fluorescence data suggests that when the pH is low, the intensity 

is lowest, and as the pH value starts to increase to 7 and above, the intensity 
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reaches a maximum, in which then the intensity begins to drop as the pH further 

increases. No direct relation of pH to the synthesized C-dot and C-dotK7 system 

found in literature however, one report found out when the absorption/emission 

spectra of CQDs (not conjugated to a biomaterial) tested under different pH 

conditions, interesting observations are noted. Within the pH, range of 3-7 there 

was not any real variation in the peak position of absorption spectra. However, a 

red shift spotted when pH becomes more basic and this reflects in the emission 

spectra viewed in the figure below. The opposite effect of pH noticed in the CQD 

system compared to the C-dot/C-dotk7 system, where the fluorescence intensity 

decreases from acidic to basic environment (pH 3-12), indicates the CQDs are 

pH sensitive. The report assumes that the molecular state of the CQD is affected 

at extreme pH values and dissociation into smaller particles leads to low 

fluorescence.70  

 

The fluorescence spectrums of both C-dotK7A (figure 26e) and C-dotK7B (figure 

26f) at low pH values (0.85-0.87) show a decrease in intensity compared to when 

at higher pH. Therefore, as this comparison of low pH resulting in low intensity is 

presentable in all solutions of C-dot, C-dotK7A and C-dotK7B, it suggests that the 

C-dot material is pH sensitive. In addition, the fluorescence intensities are very 

low for both C-dotK7 samples compared to just C-dot (180,000 compared to 

16,000 on the intensity scale y axis). The attachment of K7 peptide to the C-dot 

seems to influence the strength of fluorescence, leading to lower intensities when 

the peptide is attached.  

C-dotK7A and C-dotK7B have some visible differences in each of the spectrums 

(at neutral pH). Firstly, for C-dotK7A, at a wavelength absorbance of 380 nm the 
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intensity is highest whereas, in C-dotK7B, the wavelength absorbance 410 nm 

has the highest intensity. Table 6 shows the λMax emissions of all peaks in each 

of the spectrums. The spectrums of C-dotk7A (figure 26e) and C-dotK7B (figure 

26f) at pH 7, have different maximum emission values between the wavelengths 

350-380nm. Two viable arguments that may explain the different intensity 

properties displayed for C-dotK7A and C-dotK7B, first the peptide itself may act 

differently when the method of conjugation is modified and adapted, the 

properties of peptide could influence C-dot behaviour. Second, the different 

method to conjugate peptide to C-dot might affect the graphite density and 

change the C-dots behaviour for fluorescence. The highest fluorescence intensity 

is at the same level for both samples of C-dotK7 neutral solutions and they show 

a trend of wavelength excitation dependent emission behaviour keeping with the 

characteristics expected for C-dots. On the other hand, when the pH solution of 

C-dotk7A decreases, the fluorescence pattern changes, the wavelength 

dependent emission is harder to distinguish and the maximum emission difficult 

to detect, the data not producible.  

In table 6, the maximum emissions for C-dotK7B at neutral and high pH levels 

are the same. The maximum emission shifts outwards at lower wavelengths for 

low pH, but as the wavelength increases the maximum emissions start to match 

to the shifts in the other spectrums. Additionally, the fluorescence spectrum of C-

dotK7B solution at high pH (12.93) exhibits an intensity peak at 350 nm, which 

shows very high fluorescence which appears as an anomaly. Surface passivation 

of the C-dots add the addition of amide groups and oxygen-based groups onto 

the surface of the C-dot and these groups can ultimately fluoresce themselves. 

Additional contributions coming from extreme pH most likely the amide and 
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oxygen-based groups change their electronic environments and this leads to 

possible increases in fluorescence intensity.  

Table 6: λ max emissions at each wavelength. 

  

 

 

 

 

 

 

 

 λ Max Emission 

 C-dot C-dotK7A C-dotK7B 

Emissio

n 

pH 

7.36 

pH 

0.90 

pH 

12.97 

pH 

7.38 

pH 

0.87 

pH 

12.73 

pH 

7.60 

pH 

0.85 

pH 

12.93 

350 475 480 475 440 430 435 420 490 420 

380 470 500 475 445 440 460 470 510 465 

410 510 510 490 495 n/a 480 495 520 500 

440 520 520 515 530 n/a 515 530 530 530 

470 545 555 540 555 n/a 540 555 555 555 

500 565 565 575 575 n/a 565 575 570 575 
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Fluorescence graphs for C-dot, C-dotK7A and C-dotK7B solutions at neutral pH 

(7) 

    Figure 26a: Fluorescence spectrum of C-dot solution (0.1 mg/mL) at pH 7.36 

   Figure 26b: Fluorescence spectrum of C-dotK7A solution (0.1 mg/mL) at pH 7.38 
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    Figure 26c): Fluorescence spectrum of C-dotK7B solution (0.1 mg/mL) pH 7.60 

 

Fluorescence graphs for C-dot, C-dotK7A and C-dotK7B solutions at low pH 

(less than 7)  

   Figure 26d): Fluorescence spectrum of C-dot solution (0.1 mg/mL) at pH 0.90 
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 Figure 26e): Fluorescence spectrum of C-dotK7A solution (0.1 mg/mL) at pH 0.87 

 

  Figure 26f): Fluorescence spectrum of C-dotK7B solution (0.1 mg/mL) pH 0.85 
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Fluorescence graphs for C-dot, C-dotK7A and C-dotK7B solutions at high pH 

(greater than 7)  

   Figure 26g): Fluorescence spectrum of C-dot solution (0.1 mg/mL) at pH 12.97 

   Figure 26h): Fluorescence spectrum of C-dotK7A solution (0.1 mg/mL) pH 12.73 
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  Figure 26i): Fluorescence spectrum of C-dotK7B solution (0.1 mg/mL) pH 12.93 
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3.2.2 UV-VIS analysis 

Ultra-violet spectroscopy performed on all the C-dot material solutions to find out 

how they absorb or reflect in the ultraviolet region and it is a good test to compare 

with fluorescence data. The solutions of all C-dot materials dispersed in water 

had the same concentration of (0.1 mg/ml) and the K7 peptide solution had an 

unknown concentration. The image showing the colour of each sample solutions 

(darkest to lightest) reflects how they absorb in the ultra-violet light. For example, 

the C-dot solution has the darkest colour (dark brown) and on the UV graph 

(figure 27), the blue line representing the C-dot solution has the highest 

absorbance. On the other hand, the K7 peptide solution has no colour and has 

the lowest absorbance. When the K7 peptide attaches to the C-dot, the 

conjugated C-dotK7 systems display coloured solutions and absorbance values 

somewhere in-between. The absence of distinct, sharp peaks characteristic of 

aromatic rings is consistent with NMR data. 

 Both samples are water-soluble and show colloidal stability over a prolonged 

period of time. In a sample solution, if the particles do not all disperse, then large 

aggregates will start to form, these aggregates will absorb UV-light and 

absorbance values would be much greater. Solutions, which are transparent, 

tend to reflect light. The K7 peptide is still dispersible at a good level and this fits 

with the zetasizer information providing a diameter size of 42 nm.   
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Figure 27: UV-Vis absorbance of solutions of C-dot, K7 peptide, C-dotK7A and C-dotK7B. The 
image shows the solutions inside the cuvette, left to right, C-dot, C-dotK7B, C-dotK7A and K7 
peptide.  
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3.3 Sterility test 

By observing all the petri dish images, each of the samples at both 24 hours 

and 48 hours do not display any sign of growth therefore, the samples are ready 

for antimicrobial testing.  

                                  

 

                                               

 

 

                                            

 

Figure 28a): Petri dishes of C-dot material after 24 hours (left) and after 48 hours (right) 

 

 

 

 

 

 

 

Figure 28b): Petri dishes of K7 peptide material after 24 hours (left) and after 48 hours 
(right) 

 

 

 

 

 

 

 

Figure 28c): Petri dishes of C-dotK7A material after 24 hours (left) and after 48 hours (right) 
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Figure 28d): Petri dishes of C-dotK7B material after 24 hours (left) and after 48 hours (right) 

 

3.4. Haemolysis Test Method 

A haemolysis test completed for all the samples three times, to determine 

whether they show any toxicity against RBCs. Haemolysis is the breaking down 

of red blood cells (RBCs), if RBCs are being destroyed, and then the substance 

is toxic against RBCs. Figure 29a) shows the negative and positive control, figure 

29b) shows the haemolysis result for the K7 peptide and figure 29c) shows the 

haemolysis result for C-dot, C-dotK7A and C-dotK7B. All four samples produced 

no haemolysis at all so the samples do not break down any of the red blood cells. 

To go down the path of testing in biological applications, further toxicity testing is 

required, as some substances might not be toxic to RBCs but may be toxic to 

other cells. 
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Figure 29): A) negative and positive control for the haemolysis test, B) haemolysis result for the 
K7 peptide and C) haemolysis result for C-dot (4), C-dotK7A (5) and C-dotK7B (6).  

 

 

 

3.5 Nanoparticles with both bioimaging and antimicrobial properties 

Many bioimaging materials show excellent antimicrobial properties and a few of 

the materials mentioned below, describe briefly the uses of both bioimaging and 

antimicrobial behaviour. The potential of the C-dotK7 conjugated materials for 

use in biomedical applications, made it of interest to go and explore their 

antimicrobial activity.  

Nanosilver (Ag nanoparticles) is a commonly used engineered nanomaterial, 

which has attractive biomedical applications, taking advantage of its 

plasmonic/metallic and antimicrobial properties.81 These properties will help in 

preventing infections and can be used as a diagnostic and therapeutic tool. 

Nanosilver particles release Ag+ ions from their surface which can kill sulphur and 

A 

C 

B 
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phosphorus containing groups such as DNA and proteins. This results in damage 

to the cell membrane and protein function, leading to cell death. The use of 

nanosilver in dental adhesives was effective against streptococci without 

disturbing the adhesive mechanical properties.81 Nanosilver is an example of a 

plasmonic particle and can be detected by many optical microscopy techniques. 

An example of this, the attachment of nanosilver to iron oxide nanoparticles. 

These were incubated with macrophages and were easily detected by two-

photon imaging after their cell uptake.81 

The chemical grafting of a fluorescent carbon nanoparticle onto the surface of a 

fabricated zinc oxide nanorod, showed antimicrobial activity against gram-

positive and gram-negative bacteria and displayed bioimaging properties. The 

fluorescent nanorod was incubated into the cell of Staphylococcus bacteria and 

was imaged successfully under fluorescent microscopy. 82 

3.6 Antimicrobial behaviour of C-dot, K7 peptide and conjugates 

All samples of K7 peptide, C-dot, C-dotK7A and C-dotK7B underwent an 

antimicrobial test method to determine how efficient the materials were at killing 

or stopping the growth of microorganisms. The concentration used for the 

samples was 0.01 mg/ml and they were tested against two different types of 

bacteria strain, which consisted of E.coli in one culture and Staphylococcus in the 

other. Figures 30 shows the results of each sample to see how efficient they were 

at destroying the colonies of the two bacteria.  

C-dot and K7 peptide materials tested for antimicrobial properties and individually 

they may show some contribution to antimicrobial effect. The blue chart in each 

of the figures 30) results, describes the percentage number of E.coli cell colonies 

destroyed by each material tested. C-dot and K7 peptide killed roughly 30% of 
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E.coli colonies and when the materials conjugate together, an average of 40% of 

colonies were destroyed which shows better antimicrobial efficiency. C-dotK7B 

system had 63% of E.coli bacteria growth inhibition and has greater antimicrobial 

effect on the bacteria than C-dotK7A.  The yellow chart in each of the figure 30 

results shows the percentage number of Staphylococcus cell colonies destroyed 

by each material tested. The C-dot material killed over 30% of colonies, whereas 

the K7 peptide killed 4% of Staphylococcus colonies. The percentage of 

Staphylococcus death increases to over 40% when the C-dot and K7 peptide 

materials conjugate together. Overall, it can be seen that there is a synergistic 

effect-taking place for the conjugated C-dotK7 systems. The antimicrobial effect 

is greater than average when C-dot and K7 attach together. 

 

Statistics of microbiology results 

Table 7 and table 8 show the statistical results for the antimicrobial testing 

performed three times on each of the materials against E.coli and Staphylococcus 

bacteria, respectively. The colony forming unit (CFU) is a measure of the number 

of bacteria colonies, present in the sample culture. The total dilution factor is a 

value that describes the overall dilution used and how the total dilution factor was 

achieved, can be seen in the appendix. Lastly, the total number of bacteria is 

calculated by multiplying the CFU value by the total dilution factor. An average 

was taken for the CFU value and the total number of bacteria for each of the 

sample materials and of the control. The average values were used to work out 

the number of bacterial colonies destroyed by each of the sample materials.   
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Table 7: Statistical results of C-dot/C-dot k7 materials against E.coli 

Material CFU (x10-6) Total dilution 
(x107) 

Total number of 
bacteria 

K7 
peptide 

83 2.5 2075 

 65 2.5 1625 

 80 2.5 2000 

C-dot 68 2.5 1700 

 76 2.5 1900 

 72 2.5 1800 

C-dotK7A 67 2.5 1675 

 68 2.5 1700 

 48 2.5 1200 

C-dotK7B 22 2.5 550 

 59 2.5 1475 

 36 2.5 900 

Control 101 2.5 2525 

 113 2.5 2825 

 110 2.5 2750 

 

 

 

Table 8: Statistical results of C-dot/C-dot k7 materials against Staphylococcus 

Material CFU (x10-6) Total dilution 
(x107) 

Total number of 
bacteria 

K7 
peptide 

68 5 3400 

 73 5 3650 

 82 5 4100 

C-dot 56 5 2800 

 53 5 2650 

 44 5 2200 

C-dotK7A 40 5 2000 

 51 5 2550 

 41 5 2050 

C-dotK7B 52 5 2600 

 42 5 2100 

 38 5 1900 

Control 72 5 3600 

 68 5 3400 

 91 5 4550 
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 Figure 30 a-b): a) Percentage decrease of E.coli and Staphylococcus bacteria colonies for C-dot 
(left) and b) K7 peptide (right).                                                          

 

 

 

Figure 30 c-d): c) Percentage decrease of E.coli and Staphylococcus bacteria colonies for C-
dotK7A (left) and d) C-dotK7B (right).                                                                                                                  
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3.7 Comparison of results to literature data 

The structural characterisation, optical properties and antimicrobial behaviour of 

the C-dot, K7 and C-dotK7 conjugates has been explained in detail throughout 

section 3. The results from a variety of tests performed on the materials can be 

compared to similar data explored from the literature. Firstly, the structural 

characterisation of K7 peptide to determine the size of its particles was 

performed, by measuring the dynamic light scattering effect using a zetasizer 

instrument. The main particle size of K7 peptide is 42nm in diameter and a similar 

polyLysine complex had comparable particle sizes. The poly(L-lysine)-DNA 

complexes had sizes in the range of 55-105 nm.78 Moreover, the C-dot particle 

was functionalized with nitric acid to incorporate oxygen based functional groups 

onto its surface for the availability of attaching a K7 peptide. The surface 

functionality provided brilliant fluorescence emissions of the C-dot and C-dotK7 

materials. A study by Sun et al also functionalised the surface of C-dots but with 

inorganic salts such as ZnO, ZnS. The fluorescence spectroscopy gave 

increased quantum yields and brighter fluorescence emissions, compared to the 

un-doped C-dots.11 Furthermore, two different C-dot conjugated systems read in 

literature, showed interesting antimicrobial activity as well as the C-dot and C-

dotK7 conjugates. A group of researchers developed a method of conjugating C-

dots (C-dot-C12) with the quaternary ammonium compound lauryl betaine (BS-

12).79 A number of antimicrobial evaluations performed on the C-dots, BS-12 and 

conjugated C-dot-C12 materials. The materials were tested against 

Staphylococcus (gram-positive) and E.coli (gram-negative) bacteria. Under the 

same conditions to C-dot/K7/C-dotK7 system, these tests showed that the 

individual C-dot material and BS-12 showed no antimicrobial activity against 

either bacteria not even when the concentration increased to 30 μg/mL. However, 
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when the C-dot and BS-12 attach together to form the C-dot-C12 system, a 

synergistic effect happens were over 98.5% of Staphylococcus colonies killed at 

a concentration 10 μg/mL for C-dot-C12 (figure 31a). For Gram-negative bacteria 

E.coli, the C-dot-C12 system at a concentration of 25 μg/mL killed about 5% of 

E.coli bacterial colonies and at an increased concentration of 200 μg/mL, only 

25% of colonies were killed79 (figure 31b). Overall, comparing the two C-dot 

systems, C-dot/K7/C-dotK7 has stronger antimicrobial fight against gram-

negative E.coli bacteria. The C-dot-C12 system shows promising antimicrobial 

effects against Staphylococcus bacteria compared to the C-dot/K7/C-dotK7 

system, however, only low concentrations of 10 μg/mL used for C-dot/K7/C-

dotK7. 

 

 Figure 31: a) The left graph shows the 

concentration (μg/mL) vs the viability of Staphylococcus bacteria against CDs, BS-12 and CDs-

C12 materials. b) The right graph shows the concentration (μg/mL) vs the viability of E.coli bacteria 

against CDs, BS-12 and CDs-C12 materials.79 
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 The bactericidal activity of multi-walled carbon nanotubes (MWNTs) and MWNT-

epilson-polyLysine (MEPs) at 20 mg l-1 concentration in phosphate buffer saline 

(PBS) were reported in literature. The figure 32) below, describes that MWNTs 

kill 25.5, 34 and 22.5% of E.coli, Ps. Aeruginosa and Staphylococcus 

respectively.80 The carbon nanotubes show a small amount of antimicrobial 

activity against both E.coli and Staphylococcus bacteria (25.5 and 22.5%), these 

values are similar to our C-dot material (33% death of both bacteria). The 

attachment of MWNTs to polyLysine to form MEPS increases the antimicrobial 

properties dramatically. MEPs kill 97.6, 91.5 and 88.5% of E.coli, Ps. Aeruginosa 

and Staphylococcus respectively.80 Therefore, carbon nanoparticles on their own, 

do not exhibit great antimicrobial properties. Yet, when functionalized with 

polyLysine they significantly enhance the antibacterial activates against E.coli 

and Staphylococcus. The MEPs system displays larger percentages of bacteria 

death compared to the C-dotK7 systems, but higher concentrations of MEPs 

solutions used.  

Figure 32) The killing percentages of multi-walled carbon nanotubes (MWNTs) (no background 
column) and MWNTepilson-polylysines (grey background column) against E.coli, Pseudomonas 
aeruginosa and Staphylococcus aureus in the 20 mg l-1 concentration of suspensions, 
respectively.80                                                                                                                  
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Due to timing issues, no bioimaging experiments were tested or analysed. 

However, described in the future work section, is a few proposed tests that can 

be used and investigated for the continuation of the research project.  
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4.  Conclusion  

Well-defined C-dots were synthesized via pyrolytic treatment of citric acid 

monohydrate and ethanolamine and were characterized using FT-IR, elemental 

analysis and fluorescence spectroscopy. Elemental analysis provided information 

about the element composition of C-dot (60% C,13.5% N, 7% H), FT-IR showed 

the relevant functional groups present on the surface of the C-dot, such as 

COOH, C-O and C=O. The fluorescence spectroscopy show that the C-dots 

exhibit excitation-wavelength dependent emission. In the introduction section, 

literature research was carried out explaining that the synthesis of C-dots can be 

modified to tune and increase the photoluminescence emissions. For example, 

the surface functionalisation or heteroatom doping of C-dots can significantly 

increase the photoluminescence. Therefore, the synthesis of the C-dot in our 

research project, had its surface oxidised with nitric acid to increase its 

photoluminescence.  

The cell-penetrating peptide K7 was synthesized, purified using HPLC analysis 

and characterised via NMR spectroscopy. The size by intensity distribution of K7 

peptide using the zetasizer instrument, indicated two populations with 

hydrodynamic diameters of 40nm and 300nm respectively. Two different 

approaches were followed to allow the C-dot/peptide conjugation. First, method 

A was used to attach the C-dot to the end of the uncleaved peptide sequence as 

grown to the synthesizer. Second, method B focuses on the covalent attachment 

of C-dot to the cleaved peptide. FT-IR spectroscopy confirmed the successful 

conjugation of C-dot to K7 peptide. UV-VIS analysis proved the C-dot solution 

had the highest absorbance and the K7 peptide had lowest absorbance. 

Whereas, the C-dotK7 conjugates displayed coloured solutions and absorbance 

values somewhere in-between. Described also in the introduction section, are a 
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few unique examples of C-dot and QD nanoparticles attached to different 

peptides that can inhibit or slow down the fibrillation process of amyloid fibrils 

which causes Alzheimer’s disease.  

Both conjugated systems show promising antimicrobial properties against model 

Gram positive and Gram-negative strains, while demonstrating very low levels of 

haemolytic activity. Moreover, the conjugated systems display interesting optical 

properties, albeit less intense compared to the peptide-free analogues. The 

combination of those unique characteristics (e.g. supreme optical properties, 

minimal haemolytic activity, enhanced biocompatibility) make the C-dotK7 ideal 

candidates for bioimaging applications. Many bioimaging materials show 

excellent antimicrobial properties and the potential of the C-dotK7 conjugates for 

use in biomedical applications lead us to go and explore their antimicrobial 

activity. To assess their bioimaging capabilities it is important to explore how the 

properties of the conjugates work when used in different bioimaging experiments, 

especially on the focus for cancer cell imaging. Two bioimaging probes with 

suggestions of possible cancer cell incubation with the C-dotK7 conjugates are 

discussed further in the future section. Lastly, improvements and further 

progression for the project work, such as toxicity testing of the conjugates and 

the evaluation of their cell penetrating performance is highlighted. 
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5. Future Work 

Firstly, we need to evaluate the cell-penetrating performance of the conjugates 

and it will be beneficial to compare against a different peptide that has been 

functionalised onto the C-dots surface. Secondly, we need to evaluate possible 

toxicity effects of the conjugates. One way is by performing an MTT assay. An 

MTT assay is a common colimetric assay for assessing cell metabolic activity.31 

An alternative test that can be performed on the conjugates is known as WST-1-

Cell cytotoxicity assay. The WST-1 assay is a subtle and accurate assay for cell 

proliferation and cytotoxicity.83 It is accomplished in a single tissue culture well 

and requires no washing or solubilisation of cells. The adherent or suspension 

cells are cultured on a microplate and then incubated with WST-1 and a 

spectrometer is used to screen the assay.83 Thirdly, we need to assess their 

bioimaging capabilities and therefore, it is important to explore how the properties 

of the conjugates work when used in different bioimaging experiments, especially 

on the focus for cancer cell imaging. In one study, confocal laser scanning 

microscopy (CLSM) was used to investigate the uptake of C-dots-FA by HeLa 

cancer cells.25 The images show that the HeLa cells incubated with C-dots-FA 

show bright fluorescence in both the cytoplasm and cell membrane, but not the 

nucleus. The technique in effect scans an object point by point using a focused 

laser beam to allow for a 3-D reconstruction.25 CLSM is an ideal imaging tool to 

observe the possible fluorescence of different cancer and defected cells such as 

HeLa, A549, MCF- 7 when incubated inside the conjugate materials. A second 

bioimaging probe which works similarly to CLSM is known as two-photon 

microscopy (TPM). The technique uses a laser to excite a fluorescent tag within 

a sample and the detectors will measure light that is emitted. The lasers used in 

TPM, excite by using near simultaneous absorption of two long wavelength 
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(800nm) photons. The benefits of using longer wavelengths is that they are less 

damaging to the tissues but can also penetrate the tissues more deeply.84 C-dots 

passivated with PPEI-EI agent for two-photon microscopy was reported by Cao 

et al.19 The passivation leads to surface defects on the carbon particle surface 

acting as excitation energy traps, which allow human breast cancer MCF-7 cells 

to be brightly illuminated under the microscope with excitation at 800nm.19 It is of 

curiosity to discover whether the supreme optical properties of the C-dotK7 

conjugates can detect good, clear images of different cancer and defected cells 

such as MCF-7, HeLa or A549 cells etc. Therefore, the conjugates will be 

incubated with the different cancer cell lines and the bioimaging will be performed 

using both CLSM and TPM probes. The resolution of these probes will be 

compared against a standard such as quantum dots etc. Additionally, other 

imaging techniques like NIR fluorescence or therapies such as photodynamic 

therapy, can be performed using C-dotK7 as a PL material, to observe if it can 

image or help to kill cancer cells.   
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                        Appendix 1: UV-light image of C-dot in water. 

 

 

 

 

 

 

 

 

 

 

 

 

                          Appendix 2: UV-light image of C-dotK7A in water 
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                          Appendix 3: UV-Light image of C-dotK7B in water 

 

The total dilution factor 

Wanted to find out the total dilution factor for the E.coli and S. aureus cultures.  

The cultures suspended overnight.  

Diluted the test cultures to get the desired absorbance. E.coli multiplied by 1000 

and S.aureus x 2000.  

200 µL taken out of 10 ml onto each of the discs. x 50  

The 200 µL then placed into 9.8 ml Ringers (10 ml total). x 50 

Serially diluted x times. Serial dilutions x (However many dilutions) 

100 µL taken out of 1ml. x 10 

Total dilution factor for E.coli 2.50 x 107 x serial dilution x by CFU  

Total dilution factor for S.aureus 5.00 x 107 x by serial dilution x by CFU  
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