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Abstract 

The aim of this study was to determine whether Raman spectroscopy combined with 

chemometric analysis can be applied to interrogate biofluids (plasma, serum, saliva and urine) 

towards detecting oesophageal stages through to oesophageal adenocarcinoma 

(normal/squamous epithelium, inflammatory, Barrett´s, low-grade dysplasia [LGD], high-

grade dysplasia [HGD], and oesophageal adenocarcinoma [OAC]). The chemometric analysis 

of the spectral data was performed using principal component analysis (PCA), successive 

projections algorithm (SPA) or genetic algorithm (GA) followed by quadratic discriminant 

analysis (QDA). The GA-QDA model using a few selected wavenumbers for saliva and urine 

samples achieved 100% classification for all classes. For plasma and serum, the GA-QDA 

model achieved excellent accuracy in all oesophageal stages (>90%). The main GA-QDA 

features responsible for sample discrimination were: 1012 cm−1 (C-O stretching of ribose), 

1336 cm-1 (Amide III and CH2 wagging vibrations from glycine backbone), 1450 cm-1 

(methylene deformation), and 1660 cm-1 (Amide I). The results of this study are promising 

and support the concept that Raman on biofluids may become a useful and objective 

diagnostic tool to identify oesophageal disease stages from squamous epithelium to OAC. 

 

Abbreviations: BO, Barrett’s oesophagus; CCD, charge-coupled device; GA, genetic 

algorithm; GA-QDA, genetic algorithm quadratic discriminant analysis; GI, gastro-intestinal, 

GORD, gastro-oesophageal reflux disease; HGD, high-grade dysplasia; LGD, low-grade 

dysplasia; OAC, oesophageal adenocarcinoma; PCA, principal component analysis; PCA-

QDA, principal component analysis quadratic discriminant analysis; QDA, quadratic 

discriminant analysis; SPA-QDA, successive projections algorithm quadratic discriminant 

analysis. 
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1 INTRODUCTION 

Barrett’s oesophagus (BO) is the only known precursor to oesophageal 

adenocarcinoma (OAC) to date as a result of chronic inflammation from gastro-oesophageal 

reflux disease (GORD). GORD increases the risk of OAC by greater than 40-fold compared 

with the general population [1]. At present there are no reliable predictive biomarkers that 

might enable us to risk-stratify BO patients and identify those who would benefit most from 

endoscopic management [2]. Early detection and prevention are the key strategies to manage 

OAC. Early detection of cancer or dysplasia in BO allows intervention at an early stage. The 

argument as to which BO patients are most likely to benefit from surveillance and 

management hinges on the high prevalence of BO and the low cancer incidence among 

unselected BO cases, versus the burden of invasive treatment and the high morbidity and 

mortality from OAC [3]. 

There is a continuing effort in the search of new technology that can detect early 

biochemical signs of malignancy and therefore significantly reduce morbidity and mortality. 

Biomarkers including carbohydrates, proteins, lipids and nucleic acids can be used for risk 

assessment, diagnosis, prognosis, and for the prediction of treatment efficacy [4]. Exploration 

of biofluids has only been recently explored by vibrational spectroscopic techniques [4]. They 

are easily accessible, minimally invasive and exhibit fingerprint spectra that have 

characteristic bands reflecting their biochemical structure. 

Raman spectroscopy is complementary to infrared (IR) technology and has 

advantageous properties when analysing biofluids. Contrary to conventional detection 

methods, optical spectroscopy on plasma, serum, saliva or urine provides an opportunity to 

diagnose diseases non-invasively. Raman spectroscopy is based on inelastic vibrational 

scattering, which can detect the secondary constitution of molecules [5]. No labelling is 

necessary and the technique provides high spectral sensitivity [6]. Spectroscopy on biofluids 

has been focused on plasma and serum analysis due to the large readily available biobanks in 
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research laboratories. Multiple studies have been performed demonstrating the potential of 

Raman spectroscopy for differentiating normal subjects from patients with colorectal [7], 

hepatocellular [8], cervical [9], and breast cancers [10]. Raman spectroscopy in serum has 

been performed to differentiate controls from oral cancers  (tongue cancers) [11]; however, to 

date, no research has been established using Raman spectroscopy to investigate oesophageal 

transformation to adenocarcinoma from human body fluids. 

This paper proposes an accurate, fast, and inexpensive method using biofluids (plasma, 

saliva, serum and urine) for detecting oesophageal stages through to OAC (normal; 

inflammatory; Barrett´s; low-grade dysplasia (LGD), high-grade dysplasia (HGD); and, OAC) 

using Raman spectroscopy. 

 

2 MATERIAL AND METHODS 

2.1 Sample Collection 

Patients were identified from Upper gastro-intestinal (GI) multi-disciplinary team 

meetings and pathology hospital databases which had been created by the Pathology 

Laboratory manager and one of the Consultant GI Histopathologists.  Potential patients were 

identified prospectively and consent for biofluids (blood for plasma and serum; urine and 

saliva) was taken between October 2017 and June 2019 in a clinic or endoscopy setting. The 

biofluid specimens were categorised as follows: i) plasma:  n=35 normal, n=18 inflammatory, 

n=27 Barrett´s, n=6 LGD, n=12 HGD and n=22 OAC (set A); ii) saliva: n=35 normal, n=18 

inflammatory, n=26 Barrett´s, n=5 LGD, n=10 HGD and n=24 OAC (set B); serum: n=36 

normal, n=19 inflammatory, n=28 Barrett´s, n=6 LGD, n=12 HGD and n=23 OAC (set C); 

and, urine: n=38 normal, n=19 inflammatory, n=27 Barrett´s, n=6 LGD, n=11 HGD and n=26 

OAC (set D). 

Ethical approval was granted by the East of England - Cambridge Central Research 

Ethics Committee from 2015 (Archival gastro-intestinal tissue, blood, saliva and urine 
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collection; REC reference: 18/EE/0069; IRAS project ID: 242639). Ethics was also granted 

from the parent University (STEMH 909 application). All biofluids taken at source patient 

contact were stored in their containers in the fridge at 4°C to 7°C. Prior to freezing, blood 

samples were centrifuged at 20°C at 2200 rpm for 15 min to obtain plasma and serum samples 

(local protocol). Saliva samples were taken from patients 3 to 6 h prior to ingestion of solids 

or liquids. All biofluids were then snap frozen and stored in the freezer at -80°C. 

Prior to slide preparation, biofluids samples were left to thaw in the fridge at 7°C. 

Thirty mL of individual biofluids (plasma, serum and saliva) were pipetted onto aluminium 

foil-lined FisherBrand™ slides for Raman spectroscopy analysis. Urine was centrifuged at 

2200 rpm at 20°C with the supernatant pipetted onto each slide. Each slide was labelled with 

a specific GI (Gastrointestinal number) used to anonymise samples. All slides were left to dry 

prior to transportation in wooden slide boxes to the spectroscopy laboratory for analysis. 

Samples were stored in a de-humidified glass container to prevent condensation and physical 

damage. 

2.2 Raman Spectroscopy 

Raman point spectra acquisition was performed with an InVia Renishaw Raman 

spectrometer coupled with a charge-coupled device (CCD) detector and a Leica microscope.  

A 200-mW laser diode was used at a wavelength of 785 nm with a grating of 1200 lines/mm. 

Exposure time was set at 10 s, with 5% laser power, and 2 accumulations at a spectral range 

between 2000−400 cm-1. Twenty-five point spectra were taken per sample using a 20× 

objective to focus the laser beam on the sample. 

2.3 Data Analysis and Chemometric Methods 

The data import, pre-treatment and construction of chemometric classification models 

(principal component analysis quadratic discriminant analysis [PCA-QDA], successive 

projections algorithm quadratic discriminant analysis [SPA-QDA] and genetic algorithm 

quadratic discriminant analysis [GA-QDA]) were implemented in MATLAB R2014a 
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software (MathWorks, USA) by using the PLS Toolbox version 7.9.3 (Eigenvector Research, 

Inc., USA) and laboratory-made routines. The raw spectra were pre-processed by cutting 

between 1800 and 800 cm-1 (939 wavenumbers at 4 cm-1 spectral resolution). Cosmic rays 

were corrected using the Renishaw WiRE software system, and baseline distortions due to 

fluorescence interference were corrected with the asymmetric least squares (ALS) baseline 

correction algorithm [12]. For PCA–QDA, SPA–QDA and GA–QDA models, the samples 

were divided into training (60%), validation (20%) and prediction sets (20%) by applying the 

classic Kennard–Stone (KS) uniform sampling algorithm [13] to the spectra as shown in 

Table 1. The optimum number of variables for SPA-QDA and GA-QDA were performed with 

an average risk G of QDA misclassification. Such a cost function was calculated in the 

validation set as: 

𝑮 =
𝟏

𝑵𝑽
∑ 𝒈𝒏

𝑵𝑽
𝒏=𝟏            (1) 

where 𝑵𝑽 is the number of validation spectra and 𝒈𝒏 is defined as: 

𝒈𝒏 =
𝒓𝟐(𝒙𝒏,𝒎𝑰(𝒏))

𝐦𝐢𝐧𝑰(𝒎)≠𝑰(𝒏) 𝒓𝟐(𝒙𝒏,𝒎𝑰(𝒎))
          (2) 

where 𝑰(𝒏) is the index of the true class for the nth validation object 𝒙𝒏. In this definition, the 

numerator is the squared Mahalanobis distance between object 𝒙𝒏 (of class index 𝑰(𝒏)) and 

the sample mean 𝒎𝑰(𝒏)  of its true class. The denominator in Eq. (2) corresponds to the 

squared Mahalanobis distance between object 𝒙𝒏 and the centre of the closest wrong class, 

𝒎𝑰(𝒎). The minimum value of the cost function (maximum fitness) will be achieved when the 

selected variables from the original data are as close as possible to its true class and more 

distance as possible from its wrong class according to the validation samples. The GA routine 

was carried out during 100 generations with 200 chromosomes each. Crossover and mutation 

probabilities were set to 60% and 1%, respectively. Moreover, the algorithm was repeated 

three times, starting from different random initial populations. The best solution (in terms of 

the fitness value) resulting from the three realisations of the GA was employed. 
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The calculation of classification quality parameters is a recommended standard 

practice for test evaluation [14]. For this study, measures of test accuracy, such as sensitivity 

(proportion of positive samples correctly identified), specificity (proportion of negative 

samples correctly identified) and F-score (measurement of the model accuracy), were utilised. 

These quality metrics were calculated as follows: 

Sensitivity (%) =
𝐓𝐏

𝐓𝐏+𝐅𝐍
× 𝟏𝟎𝟎         (3) 

Specificity (%) =  
𝐓𝐍

𝐓𝐍+𝐅𝐏
× 𝟏𝟎𝟎         (4) 

F-score =
𝟐×𝐒𝐄𝐍𝐒×𝐒𝐏𝐄𝐂

𝐒𝐄𝐍𝐒+𝐒𝐏𝐄𝐂
          (5) 

where TP stands for true positives, TN for true negatives, FP for false positives and FN for 

false negatives. SENS stands for sensitivity and SPEC for specificity. 

All selected wavenumbers obtained from SPA-QDA and GA-QDA for all oesophageal 

stages of disease (i.e., normal vs. inflammatory vs. Barrett´s vs. LGD vs. HGD vs. and OAC) 

were confirmed by a Student’s t-test (two-tailed, 95% confidence interval). 

 

3 RESULTS 

3.1 Plasma Dataset 

Fig. 1A shows the average raw Raman spectra derived from blood plasma for all 

groups (Normal vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC), respectively. 

Raman spectra of all oesophagus sample stages were compared after cosmic rays and baseline 

correction. The shape and trend of the six groups were very similar: there are four main 

Raman peaks at the position at around 1004 cm−1, 1335 cm−1, 1450 cm−1 and 1660 cm-1 after 

fluorescence background removal (Figure 1B). Electron-rich groups (e.g., C═O, C═N, and 

C═C) are the major source of features in Raman spectroscopy [15], and many Raman peaks 

are caused by the same molecular functional group belonging to different biomolecules in the 

material [16]. However, there are still some visible spectral differences, notably the bands at 



  

 8 

1004 cm−1 (collagen), 1335 cm−1 (CH3CH2 wagging mode of collagen), 1450 cm-1 (methylene 

deformation) and 1660 cm-1 (Amide I). Most of these bands decrease in amplitude from the 

normal group to the OAC group. The difference between groups can be observed more clearly 

from the averaged pre-processed spectrum of each group (Figure 1B). After pre-processing of 

the spectral data, chemometric techniques (PCA-QDA, SPA-QDA and GA-QDA) were 

applied to systematically classify all groups based on their Raman spectra. 

The classification of the six oesophageal stages was developed by discriminant 

analysis using the Raman spectra between 800 and 1800 cm-1. The GA-QDA model with only 

16 variables (namely, 884 cm-1, 1188 cm-1, 1206 cm-1, 1235 cm-1, 1296 cm-1, 1307 cm-1, 1365 

cm-1, 1383 cm-1, 1402 cm-1, 1440 cm-1, 1461 cm-1, 1608 cm-1, 1641 cm-1, 1656 cm-1, 1715 cm-

1, and 1793 cm-1; Fig. 1C and 1D) was found to give the highest classification accuracy in 

comparison with the other methods (PCA-QDA and SPA-QDA). The classification rate in the 

test set for Inflammatory and Barrett’s samples using GA-QDA was equal to 100%. For the 

other classes, GA-QDA achieved accuracies, sensitivities and specificities above >85%. The 

PCA-QDA model using four PC scores (90% of the variance for all classes) achieved 100% 

accuracy, sensitivity, specificity and F-scores for LGD and OAC classes (Table 2). SPA-QDA 

also achieved a considerable high accuracy in classification of HGD (100%) when applied 

using 30 selected wavenumbers, as shown in Table 2. Table S1 lists the selected 

wavenumbers obtained with the GA-QDA model applied to the plasma samples along their 

respective tentative biomolecular assignments. 

3.2 Saliva Dataset 

Fig. 2A shows the average raw Raman spectra derived from saliva for all groups 

(Normal vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC). Raman spectra of all 

stages of oesophageal disease were compared after cosmic rays and baseline correction. There 

are three main Raman peaks evident with the shape and trend similar for all groups: 1331 

cm−1, 1413 cm−1 and 1556 cm−1 in the raw spectra after fluorescence background removal 
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(Figure 2B). In particular, strong peaks observed in the pre-processed spectra at 1336 cm−1 

and 1664 cm−1 indicate Amide III and CH2 wagging vibrations from glycine backbone and 

Amide I, respectively. These peaks are inherent to Raman spectra of saliva [17]. Peaks at 852 

cm−1 and 1128 cm−1 correspond to C-N stretching, CH3 rocking and C-O vibrations, 

respectively. 

The classification of the six oesophageal stages was developed by discriminant 

analysis using the Raman pre-processed spectra between 800 and 1800 cm-1. The correct 

classification for the test set using GA-QDA was equal to 100% for all groups based on only 

16 selected wavenumbers (namely, 804 cm-1, 848 cm-1, 873 cm-1, 943 cm-1, 1012 cm-1, 1020 

cm-1, 1091 cm-1, 1163 cm-1, 1198 cm-1, 1326 cm-1, 1397 cm-1, 1404 cm-1, 1453 cm-1, 1528 cm-

1, 1552 cm-1 and 1765 cm-1), as shown in Figure 2C. An excellent classification by the GA-

QDA model for saliva was achieved (only 3 errors in the training set and 5 errors in the 

validation set) (Figure 2D). The PCA-QDA model using seven PC scores (90% of the 

variance for all classes) achieved good results specifically for inflammatory and HGD groups 

as can be seen in Table 3. In the SPA-QDA model, a considerable high accuracy in 

classification of OAC (100%) has been achieved using 30 selected wavenumbers (Table 3). 

Table S2 lists the selected wavenumbers obtained by GA-QDA for saliva samples with their 

tentative biomolecular assignments. 

3.3 Serum Dataset 

Fig. 3A shows the average raw Raman spectra derived from serum for all groups 

(Normal vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC). There are three main 

Raman peaks with the shape and trend similar for all groups: 1327 cm−1, 1443 cm−1 and 1662 

cm−1 in the raw spectra after fluorescence background removal (Figure 3B). In particular, 

strong peaks observed in the pre-processed spectra at 1004, 1337, 1450 and 1657 cm−1 

indicate phenylalanine (proteins), Amide III, CH2 bending and Amide I, respectively. The 

PCA-QDA model using seven PC scores (95% of the variance for all classes) achieved good 
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results especially for inflammatory, HGD and OAC groups as can be seen in Table 4. Inr the 

SPA-QDA model, a considerable high accuracy in the classification of OAC (100%) was 

achieved using 30 selected wavenumbers. The correct classification for the test set using GA-

QDA was 100% for normal and HGD groups based on only 30 selected wavenumbers 

(namely, 821 cm-1, 842 cm-1, 894 cm-1, 962 cm-1, 989 cm-1, 1035 cm-1, 1042 cm-1, 1047 cm-1, 

1062 cm-1, 1132 cm-1, 1146 cm-1, 1162 cm-1, 1165 cm-1, 1249 cm-1, 1279 cm-1, 1282 cm-1, 

1321 cm-1, 1362 cm-1, 1402 cm-1, 1414 cm-1, 1415 cm-1, 1450 cm-1, 1471 cm-1, 1550 cm-1, 

1688 cm-1, 1711 cm-1, 1726 cm-1, 1727 cm-1, 1731 cm-1 and 1789 cm-1), as shown in Figure 

3C. The selected wavenumbers by GA-QDA for serum with their respective tentative 

assignment are listed in Table S3. 

3.4 Urine Dataset 

Fig. 4A shows the average raw Raman spectra derived from urine for all groups 

(Normal vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC). The Raman spectra of all 

oesophageal disease stages were analysed after cosmic rays and baseline correction. There are 

two main Raman peaks with the shape and trend similar for all groups: 1012 cm−1 and 1340 

cm−1 in the raw spectra after fluorescence background removal (Figure 4B). In particular, 

strong peaks are observed in the pre-processed spectra at 1012 cm−1 and 1336 cm−1 indicating 

C-O stretching in ribose and polynucleotide chain (DNA purine bases), respectively. 

Classification of the six oesophageal stages was developed by discriminant analysis using the 

Raman spectra between 800 and 1800 cm-1. The correct classification for the test set using 

GA-LDA was equal to 100% for all groups based on only 29 selected wavenumbers (namely, 

845 cm-1, 849 cm-1, 858 cm-1, 864 cm-1, 877 cm-1, 997 cm-1, 1051 cm-1, 1089 cm-1, 1186 cm-1, 

1230 cm-1, 1231 cm-1,, 1248 cm-1,, 1320 cm-1, 1348 cm-1, 1374 cm-1, 1481 cm-1, 1565 cm-1, 

1580 cm-1, 1616 cm-1, 1681 cm-1, 1684 cm-1, 1704 cm-1, 1710 cm-1, 1719 cm-1, 1729 cm-1, 

1740 cm-1, 1763 cm-1 and 1791 cm-1), as can be seen in Figure 4C. The PCA-QDA model 

using six PC scores (93% of the variance for all classes) achieved good results specifically for 
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HGD and OAC groups (Table 3); and the SPA-QDA model achieved a considerable high 

accuracy (100%) for four classes (normal, inflammatory, Barrett’s and HGD) using 30 

selected wavenumbers (Table 3). Table S4 lists the selected wavenumbers obtained by GA-

QDA for urine plasma samples with their respective tentative biomolecular assignments. 

 

4 DISCUSSION 

There have been no studies using Raman vibrational spectroscopy on biofluids in 

order to identify stages of oesophageal transformation to OAC. This study has demonstrated 

that Raman spectroscopy coupled multivariate classification techniques (PCA-QDA, SPA-

QDA and GA-QDA) on biofluids can be used to identify oesophageal stages of disease to 

adenocarcinoma with excellent accuracy, sensitivity and specificity. A key finding from this 

study suggests an alteration of some main biomolecules such as tryptophan and phenylalanine 

from the control group (patients with normal squamous epithelium) to the adenocarcinoma 

group. These two substances have been shown to have an anti-cancer effect [18]. We presume 

that these two chemical components when present in plasma and serum are key factors that 

counteract with cancer cells; and they may increase oncogenic substances that induce cancer 

formation. In addition, spectral markers such as C-O stretching of ribose (1012 cm-1), Amide 

III and CH2 wagging vibrations from glycine backbone (1336 cm-1), methylene deformation 

(1450 cm-1), and Amide I (1660 cm-1) were found as key discriminant features in saliva and 

urine between normal and progressive stages of oesophagus disease until cancer using GA-

QDA. Ribose sugars are precursors to biosynthetic pathways generated by the Warburg effect, 

which is responsible for keeping cancer cells alive by generating energy through glycolysis, 

where glucose is converted to lactose for energy followed by lactate fermentation even when 

oxygen is available [19]. Amide III vibrations attributed to β-sheet and α-helix conformation 

in proteins are highly associated to cancer [20-22]; as well as DNA methylation, which is an 

enzyme-induced chemical modification to the DNA structure where a methyl group is 
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covalently bonded to the cytosine base, and abnormalities in this phenomenon are related to 

carcinogenesis [23]. Amide I is known to be associated to cancer due to alterations in proteins 

backbone conformation [24]. 

Berger et al. [25] initially introduced the idea that Raman had potential for the analysis 

of biofluids. Biofluid assays have numerous advantages including high accessibility as well as 

low invasiveness. Sample processing is cheap and not laborious. This can be implemented in 

a clinical setting from routine investigations to intra-operative monitoring. In addition, Raman 

technology to analyse biofluids is particularly advantageous as samples do not need to be 

dried prior to analysis, which can change their biochemical composition. Raman spectroscopy 

has been performed on biofluid assays in a variety of cancer diagnostics. Taleb et al. [8] 

achieved an overall accuracy rate of 86–91% using multivariate analysis techniques applied to 

Raman spectral data of serum in hepatocellular carcinoma. Harvey et al. [26] conducted 

studies using Raman spectroscopy of urine to detect prostate cancer cells. The authors 

identified that the Raman spectra suggested a higher concentration of nucleic acids and 

proteins in bladder cells compared to the prostate cancer cells. An early work by Chan et al. 

[27] focused on analysing white blood cells as a potential diagnostic tool for haematological 

malignancies such as Lymphoma and Leukaemia. The authors showed that single-cell Raman 

micro-spectroscopy was able to discriminate between normal human lymphocytes and 

transformed Jurkat and Raji lymphocyte cell lines based on highly reproducible biomolecular 

fingerprints [27]. Multivariate statistical models based on the Raman spectra achieved a 

sensitivity of 98.3% for cancer detection, with 97.2% of the cells being correctly classified as 

belonging to the normal or transformed group [27]. 

Herein, the pre-processed Raman spectral datasets were analysed by classification 

methods based on QDA. QDA is a discriminant analysis algorithm based on a Mahalanobis 

distance calculation that uses a separate variance-covariance matrix for each class [28]. This 

increases the discrimination accuracy in complex biological medium where classes having 
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different variance structures are present [28]. PCA-QDA, SPA-QDA and GA-QDA were used 

on the six groups of samples for all biofluids separately. GA-QDA was found to be very 

effective in the discrimination between all groups, since this algorithm achieved a high-

quality performance rate using few wavenumbers. The GA-QDA model obtained an accuracy 

of 100% for saliva and urine in all groups. Although the number of samples in LGD and HGD 

groups are still small, which is a limitation towards the predictive ability of this classifier, the 

overall results demonstrate promising evidence that Raman spectroscopy coupled with 

chemometric techniques can be used for distinguish different stages of oesophagus disease to 

adenocarcinoma.  

In order to have a robust surveillance program for the early detection and improved 

detection rate for OAC, skilled endoscopists and pathologists are necessary for accurate 

mucosal sampling and histopathologic examination. However, the development of a quick, 

convenient, and inexpensive method for detecting early cancer or different stages from normal 

squamous epithelium through to OAC can be useful specifically to guide tissue biopsy thus 

increasing the yield of dysplasia detection. By using liquid samples the analysis would even 

be faster since no drying time would be necessary, and the level of discrimination could 

improve since relevant compounds might evaporate during the drying process. In addition, by 

using specially prepared slides for surface enhanced Raman spectroscopy the sensitivity of 

this method could be improved further due to the large magnification of the Raman signal for 

these samples [29]. This study shows the potential of Raman spectroscopy and chemometrics 

for detecting oesophageal stages of disease through to OAC based on biofluids with high 

accuracy, sensitivity and specificity. 

 

5 CONCLUSION 

Raman spectroscopy is a highly informative, non-destructive and robust technique that 

has been limitedly employed in the field of oesophageal disease. The results of this study 
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show that Raman spectroscopy coupled with multivariate classification algorithms (PCA-

QDA, SPA-QDA and GA-QDA) result in a powerful alternative approach for detection of 

oesophageal stages of disease to OAC in biofluids with an excellent accuracy, specificity and 

sensitivity in saliva and urine. We present a new, rational and convenient approach to 

different biofluids (plasma, saliva, serum and urine) using a minimal sample volume and 

without special sample preparation and reagents. This pilot study is pioneer; but further work 

in this field including larger cohorts of oesophageal malignancies samples should be 

performed in the future to validate these encouraging results before clinical trials. 
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SUPPORTING INFORMATION  

Additional Supporting Information may be found online in the supporting information tab for 

this article. 

Table S1:  Category-distinguishing wavenumbers for Normal vs. Inflammatory vs. Barrett’s vs. 

LGD vs. HGD vs. OAC using plasma samples obtained for SPA-QDA and GA-QDA models.  

Table S2: Category-distinguishing wavenumbers for Normal vs. Inflammatory vs. Barrett’s vs. 

LGD vs. HGD vs. OAC using saliva samples obtained for SPA-QDA and GA-QDA models. 

Table S3: Category-distinguishing wavenumbers for Normal vs. Inflammatory vs. Barrett’s vs. 

LGD vs. HGD vs. OAC using serum samples obtained for SPA-QDA and GA-QDA models. 

Table S4: Category-distinguishing wavenumbers for Normal vs. Inflammatory vs. Barrett’s vs. 

LGD vs. HGD vs. OAC using urine samples obtained for SPA-QDA and GA-QDA models. 
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FIGURES AND TABLES 

 

FIGURE 1. Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using plasma samples for Raman spectroscopy. The panel shows: (A) Average raw 

Raman spectrum in the region between 1800 cm-1 and 800 cm-1; (B) Average pre-processed 

Raman spectrum obtained from all stages segregated into Normal (black colour) vs. 

Inflammatory (blue colour) vs. Barrett’s (green colour) vs. LGD (yellow colour) vs. HGD 

(magenta colour) vs. OAC (red colour); (C) 16 selected variables used by the GA-QDA 

model; (D) Samples vs. predicted class for training and test sets. The spectrum colour for each 

class in (A) and (B) are the same depicted in (D) inset.  

 

  

(a) (b)

(c) (d)
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FIGURE 2. Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using saliva samples for Raman spectroscopy. The panel shows: (A) Average raw 

Raman spectrum in the region between 1800 cm-1 and 800 cm-1; (B) Average pre-processed 

Raman spectrum obtained from all stages segregated into Normal (black colour) vs. 

Inflammatory (blue colour) vs. Barrett’s (green colour) vs. LGD (yellow colour) vs. HGD 

(magenta colour) vs. OAC (red colour); (C) 16 selected variables used by the GA-QDA 

model; (D) Samples vs. predicted class for training and test sets. The spectrum colour for each 

class in (A) and (B) are the same depicted in (D) inset. 

  

(a) (b)

(c) (d)
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FIGURE 3. Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using serum samples for Raman spectroscopy. The panel shows: (A) Average raw 

Raman spectrum in the region between 1800 cm-1 and 800 cm-1; (B) Average pre-processed 

Raman spectrum obtained from all stages segregated into Normal (black colour) vs. 

Inflammatory (blue colour) vs. Barrett’s (green colour) vs. LGD (yellow colour) vs. HGD 

(magenta colour) vs. OAC (red colour); (C) 30 selected variables used by the GA-QDA 

model; (D) Samples vs. predicted class for training and test sets. The spectrum colour for each 

class in (A) and (B) are the same depicted in (D) inset. 

  

(a) (b)

(c) (d)
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FIGURE 4. Comparison of Normal/Inflammatory/Barrett’s/LGD/HGD/OAC oesophageal 

stages using urine samples for Raman spectroscopy. The panel shows: (A) Average raw 

Raman spectrum in the region between 1800 cm-1 and 800 cm-1; (B) Average pre-processed 

Raman spectrum obtained from all stages segregated into Normal (black colour) vs. 

Inflammatory (blue colour) vs. Barrett’s (green colour) vs. LGD (yellow colour) vs. HGD 

(magenta colour) vs. OAC (red colour); (C) 29 selected variables used by the GA-QDA 

model; (D) Samples vs. predicted class for training and test sets. The spectrum colour for each 

class in (A) and (B) are the same depicted in (D) inset. 

 

 

  

 

(a) (b)

(c) (d)
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TABLE 1. Number of training, validation and prediction samples in each category of biofluids. 

Category – biofluids Training  Validation Test 

Normal – plasma 21 7 7 

Normal – serum 22 7 7 

Normal – saliva 21 7 7 

Normal – urine 23 7 8 

Inflammatory – plasma 11 3 4 

Inflammatory – serum 12 3 4 

Inflammatory – saliva 11 3 4 

Inflammatory – urine 12 3 4 

Barrett’s – plasma 16 5 6 

Barrett’s – serum 17 5 6 

Barrett’s – saliva 16 5 5 

Barrett’s – urine 17 5 5 

LGD – plasma 3 1 2 

LGD – serum 3 1 2 

LGD – saliva 2 1 2 

LGD – urine 3 1 2 

HGD – plasma 7 2 3 

HGD – serum 7 2 3 

HGD – saliva 7 2 3 

HGD – urine 7 3 3 

OAC – plasma 13 4 5 

OAC – serum 13 5 5 

OAC – saliva 14 5 5 

OAC – urine 15 5 6 
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TABLE 2. Figures of merit (accuracy, sensitivity, specificity and F-scores) for Normal vs. 

Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC using plasma samples. 

 

PCA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 91.3 91.3 95.6 100 95.6 100 

Sensitivity (%) 100 90 100 100 95.2 100 

Specificity (%) 71.4 100 80 100 100 100 

F-Scores (%) 83.3 94.7 88.8 100 97.5 100 

 

SPA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 82.6 86.9 95.6 95.6 100 86.4 

Sensitivity (%) 87.5 90 94.4 100 100 94.4 

Specificity (%) 71.4 66.6 100 100 100 60 

F-Scores (%) 78.6 76.6 97.1 73.3 100 73.3 

 

GA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 95.2 100 100 91.3 95.6 91.3 

Sensitivity (%) 93.7 100 100 95.4 100 94.4 

Specificity (%) 100 100 100 100 70 80 

F-Scores (%) 96.7 100 100 83.3 66.6 86.6 
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TABLE 3. Figures of merit (FOM) (accuracy, sensitivity, specificity and F-scores) for Normal 

vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC using saliva samples. 

 

 PCA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 82.6 91.3 95.6 95.6 95.6 86.9 

Sensitivity (%) 87.5 90 100 100 95.2 94.4 

Specificity (%) 71.4 100 80 0 100 60 

F-Scores (%) 78.6 94.7 88.8 0 97.5 73.3 

 

SPA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 95.6 95.6 95.6 95.6 91.3 100 

Sensitivity (%) 100 95 100 95.4 95.2 100 

Specificity (%) 85.7 100 80 100 50 100 

F-Scores (%) 92.3 97.4 88.8 97.6 65.5 100 
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TABLE 4. Figures of merit (FOM) (accuracy, sensitivity, specificity and F-scores) for Normal 

vs. Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC using serum samples. 

 

PCA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 86.9 91.3 91.3 95.6 91.3 91.3 

Sensitivity (%) 93.7 90.0 100 100 90.4 94.4 

Specificity (%) 71.4 100 60 0 100 80.0 

F-Scores (%) 81.0 94.7 75 0 95 86.6 

 

SPA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 95.6 95.6 91.3 95.6 86.9 100 

Sensitivity (%) 100 95.0 100 95.4 90.4 100 

Specificity (%) 85.7 100 60 100 50 100 

F-Scores (%) 92.3 97.4 75 97.6 64.4 100 

 

GA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 100 95.6 95.6 95.6 100 95.6 

Sensitivity (%) 100 100 94.4 100 100 94.4 

Specificity (%) 100 66.6 100 60 100 100 

F-Scores (%) 100 80.0 97.1 70 100 97.2 
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TABLE 5. Figures of merit (accuracy, sensitivity, specificity and F-scores) for Normal vs. 

Inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC using urine samples. 

 

PCA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 62.5 66.7 83.3 95.8 87.5 87.5 

Sensitivity (%) 87.5 66.7 94.7 100 86.3 94.7 

Specificity (%) 12.5 66.7 40 0 100 60 

F-Scores (%) 21.8 66.7 56.2 0 92.7 73.4 

 

SPA-QDA 

 

Oesophageal stages 

Normal Inflammatory Barrett’s LGD HGD OAC 

Accuracy (%) 100 100 100 95.8 100 95.8 

Sensitivity (%) 100 100 100 100 100 94.7 

Specificity (%) 100 100 100 50 100 100 

F-Scores (%) 100 100 100 50 100 97.3 
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Graphical Abstract 

 

Four biofluids (plasma, serum, urine and saliva) were measured through Raman spectroscopy 

in order to detect oesophageal transformation stages to adenocarcinoma. 
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