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Spectrochemical analysis in blood 
plasma combined with subsequent 
chemometrics for fibromyalgia 
detection
João Octávio Sales Passos1, Marcelo Victor dos Santos Alves2, Camilo L. M. Morais3, 
Francis L. Martin4, Antônio Felipe Cavalcante1, Telma Maria Araújo Moura Lemos5, 
Shayanne Moura5, Daniel L. D. Freitas2, João Vitor Medeiros Mariz2, Jean Lucas Carvalho2, 
Kássio M. G. Lima2 & Rodrigo Pegado1*

Fibromyalgia is a rheumatologic condition characterized by multiple and chronic body pain, and 
other typical symptoms such as intense fatigue, anxiety and depression. It is a very complex disease 
where treatment is often made by non-medicated alternatives in order to alleviate symptoms and 
improve the patient’s quality of life. Herein, we propose a method to detect patients with fibromyalgia 
(n = 252, 126 controls and 126 patients with fibromyalgia) through the analysis of their blood plasma 
using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy in conjunction 
with chemometric techniques, hence, providing a low-cost, fast and accurate diagnostic approach. 
Different chemometric algorithms were tested to classify the spectral data; genetic algorithm with 
linear discriminant analysis (GA-LDA) achieved the best diagnostic results with a sensitivity of 89.5% 
in an external test set. The GA-LDA model identified 24 spectral wavenumbers responsible for class 
separation; amongst these, the Amide II (1,545 cm−1) and proteins (1,425 cm−1) were identified 
to be discriminant features. These results reinforce the potential of ATR-FTIR spectroscopy with 
multivariate analysis as a new tool to screen and detect patients with fibromyalgia in a fast, low-cost, 
non-destructive and minimally invasive fashion.

Fibromyalgia is a rheumatologic disorder characterized by non-articular diffuse muscle aches associated to 
allodynia and hyperalgesia1. In addition to the chronic pain, other conditions such as depression, anxiety and 
alterations of sleep and memory are also symptoms often found in patients with fibromyalgia2. These numer-
ous symptoms of functional and emotional origin generally cause a decline in the functional, labour and social 
ability of patients making the treatment harder and challenging2. Fibromyalgia is a common disorder found in 
the daily clinical routine of rheumatologists and rehabilitation clinics, having an estimated incidence in 1.1 to 
6.4% of the general population1,3. The complexity of fibromyalgia starts on its diagnosis, where the medical doc-
tor needs to have a correct clinical interpretation of the symptoms excluding other rheumatics and neurologic 
diseases2. Gendelman et al.2 evaluated fibromyalgia diagnosis time in the primary care and observed that the 
disease continues having an elusive and complex diagnosis, taking even years to be properly elucidated. Patients 
take an average of 2.3 years and 3.7 visits to a clinical doctor in order to have a definitive diagnostic of fibromy-
algia, which causes extra suffering to the patients and their families, additional medial costs and even resulting 
in incorrect treatments during this period3.

The diagnosis of fibromyalgia can be established by the classification criterion of the American College of 
Rheumatology (ACR) of 1990 (with the evaluation of tender points) or without the test of tender points by using 
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a modified diagnostic criterion from ACR of 2010 or 20114. In 2010, the ACR published a revised criterion set 
that does not count the tender points5. These criteria include 19 pain sites and 41 somatic symptoms6. In 2011, 
these criteria were modified by removing the 41 somatic symptoms observed by the clinical doctor and replac-
ing them by 6 self-reported symptoms (impaired sleep, fatigue, poor cognition, headaches, depression, and 
abdominal pain)6. In Japan, these criteria presented a sensitivity and specificity to diagnostic fibromyalgia of 
64% and 96%, respectively6; while in Germany, these criteria presented a sensitivity and specificity of 76% and 
82%, respectively7. By comparing the different definitions of 1990 and 2010/2011, fibromyalgia is diagnosed with 
86% sensitivity and 90% specificity8.

These studies report a wide variation of sensitivity, specificity, diagnostic patterns and pain disturbs, where the 
only validated method to diagnose fibromyalgia is clinical examination without any additional apparatus to aid 
correct diagnostic6. Therefore, new techniques to aid fibromyalgia screening in a fast, accurate and less-invasive 
fashion are needed. Novel spectrochemical analytical approaches play an important role as a new innovative 
technique towards clinical diagnostic9,10. These methods feature the use of vibrational spectroscopy techniques to 
analyse biological materials. Most molecules formed by covalent bonds absorb infrared (IR) radiation; amongst 
these, there are organic compounds containing important features of biological interest. Attenuated total reflec-
tion Fourier-transform IR (ATR-FTIR) spectroscopy enables quick and non-destructive analysis of tissue, cells or 
biofluids9,11; where, for example, a very small volume (i.e., microliters) of the latter can be used for measurement9. 
FTIR spectroscopy has been used to diagnose several types of cancer12, viruses13, neurodegenerative diseases14, 
among other conditions15. Fibromyalgia has been successfully differentiated from osteoarthritis and rheumatoid 
arthritis using FT-IR spectroscopy based on bloodspot tests16. Hackshaw et al.16 have detected a metabolomic 
fingerprint profile for fibromyalgia and other rheumatologic disorders using IR and Raman spectroscopy, where 
the spectrochemical signature included: CH bending in collagen, phospholipids and tryptophan; Amide III; CH 
in-plane bending in aromatic compounds; CH deformation, β-linkage and skeletal C–O–C linkage stretching 
for glycosaminoglycans; C–C stretching in tyrosine; and C–C twisting in phenylalanine. Moreover, studies using 
near-infrared spectroscopy have demonstrated great potential for fibromyalgia diagnosis using spectroscopy 
methods17,18.

The complexity of spectrochemical data requires the use of chemometric techniques in order to derive mean-
ingful information from the sample being analysed10. Screening and diagnostic applications make use of multi-
variate classification techniques in order to distinguish and predict sample types based on their spectrochemical 
profile even in presence of unknown sources of variation or subtle spectral differences. Feature selection coupled 
with discriminant analysis techniques can provide early detection of fibromyalgia based on the sample spec-
trochemical profile in a quick, simple and low-cost fashion, hence, improving the disease diagnosis and patient 
treatment.

Results
Socio-demographic and clinical characteristics of samples are described in Table 1. The raw spectra were pre-
processed by truncating the biofingerprint region (1,800–900 cm−1), followed by Savitzky-Golay (SG) smoothing, 
automatic weighted least squares baseline correction and vector normalisation (Fig. 1). These techniques remove 
physical interferences from the spectra that are not associated with the analyte information, hence, highlighting 
the signal of interest. SG smoothing removes random noise, baseline correction minimises effects of baseline 
distortions common in biological materials6, and vector normalisation removes systematic variations associ-
ated with sample thickness or different pressures applied in the ATR module to measure the samples10,19. The 
resultant pre-processed spectra were further analysed by several chemometric techniques in order to obtain 
optimal results: principal component analysis with linear discriminant analysis (PCA-LDA), quadratic discri-
minant analysis (PCA-QDA) or support vector machines (PCA-SVM); successive projections algorithm with 
linear discriminant analysis (SPA-LDA), quadratic discriminant analysis (SPA-QDA) or support vector machines 
(SPA-SVM); and, genetic algorithm with linear discriminant analysis (GA-LDA), quadratic discriminant analysis 
(GA-QDA) or support vector machine (GA-SVM).

Before model construction, 70% of samples were assigned to the training set, 15% to the validation set, and 
15% to the test set using the Kennard-Stone uniform sampling algorithm20. The training set was used for model 
construction, the validation set for internal model optimisation, and the test set for final model evaluation, 
where figures of merit (accuracy, sensitivity and specificity) reflecting the model performance towards external 
samples were calculated. The accuracy represents the total number of samples correctly classified considering 
true and false negatives; the sensitivity represents the proportion of positives that are correctly classified; and 
the specificity represents the proportion of negatives that are correctly classified21.

Table 2 illustrates the model performance of the algorithms tested. The best results were obtained by GA-LDA, 
with 84.2% accuracy, 89.5% sensitivity and 79.0% specificity. These metrics demonstrate a satisfactory classifica-
tion rate for distinguishing the two groups (case vs. control). The model potential for class separation in the test 
set can be observed in Fig. 2a, where the data dispersion in terms of the discriminant function score is shown.

The selected wavenumbers by GA-LDA are shown in Fig. 2b. These wavenumbers responsible for class sepa-
ration were: 943; 959; 974; 1,078; 1,113; 1,121; 1,134; 1,140; 1,142; 1,148; 1,153; 1,159; 1,182; 1,192; 1,319; 1,385; 
1,398; 1,423; 1,477; 1,545; 1,622; 1,636; 1,668; and, 1,798 cm−1. Their tentative biomarkers assignment22 are 
shown in Table 3.

Discussion
According to studies made by the American College of Rheumatology for diagnosis and classification of 
fibromyalgia2, groups of patients with fibromyalgia present a good differentiation from a control cohort contain-
ing patients with rheumatologic pains (but not fibromyalgia) with an accuracy of 84.9% and sensitivity of 88.4% 
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using the traditional diagnostic through the combination of generalised pains analysis in 11 to 18 pain sites. 
These reference metrics are very similar to our approach using spectrochemical analyses coupled to chemometric 
techniques, where we achieved an accuracy of 84.2% and sensitivity of 89.5%. Twenty-four spectral wavenumbers 
were selected by GA-LDA as being responsible for case–control separation (Table 3). Among these are carbohy-
drate, nucleic acid, protein and lipid absorptions9, which are often regions of alterations for disease diagnosis.

Since the samples were measured in the liquid state, water is an interference in the spectral signal compressing 
and masking the absorbance of some bands, and changing the fingerprint region spectral profile in comparison 

Table 1.   Socio-demographic and clinical characteristics. Numeric data were calculated using unpaired t test. 
Categorical data were calculated using Chi-Square test. SD standard deviation, FIQ Fibromyalgia Impact 
Questionnaire, VAS Visual Analogue Scale; HAS Hamilton Anxiety Scale, SF-36 Short Form 36 Health Survey. 
a Brazilian National Minimum Wage, US$ 252.14 per month.

Outcomes

Fibromyalgia Control

p value(Mean ± SD) (Mean ± SD)

Age 48.02 ± 10.03 49.84 ± 11.42 0.471

FIQ 75.03 ± 13.97 27.2 ± 21.35 0.0001

Anxiety (HAS) 38.05 ± 9.26 18.18 ± 11.93 0.001

VAS 5.74 ± 2.41 1.77 ± 2.25 0.0001

SF-36 total 53.39 ± 20.51 113.6 ± 44.58 0.0001

SF-36 physical 23.58 ± 9.17 58.69 ± 20.94 0.0001

SF-36 mental 29.79 ± 12.39 59.57 ± 19.40 0.0001

Incomea (%) 0.0003

1 minimum wage 6.7 29.4

2 to 3 minimum wage 53.3 41.2

4 minimum wage or more 33.3 11.8

Unreported 6.7 17.6

Marital status (%) 0.03

Married 60 41.2

Never married 26.7 41.2

Widowed 6.7 5.9

Divorced 6.7 11.8

Not respond

Education (%) 0.802

Elementary (incomplete) 0 5.9

Elementary 26.7 23.5

Secondary 26.7 41.2

University 46.7 29.4

Figure 1.   Raw and pre-processed spectra in the biofingerprint region. (a) Raw spectra; and (b) mean pre-
processed spectra for case (fibromyalgia) and controls.
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with dry samples23,24. Water mainly affects the IR spectrum outside the fingerprint region, with strong bands at 
3,300–3,400 cm−1 (hydrogen-bonded O–H stretching) and 3,600–3,650 cm−1 (free O–H stretching)10, which were 
regions removed from the spectra before analysis; however, water has an absorbance in the fingerprint region 
at 1646 cm−1 that adds to the Amide I signal of proteins23, hence, broadening the band and transforming the 
Amide II band in a small arm on the right-hand side of the Amide I absorption band. Additionally, absorbances 
below 1,000 cm−1 tend to greatly increase in liquid environment23, compressing the bands between ~ 1,200 and 
1,500 cm−1

.
Performing experiments with liquid samples has some benefits, since the spectral measurement is faster and 

the experimental setup is simpler than analysing dry samples24, which provides a higher throughput capability. 
However, liquid samples are affected by water interference, which compromises the sensitivity and detection limit 
of the technique. In addition, the ATR crystal must be cleaned more rigorously between measurements in order 
to remove biomolecules, particularly absorbed proteins, onto the crystal surface24. Overall, measuring liquid 
samples increases the analytical frequency of the technique but it also brings high-risks, especially associated 
with water interference, thus one must be careful when using liquid biopsies for spectroscopy measurements. 
Herein, the water interference seems not to be an issue that affects sample discrimination, once a relatively high 
discriminant performance was obtained to distinguish the samples based on the spectral profiles; but sample 
type, among other factors such as type of substrate, sample volume or the way the sample is deposited25, must 
be investigated during the pre-analytical phase for other applications once water among other interferences may 
severely affect important spectral regions. Therefore, the sampling method (liquid or dry samples) depends on the 
application of interest, the analytical frequency desired, and the degree of sample discrimination being pursued. 
Obtaining satisfactory results is an empirical balance of these factors.

Hackshaw et al.16 have used FT-IR spectroscopy to differentiate 14 fibromyalgia patients from those with 
osteoarthritis (n = 12) and rheumatoid arthritis (n = 15) based on a bloodspot test. The samples were pre-treated 
by removing proteins with molecular weight over 10 kDa via ultrafiltration, therefore, the analysis was focused 
on low-weight metabolites. The spectral data were multivariately analysed using soft independent modeling 
class analogy (SIMCA) algorithm, where a perfect separation with zero misclassifications (100% accuracy) 
was obtained; on the other hand, using a metabolomic approach based on ultrahigh performance liquid 

Table 2.   Figures of merit for different algorithms applied to classify case (fibromyalgia) and controls in the test 
set. The best algorithm (GA-LDA) is highlighted in bold.

Algorithm Accuracy (%) Sensitivity (%) Specificity (%)

PCA-LDA 60.5 68.4 52.6

PCA-QDA 65.8 73.7 57.9

PCA-SVM 68.4 78.9 57.9

SPA-LDA 63.1 57.9 68.4

SPA-QDA 63.2 68.4 57.9

SPA-SVM 70.1 73.7 68.4

GA-LDA 84.2 89.5 79.0

GA-QDA 60.5 47.4 73.7

GA-SVM 57.9 57.9 57.9

Figure 2.   GA-LDA results for classifying case (fibromyalgia) and controls. (a) Discriminant function graph for 
the samples in the test; and (b) GA-LDA selected wavenumbers.
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chromatography/tandem mass spectrometry (UHPLC/MS/MS) and gas chromatography/mass spectrometry 
(GC/MS), the accuracy was substantially inferior at 75%. Hackshaw et al.26 also metabolically profiled fibro-
myalgia (n = 50) and other rheumatologic disorders (rheumatoid arthritis (n = 29), osteoarthritis (n = 19) and 
systemic lupus erythematosus (n = 23)) using FT-IR and Raman spectroscopy based on bloodspot samples, where 
the different disorders were classified with 100% accuracy using SIMCA algorithm. Apart from metabolomic 
changes16,26, Raffaeli et al.27 identified a Mu opioid receptor, expressed on the B lymphocytes surface, as a biologi-
cal marker (named Mu-Lympho-Maker) for an objective chronic pain diagnosis of fibromyalgia.

The updated criteria to improve fibromyalgia detection3 propose clinical improvements for patient screening 
without the need of extensive physical tests, such as the test of pain sites, and focusing on alternative diagnostic 
criteria based on symptoms severity; however, it does not replace or overcome the statistical metrics found in the 
previous discussed study3. In studies involving different diagnostic criteria2,3, it is possible to observe improve-
ments in the criteria from 2010 by adding different patient conditions such as cognitive dysfunction, depression 
and anxiety23. The inclusion of wider symptomatic criteria may improve the accuracy, sensitivity and specificity 
for fibromyalgia diagnosis; but it is still a time-consuming and somewhat subjective test. ATR-FTIR coupled to 
chemometrics has the potential to replace or aid fibromyalgia screening based on a small aliquot of blood plasma, 
thus speeding and adding an extra degree of objectiveness for fibromyalgia diagnosis.

Fibromyalgia remains a very complex and elusive diagnosis with negative impairment of economic and 
financial burden that include laboratory and imaging exams, frequent visits to specialists, and different courses 
of treatments1. Gendelman et al.1 suggest that specific patients characteristics including age and comorbidities 
could infer the time for diagnosis. Furthermore, physicians’ skill-related factors (poor communication, age and 
the knowledge of the ACR diagnostic criteria) contribute to diagnostic inaccuracy1,3. The lack of a definitive 
diagnosis of fibromyalgia potentially affect functionality, daily activities and work productivity5,6. Although the 
pattern of clinical diagnosis of fibromyalgia continues to improve in terms of accuracy and sensitivity, there is 
an increasing recognition of both misdiagnosis and overdiagnosis1. Spectrochemical analysis with multivariate 
classification techniques could provide and additional option for clinical diagnosis of fibromyalgia.

This study provides a blood-based test for fibromyalgia, where the combination of chemometric and spectro-
chemical methods contribute for fibromyalgia diagnosis. Efforts to improve earlier diagnosis of fibromyalgia is 
crucial to reduce functional deficits, costly treatments, and provide better rehabilitation protocols. These results 
reinforce the potential of ATR-FTIR spectroscopy with multivariate analysis as a new tool to screen and detect 
patients with fibromyalgia in a fast, low-cost, non-destructive and minimally invasive fashion. Additional studies 
comparing fibromyalgia with others chronic rheumatic diseases, such as osteoarthritis, rheumatoid arthritis and 
chronic fatigue syndrome, are necessary for potential diagnosis.

Table 3.   Tentative assignment of the spectral markers selected by GA-LDA. ν: stretching vibration; δ: bending 
vibration.

Wavenumber (cm−1) Tentative assignment

943 Phosphodiester region

959 Symmetric stretching vibration of ν1 (PO4
3−)

974 OCH3 stretching in polysaccharides

1,078 Phosphate I in RNA

1,113 P-O-C symmetric stretching

1,121 Symmetric phosphodiester stretching band RNA

1,134 C–OH stretching band in oligosaccharide

1,140 C–O stretching in phosphate and oligosaccharides

1,142 C–O stretching in phosphate and oligosaccharides

1,148 C–O stretching in carbohydrates

1,153 Stretching vibrations of hydrogen-bonding C–OH groups

1,159 ν(C–O) of proteins and carbohydrates

1,182 Amide III

1,192 Collagen

1,319 Amide III

1,385 δ(CH3)

1,398 CH3 symmetric deformation

1,423 νs(COO2) in polysaccharides or pectin

1,477 δ(CH2) of the methylene chains in lipids

1,545 Amide II in proteins

1,622 Peak of nucleic acids due to the base carbonyl stretching and ring breathing mode

1,636 β-sheet structure of Amide I

1,668 Amide I (anti-parallel β-sheet)

1,798 ν(C=C) in lipids
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Methods
Samples.  This case–control study was performed following the ethics standards of the Declaration of Hel-
sinki and was approved by the local institutional ethics committee at the Onofre Lopes University Hospital (Fed-
eral University of Rio Grande do Norte, Natal, Brazil) under registration number 2.631.168. Informed consents 
were obtained from all subjects of this study; and all experimental protocols complied with the ethics guidelines. 
Subjects were recruited from social media and at the medical clinic of the Onofre Lopes University Hospital 
(HUOL). The following inclusion criteria were adopted: (a) medical diagnosis of fibromyalgia according to the 
ACR/2010; (b) ability to answer questionnaire and understand this study aim; (c) patients not undergoing physi-
cal therapy or rehabilitation programs during the three previous months; and (d) age ranging from 18 to 80 years 
old. The exclusion criteria were: (a) physical and/or organic problems, when these compromised questionnaire 
applications; and, (b) rheumatic and/or autoimmune diseases including chronic fatigue syndrome, rheumatoid 
arthritis, gout and lupus.

A total of 126 fibromyalgia patients and 126 control subjects were enrolled in this study. The data were col-
lected from July 2018 to March 2019 and the recruitment was performed during this entire period. The study 
was conducted at the Clinical and Epidemiological Laboratory at the Federal University of Rio Grande do Norte, 
Natal, Brazil. Socio-demographic data (gender, age, education level, occupation, marital status, and ethnicity), 
clinical data (fibromyalgia impact, anxiety, pain, and quality of life), and 10 mL of blood were collected from 
each patient in the same day.

Clinical measurements.  The functional capacity was evaluated using the Brazilian version of the Fibro-
myalgia Impact Questionnaire (FQI), which is a self-administered questionnaire that measures the functional 
aspects of the patient28. FIQ contains three Likert-scale-type questions (levels of response) and seven visual 
analogue questions. All the scales vary from 1 to 10 and a high score indicates negative impact and more seven 
symptoms. The total FIQ score is graded from 1 to 100 points. Higher scores are related to greater impact of the 
disease on the patients’ functionality and a corresponding reduction in their quality of life28.

The severity and anxiety symptoms were measured using the Hamilton Anxiety Scale (HAS)29. The HAS was 
administered by an interviewer who asked a series of semi-structured questions related to symptoms of anxiety. 
The interviewer rated the individuals on a five-point scale for each of the 14 items29. Seven of the items specifi-
cally address psychic anxiety and the remaining seven somatic anxiety. The values on the scale range from 0 to 
4: 0—there is no anxiety; 1—mild anxiety; 2—moderate anxiety; 3—severe anxiety; 4—very severe or grossly 
disabling anxiety. The total anxiety score ranges from 0 to 5629.

The visual analogue scale (VAS) was used to measure pain. VAS is a unidimensional measure of pain inten-
sity, which has been widely used in diverse adult populations30. The VAS pain is a continuous scale comprised 
of a horizontal line, usually 10 cm (100 mm) in length, anchored by 2 verbal descriptors, one for each extreme 
symptom30. For pain intensity, the scale is most commonly anchored by “no pain” (score of 0) and “pain as bad as 
it could be” or “worst imaginable pain” (score of 100 [100 mm scale]). The VAS is administered, and the patient 
is asked to indicate the distance on the 0 to 100 mm line on the segmented scale that best describes their pain 
intensity in the last 24 h30.

Quality of life (QoL) was assessed by the Short Form 36 Health Survey (SF-36)31. The SF-36 is a generic tool 
that measures eight general health concepts: physical functioning, physical role, bodily pain, general health, 
vitality, social functioning, role emotional, and mental health31. Two main scores are available to summarise 
these scales: physical composite score (PCS) and mental composite score (MCS), and the total SF-36 score. All 
these scores fall within 0–100 scale, with higher scores reflecting better QoL31.

Spectrochemical analyses.  The samples were stored at − 15 °C before spectrochemical analysis. Measure-
ments were performed at the Institute of Chemistry of the Federal University of Rio Grande do Norte, Natal, 
Brazil. A Bruker Vertex 70 FTIR spectrometer (Bruker, Coventry, UK) coupled to an ATR Helios attachment was 
used for spectral acquisition. Spectra were acquired with 32 scans (4 cm−1 resolution) and in triplicate for each 
sample. Before every new sample the ATR crystal was cleaned, and a new background was set in order to account 
for ambient variability. The blood plasma samples were measured in the liquid state.

Data analysis.  The spectral data were processed using the MATLAB R2014b software (MathWorks Inc., 
Natick, USA) with the PLS Toolbox version 7.8 (Eigenvector Research Inc., Wenatchee, USA) and lab-made rou-
tines. The spectral data were initially cropped to the bio-fingerprint region (900–1,800 cm−1) and pre-processed 
by automatic weighted least squares baseline correction and vector normalisation. The samples’ spectra were 
then divided into training (70%), validation (15%) and test (15%) sets using the Kennard-Stone uniform sam-
ple selection algorithm20. The training set is used for model construction, the validation set for model internal 
validation and optimization, and the test set for evaluating the model predictive performance towards external 
samples through the calculation of figures of merit (accuracy, sensitivity and specificity). Several algorithms of 
feature extraction and selection coupled to discriminant analysis techniques were tested on the spectral data; 
these were: principal component analysis linear discriminant analysis (PCA-LDA), principal component analy-
sis quadratic discriminant analysis (PCA-QDA), principal component analysis support vector machines (PCA-
SVM), successive projections algorithm linear discriminant analysis (SPA-LDA), successive projections algo-
rithm quadratic discriminant analysis (SPA-QDA), successive projections algorithm support vector machines 
(SPA-SVM), genetic algorithm linear discriminant analysis (GA-LDA), genetic algorithm quadratic discrimi-
nant analysis (GA-QDA), and genetic algorithm support vector machines (GA-SVM).

PCA decomposes the pre-processed spectral data into a small number of principal components (PCs) that 
are orthogonal to each other and explain most of the original data variance. Each PC is composed of scores, 
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representing the variance on sample direction, hence, being used to assess similarities/dissimilarities between 
the samples; and loadings, representing the variance on wavenumber direction, thus being used to assess vari-
able importance. Therefore, PCA can be used for data reduction, feature extraction, pattern recognition, sample 
selection, exploratory analysis, among other32. Successive projections algorithm (SPA) and genetic algorithm 
(GA) are forward feature selection algorithms that select sets of wavenumbers responsible for maximizing class 
differences. SPA33 is a forward feature selection method that works by minimizing the data multicollinearity 
through a series of projections of the original wavenumbers in an iterative way. GA34 is another iterative method 
that works based on the principle of natural evolution where a set of wavenumbers (chromosomes) undergo an 
evolution-like model of combinations, cross-overs and mutations until the best set of wavenumbers achieve the 
best fitness according to a pre-determined cost-function that maximizes class differences.

The outputs from PCA (scores), SPA and GA can be used as input variables for discriminant analysis. LDA 
and QDA are discriminant analysis techniques based on a Mahalanobis distance calculation between the samples, 
where the LDA ( Lik) and QDA ( Qik ) classification scores are calculated as follows35:

where xi is vector containing the input variables for sample i; 
−
xk is the mean vector of class k; Cpooled is the pooled 

covariance matrix; Ck is pooled variance–covariance matrix of class k; and πk is the prior probability of class k. 
The SVM classification takes the form36:

K
(

xi , zj
)

 is the kernel function for xi and zj which are input variables for different classes; αi is the Lagrange 
multiplier; yi is the training class membership; and b is the bias parameter.
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