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Performance of a ventilated-façade system under fire conditions:  

An experimental investigation  

ABSTRACT 

During a fire event, ventilated facade systems may contribute to external fire spreading to the 

upper floors of a building via the facade, thus representing a significant risk. In this frame, the 

performance of a typical ventilated façade system under fire conditions is experimentally 

investigated, using a full-scale compartment-facade test rig. Two alternative façade 

configurations are examined and comparatively assessed, namely a plain façade (PF) and a 

ventilated façade (VF) system. Emphasis is given on the estimation of the thermal 

characteristics of the developed Externally Venting Flames (EVF) and the thermal boundary 

conditions developing on the façade’s exposed surface. An extensive set of sensors was 

installed at the interior of the fire compartment, the façade systems and the exterior of the test 

configurations. Analysis of the experimental data suggests that even though gaseous 

combustion products managed to penetrate the air cavity of the VF system, no consistent 

flaming conditions were established. On the unexposed face of both PF and VF systems, 

temperatures remained constantly below 180oC throughout the duration of both fire tests. The 

Eurocode correlations are assessed against the obtained experimental data; certain parameters, 

such as EVF length, width and centreline temperature, are found to be under-estimated by the 

Eurocode methodology. 

 

KEYWORDS: façade fire, large-scale fire test, ventilated façade, externally venting flame 
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1. INTRODUCTION 

1.1. Ventilated Façade System 

Primary energy use in buildings, accounts for approximately 40% of the total annual energy 

consumption and CO2 emissions in the European Union [1]. Evidently, reducing energy 

consumption in the building sector is essential in order to meet a range of challenges related to 

national energy performance requirements, environmental protection and cost reduction. The 

use of innovative construction techniques and materials can serve as a means towards 

improving energy efficiency and thus achieving significant energy savings in buildings. One 

such novel construction technique is the Ventilated Façade (VF) system, which is essentially a 

double-wall construction, comprising an external lightweight cladding panel assembly and the 

"main” façade of the building (outdoors side of the external wall); these two layers are 

separated by an air cavity, where an additional thermal insulation material may be installed. 

VF systems are increasingly used in contemporary architecture, both in new constructions and 

in retrofitting projects of existing buildings. 

VF systems were initially used to protect buildings against rain and wind, aiming to enhance 

the durability of the building’s façade [2]; however, due to the ever stricter building energy 

requirements, modern VF systems are further employed to reduce building energy 

consumption, by means of additional thermal insulation and protection against solar radiation 

[3, 4, 5]. As a result, there is an ever-increasing installation of VF systems in regions with 

higher levels of solar radiation [6, 7]. The VF system’s good energy performance is owed to 

the existence of the air cavity between the building’s wall (inner skin and insulation) and the 

external cladding (outer skin) [2]. The outer skin is usually composed of modular panels, with 

integrated metallic, ceramic, stone or composite tiles [2]. Heating of the external cladding panel 

by the incident solar radiation results in increasing temperatures in the air cavity; the heated air 

flows upwards, due to thermal buoyancy (natural convection). Ambient air can enter and exit 

the cavity through ventilation openings, located at its lower and upper side, respectively. Air 

movement through the cavity, due to the “chimney effect”, offers several benefits in terms of 

the façade’s hydrothermal behaviour, e.g. it contributes in limiting the emergence of moisture 

due to rain or condensation. The width of the air cavity may vary depending on the substructure 

ranging from 0.02 m [8] to even 0.2 m [9]. The inner skin is the main element that provides the 

thermal resistance to the building’s external walls. It is commonly built using high (e.g. bricks, 

concrete etc.) or low density (e.g. sandwich panels, gypsum plasterboards etc.) materials; an 

additional external layer of thermal insulation may be installed in the air cavity [2]. 
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Specifications regarding the design and the materials used in the inner and outer skin, the air 

cavity and the thermal insulation may vary substantially, based on the national construction 

and fire protection standards and regulations that are in effect in each country. These varying 

configurations have led to a series of issues regarding their hydrothermal, energy, sound and 

fire performance [10]. Construction details (e.g. cladding fixings) [8] or fire barriers [11, 12] 

may also affect flame spreading within the ventilation air cavity. 

1.2. Fire Risks Associated with Ventilated Façades 

During a fire event, a VF system may contribute to external fire spreading to the upper floors 

of a building, especially when Externally Venting Flames (EVF) are established. In this case, 

the “chimney effect” poses a severe threat [9], since the air cavity may serve as a pathway for 

the fire and hot combustion products to spread beyond the compartment of the fire origin 

(Figure 1, right). Once the fire enters the air cavity, the potential increase in the fire spreading 

rate depends on the existence and the nature of the thermal insulation materials in the cavity, 

the construction details of the façade and the geometric characteristics of the cavity [9, 13]. 

Typically, during a compartment fire event, window and door frames may provide a direct 

entry route to the air cavity. In such a case, flames may enter the cavity and, if appropriate fire 

barriers or seals have not been installed, they may propagate upwards. Several recent incidents 

around the word [14, 15] indicate that fire and smoke spreading through cavities may be more 

rapid than fire spreading through the outer cladding façade. This type of scenario may result to 

rapid upwards fire spreading with temperatures exceeding 600oC [13] posing a serious threat 

to the strength and integrity of both the façade system and the building itself. Evidently, 

preventing fire spreading in the air cavity is crucial; towards this end, a number of fire 

protection regulations require the installation of fire barriers. The fire barriers that are 

commercially available make extensive use of intumescent materials, which allow air 

movement under normal operation, whereas they “seal” the cavity in the event of fire. 

However, the lack of proper fire barrier installation procedures may result in failure of properly 

blocking the cavity flow, a fact evidenced also in the recent Grenfell Tower fire [16]. 

Due to the increasing number of fire events in high-rise buildings [17, 15] and the ever-stricter 

requirements for building thermal insulation, the fire safety characteristics of external façade 

systems has become an important issue [18]. Although several authors have highlighted the 

effect of the façade’s geometric characteristics on the externally venting flame development 

and propagation [17, 19, 20], literature reports on VF systems focus mainly on investigating 

their behaviour in terms of energy consumption reduction [2, 3, 6]; only recently there has been 
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an effort to document the respective fire safety regulatory requirements and specification of 

use across Europe [10]. In this context, a façade fire performance assessment approach 

highlighted the need for further research on façade fire tests [21]; the identified priority 

research issues are related to the effect of environmental factors, fuel type, measuring 

equipment, heat exposure, external fire scenarios, façade components and building techniques. 

Limited reports can be found in the literature addressing the fire behaviour and hazards 

associated with façade air cavities, e.g. double skin facades [22, 23, 24], VF systems [13, 25, 

26] and their construction details, e.g. cladding fixings and geometric characteristics of 

ventilation cavities [8, 9]. A series of full-scale SP Fire 105 standard tests on fully ventilated 

cavities behind plywood cladding were recently performed to study the flame spread 

characteristics in combustible façade claddings with and without a ventilation cavity (0.02 m 

width, no fire barriers) [9]. In the large-scale fire tests, the additional heat release due to the 

combustible cladding was found to increase with increasing width of the air cavity, since when 

a wider air cavity was used, the combustible plywood could burn from both sides. Burning of 

the unexposed surface was both visually observed, after the end of each test, and measured 

with surface and air temperature measurements. 

A more detailed study, focusing on the influence of the cavity width, ranging from 0.02 m to 

0.1 m, on the flame height and the incident heat flux to the inner surface of the cavity, has 

recently been published [8]. A full-scale experimental setup, comprising two parallel facing 

non-combustible plates and a propane burner was used to emulate a configuration of ejected 

flames next to a wall or from a burning cladding. Incident heat fluxes at the interior sides of 

the facing walls were shown to increase with the decrease of the air cavity width. 

Recently, the fire plume behaviour and the prevailing conditions for the plume attachment to 

either the interior or the exterior wall of a double-skin façade has been investigated 

experimentally and numerically, using a medium-scale compartment-façade setup [24]. Nine 

different configurations were experimentally investigated, by varying the air cavity width and 

the fire power. In addition, a numerical simulation tool was validated using the obtained 

experimental results and a parametric study was performed by simulating 445 different 

configurations. It was found that the plume trajectory depends on both the heat release rate 

(HRR) and the width of the air cavity. A new criterion to predict whether the fire plume would 

attach to the interior or exterior wall skin was proposed, depending on the HRR, opening 

geometry and air cavity width values. 
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In this context, the main scope of this work is to investigate the underlying phenomena 

affecting the fire behaviour characteristics of a typical VF system, by comparatively assessing 

the results obtained in two full-scale compartment-façade fire tests. 

 

2. EXPERIMENTAL SET UP 

2.1. Test Compartment Configuration and Ambient Conditions 

Two full-scale fire tests were performed at the premises of Greek Firefighting Academy located 

in Athens, Greece, aiming to investigate the fire behaviour of the VF system. The first test, 

aimed to be used as a benchmark case, was performed using a conventional (non-ventilated) 

Plain Façade (PF); in the second test, a typical Ventilated Façade (VF) system was employed. 

Both tests were performed at the same large-scale compartment-façade experimental test rig; a 

schematic drawing of the test rig is presented in Figure 2. According to the recorded 

meteorological data, the ambient conditions prevailing during the VF fire test were 21.3oC 

average temperature, 62% relative humidity and 3.1 km/hr average wind speed at a North-

Northeast direction. The day that the PF fire test took place was less windy, with recorded 

ambient conditions 19.5oC average ambient temperature, 68% relative humidity and 2.4 km/hr 

average wind speed at an East direction. At the start of VF and PF fire tests, the average fire 

compartment interior temperature was recorded to be 25.3oC and 26.6oC, respectively. 

The internal dimensions of the test compartment measured 1760 mm (width) x 800 mm (depth) 

x 2100 mm (height); it was lined with a double layer of standard 12.5 mm fire-resistant gypsum 

plasterboards. The compartment had a single window-type opening, measuring 765 mm x 1100 

mm. The window was located on the South side; the distance of the windowsill from the 

compartment’s floor was 940 mm. The external façade wall, attached to the South side of the 

compartment, measured 2614 mm x 5230 mm (Figure 3, a); timber studs and battens on top of 

the compartment were used to support the back side of the façade (Figure 3, b). 

In Figure 1, a schematic drawing of the different facade assemblies used in each test is given. 

In the case of the PF test (Figure 1, left), the external facade comprised a standard 12.5 mm 

thick cement board, covered externally by a 5 mm thick plaster coating layer. In the case of the 

VF test (Figure 1, right), the backing of the façade (inner skin) was formed by employing a 

commercial 15 mm thick gypsum plasterboard, upon which perforated metal steel studs were 

installed horizontally, at a vertical distance of 600 mm, to support the external cladding panels. 
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The outer skin of the façade was identical to the PF test, comprising a standard 12.5 mm cement 

board and a 5 mm plaster coating layer. The width of the air cavity formed between the inner 

and the outer skin was 25 mm. The perforated metal studs may considered to be a rudimentary 

form of fire barrier; no additional (e.g. intumescent) fire barriers were installed, in order to 

allow investigation of the flow and thermal characteristics of a rather “unobstructed” gas flow 

movement at the interior of the air cavity, thus representing a worst-case scenario. In the VF 

case, an opening on the upper side of the window frame (lintel) supplied ambient air to the air 

cavity (Figure 3, c, d); the other 3 sides of the window frame were closed. The air cavity was 

also open at the bottom and top edges of the VF system, located 5230 mm apart.  

A stainless-steel rectangular pan, measuring 700 mm x 700 mm x 250 mm, was installed at the 

centre of the compartment floor, holding the 56.7 kg of n-hexane used as the fire load; the 

bottom side of the pan was located 100 mm above the floor (Figure 4). The lower heating value 

of the n-hexane used in the tests was estimated, using an oxygen bomb calorimeter [27], to be 

43521.17 kJ/kg. This "expendable" fuel source was employed to better simulate the dynamic 

nature of a real building fire. The fire load and opening dimensions were carefully selected in 

order to establish strongly under-ventilated fire conditions, thus ensuring the development of 

an EVF. The peak fire power achieved, estimated using the instantaneous mass loss rate 

measurements, was 4.5 MW; the total duration of both fire tests was approximately 880 s. 

2.2. Sensors and Data Acquisition System 

An extensive set of sensors was installed both inside and outside the test compartment, aiming 

to record the temporal variation of several important physical parameters, such as gas and wall 

surface temperatures, gas velocities, incident heat flux, fuel mass loss rate and flame envelope 

geometry. The obtained measurements provided a detailed physical description of the main 

characteristics of the turbulent, reactive and multi-component flow-field developing inside and 

outside the test compartment. Emphasis was given to the characterization of the thermal 

environment developing near the façade wall, along the height of the EVF plume. Towards this 

end, 30 K-type thermocouples, 1.5 mm in diameter, were used to measure gas temperatures in 

the vicinity of the fire plume; 34 additional K-type thermocouples were installed at seven 

specific heights along the façade, namely 0, 500, 750, 1000, 1500, 2000 and 2500 mm above 

the window lintel, aiming to record wall surface temperatures. Wall temperatures at the 

exposed and unexposed sides of the PF and VF systems were recorded, as well as gas 

temperatures inside the cavity of the VF system. Three water cooled, 25 mm diameter, 
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Schmidt-Boelter total heat flux sensors were placed at the centreline of the PF system façade 

surface facing the EVF at 500 mm, 1000 mm and 2000 mm heights above the window lintel. 

Schmidt-Boelter type heat flux sensors are aimed to be used in thermal environments mainly 

dominated by radiative heat flux. 

In Figure 4, a general schematic depicting the locations of the measurement equipment during 

the VF fire test, is depicted. The origin of the coordinate system is assumed to be located at a 

point that lies at the mid-point (y = 0) of the external face of the façade, at the height of the 

window lintel. The five measurement locations across the VF system “depth” are labelled as 

follows: positions 1 and 2 correspond to the unexposed and exposed surface of the internal 

gypsum plasterboard (inner skin), position 3 records gas temperatures at the middle-span of the 

air cavity and positions 4 and 5 correspond to the unexposed and exposed surface of the external 

panel (outer skin), consisting of the cement board and the plaster coating (Figure 1, right). In 

the PF system, façade temperatures only at positions 4 and 5, corresponding to the unexposed 

and exposed surface of the external board, were recorded (Figure 1, left). 

Although the focus of this work was the determination of the EVF characteristics, the thermal 

field developing inside the compartment was also investigated. Towards this end, 5 K-type 

thermocouples, located at different heights above the centre of the compartment floor (and the 

pool) were used to monitor the temperature profile established at the interior of the fire 

compartment. The recorded thermocouple data, obtained at the interior of the compartment, 

were corrected for radiation using a “post-processing” methodology [28]. All thermocouple 

measurements were recorded using a Universal Data Logging Interface designed in the 

LabView software; the sampling period was 1 s. The fuel mass was continuously monitored 

using a load cell, exhibiting a 2 mV/V sensitivity at a capacity of 500 kg, installed under the 

fuel pan. 

In addition, velocity measurements of the gases entering and exiting the fire compartment 

through the window opening were recorded using a vertical array of four bi-directional velocity 

probes, placed at various heights (220, 440, 660 and 880 mm below the window lintel) along 

the centreline of the window; these were supplemented by thermocouples, located at the same 

positions (Figure 4), to allow for temperature compensation of the measured velocity values. 

Variations in flame shape and position were recorded using two optical video cameras, one 

positioned directly opposite from the façade's exposed surface, at a distance of 8600 mm, and 

the other at a right angle to the facade, at a distance of 9400 mm. A thermal camera was also 



- 8 - 

 

positioned opposite to the façade, at a distance of 8600 mm, to record additional information 

regarding the thermal response of the façade surface during each test. 

2.3. Experimental Uncertainty 

The ASME methodology was used to estimate the experimental uncertainty, as recommended 

in previous studies [29, 30]. The systematic standard (Bi) and total expanded (Ut) uncertainty 

were calculated for all components; the respective estimated values are tabulated in Table 1. 

Estimation of the systematic standard uncertainty was based on relevant information regarding 

the thermocouples [29, 31], heat flux meters [32], bidirectional probes [33, 34] and the load 

cell [35] used in the tests. 

 

3. RESULTS AND DISCUSSION 

3.1. Fuel Consumption Rate 

In small- or medium-scale fire tests performed in a well-controlled laboratory environment, 

where the exhaust gases are collected in a hood placed above the fire compartment, it is possible 

to estimate the HRR by means of oxygen calorimetry. However, this is not possible in large-

scale fire tests conducted outdoors; in this case, it as a common practice to estimate the HRR 

using Equation (1), where MLR (kg/s) is the fuel mass loss rate and Hu (J/kg) is the fuels’ lower 

heating value.  

 HRR = MLR.Hu (1) 

The HRR of a pool fire in a compartment is influenced by a variety of parameters such as 

ventilation, radiation from the surrounding walls and thermal characteristics of the exposed rim 

above the fuel [36, 37]. Both PF and VF tests exhibited similar conditions at the interior of the 

fire compartment and an almost constant fuel combustion rate was observed throughout both 

fire tests (Figure 5, left). The pool fire burned steadily until it entered the fire decay stage and 

the unburnt fuel volatiles exited the fire compartment resulting in the development of EVF due 

to the prevailing under-ventilated conditions. The duration of the fire growth period lasted 

approximately 60 sec for both cases and the duration of the fully developed fire stage for the 

PF and VF cases was 800 s and 700 s, respectively. The duration of the decay phases was 100 

s for the PF and 150 s for the VF case.  
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The total HRR is calculated by assuming unity combustion efficiency using Equation (1), raw 

MLR data are also provided in Figure 5. The derived MLR signal was rather noisy due to the 

increased turbulence at the interior of the fire compartment. In order to further calculate the 

HRR of the EVF a correlation to estimate the HRR at the interior of the fire compartment [37] 

that is widely used for rectangular compartment fires with one opening is used. The 

methodology was followed by using Equations (2) and (3) for each fire test. The respective 

interior and EVF HRR for both PF and VF fire tests are also presented in the right-hand side 

of Figure 5. The temporal evolution of the time-averaged, using an averaging period of 60 s, 

values of fuel mass and HRR, for both cases, is depicted in Figure 5.  

 

Qinside = 1500A(H)1/2      (2) 

QEVF = Qtotal - Qinside      (3) 

 

3.2. Compartment Gas Temperatures 

The gas temperature evolution inside the compartment, in both fire tests, is depicted in Figure 

6. The three characteristic stages of fire growth, quasi steady-state (corresponding to fully 

developed fire conditions) and decay, typically encountered in compartment fires, can be easily 

identified in both test cases. In general, temperatures at all heights increase rapidly right after 

ignition. As expected, gas temperature values decrease with increasing height; the maximum 

recorded values at the interior of the compartment reached 1100oC. However, due to the 

entrapment of the hot gas layer below the ceiling, temperatures measured 100 mm above the 

window lintel are generally higher than the respective values recorded 100 mm below the 

window lintel. It is evident that despite the fact that the two large-scale natural fire tests were 

performed outdoors on two different dates, therefore being exposed to different climatic 

conditions, the thermal field developing inside the fire compartment was quite similar in both 

cases, thus resulting in an acceptable level of “test repeatability”, which allows the comparative 

assessment of the respective experimental results; the main difference among the two tests is 

only the onset of the decay phase, which is found to be delayed by approximately 90 s in the 

PF case. 
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3.3. Opening Flow Velocities 

Incoming ambient air enters the compartment through the lower part of the opening, whereas 

combustion product gases, unburnt fuel vapours and smoke exit through the upper part of the 

opening. The time evolution of the horizontal gas velocities at the centreline of the window, at 

four different heights, i.e. 220, 440, 660 and 880 mm below the window lintel, are depicted in 

Figure 7. The negative velocities recorded at the lower measuring levels (-660 mm and -880 

mm) imply ambient air flowing into the fire compartment. The recorded velocity values among 

the two test cases are qualitatively similar but exhibit modest quantitative differences. For 

instance, whereas the time-averaged incoming air velocities are roughly equal (of the order of 

-1 m/s) in both cases, the time-averaged outflowing gas velocities range from 1.8 m/s (PF case) 

to 3 m/s (VF case). This difference is mainly owed to the particularly turbulent external wind 

conditions prevailing during the VF test, which affected considerably the swirling and tilting 

patterns of the developing EVF. Ambient air velocity measurements were conducted with an 

anemometer located near the fire compartment; the peak ambient air velocity reached 1.78 m/s 

during the PF test, whereas the respective value was 3.50 m/s during the VF test.  

3.4. EVF Shape and Dimensions 

An in-house developed flame detection image processing tool [38] has been employed for the 

analysis of the EVF geometry. The EVF envelope shape and dimensions were determined by 

calculating the time-averaged flame probability (intermittency). Figures 8 and 9 depict the 

spatial distribution of the flame intermittency for the PF and VF tests, as seen from the front 

and the side respectively; image artefacts on the left of the front side view are owed to the 

presence of the thermocouple trees positioned at the exterior of the experimental configuration. 

In both cases, the EVF are projected through the upper half of the opening, at an angle of 

approximately 45o and then they bend upwards. Analysing the recorded video sequences, it 

was observed that, at specific instances, the EVF tended to curl back and impinge upon the 

façade wall above the opening, due to peripheral air entrainment and abrupt external wind 

gusts. 

In both cases, a typical behaviour for an EVF shape developing in an under-ventilated 

compartment fire was observed [30]. Uncertainty in determining the EVF dimensions arises 

mainly from the different definitions of the mean or peak flame height (LL), width (wf) and total 

projection from the façade (Lp) [37, 39, 40].  
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Visual observations tend to yield slight overestimates of LL, so image processing analysis is 

commonly used to provide more accurate results, using high frame per second analysis 

methodologies for the determination of flame intermittency; the latter quantity is essentially 

the fraction of time that the flame appears in the respective point [37]. Since the flame is highly 

fluctuating, due to the developing intense turbulent field, the EVF dimensions are usually 

determined by calculating the average flame probability (intermittency). Early research [39] 

indicated that the fire plume above a fuel source can be divided into three main regions, 

characterised by the average flame probability. Using flame intermittency criteria, these three 

distinct regions, namely the “continuous flame”, the “intermittent flame” and the “far-field 

plume”, can be also identified in EVF [41, 42]. In this context, the flame height corresponding 

to the “continuous flame” (LL,0.95, 95% intermittency), “average flame” (LL,0.50, 50% 

intermittency) and “intermittent plume” (LL,0.05, 5% intermittency) regions can be obtained; 

beyond the latter region the flame cannot be seen and only hot combustion products are present 

(fire plume), Figures 8 and 9. The total flame height (LL) can be estimated using either the 50% 

flame intermittency limit (LL,0.50), or, alternatively, by averaging the estimated flame height at 

the “continuous flame” (LL,0.05) and “intermittent plume” (LL,0.95) regions [40]; values obtained 

using both methodologies are in very good agreement [30]. 

Figure 10 illustrates the methodology used to estimate the “average flame” region height, Lf,0.50. 

In this context, the flame height corresponding to Lf,0.95, Lf,0.50 and Lf_0.05, regions were obtained. 

The variation of the time-averaged (over the entire test) flame intermittency values with height, 

at the centreline of the flame, is depicted in Figure 10; above the average flame region, the 

flame intermittency decreases monotonically with height. The mean flame height is assumed 

to be equal to the largest height value where 50% flame intermittency is observed; in Figure 

10, this point is marked with an asterisk. In agreement with recent literature reports [43, 44], it 

was observed that the EVF average height in the VF fire test decreased with the observed 

increase of external wind velocity (c.f. Section 2.1). This decrease is partially attributed to the 

increase in air entrainment from the front direction. 

The EVF width (wf), projection (LH) and total projection (Lp) were estimated using the time-

averaged flame intermittency values. Unlike to the methodology used to determine the EVF 

height, it is not a straightforward procedure to define the mean values of wf and LH, since the 

flame intermittency is not monotonically decreasing. The EVF width is estimated as the 

maximum difference between the maximum and minimum value of width across all flame 

heights, marked with two asterisks in Figure 11. Figure 12 depicts schematically the variation 
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of flame intermittency as a function of the horizontal distance from the façade. Flame 

projection was assumed to be equal to the largest distance from the façade where 50% flame 

intermittency is observed (marked with an asterisk). A summary of the estimated values for the 

EVF height, width (wf), projection (LH) and total projection (Lp) is presented in Table 3 for both 

test cases. The EVF reached higher heights and projected further from the façade during the 

PF fire test. Differences in EVF dimensions during PF and VF tests are mainly attributed to the 

different climatic conditions prevailing in each fire test, thus suggesting that the performance 

of PF and VF configurations, using inert materials, is quite similar. However, since there are 

indications in the recent literature [9] that the existence of the air cavity in the VF system may 

have an impact on the fire development, additional parameters to evaluate the behaviour of the 

different façade construction techniques are examined and presented in the following Sections 

3.5 and 3.6. 

3.5. EVF Temperatures 

Time-averaged (during the fully developed fire period) outdoor gas temperature contour plots 

for each test case are shown in Figure 13, PF (left) and VF (right) tests. These contour plots are 

used to determine the spatial distribution of the EVF-induced thermal field developing outside 

the fire compartment. The depicted data were obtained by linear interpolation of the 

temperature measurements at the exterior of the fire compartment. The calculated far EVF edge 

limit (LH + heq/3), according to Eurocode 1, Part 1-2, Annex B [45], are depicted in the form of 

dashed black lines in Figure 13. 

In the PF test, maximum temperature values up to 900oC were observed at the vicinity of the 

opening. During the VF test, the EVF was established closer to the façade wall, a fact that is 

mainly attributed to the different meteorological conditions prevailing in each test day. The gas 

temperature decreases with increasing height in both test cases but there seems to be a 

considerable deviation of the EVF temperature profiles. During the PF test, a larger EVF is 

formed that is not attached to the façade. This is not the case in the VF test case, where a less 

intense EVF fire plume is formed, which is almost constantly attached to the façade’s external 

wall; the observed differences are mainly owed to the effect of the different external wind 

conditions (c.f. Section 2.1). The different façade construction technique may also be a factor, 

but further research in a more controlled environment should be conducted on ventilated façade 

systems with small air width cavity to fully support this statement. 
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3.6. Façade Temperatures and Heat Flux 

The developing EVF imposes both a radiative and a convective heat flux on the external surface 

of the façade. The intense heat transfer to the façade results in increased exposed surface 

temperatures that were measured to be up to 500oC; in Figure 14 (middle), an infrared image 

of the exposed façade surface just after flameout of the VF test is depicted. Visual observation 

(Figure 14, left) after the end of VF test, when the outer skin of the VF system was removed, 

suggested penetration of combustion products into the air cavity; only a slight deformation of 

the perforated steel stud of the VF system, just above the window lintel, could be observed 

(Figure 14, left).  

The temporal evolution of the wall surface (1, 2, 4, 5) and gas (3) temperatures measured across 

the various layers of both façade systems (c.f. Figure 4) is depicted in Figure 15. Wall 

temperatures at the unexposed side of both PF and VF systems increased slowly during the first 

200 s and remained constant throughout the duration of the test. The highest temperature values 

were observed close to the opening lintel (z = 500 mm). Thermocouples installed at position 3 

(c.f. Figure 4) were used to measure the gas temperatures at the middle of the VF system’s air 

cavity. It can be observed that hot gases indeed entered the air cavity through the perforated 

steel stud above the opening lintel (c.f. Figure 14, left). In fact, the sudden increase in the air 

cavity temperature measurements at a height of 500 mm, coincided with the emergence of the 

EVF. However, as the EVF progressively evolves at the exterior of the compartment and due 

to the consistently high horizontal exit velocities (c.f. Figure 7), the bulk of the exiting hot 

gases are dispersed outdoors, forming the EVF, and only a very small percentage enters the air 

cavity through the window lintel. Gas temperatures inside the cavity are gradually increasing; 

at the lowest measuring position (z = 500 mm) they reach 280oC shortly after the end of the 

fully developed fire stage, but due to heat losses along their upwards path, they are gradually 

cooled with increasing height. It is evident that even though combustion products and unburnt 

fuel vapours may manage to enter the air cavity, no consistent flaming is observed; the 

perforated steel stud installed at the window lintel may have assisted in preventing flame 

spreading inside the cavity. The reported air cavity temperature measurements, supported by 

visual observations during and after the fire test, suggest that in the absence of a combustible 

insulation material installed in the air cavity, flame spreading along the vertical direction is not 

enhanced by the VF system. Overall, both PF and VF systems using inert materials seem to 

exhibit a very similar thermal performance, a claim supported by the recorded temperature 

values inside the air cavity and on the unexposed façade surface. 
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The temporal evolution of the measured and calculated heat flux values at the exposed surface 

of the PF system are illustrated in Figure 16. During the growth phase of the fire, heat flux 

values gradually increase and as time passes by, EVF consistently covers the region above the 

opening, resulting in higher incident heat flux on the façade surface. Heat flux measurements 

are presented until 600 s, after which there was an equipment failure. Recent fire events in 

high-rise buildings [26] indicate that the total heat flux induced by the EVF can be severe and 

may lead to fire propagation to adjacent floors or buildings. Maximum heat flux values 500 

mm above the window lintel, at position HF1, reached 250 kW/m2 but not for more than a few 

seconds at a time. The EVF itself acts as a radiation source; in addition, as it evolves towards 

the exposed surface of the façade it imposes a convective heat flux. The facade absorbs heat 

from the plume and restricts the air entering through the wall side. At a height of 2000 mm 

from the opening lintel, at position HF3, heat flux exposure was decreased with maximum 

instantaneous peak values reaching 150 kW/m2. 

4. FIRE PERFORMANCE AGAINST STANDARDS 

4.1. Large-Scale Standard Façade Fire Tests 

In several countries, current legislative requirements suggest that if the façade of a building 

comprises a wall with different elements, the wall system must be fire resistant and it should 

be tested according to the standards that apply to curtain walls or walls (e.g. EN 1364 [46]). 

Sometimes, the façade system must also be tested to assess its reaction to fire behaviour (e.g. 

EN 13501-1 [47]). In addition to that, numerous fire testing methods have been developed 

worldwide, at medium- and large-scale level, to classify the fire behaviour of façade systems. 

The majority of the available large-scale façade fire tests replicate real fire scenarios where 

EVF exit through an opening of the compartment, essentially simulating either post-flashover 

conditions or fully-developed ventilation-controlled conditions.  

There are two international standard methods, ISO 13785-1 and ISO 13785-2, where 

intermediate- [48] and large-scale [49] fire tests, respectively, are employed to assess non-

loadbearing facades and claddings. In Germany, the DIN E 4102-20 [50] and in the U.S.A., the 

NFPA 285 [51] tests are used to assess facade claddings or complete external wall systems. In 

the U.K., BS 8414-1 [52] is used for non-loadbearing external cladding systems and BS 8414-

2 [53] for non-loadbearing external systems fixed and supported by a structural steel frame. 

Non-loadbearing facade systems mounted in a lightweight concrete wall and representative of 

the end use are evaluated using the SP FIRE 105 test in Sweden [54]. Due to the large 
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differences exhibited among the various national façade fire test standards in Europe, there is 

currently an effort to develop a new European homogenized façade fire testing standard [18, 

21]. The main characteristics of the major façade fire test standards used worldwide are 

presented in Table 2; the respective characteristics of the fire tests presented in this work are 

given in comparison. As it is pointed out in Table 2, the set up and failing criteria of the most 

commonly used standardized facade test methods are quite diverse, although some similarities 

can be identified between certain testing protocols (e.g. existence or not of lateral wall, fire 

exposure and failure due to external fire spread etc.). It is evident that, even though the 

performed PF and VF tests have not followed any specific facade fire test standard, the main 

operational parameter values (e.g. experimental apparatus dimensions, peak HRR, heat flux 

exposure levels on the façade) were similar to the respective values proposed in the standard 

tests. Additional measurement equipment, as opposed to standard testing practice, has been 

used to monitor the PV and VF system performance and the characteristics of the developing 

EVF. In this context, the performance of the investigated façade systems is further assessed, 

by using the relevant pass/fail criteria of the previously mentioned standard façade fire tests. 

More specifically, a façade system is considered to exhibit an acceptable fire behaviour, when 

the temperature on its exposed surface (outer skin) does not exceed 450oC [54], 500oC [50], 

538oC [51] or 600oC [52], at various heights. In addition, another criterion focuses on the 

temperature of the unexposed surface, which should not exceed 278oC above the ambient 

temperature [51]; a similar criterion is cited in Australian Standard AS1530.4, where a 

structural element (e.g. wall, floor) is considered to fail when the maximum temperature rise 

(above the ambient temperature) of the ambient facing side (unexposed side) exceeds 180oC 

[55]. 

By employing the aforementioned criteria, the investigated PF and VF systems are considered 

to perform satisfactorily, during the 900 s fire exposure. By taking into account all temperature 

measurements taken across the façade system assemblies (Figure 15), it is observed that the 

exposed façade surface did not exceed 450oC for more than 2 min; in addition, no temperatures 

above 180oC were recorded on the unexposed face. Furthermore, gypsum plasterboards 

exposed to fire are considered to exhibit mechanical failure when cracks or openings are 

observed through the wall [56]; after the VF fire test, no visual observation of cracks on the 

gypsum plasterboards was made. The thermal field developing due to the emergence of the 

EVF imposes a severe thermal loading on the exposed façade surface (c.f. Figure 16). However, 

due to the multi-layered construction of the VF system, temperatures at both faces of the inner 
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skin (x = - 425 mm and x = - 575 mm) remained lower than 140oC in all cases, thus suggesting 

that the VF system essentially protects the building façade from direct exposure to the emerging 

EVF. 

4.2. Assessment of the “Eurocode 1, Part 1-2, Annex B” methodology 

In Eurocode 1, Part 1-2, Annex B [45] a prescriptive methodology to estimate the thermal 

actions on external members, due to EVF, is provided. It is practically based on the calculation 

methods proposed by Law [56] and allow the estimation of the maximum temperatures inside 

the fire compartment, the dimensions and temperature profile of the EVF and the relevant 

convective and radiative heat fluxes to the external members. This method considers steady-

state conditions and is valid only for fire loads higher than 200 MJ/m2. Also, there are 

specifications regarding the size of the fire compartment; it should not exceed 70 m in length, 

18 m in width and 5 m in height. There can be multiple windows and a core within the fire 

compartment. Since the respective parameters of the performed fire tests were within the 

aforementioned specifications, the Eurocode methodology was evaluated against the obtained 

experimental data. 

According to the Eurocode methodology, the heat release rate is estimated by using Equation 

(4). The EVF height, LL, is calculated according to Equation (5) in the case there is no forced 

draught. The EVF horizontal projection, LH, in case of a wall existing above the window is 

given by Equation (6). The EVF flame length, Lf, and the EVF temperature, Tz, across the EVF 

centreline track are given by Equations (7) and (8) respectively. The EVF width is assumed to 

be equal to the width of the opening. Total horizontal projection, Lp, corresponds to the sum of 

the horizontal projection of the flame (LH) and half the flame depth (2/3 heq).   

𝑄 = 𝐦𝐢𝐧 (
(𝐴𝑓⋅𝑞𝑓,𝑑)

𝑡
; 3.15(1 − 𝑒−0.036/𝑂)𝐴𝑣 (

ℎ𝑒𝑞

𝐷/𝑊
)
1/2

) (4) 

𝐿𝐿 = ℎ𝑒𝑞 [2.37 (
𝑄

𝜌∞𝐴𝑣√𝑔ℎ𝑒𝑞
)

2

3
− 1] ,𝐰𝐡𝐞𝐧 𝑞𝑓,𝑑 > 200 𝐌𝐉/𝐦𝟐𝐚𝐧𝐝0.02 ≤

𝐴𝑣√ℎ𝑒𝑞

𝐴𝑇
≤ 0.20 (5) 

𝐿𝐻 =

{
 
 

 
 

ℎ𝑒𝑞

3
, when ℎ𝑒𝑞 ≤ 1.25𝑤𝑡

0.3ℎ𝑒𝑞 (
ℎ𝑒𝑞

𝑤𝑡
)
0.54

, when ℎ𝑒𝑞 > 1.25𝑤𝑡 and 𝑤𝑑 > 4𝑤𝑡

0.454ℎ𝑒𝑞 (
ℎ𝑒𝑞

2𝑤𝑡
)
0.54

, in any other case

 (6) 
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𝐿𝑓

=

{
 
 

 
 𝐿𝐿 +

ℎ𝑒𝑞

2
,  if a wall exists above window or if ℎ𝑒𝑞 ≤ 1.25𝑤𝑡

(𝐿𝐿
2 + (𝐿𝐻 −

ℎ𝑒𝑞

3
)
2

)

1/2

+
ℎ𝑒𝑞

2
,  if no wall exists above window or if ℎ𝑒𝑞 > 1.25𝑤𝑡

 

  (7) 

𝑇𝑧 = (𝑇𝑤 − 𝑇0) (1 − 0.4725 (
𝐿𝑥⋅𝑤𝑡

𝑄
)) + 𝑇0 , with 

𝐿𝑥⋅𝑤𝑡

𝑄
< 1 (8) 

 

In Table 3, experimental data from both tests are compared to the respective calculations made 

using the Eurocode methodology (Equations (4)-(8)). In both test cases, the fuel distribution 

and geometric configuration of the fire compartment were the same and the heq > 1.25wt 

condition was valid. The fire load density (qf,d) was calculated to be 1751 MJ/m2, by assuming 

a net calorific value of 43.5 MJ/kg for hexane and complete combustion of 56.7 kg of hexane. 

This fire load density corresponds to the largest fire load densities that are used for the fire 

safety design of library occupancies as recommended in the Eurocode guidelines (EN1991-1-

2, Annex E) [45]. The rate of heat release calculated according to Equation (4) corresponds to 

1.14 MW and thus the EVF dimensions can be calculated according to Equations (5) and (6); 

the EVF width is assumed equal to the width of the opening. The Eurocode methodology is 

found to significantly under-predict the EVF height, width and centreline temperature in both 

test cases. Good levels of agreement are observed in the estimation of the maximum projection 

of the EVF away from the façade. The EVF flame temperature along the EVF axis is estimated 

using Equation (8) and is compared to the respective time-averaged (over the fully developed 

fire phase) temperature values measured during the PF and VF test cases in Figure 17. Once 

more, the Eurocode predictions are found to significantly under-estimate the measured EVF 

temperatures. 

 

5. CONCLUSIONS 

Two full-scale compartment-façade fire tests were carried out, aiming to assess the 

performance of a typical VF system under fire conditions. An extensive set of sensors has been 

installed both inside and outside the test compartment and across the façade systems, aiming 
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to record the temporal variation of several important physical parameters, such as gas and wall 

surface temperatures, gas velocities, heat flux, EVF envelope shape and fuel mass loss rate. 

Emphasis has been given on the estimation of the thermal characteristics of the developing 

EVF, since this is the main physical parameter affecting the heat exposure of the façade 

systems. A PF and a VF system have been employed; no thermal insulation has been installed 

in the air cavity of the VF system, aiming to investigate the main aerodynamic and thermal 

phenomena affecting the flow of hot gases and flames in the air cavity. In addition, no fire 

barriers have been installed, thus representing a “worst case” scenario for a VF system with no 

combustible materials.  During the initial stages of fire development in both cases, when there 

is enough oxygen in the compartment, combustion was limited within the interior of the 

compartment. As soon as the compartment oxygen was depleted, the flames stretched in the 

horizontal direction, gradually spreading outdoors, forming an EVF. Throughout this latter 

stage, an oscillating behaviour of the EVF was observed and the EVF volume was highly 

fluctuating depending on the external wind direction that prevailed in each test case. 

Analysis of the experimental data suggested that even though gaseous combustion products 

have managed to penetrate the air cavity of the VF system, no consistent flaming conditions 

have been established. More specifically, the temperature values recorded inside the air cavity 

of the VF system suggested that even though hot combustion products have indeed penetrated 

into the cavity, there was no consistent flaming. On the unexposed face of the VF system 

temperatures increased slowly and remained constantly below 180oC throughout the entire fire 

test. It is important to note that these observations are valid for the specific VF configuration 

tested, where only non-combustible materials were used in conjunction with a relatively small 

(25 mm) air cavity width. 

The extensive set of experimental data were compared against the Eurocode methodology 

for EVF calculations, which was found to significantly under-predict the EVF height, width 

and centreline temperature in both test cases. Good levels of agreement were observed in the 

case of the maximum projection of the EVF away from the façade. The obtained set of 

experimental data can be further used to investigate several aspects of EVF fire dynamics and 

its effect on VF systems under realistic fire loads. They can also be used to validate CFD 

models or evaluate the accuracy of other fire engineering design correlations currently 

available. However, further research should be conducted to investigate the applicability of the 

Eurocode methodology on ventilated façade systems where combustible materials are used. 
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The impact of air cavity width in the fire performance of combustible and non-combustible 

façade systems should also be thoroughly examined. 
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7. NONMENCLATURE 

Symbol Quantity Units 

A Area of the openings of the fire compartment m2 

Av Total area of vertical openings on all walls m2 

AT Total area of enclosure (walls, ceiling and floor, including openings) m2 

D Depth of the fire compartment m 

g Acceleration of gravity 9.81 m/s2 

heq Weighted average of window heights on all walls m 

H Height of the opening of the fire compartment m 

Hu Lower heating value J/kg 

Lf,0.05 Flame height at the “intermittent flame” (5% flame intermittency limit) m 

L f,0.50 Flame height at the “average flame” (50% flame intermittency limit) m 

L f,0.95 Flame height at the “continuous flame” (95% flame intermittency limit) m 

LH Horizontal projection of the flame from the facade m 

LL EVF height  m 

Lp Total projection of EVF m 

Lx Length along the EVF centreline track m 

O Opening factor of the fire compartment m1/2 

Q Rate of heat release of the fire MW 

QEVF Rate of heat release of the EVF MW 

Qtotal Total rate of heat release  MW 

Qinside Rate of heat release of the interior of the fire compartment MW 

qf,d Design fire load density related to the floor area Af MJ/m2 

Tw Flame temperature at the window K 

To Initial temperature (= 293 [K]) K 

t Free burning fire duration (assumed to be 1 200 [s]) s 

W Width of wall containing window m 

wf Flame width m 

ρ∞ Air density kg/m3 

ABBREVIATIONS 

EVF Externally Venting Flames  

HRR Heat Release Rate (W) 

MLR Mass Loss Rate (kg/s) 
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PF Plain Façade  

VF Ventilated Facade  
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8. TABLE CAPTIONS 

 

Table 1: Summary of measurement uncertainty components. 

 

Table 2: Summary of the main characteristics of major standard façade tests and current study. 

 

Table 3: Comparison of experimentally determined values of EVF height, width and projection 

with Eurocode predictions. 
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9. FIGURE CAPTIONS 

 

Figure 1: General sketch of the Plain Façade PF (left) and the Ventilated Façade VF (right) 

system. 

 

Figure 2: General schematic drawing of the test rig layout and locations of the horizontal 

perforated studs on the exposed face of the gypsum plasterboard used in VF test. 

 

Figure 3: Front side (a), support of the façade system (b), perforated metal studs (c) and upper 

side of the window frame (lintel) (d) for the VF test. 

 

Figure 4: Schematic of the large-scale compartment façade configuration, depicting locations 

of measurement equipment (left) and a characteristic photo during the fire test (right).  

 

Figure 5: Measurements of fuel mass loss (left) and HRR (right) for the PF and VF tests. 

 

Figure 6: Temporal profiles of gas temperatures at the interior of the compartment at various 

heights. 

 

Figure 7: Temporal profiles of horizontal velocities at the centreline (mid-span) of the 

opening at indicated heights below the window lintel for the PF (left) and VF (right) test case. 

 

Figure 8: Front view of flame intermittency contours for the PF (left) and VF (right) test case. 

 

Figure 9: Side view of flame intermittency contours for the PF (left) and VF (right) test case. 

 

Figure 10: Determination of the mean flame height using vertical flame intermittency profile. 
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Figure 11: Determination of the mean flame width using horizontal flame intermittency 

profile. 

 

Figure 12: Determination of the mean flame projection using the flame intermittency profile 

normal to the façade. 

 

Figure 13: Time-averaged temperature contours at the centreline plane perpendicular to the 

façade for the PF (left) and VF (right) test case. 

 

Figure 14: Indicative photo of the VF system’s air cavity after the test (left), infrared image 

of the VF system’s exposed surface right after flame-out (right). 

 

Figure 15: Temporal evolution of characteristic temperatures across the various layers of the 

façade systems, at four characteristic heights above the lintel. 

 

Figure 16: Temporal evolution of heat flux at the façade during the PF test, at 500 mm (HF1), 

1000 mm (HF2) and 2000 mm (HF3) height above the window lintel. 

 

Figure 17: Vertical distribution of measured time-averaged centerline EVF temperatures and 

comparison to respective predictions using the Eurocode methodology. 

 


