Probiotics for induction of remission in Crohn's disease (Review)

Limketkai BN, Akobeng AK, Gordon M, Adepoju AA

www.cochranelibrary.com
TABLE OF CONTENTS

HEADER .. 1
ABSTRACT ... 1
PLAIN LANGUAGE SUMMARY .. 2
SUMMARY OF FINDINGS .. 3
BACKGROUND ... 4
OBJECTIVES ... 4
METHODS ... 4
RESULTS .. 6
 Figure 1. ... 7
 Figure 2. ... 9
 Figure 3. ... 10
DISCUSSION .. 10
AUTHORS’ CONCLUSIONS ... 10
ACKNOWLEDGEMENTS ... 10
REFERENCES ... 11
CHARACTERISTICS OF STUDIES ... 12
DATA AND ANALYSES .. 16
 Analysis 1.1. Comparison 1: Probiotics versus placebo, Outcome 1: Induction of remission ... 16
 Analysis 1.2. Comparison 1: Probiotics versus placebo, Outcome 2: Adverse events leading to withdrawal 16
APPENDICES ... 16
WHAT’S NEW ... 21
HISTORY .. 21
CONTRIBUTIONS OF AUTHORS ... 22
DECLARATIONS OF INTEREST .. 22
SOURCES OF SUPPORT ... 22
DIFFERENCES BETWEEN PROTOCOL AND REVIEW ... 22
INDEX TERMS ... 23
Probiotics for induction of remission in Crohn's disease

Berkeley N Limketkai, Anthony K Akobeng, Morris Gordon, Akinlolu Adeayo Adepoju

1Division of Digestive Diseases, University of California Los Angeles, Los Angeles, California, USA. 2Sidra Medicine, Doha, Qatar. 3School of Medicine, University of Central Lancashire, Preston, UK. 4Department of Paedics, College of Medicine, University of Ibadan, Ibadan, Nigeria. 5Department of Gastroenterology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

Contact address: Anthony K Akobeng, aakobeng@sidra.org, akobeng@aol.com.

Editorial group: Cochrane Gut Group.
Publication status and date: New search for studies and content updated (no change to conclusions), published in Issue 7, 2020.

Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background
Crohn's disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract, in which the pathogenesis is believed to be partly influenced by the gut microbiome. Probiotics can be used to manipulate the microbiome and have therefore been considered as a potential therapy for CD. There is some evidence that probiotics benefit other gastrointestinal conditions, such as irritable bowel syndrome and ulcerative colitis, but their efficacy in CD is unclear. This is the first update of a Cochrane Review previously published in 2008.

Objectives
To assess the efficacy and safety of probiotics for the induction of remission in CD.

Search methods
The following electronic databases were searched: MEDLINE (from inception to 6 July 2020), Embase (from inception to 6 July 2020), the Cochrane Central Register of Controlled Trials (CENTRAL), The Cochrane IBD Review Group Specialised Trials Register, World Health Organization (WHO) International Clinical Trials Registry, and ClinicalTrials.gov.

Selection criteria
Randomised controlled trials (RCTs) that compared probiotics with placebo or any other non-probiotic intervention for the induction of remission in CD were eligible for inclusion.

Data collection and analysis
Two review authors independently extracted data and assessed the methodological quality of included studies. The primary outcome was clinical remission. Risk ratios (RRs) and 95% confidence intervals (CIs) were calculated for dichotomous outcomes.

Main results
There were two studies that met criteria for inclusion. One study from Germany had 11 adult participants with mild-to-moderate CD, who were treated with a one-week course of corticosteroids and antibiotics (ciprofloxacin 500 mg twice daily and metronidazole 250 mg three times a day), followed by randomised assignment to Lactobacillus rhamnosus strain GG (two billion colony-forming units per day) or corn starch placebo. The other study from the United Kingdom (UK) had 35 adult participants with active CD (CDAI score of 150 to 450) randomised to receive a synbiotic treatment (comprised of freeze-dried Bifidobacterium longum and a commercial product) or placebo. The overall risk of bias was low in one study, whereas the other study had unclear risk of bias in relation to random sequence generation, allocation concealment, and blinding. There was no evidence of a difference between the use of probiotics and placebo for the induction of remission in CD (RR 1.06; 95% CI 0.65 to 1.71; 2 studies, 46 participants) after six months. There was no difference in adverse events
between probiotics and placebo (RR 2.55; 95% CI 0.11 to 58.60; 2 studies, 46 participants). The evidence for both outcomes was of very low certainty due to risk of bias and imprecision.

Authors' conclusions

The available evidence is very uncertain about the efficacy or safety of probiotics, when compared with placebo, for induction of remission in Crohn’s disease. There is a lack of well-designed RCTs in this area and further research is needed.

PLAIN LANGUAGE SUMMARY

Probiotics for the treatment of active Crohn’s disease

What is the aim of this review?

The aim of this Cochrane Review was to find out whether probiotics can induce remission in people with Crohn’s disease. We analysed information from two studies to answer this question.

Key messages

It is unclear whether probiotics are better than placebo (dummy pill). No serious adverse events occurred in either study.

What was studied in the review?

Crohn’s disease is a medical condition that causes inflammation of the bowels and can lead to symptoms of ulcers in the mouth, abdominal pain, diarrhoea, obstruction, fistulisation (tunnels between the bowels and nearby organs), abscesses, malnutrition, low haemoglobin (blood) levels, and fatigue. There is some evidence to suggest that an imbalance in the bacteria of the gut is a cause of the disease. Probiotics, which are live microorganisms, could alter the bacteria of the gut and possibly reduce inflammation.

What are the main results of the review?

We searched for randomised controlled trials (RCTs; clinical studies where people are randomly placed into one of two or more treatment groups) comparing probiotics with placebo. There were two RCTs, with information on 46 people. The trials looked at adults. It is unclear whether probiotics are different to placebo for inducing remission of Crohn’s disease. It is unclear whether probiotics lead to a difference in adverse events (minor and serious) when compared with placebo.

Conclusion

This review found two studies that examined and showed no benefit of probiotics for the treatment of active Crohn’s disease. Since the studies were very small, no definite conclusions can be made at this time. Probiotics were generally well tolerated; there was just one side effect leading to the stopping of treatment with probiotics, but details of this were not given. With the evidence presented in these studies, we are unable to make conclusions as to the effectiveness of probiotics. Better designed studies, with more participants, are needed.

How up-to-date is this review?

This review is up-to-date as of 6 July 2020.
Summary of findings 1. Probiotics compared to placebo for induction of remission in Crohn's disease

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>Nº of participants (studies)</th>
<th>Certainty of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction of remission</td>
<td>Study population</td>
<td>RR 1.06 (0.65 to 1.71)</td>
<td>46 (2 studies)</td>
<td>⊕⊕⊕⊕ VERY LOW¹,²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk with placebo</td>
<td>455 per 1000 (295 to 777)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk with Probiotics</td>
<td>482 per 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse events leading to withdrawal</td>
<td>Study population</td>
<td>RR 2.55 (0.11 to 58.60)</td>
<td>35 (2 studies)</td>
<td>⊕⊕⊕⊕ VERY LOW¹,²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk with placebo</td>
<td>< 1 per 1,000 (0 to 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk with Probiotics</td>
<td>< 1 per 1,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio

GRADE Working Group grades of evidence
- **High certainty:** We are very confident that the true effect lies close to that of the estimate of the effect
- **Moderate certainty:** We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
- **Low certainty:** Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
- **Very low certainty:** We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

¹ Downgraded one level due to unclear risk of bias
² Downgraded two levels due to serious imprecision (22 events and 57 participants)
BACKGROUND

Description of the condition

Crohn’s disease (CD) is a chronic relapsing, remitting inflammatory condition that can affect any segment along the gastrointestinal tract from the mouth to the anus. Symptoms of CD may include oral ulcers, abdominal pain, diarrhoea, obstruction, fistulisation to surrounding tissues, abscesses, malnutrition, and anaemia. The diagnosis and monitoring of CD is predominantly performed via endoscopic and histologic examination, although these can be complemented by use of imaging, serologic, and fecal data. There is no known cure for CD and treatment is largely focused on the induction and maintenance of remission (quiescent disease), correcting malnutrition, addressing complications, and improving the quality of life for patients. In children, a major additional goal is to facilitate normal growth and pubertal development, which are frequently impeded. The incidence of CD is approximately 20 per 100,000 person-years in North America and 13 per 100,000 person-years in Europe (Molodecky 2012). There has been a progressive increase in incidence and prevalence throughout the world, particularly in regions where CD was historically not common (e.g. Asia, the Middle East, South America). Although the aetiology of CD is still unknown, its pathogenesis is believed to involve the interaction between genetic and environmental factors. In particular, the gut microbiome may play a role in disease pathogenesis and activity, thus prompting great interest in the potential use of probiotics as a therapeutic strategy via microbiome manipulation (Shouval 2017).

Description of the intervention

Probiotics consist of live microorganisms that, by definition, should benefit health in humans. Common microorganisms that have been used as probiotics include Lactobacillus spp, Bifidobacterium spp, Streptococcus salivarius, Escherichia coli Nissle 1917, and yeasts (e.g. Saccharomyces boulardii) (Sartor 2005). There has been an increasing interest in the use of probiotics for gastrointestinal diseases, as they are considered safe and easily accessible.

How the intervention might work

Given the association between dysbiosis and CD, there is a hypothesised role for probiotics in restoring eubiosis and perhaps improving intestinal inflammation. Probiotics are believed to work through competitive action with commensal and pathogenic flora and by influencing the immune response (Shanahan 2000). Lactobacillus, one of the more popular constituents of probiotics, is thought to secrete bacteriocin and block the adherence of harmful bacteria (Corr 2007; Mukherjee 2015). As such, probiotics have been examined in diseases related to gut barrier dysfunction and immune-mediated manifestations, such as childhood diarrhoea (Pochapin 2000; Lai 2019), atopic dermatitis (Isolaun 2000; Navarro-López 2018), and eczema (Schmidt 2019). There is additionally limited evidence of efficacy of probiotics in ulcerative colitis (Kaur 2020; Iheozor-Ejiofor 2020), pouchitis (Nguyen 2019), and CD (Guslandi 2000; Campieri 2000).

Why it is important to do this review

The primary mode of treatment for CD involves the use of immunosuppressants, including immunomodulators (e.g. azathioprine, 6-mercaptopurine, methotrexate) and biologic therapies (e.g. infliximab, vedolizumab, ustekinumab). These drugs are not always effective (Colombel 2010; Limketkai 2017) and may expose patients to potentially increased risks, such as infection, bone marrow suppression, cutaneous and noncutaneous malignancy, and metabolic complications (Click 2019). Consequently, complementary and alternative treatments for CD have been sought. The previous version of this Cochrane Review found only found one eligible small study with 11 participants (Butterworth 2008). There was insufficient evidence to make any conclusions about whether probiotics were effective to treat CD. This review will update the prior review with any new studies that may have emerged over the past decade on the use of probiotics for the induction of remission in CD.

OBJECTIVES

To assess the efficacy and safety of probiotic supplementation for the induction of remission in Chron’s disease.

METHODS

Criteria for considering studies for this review

Types of studies

Randomised controlled trials (RCTs)

Types of participants

All patients with active CD at the time of study entry, as defined by a recognised CD activity index, endoscopy, histopathology, or radiology.

Types of interventions

The intervention was probiotics, either alone or in combination with other therapies, administered orally in any form (e.g. drink, powder, capsule). The control was placebo, other non-probiotic therapies, or no intervention.

Types of outcome measures

Primary outcomes

• Clinical remission, as defined by the primary studies

Secondary outcomes

• Disease improvement (clinical response, corticosteroid withdrawal, endoscopic remission, histology scores, biochemical markers of inflammation, quality-of-life scores)
• Escalation of therapy (addition of therapy, surgery)
• Adverse events (number of adverse events, withdrawal due to adverse events)

Search methods for identification of studies

A comprehensive search for relevant RCTs was performed independently of the search from the previous review. The search strategy is outlined in Appendix 1.

Electronic searches

The following electronic databases were searched: MEDLINE (from inception to 6 July 2020), Embase (from inception to 6 July 2020), the Cochrane Central Register of Controlled Trials (CENTRAL), The Cochrane Gut Review Group Specialised Trials Register, World
Assessment of risk of bias in included studies

The review authors independently carried out a ‘Risk of bias’ assessment of the included studies. The Cochrane ‘Risk of bias’ tool (Higgins 2017) was used to assess the following domains:

- Random sequence generation
- Allocation concealment
- Blinding of participants and personnel
- Blinding of outcome assessment
- Incomplete outcome data
-Selective outcome reporting
- Other sources of bias

We considered subjective outcomes separately in our assessment of blinding and incompleteness of data. Studies were judged to be at high, low, or unclear risk of bias for each domain assessed. We judged the risk of bias across studies as follows.

- Low risk of bias (plausible bias unlikely to seriously alter the results) if all domains are at low risk of bias
- Unclear risk of bias (plausible bias that raises some doubt about the results) if one or more domains are at unclear risk of bias
- High risk of bias (plausible bias that seriously weakens confidence in the results) if one or more domains are at high risk of bias

Assessment of reporting biases

Various reporting biases were avoided by undertaking an extensive literature search without restrictions on publication date or language. Study protocols and trial registrations were used in assessing studies for selective reporting. We did not assess publication bias with a funnel plot due to there only being two included studies.

Data synthesis

Data were analysed using Review Manager 5.4. For dichotomous outcomes, risk ratios and 95% confidence intervals were derived for each study. The results of included studies were combined for each outcome, if appropriate. We used a random-effects model for pooled data and considered not pooling data if we encountered considerable heterogeneity (I² value of 75% or more) across studies. However, data not amenable to pooling would have been presented in a narrative summary.

We used the GRADE approach to assess the certainty of evidence based on the primary outcome of clinical remission.
The four levels of evidence certainty were "high", "moderate", "low", or "very low". "High certainty" suggests that we are very confident that the true effect lies close to that of the estimate of the effect. "Moderate certainty" suggests we are moderately confident in the effect estimate. "Low certainty" suggests that our confidence in the effect estimate is limited. "Very low certainty" suggests that we have very little confidence in the effect estimate. The level of certainty was downgraded based on risk of bias, imprecision, inconsistency, indirectness, or publication bias. Where there was sufficient evidence, we prepared 'Summary of findings' tables for our main comparisons. Two review authors independently produced Summary of findings.

Subgroup analysis and investigation of heterogeneity

There were inadequate data to perform a subgroup analysis.

Sensitivity analysis

There were inadequate data to perform a sensitivity analysis.

RESULTS

Description of studies

There were 16 potentially relevant published studies and clinical trials registrations identified for full-text review after title and abstract screening (Figure 1). We excluded 14 studies. One study included patients with active and quiescent CD (Yılmaz 2019). One study did not differentiate between patients with CD and ulcerative colitis (Ye 2017). Two studies used the wrong intervention: all participants received probiotics in one study (Plein 1993), and in the other study, corticosteroids were provided in the intervention arm but not in the control arm (Su 2018). Another study did not have adequate data and we were unable to obtain more data from the trial authors (Day 2012). Four clinical trial registrations had an unclear status that we were unable to confirm with the authors (ACTRN12614000465651; NCT00367705; NCT00374374; NCT01548014). Five clinical trial registrations were considered duplicate entries.
After full-text review, there were two studies that met the criteria for inclusion (Schultz 2004; Steed 2010). This adds one new study to the previous version of this review.

Schultz 2004 included 11 adult participants with active mild-to-moderate CD (Crohn’s Disease Activity Index (CDAI) score of 150 to 300). Participants were treated with a one-week course of corticosteroids and antibiotics (ciprofloxacin 500 mg twice daily and metronidazole 250 mg three times a day), followed by...
randomised assignment to *Lactobacillus rhamnosus* strain GG (two billion colony-forming units per day) or corn starch placebo. Clinical remission was defined as a CDAI score of less than 150 within the six-month follow-up period. Sustained remission was defined as remission at six months.

Steed 2010 included 35 adult participants with active CD (CDAI score of 150 to 450), randomised to receive a synbiotic treatment or placebo. The synbiotic treatment was a formulation of pro- and prebiotics. This study used the combination of 2×10^{11} freeze-dried *Bifidobacterium longum* and 6 g Synergy I (Oralk, Tienen, Belgium) twice daily. Clinical remission was defined as a CDAI score of less than 150 or a drop in CDAI score of more than 75 from baseline.

The two studies did not have evidence of statistical heterogeneity ($I^2 = 0\%$), although there was substantial methodological heterogeneity between them.

Risk of bias in included studies

Figure 2 outlines the ‘Risk of bias’ assessments for the included studies. **Schultz 2004** was a randomised double-blind trial, although there were no details provided on random sequence generation, allocation concealment, and blinding of participants and outcome assessors. This led to an unclear risk of bias in these domains. **Steed 2010** provided details on random sequence generation (a random numbers table was used by an independent clinician otherwise not involved with the study) and blinding of participants and outcome assessors. There was no information in either study to suggest attrition or reporting bias; all outcome data for all participants was reported, and there was appropriate reporting of key outcomes specified in their methods, despite the lack of a protocol for both studies.
Effects of interventions

See: **Summary of findings 1** Probiotics compared to placebo for induction of remission in Crohn’s disease

Clinical remission

There was no statistically significant difference between probiotics and placebo for the induction of remission in CD (risk ratio [RR] 1.06; 95% confidence interval [CI] 0.65 to 1.71; 2 studies, 46 participants) (Figure 3). Due to the risk of bias and small sample size, the certainty of this evidence was very low (Summary of findings 1). In Steed 2010, the mean CDAI scores dropped significantly in the synbiotic group (219 ± 75 to 147 ± 74, P = 0.020) but did not change in the placebo group (249 ± 79 to 233 ± 155, P = 0.810).
Figure 3. Forest plot of comparison: 1 Probiotics versus placebo, outcome: 1.1 Induction of remission.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Probiotic</th>
<th>Control</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schultz 2004</td>
<td>4</td>
<td>5</td>
<td>1.06 [0.65, 1.71]</td>
<td></td>
</tr>
<tr>
<td>Steed 2010</td>
<td>8</td>
<td>19</td>
<td>0.96 [0.55, 1.69]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>12</td>
<td>24</td>
<td>1.06 [0.65, 1.71]</td>
<td></td>
</tr>
</tbody>
</table>

Escalation of therapy
The data were unavailable to assess this outcome.

Adverse events
In Steed 2010, two participants discontinued symbiotic use due to unreported side effects (one participant) and intolerance (one participant). There were no reported adverse effects in the placebo arm. In Schultz 2004, no adverse events were reported in the 11 participants who took part in the induction and maintenance phases of the study. There was no difference in adverse events between probiotics and placebo (RR 2.55; CI 0.11 to 58.60; 2 studies, 46 participants). The evidence is of very low certainty due to risk of bias and imprecision.

Discussion
Probiotics have previously been shown to be helpful in the treatment of ulcerative colitis and other gastrointestinal disorders, which would support the hypothesis that microbiome manipulation could benefit inflammatory bowel diseases. However, despite the theoretical potential of probiotics for the treatment of CD, the pooled analyses in this review did not find a benefit of probiotics for induction of remission. If true, the reason for the disparity of benefit from the use of probiotics in the two types of inflammatory bowel diseases would need clarification. One possible explanation may relate to the differing nature of inflammation between the two diseases: CD is generally characterised by transmural inflammation with potential to form strictures and fistulae, while ulcerative colitis is limited to superficial epithelial inflammation. Another possibility may relate to the choice of probiotics: the reviewed studies for CD only included *Lactobacillus rhamnosus* strain GG and *Bifidobacterium longum*. Other bacterial species or even multi-strain probiotics could possibly instead be more effective. For ulcerative colitis, a meta-analysis of single-strain probiotics including *Bifidobacterium* strains or *Escherichia coli* were not found to be effective for inducing remission (Shen 2014). On the other hand, a multi-strain probiotic that also included *Bifidobacterium* strains was demonstrated to be effective for induction of remission. Moreover, this review's findings are limited by the great paucity of data on the use of probiotics for CD. This review included only two studies and 57 participants, leading to a high risk of type II error of not being adequately powered to detect a significant difference. There was substantial methodologic heterogeneity between the two studies and the certainty of available evidence was graded as very low. In this setting, the benefit — or lack thereof — of probiotics for induction of remission in CD is still unknown and no conclusions can be drawn at this time.

There has been very little research progress over the past decade. This update to the original systematic review published in 2008 only adds one more study for inclusion. There are additionally several dated clinical trials registrations that have not yet been published (we could not reach the investigators for status updates). Probiotics have been studied in a number of areas of inflammatory bowel diseases, on which there are Cochrane Reviews pending publication at the time of writing. However, it is possible that the scientific community has already deemed probiotics as unsuitable for CD and has therefore abandoned further study in this area. This may nonetheless be a premature assessment, as further investigation is clearly needed to conclude whether probiotics do or do not help induce remission in CD.

Authors' Conclusions
Implications for practice
The available evidence was too uncertain to provide information on the efficacy or safety of probiotics for the induction of remission in Crohn's disease.

Implications for research
This review highlights the need for good quality, adequately powered randomised controlled trials to investigate the efficacy and safety of probiotics for the induction of remission in Crohn's disease. Given that investigation in ulcerative colitis has found some evidence for the efficacy of probiotics, future research is warranted.

Acknowledgements
Funding for MG was provided through a larger NIHR Cochrane Programme Grant in the UK.

We acknowledge the following peer referees who provided comment to updated review: Dr Siddharth Singh (peer referee), and Ms Sandra Zelinsky (consumer reviewer). We thank Jessica Sharp for copy-editing the review.

Probiotics for induction of remission in Crohn's disease (Review)

Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
REFERENCES

References to studies included in this review

Schultz 2004 \(\text{[published data only]}\)

Steed 2010 \(\text{[published data only]}\)

References to studies excluded from this review

ACTRN12614000465651 \(\text{[published data only]}\)

Day 2012 \(\text{[published data only]}\)

NCT00367705 \(\text{[published data only]}\)

NCT00374374 \(\text{[published data only]}\)
NCT00374374. Treatment with Lactobacillus rhamnosus and Lactobacillus acidophilus for patients with active colonic Crohn's disease. clinicaltrials.gov/show/NCT00374374 (first received 30 May 2019).

NCT01548014 \(\text{[published data only]}\)

Plein 1993 \(\text{[published data only]}\)

Su 2018 \(\text{[published data only]}\)

Ye 2017 \(\text{[published data only]}\)

Yılmaz 2019 \(\text{[published data only]}\)

Additional references

Butterworth 2008

Campieri 2000

Click 2019

Colombel 2010

Corr 2007

Covidence [Computer program]

Guslandi 2000

Higgins 2017

Iheozor-Ejiofor 2020

Isolauri 2000

Kaur 2020

Lai 2019

Lai HH, Chiu CH, Kong MS, Chang CJ, Chen CC. Probiotic Lactobacillus casei: effective for managing childhood diarrhea by altering gut microbiota and attenuating fecal inflammatory markers. Nutrients 2019;11(5).

Limketkai 2017

Molodecky 2012

Mukherjee 2015

Navarro-López 2018

Nguyen 2019

Pochapin 2000

Review Manager [Computer program]

Sartor 2005

Schmidt 2019

Schünemann 2011

Shanahan 2000

Shen 2014

Shouval 2017

CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Schultz 2004

Study characteristics

| Methods | Study design: randomised, double-blind, placebo-controlled trial |

Probiotics for induction of remission in Crohn’s disease (Review)

Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Setting: University of Regensburg (Regensburg, Germany)

Participants
Inclusion: mild-to-moderate CD (CDAI 150-300)
Exclusion: none listed
Age: not reported
Sex: not reported
Number randomised (n = 11): 5 (Group 1); 6 (Group 2)

Interventions
Group 1: one week of corticosteroids and antibiotics (ciprofloxacin 500 mg bid, metronidazole 250 mg tid), followed by 2×10^9 CFU/day of *Lactobacillus rhamnosus* strain GG (CAG Functional Foods, Omaha, NE)

Group 2: one week of corticosteroids and antibiotics, followed by placebo

Outcomes
Duration of follow-up: 24 weeks
Primary outcome: sustained remission
Secondary outcomes
1. Remission
2. Relapse
3. CDAI
4. CRP
5. Tolerability
6. Side effects

Notes
Funding source: partly funded by Deutsche Morbus Crohn und Colitis ulcerosa Vereinigung e.V. (DCCV)
Conflicts of interest: none declared

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>There were no details on random sequence generation and no response to email enquiry.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>There were no details on allocation concealment and no response to email enquiry.</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias) All outcomes</td>
<td>Unclear risk</td>
<td>There were no details on the methods of blinding and no response to email.</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Unclear risk</td>
<td>There were no details on whether outcome assessment was blinded and no response to email.</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Attrition rates appeared to be low, and balanced, and all attrition was reported.</td>
</tr>
</tbody>
</table>
Schultz 2004 (Continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>The trial registration/protocol was not available, although the intended outcomes specified in the methods were reported and these were as expected.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low risk</td>
<td>The groups appeared to be balanced.</td>
</tr>
</tbody>
</table>

Steed 2010

Study characteristics

Methods

- **Study design:** randomised, double-blind, placebo-controlled trial
- **Setting:** Ninewells Hospital (Dundee, United Kingdom)

Participants

- **Inclusion:** adults aged between 18 and 79 with CD (CDAI 150-450)
- **Exclusion:** pregnancy, alterations to medications within last 3 months, antibiotic treatment within last 3 months, indeterminate colitis, UC, short bowel syndrome, use of commercially available prebiotic or probiotic within the last 3 months
- **Age:** mean 46.3 years (Group 1); 49.0 years (Group 2) (analysis set)
- **Sex:** 13 male / 11 female (analysis set)
- **Number randomised (n = 35):** Group 2 (19); Group 2 (16)

Interventions

- **Group 1:** 2×10^{11} freeze-dried *Bifidobacterium longum* and 6 g Synergy I (Orafti, Tienen, Belgium) bid
- **Group 2:** placebo

Outcomes

- **Duration of follow-up:** 6 months
- **Primary outcome:** mucosal tumour necrosis factor-alpha (TNF-α)
- **Secondary outcomes:**
 1. Remission (CDAI < 150 or drop in CDAI > 75 from baseline)
 2. Clinical relapse (increase in CDAI ≥ 100, CDAI score > 450, steroid prescription, hospitalisation, surgery)
 3. Histology score
 4. IBD Questionnaire
 5. Adverse events

Notes

- **Funding source:** Government Chief Scientist Office, Scotland, United Kingdom
- **Conflicts of interest:** none

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Randomisation was performed using a table of random digits by an independent party.</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>There were no details on allocation concealment and no response to email enquiry.</td>
</tr>
</tbody>
</table>
Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTRN12614000465651</td>
<td>Authors contacted on 30 May 2019, with no response</td>
</tr>
<tr>
<td>Day 2012</td>
<td>Clinical response and remission rates not reported according to treatment arm. Authors contacted on 2 June 2019, with initial response but none thereafter</td>
</tr>
<tr>
<td>NCT00367705</td>
<td>Authors contacted on 30 May 2019, without response</td>
</tr>
<tr>
<td>NCT00374374</td>
<td>Authors contacted on 31 May 2019, without response</td>
</tr>
<tr>
<td>NCT01548014</td>
<td>Authors contacted on 15 June 2019, without response</td>
</tr>
<tr>
<td>Plein 1993</td>
<td>All patients received probiotics during the induction phase</td>
</tr>
<tr>
<td>Su 2018</td>
<td>Probiotic arm received corticosteroids, which the control arm did not receive</td>
</tr>
<tr>
<td>Ye 2017</td>
<td>Outcomes were not divided according to IBD type: CD and UC</td>
</tr>
<tr>
<td>Yilmaz 2019</td>
<td>Study criteria included patients with active and quiescent CD</td>
</tr>
</tbody>
</table>

Legend:

- CD: Crohn’s disease
- CDAI: Crohn’s Disease Activity Index
- CFU: colony-forming unit
- CRP: C-reactive protein
- IBD: inflammatory bowel disease
- tid: three times a day
- UC: ulcerative colitis

Steed 2010 (Continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Risk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low</td>
<td>"All study personnel and participants were blinded to treatment assignment" and "(t)he appearance of the synbiotic and placebo were identical".</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low</td>
<td>"All study personnel and participants were blinded to treatment assignment" and "(t)he appearance of the synbiotic and placebo were identical".</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low</td>
<td>Attrition was balanced across groups, relatively low and all reasons reported.</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low</td>
<td>The intended outcomes specified in the methods were reported and these were as expected.</td>
</tr>
<tr>
<td>Other bias</td>
<td>Low</td>
<td>The groups appeared to be balanced.</td>
</tr>
</tbody>
</table>
DATA AND ANALYSES

Comparison 1. Probiotics versus placebo

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Induction of remission</td>
<td>2</td>
<td>46</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>1.06 [0.65, 1.71]</td>
</tr>
<tr>
<td>1.2 Adverse events leading to withdrawal</td>
<td>2</td>
<td>46</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>2.55 [0.11, 58.60]</td>
</tr>
</tbody>
</table>

Analysis 1.1. Comparison 1: Probiotics versus placebo, Outcome 1: Induction of remission

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Probiotic Events</th>
<th>Probiotic Total</th>
<th>Control Events</th>
<th>Control Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schultz 2004</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>71.6%</td>
<td>0.96 [0.55, 1.69]</td>
<td></td>
</tr>
<tr>
<td>Steed 2010</td>
<td>8</td>
<td>19</td>
<td>5</td>
<td>16</td>
<td>28.4%</td>
<td>1.35 [0.55, 3.31]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>24</td>
<td>22</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>1.06 [0.65, 1.71]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 24, 22
Heterogeneity: Tau² = 0.00; Chi² = 0.57, df = 1 (P = 0.45); I² = 0%
Test for overall effect: Z = 0.23 (P = 0.82)
Test for subgroup differences: Not applicable

Analysis 1.2. Comparison 1: Probiotics versus placebo, Outcome 2: Adverse events leading to withdrawal

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Probiotic Events</th>
<th>Probiotic Total</th>
<th>Control Events</th>
<th>Control Total</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schultz 2004</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>100.0%</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Steed 2010</td>
<td>1</td>
<td>19</td>
<td>0</td>
<td>16</td>
<td></td>
<td>2.55 [0.11, 58.60]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>24</td>
<td>22</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>2.55 [0.11, 58.60]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 24, 22
Heterogeneity: Not applicable
Test for overall effect: Z = 0.59 (P = 0.56)
Test for subgroup differences: Not applicable

APPENDICES

Appendix 1. Electronic Search Strategy

Embase (Ovid database)

1. random$.tw.
2. factorial$.tw.
3. (crossover$ or cross over$ or cross-over$).tw.
4. placebo$.tw.
5. single blind.mp.
6. double blind.mp.
7. triple blind.mp.
8. (singl$ adj blind$).tw.
11. assign$.tw.
12. allocat$.tw.
13. crossover procedure/
14. double blind procedure/
15. single blind procedure/
16. triple blind procedure/
17. randomized controlled trial/
18. Or/1-17
19. Exp Crohn disease/
21. IBD.mp.
22. Inflammatory bowel disease*.mp.
23. Or/19-22
24. exp Probiotics/
25. exp Synbiotics/
26. exp Lactobacillus/
27. lactobacilli*.tw.
28. bacill*.tw.
29. exp Bifidobacterium/
30. (bifidus or bifidobacter*).tw.
31. exp Streptococcus thermophilus/
32. streptococc*.tw.
33. exp Lactococcus/
34. exp Bacillus subtilis/
35. exp Enterococcus/
36. exp Enterococcus faecium/ or Enterococcus faecalis/
37. exp Saccharomyces/
38. leuconostoc*.tw.
39. pediococc*.tw.
40. bulgarian bacillus*.tw.
41. (beneficial adj3 bacter*).tw.
42. (Escherichia coli or "E. coli").tw.
43. Yeast.tw.
44. (fungus or fungi).tw.
45. (VSL# 3 or VSL 3).tw.
46. Or/24-45
47. 18 and 23 and 46

Medline (Ovid database)
1. random$.tw.
2. factorial$.tw.
3. (crossover$ or cross over$ or cross-over$).tw.
4. placebo$.tw.
5. single blind.mp.
6. double blind.mp.
7. triple blind.mp.
8. (singl$ adj blind$).tw.
11. assign$.tw.
12. allocat$.tw.
13. randomized controlled trial/
14. or/1-13
15. Exp Crohn disease/
17. IBD.mp.
18. Inflammatory bowel disease*.mp.
19. Or/15-18
20. exp Probiotics/
21. exp Synbiotics/
22. exp Lactobacillus/
23. lactobacilli*.tw.
24. bacill*.tw.
25. exp Bifidobacterium/
26. (bifidus or bifidobacter*).tw.
27. exp Streptococcus thermophilus/
28. streptococc*.tw.
29. exp Lactococcus/
30. exp Bacillus subtilis/
31. exp Enterococcus/
32. exp Enterococcus faecium/ or Enterococcus faecalis/
33. exp Saccharomyces/
34. leuconostoc*.tw.
35. pediococc*.tw.
36. bulgarian bacillus*.tw.
37. (beneficial adj3 bacter*).tw.
38. (Escherichia coli or "E. coli").tw.
39. Yeast.tw.
40. (fungus or fungi).tw.
41. (VSL# 3 or VSL 3).tw.
42. Or/20-41
43. 14 and 19 and 42

Cochrane CENTRAL
#1 MeSH: [Crohn's Disease] explode all trees
#2 Inflammatory bowel disease
#3 IBD
#4 #1 or #2 or #3
#5 MeSH descriptor: [Probiotics] explode all trees
#6 MeSH descriptor: [Synbiotics] explode all trees
#7 MeSH descriptor: [Lactobacillus] explode all trees
#8 Lactobacilli*
#9 Bacilli*
#10 MeSH descriptor: [Bifidobacterium] explode all trees
#11 bifidus*
#12 bifidobacter*
#13 MeSH descriptor: [Streptococcus thermophilus] explode all trees
#14 streptococc*
#15 MeSH descriptor: [Lactococcus] explode all trees
#16 MeSH descriptor: [Bacillus subtilis] explode all trees
Probiotics for induction of remission in Crohn's disease (Review)

Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
#20 MeSH descriptor: [Saccharomyces] explode all trees
#21 leuconostoc*
#22 pediococc*
#23 bulgarian bacillus*
#24 beneficial adj3 bacter*
#25 Escherichia coli or “E. coli”
#26 Yeast
#27 fungus or fungi
#28 VSL# 3 or VSL 3
#29 #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28
#30 #4 and #29

Clinicaltrials.gov
1. Probiotics and Crohn’s Disease (19)
2. Probiotics and Inflammatory bowel disease (43)

WHO trials registry
1. Probiotics and Crohn’s Disease (14)
2. Probiotics and Inflammatory bowel disease (14)

IBD specialized register
1. Probiotics and Crohn’s Disease (3)
2. Probiotics and Inflammatory bowel disease (0)

WHAT'S NEW

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 July 2020</td>
<td>New citation required but conclusions have not changed</td>
<td>One study (Steed 2010) was added. Conclusions are unchanged.</td>
</tr>
<tr>
<td>6 July 2020</td>
<td>New search has been performed</td>
<td>New search performed on 6 July 2020. Risk of bias and GRADE assessments were performed. Summary of Findings table was added.</td>
</tr>
</tbody>
</table>

HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 May 2008</td>
<td>Amended</td>
<td>Converted to new review format</td>
</tr>
</tbody>
</table>
Date | Event | Description
--- | --- | ---
21 April 2008 | New citation required and conclusions have changed | Substantive amendment

CONTRIBUTIONS OF AUTHORS

Berkeley N Limketkai performed screening of abstracts and titles, screening of full-text articles, 'Risk of bias' assessments, statistical analyses, GRADE analysis, data interpretation, manuscript preparation, critical revision of the manuscript, and approval of the final manuscript.

Anthony K Akobeng supported manuscript preparation, critical revision of the manuscript, and approval of the final manuscript.

Morris Gordon performed adjudication in the screening and data extraction phases, GRADE analysis, data interpretation, manuscript preparation, critical revision of the manuscript, and approval of the final manuscript.

Akinlolu Adedayo Adepoju performed screening of abstracts and titles, screening of full-text articles, 'Risk of bias' assessments, data interpretation, manuscript preparation, critical revision of the manuscript, and approval of the final manuscript.

DECLARATIONS OF INTEREST

Berkeley N Limketkai has no known declarations of interest to declare.

Anthony K Akobeng has no known declarations of interest to declare.

Morris Gordon Since August 2016, I have received travel fees to attend international scientific and training meetings from Pharma companies. These grants included no honoraria, inducement, advisory role or any other relationship and were restricted to the travel and meeting related costs of attending such meetings. These include: DDW (Digestive Disease Week) May 2017, World Congress of Gastroenterology October 2017, DDW May 2018, Advances in IBD December 2018, DDW May 2019. The companies include: Biogaia (2017-19), Ferring (2018), Allergan (2017), synergy (bankrupt - 2018) and Tillots (2017-19). None of these companies have had any involvement in any works completed by me and I have never had any payments for any other activities for them, as confirmed below. From these date onwards, I have made a personal undertaking to take no further funds from any pharmaceutical or formula company in any form for travel or other related activities. This is to lift the limitations such funding has on my ability to act as a first and corresponding author on reviews, in line with the Cochrane policies on such matters and is reported in line with these policies. These current declarations will expire over the next 3 years and this statement updated regularly to reflect this.

Akinlolu Adedayo Adepoju has no known declarations of interest to declare.

SOURCES OF SUPPORT

Internal sources
- None, USA
- None, UK

External sources
- No sources of support supplied

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

There are several differences in the methods between the current update and the original review, as follows.

- Manufacturers of probiotics were not contacted for data on any unpublished trials, as these were felt to have been adequately captured in the clinical trials registries.
- A PRISMA flow diagram was added.
- 'Risk of bias' assessments were included.
- The certainty of data was assessed using GRADE methodology.
- A 'Summary of findings' table was added.
INDEX TERMS

Medical Subject Headings (MeSH)
Crohn Disease [*therapy]; Probiotics [*therapeutic use]; Randomized Controlled Trials as Topic; Remission Induction

MeSH check words
Humans