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Abstract 

This paper analyses the temporal and spatial changes in the amount and variability of rainfall in 

Scotland. The sequential Mann-Kendall test reveals that total annual precipitation has increased 

across Scotland since the 1970s with increasing trends in variability beginning between the mid-

1960s and the mid-1970s. Whilst temporally consistent increasing trends in precipitation totals 

prevail in the West, many weather stations in the East have experienced subsequent trend turning 

points in the following two decades, explaining the larger magnitude of the trends in western 
Scotland in recent decades. Trend analyses on six measures of rainfall variability indicate an 

increase in rainfall variability during the period 1961-2000, as measured by the intra-annual 

variance, the winter to summer precipitation ratio, and the annual CUSUM range, with decreasing 

trends observed in the number of dry days. Periodicities associated with the North Atlantic 

Oscillation and the Atlantic Multidecadal Oscillation could explain the observed temporal 

variability of rainfall. 
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1. Introduction  

Before the turn of the century, Arnell (1999) projected increasing trends in precipitation 

and runoff for Northern Europe and decreasing trends for Southern Europe under climate change 

and then discussed the potential implications of such projections for the managements of water 

resources. An examination of the precipitation records of Scotland by Smith (1995) provided 

further support to those projections by reporting that the increased rainfall of the 1980s and early 

1990s  was the largest sustained anomaly in the long term precipitation record. Werrity (2002) 

further identified an East-West asymmetry, adding that the above was the wettest period on record 

for western Scotland but not for the East. An accentuation of this East-West precipitation gradient 

was observed over time across the United Kingdom with the Northwest becoming wetter, notably 

in the winter, and the Southeast drier, especially in the summer (Mayes 2000). Such precipitation 

trends have continued until more recently, as reported by Macdonald et al. (2008), along with a 

trend towards greater flood risk in Western Scotland (Black and Burns 2002).  

In addition to these trends in the magnitude of rainfall, there is evidence of an increase in 

rainfall variability at different time-scales (Mansell 1997). Climate change and the associated 

changes in the variability of rainfall are important to water resource managers (Beecham and 

Chowdhury 2010) as climate variability influences the planning of water infrastructure (Mason 

2010). This variability can be observed in terms of gradual or step changes, or a combination of 

the two (Kampata et al. 2008), as well as random fluctuations, or variance, of daily, monthly, 

seasonal, annual, or decadal rainfall.  

A number of techniques have been used to measure rainfall variability with a common 

measure being the variance, e.g. Mitosek (1995). However, the variance parameter does not 

contain any information about the sequence or pattern of such variations. The winter to summer 

(w/s) ratio of precipitation, defined as the ratio of winter (December-February) and summer (June-

August) precipitation totals can therefore be considered more useful especially with respect to 

water resources. This technique has previously been used by Tošić (2004) in Serbia and 

Montenegro, and Burt et al. (1998) and Burt and Horton (2007) in England, among others. Burt et 

al. (1998) noted an increase in the w/s ratio from 1881 to 1995 in North-central England, whereas 

Burt and Horton (2007) found no simple pattern for the period 1850-2004 at Durham in Northeast 

England, although since the 1960s an increase in the w/s ratio was clearly evident.  
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Dry period characteristics such as the annual number of dry days, the average length of a 

dry period, and the maximum dry period length have also been used as measures of variability, for 

example, by Nasri and Modarres (2009), Serra et al. (2006), Gong  et al. (2004), and Schmidli and 

Frei (2005) in Iran, Spain, China, and Switzerland, respectively.  

The Cumulative Sum (CUSUM) of the deviations from the mean value of a reference 

period is a useful measure of the temporal distribution of rainfall. When calculating the CUSUM 

using daily precipitation data with the annual average as the reference value, a large amplitude or 

range in the annual CUSUM, i.e., the difference between the maximum and minimum values for 

each year, indicates that rainfall is concentrated over a short period in the year, while a small 

amplitude indicates that rainfall is more uniformly distributed throughout the year. When using a 

longer term average as a reference value such as the average of the entire data record, the CUSUM 

can be used to identify changes in trends in a time series, as a change in the direction of the 

CUSUM may indicate a sudden shift in the trend (Kampata et al. 2008; Smadi and Zghoul 2006). 

The variability of rainfall may also be evident in terms of regular repeating patterns of 

varying periodicities ranging from months to decades. Identifying such periodicities, which could 

obviously lead to a degree of predictability in weather, has been the subject of much debate for 

several centuries. For example, a 35-year weather cycle was proposed back in the 17th century 

(Burroughs 2003). In 1843 Heinrich Schwabe suggested that the sun’s output varied in a regular 

way related to the number of sunspots, and it is now established that there is an 11-year sunspot 

cycle (Waple 1999). The influence of this 11-year sunspot cycle on rainfall has been reported in a 

number of studies, notably by Seleshi et al. (1994) in Addis Abada, Thomas (1993) in Rome, and 

Ma et al. (2010) in the Huashan mountains of China. Nevertheless, it has also been suggested by 

Karagiannidis (2008) that the sunspot cycle does not have an influence on precipitation in Europe, 

as none of the precipitation time series examined in the paper, including two weather stations in 

Scotland, showed periodicities related to the sunspot cycle.  Likewise, Burroughs (2003) suggested 

that the influence of sunspot variations on rainfall is not strong . 

Periodic variations in atmospheric pressure have also been shown to have significant 

effects on weather patterns. The El Niño Southern Oscillation phenomenon (ENSO) is perhaps the 

most well known and dominant mode of climate variability on Earth. It is an oscillation in 

atmospheric pressure in the Pacific Ocean linked to the El Niño Pacific temperature reversal event 
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and is recognised to influence the European climate, possibly through variations in the position of 

the Northern Hemisphere jet stream (Brönnimann et al. 2006).  

In Europe, the most dominant mode of inter-annual climate variability is the North 

Atlantic Oscillation (NAO) (Hurrell et al. 2003). The NAO refers to the difference in atmospheric 

pressure at sea level between the Icelandic low and the Azores high (Hurrell 1995). Positive values 

of the NAO coincide with a predominance of westerly winds and storm tracks passing over 

northern Europe, including Britain (Werritty and Foster 1998). Consequently, links between the 

NAO and hydro-climatic variables have been observed in northern Europe, notably by Massei et 

al. (2010) in France, who associated the 5-8-year and 17-year periodicities in rainfall over the 

Seine watershed and its river flow regime to the NAO. From 1970 onward, Massei et al. (2010) 

reported that positive episodes of the NAO have become more frequent and of greater amplitude; 

in fact, a LOESS smoothing (i.e., locally weighted polynomial fitting) of the annual NAO index 

indicated a shift from a negative to a positive index during the 1970s. 

A strong periodicity in average sea surface temperatures (SST) in the Atlantic Ocean has 

also been found and is referred to as the Atlantic Multidecadal Oscillation (AMO). In particular, a 

strong 65-year cycle in the AMO is evident from 1856 to the present day with a rising trend 

between 1910 and 1950 and again since the 1970s (Bice et al. 2012). The AMO has been 

correlated with regional changes in temperature and precipitation in Europe, including the United 

Kingdom (Sutton and Hodson 2005).  

Strong periodicities of around two years have also been found in many rainfall records 

and have been attributed to the quasi-biennial reversal of stratospheric winds. For example, the 

rainfall record from Kew, England, which extends back to 1627, shows evidence of variations with 

periods of 2.1 and 2.4 years (Tabony 1979).  

Water resource systems are developed on the basis of a stationary climate (Kizza et al. 

2009). Rainfall variability and trends in rainfall totals are therefore a major concern for water 

companies and policy makers (Gleick and Adams 2000; Mason 2010). However, limited research 

has been carried out to date in Scotland on changes in the variability of rainfall. Therefore, this 

papers aims to identify temporal changes in the amount and variability of rainfall across Scotland 

using various measures of variability and to determine whether there are any spatially coherent 

regions showing similar trends in the amount and variability of rainfall. The periodicity of rainfall 
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and the influence of different climatic oscillations and solar intensity on the temporal variability of 

rainfall are also examined. 

2. Data and methods  

2.1 Sources of data 

Daily precipitation data for 40 weather stations were obtained from the MIDAS Land 

Surface Observations Stations Data of the UK Meteorological Office and distributed through the 

British Atmospheric Data Centre (BADC) (UK Meteorological Office 2006). The weather stations 

were selected based on the length of their data records, the percentage of missing values, and their 

spatial distribution. Nonetheless, the network of precipitation gauges is highest in the more 

populated areas of the country and comparatively sparse in some areas such as the north-western 

highlands (Sweeney and O'Hare 1992). A description of the selected weather stations and their 

temporal coverage is given in Table 1 while Figure 1 illustrates their geographical distribution. All 

selected time series have at least 30 years of data with no more than 5% missing values per year. 

To identify whether there are spatially coherent regions showing similar trends in rainfall amount 

and variability, a subset of 22 weather stations was selected with a common rainfall record 1961-

2000. The grey circles in Figure 1 represent these 22 weather stations.  

The annual and winter station-based NAO index for the period 1880-2010 were 

downloaded from the Climate Analysis Section of the National Center for Atmospheric Research 

(http://www.cgd.ucar.edu/cas/jhurrell/indices.html). The downloaded annual NAO time series 

corresponds to the normalised sea level pressure (SLP) difference between Ponta Delgada in the 

Azores and Stykkisholmur/Reykjavik in Iceland while the winter (December-February) index of 

the NAO uses the sea level pressure of Lisbon, Portugal, instead of the Azores. Since 2003 the 

NCEP/NCAR Reanalysis grid point closest to Ponta Delgada was used as a substitute because of 

the discontinuation of pressure measurements at that weather station. The SLP anomalies at the 

two weather stations were normalised using the 1865-1984 base period.  

The monthly values of the AMO index since 1856, from which an annual average was 

calculated, was provided by the Earth System Research Laboratory of the National Oceanic and 

Atmospheric Administration (http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data) 

(Enfield et al. 2001). The AMO is an index of SST in the North Atlantic and is calculated using an 

area-weighted average of SST between the equator and 70°N with the SST measurements 

http://www.cgd.ucar.edu/cas/jhurrell/indices.html
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originating from version 2 of the Kaplan dataset. The unsmoothed and de-trended version of the 

dataset was used in the present study.  

The annual sunspot index data were obtained from Solar Influences Data Analysis Centre 

(SIDC; http://sidc.oma.be/sunspot-data) for the period 1910-2008 (SIDC-team, World Data Center 

for the Sunspot Index, Royal Observatory of Belgium). 

2.2 Trend analyses 

The magnitude of the trends was determined using the Theil Sen Approach (TSA). This 

technique estimates the trend slope from the median of slopes between all pairs of data points and 

is therefore more robust to the influence of outliers (Sen 1968). The statistical significance of the 

trends was assessed using the associated Mann Kendall (MK) test on a consistent time-period of 

analysis extending over the period 1961-2000. For this purpose, the ‘zyp’ package of the R Project 

for Statistical Computing (http://www.r-project.org/) was used (Hamed 2008). The MK test is a 

non-parametric technique; it is robust to the influence of extremes and is thereby more appropriate 

for skewed data (Gagnon and Gough 2005; Beecham and Chowdhury 2010). Explanations of the 

MK statistical test and its application in climatology and water resources are widely documented 

in the literature (e.g. Beecham and Chowdhury (2010); Burn and Elnur (2002); Helsel and Hirsch 

(2002), Kapouzos et al. (2010)).  

If observations in a time series are correlated with the preceding or succeeding 

observations then serial correlation exists in that time series. The MK test, however, is only valid 

if there is no serial correlation in a time series because positive serial correlation increases the 

variance of the dataset and hence the likelihood of the MK statistical test to erroneously detect a 

statistically significant trend (Gagnon and Gough 2005; Partal and Kahya 2006). Therefore, a 

correction for serial correlation following the procedure by Yue et al. (2002) was made prior to 

using the MK test. The procedure consisted of first removing the trend from the time series when it 

differed from zero; in that case it was assumed to be linear and the trend was estimated using the 

TSA. Second, the lag-1 autocorrelation coefficient of the de-trended time series was computed and 

when it was found to be statistically significant at the 95% confidence level the autoregressive 

component, i.e., AR(1), was removed from the de-trended time series. Third, the trend and the 

residuals of the autoregressive process were added together and the MK test was applied to the 

resulting time series.  

http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
http://sidc.oma.be/sunspot-data
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 The sequential version of the MK test is widely used to determine the approximate 

beginning and/or changes in trend in a time series (Bednorz and Kossowski 2004; Gerstengarbe 

and Werner 1999; Modarres and Sarhadi 2009; Partal and Kahya 2006). In this test individual 

values in a time series (xj) are compared with all preceding values and the number (nj) of 

preceding values less than xj recorded. The test statistic tj is the sum of nj, i.e.: 
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Similarly, the values of u’(t) are computed backwards, starting from the end of the time series 

(Modarres and Sarhadi 2009).  The intersection of the forward, u(t), and backward, u’(t), lines and 

their subsequent divergence from each other can be considered as the beginning of a trend or a 

change point in the temporal behaviour of a time series (Partal and Kahya 2006), which in this 

paper will be referred to as a change in trend or a trend turning point. The latter refers to the point 

at which the trend changes from an upward to a downward direction or vice versa (Węglarczyk 

2009; Yang and Tian 2009). As in Nasri and Modarres (2009), in a few cases, a change point was 

identified even though the forward and backward lines did not cross each other, but came close to 

each other before diverging. These exceptions are mentioned in the results section and were 

included because a clear change point was identified through visual inspection of the original time 

series. Figure 2 illustrates how the sequential MK test identifies the beginning of a trend and 

subsequent trend turning points in different total annual precipitation time series.  
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2.3 Change in mean (step change) 

It has been noted that in some cases there might a step change in the mean value of the 

time series rather than a linear (i.e., gradual) trend. The location and significance of such a step 

change can be estimated using the Worsley Likelihood Ratio (WLR) test (Worsley 1979). This test 

determines whether the means of two parts of a time series are significantly different and if so 

estimates the most likely time of the change. If a time series is split at k with the mean of x1, …, xk 

= μk and the mean of xk+1, …, xn = μ’k, then the within-groups sum of the squares of the deviations 

is calculated as: 





k

i

ik xS
1

)(     (5) 

for k = 1, 2, …, n; where n is the length of the time series and S0 = 0. The normalised between-

group sum of the squares is given by: 
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for k = 1, 2, …, n-1. The likelihood ratio test is based on the statistic: 
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and the level of significance for the values of W was determined using Worsley (1979).  

2.4 Best characterisation of the precipitation record 

 In the case that both the outcomes of the sequential MK test and the WLR test are positive 

at any weather station, for example, if the sequential MK test indicates a change in trend on a 

specific year in a time series while the WLR test indicates that a step change exists at around the 

same time in the same time series, an additional analysis was done so as to determine what best 

characterises the precipitation record. A precipitation time series could be categorised as 

experiencing (1) a gradual trend over the consistent time period of analysis (i.e., the outcome of 

the MK test), (2) a trend beginning on a specific year or with a trend turning point during the study 

period (i.e., the outcome of the sequential MK test), or (3) a step change in the time series (i.e., the 

outcome of the WLR test). The analysis consisted of calculating the variance of the residuals by 

modelling the time series using the three above options with the option with the smallest ratio of 

the variance of the residuals to the variance of the original precipitation time series being the best 

characterisation of the precipitation record. For example, in the first option above (i.e., gradual 



9 

trend), the analysis consisted of calculating the variance of the residuals from the trend line; in the 

second case the residuals were calculated from the trend lines before and after the change in trend; 

while in the third case the residuals were calculated from the mean of the time series before and 

after the step change. 

2.5 Measures of variability  

The variability of rainfall was measured using the intra-annual variance, i.e., the variance 

of the monthly precipitation totals for each year; the w/s precipitation ratio; the annual CUSUM 

range; the number of dry days per year with a dry day defined as a day with less than 0.2 mm of 

precipitation, a threshold commonly used in the literature (e.g. Fowler and Kilsby (2002)); the 

average dry spell length, and the maximum length of a dry period. The w/s ratio was defined as the 

ratio of average winter precipitation (December-February) to the average summer (June-August) 

precipitation. The average precipitation ratio was used as opposed to the ratio of total seasonal 

precipitation as a way to minimise the effect of missing values in the data, which were nonetheless 

limited. The annual CUSUM range was calculated by subtracting the maximum CUSUM value 

from the minimum CUSUM value for each year where the CUSUM refers to the cumulative sum 

of differences between the values of a time series and the average of the series , i.e.: 

   iii SS 1    (8) 

 

for i = 1, 2, …, 365. The cumulative sum begins with S0 = 0 and since the average is subtracted 

from each value, the cumulative sum also ends at zero (S365=0).  

 Ideally there should be some degree of consistency between the various measures of 

variability. The Pearson’s correlation coefficient was calculated between each of the six measures 

of variability (Table 2). Correlation coefficients above 0.304 were considered statistically 

significant at the 95% confidence level (Murdoch and Barnes 1974). 

2.6 Periodicity 

The periodicity of the total annual precipitation time series was measured using 

autocorrelation and wavelet analysis. Where the trend differed from zero, the data were de-trended 

before performing the autocorrelation analysis. Wavelet analysis is a spectral analysis technique 

that identifies periodicities in both the time and frequency domains (Beecham and Chowdhury 

2010). For this purpose, a modified version of the ‘dplR’ package of the R Project for Statistical 
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Computing was used with the continuous wavelet transform plot obtained using the Morlet 

approach (Torrence and Compo 1998), as this approach and has been found to be appropriate for 

hydrological analyses (Beecham and Chowdhury 2010).  

3. Results  

3.1 Trends in total annual precipitation 

Several authors have noted a divergence in precipitation trends between western and 

eastern Scotland, especially since the 1960s (Barnett et al. 2006; Macdonald et al. 2008; Smith 

1995; Werrity 2002). For this reason, the results of the trend analyses, although presented at 

individual weather stations, are divided into the three Scottish regions commonly referred to in the 

literature, i.e., North, West, and East Scotland (Figure 1). Such a division clearly shows the East-

West precipitation asymmetry over Scotland with a mean total annual precipitation of 

approximately 1494 mm in the West and 802 mm in the East (Table 1), which is the result of the 

prevailing weather systems travelling eastward across the country and the effect of orography on 

precipitation. 

The computations of the TSA and MK test calculated over the period 1961-2000 indicate 

an increase in total annual precipitation at all but one weather station with statistically significant 

trends detected at 14 of the 22 stations (Figure 3). The analyses also show that the precipitation 

trends are more pronounced in the West of Scotland than in the East with the average of all 

weather stations in the West showing an increase of 0.71 mm per year in comparison to 0.30 mm 

per year in the East. North Scotland only has one weather station with data available throughout 

the consistent time-period of analysis, which shows a trend towards increasing precipitation of 

similar magnitude to the average of the East region stations.  

The results of the sequential MK test indicate a concentration of change points in the total 

annual precipitation time series in the 1970s (Figure 4). Although many weather stations have data 

records during the 1960s, at only two weather stations was the beginning of a trend detected during 

that decade. Prior to the 1960s, the number of weather stations with data is limited. One weather 

station in the West of Scotland (i.e., Paisley) and another station in the North (i.e., Cluny Castle) 

show the beginning of a decreasing precipitation trend in the early 1940s. The beginning of an 

increasing trend in precipitation is seen in the 1930s at two weather stations in north-eastern 
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Scotland, but no other weather station has experienced any change point towards increasing 

precipitation until the 1970s.  

The total annual precipitation time series were grouped into four categories based on the 

outputs of the sequential MK test since 1970: a unidirectional trend (i.e., no change in trend), a 

single change in trend, two trend turning points, and multiple changes in trend. Figure 2 provides 

an example for each of those four categories. At Blackwood, for instance, the forward and 

backward lines of the sequential version of the MK test do not cross each other throughout the 

length of the data record and accordingly no change in trend is recorded at that weather station 

(Figure 2a). This pattern is seen at five weather stations plus one additional weather station in 

North Scotland, i.e., Greenland, which does not have a complete data record throughout the 1970s. 

In the second category, the sequential lines of the MK test cross each other and diverge in the mid-

to-late 1970s, indicating the beginning of an increasing trend in total annual precipitation at that 

time (Figure 2b). At Skipness, the beginning of an increasing trend in precipitation is also detected 

in the 1970s, but it reverses in the 1980s (Figure 2c); while at Edinburgh the decreasing trend that 

also began in the early 1980s further reverses towards increasing precipitation in the 1990s (Figure 

2d).  

The second pattern, as represented by Gailes in Figure 2, is seen at 26 of the 37 weather 

stations with data throughout the 1970s. At these 27 weather stations, a clear change in trend 

towards increasing precipitation is seen during the 1970s (Figure 4). In addition, Craggie, whose 

data record began in 1973, shows the beginning of an increasing trend in precipitation in the late 

1970s, which is in agreement with the above pattern of a trend towards greater precipitation 

starting in the 1970s and could therefore be included with the above 26 stations. Two additional 

weather stations, i.ie., Islay and Mull in the Inner Hebrides, did not show any change point prior to 

the early-to-mid 1980s. However, at these stations, a visual inspection of the precipitation time 

series could arguably identify the beginning of an increasing trend in total annual precipitation in 

the late 1970s since the forward and backward lines of the sequential version of the MK test first 

crossed each other around 1976-77, and then overlapped and crossed each other a number of times 

prior to diverge in the early 1980s; such an interpretation of this technique was used in other 

studies (e.g. Lazaro et al. (2001) and Partal and Kahya (2006)). 

At 15 of the weather stations showing an increasing trend in precipitation in the 1970s, 

there was either no further change in trend or in the case of six stations a change in the magnitude 
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of the increase is seen (c.f. Figure 4). Spatially, the 15 weather stations falling in this category are 

more prevalent in the West and in the highlands of northern Scotland. Twelve stations, including 

many weather stations in the East and all of those bordering the Firth of Forth, had a trend 

reversal, i.e., a subsequent trend turning point towards decreasing precipitation in the late 1970s or 

early 1980s as illustrated by Skipness in Figure 2c.  Six of these weather stations, with the 

example of Edinburgh provided in Figure 2d, experienced a third trend turning point towards 

increasing precipitation in the 1990s. These six weather stations with multiple changes in trend are 

all situated in eastern Scotland. 

3.2 Step changes in total annual precipitation 

The results of the WLR test, when run over the period 1961-2000, reveal a statistically 

significant step change in the total annual precipitation time series in the 1970s at nine weather 

stations plus in the early 1980s at one additional station with a clustering in the West of Scotland 

(Figure 5). A further four weather stations also show a step change at the same time albeit not 

statistically significant. A representative example is shown in Figure 6a, which clearly illustrates a 

step change in 1978 in the total annual precipitation time series of Blackwood.  

At a number of those weather stations where the WLR identified a step change, the 

sequential MK test had indicated the beginning of a trend or a trend turning point at around the 

same time. Figure 6b depicts the example of Garpel Burn where the sequential MK revealed an 

increasing trend in precipitation beginning in 1977 while the WLR indicates that a step change 

occurred in 1978. Hence the question is what would be considered as the best characterisation of 

the precipitation record at those weather stations in the West of Scotland: a step change with no 

trend before and after or a change point towards increasing precipitation as identified by the 

sequential MK test? Calculating the ratio of the variance of the residuals to the variance of the 

original time series reveals that at three weather stations, i.e., Leadhills, Glassford, and 

Blackwood, a step change was found to best characterise the precipitation records while the results 

of the sequential MK test are to be favoured in all other cases.  

3.3 Rainfall variability – average and trends 

Similar to mean total annual precipitation, an East-West asymmetry is also observed in a 

number of measures of rainfall variability. The intra-annual variance of precipitation and the 

annual CUSUM range, which both represent the distribution of rainfall within a year, are higher in 
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the West than in the East, although not as a proportion of annual precipitation so that the 

coefficient of variation did show a great difference between East and West (Table 1). The w/s ratio 

of precipitation indicates that in the West the winter records 1.7 more total precipitation than the 

summer and this ratio decreases to 1.2 in the East. On average, there are approximately 156 dry 

days per year in the East and 139 in the West, however, there is no significant East-West 

differences in the average length of a dry period or the maximum length of a dry period in a year. 

Accordingly, the depiction of the annual CUSUM range at individual weather stations clearly 

shows higher rainfall variability in the West of Scotland than in the East and North of the country 

when averaged over the period 1961-2000 (Figure 1). A similar East-West pattern is seen in the 

intra-annual variance, the w/s precipitation ratio, and the annual number of dry days per year (not 

shown), which is not surprising given that the correlation between these four measures of rainfall 

variability was found to be statistically significant (c.f. Table 2).  

The trends in the variability of rainfall during the period 1961-2000 reveal that the intra-

annual variance of precipitation has increased over time at all but one weather station, and that the 

trends are statistically significant at the majority of the weather stations situated in the West of the 

country (Figure 7). Most of the trends in the w/s precipitation ratio are statistically significant and 

show a tendency for winters to become wetter and/or summers drier. The direction of the trends in 

the annual CUSUM range is similar to that of the intra-annual variance with most weather stations 

in the West showing statistically significant increasing trends. The annual number of dry days was 

found to be decreasing significantly at 13 of the 22 weather stations, which is in agreement with 

increasing trends in total annual precipitation. Very few trends in the average dry spell length and 

the maximum dry spell length are statistically significant and those that are show increasing trends. 

This reveals an interesting pattern at some weather stations; for example, Loch Calder in North 

Scotland shows an increase in the average and maximum length of a dry period in a year even 

though the annual number of dry days is decreasing.  

The application of the sequential MK test on the six measures of rainfall variability 

reveals that 30 weather stations experienced the beginning of an increasing trend in the intra-

annual variance of precipitation between the mid-1960s and the mid-1970s (Figure 8a). An 

additional three weather stations also show the beginning of an increasing trend in the first half of 

the 1960s, leaving five weather stations with data available throughout the 1960s and 1970s 

without a change in trend towards increasing variance during that period. Nonetheless, these five 
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weather stations experienced a continuous increase in precipitation variance since their data record 

began. Therefore, at all weather stations was the intra-annual precipitation variance increasing 

throughout the 1960s and 1970s or began to increase during that period. 

In addition, as for the total annual precipitation analyses, at some weather stations the 

increasing trends in intra-annual variance that began in the 1960s or 1970s subsequently reversed 

in the early-to-mid 1980s. In fact, 14 weather stations across Scotland experienced a change point 

towards decreasing variance in the 1980s (Figure 8a). At other weather stations, the increasing 

trend beginning in the 1960s or 1970s stopped in the early-to-mid 1980s after which there was no 

overall trend, i.e., the forward and backward lines of the sequential version of the MK test 

overlapped several times (Brunetti et al. 2001) This trend reversal in the 1980s or the lack of an 

overall trend after that time might provide an explanation for the lack of statistically significant 

trends at some weather stations over the consistent time period of analysis, particularly, in the 

North and East of the country (c.f. Figure 7).  

There is a clustering of weather stations with the beginning of an increasing trend in the 

w/s precipitation ratio around the mid-1960s with a few additional weather stations experiencing 

this change in the early 1970s (Figure 8b). These increasing trends persisted until the end of the 

data records at 14 weather stations, while they subsequently reversed in the late 1980s or around 

the mid-1990s at eight weather stations. At ten weather stations no change in trend was observed 

since the 1960s and the w/s precipitation ratio increased continuously throughout the length of the 

data record, resulting in 24 weather stations having experienced a trend towards wetter winters 

and/or drier summers without subsequent reversal in recent decades.  

The annual CUSUM range results display a similar pattern to that of the intra-annual 

variance of precipitation in that there is a clustering of change points towards increasing values 

between the mid-1960s and the mid-1970s (Figure 8c). Thirty weather stations showed a positive 

change in trend between the mid-1960s and the mid-1970s. For 15 of the stations the trend 

continued uninterrupted until the end of the data record and at a further three weather stations a 

continuous increase was observed since at least the 1960s (i.e., increasing trend without any 

change point). In a way similar to the other two measures of variability previously described, a 

trend turning point towards decreasing values was also observed in the early 1980s, this was found 

at 10 weather stations; and in the late 1970s at an additional five other stations.  



15 

No clear pattern could be identified from the application of the sequential MK test on the 

dry period analysis, i.e., the number of dry days per year, the average length of a dry period, and 

the maximum dry spell length (Figure 8d,e,f). A number of change points towards an increase in 

the average and maximum length of a dry period is seen at a number of weather stations in the 

mid-1960s, but the trends are not temporally consistent, which explain why few of the trends seen 

in Figure 7 are statistically significant as well as the weak magnitude of those trends. 

3.4 Periodicity of rainfall  

The auto-correlation analysis on the total annual precipitation time series showed several 

weather stations with statistically significant auto-correlations at the 95% confidence level at a lag 

of 2 and 4 years as well as at lag of 7-8 years, particularly in the West (Figure 9). Some of these 

periodicities can also be seen in the wavelet analyses. The wavelet analyses identified prominent 

cycles at 2-4, 4-7, 7-10 and 16-24 years across Scotland. Table 3 displays the time-period during 

which these four ranges of periodicities were identified at individual weather stations. The upper 

two quartiles of the wavelet transform energy were considered when constructing Table 3; this 

threshold is arbitrary and was set to identify the maximum number of periodicities. As an example, 

Figure 10 illustrates that at Balmoral, periodicities of 2-4, 7-10, and 16-24 years were present. The 

16-24-year periodicity at Balmoral was continuous from the 1960s onwards while the influence of 

the 7-10-year periodicity was strong throughout the 1960s and 1970s, weakened during the 1980s, 

and strengthened again in the 1990s (Figure 10). 

Table 3 indicates that periodicities of 16-24-year are widespread across Scotland although 

outside the cone of influence at many weather stations due to the length of some data records. The 

7-10-year periodicities are common throughout the data records of many weather stations in the 

North and East but are more dominant after around 1980 in the West. Periodicities of 4-7-years are 

limited in their temporal and spatial extent compared to the other periodicities. The 2-4-year 

periodicities are common across the country albeit highly localised in time. Other longer 

periodicities centred on 32 years and 64 years are seen at some weather stations, notably at 

Balmoral for the 32-year periodicity (c.f. Figure 10), but are outside the cone of influence at other 

weather stations. 
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4. Discussion and conclusion 

The results of the trend analyses indicate that total annual precipitation has increased 

during the period 1961-2000 across Scotland with the sequential MK test revealing that these 

increasing trends began in the 1970s. At half of those weather stations, however, there was a 

subsequent trend turning point towards decreasing precipitation in the late 1970s/early 1980s, 

which further reversed towards increasing precipitation in the 1990s at six weather stations in the 

East. In addition, it was found that the increasing trends in precipitation during the period 1961-

2001 at three weather stations in the West of Scotland were the result of a step change in the 1970s 

with no trend before and after that change point. 

Statistically significant increasing trends in rainfall variability were also detected at the 

majority of the weather stations, particularly in the West of the country. In terms of percentage 

change, the trends in rainfall variability are of greater magnitude than those of total annual 

precipitation. The majority of weather stations experienced an increase in intra-annual variance 

and the annual CUSUM range beginning between the mid-1960s and the mid-1970s. These 

increasing trends in variance either: (1) continued until the end of the data records; (2) reversed to 

decreasing trends in the 1980s; or (3) lasted until the mid-1980s after which no trend was 

observed. The dominant pattern for the annual CUSUM range time series was similar with 15 

weather stations showing increasing trends since the 1960s until the end of the data records but a 

reversal of the increasing trends was seen in the late 1970s/early 1980s at 15 other weather 

stations.  

Trend analyses on the w/s ratio of precipitation reveal that winters have become wetter 

and/or summer driers at the majority of the weather stations with many increasing trends 

beginning in the mid-1960s or early 1970s. Some w/s precipitation ratio time series experienced a 

trend reversal in the late 1980s or mid-1990s, which could explain the lack of statistically 

significant increasing trends at those weather stations during the period 1961-2000. The number of 

dry days per year was found to be decreasing at the majority of the weather stations across 

Scotland. No clear temporal or spatial patterns were observed in the time series related to the 

average and maximum length of a dry period, although a tendency for longer dry periods was 

observed, albeit of weak magnitude and with very few weather stations showing statistical 

significance.   
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These results indicate that Scotland has become wetter since the 1970s and that the 

variability of precipitation within years has increased although possibly not as a proportion of total 

annual precipitation. The tendency for precipitation to be concentrated in one part of the year has 

increased, as indicated by the positive trends in the intra-annual precipitation variance and the 

annual CUSUM range, and the increase in the w/s precipitation indicates that winters are 

becoming wetter and/or summers drier. Analysis on the dry period characteristics indicate that the 

number of dry days per year has decreased but with a tendency for dry periods to be longer, 

although not significantly at many weather stations.   

These results agree with those of Barnett et al. (2006) who examined trends in 

precipitation totals across Scotland. They found that Scotland has become wetter at the annual 

time-scale with statistically significant trends found in the winter season only. Regionally the 

trends were of largest magnitude in the western and northern regions of the country, as found in 

the current study. In the summer, a small increase in rainfall was found in the West and a decrease 

in the North, although all the summer season trends lacked statistical significance. The sequential 

MK was not applied to determine the potential beginning year of the precipitation trends. 

Mansell (1997) also found an increase in the intra-annual variance of precipitation at 

Paisley since about 1970. Previous research analysing the variability of rainfall in the UK, 

however, has to date focused on the analysis of the w/s precipitation ratio. Jones and Conway 

(1997) found a 30% increase in precipitation in Scotland for the season November to April when 

comparing the period 1986-2005 with that of 1951-1980. Conversely, the change between these 

two time periods for the other six months of the year was marginal. Mansell (1997) noted that 

most of the increase in total annual precipitation observed during the period 1885-1994 at Paisley 

was due to an increase in winter precipitation. Similar changes in the w/s ratio have been observed 

in England and Wales where an increase is seen when comparing the 1961-1990 period to the 

1941-1970 period (Mayes 1996). At Durham (northeast England) Burt and Horton  (2007) 

observed that during the 20th century winters had become wetter and summers drier, and that this 

increase in the w/s ratio was particularly evident since the 1960s. Osborn et al. (2000) further 

added that there is evidence of an increase in the intensity of daily precipitation amounts in winter 

and a decrease in the summer in the UK during the period 1961-1995. These increasing trends in 

the w/s ratio agree with the results of the present study.  
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The most prevalent periodic cycles in total annual precipitation were 2-4, 4-7, 7-10 and 

16-24 years with longer periodicities centred on 32 years and 64 years seen in the longer time 

series. Mansell (1997) also observed a 18-year periodicity in the Paisley precipitation data using 

Fourier analysis. The 7-10-year periodicities may be attributed to the NAO, which has shown an 8-

12 year periodicity since the mid 1970s (Figure 11). This agrees with the results of Butler et al. 

(1998) who found a prominent spectral peak in both the annual and winter NAO indices at 7.65 

years and Hurrell and van Loon (1997) who found enhanced power in the 6-10-year band in the 

winter NAO time series. The smaller periodicities of 2-4 years may be attributed to the quasi-

biennial reversal of stratospheric winds (Burroughs 2003).  

It is suggested that the positive trends in precipitation in Scotland since the 1970s are 

related to changes in atmospheric circulation patterns associated with the NAO, which changed 

from a negative to a positive phase in the 1970s (Massei et al. 2010), and whose power spectra is 

enhanced beginning in that decade (c.f. Figure 11). This enhancement of the power spectra in the 

annual NAO time series in the 1970s is also seen in the winter NAO time series (not shown), 

which is known to dominate the winter climate of northern Europe. Similarly, Fealy and Sweeney 

(2005) calculated the CUSUM of the winter NAO and found the existence of a change point in the 

1970s, which they associated with more positive values of the NAO. In general, a higher NAO 

index leads to stronger westerly winds across the British Isles, resulting in increased moisture 

transport and precipitation over Scotland. Since the impact of the NAO in Europe is strongest in 

the winter, this might explain the change point in rainfall variability around 1970 at many weather 

stations, notably for the w/s ratio, and the associated decrease in the number of dry days per year, 

particularly in the West. Accordingly, Hannaford and Marsh (2006) found strong positive 

correlation coefficients between winter runoff and the winter NAO in Scotland, particularly for 

catchments exposed to westerly airflows.  

Rainfall records are very noisy (Kundzewick and Robson 2004) and the trend turning 

points identified in the 1980s and 1990s at a number of weather stations in the East of Scotland 

could be the result of random variations in the time series rather than being the result of any 

physical mechanism, especially in view that these turning points result in 'trends' of relatively short 

duration. However, using the method described in Sneyers (1990) revealed that many of the trend 

turning points in the 1980s, but only one during the 1990s, were above the signal to noise ratio in 

addition to the majority of those detected during the 1970s for which a physical explanation was 
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provided above. Since no East-West asymmetry was observed in the occurrence of periodicities of 

less than 10 years (c.f. Table 3), these short term periodicities could not provide a cause for the 

occurrence of the latter trend turning points in the East of the country.  

Werrity and Foster (1998) used a dataset of the Lamb's weather types, which were 

constructed using surface synoptic charts, and thus represent the state of the atmospheric 

circulation for different locations across the UK. They noted that Scotland is influenced by two 

types of weather systems: Westerly and Cyclonic systems. They found that weather stations in the 

West are positively correlated with Westerly systems whereas Cyclonic systems prevail in the 

East. On the one hand, Westerly systems peaked in the 1920s and then declined until the 1970s 

after which they increased. These Westerly systems were found to be strongly correlated to the 

NAO and the occurrence of this increase in Westerly systems since the 1970s gives further support 

for the physical mechanism provided above for the change points in the 1970s observed in the 

precipitation time series. On the other hand, Cyclonic systems have shown a steady rise from the 

1940 until the 1980s during which they declined but then increased again in the 1990s (Werritty 

and Foster 1998). This temporal pattern reflects the behaviour of the precipitation time series of 

eastern Scotland and these changes in Cyclonic systems could explain the trend reversals in the 

total annual precipitation time series seen in this paper in the 1980s and again in the 1990s . 

SSTs in the North Atlantic also influence the hydro-climatology of Europe (Arnell 1999). 

For example, Benestad and Melsom  (2002) found an association between North Atlantic SSTs 

and an unusual rainfall event in Norway, Lorenzo et al. (2010) demonstrated the use of North 

Atlantic SSTs to predict the variability of rainfall in the North West of the Iberian Peninsula, and 

Phillips and McGregor (2002) identified a relationship between North Atlantic SSTs and rainfall 

in the South West of England. One index of SST in the North Atlantic is the AMO and Sutton and 

Hodson (2005) associated the positive phase of this oscillation with greater precipitation in 

western Europe, because a positive AMO favours cyclonic conditions over the North Atlantic and 

Europe (Knight et al. 2006). This 65-year oscillation is seen in the power spectra of the longest 

Scottish precipitation time series and its impact may also be significant in terms of the recent 

positive trends, since its most recent cycle also began in the 1970s (Figure 12).  

The inspiration behind this study is the perception that climate variability is likely to 

increase the variability of the hydrological cycle in many regions, thus increasing uncertainty 

about the availability of water resources in the future. The determination and assessment of risks to 
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water supply systems is based on probabilities based on information gathered from historical 

records (Lopez et al. 2011). Such an approach is justified under the assumption of a stationary 

climate, including the assumption that “the system fluctuates within an unchanging envelope of 

variability” (Milly et al. 2008, p. 573). However, anthropogenic climate change influences how 

our systems function beyond natural variability (Milly et al. 2008).  

The results of this study indicate that in addition to the trends in precipitation totals, the 

variability of rainfall has been increasing through a greater spread of the rainfall values, but the 

temporal distribution of rainfall has also been changing, becoming less uniform through an 

increase in the w/s precipitation ratio. The increasing variability of rainfall has obvious 

implications for water companies as it implies a reduced reliability of storage especially in the case 

of run-of-river supplies. The vulnerability of a given storage system under a variable rainfall input 

depends on the amplitude of the variation and the period of the variation. Storage systems are 

particularly vulnerable to long period and/or large amplitude variations.  Reservoirs could be 

vulnerable for periodicities of 10 years or more noted in some records whereas run-of-river intakes 

are obviously vulnerable to shorter period variations, depending on the intake flow in relation to 

the mean river flow. In the West of Scotland the increased rainfall variability is mitigated by the 

general increase in rainfall although, as seems apparent, much of the increase is in the winter 

months and the increased flows into reservoirs may not result in increased storage if the reservoir 

is already full. In the East the increase in rainfall is less in proportion to the increase in variability 

and therefore one would expect the reservoir reliability to be less. It should also be remembered 

that, the reservoir inflow variability is affected by variations in evapotranspiration as well as 

rainfall. The effect of climate variability on reservoir reliability is the subject of further on-going 

research by the authors. 

Rainfall variability may also have an effect on hydro power generation which is 

significant in Scotland. However, most large schemes include significant storage reservoirs and the 

increased winter flows will be compatible with the peak electricity demand. In addition the 

demand for hydro power is more flexible than the demand for water. 

Further analysis is required at the seasonal time-scale especially on the dry period 

characteristics, and using outputs from regional climate models to determine whether the trends 

presented here are likely to continue into the future and eventually affect the reliability of water 

supply systems across the country. 
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Figure captions: 

 

 

 

 

Fig. 1 Geographical location of the weather stations and rainfall variability in Scotland during the 

period 1961-2000 with the diameter of the circle depicting the magnitude of the annual CUSUM 

range at individual weather stations. Also shown are the three regions of Scotland: North, West, 

and East.  
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Fig. 2 Outcome of the sequential MK test applied to the total annual precipitation time series at 

Blackwood (a), Gailes (b), Skipness (c), and Edinburgh (d)  
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Fig. 3 Trends in total annual precipitation computed for the period 1961-2000 using the Theil-Sen 

approach.  The black bars show the statistically significant trends at the 95% confidence level 

using the MK test. Also shown is the average percentage change in total annual precipitation per 

year for the East and West regions.  



28 

 

Fig. 4 Changes in trend in total annual precipitation identified by the sequential MK test, where the 

black and grey hexagons represent increasing and decreasing trends, respectively, following the 
identified change in trend for the three Scottish regions.  
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Fig. 5 Time occurrence of potential step change in the total annual precipitation time series using 

the WLR test. Black hexagons refer to statistically significant step changes at the 95% confidence 

level.  
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Fig. 6 Step change in the total annual precipitation time series of Blackwood as identified by the 
WLR test (a) and beginning of a trend in the total annual precipitation time series at Garpel Burn 

as identified by the sequential MK test (b).  
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Fig. 7 Trends in rainfall variability (1961-2000) computed using the TSA. The black bars show the 

statistically significant trends at the 95% confidence level using the MK test.  
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Fig. 8 Changes in trend identified using the sequential MK test for intra-annual variance (a), w/s 

precipitation ratio (b), annual CUSUM range (c), number of dry days (d), average dry spell length 
(e), and maximum dry spell length (f), where the black and grey triangles represent increasing and 

decreasing trends, respectively, following the identified change in trend. The grey bars correspond 

to the extent of the data records.  
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Fig. 9 Number of stations with statistically significant autocorrelation at the 95% confidence level 

at different lags 
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Fig. 10 Total annual precipitation at Balmoral (top) and wavelet analysis of that time series 

(bottom) for the period 1928-2007.  
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Fig. 11 Annual time series of the North Atlantic Oscillation (top) and wavelet analysis of that time 

series (bottom) for the period 1880-2009.  
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Fig. 12 Annual time series of the AMO for the period 1856-2010 
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Table 1 Descriptive statistics of the selected weather stations (calculated using entire data record available). Shaded and clear rows correspond to weather stations situated in 

eastern and western Scotland, respectively, as depicted in Figure 1 

Weather 

station 

Ref. No  

(Fig. 1) 

Time-period WMO station 

number 

Total annual 

precipitation 

(mm) 

Intra-annual 

precipitation 

variance 

(mm2) 

Coefficient of 

variation 

w/s 

precipitation 

ratio 

Annual 

CUSUM range 

(mm) 

Annual 

number of dry 

days 

Average dry 

spell length 

(day) 

Maximum dry 

spell length 

(day) 

  North of Scotland 

Greenland 1 1977-2008 14368 980.9 1557.7 0.11 1.6 173.6 91.5 4.0 16.8 

Loch Calder 2 1961-2004 14364 962.2 1564.4 0.13 1.7 174.0 119.3 3.8 14.8 

Fairburn 3 1970-2003 14560 1028.9 2901.8 0.17 2.2 233.6 139.4 3.9 15.2 

Craggie  4 1973-2003 14705 690.7 968.3 0.15 1.0 121.7 151.1 4.0 16.0 

Cluny Castle 5 1928-1995 14768 1009.9 2510.2 0.17 1.5 225.6 131.8 3.7 14.7 

Mull: Gruline 6 1970-2008 14152 2081.8 9428.5 0.14 1.9 440.2 120.7 4.0 15.9 

Aros 7 1961-1992 900 1049.1 2291.4 0.13 1.7 210.6 164.6 4.2 17.7 

  East of Scotland  

Braemar 8 1962-2004 147 900.9 1755.5 0.15 1.7 172.0 127.5 4.6 18.3 

Balmoral 9 1928-2007 148 841.1 1589.9 0.14 1.4 160.2 148.9 3.7 13.7 

Mannofield  10 1927-2006 163 791.9 1374.3 0.16 1.2 144.8 165.5 3.7 13.8 

Invercannie  11 1962-2003 14964 821.1 1766.6 0.17 1.4 160.9 156.2 3.8 15.8 

Cameron 12 1961-1999 15393 812.2 2095.9 0.21 1.2 152.7 165.3 4.0 15.9 

Belliston 13 1961-2007 237 739.4 1186.0 0.17 1.1 131.2 154.5 4.2 16.7 

Tulliallan  14 1961-2000 15450 837.2 1470.4 0.14 1.4 162.0 157.4 4.0 15.6 

Tillicoultry 15 1961-1994 15601 970.0 1699.4 0.13 1.3 176.4 152.5 4.0 15.9 

Kirkcaldy 16 1961-1990 15439 777.6 1169.4 0.17 1.2 137.8 159.2 4.1 15.7 

Edinburgh 17 1920-2002 251 709.2 1492.9 0.22 0.9 140.9 156.2 4.1 16.2 

Samuelston 18 1963-2005 15844 618.6 931.4 0.17 0.9 118.7 164.3 4.1 15.9 

Dunglass  19 1962-2006 15876 663.5 1032.5 0.18 1.0 124.3 176.4 4.0 14.9 

Blyth Bridge 20 1961-2005 274 905.3 1482.5 0.14 1.2 158.2 158.0 3.9 14.8 

Rosebery 21 1961-2000 15782 864.5 1414.4 0.15 1.3 153.0 147.7 3.8 14.5 

Bowhill  22 1961-2008 279 876.9 1455.0 0.14 1.3 164.0 148.3 4.2 16.2 

Rawburn  23 1972-2001 16057 877.9 1627.9 0.15 1.3 155.8 146.9 3.9 15.1 

Lochton 24 1938-2008 16021 631.1 996.5 0.17 1.0 119.4 167.8 3.9 15.4 

  West of Scotland 

Dumfries 25 1961-1998 1017 1051.5 2373.7 0.13 1.6 212.3 163.3 4.2 17.5 

Blackwood 26 1961-2008 13224 1713.1 7198.7 0.18 2.1 381.4 130.2 4.0 15.4 

Forest Lodge 27 1961-2006 13290 1865.9 8860.8 0.16 2.3 446.6 140.4 4.1 15.6 

Drumjohn 28 1961-2002 13281 1704.9 7156.4 0.17 2.1 383.5 126.4 4.0 15.1 

Gailes 29 1967-2008 13419 982.9 1788.7 0.15 1.3 182.5 148.3 4.1 16.3 

Garpel Burn 30 1961-2008 13378 1675.8 6833.2 0.17 2.1 367.1 131.1 4.0 15.4 

Leadhills 31 1961-2006 983 1684.2 5841.3 0.16 1.6 330.5 131.6 3.7 14.4 
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Glassford 32 1961-2000 13588 1217.8 3648.6 0.17 1.7 264.8 137.2 4.2 18.4 

Dunside 33 1961-2000 13569 1411.1 4462.8 0.15 1.7 292.6 142.3 3.9 13.7 

Paisley  34 1928-2006 968 1141.5 2875.1 0.15 1.8 236.4 147.6 3.9 14.7 

Loch Thom  35 1917-1996 13502 1781.1 5870.4 0.14 1.6 343.9 129.0 3.7 14.1 

Mugdock 36 1961-2006 13632 1307.3 3420.1 0.13 1.4 257.1 150.5 3.9 16.0 

Stronachlachar 37 1961-1991 15523 2193.9 12099.0 0.14 2.1 499.6 136.2 4.2 16.4 

Bute: Rothesay 38 1961-2008 939 1411.4 3514.5 0.13 1.5 274.7 145.4 3.9 15.1 

Skipness 39 1961-2008 13845 1422.4 4005.5 0.14 1.6 287.1 143.3 3.9 15.3 

Islay: Eallabus 40 1928-2008 13878 1343.1 3280.1 0.14 1.5 260.2 123.8 4.0 14.6 

North   
 1114.8 3031.7 0.14 1.7 225.6 131.2 3.9 15.8 

East   
 802.3 1443.6 0.16 1.2 148.9 156.0 4.0 15.5 

West   
 1494.2 5201.8 0.15 1.7 313.8 139.2 3.9 15.5 

Scotland  

average 

  

 1137.1 3225.7 0.15 1.5 229.4 142.1 3.9 15.6 
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Table 2 Correlation matrix between the different measures of variabilitya 

 

Intra-annual 

precipitation 

variance 

w/s 

precipitation 

ratio 

Annual 

CUSUM 

range 

Annual 

number of 

dry days 

Average dry 

spell length 

Maximum 

dry spell 

length 

Intra-annual 

precipitation 
variance 

1 0.47 0.95 -0.51 -0.08 -0.06 

w/s precipitation 
ratio  1 0.66 -0.45 0.44 0.08 

Annual CUSUM 
range   1 -0.59 0.03 -0.05 

Annual number of 
dry days    1 0.16 0.09 

Average dry spell 

length     1 0.41 

Maximum dry spell 
length      1 

Mean absolute 

correlation 
coefficient 

0.41 0.42 0.45 0.35 0.22 0.13 

 a Values in bold are statistically significant at the 95% confidence level 
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Table 4 Periodicities identified using wavelet technique  

a) 16-24 year periodicities 

Station name Ref.No  

(Fig. 1) 

16-24 years periodicity 
1930                  1940                1950                 1960                1970                 1980                1990                  2000 

 North of Scotland 

Greenland 01          

Loch Calder 02          

Fairburn 03          

Craggie 04          

Cluny Castle 05          

Mull: Gruline 06          

Aros 07          

 East of Scotland 

Braemar 08          

Balmoral 09          

Mannofield 10          

Invercannie 11          

Cameron 12          

Belliston 13          

Tullialam 14          

Tillicoultry 15          

Kirkcaldy 16          

Edinburgh 17          

Samuelston 18          

Dunglass 19          

Blyth Bridge 20          

Rosebery 21          

Bowhill 22          

Rawburn 23          

Lochton 24          

 West of Scotland 
Dumfries 25          

Blackwood 26          

Forest Lodge 27          

Drumjohn 28          

Gailes 29          

Garpel Burn 30          

Leadhills 31          

Glassford 32          

Dunside 33          

Paisley 34          

Loch Thom 35          

Mugdock 36          

Stronachlachar 37          

Bute: Rothesay 38          

Skipness 39          

Islay: Eallabus 40          

 

extent of precipitation record  

extent of periodicity  

extent of periodicity outside the cone of influence 
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b) 7-10 year periodicities  

Station name Ref.No  

(Fig. 1) 

7-10 years periodicity 
1930                  1940                1950                 1960                1970                 1980                1990                  2000 

 North of Scotland 

Greenland 01          

Loch Calder 02          

Fairburn 03          

Craggie 04          

Cluny Castle 05          

Mull: Gruline 06          

Aros 07          

 East of Scotland 

Braemar 08          

Balmoral 09          

Mannofield 10          

Invercannie 11          

Cameron 12          

Belliston 13          

Tullialam 14          

Tillicoultry 15          

Kirkcaldy 16          

Edinburgh 17          

Samuelston 18          

Dunglass 19          

Blyth Bridge 20          

Rosebery 21          

Bowhill 22          

Rawburn 23          

Lochton 24          

 West of Scotland 

Dumfries 25          

Blackwood 26          

Forest Lodge 27          

Drumjohn 28          

Gailes 29          

Garpel Burn 30          

Leadhills 31          

Glassford 32          

Dunside 33          

Paisley 34          

Loch Thom 35          

Mugdock 36          

Stronachlachar 37          

Bute: Rothesay 38          

Skipness 39          

Islay: Eallabus 40          
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c) 4-7 year periodicities 

Station name Ref.No  

(Fig. 1) 

4-7 years periodicity 
1930                  1940                1950                 1960                1970                 1980                1990                  2000 

 North of Scotland 

Greenland 01          

Loch Calder 02          

Fairburn 03          

Craggie 04          

Cluny Castle 05          

Mull: Gruline 06          

Aros 07          

 East of Scotland 
Braemar 08          

Balmoral 09          

Mannofield 10          

Invercannie 11          

Cameron 12          

Belliston 13          

Tullialam 14          

Tillicoultry 15          

Kirkcaldy 16          

Edinburgh 17          

Samuelston 18          

Dunglass 19          

Blyth Bridge 20          

Rosebery 21          

Bowhill 22          

Rawburn 23          

Lochton 24          

 West of Scotland 

Dumfries 25          

Blackwood 26          

Forest Lodge 27          

Drumjohn 28          

Gailes 29          

Garpel Burn 30          

Leadhills 31          

Glassford 32          

Dunside 33          

Paisley 34          

Loch Thom 35          

Mugdock 36          

Stronachlachar 37          

Bute: Rothesay 38          

Skipness 39          

Islay: Eallabus 40          
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d) 2-4 year periodicities 

Station name Ref.No  

(Fig. 1) 

2-4 years periodicity 
1930                  1940                1950                 1960                1970                 1980                1990                  2000 

 North of Scotland 

Greenland 01          

Loch Calder 02          

Fairburn 03          

Craggie 04          

Cluny Castle 05          

Mull: Gruline 06          

Aros 07          

 East of Scotland 

Braemar 08          

Balmoral 09          

Mannofield 10          

Invercannie 11          

Cameron 12          

Belliston 13          

Tullialam 14          

Tillicoultry 15          

Kirkcaldy 16          

Edinburgh 17          

Samuelston 18          

Dunglass 19          

Blyth Bridge 20          

Rosebery 21          

Bowhill 22          

Rawburn 23          

Lochton 24          

 West of Scotland 

Dumfries 25          

Blackwood 26          

Forest Lodge 27          

Drumjohn 28          

Gailes 29          

Garpel Burn 30          

Leadhills 31          

Glassford 32          

Dunside 33          

Paisley 34          

Loch Thom 35          

Mugdock 36          

Stronachlachar 37          

Bute: Rothesay 38          

Skipness 39          

Islay: Eallabus 40          

 

 

 

 


