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Abstract 

This study is an assessment of the changes in seasonal and monthly flow in seven catchments 

draining the northern Tien Shan Mountains in Central Asia over a period from the 1950s to the 

present day. The purpose is to provide a first assessment of the flow response to climate change in 

regionally important catchments given their contribution to the water resource. All the catchments 

have a natural flow regime, and are therefore sensitive to climate change, but differ in area, elevation 

and glacial extent. Trends in flow were characterised using the Mann-Kendall test for standard 

meteorological seasons and individual months for mean flow, five flow quantiles and peak-over-

threshold series for the period 1974-2013 at all sites and from the 1950s where data were available. 

The results were related to trends in seasonal temperature and precipitation from the regional high-

elevation meteorological stations and glacier mass balance, equilibrium line altitude (ELA) and 
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accumulation area ratio (AAR) records from the Tuyuksu glacier. The results show no reduction in 

streamflow in any catchment or season in the northern Tien Shan since the 1950s. Positive trends in 

all flow indicators, including peak-over-threshold frequency, were observed in catchments with 

higher glacierization of over 10% and extensive presence of rock glaciers and permafrost indicating 

increased melt over the period which is characterised by a long-term increase in temperature. These 

trends were most evident in autumn and winter. In catchments with low glacierization, variability in 

summer flow was controlled primarily by precipitation of the preceding cold season. Correlation 

with glacier mass balance was weak but changes in ELA and AAR indicate that production of liquid 

runoff at higher elevations contributes to increased streamflow partly compensating for the declining 

glacier area. The observed changes in streamflow do not suggest any immediate problems with water 

availability in the northern Tien Shan. On the contrary, increased autumn and winter flows point at 

a more prolonged recharge of reservoirs and aquifers though eventually this water source will be 

exhausted. 

 

Key words: Central Asia, climate change, discharge, glaciers, runoff, Tien Shan, trend analysis  

Declaration of Interests: None 
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1. Introduction 

The rivers of Central Asia, most of which start in the mountains, supply up to 90% of water 

required for domestic, industrial and agricultural use on the plains, which are characterised by arid 

and semi-arid climate (Viviroli and Weingartner, 2004). Peaking in the growing season between May 

and September, runoff from the mountains is used for irrigating agricultural land, from the industrial-

scale cotton production in the Aral Sea basin (Micklin, 2007) to the smaller-scale commercial and 

subsistence farms in Central Asia and north-western China (Braun et al., 2009). Many rivers cross 

national boundaries and thus changes in discharge, either natural or due to the growing water 

abstraction and construction of dams and reservoirs, have become an issue of high economic and 

political importance which is likely to grow with time in line with the observed and predicted 

population growth (Siegfried et al., 2011; Reyer et al., 2015).  

The cryosphere, including the seasonal snow pack, glacier ice, rock glaciers and permafrost, 

nourishes these rivers and is the main contributor to runoff. The estimations of the cryosphere’s total 

contribution and of the shares contributed by its components vary between regions, elevation bands 

and seasons as well as methods of assessment, but most studies suggest that runoff from the 

glacierized surfaces contributes as much as 40-80% of total runoff in the summer months (Hagg et 

al., 2006;  Unger-Shayesteh et al., 2013; Duethmann et al., 2015). Kaser et al. (2010) developed a 

population impact index to quantify the potential human dependence on glacier melt in 18 large river 

catchments around the world and found that its value is highest in Central Asia.  

The dependence of runoff on the state of the cryosphere makes water resources in Central Asia 

potentially vulnerable to climate change. There is strong evidence for impacts of climatic warming 

on the extent of glaciers which are losing their area throughout the region (Kutuzov and 

Shahgedanova 2009; Narama et al., 2010; Sorg et al., 2012)  at a rate reaching 1% a-1 in the northern 

Tien Shan (Severskiy et al., 2016). Rock glaciers are an important source of water in Central Asia 

(Bolch and Marchenko, 2006) and acceleration of their movement, which may be attributed to 
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climatic warming (Kääb et al., 2007), has been reported in the region as well as a reduction in the 

area occupied by permafrost, an increase in temperature of the permafrost and depth of the active 

layer (Marchenko et al., 2007).  

From the perspective of water resources, it is important to know to which extent changes in the 

cryosphere and, importantly, its components (e.g. glacier and / or ground ice versus seasonal snow 

pack) affect discharge at present and will affect it in the future (Lutz et al., 2013; Unger-Shayesteh 

et al., 2013). These impacts depend on the glacierization of catchments (including rock glaciers) and 

extent of permafrost, amount and seasonality of precipitation and characteristics of soil cover, all of 

which are a function of altitude of the catchments. The attribution of the observed trends is 

complicated by the combined multifarious influence of temperature and precipitation including 

seasonal snow storage, elevation-dependent changes in the onset and duration of melt season, timing 

of transition between solid and liquid precipitation and soil freezing (Birsan et al., 2005; Kormann 

et al., 2015). Thus Duethmann et al. (2015) detected positive trends in discharge in the Kakshaal and 

Sari-Djaz catchments with 4% and 21%  glacier cover during the 1957-2004 period, estimating that 

glacier melt contributed 9-24% and 35-48% of the total increase in discharge respectively. Kriegel 

et al. (2013) assessed changes in mean monthly discharge in the Big Naryn and Small Naryn 

catchments with glacierization of 10% and 12% respectively but did not detect significant changes 

in August (when glacier melt signal is strongest) in the former, and found negative trends in the latter. 

Krysanova et al. (2015) and Kundzewicz et al. (2015) reported positive trends in discharge in the 

Aksu catchment (Kyrgyzstan / China) and highlighted varying importance of precipitation and 

glacier melt (approximated by temperature) as sources of increasing flow.  

Regional climate scenarios suggest that the observed warming will continue into the 21st Century 

in Central Asia (Schiemann et al., 2008; Lutz et al., 2013;  Mannig et al., 2013; Shahgedanova et al., 

2016) contributing to glacier wastage and permafrost degradation. There is no consensus between 

the models on the direction and magnitude of trends in precipitation in Central Asia, however, neither 
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model projects an increase in precipitation which might be strong enough to reverse the observed 

loss of glacier ice. Most modelling studies, focusing on future discharge, suggest that in response to 

the observed shrinkage of glaciers, initial growth will occur followed by a decline, the extent and 

timing of which depend on glacierization of catchments and the total amount, seasonality and 

projected changes in precipitation (Hagg et al., 2006; Chen et al., 2017). Hydrological models, 

applied in glacierized catchments of Central Asia to date, do not parametrise permafrost and rock 

glaciers (although they include debris-covered ice) and this is another source of uncertainty affecting 

hydrological projections (Chen et al., 2017). 

The following questions are critical to water management in Central Asia: (i) What are the 

observed and projected trends in seasonal flow in undisturbed catchments particularly in summer 

when the need for irrigation is highest? (ii) What are the observed and projected trends in various 

flow indicators relevant to both water and hazard management? (iii) What is the relative importance 

of different drivers in the overall change in discharge in catchments with different attributes? (iv) 

When will the peak flow in the snow- and ice-nourished rivers occur and if and when will discharge 

decline? 

A persistent problem constraining the detection and attribution of climate-driven hydrological 

change in Central Asia, using both observational and modelling approaches, is a lack of the long-

term, homogeneous and continuing measurements of streamflow in undisturbed catchments with 

diverse topographic, climatic and glaciological conditions (Braun et al., 2009; Sorg et al., 2012, 

Unger-Shayesteh et al., 2013; Chen et al., 2017). As a result of the limited data availability, most 

assessments of the observed changes in discharge focus on mean annual, seasonal and monthly flow 

in a small number of catchments (e.g. Kriegel et al., 2013; Krysanova et al., 2015; Kundzewicz et al., 

2015; Duethmann et al., 2015).  Very few studies investigate changes across larger regions (e.g. Aizen 

et al., 1997; 2000;  Hagg et al., 2006).  
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A lack of assessment of data quality is another issue which hinders the detection of hydrological 

change (Unger-Shayesteh et al., 2013; Chen et al., 2017). The majority of rivers in Central Asia are 

managed through water abstraction, construction of dams and modification of channels. Rivers with 

natural flow are affected by natural disturbances, altering channels and forcing repositioning of 

gauges, in particular by debris flows which were especially frequent in the 1970s (Kapitsa et al., 

2017). While this information is collected together with flow measurements by dedicated national 

agencies, it is not easily available to researchers and most studies either use hydrological data at face 

value, acknowledge the absence of such information, or select catchments whereby water abstraction 

is unlikely due to their high elevation (e.g. Kriegel et al. 2013). 

This paper has two objectives. Firstly, it presents a long-term (1950 onwards), [near] 

homogeneous data set of daily streamflow for seven catchments with diverse characteristics in the 

Balkhash-Alakol basin, south-eastern Kazakhstan encompassing the northern Tien Shan and the 

adjacent plains (Fig. 1). Secondly, it characterises changes in seasonal and monthly streamflow using 

a full range of flow indicators derived from daily streamflow values and examines these variations 

in the context of the observed climatic fluctuations, glaciological and cryolithological change.  

In contrast to other studies, which focus on larger rivers, relatively small rivers have been selected 

because their flow is not modified (down to the gauging sites used in this study) and because 

hundreds of small rivers across the region provide water for human use. We envisage that the 

presented data will initiate the development of a reference hydrological data set for the mountains of 

Central Asia which can be used for the detection and attribution of trends and in modelling studies. 

 

2. Data  

2.1. Hydrological monitoring and the available data 

Systematic hydrological monitoring began in the former Soviet Central Asia at the start of the 20th 

Century and became more widespread in the 1950s. The number of gauging stations peaked in the 
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1980s across the region when, in the Balkhash-Alakol basin alone, there were over 180 gauging sites 

covering a full range of topographic conditions and biomes from the nival zone to semi-deserts. The 

collected data were processed by the National Hydrometeorological Centre of Kazakhstan 

(KazHydroMet) and published annually in analogue format as the Annual Data on Water Regime 

and Resources Reports (ADWRR, 2014 and earlier issues) which were available from scientific 

libraries and archives. Following the collapse of the Soviet Union, the number of gauging sites 

declined in the 1990s across the region. In the Balkhash-Alakol basin, there were only 22 sites located 

mostly on the plains. In the 2000s, Kazakhstan invested in the restoration and expansion of the 

monitoring network, increasing the number of gauges to 62. However, the data are provided on a 

commercial footing which restricts their use by the research community.  

On the rivers of the Balkhash-Alakol basin (as well as in all other countries of the post-Soviet 

Central Asia), water stage is measured in open channels twice a day, at 8:00 and 20:00 local time. 

Simultaneous current metering at a range of points along a river cross-section is conducted at least 

every 10 days near the gauging sites when there are no significant changes in water stage. Whenever 

stage is changing on the day-to-day basis (particularly when it is increasing), direct current metering 

is conducted daily and reported to KazHydroMet in real time. Streamflow values are calculated from 

the rating curves which are updated using simultaneous stage and streamflow measurements, thus 

reducing uncertainty associated with changes in reference hydraulic regime (Le Coz, 2012).  

The daily means of both stage and streamflow are published in the ADWRR (2014 and earlier 

issues). In addition, metadata on each site are presented: information on the condition of sites in a 

given year, meteorological and other natural events which can affect discharge, such as ice formation, 

dates of floods, debris flows or landslides, and their impacts on the channels. Repositioning of sites, 

changes in measurement practices, authorised water abstraction, and construction of dams are 

reported. Indirect effects of human activities, resulting from changes in land use (except 

urbanisation), and groundwater abstraction are not reported. Typically, the low-elevation sections of 
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catchments experience stronger human modifications while the high-elevation sections are more 

frequently affected by natural hazards. 

 

2.2. Selection of gauging sites and preparation of the data set 

In this study, discharge records for the Balkhash-Alakol basin starting in the 1950s were used. 

Annual issues of the ADWRR (2014 and earlier issues) were obtained from the KazHydroMet archive 

and digitised to present data in electronic numerical format. The unique site certificates issued by 

KazHydroMet, describing site characteristics, changes to its surroundings and observational practices 

were used. To select gauging sites with reliable data, which would be comparable in quality to the 

data supplied by other reference networks (Whitfield et al., 2012), the following criteria were applied: 

(i) suitable length and continuity of records; (ii) absence of human disturbances, including water 

abstraction, construction of the upstream dams, reservoirs and modifications of channels; (iii) 

homogeneity of measurements including the absence of changes of gauge locations, natural 

disturbances resulting in step changes in flow measurements, and land use in the upstream catchment. 

High-resolution satellite imagery (Landsat, ASTER and imagery available from Google Earth) was 

inspected for changes in land cover and location of water abstraction channels and, for several sites, 

this was complemented by field surveys.  

The low signal-to-noise ratio in hydrological time series implies that the length of hydrological 

records should be sufficient to detect long-term climate-related trends as opposed to the short-term 

trends arising from climatic variability (Wilby, 2006).  The duration of the time series appropriate for 

the detection of the climate-related trends is debated. Kundzewicz and Robson (2004) recommend 

that hydrological series which are at least 50 years long should be used; Hannaford and Buys (2012) 

and  Whitfield et al. (2012) recommend 40-year records and Birsan et al. (2005) and Kormann et al. 

(2015) recommend 30-year records for analysis of climate-driven trends in runoff. In Central Asia, 

the selection of assessment period is further complicated by changes in temperature and precipitation 
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which occurred in the 1970s in response to changes in atmospheric circulation in the Pacific (Cao, 

1998). 

Continuing discharge records exceeding 50 years are available in the Balkhash-Alakol basin, e.g. 

at the rivers Ile and Osek, measurements started in 1910 and 1913 respectively (Piven, 2011). 

However, most long records are unusable either because river flow was modified (e.g. the Ile) or 

because the assessment of data quality is impossible prior to 1950 (e.g. the Osek). A gap in 

measurements, which affected all national hydrological networks in Central Asia in the 1990s, 

negatively affects but does not invalidate the continuing records. Following Hannaford and Buys 

(2012) and Whitfield et al. (2012), we adopted a trade-off between the availability of reliable data 

and record length setting the minimum record length to 40 years. The missing data threshold was set 

to 10 years in order to retain data from the sites which did not operate between 1998 and 2006. We 

did not infill the gaps (mostly because longer gaps occur across the region simultaneously) although 

a variety of methods of data infilling is available (Harvey et al., 2012) and can be applied in the future 

using, for example, modelled data.  

A total of seven sites satisfying the above criteria were selected (Fig. 1; Table 1). For three rivers 

(the Ulken Almaty, Turgen and Teresbutak) 60-year records were available. For the selected sites, 

the metadata were examined and records of relevant events, changes and problems with data quality 

were made. Field surveys and interviews with observers were conducted in the Ile Alatau catchments 

to clarify spurious comments in the ADWRR (2014 and earlier issues) and in the site certificates. In 

addition, sites satisfying the data quality but not the length and continuity criteria have been identified 

for use either as donor stations for data verification or in modelling studies where shorter records are 

sufficient.  

Following digitisation, the daily streamflow database for the selected seven sites was examined 

for potential errors independently by two operators. The typical sources or errors in streamflow data 

are entries of erroneous measurements, misprints in the analogue copies and incorrect entry of digital 
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data from the scanned pages of the aged manuscripts (Brönnimann et al.,  2006). Where entries were 

identified as spurious, hydrological records from other sites and meteorological records were 

examined and a decision was made on whether to retain the reading or replace by an average of the 

neighbouring readings (overall, a very small number of readings were replaced).  

 

2.3. Characteristics of the selected hydrometric records 

All sites are positioned in the lower and middle mountains in the Ile (Zailiiskiy) Alatau, which has 

a higher density of measurements, and in the Jetisu (Djungarskiy) Alatau (Table 1, Fig. 1). In both 

regions, the selected catchments are located close to each other but never along the same river. In 

particular, the Prohodnaya and Teresbutak are sub-catchments of the wider Ulken Almaty catchment 

extending to the plain. However, they do not belong to its high-elevation sector, which is considered 

in this study, and located upstream of the Prohodnaya and Teresbutak sites (Fig. 1). The Kishi Osek 

is a tributary to the Osek, however, the Osek site is located upstream of the confluence of the two 

rivers. Size, elevation span and glacierization of the selected catchments are different predetermining 

different responses of streamflow to climate change and variability despite their spatial proximity 

(Kriegel et al., 2013; Duethmann et al., 2015; Kormann et al., 2015).  

In this study, we defined catchment area by limiting its lowest boundaries to the elevation of the 

streamflow gauging site. In the case of the Teresbutak, Prohodanaya and Kishi Osek (Table 1; Fig.1), 

the gauging sites are positioned at or very close to the rivers’ mouth and the whole catchments are 

included. In the case of the Osek and Turgen, the gauging sites are positioned in the foothills and, 

therefore, only high- and middle-elevation sectors of the catchments, which extend further onto the 

plain, are considered. In case of the Kishi Almaty and Ulken Almaty, gauging sites are located at 

higher elevations (Table 1) and represent higher-altitude sectors of the upland watersheds. These 

definitions of catchment boundaries affected calculation of glacierization (Table 1, 2; Sect. 3) which 

is defined as a percentage of catchment area occupied by glaciers and is related to the elevations of  
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the catchments (maximum elevations of all catchments are close) and of streamflow gauging sites, 

which vary by 1000-1400 m (Table 1). Thus glacierization of the Ulken Almaty and Kishi Almaty 

catchments is higher than that of the Turgen, Osek and Kishi Osek catchments although the absolute 

values of glacierized areas in the latter three catchments are larger (Table 1, 2).Therefore, 

comparisons of changes observed in different catchments are, to a significant extent, comparisons of 

changes which occur at different elevations.  

There was no significant land cover change in the catchments except the ongoing de-glacierization  

(Table 2). However, multiple natural disturbances occurred. In the Kishi Almaty, the debris flow of 

1973 significantly modified the river channel invalidating comparisons with the earlier record. 

Therefore, measurements starting in 1974 were used, following the assessment by KazHydroMet. A 

dam, designed to prevent mudflows, is located in the headwaters of the Kishi Almaty, however, it 

does not change water residence time and flow continues in the natural channel downstream. The 

Ulken Almaty site was destroyed by the debris flow in 1994 but rebuilt at distance of approximately 

800 m upstream from the earlier location. The difference in altitude between the two locations is 

approximately 30 m and there is no surface water influx at this stretch of the river. KazHydroMet 

recommended continuation of the record. Our inspection of the time series did not reveal any step 

changes in the data before and after the site relocation and the full record was used. According to the 

ADWRR (2014 and earlier issues), fewer direct measurements of very high flow were conducted on 

the Ulken Almaty after 1994 increasing the uncertainty. The hydrological observer, operating the site 

since the 1990s, did not confirm this conclusion (S. Subbotin, Pers. Com., August 2016). The 

occurrences of smaller-scale floods and debris flows on all other rivers were noted, however, as no 

step changes in the time series were detected, the records were deemed usable.  

It is suggested in the ADWRR (2014 and earlier issues) that uncertainty in stage measurements is 

higher at the Prohodnaya gauge than elsewhere because the river has a braided channel making its 

record unsuitable for the assessment of long-term trends. Our inspection of the river channel did not 
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reveal any braiding that was stronger than in the other catchments and none at the gauging site and 

the record was retained. Although the Teresbutak gauge has always been referred to as located on the 

Teresbutak River in the ADWRR (2014 and earlier issues), it is in fact located at the mouth of the 

River Kazashka to which the Teresbutak is a tributary. We use the historical name of Teresbutak.  

 

2.4. Meteorological and glaciological data 

Monthly data from three high-elevation meteorological stations in the Ile Alatau - Bolshoe 

Almatinskoe Lake (BAL; 2500 m a.s.l.) in the Ulken Almaty catchment; Mynzhilki (3010 m a.s.l.) 

and Tuyuksu (3438 m a.s.l.) in the Kishi Almaty catchment – were used (Fig. 1). In the Jetisu Alatau, 

there are no stations with long-term, continuous records located close to the streamflow gauging 

sites.  

Glacier inventories have been conducted in the Ile and Jetisu Alatau at regular intervals since the 

1950s (Kokarev and Shesterova, 2011; 2014;  Severskiy et al., 2016). Data on the glacierized areas 

were obtained from these inventories (Table 2).   

Measurements of mass balance using the glaciological (stake) method, equilibrium line altitude 

(ELA) and accumulation area ratio (AAR) have been conducted at the Tuyuksu glacier (the source 

of the Kishi Almaty) and reported to the World Glacier Monitoring Service (WGMS) since 1957 by 

the Kazakhstan Institute of Geography. It was previously shown that changes in the area and volume 

of the Tuyuksu glacier correlated strongly with changes in glaciers of the Ile Alatau as a whole 

(Severskiy et al., 2016). 

Winter and summer mass balance time series were used. Winter mass balance represents 

maximum snow accumulation at the end of the accumulation season and refers to the periods between 

the onset of negative daily mean temperatures (beginning of September to mid-October) and 

transition to the positive daily mean temperatures (May–early June) at the Tuyuksu station. Summer 

balance, referring to the periods between the onset of positive and negative daily mean temperatures, 
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represents melt, which can be interrupted by snowfalls due to the summer peak in precipitation 

typical of the high-elevation zone of Central Asia (Dyurgerov et al., 1994).   

Catchment elevations (Table 1) were derived from the void-filled SRTM3 GDEM with 30 m 

resolution (https://lta.cr.usgs.gov/SRTM1Arc).    

 

3. Methodology  

The daily streamflow data were transformed into time series for individual months (mean flow 

only) and standard meteorological seasons using a variety of hydrological indicators characterising 

the whole flow range. The flow indicators time series examined for (i) long-term trends in flow; (ii) 

short-term oscillations which can be attributed to decadal climatic variability; (iii) shifts in 

seasonality; and (iv) changes in extreme flow values with emphasis on the high flow in summer.  

These time series were examined for a fixed period of 1974-2013 to accommodate the best-

instrumented Kishi Almaty catchment, which extends into the Almaty city with over 1.5 million 

population, and to enable comparison between the catchments. The magnitude and significance of 

trends are often sensitive to the start and end points of a study period (Unger-Shayesteh et al., 2013). 

We stress than unlike 1972, when strong negative anomalies in mean annual temperature were 

registered in Central Asia and 1973, when positive temperature anomalies were registered in the 

Issyk-Kul basin (Gieze et al., 2007) and to a lesser extent in the study region (Fig. 11 further in the 

text), no significant anomalies in precipitation and temperature were observed in 1974 with an 

exception of DJF temperature which was the fifth lowest in the 1950-2013 record from the Mynzhilki 

station. In order to utilise the full range of data extending to the 1950s and assess the sensitivity of 

trends to changes in atmospheric circulation in the 1970s, which affected the study region (Cao et al. 

1998), the same analyses were repeated for rivers other than the Kishi Almaty for the full duration 

of their records. 
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To characterise streamflow at the selected sites, descriptive statistics including mean, coefficient 

of variation (CV) and thresholds Qn indicative of flow exceedance n % of the time were used 

including Q90, Q70, Q50 (median), Q30 and Q10. We note that Q90 (flow which was equalled or 

exceeded for 90% of the specified term) and Q10 (flow which was equalled or exceeded for 10% of 

the specified term) are indicators of low and high flow respectively. Q95 and Q5 were excluded 

because of stronger uncertainties associated with measurements of very low flow in DJF and very 

high flow in JJA as suggested by the ADWRR (2014 and earlier issues).  Decadal hydrographs of 

daily mean streamflow were calculated starting in 1950 (or later when record began) for each site. 

Although these analyses may be sensitive to individual flood events as well as gaps in the data, they 

illustrate shifts in seasonality and provide information on decadal variability in streamflow. In this 

paper, numerical metrics characterising time shifts in peak flow or spring freshet were not used 

because the frequently employed metrics (such as date of annual peak flow and centre of volume) 

are not sufficiently robust (Dery et al., 2009; Whitfield, 2013) while application of the more advanced 

methods (e.g. Dery et al., 2009; Kormann et al., 2015) warrants a separate publication.  

To examine the long-term changes, Qn were calculated for each year and each season, e.g. from 

DJF 1951 to SON 2013, following Hannaford and Buys (2012) and Hannaford (2015). The two-

sided Mann-Kendall test (Kendall, 1975) was applied to the seasonal time series of each flow 

indicator and meteorological variables to examine the data for the presence, magnitude, and  

statistical significance of monotonic trends. Prior to the application of the Mann-Kendall test, serial 

correlation was removed using a trend free pre-whitening procedure (Yue et al., 2002). Trend 

magnitude was characterised by fitting the Sen’s slope estimator (Sen, 1968) to each time series and 

expressed as percentage change per year of the 1974-2013 (or full record) mean value of the given 

indicator. Statistical significance was set at 5% confidence level.  

The moving window technique was used to evaluate changes over shorter (i.e. 20-year) time 

periods characterising the influence of climatic variability on hydrological trends (Wilby, 2006; 
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Hannaford and Buys, 2012). This assessment was not applied to the Osek and Kishi Osek flow time 

series because of the comparatively large amount of missing data (Table 1).  

In the glacierized catchments, the occurrence of streamflow exceeding Q10 threshold may result 

either from precipitation input or from the enhanced melt. Storm events tend to result in a short-term 

increase in streamflow (i.e. flash floods), while enhanced melt leads to a longer sequence of days 

with high streamflow values (e.g. 1-2 weeks of the highest streamflow values at the peak of the melt 

season). The use of Q10 statistics, therefore, may result in a loss of data on the secondary short-term 

peaks in streamflow resulting from intensive rainfall (Bača and Bačová Mitková, 2007). This 

problem can be avoided if peak-over-threshold (POT) method is used whereby independent peaks 

above a certain threshold are considered (Black and Burns, 2002). POT records were constructed for 

the Ulken Almaty and Turgen rivers using thresholds giving on average 3.0 exceedances per year for 

the 1950-2013 time period and analysed for trends in temporal distribution of POT events. Other 

rivers with larger catchments were not considered because of the missing data.   

Pearson correlation between the streamflow time series and meteorological variables, winter and 

summer components of mass balance was calculated using the original and de-trended time series 

from the concurrent seasons and with a time lag (meteorological variables leading streamflow) for 

the entire period of observations and for the 20-year moving windows. The time series of seasonal 

temperature and precipitation from all three meteorological stations were used but results for the 

Mynzhilki station are shown as its records showed the highest correlation with river flow. These 

analyses were not performed for the Osek and the Kishi Osek because of the lack of suitable 

meteorological data. 

 

4. Characteristics of the selected catchments  

The region is characterised by strong seasonal variations in temperature and precipitation (Fig. 2). 

The westerly flow dominates in autumn and spring resulting in the precipitation maxima in April–
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May on the plains shifting towards May–July in the middle and high mountains, where snow 

accumulation peaks in spring–early summer. In winter, the western extension of the Siberian 

anticyclone predetermines sub-zero temperatures and small amounts of solid precipitation in the 

mountains and on the plains. In summer, the thermal Asiatic depression dominates driving advection 

from the south which results in hot and dry weather on the plains (Shahgedanova, 2002).   

Areas of the study catchments vary between 600-700 km2 for the Turgen and Osek to 40-50 km2 

for the Kishi Almaty and Teresbutak (Table 1).  All selected catchments extend to over 4000 m a.s.l. 

Glaciers occupied 565 km2 and 465 km2 in the Kungei-Ile Alatau in 2008 and in Jetisu Alatau in 

2011 respectively (Severskiy et al., 2016). All studied catchments, except the Teresbutak, 

accommodate glaciers which descend to approximately 3500 m a.s.l. The highest proportion of 

glacierized area of 12-15% characterised the Kishi Almaty and Ulken Almaty catchments (Tables 1; 

2). The snow and glacier melt period is limited to JJA extending to September in individual years 

(Fig. 11 e, d further in the text). The seasonal flow cycle is driven by snow melt in June-July and 

glacier melt in August (Aizen et al., 1996; 1997). Summer snowfalls affect annual mass balance 

because they disrupt ablation but seasonal snow, falling below the ELA (positioned, on average, at 

3800 m a.s.l.; Fig. 11 e further in the text), melts over summer providing input to runoff (Dyurgerov 

et al., 1994).  

 

5. Results 

5.1. Descriptive statistics and decadal hydrographs 

The hydrographs of the studied rivers were consistent with the nivo-glacial flow regime whereby 

maximum streamflow was observed in July–August except for the unglaciated Teresbutak catchment 

where the flow peaked in June in line with snow melt (Table 3; Fig. 4). The highest streamflow values 

characterised the Osek where JJA streamflow averaged 31 m s-1 followed by the Turgen and Kishi 

Osek while in other rivers, the JJA streamflow was an order of magnitude lower. The highest specific 
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discharge (streamflow normalized by the upstream catchment area) characterised catchments with the 

highest glacierization (i.e. the Ulken Almaty and Kishi Almaty) while the Turgen and Teresbutak had 

the lowest specific discharge in summer (Fig. 3).  

Coefficients of variation (CV), calculated for four seasons, ranged mostly between 0.2-0.4 

reaching higher values of 0.35-0.80 for the Teresbutak which had the lowest streamflow in the sample 

(Table 3). The highest interannual variability characterised streamflow in the Teresbutak, Osek and 

Kishi Osek in MAM, reflecting the contribution of variability in seasonal snowpack to discharge, 

and in Teresbutak in DJF.  

 

5.2. Long-term trends in mean seasonal and monthly flow  

The main result of the analysis of the mean seasonal flow time series is that there were no negative 

trends in mean flow in any season at any site in the uniform assessment period of 1974-2013 (Fig. 5, 

6). The only negative value, which did not indicate a statistically significant trend, was registered in 

DJF in the Turgen in the extended assessment period of 1950-2013.  

From the perspective of water resources, changes in streamflow in summer and the adjacent 

months are most important. During the 1974-2013 period, in JJA, positive trends significant at 0.05 

confidence level were observed in the mean flow of the Ulken Almaty, Kishi Almaty, Teresbutak 

and Turgen (where the trend was weak at 0.48 % a-1) while trends were not significant in the mean 

flow of the Prohodnaya, Osek and Kishi Osek (Fig. 6). The strongest increase of 1.6 % a-1 

characterised the Ulken Almaty flow (whose gauged catchment has the highest elevation and 

glacierization and yielded higher specific discharge; Tables 1, 2; Fig. 3). Streamflow of the Ulken 

Almaty and Kishi Almaty increased in all summer months but the strongest growth was observed in 

June, a month dominated by snow melt when the strongest increase in air temperature was also 

registered (Sect. 5.5). Unexpectedly, in the unglacierized Teresbutak catchment (Table 1), a stronger 

increase in mean flow occurred in July–August when glacier melt predominates.  
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In SON, in the uniform assessment period, positive trends of 0.6-1.6 % a-1 were observed in all 

rivers in all months and were stronger than in summer. The strongest increase was registered in the 

Osek and Teresbutak (Fig. 6). Decadal hydrographs show an increase in streamflow, starting in late 

summer–early autumn and extending into winter, since the 1990s and particularly in 2000-2013 (Fig. 

4). In the Ulken Almaty, Kishi Almaty and Turgen catchments, the strongest increase in mean 

monthly flow was observed in September indicating the extension of high flow into early autumn 

(Fig. 6). In DJF, streamflow increased in most rivers except the Turgen and, similarly to SON, was 

highest in the Osek and Teresbutak where relative changes were greater in DJF than in other seasons 

(Fig. 6). However, the absolute changes, observed in winter, were small.  

In MAM, positive trends in mean flow were smaller than in other seasons during the 1974-2013 

period but statistically significant in all rivers except the Prohodnaya (Fig. 6). The values of trends 

in monthly flow in spring depend on the elevation-dependent timing of snow melt. Thus in the Kishi 

Almaty and Ulken Almaty high-elevation catchments, the largest increase was observed at the end 

of May before the peak flow is reached in June (Fig. 6). In the Teresbutak, Kishi Osek and Osek, 

higher trend values were registered in March and April while those in late spring–early summer were 

not significant. In the Turgen, April was the only spring month with a statistically significant positive 

trend (Fig. 6).  

While 1974 was selected as a start year of the uniform assessment period to accommodate the 

Kishi Almaty record, the 1970s were a period of negative anomalies in river flow (Fig. 5). Sensitivity 

of trends to the choice of assessment period was tested by recalculating trend values using data for 

the full duration of individual records. The general tendency towards an increase in mean flow 

remained although trend values were smaller (Fig. 6). The Ulken Almaty was the only river where 

positive trends in JJA in the extended assessment period were significant at 0.05 confidence level 

(Fig. 6). Here, the positive trend values in June–September nearly doubled in 1974-2013 in 

comparison with 1952-2013 (Fig. 6). However, while in 1974-2013, the strongest trends were 
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registered in June when river flow is dominated by snowmelt, in 1952-2013, a slightly stronger 

increase was observed in August–September when glacier and ground ice melt dominates. In SON 

and DJF, trends remained significant in all rivers except the Turgen. In spring, a significant increase 

in streamflow was registered in most catchments in March and April but not in May (Fig. 6). 

Seasonal and monthly mean flow of the Turgen was most sensitive to the change of the assessment 

period. There were no statistically significant trends in any season although statistically significant 

increase in streamflow was observed in August when glacier melt peaks.  

 

5.3. Trends in Qn flow indicators. 

Trends for the seasonal Q10 to Q90 thresholds for 1974-2013 are shown in Figure 7. Similarly to 

the mean flow, all significant trends were positive.    

In JJA, the strongest increase occurred in the low flow thresholds (Q70 and Q90) which are 

considered to be an  indicator of glacier and ground ice melt contribution (Collins, 1987). Positive 

trends in Q90 were significant in all rivers and in Q70, in all rivers except the Osek. The strongest 

trends were observed in the Ulken Almaty where both Q90 and Q70 were increasing at a mean rate 

of 1.9 % a-1 (Fig. 7). Until the late 1970s, trend values in all quantile indicators in JJA co-varied in 

the Ulken Almaty, Turgen and Prohodnaya (Fig. 8, 9). However, a very strong growth in Q90 was 

observed in the Ulken Almaty since the 1980s peaking in 2003-2005 as shown by Sen’s slope 

estimator applied in 20-year moving windows (Fig. 9 e). The 1952-1989 and 1990-2013 mean values 

of the Ulken Almaty Q90 were 1.6 m s-1 and 2.8 m s-1 respectively indicating a statistically significant 

step change in base flow. The contemporaneous changes in base flow were much smaller in the 

Turgen and Prohodnaya, whose catchments have lower glacierization. After 2005, Q90 values in the 

Ulken Almaty and the Kishi Almaty remained high (Fig. 8 a) but they were not increasing (Fig. 9 e).   

Changes in the median and high flow were smaller than in the low flow indicators in JJA. The 

behaviour of the mean (Fig. 5) and median flow, however, was closer to that of Q10 and Q30 than 



20 
 

Q70 and Q90 (Fig. 8 a). Significant trends in Q10 were observed only in the Ulken Almaty and 

Teresbutak (Fig. 7, 8).  Similarly to the base flow, variability in the median and high flow indicators 

in JJA was consistent in the Ulken Almaty, Turgen and Prohodnaya until the last two decades of the 

20th Century. More recently, positive values of the 20-year trends continued to increase in the Ulken 

Almaty but not in the other two rivers (Fig. 9 a, c).  

In SON, positive trends were ubiquitous and particularly strong in the high flow thresholds 

reflecting an increase in September flow whose absolute values are higher than those in October–

November (Fig. 4). Thus Q30 and Q10 increased at the rate of 1.1-1.5 % a-1 and 1.7-1.9 % a-1 

respectively (Fig. 7). In the Ulken Almaty, until approximately 1990, temporal variability in all 

thresholds followed similar pattern (Fig. 8 b; 9 b, d, f). However, in the last 25 years, while growth 

in low and median flow slowed down, increase in high flow indicators, characterising mostly 

September flow, intensified similarly to JJA. The recent trends in high and median flow of the Turgen 

were consistent with those of the Ulken Almaty in SON in contrast to JJA. 

In winter, trends in flow indicators were mostly consistent with the autumnal trends. An exception 

is the Turgen, where no statistically significant trends were found in any flow category. The strongest 

positive trends, with an increase of 1.8-2 % a-1 in all flow categories, were observed in the 

Teresbutak. Trends in the spring flow were generally smaller than in other seasons (Fig. 7) although 

there was a strong difference between trends in Qn calculated for the individual spring months. An 

exception was the Osek and the Kishi Osek where positive trends observed in spring exceeded those 

observed in summer due to the high flow values exceeding plus two standard deviations in May 

1997, 2008 and 2010, and due to a steady increase in March flow.   

 

5.4. Peak over threshold (POT)  

POT 3 time series for the Ulken Almaty and Turgen for JJAS are shown in Figure 10 for the 1950 

(1952)-2013 period. Decadal mean frequency of POT events (average number of POT events per 
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year in each decade) was used instead of its count because of the gaps in the time series (Table 1) 

and slightly uneven time steps. The mean values of POT flow were 24.0 m s-1 and 6.1 m s-1 for the 

Turgen and the Ulken Almaty records respectively. Until the 2000s, variability in the frequency of 

POT events was small in both rivers although a decrease in the frequency of POT events and mean 

POT flow values was observed in the 1970s in comparison with the earlier decades (Fig. 10 b). Since 

the beginning of the 21st Century, the frequency of POT events and mean POT flow values increased 

in the Ulken Almaty but not in the Turgen. Overall, there was no long-term trend in the Turgen’s 

POT time series. In the Ulken Almaty, trend in the POT frequency record was significant at 0.05 

confidence level. In the last two decades, POT flow values were replicating the behaviour of Q10 

flow (Fig. 8 a, b) while in the 1950s-1960s, several large floods occurred and the POT flow values 

exceeded Q10 particularly in 1959, 1962 and 1965.  

 

5.5. Trends in temperature, precipitation and glacier mass balance 

 Positive trends characterised spring and autumn temperatures (Fig. 11 a; Table 4). At both BAL 

and Mynzhilki, a step change in JJA temperature occurred in the 1970s and, as a result, statistically 

significant trends were found in the 1951-2013 record but not in the 1974-2013 record. At Mynzhilki, 

JJA temperatures averaged over 1951-1972 and 1973-2013 were 6.5oC and 7.5oC respectively (a 

difference significant at 0.05 confidence level). At the high-elevation Tuyuksu station, the trend in 

JJA temperature in the 1974-2013 period was significant at 0.07 confidence level. While an increase 

in autumn temperatures occurred across the Tien Shan, summer warming was reported only for the 

elevations exceeding approximately 2500 m a.s.l. (Unger-Shayesteh et al., 2013). In the study region, 

the strongest warming in summer was observed in June at all three stations possibly as a result of the 

feedback between increasing air temperature and earlier snow melt (Pepin et al., 2015). 

 While strong decadal variability characterised precipitation time series in every season, there was 

no significant long-term trend in any of the precipitation series either in the study area (Fig. 11 b) or 
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in the northern and central Tien Shan (Kutuzov and Shahgedanova, 2009; Narama et al., 2010; 

Unger-Shayesteh et al., 2013). The periods of negative anomalies in precipitation were registered, 

most notably between 1970 and 1980 (Fig. 11 b) when a strong decline in winter mass balance 

occurred (Fig. 11 c). In 1952-1973, winter mass balance averaged 110 cm water equivalent (w.e.). 

In 1974-2013, it was 56 mm w.e. evidencing a significant decline in precipitation in the accumulation 

period at higher elevations. By contrast, there was no significant trend in summer mass balance 

probably because of the strong variability observed in the last two decades. An exceptionally strong 

summer melt, caused by the strong positive temperature anomalies, was observed in 1997 and in 

2006-2008 but melt was weak in the wet summers of 1993, 2003 and 2009. Data on the duration of 

winter and summer mass balance seasons, available from 1971, show that there was no change in the 

timing of the onset and end of the melt season at the Tuyuksu glacier (Fig. 11 d). This, however, does 

not exclude changes in the intensity of melt in the early autumn. Positioned at higher elevations, 

Tuyuksu may not be representative of variability in the onset of snow melt across the catchments.    

  

5.6. Links between streamflow with air temperature, precipitation and glacier mass balance 

Correlation coefficients between the original and de-trended seasonal time series of Q50 flow and 

air temperature, precipitation and glacier mass balance were calculated and are shown in Table 5 for 

two catchments with high and low glacierization and specific discharge. For three rivers with similar 

specific discharge (Fig. 3) – the Teresbutak, Prohodnaya and Turgen – precipitation of the preceding 

seasons was the main controlling factor while there was no significant correlation between 

streamflow and precipitation in any concurrent season. Correlations between the de-trended time 

series were stronger showing that interannual variability in streamflow is driven by variability in 

precipitation. In these catchments, correlation of JJA flow with annual (September to August) 

precipitation and winter mass balance of the Tuyuksu glacier (i.e. snow accumulated over the cold 

period) remained stationary following the anomalously dry mid-1970s (Fig. 12 a, c). However, for 
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the Ulken Almaty and Kishi Almaty, correlation between JJA flow and annual precipitation (as 

measured at the Mynzhilki station) declined since the 1970s whilst correlation with winter mass 

balance increased (Fig. 12 a, c) pointing at an increasing importance of snow accumulation at higher 

elevations for the formation of summer discharge.  

In contrast to all other catchments, air temperature (an indicator of both snow, glacier and ground 

ice melt) was the strongest control over the Ulken Almaty streamflow in all months (Table 5). 

Temperature correlated with all flow indicators in JJA, however, its correlation with median and low 

flow was slightly stronger (correlation coefficients of 0.65 and 0.60 for Q50 and Q90 respectively) 

than with high flow (0.47 for Q10). Correlations between the unmodified streamflow and 

temperature time series was higher than between the de-trended time series. It remained significant 

throughout the observation period (Fig. 12 b) showing that the positive long-term trend in 

temperature (Table 4) drives the increase in streamflow. Correlation with summer mass balance, 

which is controlled in the first place by summer temperature and to a lesser extent by summer 

precipitation (which reduces melt;  Dyurgerov et al., 1994) was weak overall but increased in the 

1980s in comparison with the earlier years (Fig. 12 d). In the Kishi Almaty, which is hydraulically 

connected to the Tuyuksu glacier, the running 20-year correlation with summer mass balance 

followed that of the Ulken Almaty but was weak.  

Positive correlation of the Turgen and Prohodnaya JJA flow with summer temperature was weak 

overall but it reached statistically significant positive values in the 1970s (Fig. 12 b) when summer 

melt extended to higher elevations as shown by the higher ELA values (Fig. 11 c, e). However, after 

the 1970s, correlation between the Turgen summer flow and summer temperature declined and 

correlation with absolute values of summer mass balance reached statistically significant negative 

values (Fig. 12 d). Correlation between the Teresbutak flow in JJA and summer mass balance was 

negative throughout the record showing that in this small non-glaciated catchment, flow declines in 
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response to warm, dry weather which leads to stronger melt. The much larger Turgen now appears 

to respond in a similar way although glaciers still occupy 3.7% of its catchment. 

A weak but statistically significant positive correlation between the Teresbutak and Turgen JJA 

flow and the preceding DJF air temperature can be interpreted as a contribution of accumulated snow 

to discharge. In the northern Tien Shan, winter precipitation (which always falls as snow) correlates 

negatively with temperature because the domination of the Siberian high (westerly flow) results in 

low (high) temperatures and precipitation (Panagiotopoulos et al., 2005). In autumn, correlations 

with temperature were significant for most rivers and stronger for the high flow indicators, 

representing September flow, which increased in all catchments (Fig. 4; 5). Both SON and DJF flow 

in the Ulken Almaty and the Prohodnaya exhibited significant correlations with temperature of the 

preceding seasons.  

 

6. Discussion 

6.1. Data quality relevant to the development of a reference data set 

A new data set of daily streamflow measurements, starting between 1950 and 1974 and continuing 

at present, has been compiled for seven undisturbed catchments located in the Ile Alatau and Jetisu 

Alatau. The gaps in the data, resulting from the disruption of measurements in the 1990s across 

Central Asia, are much shorter in the selected catchments in the Ile Alatau than elsewhere (Table 1). 

Measurements in the Teresbutak and Prohodnaya catchments were not affected and here, the short 

gaps were due to floods. In the Ulken Almaty and Kishi Almaty catchments, gaps in the data were 

limited to approximately six months in 1998 and 1999 but there were over two years of missing data 

in the Turgen. There was more missing data in the Osek and Kishi Osek records (Table 1) and it 

might have affected the significance of the detected trends.  

The in-filling of the data gaps was complicated by the fact that they affected a wide area and that 

the potential ‘donor gauges’ are located on the rivers with different characteristics and responses. 
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The preliminary results from modelling using the HBV-ETH hydrological model showed that it can 

be used for the reconstruction of mean flow in the Ile Alatau in the future (Shahgedanova et al., 

2016). The in-filling of the gaps in the records from the Jetisu Alatau will be more problematic 

because of the paucity of meteorological data. 

Concerns were raised by KazHydroMet about the suitability of the Prohodnaya time series for the 

analysis of long-term trends (Sect. 2.3). Although trends in the mean flow of the Prohodnaya were 

smaller than in the neighbouring rivers (Fig. 6, 7), they were consistent with those in a larger Turgen 

catchment where glaciers occupy a similar proportion of the catchment area (Table 1). Potential 

uncertainty about the high flow indicators in the Ulken Almaty was a concern (Sect. 2.3). However, 

although Q10 values in the Ulken Almaty increased more than in other catchments particularly in 

JJA (Fig. 7, 8), its behaviour was consistent with other flow indicators of the Ulken Almaty as well 

as catchment characteristics. 

On the basis of data quality and continuity, we recommend that the [near] homogeneous 

streamflow data from the Ulken Almaty, Turgen and [with caution] Prohodnaya can be used as a 

reference data set typifying catchments with diverse characteristics (glacierization, catchment 

elevation, specific discharge) in the northern Tien Shan. A shortcoming of this data set is a close 

proximity of the catchments, particularly the Ulken Almaty and the Prohodnaya. However, in the 

Tien Shan (Sect. 4; 5.2; Kriegel et al., 2013; Duethmann et al., 2015) as well as other glacierized 

mountain regions (e.g. Birsan et al., 2005; Kormann et al., 2015), catchment elevation and 

glacierization appear to be more important controls over discharge than regional climatic variations. 

It is envisaged that continuing measurements in the Osek and Kishi Osek catchments will result in 

the diminishing impact of the missing data and these records will be a part of the reference data set 

expanding its spatial coverage.  

The Teresbutak and the Kishi Almaty catchments are small (Table 1) and as such, they may not 

characterise regional hydrological conditions and fail to meet the requirements for the reference 
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catchments (Burn et al., 2012; Whitfield et al., 2012). In particular, the Teresbutak, which has the 

smallest catchment and does not experience the moderating effect of glacier melt on discharge, shows 

a strong response to climatic variability (Fig. 5 b; 7 e; 8; Table 3) and the largest long-term trends 

(Fig. 6; 6) in comparison with other catchments. Rather than characterising regional change, the 

Kishi Almaty and Teresbutak represent responses of small catchments with contrasting 

characteristics to climate change and variability. Accommodating three meteorological stations, four 

streamflow gauges, one of the WGMS reference glaciers and several glacier lake monitoring sites, 

the Kishi Almaty is the best instrumented catchment in the northern Tien Shan and the homogeneous 

streamflow record presented here is an important part of a wider environmental monitoring 

programme. 

 

6.2. Sensitivity of trends to the selection of assessment period 

Selection of assessment period can affect the values of climatic and streamflow trends (Unger-

Shayesteh et al., 2013). In this study, 1974 (when there were no strong anomalies in temperature and 

precipitation) was selected as the starting point of a consistent period in order to include the Kishi 

Almaty catchment. The hydrological network expanded in Central Asia in the 1970s-1980s and 

relatively few sites provide longer time series. However, the same period was characterised by 

negative precipitation anomalies, a step change towards lower winter mass balance, and higher JJA 

temperatures (Fig. 11; Table 4). Trends in streamflow in 1974-2013 were much stronger than those 

observed since the 1950s. However, trend signs were consistent between the two assessment periods. 

In both periods, an increase in streamflow was observed in the cold season between September and 

March while changes in JJA flow varied between catchments depending on the elevation of the 

gauging sites and glacierization of catchments (Fig. 6). This shows that shorter data sets, starting in 

the 1970s-early 1980s, can be used in assessments of the long-term trends. 
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6.3. Trends in streamflow and their responses to climatic oscillations 

The observed changes could be driven by the long-term climatic trends and responses of the 

cryosphere, and by short-term climatic variability (Birsan et al., 2005; Duethmann et al., 2015; 

Kormann et al., 2015). In the study area, the importance of these drivers depended on season, 

elevation and glacierization of the catchments.  

 

6.3.1. The cold season 

One of the main findings of this study is an increase in streamflow registered (i) in all autumn 

months in all catchments and (ii) in winter in all catchments except the Turgen (Fig. 6, 7). Similar 

trends were reported by Kriegel et al (2013) for the Naryn basin but overall, changes in discharge, 

observed in cold season, received little attention because they are small in absolute terms and do not 

directly impact water availability for irrigation. Yet, these changes are important because of the 

potential impacts on reservoir management and recharge of aquifers (Liljedahl et al., 2017).  

In autumn, the observed increase in temperature and the delayed transition to solid precipitation 

resulted in a strong increase in streamflow particularly in September–October (Fig. 6). There was a 

statistically significant correlation between the unmodified SON streamflow of all rivers except the 

Turgen and temperature time series but not between the de-trended time series. It suggests that 

climatic warming drives the observed long-term increase in streamflow.  

It was previously suggested that the extension of glacier melt season may be responsible for 

increasing discharge (Narama et al., 2010; Kriegel et al., 2013; Pieczonka and Bolch, 2015) but this 

assumption was not supported with data. At the Tuyuksu glacier, the duration of melt season has not 

changed since the 1970s (Fig. 11 d; earlier data were not available). However, in the regions with the 

sub-zero autumn temperatures and occurrence of permafrost, climatic warming implies potentially 

longer periods of ground ice melt and later freezing of soil both of which could contribute to an 

increase in streamflow (Yang et al., 2002;  Jacques and Sauchyn, 2009).  
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The short-term variability in precipitation affected discharge as shown by the statistically 

significant correlation between the de-trended time series of precipitation and streamflow of all rivers 

except the Ulken Almaty (Table 5). The 20-year moving window analysis of Sen’s slope of 

streamflow indicators showed that trend values in SON discharge (Fig. 9) are consistent with 

variability in precipitation (Fig. 11 b).  

Positive trends in mean flow and Qn indicators were registered in DJF and in March in all 

catchments except the Turgen (Fig. 6; 7 a). In these months, temperatures remain below freezing 

even at low elevations. In the Ulken Almaty and Prohodnaya, there was a weak correlation between 

the median streamflow and temperature of the preceding autumn and summer suggesting that the 

observed increase in discharge during the cold season could be driven by summer meltwater and by 

an increase in the fraction of liquid precipitation in the early autumn. Liljedahl et al. (2017) reported 

a positive trend in winter discharge for the lowland sectors of glacierized catchments in Alaska 

attributing it to increase in ground-water levels and aquifer storage fed by glacier and permafrost 

melt. Jacques and Sauchyn (2009) reported an increase in winter base flow in the Canadian Northern 

Territories attributing it primarily to summer permafrost thawing and groundwater storage. Data on 

ground-water levels were not available to us. It requires investigation if, in the absence of other 

sources of water, the same mechanisms are responsible for the observed increase in winter base flow 

and, perhaps more importantly, how glacier and permafrost melt affect ground-water resources in 

the northern Tien Shan.  

In contrast to autumn, winter and early spring, trends in streamflow in April and May were 

inconsistent between the catchments and there was no clear elevation-dependent pattern. Trends were 

larger in the catchments with lower mean and gauging site elevations, i.e. the Osek and Kishi Osek 

but not in the Turgen (Fig. 4, 6). The observed increase in spring temperatures (Table 4) suggests 

earlier snow melt but these changes as well as dates of transition from solid to liquid precipitation, 
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which peaks in spring in the northern Tien Shan (Fig. 2), and hydrological effects of weather patterns 

(Kormann et al, 2015) require further investigation. 

 

6.3.2. Summer 

In JJA (a season, that is most important with regard to water resources), changes in streamflow 

depended on the elevation and glacierization of catchments (Fig. 6). Positive trends in mean 

streamflow were observed in the headwater catchments where glacierization and specific discharge 

were higher, i.e. the Ulken Almaty and Kishi Almaty. In the Ulken Almaty, where glaciers occupy 

15% of the gauged catchment area, positive trends in streamflow were considerably larger than 

elsewhere (Fig. 6; 7 c). In contrast to other catchments, they were controlled by the long-term trends 

and interannual variability in JJA and MAM temperatures (Table 5; Fig. 12 b).  

In the other catchments, trends in JJA mean and median streamflow were either weaker or not 

significant at 0.05 confidence level (Fig. 6, 7 c). However, in all catchments, Q90 and Q70 exhibited 

significant growth (Fig. 7 c) and temperature correlation with Q90 was higher than with Q50. A 

similar increase in summer base flow has been reported for other glacierized regions, including the 

Himalayas (Collins, 1987) and the Swiss Alps (Birsan et al., 2005) and attributed to glacier ice melt. 

In the study region, correlation between JJA flow and the absolute values of summer mass balance 

(an indicator of glacier melt) was weak and inconsistent between catchments and time periods (Fig. 

12 d). In contrast to the summer base flow, there was no statistically significant trend in summer 

mass balance of the Tuyuksu glacier (Fig. 11 c). A decrease in annual mass balance, observed since 

the early 1970s, was driven by a reduction in accumulation which was reported for other glaciers in 

the Tien Shan and attributed to changes in atmospheric circulation (Cao, 1998).  

In the Teresbutak, where summer flow is driven by precipitation, correlation between the median 

streamflow and summer mass balance was negative because summer precipitation coincides with 

lower temperatures and glacier melt (Fig. 12 d). In the Turgen, negative correlation between 
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streamflow and summer mass balance was established after the warm and dry 1970s (Fig. 12 d). This 

change may be an indicator of diminishing contribution of glacier melt to the Turgen discharge. Since 

the 1950s, glaciers lost 36-51 % of their area in the study region (Table 2). The repeated in situ 

geodetic mass balance measurements showed that 20% of glacier volume was lost between 1958 and 

1998 contributing to runoff (Severskiy, 2007). Specifically in the Turgen catchment, glaciers lost 

15.2 km2 or 42.6% of their area (Table 2). However, the observed decline in glacierized area was 

small relative to the total catchment area. Glaciers occupied 5.6%, 4.6% and 3.7% of the gauged 

Turgen catchment in 1974, 1990 and 2008 respectively and the ability of such a reduction in 

glacierization to alter nourishment regime requires further investigation using modelling.  

The loss of glacierized area, contributing to discharge, was partly compensated by the production 

of liquid runoff at higher elevations (Dyurgerov et al., 1994). The ELA increased from 3,750 m in 

1957-1972 to 3,850 in 1973-2013 at the Tuyuksu glacier (Fig. 11 e) and an average increase in ELA 

of 23 m in 1973-2003 was reported for the Tien Shan (Aizen, 2011). A step reduction in the AAR 

from 52% in 1957-1972 to 38% in 1973-2013 was registered at the Tuyuksu glacier (Fig. 11 e).  

In catchments with lower glacierization, precipitation in the preceding (snow accumulation) 

season was the main control over JJA streamflow with stronger links between the de-trended 

streamflow and precipitation time series (Table 5). This correlation remained both stable and 

statistically significant throughout the extended assessment period in the Turgen, Prohodnaya and 

Teresbutak (Fig. 12 a). In the Ulken Almaty and Kishi Almaty catchments, correlation between 

streamflow and precipitation, both annual and that of cold season, declined since the mid-1970s (Fig. 

12 a) while correlation with winter mass balance, representing the accumulated cold-season 

precipitation, changed from negative in the 1970s to positive after the 1990s (Fig. 12 c). This 

discrepancy is difficult to explain. During this time, there was no increase in winter mass balance 

(Fig. 11 c) and there is nothing to indicate that trends in precipitation at higher elevations were 

different from those at Mynzhilki (Fig. 11 b). The observed increase in ELA (Fig. 11 e) and the 
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expansion of area of liquid runoff could potentially explain the increasing correlation between JJA 

streamflow and winter mass balance. However, correlation between the Ulken Almaty and Kishi 

Almaty JJA streamflow records and ELA was not significant at 0.05 level.  

An increase in JJA flow in the higher-elevation catchments where glaciers occupy more than 10% 

of the total area, registered in this study, in other regions of Central Asia (e.g. Kriegel et al., 2013;  

Duethmann et al., 2015) and world-wide (e.g. Birsan et al., 2005), suggests that this is an approximate 

threshold over which glaciers make a stronger impact on summer mean and median streamflow than 

variability in precipitation. However, we note that in the catchments with lower glacierization, e.g. 

the Turgen and Kishi Osek, positive trends in streamflow were observed in August, a month 

dominated specifically by glacier melt. The low flow indicators (Q90 and Q70), representative of 

glacier and ground ice melt (Collins, 1987), increased in all catchments (Fig. 7) pointing at the 

increasing contribution of these sources to discharge.   

In this analysis, we did not consider changes in evaporation because of the lack of the direct long-

term measurements of evapotranspiration and variables required for its calculation. The estimations 

based Turc’s method, in which temperature from the Mynzhilki station was used (Vilesov et al., 

2013), suggested that changes in evaporation at higher elevations were small and unlikely to affect 

streamflow to a significant extent. This requires further investigation focusing on the potential effects 

of solar radiation and wind speed (Yang et al., 2014) and changes in evapotranspiration at lower 

elevations where they may be stronger.   

 

6.4. Considerations of changes in the ground ice 

The melt of rock glaciers and permafrost is an important factor affecting discharge and their 

potential impacts on the winter flow and on the low flow indicators in summer were addressed in 

Sect. 6.3. In the Kishi Almaty and Ulken Almaty catchments, rock glaciers containing significant 

amount of ice, occupied 0.47 km2 and 4.77 km2 (just under 30% of the glacierized area) respectively 
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in 1999. Recently, their movement accelerated indicating their increasing melt (Bolch and 

Marchenko, 2006). Our field observations in 2015-2017 confirmed a considerable discharge from 

the rock glaciers in both catchments and particularly in the Ulken Almaty.  

Modelling showed that the area of permafrost distribution in the Ulken Almaty and Kishi Almaty 

catchments declined by approximately 20% and its lower boundary shifted 150-200 m upward in the 

last 125 years (Marchenko et al., 2007). Measurements showed that permafrost temperatures 

increased by 0.3-0.6oC and the depth of active layer declined by 23% since the 1970s. These changes 

undoubtedly contributed to increasing streamflow and especially to the low flow indicators which 

showed the strongest growth in summer (Fig. 7).  

 

7. Conclusions 

For the first time in several decades, a full range of flow indicators, derived from a homogeneous 

daily streamflow data set from seven undisturbed catchments in the Tien Shan, has been analysed, 

providing insights into the factors controlling changes in discharge and implications for water 

resources and hazard management.  The main findings are as follows:  

(i) Despite the observed reduction in glacier area of 36-50%, there was no reduction in streamflow 

in any catchment or season in the northern Tien Shan since the 1950s;  

 (ii) In summer, streamflow increased in the catchments with higher elevation and glacierization 

of over 10%; in the lower-elevation catchments, this increase was limited to the consistent 1974-

2013 period but there was no significant change in the longer time series of the mean and median 

streamflow;  

(iii) In summer, a stronger increase was observed in the low flow indicators associated with glacier 

and permafrost melt in all catchments;  
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(iv) In autumn and winter, streamflow increased across the region and the high flow indicators 

exhibited the largest growth due to the prolongation of the high flow period into September; in 

relative terms, this increase was stronger than in other seasons. 

From the perspective of water resources, the key finding is the absence of negative trends in 

streamflow overall and, particularly, in summer. To date, the observed glacier retreat has not resulted 

in diminishing flow. By contrast, a strong growth in summer discharge, driven by increasing 

temperature, was registered in the most heavily glacierized Ulken Almaty catchment (supplying 

water to Almaty city) where the proportion of glacierized area declined from 30% in the 1950s to 

16% at present. This increase in streamflow could be sustained by liquid runoff from higher 

elevations and, importantly, by the meltwater from rock glaciers and permafrost.  

We conclude that there are no immediate problems with water availability in the northern Tien 

Shan in the undisturbed catchments although flow reduction cannot be ruled out under the warmer 

climate in the future. A post-1970s increase in summer streamflow and extension of high flow into 

September will improve hydropower capacity and reduce pressure on the groundwater. It is possible 

that it is the replenished ground-water resources that sustained the observed increase in winter base 

flow in the study region. However, an increase in high flow and POT frequency in the more heavily 

glacierized catchments indicate that investments in hazard management will be required in the 

headwater regions. 
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Table 1. Characteristics of the study catchments. Catchment areas are calculated to the locations of the gauging sites which represent minimum 

elevation in the catchment. Gauging site locations (Fig. 1) and names of the rivers used prior to 1990 are shown in parentheses. Glacierized areas 

refer to 2008 and 2011 (Table 2). *BAL is Bolshoe Almatinskoe Lake (Fig. 1). 

River  Site name, coordinates 

(oN; oE) 

Start 

year 

Missing data 

 

Gauged area  Catchment elevation (m a.s.l.) 

Total Glacierized 

Years % all data km2 km2 % Min Max Mean 

Prohodnaya (1) Mouth;  43.1010; 76.911 1965 2011  2.1 82 3.3 4.0 1442 4180 2820 

Teresbutak - Kazashka (2) Mouth of Kazashka; 

43.1244; 76.9153 

1953 2003 0.6 31 0 0  1389 2830 2370 

Ulken Almaty (Bolshaya 

Almatinka) (3) 

1.1. km upstream  BAL*; 

43.0389; 76.9947 

1952 1994, 1996, 

1998, 1999 

3.9 74 11.4 15.4 2556 4355 3420 

Kishi  Almaty (Malaya 

Almatinka) (4) 

Below mouth of Sarysai; 

43.1396; 77.0684   

1974 1998, 1999, 

2000, 2003  

4.1 47 5.6 

 

11.9 1940 4340 3120 

Turgen (5) Tauturen village; 

43.1385; 77.6501 

1950 1998-2000 4.7 548 20.5 3.7 1142 4390 2800 

Kishi Osek (Malyi Usek) 

(6) 

0.2 km upstream from 

mouth; 44.460; 79.8187  

1961 1999-2005 15.3 418 24.6 5.9 1234 4210 2720 
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Osek (Usek) (7) 1.7 km upstream 

confluence with Kishi 

Osek, 44.5735; 79.8684 

1961 1998-2006 17.1 711 31.7 4.5 1265 4160 2700 
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Table 2.  The extent of and changes in the glacierized area in the study catchments (Kokarev and 

Shesterova; 2011; 2014).  Glacier change is calculated for the period starting 1955/56. 

 

Catchment / 

year 

Glacierized area (km2) Area reduction 

1955/6 1970 1974 1990  2008  2011 km2 % 

Ulken Almaty 21.8 - 16.6 13.6   11.4 - 10.4 47.7 

Prohodnaya - - 6.8 4.2 3.3 - - - 

Kishi Almaty 9.3 - 7.4 6.6 5.6 - 3.7 39.8 

Turgen 35.7  31.0 25.5 20.5 - 15.2 42.6 

Kishi Osek 38.2 34.5 - 29.6 - 24.6 
13.6 35.6 

Osek 64.8 54.7 - 41.6 - 31.7 
33.1 51.1 
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Table 3.  Mean seasonal streamflow (m s-1) and coefficient of variation (CV) for the 1974-2013 period.  

 

Season Prohodnaya Teresbutak Ulken Almaty Kishi Alamty Turgen Kishi Osek Osek 

Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV 

SON 1.4 0.20 0.3 0.35 1.9 0.25 1.3 0.48 5.4 0.24 5.2 0.25 7.5 0.26 

DJF 0.8 0.18 0.2 0.80 0.8 0.19 0.7 0.17 2.8 0.28 2.5 0.27 3.2 0.28 

MAM 1.1 0.21 0.5 0.57 0.9 0.30 0.8 0.28 6.7 0.23 3.8 0.42 7.8 0.38 

JJA 3.1 0.23 0.7 0.45 4.1 0.26 2.8 0.36 15.0 0.18 15.1 0.20 30.7 0.16 
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Table 4. The Mann-Kendal test statistics for trends in seasonal air temperature for 1974-2013 (1951-

2013) periods. Values of trends significant at 5% confidence level are highlighted in bold. Locations 

of the meteorological stations are shown in Fig. 1. SSE – Sen’s slope estimator. 

 

Station / 

Season 

Bolshoe Almatinskoe Lake Mynzhilki Tuyuksu 

 p SSE  p SSE  p SSE 

DJF 0.01 

(0.05) 

0.38 

(0.55) 

0.02 

(<0.01) 

0.09 

(0.17) 

0.44  

(0.05) 

0.01  

(0.02) 

0.11 0.32 0.01 

MAM 0.33 

(0.22) 

<0.01 

(0.01) 

0.06  

(0.02) 

0.33 

(0.32) 

0.01 

(<0.01) 

0.05  

(0.03) 

0.32 <0.01 0.05 

JJA 0.14 

(0.25) 

0.21 

(0.01) 

<0.01 

(0.01) 

0.17 

(0.43) 

0.14 

(<0.01) 

0.01  

(0.02) 

0.21 0.07 0.02 

SON 0.22 

(0.32) 

0.05 

(<0.01) 

0.03 

(0.03) 

0.27 

(0.42) 

0.02 

(<0.01) 

0.04  

(0.04) 

0.31 0.01 0.04 
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Table 5. Pearson correlation coefficients between the non-transformed and de-trended (in 

parentheses) seasonal Q50 flow, air temperature and precipitation from the Mynzhilki station and the 

absolute values of seasonal mass balance for the Tuyuksu glacier for the duration of the streamflow 

(Table 1) or the mass balance records. Correlation coefficients significant at 0.05 confidence level 

are highlighted in bold.  

Variable Temperature Precipitation Mass balance 

Time 

lag 
0 -3 -6 -9 -12 1-3 1-6 1-9 1-12 Summer Winter 

Ulken Almaty 

SON 
0.49 

(0.25) 

0.44 

(0.15) 

0.41 

(0.14) 

0.25 

(0.17) 

0.25  

(-0.06) 

0.001 

(-0.10) 

0.01 

(0.08) 

0.03 

(0.15) 

0.11 

(0.22) 

-0.14  

(0.01) 

-0.33 

(0.21) 

DJF 
0.01  

(-0.11) 

0.32 

(0.08) 

0.35 

(0.08) 

0.13  

(-0.13) 

0.03  

(-0.10) 

0.18 

(0.11) 

0.03  

(-0.07) 

0.18 

(0.22) 

0.09 

(0.16) 

-0.05  

(0.08) 

-0.33 

(0.04) 

MAM 
0.35 

(0.11) 

0.13 

(0.03) 

0.33 

(0.07) 

0.32  

(-0.01) 

0.01  

(-0.33) 

-0.22  

(-0.16) 

-0.12  

(-0.09) 

-0.10  

(-0.12) 

0.09 

(0.19) 

-0.00 

(0.14) 

-0.39  

(-0.06) 

JJA 
0.62 

(0.40) 

0.52 

(0.31) 

0.25 

(0.17) 

0.28  

(-0.05) 

0.27 

(0.16) 

-0.17  

(-0.07) 

-0.09 

(0.08) 

0.01 

(0.16) 

0.15 

(0.28) 

0.06  

(0.26) 

-0.30 

(0.22) 

Turgen 

SON 
0.13 

(0.02) 

-0.09 

(-0.26) 

0.15 

(0.07) 

0.23 

(0.20) 

0.08 

(-0.02) 

0.19 

(0.17) 

0.38 

(0.41) 

0.41 

(0.46) 

0.47 

(0.51) 

-0.35  

(-0.32) 

0.24 

(0.51) 

DJF 
-0.05 

(-0.04) 

-0.11  

(-0.10) 

-0.23  

(-0.25) 

-0.09  

(-0.07) 

-0.03 

(-0.01) 

0.03 

(0.04) 

0.07 

(0.08) 

0.35  

(0.35) 

0.38 

(0.38) 

-0.15 

(-0.17) 

0.20 

(0.21) 

MAM 
0.02 

(-0.01) 

0.04 

(0.03) 

-0.01  

(-0.05) 

-0.07  

(-0.14) 

-0.12 

(-0.17) 

0.04 

(0.05) 

0.12  

(0.12) 

0.26 

(0.26) 

0.38 

(0.40) 

-0.17  

(-0.17) 

0.15 

(0.20) 

JJA 
0.22 

(0.05) 

0.15 

(0.00) 

0.34 

(0.30) 

0.19 

(0.04) 

-0.05  

(-0.32) 

0.23 

(0.31) 

0.37 

(0.49) 

0.47 

(0.58) 

0.57 

(0.65) 

-0.29 

-(0.23) 

0.02 

(0.38) 



48 
 

 

 

Figure 1. Study area. Numbers show locations of the gauging sites (Table 1): 1 – Prohodnaya, 2 – 

Teresbutak, 3 – Ulken Almaty, 4 – Kishi Almaty, 5 – Turgen, 6 – Osek, 7 – Kishi Osek. Letters 

show locations of meteorological stations: A – Mynzhilki, B – Tuyuksu, C – Bolshoe Almatinskoe 

Lake (BAL).  
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Figure 2. Temperature and precipitation climatology for 1974-2013 for BAL (2500 m a.s.l.), 

Mynzhilki (3010 m a.s.l.) and Tyuksu (3438 m a.s.l.) meteorological stations. Locations of the 

stations are shown in Fig. 1. 

 

 

Figure 3. Seasonal values of specific discharge (m3 s-1 km-2) for the 1974 -2013 period. 
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Figure 4. Daily streamflow averaged over the approximately 10-year periods.  
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Figure 5. Time series of seasonal mean streamflow (m3 s-1). Note that different scales are used for 

different rivers.  
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Figure 6. Trends in seasonal and monthly streamflow (% a-1) over the 1974-2013 period and full 

duration of individual records calculated using Mann-Kendall test. Solid bars represent trends 

significant at 0.05 confidence level.  
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Figure 7. Trends in seasonal streamflow (% a-1) over the 1974-2013 period calculated using Mann-

Kendall test for a range of thresholds. Solid bars represent trends significant at 0.05 confidence 

level. 
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Figure 8. Time series of Q10, Q50 and Q90 flow thresholds with linear trends (dashed straight lines) 

for the Ulken Almaty, Turgen and Teresbutak for JJA and SON.  
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Figure 9. Sen’s slope estimator applied in 20-year moving windows and normalised by the time 

series’ means. The values are plotted for the start of the moving window. Gaps is the data (Table 1) 

are not shown.  
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Figure 10. (a) Peak over threshold (POT) series with an average frequency of 3 events per year for 

June-September (JJAS). Each bar represents decadal mean frequency of POT. The Ulken Almaty 

record starts in 1952 (see Table 1 for the details of missing data).  (b) Mean POT flow. 

  

0

1

2

3

4

P
O

T
 p

e
r 

y
e

a
r

(a)
 Turgen  Ulken Almaty

2

4

6

8

10

12

10

20

30

40

50

1950 1960 1970 1980 1990 2000 2010 2020

U
lk

e
n
 A

lm
a
ty

 (
m

 s
-1

)

T
u
rg

e
n
 (

m
  
s

-1
)

(b) Turgen Ulken Almaty



57 
 

  

 

 

Figure 11. Time series of (a) air temperature and (b) precipitation from the Mynzhilki meteorological 

station (3010 m a.s.l.); (c) winter and summer mass balance of the Tuyuksu glacier, (d) beginning 

and end dates of the summer balance in each year, and (e) ELA and AAR at the Tuyuksu glacier. 

Summer mass balance values are shown as negative while absolute values are used in Table 5. Dotted 

lines show linear trends in the temperature and mass balance series. 
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Fig. 12. Pearson correlation coefficient applied in 20-year moving windows to Q50 flow versus: (a) 

annual (September to August) precipitation; (b) JJA air temperature; and absolute values of  (c) winter 

mass balance and (d) summer mass balance. The values are plotted for the start of the moving 

window. Straight solid and dashed black lines show zero values and values of correlation coefficients 

significant at 0.05 confidence level respectively. Gaps is the data (Table 1) are not shown.  
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