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Abstract
The rapid wide-scale spread of fall armyworm (Spodoptera frugiperda) has caused se-
rious crop losses globally. However, differences in the genetic background of sub-
populations and the mechanisms of rapid adaptation behind the invasion are still not 
well understood. Here we report the assembly of a 390.38-Mb chromosome-level 
genome of fall armyworm derived from south-central Africa using Pacific Bioscience 
(PacBio) and Hi-C sequencing technologies, with scaffold N50 of 12.9 Mb and con-
taining 22,260 annotated protein-coding genes. Genome-wide resequencing of 103 
samples and strain identification were conducted to reveal the genetic background 
of fall armyworm populations in China. Analysis of genes related to pesticide- and 
Bacillus thuringiensis (Bt) resistance showed that the risk of fall armyworm developing 
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1  | INTRODUC TION

The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a polyph-
agous pest that is native to tropical and subtropical America, with 
a strong capacity for migration and reproduction (Johnson, 1987; 
Mitchell et al., 1991; Westbrook, Nagoshi, Meagher, Fleischer, & 
Jairam, 2016). It was first detected in Africa in 2016 (Goergen, Kumar, 
Sankung, Togola, & Tamò, 2016) and spread to 44 African countries 
within 2 years. It was detected in India in 2018, and has now spread 
to several southeastern Asian countries (Nagoshi et al., 2020). Such 
rapid spread poses a global threat to food production. The strong en-
vironmental adaptability of fall armyworm is not only reflected in its 
polyphagy for a wide range of host plants (Luginbill, 1928), but also 
in its evolution of resistance to chemical pesticides and genetically 
modified crops expressing Bacillus thuringiensis (Bt) toxins (Bernardi 
et al., 2015; Leibee & Capinera, 1995; Monnerat et al., 2015; 
Signorini et al., 2018; Storer et al., 2010). Studies have shown that 
gene families related to detoxification and metabolic processes in 
the fall armyworm have clearly expanded (Gouin et al., 2017; Liu 
et al., 2019). In addition, there are two morphologically identical, 
but genetically distinct, subpopulations or strains of fall armyworm, 
the rice-strain (R-strain) and the corn-strain (C-strain), which differ 
in their host plant selection and sex pheromone composition (Lima 
& McNeil, 2009; Pashley, 1986; Pashley, Hammond, & Hardy, 1992; 
Pashley & Martin, 1987). However, there is no absolute mating bar-
rier between the two strains and productive hybridization has been 

confirmed in both laboratory and field studies (Dumas et al., 2015; 
Nagoshi, Meagher, Nuessly, & Hall, 2006).

To date, several field-evolved resistant populations of fall ar-
myworm have been detected, including those displaying resistance 
to a variety of chemical pesticides and Bt crops (Chandrasena 
et al., 2018; Gutiérrez-Moreno et al., 2019; Zhu et al., 2015). The 
reported mechanisms of resistance to pesticides are mainly due to 
variation in receptor genes, such as amino acid changes in the ryano-
dine receptor (RyR) (diamide), acetylcholinesterase (AChE) (organo-
phosphate) and voltage-gated sodium channel (VGSC) (pyrethroids) 
(Boaventura et al., 2020; Carvalho, Omoto, Field, Williamson, & 
Bass, 2013; Yu, Nguyen, & Abo-Elghar, 2003). In addition, the frame-
shift mutation resulting in early termination of the ATP-dependent 
Binding Cassette subfamily C2 gene (ABCC2) gene, caused by a 
2-bp insertion, is linked to resistance to Bt toxin Cry1Fa (Banerjee 
et al., 2017). Field-evolved strains resistant to Bt toxin Vip3Aa20 
were obtained by screening homozygous resistance loci in F2 gen-
erations in the laboratory (Yang et al., 2018). Clarifying the devel-
opment of pesticide- and Bt-resistance in fall armyworm would be 
helpful in providing scientific support for the commercialization of 
genetically modified crops and Bt biopesticides.

Recent studies have indicated that molecular identification of 
the C- and R-strains of fall armyworm is dependent on which mark-
ers are used (Meagher & Gallo-Meagher, 2003; Nagoshi, 2012). 
Early molecular markers based on mitochondrial Cytochrome 
Oxidase Subunit I (COI) and Z-chromosome-linked Tpi genes failed to 
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resistance to conventional pesticides is very high. Laboratory bioassay results showed 
that insects invading China carry resistance to organophosphate and pyrethroid pes-
ticides, but are sensitive to genetically modified maize expressing the Bt toxin Cry1Ab 
in field experiments. Additionally, two mitochondrial fragments were found to be in-
serted into the nuclear genome, with the insertion event occurring after the differen-
tiation of the two strains. This study represents a valuable advance toward improving 
management strategies for fall armyworm.
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accurately assign the strain genetic background (Juárez et al., 2014; 
Nagoshi, 2019; Nagoshi, Goergen, Goergen, Du Plessis, van den 
Berg, & Meagher, 2019; Nagoshi et al., 2017). The dominant popu-
lations of fall armyworm invading Africa and Asia were speculated 
to be hybrid populations based on these two molecular markers 
(Zhang et al., 2019). In addition, an Africa-specific haplotype, dif-
ferent from those native to the Americas, was also reported in 
African and Chinese samples based on the Tpi gene (Liu et al., 2019; 
Nagoshi et al., 2019), which makes strain identification and stud-
ies of population genetic structure more complicated. Therefore, 
a genome-wide analysis of the genetic characteristics of invasive 
fall armyworm is becoming imperative. Although several versions 
of the fall armyworm genome have now been published (Gouin 
et al., 2017; Kakumani, Malhotra, Mukherjee, & Bhatnagar, 2014; 
Liu et al., 2019; Nam et al., 2019; Nandakumar, Ma, & Khan, 2017), a 
high-quality genome assembly from a different geographical source 
is a valuable addition to the genomic resources for this species. 
Moreover, the different biological properties of the C- and R-strains 
and the debate regarding strain identification will benefit from fur-
ther genomic support and explanation. Here we report a chromo-
some-level genome sequence of a male moth from an inbred fall 
armyworm strain, which derived from field populations collected 
in Zambia in 2017 and would be classed as C-strain based on COI 
genotype but possessed an Africa-specific Tpi haplotype which dif-
fers from the Western Hemisphere (henceforth American) R- and 
C-strain. We also resequenced 103 fall armyworm samples from 
16 Provinces in China, as well as four samples collected from two 
African countries (Zambia and Malawi). The genome-wide genetic 
backgrounds of the invading fall armyworm samples were com-
pared, and insecticide-resistance risk was assessed based on anal-
ysis of potential resistance-related genes. Comparative genomic 
analyses of these data will help to reveal the resistance-related 
mechanisms and the population genetic characteristics of fall army-
worm, which may facilitate its future management.

2  | MATERIAL S AND METHODS

2.1 | Samples and sequencing for genome assembly

The fall armyworm samples were collected from maize fields in 
Lusaka, Zambia, in 2017 and reared to produce an inbred strain. 
One male moth, derived from seven successive generations of 
single-pair sib mating, was selected for genomic sequencing for 
the primary assembly data set and all other individuals used in the 
Hi-C and RNAseq experiments were from the same inbred strain. 
DNA was extracted using the Qiagen Genomic DNA kit (Cat. no. 
13323, Qiagen) followed by purity assessment and quantification 
with a NanoDrop One UV-Vis spectrophotometer (Thermo Fisher 
Scientific) and Qubit 3.0 Fluorometer (Invitrogen), respectively. 
About 0.5 μg genomic DNA (gDNA) was used as input to generate 
a PCR-free Illumina genomic library using the Truseq Nano DNA HT 
Sample preparation Kit (Illumina), with 350-bp insert size and this 

library was sequenced in 2 × 150-bp format on the Illumina NovaSeq 
6000 platform. Five micrograms of gDNA from the same individual 
was used as an input for ~20-kb insert libraries (SMRTbell Template 
Prep Kit 1.0, Cat. no. 100-259-100, PacBio) sequenced on the PacBio 
Sequel (Pacific Biosciences). Two third-instar larvae were selected 
for Hi-C library construction, and nuclear DNA was cross-linked in 
situ, extracted and then digested with the restriction enzyme DpnII. 
Hi-C libraries were amplified by 12–14 cycles of PCR and sequenced 
on the Illumina NovaSeq 6000 platform with 2 × 150-bp reads. In 
addition, three fifth-instar larvae, three pupae, three female moths 
and three male moths were used for RNA sequencing. Total RNA 
was extracted using the RNeasy Mini extraction kit (Qiagen), and 
a NanoPhotometer spectrophotometer (Implen) and Qubit 2.0 
Flurometer (Life Technologies) were used to check the purity and 
concentration of RNA, respectively. One microgram total RNA per 
sample was used to make indexed cDNA libraries using the NEBNext 
Ultra RNA Library Prep Kit for Illumina (NEB) following the manu-
facturer's recommendations. The libraries had insert sizes of 250–
300 bp and were sequenced on the Illumina NovaSeq 6000 platform 
with 150-bp paired-end output.

2.2 | Genome assembly and correction

The raw PacBio reads longer than 5 kb were assembled into contigs 
using the software wtdbg2 version 2.4 with the parameters "-p 0 
-k 15 -AS 2 -s 0.05 -L 5000" (Ruan & Li, 2019). arrow version 2.1.0 
(https://github.com/Pacif icBio scien ces/Genom icCon sensus) was 
used to correct assembly errors after comparing contigs with PacBio 
reads using pbalign version 0.4.1 (https://github.com/Pacif icBio scien 
ces/pbalign). The Illumina raw reads were filtered by trimming the 
adapter and low-quality regions using clean _ adapter version 1.1 
with the parameter "-a Both-adapter -r 75 -s 12" and clean _ lowqual 
version 1.0 with the parameter "-e 0.001 -r 75" (https://github.com/
fanag islab/ assembly_2ndGeneration/tree/master/clean_illumina). 
The filtered Illumina reads were aligned to the assembled contigs 
by bwa mem version 0.7.17 (Li & Durbin, 2009), and single base er-
rors in the contigs were corrected by pilon version 1.21 (Walker 
et al., 2014).

2.3 | Genome estimation and evaluation

A distribution analysis of 17 k-mer frequencies was performed to 
estimate the genome size of fall armyworm. The filtered Illumina 
reads were used as input to construct k-mer frequencies by jellyfish 
(https://github.com/gmarc ais/Jelly fish). Genome size was estimated 
using G = K_num/K_depth, where the K_num is the total number 
of K-mers, and K_depth is the frequency occurring more frequently 
than the others (Li et al., 2010). We used the arthropoda gene set 
(odb9) to assess the integrity of the genome by Benchmarking 
Universal Single-Copy Ortholog (busco) version 3.0.2 (Simao, 
Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015).

https://github.com/PacificBiosciences/GenomicConsensus
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2.4 | Chromsome assembly based on Hi-C data

The Hi-C sequencing raw reads were filtered to remove reads con-
taining <5 bases of adaptor sequence; >50% of bases with phred 
quality value of <19; and <5% of unknown bases (N). Filtered reads 
were then aligned to the assembled contigs using bowtie2 (version 
2.2.3; http://bowti e-bio.sourc eforge.net/bowti e2/index.shtml) 
(Langmead & Salzberg, 2012). Invalid read pairs were filtered using 
default settings by hic-pro (version 2.7.8; https://github.com/nserv 
ant/HiC-Pro) (Servant et al., 2015). lachesis (https://github.com/
shend urela b/LACHESIS) (Burton et al., 2013) was applied to clus-
ter, order and orient contigs based on the agglomerative hierarchi-
cal clustering algorithm. For each chromosome cluster, the ordered 
contigs were oriented by building a weighted, directed acyclic graph 
(WDAG). The orientation of each contig in each chromosomal group 
was predicted according to the maximum-likelihood path through 
WDAG. Finally, we cut the chromosomes predicted by lachesis into 
bins of equal length (100 kb) and constructed a heatmap based on 
the interaction signals revealed by valid mapped read pairs between 
bins using hic-pro.

2.5 | Gene prediction and annotation

A de novo repeat library of fall armyworm was constructed by re-
peatmodeler version 1.0.4 (http://www.repea tmask er.org/Repea 
tMode ler.html). Transposable elements (TEs) were identified by 
repeatmasker version 4.0.6 (http://www.repea tmask er.org/) using 
both the de novo library and Repbase library (Repbase-20150923), 
and tandem repeats were predicted using tandem repeats finder 
(Benson, 1999) version 4.07b. We used a combination of ab initio 
prediction, homology searches and RNA-seq annotation to pre-
dict genes in the Spodeptera frugiperda genome. We performed 
ab initio prediction using augustus 2.5.5 with default parameters 
(Stanke & Waack, 2003). For homology-based annotation, we 
queried the S. frugiperda genome sequences against a database 
containing nonoverlapping protein sequences from closely re-
lated species (Bombyx mori, Helicoverpa armigera, Spodoptera litura) 
by genblasta with default parameters (She, Chu, Wang, Pei, & 
Chen, 2009). genewise (Birney, Clamp, & Durbin, 2004) was used 
to refine the genblasta mappings to the genome. For the RNA-seq 
annotation, the RNA-seq data were mapped to the assembled ge-
nome of S. frugiperda using tophat version 2.0.12 and alignments 
were processed by cufflinks version 2.2.1 with default parameters 
to generate transcript predictions (Trapnell et al., 2012). evidence 
modeler (Haas et al., 2008) version 1.1.1 was used to combine ab 
initio predictions, homology-based searches and RNA-seq align-
ments. Predicted gene models supported by at least one of the an-
notations using the UniProt database, NR database and RNA-seq 
data were retained. Gene functional annotation was performed by 
aligning the predicted protein sequences to the NCBI NR, UniProt, 
eggNOG, and KEGG databases with blastp version 2.3.0+, apply-
ing an E-value cut-off < 10−5.

2.6 | Phylogenetic tree construction and 
genomic comparison

Orthologous and paralogous gene families identified in a set of 10 
species (Drosophila melanogaster, Plutella xylostella, Bombyx mori, 
Manduca sexta, Danaus plexippus, Heliconius melpomene, Operophtera 
brumata, Helicoverpa armigera, Spodoptera frugiperda, Spodoptera 
litura) with published genomes were analysed by orthofinder ver-
sion 2.3.1 with default parameters. Orthologous groups that con-
tain single-copy genes for each species were selected to construct 
the phylogenetic tree. The multisequence alignment of proteins was 
accomplished by muscle (Edgar, 2004) version 3.8.31. A neighbour-
joining (NJ) phylogenetic tree was constructed using mega version 
7.0.14. The current assembled genome was aligned with two pub-
lished versions of fall armyworm genomes using the mummer3.23 
(Kurtz et al., 2004) package with cutoff of identity >80% and cover-
age >80%. Alignments were filtered to generate a multi-alignment 
data set using the delta-filter utility with 85% minimum identity (-i 
85) and minimum alignment length 10 (-l 10). A set of unique align-
ments was created using the same filter criteria but with the addition 
of the -r and -q flags.

2.7 | Sampling for resequencing and population 
genetic study

A total of 103 Chinese fall armyworm samples were used for re-
sequencing. All samples were collected as larvae on maize or sug-
arcane from 50 cities of 16 provinces (autonomous regions or 
municipalities) of China. The larvae were fed with fresh maize leaves 
and brought back to the laboratory under ambient conditions dur-
ing transportation. Larval bodies were cleaned and then stored in 
a freezer at −80°C. Detailed sample information is presented in 
Table S1 and the sample distribution in China is shown in Figure S1. 
In addition, four fall armyworm samples from Africa were also used 
for resequencing, including two samples (AFR4 and 5) from the same 
inbred strain (AFR2017) as the genome sequencing in this study, and 
another two samples (AFR14 and 15) which were collected from 
maize fields in Bvumbwe, Malawi, in January 2019, which is also an 
inbred strain (AFR2019) reared in the laboratory. A total of 1.5 μg 
gDNA of each sample was used to construct a 350-bp insert library 
using the Truseq Nano DNA HT Sample preparation Kit (Illumina) 
sequenced in 150-bp paired-end mode as described in section 2.1. 
Raw reads were aligned to the NCBI NT database using blastn, and 
reads with significant matches (identity > 95% and coverage > 80%) 
to microbes or host plants were removed.

A further 173 fall armyworm samples from 21 provinces in China 
were used for strain identification and molecular detection using 
PCR amplification and Sanger sequencing. Genomic DNA was ex-
tracted using the Multisource Genomic DNA Miniprep Kit (Axygen) 
according to product instructions. The 50-µl PCR mixture contained 
25 µl of 2 × Easytaq mix, a mixture of 2 µl forward and reverse prim-
ers (10 μM), 2 µl DNA, and 21 µl diethy1 pyrocarbonate (DEPC) H2O. 

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/nservant/HiC-Pro
https://github.com/nservant/HiC-Pro
https://github.com/shendurelab/LACHESIS
https://github.com/shendurelab/LACHESIS
http://www.repeatmasker.org/RepeatModeler.html
http://www.repeatmasker.org/RepeatModeler.html
http://www.repeatmasker.org/
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PCR was performed at 94°C for 5 min, 34 cycles of 94°C for 30 s, 
60°C for 30 s and 72°C for 30 s, and finally 72°C for 5 min. A total 
of 10 µl of the PCR products containing the target fragment were 
sequenced by Life Technology. These samples were collected from 
the field as larvae or adult moths. Detailed sample information is 
presented in Table S2 and the sample distribution in China is shown 
in Figure S1. Mitochondrial COI and Tpi markers were used for strain 
identification. ABCC2 and AChE genes were detected based on 
primers designed according to published mutation sites (Banerjee 
et al., 2017; Carvalho et al., 2013). Inserted mitochondrial fragments 
in the nuclear genome were detected using primers designed in 
this study. All primer sequence information in this study is shown 
in Table S3.

2.8 | Read mapping and SNP calling

The Illumina raw reads from resequenced samples were filtered 
using clean _ adapter and clean _ lowqual software as described in 
section 2.1, resulting in high-quality reads with an average error 
rate of <0.01. The high-quality reads were then aligned to the fall 
armyworm reference genome (American C-strain) and mitochon-
drial genome sequences using bwa mem software (Li & Durbin, 2009) 
version 0.7.5a with default parameters. Alignments for each sam-
ple were processed by removing duplicate reads using the samtools 
(Li et al., 2009) software package version 1.3. The mpileup func-
tion in samtools was used to generate mpileup files for each sam-
ple. vcftools (Li, 2011) was used to identify SNPs and small indels. 
Several criteria were considered in SNP filtering: (a) a read mapping 
score higher than 40; (b) minimum coverage greater than 10; and (c) 
SNP genotypes called in >90% of samples. We also conducted prin-
cipal component analysis (PCA) to evaluate genetic structure using 
the software Genome-wide Complex Trait Analysis (gcta) version 
1.04 (Yang, Lee, Goddard, & Visscher, 2011).

2.9 | Bioassays of insecticides and Bt maize 
in the field

Bioassays were conducted by a topical application procedure 
(Armes, Jadhav, Bond, & King, 1992). Two inbred strains (cdcc and 
cdyc) collected from Yunnan Province and reared for multiple gener-
ations in the laboratory were tested using 14 types of pesticide com-
monly used in agricultural production (Table S4). Drops (1.0 µl) of a 
serial dilution of technical insecticides in acetone solution were ap-
plied with a micropipette to the thoracic dorsum of the third-instar 
larvae, with control larvae treated with 1.0 µl acetone. After treat-
ment, the larvae were reared individually in 24-well plates contain-
ing ad libitum artificial diet without any Bt proteins or insecticides. 
Larvae were retained in an insect chamber with a controlled environ-
ment of 26 ± 1°C, 60 ± 10% relative humidity and a photoperiod of 
16 hr: 8 hr (light–dark). Mortality was assessed after 72 hr of treat-
ment. Larvae were considered dead if they were unable to move in 

a coordinated manner when prodded with a small soft brush. We 
used median lethal doses (LC50) to evaluate the resistance level of 
different fall armyworm populations. The LC50 and 95% fiducial limit 
(FL) for each insecticide were estimated by probit analysis using the 
software package polo-pc (Russell, Robertson, & Savin, 1977) (LeOra 
Software).

The Bt toxin field bioassays were conducted at a genetically 
modified (GM) test base in Yunnan Province, China. Test seeds of 
GM maize (expressing Cry1Ab) and control maize were provided by 
the DBN Biotech Center, Beijing DBN Technology Group Co., Ltd. 
Both maize types were planted in ~180 m2, with each type being 
replicated three times. Larval density and maize damage rates were 
investigated at different growth stages of maize at seven different 
dates during June and July. The investigation was performed in a 
five-spot sampling method with 20 maize plants per point. Fall ar-
myworm damage assessment was performed according to stan-
dard procedures (Davis, Ng, & Williams, 1992; Williams, Buckley, & 
Daves, 2006; Wiseman & Widstrom, 1984).

3  | RESULTS

3.1 | High-quality genome assembly of fall 
armyworm

A total of 25.89 Gb raw PacBio long reads and 162.4 Gb Illumina 
raw reads were generated. After filtering low-quality and dupli-
cated reads, 24.72 Gb PacBio long reads and 95.4 Gb high-quality 
Illumina reads were used for genome assembly, together repre-
senting an ~300× coverage of the fall armyworm genome. Using 
wtdbg2 (Ruan & Li, 2019), the final genome was assembled into 
776 contigs with size of 390.38 Mb and contig N50 length of 
5.6 Mb (longest, 18.5 Mb), including a complete mitochondrial 
sequence (Table 1). The assembled genome size was close to the 
estimated size of 395 Mb based on k-mer depth distribution analy-
sis, which was also similar to that determined by flow cytometry 
(396 ± 3 Mb) (Gouin et al., 2017). After interaction analysis based 
on a total of 78 Gb data obtained through Hi-C sequencing, 143 
contigs were concatenated into 31 linkage groups with a scaffold 
N50 of 12.9 Mb, accounting for 96.3% of the total genome length 
(Figure 1). By aligning the Illumina data with the assembled fall ar-
myworm genome, the mapping rate and coverage were 98.8% and 
99.7% (≥5 reads) respectively, highlighting the accuracy and high 
integrity of the genome assembly. The genome size reported in 
this study is intermediate between those of previously published 
fall armyworm versions, but the genome is nearly 140 Mb smaller 
than that recently published by Liu et al. (2019). Genome collinear-
ity analysis showed that more than 98% of the current assembled 
genome was consistent with previously published versions (Gouin 
et al., 2017; Liu et al., 2019) (Table S5), and regions within the as-
sembly presented in this study align to multiple regions of Liu's as-
sembly, indicating the previous assembled genome with larger size 
was mainly caused by high heterozygosity of sequenced samples.
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By combining homology-based and de novo approaches, we 
identified ~27.2% of repetitive elements in the assembled fall ar-
myworm genome. Among the known repeat families, long inter-
spersed nuclear elements (LINE) constituted the most abundant 
repeat family, representing 8.7% of the repetitive sequences, 
while long terminal repeats (LTR) comprised only 1.4% (Table S6). 
To annotate the fall armyworm genome, we performed deep 
transcriptome sequencing of larvae, pupae, and male and female 
moths, including three different developmental stages, which gen-
erated 98.4 Gb of RNA-seq data. By combining homologue-based, 
ab initio and transcriptome-based approaches, we predicted 
22,260 protein-coding genes (gene models) in the fall armyworm 
genome, which is greater than the number of predicted genes 
in other lepidopteran genomes that have so far been published 
(Dasmahapatra et al., 2012; Kanost et al., 2016; Pearce et al., 2017; 
Wan et al., 2019; Xia et al., 2008; You et al., 2013; Zhan, Merlin, 
Boore, & Reppert, 2011). More than 85.5% of the predicted cod-
ing sequences (CDS) were supported by transcriptome sequencing 
data (defined as when ≥ 70% of the predicted CDS of a gene was 
covered by transcriptome reads). Further assessment of assembly 
integrity based on busco analysis showed that the current genome 
contained 98.4% complete BUSCO genes.

Comparative analysis of orthogroups of nine Lepidoptera spe-
cies and Drosophila melanogaster (Diptera) was performed (Table S7). 
Among them, 17,180 genes in 10,755 orthogroups were found in 
the current genome of fall armyworm, and the remaining 5,080 lin-
eage-specific genes were identified as unassigned genes. Compared 
with Spodoptera litura, S. frugiperda has more species-specific genes, 
and the number of unassigned genes is much greater than that of 
S. litura (Figure 2a). Phylogenomic analyses of the 10 species were 
conducted using 1,571 single-copy genes. As shown in Figure 2a, 
the taxonomic relationship and phylogenetic status of current spe-
cies was similar to phylogenetic analyses based on 13 mitochondrial 
protein-coding genes (Lämmermann, Vogel, & Traut, 2016). Three 

species of Noctuidae, including S. frugiperda, formed one group, 
which then clustered with Bombyx mori (Bombycidae) and Manduca 
sexta (Sphingidae). Two butterflies, Danaus plexippus and Heliconius 
melpomene (both Nymphalidae), clustered together as an outer 
branch, while Plutella xylostella (Plutellidae) is the outermost branch 
of Lepidoptera (Figure 2a).

3.2 | Genetic background of fall armyworm 
populations in China

A total of 103 fall armyworm samples from China were resequenced, 
as well as four samples from two countries in Africa (Zambia and 
Malawi). The generated Illumina data ranged from 8.6 to 18.9 Gb for 
each sample, with a median genome coverage of 32.5×. First, we 
analysed the whole mitochondrial genome sequences of all samples. 
A total of 208 SNP loci were selected for analysis, based on compari-
son of the published mitochondrial sequences of both the American 
R-strain (AXE) and C-strain (ASW) (Gouin et al., 2017). Genotypes 
were obtained at these 208 sites for each individual after mapping 
the filtered sequence reads to the assembled mitochondrial genome. 
We found that most of the samples were assigned to the R-strain, 
and all four samples from Africa were C-strain, while only four out 
of 103 samples in China were assigned to the C-strain based on the 
mitochondrial genome (Figure 3a). Note that most R-strain samples 
surprisingly contain heterozygous mitochondrial SNPs, which could 
be caused by inserted C-strain fragments or existing standing varia-
tion of low frequency. The proportion of the C-strain in this sample 
set was ~10% and was similar to that of the 173 Chinese fall army-
worm samples identified by PCR based on the COI gene in this study 
(Table S2).

Next, we analysed the Tpi gene, which is commonly used in strain 
identification of fall armyworm (Nagoshi, 2012). By comparing the full-
length Tpi gene of the American R-strain (AXE) and C-strain (ASW), 22 
SNP loci were found. The genotype of each individual was analysed 
based on these 22 sites. The results showed that all fall armyworm 
samples collected from China contained more C-strain SNP loci, as 
did the Malawi samples (AFR14, AFR15), but not those from Zambia 
samples (AFR4, AFR5) which represents the Africa-specific haplotype 
and which contained ~50% of R-strain SNP loci. Genotypes of seven 
Chinese samples were identical to the American C-strain (ASW) and 
the remaining samples contained a small proportion of R-strain geno-
types or heterozygous SNPs (Figure 3b). However, none of the samples 
was found to be identical to the American R-strain genotype (AXE). 
We further used PCR to analyse genotypes of 173 samples based 
on 10 strain-biased SNPs within the Tpi gene reported previously 
(Nagoshi, 2012). The results showed that almost all of the samples 
correspond to C-strain genotypes, although three samples (G-GXW11, 
G-GXW13, G-EP6) were identified as an Africa-specific haplotype, 
which was significantly different from known R- or C-strain genotypes 
(Figure 4; Table S2). In summary, our genotyping results show that 
there are obvious contradictions between strain identification using 
mitochondrial and Tpi gene markers.

TA B L E  1   Summary of assembly results of Spodoptera frugiperda

Assembly feature
FAW (this 
study)

FAW (corn 
strain)

FAW (rice 
strain)

Assembled sequences 
(Mb)

390 438 371

Longest scaffold size (kb) 21,916.7 943.2 314.1

N50 size of scaffold (kb) 12,966.7 52.8 28.5

N90 size of scaffold (kb) 7,574.2 3.5 6.4

Longest contig size (kb) 18,555.4 362.9 191.4

N50 size of contig (kb) 5,606.9 16.9 24.3

N90 size of contig (kb) 991.8 2.9 5.6

GC content in genome (%) 36.4 36.0 36.1

Number of gene models 22,260 21,700 26,329

busco complete gene (%) 98.4 88.1 93.5

busco duplicated gene (%) 2 11.3 2

busco missing gene (%) 1.4 4.2 2.3
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To clarify the genetic background of fall armyworm populations 
invading China, we screened a total of 707,353 SNPs exhibiting ho-
mozygous differences between the reference American R-strain (AXE) 
and C-strain (ASW) in the 107 resequenced samples (Figure 3c). The 
results showed that all the samples, including the four from Africa, had 
more than 70% of the genetic background of the American C-strain 
(ASW) genotype. The proportion of R-strain SNPs was about 15%, 
and the remaining 12% were heterozygous. The results showed that 
fall armyworm invading China have a dominant percentage of the 
C-strain background. PCA based on 5,998,089 whole-genome SNPs 
also demonstrated that samples from China were much closer to the 
C-strain (ASW) than to the R-strain (AXE), in which PC1 explained 
6.45% of the variation. African samples from Zambia (AFR4, AFR5) 
were separated on PC2, which explained 2.15% of the variation 
(Figure 3d). By comparing the results of the mitochondrial genome, Tpi 
gene and genome-wide identification, it becomes apparent that there 

is no correlation between the mitochondrial and whole genome geno-
type. Although Tpi genotyping shows results more similar to those of 
the whole genome, the presence of the Africa-specific Tpi haplotype 
increases the complexity of using this marker for identification.

3.3 | Fall armyworm is developing a high risk of 
resistance to conventional pesticides

Insecticide resistance evolution is one of the most challenging problems 
in the control of fall armyworm. Identifying resistance-related genes is 
helpful for the monitoring and prevention of fall armyworm outbreaks. 
We selected 14 previously reported resistance-related genes of lepidop-
teran pests and scanned the resequenced samples to analyse variation in 
target genes. The results showed that all the target genes had multiple 
variation sites with a high frequency of SNPs in the CDS region (Table S8).

F I G U R E  1   A genome-wide contact matrix from Hi-C data between each pair of the 31 chromosomes
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Studies have shown that the amino acid substitutions in AChE 
(A201S, G227A, F290V), VGSC (T929I, L932F, L1014F) and RyR 
(I4790M, G4946E) result in resistance to organophosphate, pyre-
throid and diamide insecticides, respectively. The results of variation 
scanning of the 107 resequenced samples showed that resistance 
mutations were present in amino acids 201 and 290 of AChE 
(Figure 5a). Among them, the first locus had 17.1% heterozygous 
mutations, and the third locus had 29.7% homozygous resistance 
mutations and 58.2% heterozygous mutations. No resistance muta-
tions were detected at the targeted sites of the VGSC and RyR gene 
in any samples. We also designed primers to detect the resistance 
mutation sites in AChE in 173 Chinese samples by PCR amplification 
and Sanger sequencing. The results were similar to the Illumina data, 
showing that ~75% of samples have homozygous or heterozygous 
variation at amino acid 290.

To understand the baseline susceptibility of fall armyworm invad-
ing China, we determined the LC50 values to 14 insecticides for two 
Chinese fall armyworm populations collected from Yunnan Province. 
The results showed that the LC50 for both fall armyworm popula-
tions to chlorpyrifos, a fenvalerate, were at relatively high level, and 
well above those of the laboratory-susceptible Helicoverpa armigera 
strain (Bird & Downes, 2014). The LC50 to chlorantraniliprole was 
low, as were those to emamectin benzoate and indoxacarb, which 
were similar to results of a previous study on H. armigera and could 

be considered as the susceptible baseline (Bird, 2015) (Figure 6). 
Resistance levels of the two populations to pyrethroids and organo-
phosphate pesticides were very high; in particular, resistance ratios 
to chlorpyrifos of the two populations were more than 300-fold 
compared to a laboratory susceptible fall armyworm population that 
was sampled in 1975 (Yu, 1991) (Figure 5b). These results provide a 
susceptible baseline for fall armyworm populations invading China 
to different pesticides, which can provide guidance for resistance 
monitoring and pesticide management strategies.

3.4 | Fall armyworm invading China are currently 
sensitive to Bt toxin in a field-evolved experiment

The insertion of 2 bp in the ABCC2 gene of fall armyworm was re-
ported to cause a frame-shift mutation and results in resistance to 
Cry1Fa (Banerjee et al., 2017). We did not detect the same insertion 
mutation in 107 resequenced samples nor in 173 samples screened 
by using PCR and Sanger sequencing. Although the percentage of 
SNPs in the CDS region of other Bt receptors such as SR-C (scaven-
ger receptor class C gene, a specific receptor for Vip3Aa in Sf9 cells), 
TSPAN1 and other ABC gene families related to Cry toxin were also 
very high (Table S8), no reported resistant mutation was found in any 
target resistance genes.

F I G U R E  2   Phylogenetic relationships and schematic map of mitochondrial insertion. (a) Phylogenetic tree and genomic comparison of 10 
species of Lepidoptera and Diptera. Drosophila melanogaster was used as an outgroup and bootstrap value was set as 1,000, 1:1:1 includes 
the common orthologues with the same number of copies in different species, N:N:N includes the common orthologues with different copy 
numbers in different species, other orthologues include the unclassified orthologues, and unassigned genes include the genes that cannot be 
clustered into known gene families. (b) A schematic map of two mitochondrial fragments inserted into the nuclear genome; the NADH2 gene 
was separated by a 4,105-bp fragment, and both of two inserted mitochondrial fragments were identical with the C-strain genotype
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F I G U R E  3   Genetic background of 107 fall armyworm samples. (a) Genotyping based on 208 mitochondrial SNP loci. From left to right, 
the leftmost two samples are ASW (the American corn strain) and AXE (the American rice strain), four African strains (AFR4 and 5 from 
Zambia, then AFR14 and 15 from Malawi), and 103 strains from China; the order of each sample is consistent with Table S1. (b) Genotyping 
based on 22 SNP loci in the Tpi gene. (c) Genotyping based on 707,353 genome SNP loci. (d) Principal component analysis (PCA) based on 
5,998,089 whole-genome SNPs. Colour codes indicate samples from different sources; the two samples at the bottom in red are African 
samples AFR4 and AFR5
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F I G U R E  4   Diagram of the Tpi gene segments with respect to consensus Western Hemisphere sequences and the haplotypes observed 
in samples collected from Africa and China. Black solid arrows indicate 10 SNPs used to identify the American R-strain and C-strain fall 
armyworm, in which P370 was considered to be an effective diagnostic marker. Red solid arrows indicate 10 SNPs specific to the Africa-
specific strain. The boxes represent two variable loci in some Chinese samples, including homozygous or heterozygous genotypes
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F I G U R E  5   Genome scans and bioassays of fall armyworm for insecticide resistance. (a) Genotype and resistance mutation sites of the 
AChE gene in fall armyworm populations in China. (b) The resistance ratios (RRs) of two Chinese fall armyworm populations to pyrethroid 
(cypermethrin, lambda-cyhalothrin, fenvalerate) and organophosphate (chlorpyrifos, malathion) insecticides; cdcc and cdyc represent two 
inbred strains collected from Yunnan Province in China. RRs were calculated from the LD50 (µg/g) of a field population over the LD50 of a 
susceptible population as in Yu (1991). (c) Resistance tests of GM maize and non-GM maize to fall armyworm in field experiments. Error bars 
are the SD (n = 15), and asterisks indicate significant differences based on Student's t test (**p < .01)
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Field tests showed that fall armyworm samples invading China 
were sensitive to GM maize expressing Cry1Ab compared with the 
control group. Damage assessment on larval density, the percent-
age of damaged plants and average damage ratings of GM maize 
were significantly lower than those of the control group (Figure 5c), 
indicating that the GM maize expressing Cry1Ab currently has 
good control effects on the invading population of fall armyworm 
in China.

3.5 | Insertion of mitochondrial fragments into the 
nuclear genome in a recent evolution event

We found that two mitochondrial fragments, with sequence lengths of 
1.5 kb (partial COI gene and NADH2 gene) and 1.6 kb (partial NADH2 
gene and 12S rRNA gene), were inserted into the nuclear genome, 
separated by a 4.1-kb segment of the nuclear genome (Figure 2b). The 
total length of a ~ 7.3-kb fragment, including two inserted fragments, 
was supported by more than 28 raw reads of PacBio data. The lengths 
of all 28 reads were longer than 20 kb and completely covered the 
7.3-kb fragment. However, the two insertions were not found in other 
published fall armyworm genomes. To verify the accuracy of this re-
sult, we designed four primers based on flanking sequences of four 
connection points (Gap1–4 in Figure 2b), and the results of PCR am-
plification confirmed the existence of the insertion. The same primers 
were used in PCR assays to detect the insertion in 173 fall armyworm 
samples and it was found that the insertion was present in only 26.0% 
of all samples (Table S2). At the same time, the resequencing data of 
107 fall armyworm samples in this study also showed that there were 
varying numbers of reads covering the four junction points in 29 sam-
ples, and the percentage of samples with inserted reads was 27.1% 
(Table S9). Both the PCR and resequencing results showed that the 
insertion was not present in all samples, perhaps suggesting that it has 
a recent evolutionary origin.

Moreover, the genotype of the two inserted mitochondrial frag-
ments was identical to that of the C-strain, indicating that the inser-
tion occurred after differentiation of the R- and C-strains. Further 
analysis indicated that the two mitochondrial fragments were in-
serted into the intron region of the lysine-specific demethylase 3 B 
(Kdm3B) gene, which is not likely to affect expression of the gene. 
The inserted partial COI and NADH2 gene fragments were also con-
sidered likely to be functionless.

4  | DISCUSSION

The rapid spread of the fall armyworm has attracted popular atten-
tion worldwide. Accurate identification of its genetic characteristics 
(strain and pesticide resistance properties) has a direct and practi-
cal importance in terms of risk assessment and control strategies. 
A genome-wide analysis can reveal more in-depth genetic infor-
mation than conventional gene-level analyses. The results of this 
study show that the fall armyworm invading China has a genetic 

background dominated by American corn-strain genotypes. Most of 
the fall armyworm samples invading China were detected and col-
lected from corn and sugarcane, which are more likely to show the 
characteristics of C-strain host plants. Along the invasion path of the 
migratory fall armyworm, there are large-scale rice planting areas in 
Southeast Asia and central China, although there are few reports of 
serious damage to rice caused by fall armyworm (http://www.fao.
org/fall-armyworm). The established R-strain fall armyworm in the 
Americas mainly feeds on turf grass, and there were few reports of 
damage to rice in 1970s (Bowling, 1978; Gallego, 1967). In addition, 
the established R-strain Tpi genotype has not been detected in any 
of the samples collected from Africa or Asia. We therefore speculate 
that the American R-strain fall armyworm did not invade Africa or 
Asia, including China.

In our study, 103 resequenced Chinese samples were collected 
from different regions of 50 cities distributed across 16 provinces 
(Figure S1). The collection time and sites coincided almost perfectly 
with the spreading invasion of fall armyworm in China. However, 
there was no obvious correlation between the time or site of col-
lection and the genetic structure of the fall armyworm population 
(Figure 3). Almost all samples have similar genomic backgrounds, 
which suggests that the invading population may originate from a 
single genetic source and there is no evidence for genomic selection 
during the invasion.

According to our results, commonly used strain identification of 
fall armyworms by mitochondrial or Tpi markers is limited or even in-
accurate. The nuclear insertion of two C-strain partial COI fragments 
in this study further underlines the need for caution in interpreting 
mitochondrial genotypes. We also found that the AT/GC SNP located 
at Tpi-intron3 (P173/174) was inadequate as a diagnostic marker. In 
addition, the TT/CC SNP located at Tpi-exon4 (P379/385) was associ-
ated with sequence variation in Tpi-intron4 (Figure 4; Figure S2), which 
could further be developed as a marker to subdivide C-strain samples. 
It is noteworthy that a particular (Africa-specific) haplotype of the Tpi 
gene originally identified in Africa was tentatively designated as R-strain 
based on the E4183 site (equal to P370 in Figure 4 in this study) in pre-
vious studies (Nagoshi, 2012). Our genome-wide SNP analysis revealed 
that this haplotype contained more C-strain SNPs than R-strain SNPs.

The sample used for the genome sequencing in this study rep-
resents a combination of the particular Tpi haplotype and C-strain 
COI. We also found combinations of the R-strain COI and particular 
Tpi (sample G-XW13), as well as heterozygous forms of the partic-
ular Tpi and Tpi-C with the R-strain COI in two samples (G-GXW11, 
G-EP6). These combinations of different genotypes show that the ge-
netic boundaries between two established (American) R- and C-strains 
are obscure. The insertion of two mitochondrial fragments into the 
nuclear genome might be caused by random hybridization between 
different genotypes, which would suggest that fall armyworm invading 
China might be descendants of an interstrain hybrid population. This is 
the first report of DNA fragments transferred from mitochondria into 
the nuclear genome in a Spodoptera lineage, and two such fragments 
could be used to develop markers to identify specific populations and 
to follow further evolutionary events of fall armyworm.

http://www.fao.org/fall-armyworm
http://www.fao.org/fall-armyworm
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The rapid evolution of insecticide resistance and the increasing 
levels of resistance observed in fall armyworm populations needs at-
tention. In this study, reported mutations related to insecticide resis-
tance were detected in the AChE gene. Although some mutation sites 
were detected as heterozygous in most samples, the frequency of 
resistant mutation sites will increase greatly under the selection pres-
sure caused by application of related pesticides in the field. The bio-
assay results showed that armyworms invading China have evolved 
high levels of resistance to organophosphate pesticides, which was 
consistent with the results of molecular scanning of resistance-re-
lated genes, yet the resistance to pyrethroid pesticides cannot 
be explained by any reported mechanism. However, the fall army-
worms invading China are currently sensitive to GM maize expressing 
Cry1Ab in field experiments, and are also sensitive to other Bt toxins 
in the laboratory, according to previous studies (Li et al., 2019). At 
present, GM maize shows better application prospects in controlling 
fall armyworm in China, as larval density and damage rate of GM 
maize were significantly less than that of non-GM plants, although 
this crop is currently not registered for use in China.

This study provides a high-quality reference genome that demon-
strates a genomic feature different from the established (American) 
C- or R-strain genotypes, as well as more comprehensive gene anno-
tation. We also present resequencing data for 103 fall armyworm indi-
viduals invading China. The samples cover different regions and times 
during 2019, providing basic materials for analysing global population 
genetic and identifying patterns of invasiveness. Baseline resistance 
data for Chinese fall armyworm populations are shown to 14 common 
pesticides, providing guidance for the control and resistance mon-
itoring of fall armyworm. Small-scale field experiments in this study 
suggest that fall armyworm in China are currently susceptible to GM 
maize, and these results could provide an important application ref-
erence for commercial planting of Bt maize in China. There are other 
important issues that remain for further exploitation using this whole 
genome approach, such as identifying the genes involved in polyphagy, 
migratory capability and olfaction, which could provide valuable tools 
for the future management of fall armyworms.
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