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Abstract

We analyze the relativistic proton emission from the Sun during the eruptive event on 2017 September 10, which
caused a ground-level enhancement (GLE 72) registered by the worldwide network of neutron monitors. Using the
neutron monitor data and interplanetary transport modeling both along and across interplanetary magnetic field
(IMF) lines, we deduce parameters of the proton injection into the interplanetary medium. The inferred injection
profile of the interplanetary protons is compared with the profile of the >100MeV γ-ray emission observed by the
Fermi Large Area Telescope, attributed to pion production from the interaction of >300MeV protons at the Sun.
GLE 72 started with a prompt component that arrived along the IMF lines. This was followed by a more prolonged
enhancement caused by protons arriving at the Earth across the IMF lines from the southwest. The interplanetary
proton event is modeled using two sources—one source at the root of the Earth-connected IMF line and another
source situated near the solar western limb. The maximum phase of the second injection of interplanetary protons
coincides with the maximum phase of the prolonged >100MeV γ-ray emission that originated from a small area at
the solar western limb, below the current sheet trailing the associated coronal mass ejection (CME). A possible
common source of interacting protons and interplanetary protons is discussed in terms of proton acceleration at the
CME bow shock versus coronal (re-)acceleration in the wake of the CME.

Unified Astronomy Thesaurus concepts: Solar coronal mass ejections (310); Solar energetic particles (1491); Solar
particle emission (1517); Solar coronal mass ejection shocks (1997); Solar flares (1496); Solar gamma-ray
emission (1497)

1. Introduction

Solar flares and coronal mass ejections (CMEs) can
accelerate ions up to relativistic energies, as evidenced by
observations of solar γ-rays and neutrons produced by high-
energy ions colliding in the solar atmosphere and from
observations of accelerated ions arriving at 1au. However, a
relationship between the solar interacting particles and the solar
energetic particles (SEPs) in space is a matter of controversy
(e.g., Lin 2005). The ratio of the number of ions escaping into
the interplanetary medium (N↑) to the number precipitating into
the solar chromosphere (N↓) may vary from one flare to another
by a few orders of magnitude, with larger N↑/N↓ values
associated with gradual (eruptive) flares compared to impulsive
ones (Murphy & Ramaty 1984; Hua & Lingenfelter 1987;
Ramaty et al. 1993).

In extreme SEP events, protons with energies >400MeV are
produced. These high-energy particles can trigger a nuclear
cascade in the atmosphere of the Earth and thus be detected by
ground-based detectors like neutron monitors. These are known

as ground-level enhancements (GLEs; e.g., Shea & Smart 2012;
Poluianov et al. 2017, and references therein). Protons of nearly
the same energies can trigger nuclear interactions at the Sun,
and their neutral secondaries, like pion-decay γ-rays, can be
detected on board a spacecraft. The Fermi Large Area
Telescope (LAT; Atwood et al. 2009) has observed a number
of long-duration solar γ-ray flares, including multi-hour-long
flares (Ackermann et al. 2014, 2017; Ajello et al. 2014). One
such event was the flare on 2017 September 10 (Omodei et al.
2018), which was also associated with a GLE.
The 2017 September 10 GLE (GLE 72) has been analyzed

by a number of researchers including Mishev et al. (2018)
and Jiggens et al. (2019). This eruptive flare was very well
observed and its different facets are now described in many
publications. In particular, detailed, broadband studies of
the CME genesis, magnetic morphology, and dynamics
(Gopalswamy et al. 2018; Long et al. 2018; Veronig et al.
2018), high-resolution imagery of the global EUV wave (Liu
et al. 2018), and spectroscopic observations of the current sheet
in the wake of the eruption (Cheng et al. 2018; Li et al. 2018;
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Seaton & Darnel 2018; Warren et al. 2018; Yan et al. 2018) are
available. Our present study focuses on high-energy protons at
the Sun and in the interplanetary medium in conjunction with
flare-CME imagery and spectroscopic observations.

2. High-energy Particle and Gamma-Ray Data

A major SEP event was registered by particle instruments in
space and neutron monitors (NMs) on the ground up to proton
energies ≈4 GeV. We use the world NM network data
available in the Oulu database (http://gle.oulu.fi) and data
from the Electron Proton Helium Instrument (EPHIN) on the
Solar and Heliospheric Observatory (SoHO) spacecraft that is
a stabilized platform outside the Earth’s magnetosphere
(Müller-Mellin et al. 1995; Kühl & Heber 2019).

An overview of the SEP-GLE event is shown in panel (a) of
Figure 1. The GLE rose steeply during 16:10–16:20 UT.
However, the early part of the GLE was reliably detected by
only one neutron monitor, Fort Smith (panel (b)). A statistically

significant signal from a larger number of NMs was observed
after 16:25 UT, allowing derivation of the spectral and angular
characteristics of solar protons with good accuracy. Panels
(d)–(f) respectively are for the electrons, protons, and helium
intensities measured by EPHIN. At the start of the event, the
EPHIN field of view was along the interplanetary magnetic
field (IMF) line (panel (c)). Thus, EPHIN would detect the first
particles arriving at 1 au. The proton panel (e) represents a kind
of velocity dispersion analysis (VDA) of the event’s rise phase,
that is, the observed intensities of different energy channels are
plotted with the particle registration time shifted back for the
Sun–Earth travel time with the traveled distance adjusted so
that the count-rate profiles of all energy channels increase
simultaneously. Then, the Sun–Earth flight time of photons is
added to the shifted time in order to compare the SEP profiles
with observed solar electromagnetic emissions. Correspond-
ingly shifted profiles of high-energy protons, electrons, and
helium are additionally shown in panels (a), (d), and (f). In the

Figure 1. Overview of the SEP event. (a), (d)–(f) Time-shifted and renormalized profiles of different particle species. A time shift is the ion/electron travel time of
1.37 au minus the Sun–Earth flight time of photons. In panel (a), 98% of the galactic cosmic ray (GCR) contribution to the neutron monitor count rate is subtracted
(the dotted–dashed line indicates the remnant average background). In panel (f), additionally shown is the helium-to-proton abundance ratio. (b) Non-shifted time
profiles of three polar neutron monitors with 100% of the GCR contribution subtracted. (c) Angle between the axis of the SoHO/EPHIN view cone and the IMF
direction measured on the Advanced Composition Explorer (the level 2 ACE/MAG data athttp://www.srl.caltech.edu). The green sector shows the EPHIN view
cone for the SEP registration. In panel (d), the flare’s impulsive phase is illustrated with the time derivative of the soft X-ray emission (0.05–0.4 nm; GOES 13).
During the impulsive phase, the electron channels of SoHO/EPHIN are contaminated by the hard X-ray emission.
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latter panel, we also show the helium-to-proton abundance ratio
observed by EPHIN.

Modeling of the SEP transport from the solar source to the
Earth’s orbit shows that at large values of the particle mean-free
path, Λ3 au, the rise profile of the particle source may be
well estimated by a simple shifting of the near-Earth SEP
profile back in time for the particle travel time from Sun to
Earth (in contrast to the case of Λ1 au in which the
interplanetary scattering blurs off the “image” of the solar
source and a regular deconvolution procedure is required;
Kocharov et al. 2015a). The time-shift value and the
corresponding average distance traveled by SEPs depend on
Λ. In the case of the 2017 September 10 event, the VDA-
estimated traveled distance is 1.37 au (Figure 1(e)), which, with
the interplanetary transport modeling and particle sampling into
the EPHIN’s view cone (Figure 1(c)), implies the mean-free
path Λ=3 au.

The SEP event begins with simultaneous injection of protons
and helium in a wide energy range, from a few MeV to a few
GeV, and emission of relativistic electrons, which start to rise
next to the end of the flare’s impulsive phase (Figure 1). The
electron profiles shown in panel (d) reveal also a second
component of a harder energy spectrum that appears ∼30
minutes after the start of the first injection. We also note that
the SEP event starts with a helium-rich composition: He/p
≈0.08 (panel (f)).

Figure 2 shows the results of the >100MeV γ-ray detection
by Fermi-LAT (Omodei et al. 2018). The light curve in the
upper panel comprises: (1) the flare pulse, (2) the post-
impulsive, gradual rise 2a ending with the partly observed
steep rise 2b, and (3) the extended, multi-hour long γ-ray burst
observed in several successive orbits of Fermi. The partly
observed rise 2b most likely is the leading front of a post-flare
γ-ray pulse that is a counterpart of the microwave burst
observed at 16:26–16:50 UT by the Expanded Owens Valley
Solar Array (EOVSA; Gary et al. 2018, Figure 1 therein; mw2
in our figure).

We use the LAT observations of the pion-decay emission to
estimate the corresponding numbers of the pion-producing
protons. The pion-decay templates used in the LAT-data fits
depend on the ambient density, composition, and magnetic
field, and on the accelerated particle composition, pitch-angle
distribution, and energy spectrum. The templates represent a
particle population with an isotropic pitch-angle distribution
and a power-law energy spectrum, interacting in a thick target
with a coronal composition (Reames 1995a), taking the helium
abundance ratio He/H=0.1. The templates we use are based
on a detailed study of the γ-rays produced from pion decay
(updated from Murphy et al. 1987). The results are shown in
the two lower panels of Figure 2. In what follows, we will
focus on the delayed, very prolonged emission of Phase 3. The
energy spectrum of the interacting protons of Phase 3 is
initially harder than that in Phase 2 (lower panel). This may be
explained by a new acceleration or reacceleration during the
data-gap period preceding the first observed interval of Phase 3.
That acceleration was operating either simultaneously with the
microwave burst mw2 or shortly after it. Note between the first
two data points of Phase 3 that there is a concurrent softening
of the interacting proton spectrum and an increase of the
interacting proton number. This may be due to an enhancement
of the proton precipitation rate into the chromosphere with no
further acceleration.

Processing of the neutron monitor network data is done with
an empirical fitting of the observed count-rate profiles, with
templates depending on the solar proton spectrum, the proton
flux axis direction, and the pitch-angle distribution outside the
Earth’s magnetosphere. The differential intensity of solar
protons is fitted with a modified power-law function of the
proton rigidity: J(P)∼P−( γ+ δγ(P−1)), where rigidity P is
measured in GV; δγ>0 can describe possible steepening of
the spectrum with increase of rigidity. The proton pitch-angle
distribution is fitted with the sum of two Gaussian functions—a
Gaussian function of width σ1 describes the particle streaming

Figure 2. Upper panel: the >100 MeV γ-ray flux of the 2017 September 10
flare with data of Fermi/LAT and the GLE profile observed by the Fort Smith
neutron monitor (in percent of the GCR contribution, with 98% of that
contribution subtracted). The timing of two major microwave bursts is
additionally indicated with green strips: the flare pulse, mw1, shown for
16.45 GHz and the delayed burst, mw2, shown for 5.38 GHz (Gary
et al. 2018). Middle panel: the inferred number of protons interacting at the
Sun to produce γ-ray emissions of Phases 1, 2, and 3. Lower panel: the proton
spectral ratio Np(>500 MeV)/Np(>300 MeV) as estimated with Fermi/LAT-
data for the interacting protons and Np(>833 MeV)/Np(>500 MeV)
estimated with the NM network data for the interplanetary protons. The
interplanetary spectrum is taken at somewhat higher energies compared to the
interacting spectrum, because NMs are not sensitive to the proton flux below
400 MeV. The accuracy of the spectral ratio determination is 5%–10%. The
GLE’s prompt component and delayed component are respectively labeled
with P (thin line) and D (thick line).
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from the Sun along the symmetry axis, not necessarily parallel
to the IMF line, and the second Gaussian can account for
possible admixture of either counter-streaming flux or a nearly
isotropic component.

The spectral ratio Np(>833MeV)/Np(>500MeV) suggested
by the fitted spectrum of interplanetary protons is shown in the
lower panel of Figure 2. The two upper panels of Figure 3 show

parameters of the proton angular distribution—the anisotropy
axis direction, the angle it makes with the IMF, and the pitch-
angle distribution width σ1. In the late phase of the event, solar
protons arrive from the southwest, at a remarkably large angle
to the magnetic field. After 17:10 UT, the proton spectrum
becomes a simple power-law spectrum (δγ=0), while the
pitch-angle distribution widens (also Table 2 of Mishev et al.
2018). This is the GLE’s delayed component, in contrast to the
preceding, prompt component with a steepening spectrum,
δγ≈0.7, and a narrower pitch-angle distribution. As can be
seen from the bottom panel of Figure 2, the spectral ratio of the
delayed component decreases logarithmically with time,

( ) ( )> > = -N N b a t833 MeV 500 MeV lnp p (gray line), which
may be one more distinctive property of a delayed component.
Using the empirical fits of the proton pitch-angle distributions,

we have calculated the observed net flux of the interplanetary
protons and its component perpendicular to the IMF line, with
the IMF data described in Section 3. The profile of the high-
energy γ-ray flux produced by protons interacting at the Sun and
the flux profiles of high-energy protons near the Earth are
compared in the lower panel of Figure 3. While the γ-ray profile
and the interplanetary proton profiles do not coincide, there are
clear correspondences between them. We particularly note the
coincidence of the maxima of the Phase 3 γ-ray emission and the
interplanetary proton flux across the magnetic field.

3. Solar and Interplanetary Magnetic Environment

The 2017 September 10 γ-ray flare was bright enough for a
time-resolved localization study of the high-energy γ-ray
emission (Omodei et al. 2018, their Figure 3). In our
Figure 4, we show the emission localization only for the
event’s extended phase, Phase 3. It is plotted over the
composite image of solar corona, which includes frames from
SoHO/LASCO (Brueckner et al. 1995), the Mk4 coronameter
of the Mauna Loa Solar Observatory (MLSO; Elmore et al.
2003), and the Sun Earth Connection Coronal and Heliospheric
Investigation on Solar Terrestrial Relations Observatory
(STEREO/SECCHI; Howard et al. 2008). A prominent feature
here is the clearly seen current sheet trailing the CME, with the
inverted Y-shaped structure at the sheet’s base remarkably
situated within the localization area of the γ-ray source. Note
also the magnetic tubes extending from a vicinity of the γ-ray
source to the southwest.
To test the magnetic connectivity of the flare region to Earth,

we have performed data-driven, global magnetohydrodynamics
simulations of the CME associated with the 2017 September 10
flare using the Alfvén Wave Solar Model (Sokolov et al. 2013;
van der Holst et al. 2014), which was previously used to model
the 2014 September 1 Fermi behind-the-limb event (Jin et al.
2018). In the case of the 2017 September 10 event, there was a
significant number of pre-existing open field lines in the source
active region. Figure 5 shows the simulated MHD structures in
an early stage of the eruption. The Earth is connected to the
CME-driven shock at its eastern flank (by some green lines
through the area outlined by the orange dashed contour). Note
also that some of the open field lines come from the flare area
through the nose of the CME-driven shock and further extend
to the interplanetary medium, passing to the west and
southwest of the Earth (yellow lines).
Figure 6 provides an overview of the solar wind measure-

ments near the Earth’s orbit. The magnetic field is measured on

Figure 3. Time profiles of the interplanetary proton flux and the solar γ-ray
emission. Upper panel: direction of the interplanetary proton flux in the GSE
coordinates. Middle panel: width of the proton pitch-angle distribution, σ1
(Mishev et al. 2018), and the angle between the proton flux and the
interplanetary magnetic field (ACE/MAG gliding 100 minute average data).
Lower panel: total flux of the interplanetary protons and its component
perpendicular to the magnetic field as compared with the γ-emission profile
(red curve and bars). The decl. angle error of the proton flux is about 15°, so a
perpendicular flux less than 0.3× the total flux cannot be resolved. Observable
perpendicular flux appeared from 18:00UT. The red dashed line fits the
exponential decay of the γ-ray flux continuing for many hours after 19:00 UT
(Figure 1 by Omodei et al. 2018).
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board the Advanced Composition Explorer with the Magnet-
ometer instrument (ACE/MAG; Smith et al. 1998) and the
solar wind plasma measurements are done with the Solar Wind
Electron, Proton, and Alpha Monitor (ACE/SWEPAM;
McComas 1998). The spacecraft is orbiting close to the L1
Lagrangian point. For use with the NM network data in
Figure 3, the ACE data timing was shifted for the solar wind
transit time from ACE to Earth, +50 minutes for the 2017
September 10 case. A series of CMEs at the beginning of 2017
September significantly modified the interplanetary environ-
ment for solar particle transport (Guo et al. 2018; Luhmann
et al. 2018). The SEP event and GLE 72 were observed inside
the interplanetary extension (an ICME) of a CME from a solar
eruption on September 6 at 12:24 UT. The estimated start and
end times of the ICME passage are based on the plasma and
magnetic field observations (see Cane & Richardson 2003, for
additional information on the methods used). The ICME shows
evidence of a rotation in the field direction and helium-rich
material inside, but lacks an enhanced magnetic field. We note
strong fluctuations of the magnetic field direction at the Larmor
radius scale of GLE-producing protons, with the amplitude
∣ ∣lDá ñ ~ 2 30 (Figure 6, middle panel; the considered
fluctuations’ timescale is RL/U≈28 minutes, where RL is
the gyroradius of a 1 GV proton and U is the solar wind speed).
Such IMF irregularities may alter the proton scattering in solar
wind compared to the conventional scattering by weak plasma

waves. The fluctuations are especially strong near the ICME
edges.

4. Interplanetary Transport Model

Particle propagation from near the Sun to the Earth’s orbit
depends on the large-scale IMF structure and scattering
conditions. Both factors are highly variable and not completely
understood. Our model for analysis of the 2017 September 10
event accounts for the presence of ICME and significant flux of
high-energy protons across the IMF lines.
The IMF model employed for the particle transport

simulations is shown in Figure 7. It comprises a set of closed
magnetic field lines (ICME) and the surrounding solar wind
with an open magnetic field. The model is simplified and two-
dimensional but accounts for relative locations and angular
sizes of the relevant 3D structures deduced from the solar
corona imaging, MHD modeling results, and in situ observa-
tions of the ICME passage. The model parameters can be easily
varied for a parametric study. We have compared three IMF
models: our basic model, Model 1, with the GLE onset detected
inside the 100°-wide ICME; Model 2, with the Earth being at
the GLE onset time already 7° of heliolongitude behind the
ICME; and as a reference, Model 3, with magnetic field lines
open also in the ICME sector.
The mean-free path for the SEP transport along the IMF lines

(ΛP) may be not small compared with the distance to the

Figure 4. Composite white-light image of the 2017 September 10 CME from spaceborne coronagraphs on SoHO and STEREO and from the Mk4 Coronameter of
MLSO. The yellow circle at the solar west limb is the 95%-confidence-level localization error of the high-energy γ-ray source at the maximum of Phase 3 emission,
19:03UT–19:39UT (Omodei et al. 2018). The insert in the upper left corner shows the CME location at the beginning of Phase 3 (SoHO/LASCO C3): labeled are
the CME nose area (1a), the magnetic flux rope (1b), and a jet along the trailing current sheet (2a). The insert in the lower left corner is from STEREOA/COR2
located 128° east of SoHO, showing another jet along the CME-trailing current sheet (2b), which is also seen in the SoHO/LASCO C2 frame.
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source, ΛP1 au. For this reason, transport of high-energy
protons along the curvilinear coordinate ξ (Figure 7) is
considered in the framework of focused transport, which is
applicable for both small and large values of ΛP (e.g.,
Toptygin 1985). The classic model of focused transport
assumes that energetic particles are scattered off by the weak
turbulence in the solar wind plasma, which causes a small-
angle (differential) scattering and correspondingly, a pitch-
angle diffusion in the particle phase space (e.g., Earl 1976). The
small-angle scattering often explains the observed SEP flux and
anisotropy profiles. However, the GLE observations also reveal
an isotropic component of solar high-energy protons rising
early in the event. That can be explained by the large-angle
(integral) scattering that operates in the high-energy range in
addition to the classic pitch-angle diffusion (Kocharov et al.
2017). The large-angle scattering can be caused by strong
fluctuations of the magnetic field direction at the Larmor radius
scale of relativistic protons, like the fluctuation shown in the
middle panel of Figure 6. The processes considered here for the
small-angle scattering and the large-angle scattering are
identical to the anisotropic small-angle scattering (AAS) and
the small time-step isotropization (SSI) by Kocharov et al.
(1998; see also Appendix C of Kocharov et al. 2017).

The scattering rates are parameterized by the values of
specific mean-free paths—the mean-free path for the small-
angle scattering, ΛA, and the mean-free path for the
isotropization, ΛI. Since no signatures of large-angle scattering
have been found so far in the observed pitch-angle distributions

of deka-MeV protons, their scattering is modeled with the AAS
process only, with rigidity dependence according to the
standard quasilinear theory at the Kolmogorov turbulence
spectrum (e.g., Kunow et al. 1991). Possible energy depend-
ence of the SSI process within the GLE energy range
(0.4–4 GeV) is neglected. Each mean-free path linearly increases
with distance from the Sun: ΛA(I)(ξ)∝ξ, except close to the
Sun: ΛA(I)(ξ<0.1 au)=ΛA(I)(0.1 au). In what follows, all
mean-free path values are given for a 1 GeV proton at the
Earth’s orbit.
Transport of energetic particles across the IMF lines is

typically described as diffusion, with in-depth research
showing that the initial cross-field spreading is non-diffusive
propagation along meandering field lines (Laitinen et al. 2013).
Laitinen & Dalla (2017) found that the particles begin to
decouple from their field lines on timescales of about parallel
scattering time, τP∼ΛP/v, and are completely decoupled in
∼10τP (excluding parallel propagation time effects, Laitinen
et al. 2017). In our modeling, a GLE component responsible for
the cross-field flux will be registered typically 20 minutes after
its injection at the Sun, which is much larger than τP for the
≈0.5 au mean-free paths required by the proton flux anisotropy
observed in GLE 72 (see below). Under these conditions, we
assume that the SEP cross-field propagation has reached its
diffusive regime, and model the cross-field propagation as
cross-field diffusion.
Perpendicular diffusion is simulated in a local cylindrical

coordinate system with the origin situated at the center of

Figure 5. Model magnetic field 10 minutes after the flux rope eruption. Red: the flux rope; white: large-scale helmet streamers; green: field lines from surrounding
active regions and open field lines; yellow: open field lines through the shock nose. The blue dashed contour outlines the entire shock front driven by CME, while the
orange dashed contour outlines only the highly compressed area of the shock (compression ratio >4) at the shock’s eastern flank partly connected to the Earth.
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curvature of the current segment of the IMF line (the radial
coordinate ρ in Figure 7). The corresponding part of the
transport equation for the volumetric number density of
energetic particles, F, is of the form (e.g., Kocharov et al.
2015b, Equation (8) therein)
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We recast this equation in respect to the distribution over the
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This Fokker–Plank equation can be expressed as a stochastic
differential equation to be solved by time-stepping the progress
of individual Monte Carlo particles (e.g., Fletcher 1994). It is
very similar to stochastic simulations of the focused transport
along the coordinate ξ, but the accumulated distribution
functions are still not identical. Simulations of the ρ-transport
yield the number of particles per unit of azimuthal angle of the
local cylindrical coordinate system (Fρ), while the ξ-transport
operates with the number of particles per unit of magnetic tube

length (F/B). That difference is accounted for by ascribing to a
Monte Carlo particle a specific weight that changes at each step
in the perpendicular to magnetic field direction.
Perpendicular diffusion is understood to be caused by the

field-line meandering at the time-asymptotic limit, with several
theoretical approaches relating the turbulence properties to the
diffusion coefficient = L^ ^D v1

3
(e.g., Jokipii 1966; Giacalone

& Jokipii 1999; Matthaeus et al. 2003; Shalchi 2010; Ruffolo
et al. 2012). Here, we use the perpendicular mean-free path,
Λ⊥, that increases with distance from the Sun: ( )xL µ^

-B 1.
Nominal Parker magnetic field lines are used as a coordinate
grid. A particle changes its nominal field line each time it
experiences large-angle scattering (isotropization). In such an
event, a particle randomly steps in the direction ρ (Figure 7)
according to the current value of the product D⊥Δt, where Δt
is the time elapsed since the previous isotropization event. The
step Δρaccounts for the deviation of the meandering field line
from the nominal field line that has been accumulated between
the discreet events of large-angle scattering.

5. Modeling Results

High-energy protons are injected at two locations shown in
Figure 7—at the root of the Earth-connected IMF line
(Source J) and above the flaring active region (Source G).
The time profiles of the sources J and G, the mean-free path
values for the parallel transport, ΛA and ΛI, and the
perpendicular diffusion coefficient, are adjusted to fit the SEP
data. Figure 8 summarizes the modeling results—the inferred

Figure 6. In situ plasma measurements of the passage of interplanetary
extension of the 2017 September 6 LASCO CME. Upper panel: magnetic
field intensity, B, and plasma speed, U (ACE/MAG and ACE/SWEPAM,
respectively). Middle panel: the magnetic field angles in the GSE coordinate
system, λ and δ; lDá ñ is a deviation of the gliding 28 minute average value of
the IMF azimuthal angle from its 280 minute average value, which is
representative of the IMF direction fluctuations at the Larmor radius scale of
∼1GV proton. Lower panel: angle between the magnetic field vector and the
radial, Sun–Earth direction (curve; left axis) and the plasma helium-to-proton
abundance ratio (points; right axis).

1

2

J
G

Figure 7. Interplanetary transport model that reproduces both the arrival of the
anisotropic particle flux along the magnetic field in the beginning of the event
(from Sector J at the root of the Earth-connected IMF line) and the late,
prolonged streaming of high-energy protons across the IMF lines (from Sector
G over the flaring active region near the west limb). The drawing is at scale.
The Archimedean spirals of the grid are for the solar wind speed 500kms−1,
separated by 10° in heliolongitude. In the ICME sector, the model magnetic
field exponentially increases from ξ=ξ1 to ξ=ξ2, in total by a factor of 2. In
Models 1 and 2, all simulated particles are bounced back at the ICME top (blue
circular arc). In Model1, ICME spreads in heliolongitude from −15° to +85°
(in respect to the Earth-connected IMF line). Additionally considered are a
narrower ICME with an eastern flank shifted westward for 22° (Model 2), so
that the Earth is in the open IMF sector behind the ICME, and Model3, in
which high-energy protons can freely penetrate the ICME top at all locations.
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SEP source profiles (panel (a)), the proton net flux in the
perpendicular to the IMF direction (b), the parallel flux (c), and
the proton pitch-angle distributions (panel (d)).

5.1. Interplanetary Transport Parameters

Interplanetary transport of SEPs depends on scattering
conditions in the solar wind plasma, which should be estimated
on an event-by-event basis with use of the SEP data,
preferentially the data of particle flux anisotropy (e.g., Kunow
et al. 1991). Particle telescopes in space beyond the Earth’s
magnetosphere, like the High-Energy Detector of the Energetic
and Relativistic Nuclei and Electron instrument (ERNE/HED)
on SoHO can provide such data in the deka-MeV range (Torsti
et al. 1995) and those data indicate that the proton mean-free
path often exceeds 1 au (e.g., Torsti et al. 2004). The SoHO/
ERNE data, however, are not available for 2017 September 10.
Another particle instrument, SoHO/EPHIN, possesses good
sensitivity and energy resolution, detects particles arriving in
a fixed, 83°-wide view cone, and by this expedient, has a

capability for assessment of the width of the proton pitch-angle
distribution. At the beginning of the 2017 September 10 event,
the IMF direction stayed inside the instrument’s view cone
until 17:20 UT and was ≈20° off the view cone for the next 20
minutes (Figure 1(c)). The latter excursion of the magnetic field
allows us to estimate the width of the proton pitch-angle
distribution and the corresponding mean-free path value.
Another opportunity for estimating the mean-free path was
mentioned in Section2. It is the velocity dispersion of the SEP
rise profiles. With two opportunities together, a comparison of
the observed SEP profiles with the particle transport simula-
tions accounting for the small-angle scattering, magnetic
focusing, and the particle sampling into the EPHIN’s view
cone, suggests a parallel mean-free path of 30MeV protons

( )L = 30 MeV 3 1 auA . In the framework of the quasilinear
theory of the pitch-angle scattering with the Kolmogorov
turbulence spectrum, this corresponds to a mean-free path of
1 GeV protons ( )L =1 GeV 4A –8au, to be refined with the
NM network data.

Figure 8. Results of the proton transport modeling. Proton transport is simulated in the IMF of Model1 with transport parameters ΛA=5 au, ΛI=0.5 au, and Λ⊥/ΛI

=0.008, unless otherwise specified in a panel. The solar source spectrum is Np(E)∝E−4.5. The near-Earth profiles are energy-integrated, E�0.5 GeV. (a)Injection
profile of interplanetary protons (sources J and G) compared with the observed γ-ray profile (red solid curve and bars). The dotted red line is a hypothetical
interpolation between the observed parts of the γ-ray profile (Section 6). The entire proton source (J+G) is normalized to the peak of Phase3 γ-ray emission, at either
value of Λ⊥ (without such renormalization, the magnitude of Source G depends on Λ⊥, while Source J almost does not change). (b)Observed flux of the
interplanetary protons across the IMF line and the corresponding model flux at two possible values of the perpendicular diffusion coefficient (dashed line is for
Model 3). In the case of Λ⊥=0.08ΛI, the magnitude of SourceG is 0.23× the Source G magnitude of the case Λ⊥=0.008ΛI. (c)Proton flux parallel to the IMF
line. Additionally shown is the count-rate profile of the Fort Smith neutron monitor in percents of GCR background, with 99% of the background subtracted, and the
model intensity profile of GLE-producing protons arriving at pitch angles 12°–28°. (d)Pitch-angle distribution of interplanetary protons deduced from the NM
network data (Mishev et al. 2018, 5 minutes bins) and our model distribution, both in units corresponding to a ≈1% increase of the Fort Smith NM count rate (dashed
lines are for Model 2).
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Proton flux anisotropy data in the GeV range are available
from the NM network (Mishev et al. 2018). Those data indicate
an early appearance of an isotropic component of the pitch-
angle distribution, which in our model is accounted for with the
large-angle scattering of relativistic protons with a mean-free
path ΛI, a process concurrent to the small-angle scattering with
mean-free path ΛA. Values of ΛI and ΛA, along with the time
profile of solar Source J, are adjusted to fit the proton flux
anisotropy data of the NM network in the first phase of the
event (Figure 8(d)). The best-fit values of the specific mean-
free paths are ΛA=5 au and ΛI=0.5 au. The ΛI value
provides a sufficient number of backward-propagating protons
(pitch angles α>90°), while ΛA provides a necessary
steepness of the distribution in the forward direction to fit the
Fort Smith data without a similar increase at other stations.
Note that the previously inferred, empirical pitch-angle
distributions (shown with dotted lines in Figure 8(d)) markedly
underestimate the Forth Smith count rates observed in the first
phase of the event (before 17:15 UT; Mishev et al. 2018, Figure
9 therein), while the present model fits the Fort Smith data
better.

In the extended phase of the event, after 18:00UT, a
contribution of the cross-field transport into the particle flux
near the Earth rises significantly, such that the model proton
flux becomes essentially dependent on the adopted value of the
perpendicular mean-free path Λ⊥. In Figure 8, we show the
modeling results for two values of the perpendicular mean-free
path: Λ⊥=0.008ΛI and an order-of-magnitude larger value,
Λ⊥=0.08ΛI. These values bracket the available theoretical
estimates (e.g., Giacalone & Jokipii 1999).

5.2. Particle Profiles

The inferred source profiles of solar high-energy protons are
shown in Figure 8(a). An adopted value of the perpendicular
mean-free path affects the model perpendicular flux. Corre-
spondingly, given the observational flux, the uncertainty of Λ⊥
comes to the uncertainty of the SourceG magnitude and in its
turn, to the relative strength of two sources, G versus J. The
total numbers of protons injected by SourceJ (J1+J2) and
Source G over the entire time of their operation are

( )
( ) ( ) ( )c
> = ´
> = >

N
N N

500 MeV 1.6 10 ,
500 MeV 500 MeV , 3

J
30

G J

where χ=64 at Λ⊥/ΛI=0.008 and χ=14 at Λ⊥/ΛI

=0.08. For these estimates of the source-area-integrated
numbers, NJ(>500MeV) and NG(>500MeV), we have
assumed that the surface area of each of two near-Sun sources
is R0.1 2, which corresponds to the heliocentric angular size of
20° (Figure 7). That is about the size of the yellow circle in
Figure 4. Somewhat smaller or larger source areas could not be
ruled out either and correspondingly may affect the inter-
planetary proton number estimates.

The time profile of the proton flux perpendicular to the IMF
is shown in Figure 8(b). The observed flux is calculated with
the 1GV proton intensities deduced from the NM network data
by Mishev et al. (2018) and the 100 minute average IMF
directions measured by ACE/MAG. The model flux is
simulated with the ICME Model1 at two possible values of
the perpendicular diffusion coefficient. We also show the result
of modeling with ICME Model3, in which protons are not
bounced at the top of the ICME (dashed line). The effect of the

IMF topology turns out to be weak because the ICME top is
already more than 1au behind the Earth.
The parallel flux of the GLE-producing protons is shown in

Figure 8(c). In order to refine the injection onset profile, we
have additionally fitted the 5 minute count-rate profile of the
Fort Smith NM. The 5 minute width of the bins implies
corresponding accuracy of the inferred timing of the leading
front of SourceJ1 in panel (a). Our present theoretical model
suggests a somewhat steeper pitch-angle distribution in the
forward hemisphere as compared to the empirical fit by Mishev
et al. (2018). For this reason, the model parallel flux shown in
panel (c) exceeds the parallel flux estimated with the previous
empirical fit to the NM network data (observed flux).

6. Discussion

We have modeled the interplanetary transport of high-energy
solar protons in a hybrid model that treats particle transport
along the IMF lines in the focused transport approximation,
while the cross-field transport is modeled in a diffusion
approximation. Such a hybrid model is a straightforward
modification of our previous models of focused transport
(Kocharov et al. 1998, 2005, 2009). As compared to the hybrid
model by Dröge et al. (2014), we do not assume conservation
of the particle pitch-angle in the event of the particle
decoupling from the magnetic field line. In addition, our
treatment of perpendicular transport also accounts for the
curvature of magnetic field lines. The SEP transport parameters
are estimated on an event-by-event basis. With the available
data, we estimate the GeV proton mean-free-path values in the
2017 September 10 event to be: ΛI=0.5 au for the large-
angle/integral scattering and ΛA=5 au for the small-angle/
differential scattering. A large uncertainty still remains in the
assessment of the cross-field transport rate.
Share et al. (2018) reviewed observations of the late-phase

γ-ray emission (LPGRE) since the Solar Maximum Mission era.
The timescales of the LPGRE range from a fraction of an hour to
8 hr, so the LPGRE group would include both Phase 2 and Phase
3 emissions of the 2017 September 10 flare observed by Fermi/
LAT. The number of LPGRE protons >500MeV in nine events
considered by Share et al. (2018) was estimated to range from
0.0015× to 0.5× the number in the accompanying SEP event. In
the 2017 September 10 event, the total number of protons
injected to the interplanetary medium by Source G over
the time interval 18:59:00UT–19:26:30UT (solar time) is
N↑(>500MeV)=1.9×1029χ, where χ depends on the
adopted value of the perpendicular diffusion coefficient, like in
Equation (3). The number of >500MeV protons interacting at
the Sun over the same time interval N↓(>500MeV)=3×1028.
Correspondingly, the number ratio of protons interacting at the
Sun in Phase 3 of the γ-ray production and protons injected to
the interplanetary space by SourceG is

( )
( )

( )
c

>
>

=



N

N

500 MeV

500 MeV

0.16
, 4

where χ=15–60. The interplanetary proton number exceeds
the number of interacting protons, even though we have a
large uncertainty in the perpendicular transport parameters.
In the preceding phase (Phase 2/J), the ratio of γ-ray-
producing protons to GLE-producing protons is about χ× the
ratio in Phase 3/G (Figure 8(a)), such that ( ) ~ N N 0.22 J .
Our estimates of N↓/N↑ are in the range reported by
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Share et al. (2018) for other events. Recently, de Nolfo et al.
(2019) analyzed 14 LPGRE events and found that the
interplanetary proton number is poorly correlated with the
number of protons interacting at the Sun. Our case study and
modeling of the 2017 September 10 event suggest that an
estimate of the N↓/N↑ ratio can span a few orders of
magnitude due to the variation of many factors, including,
in particular, the relative contribution of the particle
components J and G, magnetic connectivity, and interplane-
tary transport conditions, even when both proton populations
in each particular event originate from a common source.

With a given response function of neutron monitors and
count statistics of GLE 72, the proton spectrum deduced from
the NM network data refers to the energy range ∼400MeV–
4 GeV. The GeV proton spectrum deduced from the NM data
for 17:30 UT–17:55 UT is as steep as ∼E−5.5. The energy
spectrum of interplanetary protons in the 2017 September 10
event was measured also in the deka-to-hecto-MeV range by
spaceborne instruments (Matthiä et al. 2018; Bruno et al.
2019), in particular by SoHO/EPHIN. The EPHIN instrument
on SoHO was originally optimized to measure proton and
helium isotope spectra up to 50 MeVnucl−1, but a capability
of determining the energy spectra up to ∼600 MeVnucl−1 also
exists (Kühl et al. 2015; Kühl & Heber 2019). During 16:00
UT–21:00 UT, the 60–600MeV proton spectrum from EPHIN
does not change much; it is nearly as hard as ∼E−2.7 around
300MeV. The energy range of interacting protons for the
production of pions falls at the boundary between the EPHIN-
observed and NM-observed energy ranges of the interplanetary
protons. The interacting proton spectrum above 300MeV at
17:40 UT–17:50 UT is estimated as ∼E−3.2. It is softer than the
EPHIN-observed spectrum of interplanetary protons around
300MeV, ∼E−2.7, and harder than the NM-observed spectrum
of the 1 GeV protons, ∼E−5.5. Possible bending of the proton
spectra around 500MeV adds complexity to their comparison,
so a further analysis is required. Note that bent spectra of high-
energy protons were previously found in many other events
(e.g., Kocharov et al. 1996; Torsti et al. 1996; Tylka et al.
2010).

Evidence of the presence of two different components of
high-energy particles in a single GLE, a prompt component and
a delayed component, were revealed in many events (e.g.,
Miroshnichenko et al. 1995; McCracken et al. 2008). This is
the case also for the 2017 September 10 event. The GLE starts
with the prompt component that streams along the IMF line
with a relatively narrow pitch-angle distribution, while the
proton spectrum markedly steepens with rigidity within the NM
rigidity range. After 17:10 UT we observe a transition to the
delayed component: the spectrum becomes a single power law
over the entire rigidity range and angular distribution of the
near-Earth solar protons widens. In our modeling, a source of
the prompt component is situated at the root of the Earth-
connected IMF line (J1 and partly J2), while the delayed
component arrives largely across the magnetic field lines from
the source situated above the flaring region near the solar
western limb (Source G; Figures 7 and 8).

SEPs originating from different sources may have different
ion abundances. In the impulsive-gradual classification of SEP
event, a low helium-to-proton ratio, He/p∼0.001–0.01, is
indicative of a gradual events, while high values, He/p0.1,
define impulsive events (e.g., Kocharov et al. 1983; Cane et al.
1986; Reames 1995b; Cliver 1996). A helium-rich abundance

was previously reported for GLE 70 on 2006 December 13 in
the energy range extending from ∼30MeV to ∼2 GeV
(Adriani et al. 2011; Kocharov et al. 2015a). In the case of
the 2017 September 10 event, the helium abundance was
measured by SoHO/EPHIN in the deka-to-MeV range to be
He/p=0.08 (Figure 1(f)), which is an impulsive composition,
expected to originate from the flare site, not from the CME-
bow shock in the solar wind. On their way from the solar
source to the interplanetary space, the helium-rich SEPs should
have penetrated the shock driven by CME at its eastern flank
connected to the Earth (Figure 5). The shock, however, was not
an obstacle when the helium-rich SEPs arrived at the beginning
of the 2017 September 10 event. The SEP transit through the
shock may be possible via fast transport channels/quiet
magnetic tubes penetrating the shock (similar to model by
Kocharov et al. 2014). Such channels could also provide a way
for the back precipitation of the shock-accelerated particles to
the Sun to produce there, via nuclear interactions, a variety of
secondary emissions (Kocharov et al. 2015b).
The prompt component of the 2017 September 10 GLE is

associated with a series of late type III radio bursts persisting
until 16:55 UT (Figure 9), possibly indicative of the opening of
magnetic traps from which the prompt component could be
released directly to the Earth-connected IMF lines (see Cane
et al. 2002). Such an association was observed also in a number
of other GLE events (so-called GLEs of type J; Kocharov et al.
2018), in particular in GLE 67 on 2003 November 2, which
was similar to the 2017 September 10 event in terms of
associated coronal and CME structures (our present Figure 4
versus Figure 11 by Kocharov et al. 2017). However, now we
focus on the prolonged, delayed components of interplanetary
protons and on the interacting protons generating the prolonged
γ-ray bursts.

Figure 9. Dynamic low-frequency radio spectrum detected by STEREO A/
WAVES on 2017 September 10 (Bougeret et al. 2009). Pair curves F and H
(fundamental and harmonic) show one of few possible kinematic fits to the
typeII emission that assumes emission from the CME nose as observed on
STEREO A and the density model by Saito et al. (1977) with an enhanced solar
wind density amounting to 35 cm−3 near the Earth’s orbit (M. Reiner 2018,
private communication). Additionally shown are locations of the LOFAR-
observed shock-associated emissions: a herringbone structure (S) and a
fragment of the type II fundamental lane (N), which originate from the CME’s
southern and northern flanks, respectively (Group 1 and Group 3 in Figures
1(c) and 5(a) by Morosan et al. 2019).
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There is a gap in the Fermi-LAT-data between the end of the
observation period 2b and the first observed part of period 3
(Figure 2). The 2b emission likely is the leading front of a γ-ray
burst that is similar to the microwave burst observed at that
time by EOVSA (Figure 1 by Gary et al. 2018, our burst mw2).
For illustration purposes, in Figure 8(a) we have filled the gap
in γ-ray data with a hypothetic profile based on the idea by
Cliver (1996), who proposed that the pion-rich phases of large
flares may be similar to those occurring earlier in the flare, the
main difference being the greater height of the accelerated
region and presence of previously accelerated particles.
Assuming such a similarity of processes at different scales,
we have used the observed impulsive-gradual pattern of period
1-2a to extrapolate the γ-ray profile from period 2b onward.
The observed profile 1-2a has been shifted in time and
stretched by a factor of 4, and also renormalized by a factor of
0.4 so that the scaled profile fits with both the observed rise
phase of the γ-ray burst 2b and the decay phase of the
25–100 keV X-ray burst observed at 16:40 UT–16:45 UT by
the Reuven Ramaty High-Energy Solar Spectroscopic Imager
(Lin et al. 2002). This extrapolation matches remarkably well
with the observed part of Phase3 emission.

The γ-ray burst of Phase 3 is localized near the western limb
within the area indicated with the yellow circle in Figure 4,
which includes high loops at the base of a bright ray that is the
current sheet trailing the CME. The Phase 3 γ-ray emission
originates from a compact source but changes in time very
slowly, with an e-folding time of 1.8 hr (Omodei et al. 2018).
Such a simultaneous involvement of a small spatial scale and a
large timescale indirectly supports the idea that a thin and long
object like the plasma sheet trailing the CME may be involved
in production of the Phase 3 γ-ray emission. Current sheets
trailing the CMEs in other events were studied in detail by Lin
et al. (2004) and Webb & Vourlidas (2016).

Thanks to EOVSA observations, we have high-resolution
images of the associated microwave sources, including the late-
phase burst mw2 (Figure 2 by Gary et al. 2018). The mw2 burst
arises from two sources located at the sides of the rising bright
loops seen in the 193Åimages by the Atmospheric Imaging
Assembly on the Solar Dynamics Observatory (SDO/AIA;
Lemen et al. 2012) and also in the white-light images from
MLSO beneath the current sheet (our Figure 4 and Figure 4(a)
by Cheng et al. 2018). The onset of the mw2 burst at 16:26 UT
(Figure 1 by Gary et al. 2018) exactly coincides with the onset
of the γ-ray burst 2b (our Figure 2 or Table 1 by Omodei et al.
2018). For these reasons, the microwave source mw2 and the
source of the γ-ray burst 2b should be situated close to each
other at/around the high loops beneath the CME current sheet.

The bright ray seen in EUV and white-light images after
16:00 UT is interpreted as a current sheet that formed in the
wake of CME. The current sheet of the 2017 September 10
CME was thicker than is typically observed, and had a high
emission measure, and for this reason, it was well investigated.
Warren et al. (2018), using observations from the EUV
Imaging Spectrometer (Culhane et al. 2007) on board Hinode
(Kosugi et al. 2007) and AIA on SDO, found that plasma in the
current sheet reaches temperatures of about 20 MK. The
highest temperatures occur at the base of the current sheet, in
the region near the top of the post-flare loop arcade, and Fe line
emission indicates a coronal composition and suggests that the
current sheet is formed by the heating of plasma already in the
corona. Cheng et al. (2018) reported the fragmented and

turbulent nature of magnetic reconnection in the super-hot
plasma current sheet. Two oppositely directed outflow jets are
intermittently expelled out of the fragmenting current sheet.
The speeds of the sunward outflow jets typically are within
100–600 km s−1 (Figure 3 by Cheng et al. 2018). The MLSO
K-Cor instrument provides white-light images of the extended
current sheet at its later phase, starting at 17:12 UT (the frame
embedded in Figure 4) and continuing through 20:10 UT. By
chance, the MLSO observation period nearly coincides with the
maximum phase of the high-energy γ-ray burst 3 and the
brightening of the low-frequency type II radio emission
observed on STEREO A (Figure 9). Cheng et al. (2018) count
in the MLSO frames eight anti-sunward moving blobs with
velocities up to ∼1200 km s−1. Some outflow jets are seen
moving farther away from the Sun in images from SoHO and
STEREO coronagraphs (like the two jets labeled 2a and 2b in
Figure 4). Using both SoHO and STEREO A observations, we
estimate the non-projected velocity of jet 2b to be about
1600 km s−1. The extrapolated launch time, ∼16:42UT, is
within the microwave enhancement period mw2, while the low
corona observations at MLSO did not start by that time.
The idea of post-impulsive phase acceleration of high-energy

protons in solar corona has been discussed for years, along with
particle acceleration in the CME-driven shocks in solar wind.
In particular, Klein et al. (2001) reported observational results
of the 2000 July 14 eruption (GLE 59) that indicated that the
relativistic protons in that event were accelerated during the
magnetic field reconfiguration at heights between 0.1 Re and
1 Re above the photosphere, and not in the flaring active region
or at the bow shock of the CME. More recently, the trailing
current sheets of CMEs have been proposed to accelerate
electrons (Pick et al. 2005). Even though relativistic electrons
are observed in the 2017 September 10 event (Figure 1(d)), we
concentrate now on acceleration of high-energy protons.
Different magnetohydrodynamic (MHD) motions are typi-

cally considered for acceleration of protons and heavier ions,
and such motions are observed on 2017 September 10,
including the CME-bow shock in solar wind, and, much closer
to the Sun, the repetitive jets and turbulence in the plasma sheet
trailing the CME. The launch of jet 2b may be associated with
microwave burst mw2 that apparently triggered the Phase 3/G
proton production (Figure 4). In the frame of the coronal
acceleration concept, the hard-spectrum protons producing the
Phase 3 γ-ray emission could be accelerated on closed
magnetic field lines below the CME current sheet by MHD
turbulence and local shocks caused by fragmented magnetic
reconnection and jets expelled from the plasma sheet.
Accelerated protons simultaneously precipitate into the chro-
mosphere and escape into the solar wind.
A traditional candidate for high-energy proton production

in gradual (phase of) SEP events is the CME-bow shock
(Reames 1999). The observed coincidence of the type II radio
enhancement (Figure 9) and the γ-ray emission of Phase3
(Figure 8(a)) seems to support acceleration of interplanetary
protons by the CME-driven shock. Such a model was tested by
Kocharov et al. (2015b). However, the height of the model
CME was much smaller than the CME height in the 2017
September 10 event at the time of the Phase3 γ-ray emission.
On the other hand, the low-frequency typeII source and the
proton acceleration site may be located not at the CME nose
but closer to the Sun, e.g., at the flank of the CME. Radio
signatures of the CME-driven shock in the deka-MHz band,
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including herringbone structures and type II lanes, were
observed on 2017 September 10 by the Low Frequency Array
(LOFAR; Morosan et al. 2019). They appear at the CME
flanks, first in the southwest and then in the northwest (Group
1–2 and Group 3 in Figure 5(a) by Morosan et al. 2019). If
protons were accelerated at a fraction of the CME height, they
would have a higher chance of returning to the Sun, compared
to returning from the CME nose.

A hybrid scenario that includes episodes of reacceleration of
flare-originating particles should be also considered. High-
energy ions of GLE 70 (2006 December 13) were observed by
both neutron monitors on the ground (in particular, Mishev &
Usoskin 2016) and the Payload for Matter-Antimatter Explora-
tion and Light Nuclei Astrophysics in space (PAMELA;
Adriani et al. 2011). The PAMELA data indicate that the
helium-to-proton abundance ratio in the GV rigidity range was
high (impulsive composition) and did not change at the
transition from the GLE’s prompt component, observed from
02:50UT until ≈03:50UT on 2006 December 13, to the
delayed component continuing after 03:50UT through the end
of the day, while the energy spectrum shape did change at
around 03:50UT from an exponential shape to a power-law
one. This supports the idea that the delayed component in that
event was produced by a reacceleration of energetic particles
originating from the flaring region.

7. Conclusion

The observed time profile of the high-energy γ-ray emission,
produced by protons interacting at the Sun, comprises several
parts, including the extremely prolonged, Phase 3 emission. We
find a counterpart of the Phase 3 solar protons in the
interplanetary protons arriving at the Earth across the IMF
lines. Data and modeling support the idea that those two proton
populations originate from a common, CME-driven source.
The source may be situated either at the CME-bow shock or
behind the CME near the CME-trailing current sheet. The latter
possibility has not yet received sufficient attention.
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