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Abstract: At the onset of pregnancy, embryo implantation is initiated by interactions between
the endometrial epithelium and the outer trophectoderm cells of the blastocyst. Osteopontin
(OPN) is expressed in the endometrium and is implicated in attachment and signalling roles at the
embryo–epithelium interface. We have characterised OPN in the human endometrial epithelial
Ishikawa cell line using three different monoclonal antibodies, revealing at least nine distinct
molecular weight forms and a novel secretory pathway localisation in the apical domain induced
by cell organisation into a confluent epithelial layer. Mouse blastocysts co-cultured with Ishikawa
cell layers served to model embryo apposition, attachment and initial invasion at implantation.
Exogenous OPN attenuated initial, weak embryo attachment to Ishikawa cells but did not affect
the attainment of stable attachment. Notably, exogenous OPN inhibited embryonic invasion of
the underlying cell layer, and this corresponded with altered expression of transcription factors
associated with differentiation from trophectoderm (Gata2) to invasive trophoblast giant cells (Hand1).
These data demonstrate the complexity of endometrial OPN forms and suggest that OPN regulates
embryonic invasion at implantation by signalling to the trophectoderm.

Keywords: Osteopontin; embryo implantation; endometrium

1. Introduction

Pregnancy is established following embryo implantation into the endometrium, and failure at
this stage occurs in the majority of natural and assisted conceptions [1,2]. Endometrial receptivity to
implantation is regulated by endocrine and paracrine action, leading to differentiation of the epithelium
and underlying stromal tissue to support embryo development [3,4]. Understanding the processes
underpinning receptivity is therefore necessary to improve fertility treatments and to further basic
understanding of early development [5].

The expression of osteopontin (OPN) is highly upregulated in the receptive endometrium of all
placental mammals examined [6–11]. In the human endometrium, OPN is associated with epithelial,
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immune and vascular cells [12], and is strongly upregulated by progesterone in the mid secretory,
receptive phase of the menstrual cycle [13,14]. OPN is a secreted protein with a range of functions in
inflammation and extracellular matrix biology, complemented by a repertoire of variants including
alternatively spliced forms, transglutaminase cross-linked oligomers, proteolytic cleavage products,
glyco-, and phospho-forms [15,16]. OPN binds to cell surface receptors, including integrins and CD44,
to anchor cells to the extracellular matrix. Signalling through these adhesion proteins, and co-receptors
including IGF1R, EGFR and FGFR, regulates intracellular pathways controlling cell behaviour and
growth [17,18].

The cellular architecture of the materno–foetal interface varies widely amongst mammals.
In species with epitheliochorial placentation, such as sheep, extraembryonic trophoblast cells and
the endometrial epithelium remain stably adherent throughout pregnancy [19]. Extensive studies
in ruminants have determined that OPN dimers or multimers act as bridging ligands in integrin
adhesion complexes between the endometrium and the trophoblast [20–22]. In species including
mouse and human, implantation is invasive with trophoblast penetrating the epithelium and migrating
into the differentiated stromal decidua to form the haemochorial placenta [19]. OPN secreted
by the endometrium has been implicated in the attachment of the first extraembryonic lineage,
the trophectoderm of the blastocyst-stage embryo, to endometrial epithelial cells during mouse
implantation [23,24]. OPN also signals through focal adhesion kinase (FAK) and phosphoinositide
3-kinase (PI3K) to regulate integrin activity in the trophectoderm [25]. In addition, mouse blastocysts
express their own OPN in response to oestrogen at implantation [25,26]. OPN gene knock-out does
not render mice of either sex infertile [27], but there is great variation in implantation type between
species, leaving open the possibility that OPN may contribute to reproductive efficiency. In particular,
the interplay between its attachment and signalling roles requires delineating in order to understand
OPN in invasive implantation. In humans, if extracellular OPN has a role to play, it could find an
application in treating implantation failure, which occurs frequently after IVF/embryo transfer [28].

Studying human implantation requires in vitro models, and culturing human blastocysts with
primary human endometrial epithelial cells revealed trophectoderm attachment through intercellular
adhesion complexes [29]. Modelling implantation with mouse blastocysts and the human endometrial
epithelial Ishikawa cell line, we revealed that Ishikawa cells signal to trophectoderm transcription factor
networks to promote breaching of epithelial cells [30]. We also demonstrated upregulation of OPN
and its receptor, integrin αvβ3, in Ishikawa cells surrounding the attached human blastocyst, while
knock-down of either partner destabilised, but did not abolish, attachment of mouse blastocysts [24].
Further implicating OPN, we found that blocking an alternative OPN receptor, CD44, with antibodies
delays attachment [31]. CD44 is also a receptor for hyaluronic acid (HA), which has been used in
fertility treatments as a supplement during embryo transfer to promote implantation [32]. Here,
we characterise OPN forms in Ishikawa cells and explore the effects of supplementing our model of
early implantation with exogenous OPN.

2. Materials and Methods

2.1. Cell Culture

Ishikawa cells (ECACC 99040201) were cultured in Dulbecco’s Modified Eagle Medium (DMEM,
Sigma, Gillingham, UK) containing 10% foetal bovine serum (Sigma), 2 mM L-glutamine, 100 µg/mL
streptomycin and 100 IU/mL penicillin (Sigma) at 37 ◦C, 5% CO2.

2.2. Immunoprecipitation

Ishikawa cells cultured in 10 cm dishes to confluence were washed and scraped into lysis buffer
(25 mM Tris pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 0.25% sodium deoxycholate,
protease inhibitor cocktail (Calbiochem, Watford, UK), and complete phosphatase inhibitor cocktail
(Sigma)) before clarification by centrifugation. Lysates were incubated with 5 µg antibody (Table 1) per
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0.5 mL on a rotator for 2 h at 4 ◦C. Washed protein G-conjugated agarose beads (Pierce) were then
added to lysates followed by rotating incubation for 1 h at 4 ◦C. Beads were washed in lysis buffer
before eluting into SDS PAGE sample buffer.

Table 1. Details of antibodies used in this study.

Antibody (Clone/Catalogue Number) Source

OPN (MAB53) Assay Design
OPN (MAB194P) Maine Biotechnologies
OPN (MAB222P) Maine Biotechnologies
Giantin (24586) Abcam
β-Actin (4967) Cell Signalling Technologies

Mouse serum IgG (I8765) Sigma

2.3. SDS PAGE and Western Blotting

Ishikawa cell lysates and immunoprecipitations were separated by 10% acrylamide SDS PAGE
and transferred onto nitrocellulose membranes (GE Healthcare, Little Chalfont, UK). Membranes were
blocked for 30 min with agitation in PBS-4% bovine serum albumin (BSA, Sigma). Incubation with
primary antibody (Table 1) for 2 h in PBS-4% BSA, 0.5% tween-20 was followed by incubation with
secondary antibodies (IRDye, LI-COR Biosciences) for 1 h in PBS-4% BSA, 0.5% tween-20. Membranes
were washed in PBS-0.5% tween-20 after each antibody incubation and analysed using the LI-COR
Odyssey infrared imaging system (LI-COR Biosciences, Cambridge, UK).

2.4. Mouse Embryo Collection

Mouse embryo collection was performed under UK Home Office project license PPL 70/07838,
authorised by the Animal Welfare and Ethical Review Board of the University of Manchester, according
to the Animal Act, 1986. Eight-week-old CD1 female mice (Charles River) were subject to intraperitoneal
injection of 5 IU pregnant mare serum gonadotrophin (Intervet, Milton Keynes, UK), followed by
5 IU human chorionic gonadotrophin (Intervet) 46 h later, to induce superovulation. Mice were then
housed overnight with <9-month-old CD1 male mice (Charles River). Two-cell embryos were flushed
with M2 medium (Millipore, Watford, UK) from dissected oviducts 44 h later at embryonic day (E)1.5
and cultured in KSOM medium (Millipore) containing 0.4% BSA under oil (Vitrolife, Warwick, UK) at
37 ◦C, 5% CO2. At E4.5 blastocyst stage, embryos were hatched from the zona pellucida using acid
Tyrode’s solution (pH 2.5, Sigma).

2.5. In Vitro Implantation Assay

Ishikawa cells were seeded on 2% Matrigel (Sigma)-coated glass coverslips in 24-well plates and
cultured to confluency. Cells were incubated in serum-free medium (DMEM, 2 mM l-glutamine,
100 µg/mL streptomycin and 100 IU/mL penicillin) 24 h prior to co-culture with three hatched E4.5
blastocysts per well and attachment stability was assessed using an inverted phase contrast microscope
(Evos XL Core, ThermoFisher, Loughborough, UK) over 48 h co-culture, as previously described [30].
To test the effects of OPN on attachment, 1 µg/mL recombinant human OPN (rhOPN, R and D Systems,
Abingdon, UK) was added at the onset of co-culture (E4.5), or after 24 h co-culture (E5.5) just prior
to detachment of any weakly attached embryos by gently flushing wells with medium. Co-cultures
were fixed after 48 h with PBS-4% paraformaldehyde (PFA) for 20 min at room temperature and stored
under PBS at 4 ◦C.

2.6. Immunofluorescence Staining

Ishikawa cells on coverslips with or without attached mouse embryos were fixed with PBS-4%
PFA for 20 min, quenched with PBS-50 mM ammonium chloride for 5 min and permeabilised in
PBS-0.5% Triton-X100 PBS for 6 min. These samples were incubated with primary antibodies (Table 1)
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in PBS at room temperature for 2 h, before washing and room temperature incubation for 1 h with
PBS containing Alexa 488/568-conjugated secondary antibodies (Life Technologies, Inchinnan, UK),
Alexa 568-conjugated phalloidin (Life Technologies) and DAPI (Sigma). Coverslips with Ishikawa cells
only were mounted upside down on a microscope slide in a drop of Mowiol 4–88 mounting medium
(Sigma) containing 3% 1,4-diazabicyclo[2.2.2]octane (Sigma). Coverslips with embryos attached to
Ishikawa cells were mounted in a chamber of 3% DABCO in PBS to maintain the 3D structure of the
attachment sites.

2.7. Fluorescence Microscopy

Fluorescence microscopy images were captured with an inverted microscope (Zeiss Axiophot,
Cambridge, UK), Zen 2.0 software and the Apotome 2 module, and analysed with Zen 2.0 and ImageJ.
Optical sections of cells were obtained at 0.24 µm increments, and those of embryos attached to
Ishikawa cells were obtained at 2 µm increments.

2.8. Blastocyst RNA Extraction and Quantitative PCR

RNA was extracted from ten blastocysts per experiment using the RNeasy Micro Kit (Qiagen,
Manchester, UK). Sensiscript RT kit (Qiagen) together with random 9mer primers (Agilent, Wokingham,
UK) was used to perform reverse transcription (RT) reactions with 12 ng RNA. Quantitative PCRs
(qPCRs) were carried out using the RT reactions along with 0.25 µM primers (Table 2) and QuantiTect
SYBR green PCR kit (Qiagen). A Stratagene Mx3000p machine was used to run qPCRs with thermocycle
parameters according to QuantiTect instructions (35 cycles using 58 ◦C annealing temperature for all
primers). Stratgene MxPro analysis yielded cycle threshold (Ct) values which were used to establish
expression relative to housekeeping genes (Table 2). Sample RNA- and reverse transcriptase-negative
RT reactions were used as controls in qPCR reactions with all primer pairs. Dissociation curves were
obtained in all qPCRs to demonstrate specific amplification.

Table 2. Details of PCR primers used in this study.

Gene Primers (5′–3′)

Cdx2 CAAGGACGTGAGCATGTATCC
GTAACCACCGTAGTCCGGGTA

Gata3 CTCGGCCATTCGTACATGGAA
GGATACCTCTGCACCGTAGC

Eomes GCGCATGTTTCCTTTCTTGAG
GGTCGGCCAGAACCACTTC

Elf5 ACCGATCTGTTCAGCAATGAAG
CGCTTGGTCCAGTATTCAGG

Gata2 CACCCCGCCGTATTGAATG
CCTGCGAGTCGAGATGGTTG

Hand1 CTACCAGTTACATCGCCTACTTG
ACCACCATCCGTCTTTTTGAG

Gapdh AGGTCGGTGTGAACGGATTTG
GGGGTCGTTGATGGCAACA

2.9. Statistical Analysis

Embryo attachment data are represented as the mean± the standard error of the mean. Independent
t-test, two-way ANOVA followed by Bonferroni’s multiple comparisons post-hoc test statistical tests
were performed using Prism (GraphPad, San Diego, CA, USA).
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3. Results

3.1. Biochemical Characterisation of OPN from Ishikawa Endometrial Epithelial Cells using Three Different
Antibodies

Ishikawa cell lysates were probed by western blotting using three different monoclonal antibodies
(MAB53, MAB194P and MAB222P). These antibodies recognised dominant bands at ~70 kDa, ~80 kDa
and ~75 kDa, respectively, indicating that the corresponding epitopes are associated with distinct OPN
forms (Figure 1A). Each antibody detected rhOPN commercially produced in mouse myeloma cells at
~60 kDa (Figure 1A).
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Figure 1. (A) Western blots of Ishikawa cell lysate and recombinant human OPN (rhOPN), using
monoclonal antibodies MAB53, MAB194P, MAB222P and a non-specific mouse IgG control antibody.
(B) Immunoprecipitates were produced from Ishikawa cell lysates using MAB53, MAB194P, MAB222P
or control antibody before western blotting with MAB53, MAB194P and MAB222P.

Western blotting combined with immunoprecipitation confirmed that each antibody recognises a
distinct form of OPN in both native and denatured states (Figure 1B). MAB53 and MAB194P recognised
only their own ~70 kDa and ~80 kDa immunoprecipitate in the blot, and MAB53 also detected
an immunoprecipitated band at ~100 kDa which was not apparent in the crude lysate (Figure 1B).
MAB222P blotting did not produce a band at ~75 kDa from the MAB222P immunoprecipitate, however
two bands at and above 135 kDa were identified (Figure 1B). Each antibody also recognised weaker
bands in the lysate, at 35–40 kDa and ≥135 kDa (Figure 1A,B), the former perhaps representative
of unmodified polypeptide or cleavage products, and the latter cross-linked oligomers. Notably,
the 35–40 kDa polypeptides were not present in any immune-precipitate (Figure 1B).
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In summary, all three antibodies bound to a 60 kDa rhOPN, each recognised a sub-fraction of
Ishikawa cell OPN, but none of them bound the sub-fraction selected by either of the other two.

3.2. Distinct OPN Localisation in Ishikawa Cells Revealed by Three Different Antibodies

Immunofluorescence staining of sub-confluent Ishikawa cells with MAB53 produced broad
cytoplasmic localisation with exclusion from the nucleus (Figure 2A). In contrast the MAB222P epitope
localised to cell borders, which may reflect extracellular membrane localisation (Figure 2B).Cells 2019, 8, x FOR PEER REVIEW 7 of 15 
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Figure 2. (A,B) Sub-confluent Ishikawa cells immunostained with MAB53 or MAB222P respectively.
20 µm scale bar. (C) Sub-confluent Ishikawa cells co-immunostained with MAB194P (green) and
anti-giantin antibody (red). Arrows indicate colocalised puncta. Scale bars are 20 µm. (D) Sub-confluent
Ishikawa cells immunostained with MAB194P or MAB194P pre-incubated with rhOPN. Scale bars are
20 µm. (E) Confluent Ishikawa cell layer co-immunostained with MAB194P (green) and anti-giantin
(red). Upper panel is maximum intensity projection of 33 0.24 µm-interval optical sections. Lower
panels are Z-plane stacks of optical sections. The black arrowhead in the upper panel indicates the
slice of the Z-plane stack. White arrows indicate MAB194P-positive structures and white arrowheads
indicate giantin-positive structures. Scale bars are 10 µm.

Immunofluorescence staining with MAB194P yielded perinuclear, vesicular staining which
partially colocalised with the cis-/medial-Golgi marker, giantin (Figure 2C). Using rhOPN to block
MAB194P before immunofluorescence led to loss of vesicular staining, demonstrating the specificity
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of this localisation (Figure 2D). Remarkably, staining confluent Ishikawa cell layers revealed that
MAB194P localised to the apical domain in a polarised vesiculotubular pattern largely distinct from
the Golgi (Figure 2E). MAB53 and MAB222P localisation was not different in confluent cells (data not
shown). These findings corroborate the biochemical data and further suggest that the distinct OPN
forms recognised by these antibodies are differentially localised at the subcellular level.

3.3. Ishikawa OPN Localisation is not Changed during Interaction with Mouse Blastocysts

Mouse blastocyst attachment locally increases OPN (MAB53) and integrin αvβ3
immunofluorescence intensity in Ishikawa cells [24]. Here we found that MAB194P staining was not
locally changed by mouse blastocysts during the apposition phase, prior to stable attachment and
invasion (Figure 3A). Moreover, Ishikawa cells subjacent to, or immediately surrounding attached
mouse blastocysts exhibited apical MAB194P staining (Figure 3B), similar to that seen in cells cultured
in the absence of embryos (Figure 2E).Cells 2019, 8, x FOR PEER REVIEW 8 of 15 
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Figure 3. (A) Mouse blastocysts were cultured with Ishikawa cell layers for the apposition phase of
implantation in vitro (E4.5–5.5). Unattached or weakly attached blastocysts (white arrowheads in top
panel) were washed off the Ishkikawa cells before immunostaining with MAB194P. The sites of embryo
apposition were identified (white circles). Scale bars are 500 µm. MAB194P intensity normalised to
DAPI intensity was measured across the sample and plotted as a line-graph, red lines indicate embryo
positions (lower panel). (B) Mouse blastocysts stably attached to Ishikawa cells were co-immunostained
with MAB194P (green) and phalloidin to label filamentous actin (red). Ten optical sections were
captured at 2 µm intervals. Upper panels show Z-plane stacks of optical sections, with white arrows
highlighting MAB194P-positive structures. Embryonic cells are delineated by a dashed white line.
Lower panels of individual optical sections show subjacent Ishikawa cells and attached embryo. Black
arrowhead in lower panels indicates the slice of the Z-plane stacks. Scale bars are 10 µm.
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3.4. Exogenous OPN Inhibits Mouse Blastocyst Invasion of Ishikawa Cells

Endogenous OPN in Ishikawa cells contributes to mouse blastocyst attachment in our in vitro
model of implantation [24]. To assess whether exogenous OPN affects intercellular interactions during
embryo implantation, 1 µg/mL rhOPN was added to embryo–Ishikawa cell co-cultures during either
the apposition (first 24 h) or stable attachment (second 24 h) stage of the experiment. rhOPN did not
affect weak attachment during the apposition phase or subsequent stable attachment (Figure 4A,B).Cells 2019, 8, x FOR PEER REVIEW 9 of 15 
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Figure 4. (A) RhOPN was added at the onset of embryo–Ishikawa cell co-culture (E4.5), during the
apposition phase. Mean percent ±SEM attached embryos from three independent experiments using
12–24 embryos per group. (B) Mean percent ±SEM stably attached embryos in the dataset shown in
(A). The control group of embryos for (A) and (B) was run in parallel with a previously published
experiment [30]. (C) RhOPN was added at the onset of stable embryo attachment, after 24 h prior
co-culture (E5.5). Any weakly attached embryos were dislodged before addition of rhOPN. Mean
percent ±SEM attached embryos from four independent experiments using 12 embryos per group;
* p < 0.05, ** p < 0.01 ANOVA. (D) Mean percent ± SEM stably attached embryos from (C). (E) After
48 h (E6.5), co-cultures with rhOPN added during the apposition phase (E4.5) were immunostained
with phalloidin and DAPI and imaged to determine embryonic invasion of the Ishikawa cell layer.
Mean percent ±SEM invading embryos from three independent experiments from a total of 77 embryos;
* p < 0.05 independent t-test. (F) Co-cultures with rhOPN added just prior to stable attachment (E5.5)
were immunostained at E6.5 with phalloidin and DAPI and imaged to assess embryonic invasion.
Mean percent ±SEM invading embryos from four independent experiments from a total of 70 embryos.

rhOPN added at the onset of stable attachment inhibited initial weak attachment and, although
there was a trend towards delayed stable attachment, this did not reach significance (Figure 4C,D).
Strikingly, rhOPN treatment during apposition significantly reduced the number of embryos invading
into the Ishikawa cell layer, whereas rhOPN treatment during stable attachment did not affect invasion
(Figure 4E,F).
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3.5. Exogenous OPN Regulates Mouse Blastocyst Gene Expression during Apposition with Ishikawa Cells

Contact with Ishikawa cell layers during the apposition phase activates mouse blastocyst invasion
potential through the regulation of transcription factor expression in the trophectoderm [30]. Blastocysts
were collected from co-cultures after apposition in the absence and presence of rhOPN, and expression
of a panel of trophectoderm transcription factors was analysed. There was a trend towards upregulation
of Cdx2 and Gata3 during apposition in the presence of rhOPN, however this did not reach significance.
Notably, Gata2 was significantly upregulated, whereas Hand1 was downregulated (Figure 5).Cells 2019, 8, x FOR PEER REVIEW 10 of 15 
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Figure 5. After the apposition phase of co-culture in the presence or absence of rhOPN, embryos were
collected and analysed for gene expression by reverse transcription (RT)-qPCR. Mean ±SEM expression
level relative to Gapdh; five independent experiments consisting of 10 embryos per group. Independent
t-test for rhOPN-treated embryos compared to control embryos; * p < 0.05, p < 0.1 value displayed
on graph.

4. Discussion

Epithelial OPN is one of the biomarkers most consistently associated with endometrial receptivity
across species [11]. In ruminants, OPN acts as a bridging ligand in adhesions between uterine luminal
epithelium and trophectoderm [22], however, the function of OPN in invasive implantation has not been
determined. The present study used monoclonal antibodies to reveal distinct OPN forms in the receptive
Ishikawa cell line and identified a vesicular compartment of OPN at the apical domain of polarised
epithelial layers of Ishikawa cells. Notably, exogenous OPN added to mouse blastocyst–Ishikawa cell
co-cultures inhibited initial attachment interactions, as well as embryonic invasion, in this model of
implantation. Furthermore, co-culture with exogenous OPN altered the expression of trophectoderm
transcription factors known to control formation of the invasive trophoblast. We propose that OPN acts
in a signalling capacity that regulates trophectoderm differentiation during early invasive implantation,
although there may be specific effects of endometrial OPN that remain to be determined.

The presence of at least seven OPN forms in the 70–135 kDa range in Ishikawa cells highlights
the extensive and differential modification of this ~300-residue polypeptide. Distinct modification
in different cell types has previously been suggested [17], however our immunoprecipitation and
Western blot data reveal that each of the three antibodies detects distinct OPN forms in both native
and denatured states, consistent with non-conformational epitopes. The antibodies predominantly
detected forms that were larger than rhOPN, thus endometrial forms are more highly modified than
rhOPN. Additionally, distinct localisations for these forms were observed by immunofluorescence,
implying that modifications are linked with intracellular and extracellular localisation.

MAB194P antibody data suggested that an ~80 kDa form of OPN partially localised to the
cis-/medial-Golgi apparatus of the secretory pathway, perhaps relating to the ER-Golgi intermediate
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compartment or trans-Golgi network. Golgi localisation of OPN has previously been observed in
neurons and kidney tubule cells [33–35]. However, the MAB194P-detected OPN form was found in
an apical localisation in confluent Ishikawa cells, almost completely separate from cis-/medial-Golgi,
which may represent a trans-/post-Golgi compartment in polarised epithelial cells poised or engaged in
significant OPN secretion. In mid-secretory phase endometrial tissue, OPN accumulates in a subapical
compartment in the luminal epithelium that is known to be highly enriched in secretory vesicles [12,36].
Ishikawa cells are recognised to recapitulate endometrial epithelium in a receptive state [30], thus
apical OPN compartments may reflect this. In addition, co-culture with mouse blastocysts did not
affect local MAB194P-detected OPN immunoreactivity or localisation, in contrast to previous findings
using MAB53 [24]. OPN may therefore alter its subcellular localisation as morphology changes in
Ishikawa cells, specifically when organisation into confluent epithelial layers occurs.

MAB222P detected a ~75 kDa form, but only in the denatured state (not immunoprecipitated),
while two higher molecular weight forms approximately consistent in size with a covalent dimer were
detected in both the native and denatured state. MAB222P immunostaining therefore likely showed
the high molecular weight forms and illuminated a cell border localisation which may reflect secreted
OPN. However, our previous biochemical survey of the apical surface of Ishikawa cells did not yield
OPN as a candidate [37]. Low molecular weight OPN forms are putative cleavage products [38] and
were detected here by Western blot but not immunoprecipitation, suggesting native conformations of
these forms are not recognised by the antibodies used here. MAB53 has been widely used to analyse
OPN and has been shown to bind a mid-peptide epitope lost after specific proteolysis [39]. MAB53
recognised two prominent ~40 kDa bands in Ishikawa cells by Western blot, which may relate to
unprocessed forms of OPN as this molecular weight correlates with OPN polypeptide mass. MAB194P
and MAB222P also detected a band at ~40 kDa, and MAB222P was raised against the same epitope as
MAB53, further suggesting that this band was unprocessed OPN. The MAB194P epitope resides in the
N-terminus of the protein, thus smaller forms detected by this antibody could reflect N-terminal OPN
cleavage products.

Testing the effect of extracellular OPN in an in vitro embryo implantation model is relevant both to
achieving a greater understanding of the role of the endogenous ligand, and in addressing whether its
exogenous addition might affect implantation in clinical settings. Mouse blastocysts co-cultured with
human endometrial Ishikawa cells is a well characterised implantation model useful for generating
hypotheses for testing in more sophisticated primary human cell systems. RhOPN, produced in mouse
myeloma cells, was used at a concentration (1 µg/mL) previously shown to activate integrins and
stimulate downstream signalling pathways in embryos [25]. OPN is present in foetal bovine serum
used to grow Ishikawa cells and although the medium was free from serum during the co-culture
phase of the experiments, bovine OPN may be present at the embryo–Ishikawa interface. Although
the form of OPN used may not reflect that of human endometrium, we found that exogenous OPN
added just prior to the onset of irreversible stable attachment of blastocysts (E5.5) inhibited the initial
weak attachment phase, but this effect was not sufficient to delay the attainment of stable attachment.
Interestingly, reversible weak attachment seen during the apposition stage from E4.5–5.5 was not
affected by exogenous OPN, suggesting reversible and irreversible weak attachment are mediated
by different factors. These effects may suggest multiple OPN interactors at the embryo–endometrial
interface. Ishikawa cells require endogenous OPN expression for stable embryo attachment [24],
however, high concentrations of non-endometrial exogenous OPN may block attachment through
altered interactions due to its tissue-specific modifications. OPN receptors integrin αvβ3 and CD44 are
expressed in human receptive phase endometrium and in the trophectoderm [12,40–43]. Our recent
evidence suggests that CD44 contributes to both reversible and irreversible weak attachment in a
manner independent of its alternative ligand, HA [31]. Together, the data point to a need to investigate
endometrial-specific OPN forms, integrin αvβ3 and CD44 as well as other cell surface receptors in
attachment interactions at implantation.
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We have previously shown that Ishikawa cells induce mouse trophectoderm differentiation
to invasive trophoblast giant cells (TGCs) during the apposition phase, and this is required for
embryonic breaching of the epithelium. Downregulation of Cdx2 and Gata3 and upregulation of
Hand1 in trophectoderm through Ishikawa cell contact during apposition was proposed to mediate
this effect [30]. Herein, the presence of exogenous OPN during apposition inhibited subsequent
embryonic invasion, while changes in the expression of trophectoderm transcription factors known
to regulate trophoblast differentiation were also observed. Cdx2, Gata3 and Gata2 are thought to
regulate a proliferative trophoblast state [44], and their increased expression in response to exogenous
OPN may point to blocked formation of terminally differentiated TGC. Similarly, inhibition of Hand1
expression by exogenous OPN may represent suppression of TGC differentiation as Hand1 is an early
TGC transcription factor [45]. The potential for OPN to alter trophoblast lineage allocation implies
a regulatory role which could be important to balance populations of proliferating and invasive
trophoblasts during preimplantation embryo transition to maternally recognised conceptus. External
stressors disrupt this balance and induce excessive TGC allocation, which is associated with pregnancy
failure [46,47].

Signalling downstream of OPN may include FAK, mitogen-activated protein kinase (MAPK),
and mammalian target of rapamycin (mTOR), as these pathways are known to be activated by OPN
through integrins in ovine and porcine trophectoderm [48–50]. Correspondingly, MAPK has been
shown to regulate Cdx2 and Gata3 expression [51], and mTOR activation is implicated in trophectoderm
differentiation to invasive trophoblast in mouse embryos [52,53]. Moreover, integrin co-receptor IGF1R
is thought to function in both embryos and endometrial epithelial cells at implantation through PI3K
and FAK, respectively [54,55], and this could be modulated by OPN [56].

5. Conclusions

We conclude that secretion of OPN by receptive endometrial epithelium is likely to be highly
regulated and that OPN has a significant signalling role at implantation. However, these data do not
make a clear case for clinical use of exogenous OPN to promote implantation.
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