Boundary Interactions of Rough non-Gaussian Surfaces

Leighton, M, Morris, N, Gore, M, Rahmani, R, Rahnejat, Homer orcid iconORCID: 0000-0003-2257-7102 and King, PD (2016) Boundary Interactions of Rough non-Gaussian Surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230 (11). pp. 1359-1370. ISSN 1350-6501

[thumbnail of Version of Record]
Preview
PDF (Version of Record) - Published Version
Available under License Creative Commons Attribution.

1MB

Official URL: https://doi.org/10.1177/1350650116656967

Abstract

Surface topography is important as it influences contact load-carrying capacity and operational efficiency through generated friction, as well as wear. As a result, a plethora of machining processes and surface finishing techniques have been developed. These processes yield topographies, which are often non-Gaussian, with roughness parameters that alter hierarchically according to their interaction heights. They are also subject to change through processes of rapid initial running-in wear as well as any subsequent gradual wear and embedding. The stochastic nature of the topography makes for complexity of contact mechanics of rough surfaces, which was first addressed by the pioneering work of Greenwood and Williamson, which among other issues is commemorated by this contribution. It is shown that their seminal contribution, based on idealised Gaussian topography and mean representation of asperity geometry should be extended for practical applications where surfaces are often non-Gaussian, requiring the inclusion of surface-specific data which also evolve through process of wear. The paper highlights a process dealing with practical engineering surfaces from laboratory-based testing using a sliding tribometer to accelerated fired engine testing for high performance applications of cross-hatched honed cylinder liners. Such an approach has not hitherto been reported in literature.


Repository Staff Only: item control page