Inner Ear Malformations in Congenital Deafness Are Not Associated with Increased Risk of Breech Presentation

Slobodan Sekulica, Slobodanka Komazecb, Ivana Sokolovacb, Anastasia Topalidouc, Olga Gounid, Branka Petkovic, Ljiljana Martace, Goran Kekovicf, Tatjana Redzek-Mudrinicg, and Ivan Capoh

aDepartment of Neurology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; bDepartment of Otorhinolaryngology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; cSchool of Community Health and Midwifery, Faculty of Health and Wellbeing, University of Central Lancashire, Research in Childbirth and Health Unit, Preston, United Kingdom of Great Britain and Northern Ireland; dNational and Kapodistrian University of Athens, Athens, Greece; eDepartment of Neurophysiology, Institute for Biological Research Sinisa Stankovic, Belgrade, Serbia; fDepartment of Electrical and Computer Engineering, Faculty of Maritime, Academic study, Belgrade, Serbia; gDepartment of Neuropediatrics, Child and Youth Health Care Institute of Vojvodina, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia; hFaculty of Medicine NoviSad, University of Novi Sad, Novi Sad, Serbia

ABSTRACT

Background: There is speculation that an immature vestibular system may be associated with breech presentation at delivery. Our aim was to determine whether syndromes with congenital inner ear malformations were accompanied by a higher frequency of breech presentation/malpresentations than in the general population (2%–3%). Methods: A review was conducted for published literature using PubMed/MEDLINE (1936–2016), to determine frequency of breech presentation and transverse lie in cases with congenital deafness (Michel aplasia, Wildervanck syndrome, Mondini-Alexander dysplasia, Waardenburg syndrome, CHARGE syndrome, Large vestibular aqueductal syndrome, Pendred syndrome, Oculo-aurico-vertebral spectrum, Jervel and Lange-Nielsen syndrome, Usher syndrome, and Scheibe dysplasia) and vestibular nerve aplasia. Results: Identified were total of 122 cases. The frequency of breech presentation was 1.64%, and of transverse lie 1.64%, giving a total of 3.28% malpresentations. Conclusion: The results of the study suggest that congenital malformations of the vestibular apparatus are not associated with the increased risk of breech presentation at delivery.

Introduction

The fetus changes its presentation by active whole-body movements, such as kicking [1]. Fetal kicking represents a sudden extension of the trunk and lower limbs, as a result of excitations of the extensor muscles. Vestibular nuclei, which are under constant afferent activity of the vestibular apparatus, excite extensor muscles of the trunk and lower extremities [2]. The vestibular labyrinth acquires adult morphology and size during the
5th gestational month [3]. The myelinization of the vestibular nerve begins in the 17th gestational week and ends prenatally [4].

Congenital deafness is accompanied by abnormalities in the function of the vestibular apparatus in 80%–85% of the cases [5, 6]. Pathological substrates of the congenital deafness are complex malformations of the cochlea and vestibular apparatus.

The purpose of this study was to perform a literature review to determine whether syndromes with congenital inner ear malformations are accompanied by a higher frequency of breech presentation/malpresentations than in the general population, where the frequency is 2%–3% [7].

**Material and methods**

The literature search was conducted in PubMed/MEDLINE by two authors (November 2016). The selected key words related to the inner ear malformations and syndromes, according to Omerod’s classification [8] were “Michel aplasia”, “Wildervanck syndrome”, “Mondini-Alexander dysplasia”, “Waardenburg syndrome”, “CHARGE syndrome”, “Large vestibular aqueductal syndrome”, “Pendred syndrome”, “Oculo-auroico-vertebral spectrum”, “Jervel and Lange-Nielsen syndrome”, “Usher syndrome” and “Scheibe dysplasia”. Considering that vestibulocochlear nerve aplasia leads to a complete deafferentation from the vestibular apparatus, we included this medical entity in the search with key words: “aplasia”, “vestibulocochlear nerve” and “vestibular nerve”.

We included only publications that described case reports or series (in humans) and provided information of fetal presentation in single-fetus pregnancies (singleton). In addition to the term “cephalic presentation”, the terms “uneventful birth”, “unremarkable birth history”, “normal vaginal delivery”, “uncomplicated delivery”, “normal delivery”, “uneventful perinatal” and “uneventful intranatal period”, were considered as cephalic presentation. Duplicate articles were automatically identified by the search tool and removed from the database prior to screening. Two authors reviewed the findings to reduce the risk of selection bias. First, the two reviewers screened the publications by title and abstract. Publications which fulfilled the inclusion criteria were screened in full text.

**Results**

Research covered the period from 1936 to 2016. The literature search resulted in n = 5837 citations (after de-duplication). In the first stage n = 5579 articles were excluded by review of title and abstract. At the second stage, 258 articles met the eligibility criteria based on title/abstract and the corresponding full-text articles were procured for review. Finally, n = 91 records were included in the study. The included records described 122 births that were analyzed and described in the current study.

Malformation according to reference numbers were Michel aplasia [9–11], Wildervanck syndrome [12–26], Mondini-Alexander dysplasia [9, 17–25], Waardenburg syndrome type I [26–36], Waardenburg syndrome type II [37–41], Waardenburg syndrome type III [42–46], Waardenburg syndrome type IV [47–54], CHARGE syndrome [55–63], Large vestibular aqueductal syndrome [64–71], Pendred syndrome [72–77],
Oculo-auriculo-vertebral spectrum [78–85], Jervel and Lange-Nielsen syndrome [86–90], Usher syndrome [91–94], Scheibe dysplasia [95], and Pontine tegmental cap dysplasia [96–99].

The frequency of breech presentation was 1.64% and of transverse lie 1.64%, giving a total of 3.28% (Table 1).

Table 2 presents cases derived from the first table in which malformations of the vestibular apparatus were described (utriculus, sacculus, semicircular canals) based on radiological examinations (Computed Tomography or Magnetic Resonance Imaging). Breech presentation and transverse lie was not reported in any of these cases.

Only in five cases, one with Wildervanck [16] and four with Mondini-Alexander dysplasia [25], was data provided about the vestibular function. In all five cases presentations were cephalic and caloric examination revealed total absence of vestibular response bilaterally [16, 25]. Damped rotation test elicited per-rotatory nystagmus in the four examined children with Mondini-Alexander dysplasia but the duration and total number of nystagmic beats were decreased compared with healthy children of the same age [16, 25].

**Discussion**

This paper is the first to provide a comprehensive overview of existing studies on inner ear malformation in congenital deafness and its association with breech presentation. The obtained frequency of breech presentation in congenital deafness was 1.64%, while in the general population it is 2% –3% [7].

Prior to the current study, only one other study published data related to congenital deafness and malpresentations [100]. This article did not analyze specific syndromes of
Table 2. Types of congenital vestibular malformations in congenital deafness and association with breech presentation.

<table>
<thead>
<tr>
<th>Case number</th>
<th>Sacculus</th>
<th>Utriculus</th>
<th>Horiz. Semicircular Canal</th>
<th>Anterior Semicircular Canal</th>
<th>Posterior Semicircular Canal</th>
<th>BP cases n=</th>
<th>Reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>D</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>A</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>94</td>
</tr>
</tbody>
</table>

BP – Breech presentation, D – Dysplasia, A – Aplasia, n= – number of cases.
congenital deafness. The obtained frequency of breech presentation in this study does not differ from the data reported in the present study. The results from both studies indicate that the abnormal function of the vestibular apparatus was not associated with an increased risk of breech presentation.

In the examined types of congenital deafness there were a high proportion of cases with abnormal function of the vestibular apparatus. In four out of ten patients with Waardenburg syndrome and hearing impairment, the torsion swing test showed a directional preponderance of nystagmus. The caloric test was abnormal in five out of ten patients [101]. The frequency of abnormal function of the vestibular apparatus in CHARGE syndrome was 100%; however, a residual response could be registered in 94% [102, 103]. Large vestibular aqueductal syndrome was also often accompanied by abnormal vestibular function. In another study investigating the association between Jervell and Lange-Nielsen Syndrome (JLNS) genotype and vestibular dysfunction, an abnormal post-rotatory finding was seen in 9/9 examined cases, while 3 of them had a complete lack of vestibular function [104]. In 16 examined patients with Usher syndrome Type I there was no nystagmic response on the caloric test, while the results of the rotatory test were abnormal in 11 patients [105].

However, given the presence of the residual function of the vestibular apparatus in cases of congenital inner ear malformation, it is possible that the residual function of the vestibular apparatus is sufficient for occupying cephalic presentation in the second half of gestation.

Beside the vestibular apparatus, vestibular nuclei receive input from proprioceptive, visual, tactile, and auditory sources. Based on all these sensory inputs, the vestibular system generates efferent motor activity [2]. Characteristic of the vestibular nuclei is spontaneous discharges even in the absence of afferentation by the vestibular apparatus [106]. The plasticity of the central nervous system provides the possibility of compensation after the vestibular apparatus has lost its function [2]. The above suggests that even when the vestibular apparatus is absent, the function of the vestibular system can assumed by other means.

The results of our study showed that congenital malformations of the vestibular apparatus and its abnormal function do not increase the risk of breech presentation. The residual function of the vestibular apparatus could be sufficient for fetus to occupy cephalic presentation. When the function of the vestibular apparatus is absent, the vestibular system can still take part in regulation of fetal presentation, because of sensory afferentation from proprioceptive and cutaneous system.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the COST Action CA 18211 Perinatal Mental Health and Birth-Related Trauma: Maximizing best practice and optimal outcomes as well as by the Serbian Ministry of Education, Science and Environmental Protection, grant No. 175006.
References


