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Abstract 

This thesis looks at approaches to gland instance segmentation in histology images. The aim 

is to find suitable local image representations to describe the gland structures in images with 

benign tissue and those with malignant tissue and subsequently use them for design of accurate, 

scalable and flexible gland instance segmentation methods.  

The gland instance segmentation is a clinically important and technically challenging 

problem as the morphological structure and visual appearance of gland tissue is highly variable 

and complex. Glands are one of the most common organs in the human body. The glandular 

features are present in many cancer types and histopathologists use these features to predict 

tumour grade. Accurate tumour grading is critical for prescribing suitable cancer treatment 

resulting in improved outcome and survival rate. Different cancer grades are reflected by 

differences in glands morphology and structure. It is therefore important to accurately segment 

glands in histology images in order to get a valid prediction of tumour grade. 

Several segmentation methods, including segmentation with and without pre-classification, 

have been proposed and investigated as part of the research reported in this thesis. A number 

of feature spaces, including hand-crafted and deep features, have been investigated and 

experimentally validated to find a suitable set of image attributes for representation of benign 

and malignant gland tissue for the segmentation task. Furthermore, an exhaustive experimental 

examination of different combinations of features and classification methods have been carried 

out using both qualitative and quantitative assessments, including detection, shape and area 

fidelity metrics.  

It has been shown that the proposed hybrid method combining image level classification, 

to identify images with benign and malignant tissue, and pixel level classification, to perform 

gland segmentation, achieved the best results. It has been further shown that modelling benign 

glands using a three-class model, i.e. inside, outside and gland boundary, and malignant tissue 

using a two-class model is the best combination for achieving accurate and robust gland instance 

segmentation results. The deep learning features have been shown to overall outperform hand-

crafted features, however proposed ring-histogram features still performed adequately, 

particularly for segmentation of benign glands. The adopted transfer-learning model with 

proposed image augmentation has proven very successful with 100% image classification 

accuracy on the available test dataset. It has been shown that the modified object-level 

Boundary Jaccard metric is more suitable for measuring shape similarity than the previously used 

object-level Hausdorff distance, as it is not sensitive to outliers and could be easily integrated 

with region-based metrics such as the object-level Dice index, as contrary to the Hausdorff 

distance it is bounded between 0 and 1. Dissimilar to most of the other reported research, this 

study provides comprehensive comparative results for gland segmentation, with a large 

collection of diverse types of image features, including hand-crafted and deep features. 

The novel contributions include hybrid segmentation model superimposing image and pixel 

level classification, data augmentation for re-training deep learning models for the proposed 

image level classification, and the object-level Boundary Jaccard metric adopted for evaluation 

of instance segmentation methods. 
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Thesaurus  

Binary classification problem: A binary classification problem is to separate the 

unknown samples into two given categories (these two categories are given from 

training data). 

Centroid: This term is a concept in K-means algorithm, and it refers to the centre point 

of the cluster.  

Classification: This refers to image classification in this work. Image classification is the 

process of grouping all the pixels in an image into one of a number of given classes or 

categories. This term is related to image segmentation, and the differences between 

these two terms are discussed in the term ‘segmentation’. 

Deep features: This refers to deep learning features. These features are generated by 

deep learning architecture, and could be extracted before fully connected layer, i.e. 

AlexNet, GoogleNet and ResNet features.  

Ensemble learning: This is a process in which a set of classifier are trained independently, 

such that classifier in the model will make the predictions. The final output of the 

ensemble learning is to combine the output of each classifier using some strategy (such 

as majority voting).  

Feature space: The term is one of the well-known terms in machine learning. Feature 

space refers to the abstract space where the training features are contained.  

Feature: This term often refers to a feature vector in machine learning. A feature vector 

is the vector which contains a set of digits has been used to describe the properties of 

the image, and it has been used as the input data to train the classifier in classification 

and regression.  

Ground truth: This term is widely used in machine learning. The ground truth used in 

this work is annotated by histology experts, and the ground truth of a histology image is 

the benchmark which represents the gland and background parts in the images.  
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Natural image: This is the term used in (Sumengen and Manjunath, 2005), and it refers 

to the images contain many texture features.  

Pixel-level classification: This refers to gland instance segmentation, and it is the second 

part of the proposed segmentation method. Gland segmentation classifies gland and 

non-gland parts in histology images and subsequently separates different gland objects. 

The reason why these two terms are similar is that gland instance segmentation deals 

with pixel-wise classification for test histology images. The term is defined compared 

with the image-level classification (discussed at the same page). 

Pixel-level classifier: The classifier used to deal with gland segmentation, and the 

classifier used in this work is the forest model with axis-aligned weak learner, mid-point 

thresholding and Gini impurity splitting criterion.  

Rotation-invariant property: If the extracted feature has rotation-invariant properties, 

these features are unaffected by the rotation of the images.   

Segmentation: This term refers to image segmentation in this work, image segmentation 

is to divide the images into several regions (sets of pixels in the same image) based on 

the semantic meanings. Image segmentation could be treated as pixel-wise classification. 

Gland segmentation is a pixel-wise classification for each histology image. The difference 

between these two terms (segmentation and classification) is that segmentation deals 

with each pixel but classification identifies the whole image as a given classes.  

Image-level classification: This refers to the first part of the proposed segmentation 

method (segmentation with pre-classification method) in this work. The purpose of the 

image-level classification is to separate histology images into benign or malignant case.  

Hand-crafted feature: These features are generated by applying different methods using 

the information in the images, such as histogram, LBP and HOG. 

Residual connection: This term is used in the ResNet architecture. It means the output 

of a layer is a convolution of its output plus input.  
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Chapter 1   

Introduction 

Introduction to histology imaging and gland tissue components, in benign and 

malignant glands, are briefly discussed at the beginning of this chapter. Subsequently, 

the motivation and the aims of the research described in this thesis are discussed. The 

two main types of image segmentation are introduced and their differences described. 

The original contributions of this research are summarised, and the overall structure of 

the thesis is described. 

1.1 Background 

The work described in this thesis deals with segmentation of glands in histology 

images. This chapter briefly introduces essential information about histology imaging 

and glands’ morphology to facilitate a better understanding of the research objectives 

as well as methods described in this thesis.  

Histology is a study which uses microscopy data to investigate the tissues of animals 

and plants. For example, identification of different types of cancer, or other diseases, 

often requires histology image analysis for detection of tissue abnormalities including 

tissue morphology irregularities. The key steps for acquiring histology images are 

detailed in Chapter 2. The reason why histology images are important is that these 

images can help biologists to analyse and understand morphology and function of 

different tissues in animals and plants.  

In recent years, automated gland segmentation has become one of the important 

topics in biomedical image analysis research. The images with benign tissue are shown 

in the top row in Figure 1.1 and those with malignant tissue in the bottom row. The 

artificially highlighted (brighter) parts in these images represent glands. The 

morphological structure and visual appearance of gland objects can be different even for 

the same type of tissue (benign or malignant). Gland segmentation is a challenging 

problem, as the methods have to cope with these variabilities. For example, because 
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glands in malignant tissue can have very significantly different shape and size, it is rather 

difficult to design meaningful segmentation shape prior. Furthermore, the image 

patterns representing glands and surrounding tissue could be very similar leading to 

under or over segmentation of glands. The proposed methods have to recognise these 

different variation patterns to establish robust decision about presents of gland tissue. 

Costantini et al. (2003) and Van Putten et al. (2011) discussed how even histology experts 

have different subjective views on tissue classification. The objectivity of computational 

methods can support an improved analysis of histological data (McCann et al., 2015) 

leading to more robust decisions. 

 

 

 

 

 

 

 

 

Figure 1.1 Sample images from the gland dataset (Nasir, 2015).  

Colorectal cancer is one of the commonly diagnosed cancers in both males and 

females (Torre et al., 2015). Accurate tumour grading is critical for individual cancer 

treatment procedure and resulting survival rate. Fleming et al. (2012) pointed out that 

the different grading of the cancer was reflected by different structure of gland objects. 

It is therefore important to accurately segment glands in histology images in order to get 

a valid classification of different tumour grading. 

The colon gland (refer to Figure 1.2) could be divided into four tissue components: 

lumen, cytoplasm, epithelial cells, and stroma. In what follows, the stroma in either 

benign (normal, Figure 1.2.a) or malignant gland (Figure 1.2.b) is treated as a background 

structure in the computational approach to gland segmentation. The epithelial cells form 

the boundary of the gland, which encloses the internal gland structures, i.e. lumen and 

cytoplasm. The reason for stroma is being treated as background, is that typically, it is 
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(a) (b) 

not used for cancer grading and therefore is not of interest for histology experts (Kather 

et al., 2019). 

 

 

Figure 1.2 Tissue components in colon glands visualised using Hematoxylin-Eosin staining method. Gland 

images are from MICCAI 2015 gland database (Nasir, 2015) 

Typical appearances of tissue components of benign and malignant glands are 

shown in Figure 1.2. Even from a brief visual inspection, the structure of the malignant 

gland is different from that of the benign gland. In any of these cases, the gland 

segmentation method must deal with the variability of glands size, shape and tissue 

appearance. 

1.2 Motivation and aims 

Gland segmentation aims to automatically delineate gland and non-gland 

structures in histology images. This work is essential as analysis of morphology and 

function of gland objects is useful for detection and quantification of many types of 

diseases. For example, the morphological representation of the gland structure is 

employed to describe the degree of malignancy of various adenocarcinomas, including 

breast and colon.  

It has been shown that malignancy of cancer can be assessed by the shape and 

appearance of glands and therefore gland segmentation is an important step in enabling 

automatic classification of different tumour types. The main motivation behind this work 

is twofold. First, it is to investigate the reliable automatic segmentation tools that are, as 

argued above, essential for accurate cancer grading. Second, segmentation in general is 

one of the key enabling techniques in image processing and computer vision, therefore 

the progress made on image segmentation is instrumental in developing a large class of 

image computational methods. This research aims to find the suitable local image 
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representations to describe the gland parts in images with benign tissue and those with 

malignant tissue and investigate effective segmentation algorithms. 

In this work, random forest has been used as a primary classifier for the pixel-wise 

classification of histology images. Although other techniques have been proposed and 

used for the pixel level classification in histology images, including recently very popular 

convolutional neural networks, the random forest methodology has been chosen as it 

provides a good compromise between accuracy, scalability and flexibility of the design. 

1.3 Image segmentation 

Early image segmentation techniques used homogeneity of regions as the primary 

criterion for segmentation. The region homogeneity could be defined in terms of: 

intensity, colour, texture, shape or other relevant features. Figure 1.3 shows an example 

of two images for which region homogeneity based segmentation could be successfully 

used with pixel intensity and texture based features, respectively. With a suitable feature 

defined and calculated the segmentation process usually involves a simple thresholding 

performed in the feature space. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3 Example of two images for which region homogeneity principle could be successfully deployed 

using: (a) pixel intensity (image from MATLAB), (b) texture features (image from 

http://w3.ualg.pt/~dubuf/pubdat/texture/texture.html; Du buf et al. (1990)) 

Semantic segmentation is a much more complex problem than the region 

homogeneity-based image segmentation. This is because of the significant variation in 

the appearance (i.e. image patterns leading to differences in image perception) of 

objects belonging to the same category of segmented entities. For this type of 

segmentation, a simple region homogeneity principle may not be sufficient as objects in 

http://w3.ualg.pt/~dubuf/pubdat/texture/texture.html
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the same class could have significantly different characteristics. For example, for the 

image in Figure 1.3, although the bottles belong to the same “bottle” class, they have 

different size, colour pattern, and shape. The aim of the semantic segmentation in this 

case is to delineate all the bottles as a single entity despite significant differences in their 

appearance. In case of the semantic segmentation different object instances of the same 

class are annotated by the same label (i.e. are assigned to a single, but possibly 

disconnected, image region). 

Instance segmentation differs from the semantic segmentation in the sense that 

different instances of the same object class are given a different id (i.e. identity number 

number) in order to classify different objects, i.e. different instances of the same object 

class are assigned unique image regions. In the case of the “bottle” class in Figure 1.4, 

all the three bottles are dilated separately, yet still are recognised as representing the 

same object class.  

 

 

 

 

 

 

 

 
Figure 1.4 Example explaining difference between semantic segmentation and instance segmentation, 

(from PASCAL VOC 2012; Everingham et al., 2011) 

In case of gland instance segmentation in colon histology images the objective is to 

classify the gland and non-gland structures and then label different instances of the 

gland object with unique labels. The following section provides a brief review of image 

segmentation methods. 

There are many methods designed to solve image segmentation problems, and they 

have been analysed and reported in the literature (Pal et al., 1993; Yuheng and Hao, 

2017). One of the simplest approaches used for image segmentation is threshold based 

methods (Cheriet et al., 1998; Hammouche et al., 2008). The main objective of these 

thresholding methods is to find the optimal threshold value in the corresponding image 

feature space. Histogram thresholding method based on the similarity between the grey 

Original images Semantic segmentation Instance segmentation 
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levels is described in (Tobias and Seara, 2002). Arifin and Asano (2006) used the 

clustering similarity measure to determine the value of the threshold, which was the 

main criteria in their method. Tan and Isa (2011) introduced a colour image 

segmentation method which combined histogram thresholding and fuzzy c-means 

algorithm. In this hybrid method, the histogram thresholding method was used to 

determine different regions in the colour image. The fuzzy c-means algorithm improves 

the compactness of different regions generated by histogram thresholding. One of the 

disadvantages of histogram thresholding techniques is that this method only considers 

the pixel intensity but does not take into account the spatial relationships present in the 

images. In this case, histogram thresholding methods may not be useful in segmentation 

of blurred images.  

Another, frequently used image segmentation methodology is based on edge 

detection. Examples of edge detectors include Sobel (Vincent and Folorunso, 2009) and 

Canny (Canny, 1986). Sumengen and Manjunath (2005) introduced a multiscale edge 

detection method applied to natural images. Segmentation results provided by this 

method improved significantly when compared with one single scale edge detection 

approach. The key drawback, of these edge detection methods, is that they could not 

perform well when there are too many edges. In that case, the segmentation methods 

cannot identify a closed boundary. However, these edge detection based image 

segmentation methods are useful when detecting the continuous edges in images. Brejl 

and Sonka (2000) introduced a hybrid method which combined the object shape model 

and border appearance model. The object shape model (e.g. built using Hough 

Transform (Ballard, 1981)) is used to describe a likely shape of the object and is often 

represented as a mean shape and probability map of possible shape variations. These 

models are usually constructed from set of training images and used to locate an 

approximate position of the object. The appearance models are constructed in a similar 

manner but the mean and appearance variability describe pixel intensities rather than 

images edges.  

Region-based techniques are another commonly used methods in image 

segmentation. Adams and Bischof (1994) introduced a method of region growing for 
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image segmentation. This seed (where seed referes to a small number of pixels selected 

in an image) region growing method controlled the initial seeds without tuning the 

homogeneity parameters. Each seed is responsible for representing each connected 

object associated with that seed, leading to dividing image into several regions. The final 

regions in the image were built by merging the pixels to their nearest seed region. Zhang 

et al. (2008) introduced a hybrid level set algorithm to segment the objects in medical 

images. The proposed method addressed a so called edge leakage problem, frequent for 

active shape models. The method is able to locate a correct boundary target object even 

in images with in a complex background. Morar et al. (2012) introduced an active 

contour without edges method to segment different gland objects. That method could 

handle the problem with two different gland objects that were close to each other, and 

correctly segmented different objects in low contrast images. 

Watershed transformation is another useful technique for image segmentation. 

Wang (1997) introduced a multiscale method for calculating image gradients, handling 

blurred and step edges in images. Watershed transformation could provide over-

segmented results. To overcome that problem, Belaid and Mourou (2011) introduced a 

hybrid method which combined watershed transformation and topological gradient 

approaches. Yang et al. (2007) introduced a hybrid method which combined the 

watershed and normalised cut to solve the over-segmentation problem. Ng et al. (2006) 

proposed a hybrid method which combined k-means and the improved watershed 

method for medical image segmentation applications. That method could handle both 

over-segmentation and noise. Graph partition based methods are also widely used in 

image segmentation, with the most popular, including: normalized cuts (Shi and Malik, 

2000), random walker method (Grady, 2006), minimum cut (Wu and Leahy, 1993), 

isoperimetric partitioning (Grady and Schwartz, 2006), and minimum spanning tree-

based segmentation (Zahn, 1970). In the last two decades, a number of graph partition 

based methods were introduced and achieved good segmentation results. Shafarenko 

et al. (1997) introduced a graph partition method to segment the random texture colour 

images. That method has combined the watershed and merging algorithms, and 

achieved good results on noisy colour images. 
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Segmentation methods described so far could be successful when applied to 

relatively simple problems. They are not suitable for semantic segmentation with 

complex object. In recent years, machine-learning based methodologies have become 

popular and have been successfully applied in semantic segmentation. Different from 

other image segmentation approaches, they are based on feature extraction and 

machine learning techniques. Wang et al. (2011) used the pixel-level colour feature and 

the texture feature to train the SVM classifier. The method achieved good segmentation 

results when compared with then the state-of-the-art methods. Schroff et al. (2008) 

used the random forest model with textons, colour, filterbank and HOG features. There 

are many other machine-learning based image segmentation methods (Andrew et al., 

2003; Ren and Malik, 2003; Powell et al., 2008). The key differences between different 

machine-learning based segmentation methods are derived using different image 

features and different classification methods operating on these featuresThe machine-

learning based methods are primary methods used in this research for gland instance 

segmentation. The key processing components for these approaches involve image 

feature extraction and subsequent pixel-level feature classification. Different feature 

extraction methods used to obtain information about local patterns in histology images 

are detailed in Chapter 4. Various classification methods which could be used with these 

features for segmentation of histology images are detailed in Chapter 3. 

1.4 Contributions 

This thesis presents a number of novel approaches for gland instance segmentation 

in histology images. The main contributions of this research are summarised as follow: 

⚫ Two main segmentation processing pipelines, with and without pre-classification, 

have been proposed in this research. The processing with image pre-classification 

has been further divided into pre-classification at the feature extraction level and 

the pixel-classification level. These processing architectures have been 

extensively tested with different gland categories, number of target classes, and 

different image feature sets. It has been demonstrated that all these parameters 

are important when selecting the optimal segmentation method for a given 
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problem. 

⚫ As part of the proposed processing pipeline, an image-level classification 

algorithm has been employed in order to identify image into benign or malignant 

cases. It has been shown that this method is able to differentiate between benign 

and malignant gland images with very high accuracy (100% on the available test 

data), when used with proposed data augmentation methods. 

⚫ A modification of a previously proposed, contour-based, Boundary Jaccard metric 

has been devised, adopting it for evaluation of the instance segmentation 

methods. The discussion and experimental evidence demonstrate that this 

measure is better than the previously used object-level Hausdorff distance metric 

as it is not sensitive to outliers and it can be easily integrated with region-based 

metrics such as the object-level Dice index. 

1.5 Thesis Outline  

The remainder of the thesis is organised as follows. An introduction to gland 

segmentation problem is given in Chapter 2. It includes a brief description of the key 

steps needed for production of histology images and a comprehensive review of the 

existing gland segmentation methods. The gland database used throughout this thesis is 

also introduced. Chapter 3 presents basic classification methods used in this research for 

gland segmentation. A comparative analyses of different classification models are 

provided in order to identify the key models’ design parameters and their characteristics. 

Chapter 4 discusses the different feature extraction methods employed to characterise 

information present in the gland histology images. Discriminative properties of the 

described features are also investigated. Chapter 5 describes the complete processing 

pipelines proposed for the gland segmentation problem. The two main processing 

structures, with and without pre-classifications are described and the concepts of image- 

and pixel- level classifications are introduced. This chapter also includes descriptions of 

histology image pre-processing and the segmented image post-processing algorithms. 

Chapter 6 describes number of adopted segmentation evaluation measures. 

Characteristics of these measures are discusses and their complementary properties are 
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explained. The segmentation evaluation scheme is introduced. This chapter also includes 

a comprehensive assessment of different segmentation configurations, with tests 

evaluating different image features, design parameters and segmentation architectures. 

Chapter 7 summarises the research, highlights the original contributions and draw 

attention to possible directions for future work.  
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Chapter 2 

Introduction to gland segmentation 

The previous chapter introduced the problem of gland segmentation in histology 

images and presented a brief classification of methods used in image segmentation. This 

chapter will introduce the process of acquiring the histology images, and previous 

methods applied to gland segmentation are reviewed subsequently. Limitations of those 

methods and possible improvement are also discussed. Finally, details of the gland 

dataset used in this work are also provided.  

 

2.1 Preparation of Histology Images  

Chapter 1 Section 1.1 explained the basis of histology and morphology of benign 

and malignant glands. In order to get the histology images one needs to prepare the 

histology slide – the steps for the preparation of these slides are briefly discussed in this 

section. Nicola (2017) described the details of the preparation steps. Figure 2.1 shows 

five preparation steps and the details of each step are:  

⚫ Step 1: Samples of the biological tissue are fixed by using chemical fixation  

⚫ Step 2: Water and formalin are removed from the tissues, and an organic solvent is 

used to remove the alcohol.  

⚫ Step 3: Using the paraffin wax for embedding tissue parts, the tissue surrounded by 

the paraffin wax is treated as a ‘block’. This block supports very thin sectioning.  

⚫ Step 4: The embedded tissue are sectioned. This is an important step as it provides 

thin slides of tissue samples that illustrate the microstructure of the corresponding 

tissue regions.  

⚫ Step 5: The tissue is stained to enhance the contrast and highlight the features of 

interest. The visual outlook of gland objects in histology images depends strongly on 

the selected staining method.  
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Figure 2.1 Preparation steps for histology images  

For the histology sample preparation all these steps are essential for getting a 

finished histology slide. For researchers working on image segmentation, the staining 

step is possibly the most important as the appearance of the image strongly depends on 

this step. The colour in histology images is profoundly affected by the staining methods 

used to label the specific structures of the tissue. There are many types of staining 

methods used in this tissue labelling. The H&E (Hematoxylin and Eosin) staining method 

is one of the staining methods widely used in bio-imaging. The MICCAI 2015 gland 

dataset (Nasir, 2015) use H&E staining method. Hematoxylin is responsible for nuclei 

appearing to be blue in the image because the nuclei acids attract Hematoxylin, and 

Eosin causes cytoplasm to be stained pink. Figure 2.2 shows example images from 

MICCAI 2015 gland dataset (Nasir, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2 The example images from MICCAI Gland Segmentation 2015 dataset (Nasir, 2015) 

From visual inspection, the colour pattern in these histology images is different, 

with the colour being strongly affected by variation in the staining processes applied to 

different slides. The details of the MICCAI 2015 Gland dataset are provided in Chapter 2 

Section 2.3.  



34 
 

2.2 Gland segmentation 

This section provides a brief review of the methods used in gland segmentation. 

The methods have used the morphological techniques and region-growing methods to 

classify the gland and the background in the histology images; and the machine-learning 

based methods have been applied to gland segmentation, either as deep learning 

approaches or traditional machine learning techniques, in order to identify the gland 

and non-gland parts in histology images. Finally, hybrid methods combine deep learning 

and traditional machine learning techniques to distinguish the gland and non-gland parts.  

Wu et al. (2005a) introduced a method using a 2D-Gaussian low pass filter to find 

the epithelial cell with the intensity smaller than that of the threshold. The gland area 

was determined by dilating the pixel classified as the epithelial cell with a circle with 

radius. In the same year, Wu et al. (2005b) introduced a region growing approach to 

classify the nuclei region from other parts by setting a threshold in the images. The large 

empty parts (lumen parts shown in Figure 1.2) are employed to initialise the seed points 

for region growing. The chain of epithelial nuclei is used as the stop criterion for the 

region growing. The drawback of these two methods is that the threshold is generated 

individually for each image. The region growing approach achieved good performance in 

the images with healthy tissue and those with abnormal intestinal gland, however 

validation was only done by visual inspection.  

Gunduz-Demir et al. (2010) introduced a method that used graph connectivity to 

identify the initial seed for the region growing. This is different from the methods 

described above that employed the pixel-level information and used a set of 

surrounding pixels to represent each tissue part in the images. To growing beyond the 

gland parts in the images, edges between the nuclear objects are employed to cease 

region grow. The final step is to remove the region that has no glandular characteristics. 

However, this method is also limited to images with only benign glands.  

Some studies used image features to represent the tissue components and 

subsequently used classifier trained on these features to make the predictions (Diamond 

et al., 2004; Farjam et al., 2007; Altunbay et al., 2010; Nguyen et al., 2010; Rathore et al., 

2013; Fu et al., 2014; Akbar et al., 2015; Cohen et al., 2015; Ap et al., 2017). Diamond et 
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al. (2004) used morphological structure and texture features from histology images to 

classify test histology images into stroma, benign and carcinoma categories, and the 

image within a window 100-by-100 pixels was selected from whole-mount radical 

prostatectomy sections at 40 magnification. The details of features generated from co-

occurrence matrix are discussed in Chapter 4 Section 4.2.  

Farjam et al. (2007) used k-means algorithm for clustering of local features from 

the histology images, and these features were used to separate the stroma and lumen 

from regions of nuclei. Altunbay et al. (2010) used the distribution of multiple gland 

components for the representations of different regions (such as nuclei or stroma) in 

histology images. The feature representing the tissue components in the images use a 

new set of structural features, and these structural features are: (i) average degree for:  

stromal-stromal edges, luminal-stromal edges, and luminal-nuclear edges; (ii) average 

clustering coefficient for: luminal components and stromal component; (iii) diameters 

for stromal-stromal edges, and luminal-stromal edges. In the same year, Nguyen et al. 

(2010) used both statistical and textural features to describe the local patterns in the 

tissue images, that study addressed three class problem with benign, grade 3 cancer and 

grade 4 cancer categories. The author used the SVM classification algorithm and the 

multilayer perceptron (MLP) algorithm to make a prediction based on the extracted 

features.  

Akbar et al. (2015) introduced a method to separate the images into different parts 

(gland and background), and extract the local features from these parts. The features 

were used to train the machine learning algorithm in WEKA (Jagtap, 2013) (WEKA is a 

software implementing many machine learning methods). The extracted features 

included: the feature generated from grey-level co-occurrence matrix, first-order 

statistical features and second-order statistical features. First-order statistical features 

including mean, variance and entropy, and second-order statistical features include 

correlations, contrast and homogeneity. The comparison results based on the KNN 

algorithm, SVM algorithm and Bayesian Logistic Regression. A brief review of these 

classification methods is provided in Chapter 3 Section 3.1. 

Rathore et al. (2013) introduced yet another method to segment the tissue in 
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histology images. The proposed method contains five steps, including pre-processing, 

feature extraction, feature selection, clustering of histology images, and post-processing. 

In the pre-processing step, enhancement of the contrast of the images was used to 

decrease the effect of the image variability due to differences in the staining process. 

Feature extraction and feature selection were employed to find the best features 

subsequently used by the classifier. Local Binary Pattern (LBP), Local ternary patterns 

(Tan and Triggs, 2010), and Haralick texture features (Haralick and Shanmugam, 1973) 

were used to describe the local information (the details of different versions of LBP 

features are discussed in Chapter 4, Section 4.4). The post-processing step is to remove 

noise in the images. The adopted evaluation measure was concerned only with the 

classification accuracy and the shape similarity was not estimated. 

Fu et al. (2014) proposed a segmentation approach based on polar coordinates. This 

method starts to convert the histology images to polar space. The morphological gland 

boundary is transformed into a vertical periodic graph, which could be identified using a 

conditional random field. The weakness of this method is that it achieved excellent 

performance only for images with benign tissue. The following year, Cohen et al. (2015) 

proposed a method which combined the pixel-level classification and the active contour 

to solve the gland segmentation. In pixel-level classification, the first-order statistical 

features are extracted from different colour spaces, such as RGB, HSL and Lab. This 

method relied on a gland surrounded by an epithelial layer (refers to epithelial nuclei in 

benign and malignant tissue in Figure 1.2) that occurr dark in the image.  

Ap et al. (2017) presented a method to detect the boundary epithelial cell of the 

gland, and then constructed the entire gland boundary. The described method employed 

the histogram feature and Haralick texture features (Haralick and Shanmugam, 1973) to 

train the random forest models, and to predict the gland objects in test images as thick 

or thin glands. The performance of that method achieved good results when compared 

with the top-10 ranked results reported by (Warwick.ac.uk, 2016a). The results of that 

method are worse than the results obtained by the random forest proposed in this thesis. 

The details of histogram features are discussed in Chapter 4, Section 4.3. 

The above methods have limited capability of handling different shapes or image 
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staining and are sensitive to intensity and texture variations. Paul et al. (2016) introduced 

an approach which builds a new informative morphological scale space for gland 

segmentation. However, the evaluation measures for segmentation results shown in the 

paper (Paul et al., 2016) were only done on the images already used for training.  

In recent years, many researchers have developed segmentation methods based on 

deep learning techniques. These approaches have been applied to gland segmentation 

and demonstrate excellent performance. In the MICCAI gland segmentation 2015 

competition, the method from our group employed the modified LeNet5 architecture to 

learn the three categories –“inside gland”, “gland boundary” and “outside of gland” from 

the training images. All the training images were normalised to have similar histogram 

distribution. The final segmentation results applied the post-processing using level set 

method applied to the LeNet-5 predicted probability maps (Sirinukunwattana et al., 

2017). 

Kainz et al. (2015) proposed a new method which employed two convolutional 

networks as the pixel classifiers. The input for these two convolutional neural networks 

was pre-processed by deconvolving the red channel in the original images. The final 

output is generated by a global segmentation based on weighted total variation. The 

segmentation results of the proposed method performed well in the images with benign 

tissue and those with malignant tissue.  

The method proposed by Chen et al. (2016) achieved the best performance in 

MICCAI Gland Segmentation 2015 competition. The proposed method has combined the 

multi-level features representation with the fully convolutional network (FCN).  

The same group developed and introduced a novel deep learning architecture 

(Graham et al., 2018), named ‘minimal information loss dilate network’, which combined 

the minimal information loss units, dilated residual units and traditional residual units. 

The novel architecture for this network is the minimal information loss units which 

include the training images downsampling into the residual units after max-pooling layer.  

Li et al. (2016) introduced a method which combines deep learning features and 

hand-crafted features to train the SVM algorithm and uses this trained model to predict 

the tissue parts in test images. In the paper, the comparative results for different sizes of 
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the patches for the hand-crafted features and deep learning features, and the 

comparative results for different fusions of the hand-crafted and deep learning features 

are also represented.  

Manivannan et al. (2018) introduced a hybrid method which also combines the 

hand-crafted features and deep learning features. The hand-crafted features used in the 

proposed method are root-SIFT, raw-pixel values, and multiresolution local binary 

patterns (Ojala et al., 2002) and deep learning features which were learnt by a modified 

FCN architecture.  

The methods discussed above have been applied to gland segmentation. Some of 

them combined different types of features (i.e. LBP, histogram and Haralick texture 

feature) and machine learning techniques (i.e. random forest and SVM), and other 

methods have used deep learning architecture. The current approaches nowadays use 

deep learning and hand-crafted features.  

2.3 Gland dataset 

Chapter 2 Section 2.2 provided a brief review of gland segmentation methods. Most 

of the research time has been spent in classifying the benign tissue, and images with 

malignant tissue have also been investigated but not spend as much time as benign 

tissue (Gurcan et al., 2009). This research aims to find the best image representation for 

images with benign tissue and those with malignant tissue. In this research, the MICCAI 

2015 gland database (Sirinukunwattana et al., 2015; Sirinukunwattana et al., 2017; 

Warwick.ac.uk, 2016b) is used because it contains two types of images: the images with 

benign tissue and those with malignant tissue. This dataset reflects the variation of the 

gland structure, shape and appearance and is more comprehensive when compared to 

datasets containing the images with benign tissue only. The MICCAI 2015 gland database 

is publicly available from (Warwick.ac.uk, 2016b). 

Table 2.1 shows the details of the gland segmentation data used in this thesis. The 

dataset contains in total 165 histology images, divided into Training Part, Testing Part A, 

and Testing Part B. Different parts of the subset contain different number of the images, 

and the size of these images are also different. These are all detailed in Table 2.1. There 
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are 85 training gland images, divided into 37 images with benign tissue and 48 images 

with malignant tissue.  

Table 2.1 The details of gland segmentation database (Sirinukunwattana et al., 2017) 

Histological gland category 
Number of images (Width × Height in pixel) 

Training Part Testing Part A Testing Part B 

Benign cases 37{

1 (574 × 433)
1 (589 × 453)
35 (775 × 522)

 33{

1 (574 × 433)
4 (589 × 453)
28 (775 × 522)

 4 (775 × 522) 

Malignant cases 48{

1 (567 × 430)
3 (589 × 453)
44 (775 × 522)

 27{

1 (578 × 433)
2 (581 × 442)
24 (775 × 522)

 16 (775 × 522) 

Figure 2.3 illustrates sample images from the gland dataset and the corresponding 

ground truth, which uses different colours to represent different gland objects.  

 

 

 

 

 

 

 
Figure 2.3 The example of images and corresponding ground truth from gland dataset (Nasir, 2015). The 

images in the top row are the images with benign tissue. The images in the bottom row are the images 

with malignant tissue. The corresponding ground truth is shown on the right of the original images 

The same database was also used in various other studies (Yang et al., 2017; 

Ravishankar et al., 2017). Different evaluation measures were employed to estimate the 

results in that study. More measures have been used to evaluate the results reported in 

this thesis, the details of which are provided in Chapter 6. 

2.4 Summary 

This chapter provides a brief description of processes involved in generation of the 

histology images. This has been included so the variation present in the histology images 

could be attributed to different processes involved in the preparation of tissue 

specimens. Most of the studies focused on the identification of benign specimens  

rather than malignant tissue (Gurcan et al., 2009). Finally, the details and structure of 
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MICCAI 2015 Gland Database are discussed. This database has been selected for 

development and validation of the methods described in the rest of this thesis.  

The following chapter will discuss the mathematical basis of the existing pixel-level 

classifier applied to gland segmentation. 
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Chapter 3 

Mathematical foundation of pixel-level classifier 

The classification methods can be subdivided into approaches using supervised and 

unsupervised learning techniques. Both of those are used in this work but for different 

purposes. Many machine learning based methods (i.e SVM and random forest) have 

been applied to image segmentation, whereas not machine learning based methods (i.e. 

region-growing method and watershed method) are also used in the same problem 

(image segmentation). This research focuses on supervised machine learning based 

methods. In this case, a brief review of machine learning based methods is described at 

the beginning of this chapter. Random forest techniques are employed as the primary 

classifier applied in gland segmentation. It is for several reasons. They are inherently 

designed to solve multiclass classification problems. Furthermore, the forest models are 

not sensitive to noise and outliers but, and more importantly, they can achieve good 

results in both image classification and segmentation with efficient implementations. 

This work not only uses random forest as the pixel-level classifier, but also employs deep 

learning architectures for feature extraction and image-based classification. There are 

also many kinds of unsupervised learning techniques often applied to these problems. 

In this work, the K-means algorithm is used as a validation tool to estimate the 

discriminative properties of extracted features.   

This chapter is organised as follows. Before discussing decision trees and random 

forest, a review of different machine learning techniques is provided. Subsequently, 

decision trees and random forest are described in more detail. The applications of 

different forest models are also discussed. To find the best random forest model for gland 

segmentation, the comparative results of these forest models are tested on different 

subsets of the UCI database (Dua and Karra Taniskidou, 2017). Finally, an unsupervised 

method, K-means clustering, is used to evaluate the discriminative properties of 

different features.   
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3.1 Machine learning 

This section reviews different machine learning techniques. Increasingly more 

research is being done into machine learning. It has become a popular field over the last 

two decades. Machine learning means that learning behaviours are fulfilled by 

simulation analysis that can be conducted by the machine to change performance on its 

own. Both classification and regression have used machine learning based methods. 

Classification tasks are to classify the unknown data to a target class, which is known 

from training data. Regression tasks are to predict discrete or continuous value. 

Clustering tasks are to group the data into several groups based on similarity of the data.  

Pattern recognition is related to machine learning. Machine learning techniques 

have been used to deal with pattern recognition tasks. Image segmentation is pixel-wise 

classification. The reason for pattern recognition being related to image classification 

and segmentation is that machine learning methods are extracting the patterns from 

images. Patterns are the most important criterion in image segmentation and 

classification tasks. Many machine learning techniques applied to pattern recognition 

are supervised learning (i.e. SVM, random forest and decision trees), and there are also 

some unsupervised learning methods (i.e. K-means and Fuzzy C-means clustering). For 

supervised learning, each problem requires a set of input data samples 𝐗 =

{𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏}  and corresponding labels 𝐥 = {𝒍𝟏, 𝒍𝟐,⋯ , 𝒍𝒏}   Unsupervised learning 

needs only a set of input samples but not labels. This research focuses on the supervised 

learning algorithm, although unsupervised techniques are also used. There are many 

approaches to machine learning algorithms, including Support Vector Machine (SVM), 

Adaboost, decision tree models, random forest techniques and deep learning algorithms.  

The SVM algorithm was introduced by Cortes and Vapnik (1995) to solve binary 

classification problems. Although it can solve multiclass classification problems, the 

kernel must be determined, which is the hardest open-ended question for SVM 

algorithms.  

Freund et al. (2003) introduced an improved version of Adaboost algorithm, whose 

output is formed by the superposition of weighted weak classifiers. The most prominent 

shortcoming of the Adaboost algorithm is that it could be sensitive to both noise and 
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outliers (Maclin and Opitz, 1997).  

Decision tree models classify uncertain data belonging to one category. There are 

many popular decision tree approaches, including ID3 (Iterative Dichotomiser 3), C4.5 

algorithm, and CART (Classification and Regression Tree). Quinlan (1986) introduced the 

ID3 algorithm, based on entropy and information gain. The C4.5, a modified version of 

ID3, algorithm was also introduced by Quinlan (1993). However, unlike ID3, the C4.5 

algorithm could solve both continuous and discrete problems, and also solve the 

overfitting problem by pruning the entirely constructed trees. The significant drawback 

of this method is that there are some empty branches in the decision tree model. CART 

was introduced by Leo Breiman (2017), and the tree model is constructed based on the 

Gini index (or Gini impurity). One of the advantages of the CART model is that it consists 

of binary splitting child nodes rather than multiple child nodes. These three tree models 

all employ the axis-aligned weak learner, while Murthy et al. (1994) introduced a new 

type of decision tree consisting of the oblique weak learner.  

Random forest techniques are machine learning approaches commonly applied in 

computer vision applications. Unlike the Adaboost algorithm (Freund and Schapire, 

1997), which is another machine learning approach used in computer vision, the random 

forest can handle both noise and outliers in the training data (Ross and Kelleher,2013). 

The initial purpose of the random forest was to solve the multi-class classification 

problem, but over the last decade, forest techniques have been developed and used in 

many applications, including image classification, image segmentation and object 

tracking. Menze et al. (2011) introduced a decision tree model with oblique weak 

learners. The comparative classification results indicate that the oblique decision tree 

are better than Linear Machine Decision Tree (Brodley and Utgoff, 1992) and Simulated 

Annealing of Decision Trees (Heath et al., 1993).  

Deep learning techniques have recently become one of the most broadly used 

methods for both image segmentation and image classification. LeNet5 was the first 

deep learning architecture, used for handwriting recognition application achieving 

excellent performance (LeCun et al., 1998). Although this neural network is shallow 

compared with more recent deep learning approaches, most of the deep learning 
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techniques applied to images are based on this architecture. In 2012, Krizhevsky et al. 

introduced a deeper network architecture for image classification (so called AlexNet) 

which outperformed other methdods on the ImageNet Challenge. In 2014, Szegedy et al. 

introduced a deep 22-layer architecture, known as GoogleNet, helping to reduce 

computing complexity using the inception models. A year later, a deep neural decision 

forest combining a deep neural network and random forest technique was introduced 

and achieved the best image classification performance on the ImageNet database 

(Kontschieder et al., 2015). 

Many approaches applied in image segmentation are based on a sliding window 

approach. The sliding window uses a fixed moving window to capture local patterns in 

the training images. Long et al. (2015) introduced an end-to-end deep learning 

architecture, the fully convolutional network (FCN), and achieved excellent performance 

in semantic segmentation. One of the significant benefits of this method is that the size 

of the output is the same as the training images. In the same year, Ronneberger et al. 

(2015) introduced a new deep learning architecture so called U-Net. This model achieved 

the best performance in the ISBI challenge on cell tracking that year.  

3.2 Decision trees 

Before demonstrating the details of forest models (Chapter 3 Section 3.3), a brief 

description of decision trees is provided. The reason for introducing decision trees 

before random forest is that random forest consists of hundred or even thousands of 

decision trees. It is better to understand the basis of decision trees before learning the 

foundation of random forest. Random forest is the main classifier used in the proposed 

method (segmentation with pre-classification method, it is discussed in Chapter 5, 

Section 5.4) in this work. As a stablished algorithm in machine learning, the decision tree 

model consists of nodes and directed edges. A simple example of the tree model is 

shown in Figure 3.1. A decision tree is composed of three types of nodes: the root node, 

internal nodes (or splitting nodes), and terminal nodes (or leaf nodes). The root node 

stores the input of the decision tree, the internal nodes store the functions that splits 

the input data, and the terminal nodes are the output of the decision tree. 
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Figure 3.1.a depicts a simple structure of the decision tree model. The role of grass 

and desert images is to explain the path of different types of images (grass or desert 

classes) passing through the decision tree. Figure 3.1.b shows an example of 

classification process of two types of input images passing through the trees. The input 

images go through each level of the tree until they reach the terminal nodes. The blue 

circles indicate the nodes selected by the decision tree, and the direction of the blue 

arrows indicates the path of the images passing through the tree. The yellow and green 

squares in Figure 3.1.b represent the desert and the grass image classes. The path of 

desert images passing through the tree is shown in the right part of Figure 3.1 and the 

left part demonstrates the path of grass images.  

Different splitting criteria, different thresholding approaches, and different weak 

learners are employed to build the different decision tree models, as explained in the 

following sections. The role of different splitting criteria is different way to split the 

samples in each node (except the terminal nodes or leaf nodes) in decision tree. The role 

of thresholding is different methods to generate the threshold in order to separate the 

samples. The role of weak learners is to describe different splitting methods (i.e. 

horizontal, vertical and oblique).  
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Figure 3.1 Decision tree. a) The simple structure of the decision tree model. b) The progress of 

different types of image through the decision tree model. 

3.2.1 Splitting criteria 

Three splitting criteria are widely used when building decision tree models: 

information gain, gain ratio and Gini index (or Gini impurity).  

 

Entropy and Information gain  

In the process of classification, two fundamental concepts of information theory 

are useful in the construction of the decision tree: entropy and information gain. The 

former is deployed to demonstrate the impurity of variables in training samples, and its 

mathematical expression is defined by (Quinlan, 1986):  
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𝐻(𝒙) =  −∑ 𝑃(𝑐)𝑐∈𝑪  · log𝑃(𝑐)                (3.1) 

where 𝐻(𝒙) represents the entropy of variable 𝒙, 𝑐 is a class index, 𝑪 is the number 

of classes represented in the database, and 𝑃(𝑐) indicates the probability of class 𝑐. 

In decision trees, information gain represents the entropy differences before and 

after data is split in the tree node. In other words, an increase of the information gain 

indicates a higher node data “purity ” in the next level of the decision tree. This concept 

is a well-known criterion when building the ID3 model, and can be described by: 

𝐼 = 𝐻(𝐒) − ∑
|𝑺𝑠|

|𝑺|𝑺𝑠∈{𝑺𝐿,𝑺𝑅}  𝐻(𝑺𝑠)                  (3.2) 

where H(𝐒) indicates the entropy of the data set 𝐒, 𝑺𝑠 describes the subsets of the 

entire database 𝐒; in the tree model it indicates the left/right child nodes (𝑺𝐿  𝑜𝑟 𝑺𝑅) of 

the parent nodes, and |∙|  demonstrates the cardinality of the corresponding data 

subset.  

 

Gain ratio 

The gain ratio is a modified version of information gain and is a well-known concept 

in building the C4.5 (one of decision tree models) tree model (Quinlan, 1993). The 

mathematical definition of this concept is defined by (Quinlan, 1993): 

   𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝐼𝑛𝑓𝑜 𝑔𝑎𝑖𝑛

𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑓𝑜
                        (3.3) 

where 𝐼𝑛𝑓𝑜 𝑔𝑎𝑖𝑛  is the information gain 𝐼  (see equation 3.2), and 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑓𝑜  is the 

splitting information of the left and right child node. The mathematical expression is 

defined by (Quinlan, 1993):  

𝑠𝑝𝑙𝑖𝑡 𝑖𝑛𝑓𝑜 = ∑
|𝑺𝑠|

|𝑺|𝑺𝑠∈{𝑺𝐿,𝑺𝑅} 𝐻(𝑺)                 (3.4) 

where 𝐻(S), 𝑺𝑳, 𝑺𝑹, |∙| have already been defined in equation 3.2.  
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Gini impurity (or Gini index) 

Gini index is a measure of income inequality introduced by Gini (1912). This term 

has been extended used in decision tree by Breiman which has been widely applied in 

models built by decision trees. It can be utilised to illustrate a degree of uncertainty in 

the distribution of the feature space as demonstrated in CART by Breiman (2017). The 

mathematical expression of Gini impurity is defined by (Breiman,2017) : 

𝐺(𝐓) = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1                      (3.5) 

where 𝐺(𝐓) indicates the Gini impurity of the data set 𝐓. 𝑛 indicates the number of 

classes in the database. 𝑝𝑖  is the probability of the corresponding class 𝑖. 

Figure 3.2 on page 49 in this section demonstrates an example to illustrate 

differences between the three splitting criteria concepts described above. 

To explain the proposed methods, suppose that there are two sets of samples 

drawn from Gaussian distributions, as has shown in Figure 3.2.a. This task aims to 

separate the samples into either blue or red class. Figure 3.2.b demonstrates the 

probability of these two categories occurring in this dataset. There are many splitting 

methods, but in this example, it uses two splitting ways to separate the samples shown 

in Figure 3.2.a. Figures 3.2.c and 3.2.d illustrate the different splitting methods for 

separating the same data, with horizontal and vertical splitting respectively.  

From the probability shown in Figures 3.2.c and 3.2.d, it is easy to observe that the 

horizontal splitting method is better than the vertical method. Table 3.1 shows the values 

of the described splitting criteria reflect these two splitting methods. Based on this 

example, the best performance of classification is provided by choosing the minimum 

value of the Gini index or the maximum value of the information gain and gain ratio.  
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Figure 3.2 Different splitting approaches. a) The sample points drawn from Gaussian distributions. b) The 

probability of each class in the training data. c) The horizontal splitting approach for training samples. d) 

The vertical splitting method for training samples. 

Table 3.1 The values of different splitting criteria based on the different splitting methods 

Different methods Gini index Information gain Gain ratio 

Horizontal 0.55 0.68 0.45 

Vertical 0.72 0.49 0.32 

 

3.2.2 Thresholding 

In random forest techniques, the correlations between trees play an essential role. 

If these correlations are too high, the behaviours of the forest models are similar to those 

of a single decision tree. Figure 3.3.a is an example of tree models with high correlations 

and low randomness, and the model with low correlations and high randomness is 
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b 

shown in Figure 3.3.b. In practical applications, trees with low correlations and high 

randomness (Figure 3.3.b) are preferred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3 Examples of different forest models. a) The forest model with low randomness and high 

correlations. b) The forest architecture with low correlations and high randomness (Criminisi et al., 

2013): 

In the decision tree approaches, the mid-point in one dimension of the feature 

vector is selected as the threshold to split the input samples in the internal nodes. This 

approach is known as the mid-point thresholding approach; it is not an issue when 

choosing to use the decision tree as the classifier for the problem. However, if this 

method is employed to build forest models, the trees could be correlated. The 

randomised node optimisation approach is therefore employed in constructing the 

decision trees in order to decrease this correlation. The extremely randomised node 

optimisation is employed to build the trees to further reduce the tree correlations in the 

forest approaches. These three thresholding techniques are explained below. 
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Mid-point thresholding  

In C4.5 and CART models, the training samples 𝑿 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  passing 

through the splitting nodes are separated into two child nodes, left and right. The 

threshold is selected as the mid-point between two adjacent points in the training 

samples. The mathematical expression of mid-point thresholding is defined by: 

𝑇𝑖 =
𝑥𝑖+𝑥𝑖+1

2
 (𝑖 = 1, ⋯ , 𝑛 − 1)                    (3.6) 

where 𝑇𝑖 is the threshold in the internal node in the forest model. 𝑥𝑖 are the values of 

training samples at the same internal node of the model. 𝑛 is the number of training 

samples.  

 

Randomised thresholding approach 

The mid-point thresholding approaches employed in C4.5 and CART models cannot 

increase the randomness in the forest models. 

Randomised thresholding employs random values between two adjacent variables 

as the threshold to split the samples in the internal nodes of the tree models. Suppose 

that the training samples in an internal node of the tree model are 𝑿 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛). 

The selected threshold in the randomised thresholding approach is defined by (Criminisi 

et al., 2013): 

𝑇𝑖𝜖(𝑥𝑖, 𝑥𝑖+1) (𝑖 = 1,⋯ , 𝑛 − 1)                 (3.7) 

where 𝑇𝑖 is the threshold in that node, randomly selected from the (𝑥𝑖, 𝑥𝑖+1) interval  

The efficiency of building the decision tree using mid-point thresholding is the same 

as for the randomised thresholding approach. For example, in these two approaches, if 

the training data contains 1,000 variables, the number of thresholds for each dimension 

is 999.  

 

Extremely randomised approach  

The above two thresholding methods are not effective when building the decision 
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tree model. The extremely randomised approach is employed to construct the trees to 

increase the efficiency and decrease the tree correlations further. This approach 

randomly selects a number from uniform distribution between the maximum and 

minimum values. The mathematical expression is defined by (Geurts et al., 2006): 

𝑇𝑖 𝜖 (𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥),     (𝑥𝑚𝑖𝑛 = min(𝑿) , 𝑥𝑚𝑎𝑥 = max(𝑿) , 𝑖 = 1,2,⋯ ,𝑚)  (3.8) 

where 𝑿 indicates the available training samples. 𝑥𝑚𝑖𝑛 is the minimum value of the 

training samples 𝑿 in the selected dimension, and 𝑥𝑚𝑎𝑥 is the maximum value of the 

training samples in the same dimension, 𝑇𝑖 is the randomly selected threshold with a 

condition defined in equation (3.8) and the total number of thresholds (defined by the 

user) is 𝑚 (𝑚 < 𝑛). 

This approach is more efficient than the two previous techniques. For example, if 

the number of samples in one of the dimensions of the feature vector is 1000, the 

number of the thresholds for either mid-point thresholding or randomised mode is 999. 

However, in the extremely randomised thresholding approach, the number of the 

thresholds is determined by the user; if it is, says 50, the computation time for building 

the tree models will be much less than for the other two thresholding approaches. 

 

3.2.3 Weak learners  

The decision tree models ID3, C4.5 and CART all employ the axis-aligned weak 

learner. Another type is the oblique weak learner (Murthy et al., 1994). Both types are 

discussed below.  

The classification results originated from using different types of weak learner could 

be different. Figure 3.4 indicates two different types of weak learner used to split the 

linear separable data, drawn from Gaussian distributions.   
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Figure 3.4 Examples of different weak learners. a) Data samples drawn from two Gaussian distributions. 

b) The splitting results are for using the decision tree with axis-aligned weak learner. c) The results for 

using the decision tree with oblique weak learner. 

In Figure 3.4, samples drawn from different distributions are shown using different 

colours. Figures 3.4.b and 3.4.c represent the segmentation performance of the decision 

tree with axis-aligned and oblique weak learners respectively. The axis-aligned weak 

learners are a particular form of the oblique weak learner. Their splitting technique uses 

a line parallel to the x-axis or y-axis, and that for oblique weak learners employs lines at 

any orientation.  

 

3.2.4 Termination conditions 

Overfitting is one of the problems when using decision trees as classifier. To solve 

the overfitting problem, C4.5 (Quinlan, 1986) and CART (Breiman, 2017) employed 

different pruning techniques. The pruning technique cut the branches off the decision 

tree after it is fully grown.  

Another technique to avoid the overfitting problem is to use pre-defined 

parameters in building the decision tree; if the tree model fits one of the parameters, 

the tree will stop growing. Many conditions have an impact on the growth of the decision 

tree. For example, it will stop growing when it meets the maximum depth of the model; 

when the nodes in the model contain too few data points; or when the samples in one 

node belong to one specific category of the data.  

3.3 Random forest 

The above discussion demonstrates many approaches for construction of decision 

trees. These decision tree models can be used in many practical applications, in which 
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the data could be noisy or contain outliers, to which the decision trees can be sensitive. 

To solve this problem, Breiman (2001) introduced the random forest technique, which 

combined the ensemble learning (this term is explained on page 19) and CART 

approaches (Breiman, 2017). Random forest models are classifiers which consist of 

hundreds or even thousands of decision trees to accomplish classification. The decision 

of the random forest models is voted by all the decision trees in the same model, and 

the class with the most votes is considered to be decision of the random forest model.  

As mentioned in the previous section, the purpose and foremost advantage of 

forest models are that it fits well to multiclass classification problems. For gland 

segmentation, two and three target classes classification are designed in order to find 

the best way to describe morphological structure of gland objects for benign or 

malignant case. The details of two and three target classes in histology images have been 

discussed in Chapter 5, Sections 5.4.2.1 and 5.4.2.2. 

Forest models can handle large databases. The technique has developed 

significantly over the last two decades, and these models have been applied to 

classification, regression, density estimation and semi-supervised learning problems. 

There are two main techniques for building forest models: bagging and random subspace.  

3.3.1 Bagging 

One of the approaches employed to construct forest model is Bootstrap 

Aggregation (Bagging) method introduced by Efron (1992). The algorithm for the Bagging 

method could be summarised as follow: 

⚫ Input: number of decision trees, M, in forest models; training data samples 𝑿;  

⚫ Step 1: Create M random subsets of the training data from 𝑿 using random 

selection with replacement method 

⚫ Step 2: For each random subset train corresponding decision tree in the forest 

model, with each decision tree fully grown without pruning  

⚫ Step 3: Determine the predictions for each decision tree, and the output of the 

forest model is the classes with the most votes from M decision trees. 

The random selection of the data subsets and the subsequent voting scheme solves 
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the overfitting problem, present when using the decision trees. When using Bagging, the 

parameters to be set by a user include number of trees and number of data samples 

used.   

3.3.2 Random subspace 

Another technique used in construction of random forests is so called random 

subspace, which modifies the training data in the feature space. The method was 

demonstrated in detail in (Barandiaran, 1998), its advantages being that the 

computational time decreased significantly. The following briefly summarised the 

algorithm for random subspace forest construction:  

⚫ Input: number of the decision trees, M,  in the forest model; training data 

samples 𝑿 with 𝑫 representing number of features;  

⚫ Step 1: For each decision tree, choose 𝑿𝒊 (𝑿𝒊 ∈ 𝑿) samples from 𝑿 

⚫ Step 2: Create a training data set by choosing 𝑫𝒊 features from 𝑫 (𝑫𝒊 < 𝑫) 

using sampling with replacement method, use the created training sets to train 

corresponding trees in the forest model with each decision tree fully grown 

without pruning. 

⚫ Step 3: Determine the predictions for each decision tree, and the output of the 

forest model is the classes with the most votes from M decision trees 

3.3.3 Applications 

The above sections briefly demonstrated the concepts of the decision tree and 

random forest models. In this part, applications of the random forest techniques are 

discussed, specifically image classification, image segmentation and regression.  

Decision forest models have been applied to skin detection (Khan et al., 2010), and 

they used several classifiers in the tasks in order to find the best performance. The 

comparative results (has given by the experiment results) for this task are based on SVM, 

Adaboost, Naïve Bayes, Bayesian networks, RBF networks and random forest. Although 

based on visual inspection the performance of AdaBoost is similar to the results of the 

random forest technique, the classification accuracy, for the forest is 87.7%, what is 

better than AdaBoost’s 79% accuracy. The number of trees applied in this problem was 
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ten, which is a small number. If the number of trees was increased in the forest model, 

a higher accuracy might have been reached.  

Forest techniques are also used in face recognition (Kremic and Subasi, 2016); the 

performance of the random forest outperformed the results of the SVM algorithm. For 

the images used in that research, the background was simple and the face was displayed 

in the central part of the image. If the input images were changed to have more complex 

backgrounds, or input images contain multiple faces, the performance of the algorithm 

decreased.  

This model has also been applied in pedestrian-detection problems, and the 

estimation results are based on the decision forest and linear SVM algorithm. González 

et al. (2015) demonstrated the comparative results of random forest and linear SVM 

algorithm based on HOG and LBP features. The HOG outperformed LBP when using the 

random forest model. Again, the databased used for that problem was relatively simple.  

Random forest models have also been applied in regression applications, for 

example in solving protein fold prediction problems (Dehzangi et al., 2010). The study 

demonstrated that the random forest model is able to selected the best features from a 

very large population of features, when training with the Gini impurity criterion.  

Fernández et al. (2015) used the HOG feature to describe facial images and to train 

the forest model to solve age prediction problem. However, no other features were 

tested, and maybe HOG is not the best feature to represent the local characteristics for 

those images. For further improvement, more types of features would have to be 

employed to represent facial images.  

Regression forest is another forest model which has been applied in head pose 

estimation and has achieved excellent performance. Zhu et al. (2013) used several 

features to represent the local patterns of head images. The HOG feature turned out to 

be the best for the head pose estimation. The study also applied regression trees with 

four different kinds of data and compared the final results in order to find the best 

features to represent the essential patterns in the original images.   

Rotation forest is a methodology which combines PCA (Principal Component 

Analysis) and random forest techniques. Rodriguez et al. (2006) demonstrated the 
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comparative results of rotation forest and other ensemble approaches, in which the 

rotation forest method outperformed other classification techniques. Several subsets of 

UCI databases were employed in the tests.  

Mapping forest is an approach that performed well in facial expression recognition 

(Jampour et al., 2018). This technique achieved better performance than using linear 

mapping approaches, and provided computationally efficient implementation.  

This section discussed the applications of the random forest, the forest model has 

been applied in many tasks, including image classification, object detection and image 

recognition. The commonality between these applications and gland segmentation is 

that all these tasks are treated as classification tasks. The reason for treating gland 

segmentation as classification tasks is that gland segmentation is a pixel-wise 

classification for each histology image.  

3.4 Comparison of different forest models 

From the above descriptions, different splitting criteria, different thresholding 

methods and different weak learners are employed to build different decision trees. 

Different random forest models consist of different decision tree architectures. Even for 

the same database, different random forest models will perform differently. It is 

necessary to choose one of the best forest models as the base model for the gland 

segmentation task.  

Subsets of the UCI database (Dua and Karra Taniskidou, 2017), for which feature 

vectors are provided directly, are used to compare different forest models. The details of 

the datasets used to estimate performance of the tested forest are shown in Table 3.2.  

Table 3.2 The details of the UCI datasets used to test different forest models 

Name of database Number of samples Number of features 

Congressional voting 435 16 

Liver disorders 345 7 

  Connectionist Bench (Sonar, 

Mines vs. Rocks) 

 

 

208 60 

Ionosphere 351 34 

Tic-Tac-Toe Endgame 958 9 

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
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3.4.1 Evaluation measures for the experiments 

Each dataset in Table 3.2 represents a binary classification problem (this term is 

explained on page 19). The evaluation measures to validate the classification 

performance of different random forest models are: F1 score, precision, recall and 

classification accuracy. 

In the binary classification problems, F1 score is a measure metric which is used to 

measure test’s accuracy, and it is the harmonic average of precision and recall, it is 

defined by (Powers, 2011): 

F1 =  
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (3.9) 

Precision is a ratio of the relevant instances over the retrieved instances, and recall is the 

ratio of returned relevant instances over the total number of relevant instances. The 

mathematical expressions for these measures are given by (Powers, 2011):  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                       (3.10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                        (3.11) 

where 𝑻𝑷  represents true positive instances, 𝑭𝑷  indicates false positive instances, 

and 𝑭𝑵 represents false negative instances.  

In classification problems, classification accuracy validates the performance of the 

classifier, it is defined by (Powers, 2011):  

Accuracy =  
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑭𝑷+𝑭𝑵+𝑻𝑵
                   (3.12) 

where 𝑻𝑷 and 𝑻𝑵 are the two correctly predicted categories after classification; the 

denominator is the total number of instances in the entire training dataset.  

3.4.2 Experimental setup and results 

This section provides the details of the experiments for different types of the forest 

on UCI datasets, and the purpose of these experiments is to find one suitable forest 
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model applied to gland segmentation. All the experiments were done by using MATLAB 

2015b, and the library with different forest models was custom built. All the forest 

consists of 10 decision trees, due to of the relative small size of the used datasets.  

75% of the data randomly sampled from the datasets are used to train the classifier 

and the rest of the data are used to validate its performance. The average values of the 

evaluation metrics computed for 10 cross-validation experiments, for each of the 

datasets listed in Table 3.2 is used. To investigate the performance of different random 

forest models, this section compares following forest models:  

R-O-GR: Randomised thresholding, with oblique weak learners and Gini ratio splitting 

criterion. 

E-O-GR: Extremely randomised thresholding, with oblique weak learners and Gain ratio 

splitting criterion. 

M-O-GR: Mid-point thresholding, with oblique weak learners and Gain ratio splitting 

criterion.  

R-O-GI: Randomised thresholding, with oblique weak learners and Gini index splitting 

criterion. 

E-O-GI: Extremely randomised thresholding, with oblique weak learners and Gini index 

splitting criterion. 

M-O-GI: Mid-point thresholding, with oblique weak learners and Gini index splitting 

criterion.  

R-O-IG: Randomised thresholding, with oblique weak learners and information gain 

splitting criterion.  

E-O-IG: Extremely randomised thresholding, with oblique weak learners and information 

gain splitting criterion. 

M-O-IG: Mid-point threshold, with oblique weak learners and information gain splitting 

criterion. 

R-A-GR: Random thresholding, with axis-aligned weak learners and Gini ratio splitting 

criterion. 

E-A-GR: Extremely randomised thresholding, with axis-aligned weak learners and Gain 

ratio splitting criterion. 
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M-A-GR: Mid-point thresholding, with axis-aligned weak learners and Gain ratio splitting 

criterion.  

R-A-GI: Randomised thresholding, with axis-aligned weak learners and Gini index 

splitting criterion. 

E-A-GI: Extremely randomised thresholding, with axis-aligned weak learners and Gini 

index splitting criterion. 

M-A-GI: Mid-point thresholding, with axis-aligned weak learners and Gini index splitting 

criterion.  

R-A-IG: Randomised thresholding, with axis-aligned weak learners and information gain 

splitting criterion.  

E-A-IG: Extremely randomised thresholding, with axis-aligned weak learners and 

information gain splitting criterion. 

M-A-IG: Mid-point thresholding, with axis-aligned weak learners and information gain 

splitting criterion. 

The quantitative results of different forest models on Liver data are shown in 

Figures 3.5. The quantitative results for other datasets are shown in Appendix A. The 

reason for only providing the results of this datasets is that the results of different 

random forest models are similar to these two datasets. Based on the results shown here 

(see Figure 3.5) and in Appendix A, different forest models performed almost at the same 

level on these data, and the conclusion is that, for the same database, the forest with 

different splitting criteria, different thersholding and different types of weak learners is 

not affecting significantly the performance of forest models. Based on these, the mid-

point threshold with axis-aligned weak learners and Gini impurity splitting criterion (M-

A-GI) random forest method was selected for pixel level classification for gland 

segmentation.  
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Figure 3.5 Validation parameters of different forest models on Liver database 

 

3.5 K-means algorithm 

The techniques described in previous sections are all examples of supervised 

learning. For classification, both supervised and unsupervised learning algorithms can 

be used to solve related problems, but unlike the supervised learning techniques, the 

training phase of unsupervised learning only needs the training samples without the 

ground truth. In this research, K-means algorithm (Lloyd, 1982) is used to estimate the 

discriminative properties of different features. There are many unsupervised learning 

methods which can be replaced and used to estimate the discriminative properties of 

these features in the work, such as Fuzzy C-means (Bezdek et al., 1984). The reason for 

choosing K-means is that this algorithm has been widely used, and this method can be 

easily interpreted.  

The evaluation process is detailed in the following chapter. The K-means algorithm 

aims to divide a set of training samples 𝑿 =  {𝒙1, 𝒙2, ⋯ , 𝒙𝑛} into 𝑘(𝑘 ≤ 𝑛) clusters. 
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The goal is to predict 𝑘 centroids and labels 𝑐 for each data point. The algorithm is 

summarised as: 

⚫ Input : Training samples 𝑿 and 𝑘 clusters. 

⚫ Step 1: Initialise the cluster centroids 𝝁1, 𝝁2, ⋯ , 𝝁𝑘 randomly.  

⚫ Step 2: Associate each observation 𝒙𝑖  in the training samples with the nearest 

centroid. This step will allocate the samples into 𝑘 clusters. 

⚫ Step 3: Recalculate the cluster centroids 𝝁1, 𝝁2, ⋯ , 𝝁𝑘  

⚫ Step 4: Repeat Steps 2 and 3 until convergence.  

⚫ Output: 𝝁1, 𝝁2, ⋯ , 𝝁𝑘  cluster centroids (centroids are the centre of the 

cluster)  

3.6 Summary 

In this chapter, various machine learning techniques were first briefly discussed. 

Subsequently, decision tree methods were then introduced, including splitting criteria, 

types of weak learners and thresholding methods. Different strategies for avoiding 

overfitting problems in decision trees were also introduced. The methods used to build 

random forest models were then presented, and applications of random forest 

techniques discussed in Chapter 3 Section 3.3.3. Different datasets were used to test the 

different random forest models, concluding that the forests perform at a somewhat 

similar level for most data. Based on the performed experiments and taking into account 

relatively low computation complexity, random forest method with axis-aligned weak 

learners, mid-point thresholding and Gini impurity splitting criterion (M-A-GI) has been 

selected for the experiments on the gland data. The commonality between the subsets 

of UCI (University of California Irvine) database is that they are all real data after the 

feature extraction, and these data could be treated as classification tasks after feature 

extraction. The experiments aim to find the best random forest model for classification 

tasks. Gland segmentation could also be treated as a classification task after extracting 

the local patterns.  

Finally, the unsupervised learning method, K-means clustering, was introduced in 

Chapter 3 section 3.5 as it is used to evaluate the discriminative properties of input 
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features in Chapter 4.  

In the following chapter, the various features used to describe local patterns in 

histology images are described.   
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Chapter 4 

Feature extraction 

In this chapter, different feature extraction methods employed are discussed, 

together with the motivation for choosing these methods. After discussing their 

background, the feature extraction methods used in this work are described. Both deep 

learning features and hand-crafted features are used. Deep learning features are 

discussed in Chapter 4 Section 4.6, and hand-crafted features refer to the features 

determined by information involved in images. The K-means algorithm is also applied to 

cluster the generated feature vectors in order to ensure their discriminative properties.  

4.1 Motivation 

In classification problems, especially for supervised learning problems, different 

feature extraction approaches lead to different outcomes. Feature extraction plays an 

essential role in machine learning, including image classification, image segmentation 

and object detection. Feature extraction transforms the input data (refers to histology 

images in this work) into a set of features, dimensionality reduction projects the input 

data into a lower dimensional feature space. The image representations in the feature 

space are often called feature vectors and are used to train classifiers. 

Feature vectors have applied to image classification, segmentation and object 

detection tasks. Haralick and Shanmugan (1973) surveyed two types of texture 

extraction technique: structural and statistical. They concluded that structural features 

are more suitable to represent the overall texture information of the whole image, and 

that statistical features achieve better performance in representing local patterns. 

Regarding the gland segmentation problem, Doyle et al. (2008) used spectral clustering 

and many texture features, including grey-level, Haralick and Gabor filter features, to 

classify the different degrees of breast cancer. This method achieved 95.8% accuracy in 

classifying the non-cancer and cancer images and 93.3% accuracy in separating the 

different grades of cancer. One possible development for this research is to use deep 
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learning techniques to classify these images. 

In this research, both structural and statistical feature extraction approaches to the 

gland data are employed, the former for its better representation of global structural 

properties, and the latter to describe the local structural patterns.  

The grey-level co-occurrence matrix (GLCM) is used to differentiate between the 

gland and the background. There are two reasons for choosing this feature: first, GLCM 

is one of the structural features that represent the overall gland’s morphological 

structure; and secondly, GLCM was employed to solve and achieve good performance in 

the mitosis detection problem (Irshad et al., 2013), and the histology images are similar 

to the gland image used for mitosis detection. 

The histogram is one of the intensity-based features representing the colour 

distribution of an RGB or a greyscale image. The intensity values of the pixels in the image 

build the intensity-based features. The reason for choosing the histogram feature is the 

possibility of using colour, and it has already been used in segmenting gland parts in 

histology images, achieving a performance F1 score of 0.54 (Ap et al., 2017). 

Local binary pattern (LBP) is another type of intensity-based feature, used to 

describe the relationship between the central and the surrounding pixels. LBP is robust 

to slight changes of brightness in the images. Because there are both shape and colour 

pattern changes in the gland images, LBP features describe differences between the 

background and the gland.  

Histogram of oriented gradient (HOG) is one of the gradient-based features, 

sensitive to the edges of the images. Gradient-based features are those generated by the 

image gradient. Because of contour variation of the gland in the histology images, HOG 

features are also employed here, and their gradient-based ability is useful in comparing 

the performance of the intensity-based features.  

Deep features (such as GoogleNet and LeNet5 features in this work, this term is 

explained on page 19) learnt using deep learning techniques. There are two main 

reasons for choosing this technique. First, deep learning techniques were ranked top in 

recent competitions. Secondly, studies which focused on using hybrid methods 

combining deep learning and hand-crafted features have achieved good performance in 
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similar problems (Manivannan et al., 2018).  

The above discussion explains the reasons for choosing these features; each one is 

discussed in more detail below.  

4.2 Grey-level co-occurrence matrix 

The grey level co-occurrence matrix (GLCM) describes the co-occurrence of pixel 

intensities in a given offset; the mathematical expression of the co-occurrence matrix 

𝑪(i, j) is defined by (Eleyan and Demirel, 2011):  

𝑪(∆𝒑,∆𝒒)(i, j) = ∑ ∑ {
1, 𝑖𝑓 𝐈(𝐩, 𝐪) = 𝐢 𝐚𝐧𝐝 𝐈(𝐩 + ∆𝒑, 𝐪 + ∆𝒒) = 𝐣 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑚
𝒒=1

𝑛
𝒑=1    (4.1) 

where 𝒊  and 𝐣  are pixel intensity, p and q indicate the geometrical position in the 

images 𝐈   The offsets (∆𝒑, ∆𝒒)  indicate the spatial relation for the co-occurrence 

matrix calculated. 𝐈(𝐩, 𝐪) is the image intensity at position (𝐩, 𝐪) in the image. 

There are many relevant features generated from this matrix, such as contrast, 

entropy, energy, correlation and homogeneity. The technique has been applied in mitosis 

detection, achieving excellent performance (Veta et al., 2015). The reason for using it 

here is that the background in the gland data is similar to the mitosis detection images. 

In this research, four experiments tested four different directions {0𝑜 , 45𝑜 , 90𝑜 , 135𝑜}. 

For each direction, eight different offset matrices, [1 1] [2 2] [3 3] [4 4] [5 5] [6 6] [7 7] [8 

8], were used to generate eight different co-occurrence matrices, and the final matrix 

𝑪(𝑖, 𝑗)  was obtained as their mean. From each matrix 𝑪(𝑖, 𝑗) , five sets of texture 

information were calculated as defined in Table 4.1. 𝑷𝒊𝒋 is the value at (𝑖, 𝑗) of the 

normalised symmetrical GLCM; 𝑵  is the number of grey levels in the images; 𝜇 

indicates the means of sum intensity in GLCM; and 𝜎2 indicates the variance of GLCM.  
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Table 4.1 Texture information generated from the co-occurrence matrix (Haralick and Shanmugan, 1973) 

Texture feature name Mathematical expression 

𝑬𝒏𝒕𝒓𝒐𝒑𝒚 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 = ∑ −𝑝𝑖𝑗

𝑁−1

𝑖,𝑗=0
log2(𝑝𝑖𝑗)  

𝑬𝒏𝒆𝒓𝒈𝒚 𝑬𝒏𝒆𝒓𝒈𝒚 = ∑  

𝑁−1

𝑖,𝑗=0

(𝑝𝑖𝑗)
2 

𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 =  ∑  𝑝𝑖𝑗 ∙ (𝑖 − 𝑗)2
𝑁−1

𝑖,𝑗=0

 

𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 =  ∑  𝑝𝑖𝑗 ∙
(𝑖 − 𝜇)(𝑗 − 𝜇)

𝜎2

𝑁−1

𝑖,𝑗=0

 

𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚 𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚 = ∑
𝑝𝑖𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0
 

 

 

 

 

 

 

 

 

 

Figure 4.1 The process of generating the GLCM features (Eleyan and Demirel, 2011) 

Figure 4.1 indicates the process of generating the features related to GLCM in the 

gland data. The left-hand part represents one of the examples in selected patches; the 

mid-left represents the GLCM generated from the selected patch; the mid-right 

indicates five sets of texture information generated from GLCM; and the right-hand part 

indicates the GLCM features describing the texture information in the selected patch.  

 

4.3 Histogram 

The image histogram feature represents the colour distribution of an image. 

Because of its computational efficiency it is frequently applied in various research fields, 
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including image classification, image segmentation, object detection, and object tracking. 

Sergyan (2008) introduced a method which employed the histogram intersection as 

the kernel function applied in the SVM algorithm, and such an SVM model can achieve 

good results in image classification based on the colour information. Histogram features 

can be applied not only in image classification but also in image segmentation. Christ et 

al. (2017) demonstrated a deep learning technique, cascaded fully convolutional 

networks, to extract and predict the malignant part in testing images. Both histogram 

and deep learning techniques achieved good performance, although the deep learning 

approach slightly outperformed the histogram.  

As the histogram feature can describe the characteristics of an object, it performs 

well in object detection. Schneiderman and Kanade (2000) employed the histogram 

feature to describe automatically local image features of human faces, with above 90% 

detection accuracy. Their input images were all greyscale, while a colour image could be 

treated as three individual greyscale images.  

Despite the advantages outlined above, the original histogram feature could not 

distinguish between two images with the same intensity histogram but depicting objects 

with different geometry. For example, in the two images shown in Figure 4.2, the size of 

the area outlined in black is equal in (a) and (b). However, the original histogram feature 

was unable to detect the differences between the two images. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Different images with the same intensity distributions (Xiaoling, 2009) 

To solve this problem, Xiaoling (2009) introduced an extended version of the 

histogram feature, where a set of different sized squares is used to extract the 

histograms for different parts of the region, therefore preserving some of the spatial 
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information. Figure 4.3 illustrates the results of using this extended histogram feature.  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

Figure 4.3 Examples of the extended histogram feature proposed by Xiaoling (2009) 

This feature is named the ring histogram. Xiaoling employed “rings” with sides of three 

different lengths to extract the histogram features in the squares’ regions. Histograms 1 

to 4 represent the corresponding regions. The final ring histogram combines these 

histogram features into a single feature vector.  

In this work, the ring histogram feature is used to describe local information of the 

gland or background in the training images. 

Although the ring histogram demonstrated by Xiaoling (2009) could solve the 

problem illustrated in Figure 4.2, it does not have rotation-invariant properties. In this 

research, a similar approach is employed to extract the histogram features of the training 

gland images, employing a set of circular shapes with different diameters to extract the 

histogram features from the gland images as shown in Figure 4.4. 

  

 

 

 

 

 

 

 

 

 

Figure 4.4 Extracting the ring histogram feature from one of the sample images 
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The central square indicates the patch selected from the sample image to its left. To its 

right, the different colours indicate histograms with different diameters. Finally, the 

right-hand part indicates the ring histogram feature vector representing the local 

patterns in the sample histology image.  

In the segmentation without pre-classification, the experiment determined the best 

size of input patches; the number of rings in each patch is set in order to find the best 

parameters to generate ring histogram. An experiment to find the best parameter for 

random forest to provide the best segmentation results has also been set in this part. 

After identifying the best parameters for generating the ring histogram and for achieving 

the best results using random forest, these parameters are applied to segmentation with 

pre-classification. The details of these experiments are given in Chapter 6.  

4.4 Local Binary Pattern  

The LBP feature (Ojala et al., 1994; Ojala et al., 2002) is a type of texture feature, 

robust to small changes in the colour of the images. Based on visual inspection shown in 

Figure 2.3, the colour of gland objects in either benign or malignant tissue can look 

significantly different. LBP is robust to small changes in colour of the images, and the 

variation in colour of gland objects could be solve if the LBP has been used as the local 

image descriptor. LBP became famous because of its simple computation and excellent 

performance in human recognition (Wang et al., 2009). The original LBP feature did not 

possess the rotation-invariant property (this term is explained on page 20) , so that if the 

images were rotated the LBP features would not be the same. Subsequently, many 

extended versions of LBP features were introduced. Ojala et al. (2002) introduced an 

approach which employs the circular shift technique to shift the binary code until it 

matches the pre-selected rotation-invariant patterns. Zhao et al. (2012) combined the 

LBP feature and Fourier histogram and achieved good performance. Mehta and 

Egiazarian (2013) provided comparative results based on the different versions of LBP: 

the original LBP feature, the rotation-invariant LBP feature, the uniform LBP feature and 

the rotation-invariant uniform LBP feature. The last LBP feature outperformed the other 

extended versions. 
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Figure 4.5 is the example of generating the original LBP features described by Ojala 

et al. (1994, 2002).  

 

 

 

 

 

 

 

Figure 4.5 Creating the LBP features (Lahdenoja et al., 2013) 

The left-hand matrix indicates the intensity of a 3-by-3 patch, and the right-hand one the 

values after comparing the intensity in this patch. The right-hand side indicates the LBP 

value used to build the LBP feature vector. 

LBP is an intensity-based feature describing the relationship between the central 

and the surrounding pixels. Ojala et al.’s original version (1994) of LBP was limited by 

only being able to extract a fixed sized patch, 3-by-3, of the regions in the images. The 

new version (Ojala et al., 2002) employed a circle to capture the patterns in the images, 

and the mathematical expression for this type of LBP feature is defined by (Ojala et al., 

2002): 

𝐿𝐵𝑃𝑅,𝑃 =  ∑ 𝑆(𝒈𝑝 − 𝒈𝑐)
𝑃
𝑝=1 ∙ 2𝒑                   (4.2) 

𝑆(𝒈𝑝 − 𝒈𝑐) = {
0, (𝒈𝑝 − 𝒈𝑐) < 0

1, (𝒈𝑝 − 𝒈𝑐) ≥ 0
                   (4.3) 

where 𝒈𝑐 indicates the central pixel and 𝒈𝑝 represents the surrounding pixels. 𝒑 is 

the index of the neighbourhood around the central one, and 𝑹 represents the radius 

of the neighbourhood; 𝑷 is the number of neighbourhood pixels around the centre. 

When using a circle to extract the local patterns from the images, the coordinates of the 

surroundings are determined by the length of the radius of the captured circle and the 

number of neighbour pixels around the centre. If the coordinate of the neighbour pixels 

is not an integer, the method will employ bilinear interpolation to estimate the 

corresponding pixel value, using these values to generate the LBP vector.  

With 𝑹  radius and 𝑷  the number of neighbour pixels, the number of 

discriminative patterns of the uniform LBP feature is 2𝑝. If 𝑃 is increased, the numbers 
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of LBP patterns will increase significantly. To improve the statistical efficiency of LBP, the 

uniform LBP feature was introduced to extract the most fundamental structure. The LBP 

uniform pattern is defined as the pattern with at most two transitions between 0 and 1. 

For 𝑷 surroundings of the uniform LBP feature, the number of patterns is 𝑷(𝑷 − 1) +

3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Example of eight neighbours uniform LBP features (Pietikäinen et al., 2011) 

Figure 4.6 demonstrates the uniform LBP feature with eight neighbours. The white 

circles represent the pixel value of the neighbour bigger than the central one, and the 

black circles indicate the pixel intensity of the surrounding pixels smaller than the central 

one. The total number of uniform LBP feature with 8 neighbour pixels is 59 (8×7+3 =59, 

the formula (𝑷(𝑷 − 1) + 3 ) has shown on page 72), all discriminative patterns of 

uniform LBP feature are generated come from original LBP pattern. 58 out of 59 patterns 

are uniform patterns (all these uniform patterns are shown in Figure 4.6) and all non-

uniform patterns from original LBP patterns are constructing as one whole pattern for 

uniform LBP feature.  

However, neither the uniform LBP feature nor the LBP feature has rotation-invariant 
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properties. Zhao et al. (2012) introduced an extended LBP feature containing the 

rotation-invariant property. Using the uniform patterns as an example, the process of 

generating the rotation-invariant uniform LBP pattern is discussed as follows. The 

number of discriminative patterns of rotation-invariant uniform LBP feature with 8 

surrounding pixels is 10. The number of discriminative patterns of rotation-invariant 

uniform LBP feature is different if the number of the surrounding pixels is changed. In 

the first row two uniform patterns will build the first two patterns in uniform LBP features. 

From the second to the bottom rows shown in Figure 4.6, the uniform LBP features in 

each row will build as one whole pattern in rotation-invariant uniform LBP features. The 

rest of the non-uniform LBP patterns will build as a family pattern in rotation-invariant 

uniform LBP features. So, the total number of patterns of rotation-invariant uniform LBP 

features with 8 surrounding pixels is 10.  

Another LBP feature also contains the rotation-invariant properties: rotation-

invariant LBP feature. Ojala et al. (2000) introduced a version of the rotation-invariant 

LBP feature, whose mathematical expression is:  

𝐿𝐵𝑃8  =  𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃8, 𝑖) | 𝑖 = 0,1,⋯ ,7 }           (4.4) 

where 𝑅𝑂𝑅(𝑥, 𝑖) is the circular bit-wise right shift on 8-bit number 𝑥 𝑖 times. In Ojala 

et al. (2000) show that the total number of patterns of the rotation-invariant LBP feature 

is 36, as shown in Figure 4.7. The number of discriminative patterns of rotation invariant 

LBP is 36 if using 8-bit encoding and 3-by-3 matrix to capture the local pattern, and the 

total number of patterns (36) could be derived from equation 4.4. The number of 

discriminative patterns of rotation invariant LBP would be different if number of 

surrounding pixels has been changed.  
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Figure 4.7 The patterns of rotation-invariant LBP feature (Ojala et al., 2000) 

Two segmentation methods are employed to classify the gland and non-gland parts 

in histology images: segmentation with and without pre-classification. The details of 

these two methods are described in Chapter 5. For these two proposed methods, LBP 

feature extraction is applied in each selected patch from the histology images. Figure 4.8 

shows an example of the process of extracting the original LBP features from a selected 

patch. The process of calculating the original LBP feature in gland data involves the 

following steps: 

⚫ Step 1: For each selected patch, divide it into four 9-by-9 cells. This input size is 

performed well in action recognition (Chen et al., 2017), and it has been adapted 

to gland segmentation in order to find if it is suitable for gland segmentation.  

⚫ Step 2: For each cell, compare the intensity of the centre and that of the 

surroundings. If the intensity of the centre is greater than that of the surrounding 

pixels, the value of this position is set to 1, otherwise, set to 0.  

⚫ Step 3: Calculate the intensity histogram for each cell, and normalise it. 

⚫ Step 4: Put all the intensity histograms together as a whole LBP feature for each 

selected patch. Put all intensity histograms for each selected patch together as a 

whole representing the local patterns from one image. 

 

 

 

 

 



75 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Creating original LBP feature for one of the gland images 

Figure 4.8 indicates the process of extracting the original LBP feature from the gland 

image. The left-hand part of the figure indicates one sample training image from the 

gland segmentation database, with the selected patch to its right. The mid-right part 

indicates three greyscale images for the different colour channels. The right-hand side 

illustrates the intensity histogram for the corresponding channel. The number of 

patterns of the original LBP feature is 256, because the greyscale images contain 

intensities from 0 to 255. The reason for the number of output intensity is 256 (28 =

256) is that the original LBP feature is used 8-bit encoding, and the value of intensity will 

be different if different encoding scheme has been used. The x-axis in the LBP histogram 

uses a black to white bar to represent these 256 outputs intensity; the y-axis is the 

frequency of the corresponding pixels in the image. In this case, the total number of 

patterns from one selected patch is 256×3 = 768. 
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Figure 4.9 Creating uniform LBP feature for one of the gland images 

Figure 4.9 shows the creation of the uniform LBP feature from histology images. 

The middle square presents one of the gland patches from the sample image to its left, 

and three different greyscale images for the different colour channels; the right side is 

the intensity histograms representing the uniform LBP feature. The number of patterns 

for each channel is 59 (the reason for number of patterns being 59 is explained on page 

71), so the total number of patterns of each selected patch is 59×3 = 177.  

Figure 4.10 shows the process of extracting rotation-invariant LBP features from the 

details of the rotation-invariant LBP feature given above.  
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Figure 4.10 The process of extracting rotation-invariant LBP feature from histology image 

For each greyscale image of the rotation-invariant LBP feature, the number of patterns 

is 36 (the reason for number of patterns is 36 is explained on page 73), and the total 

number of patterns of the selected patch is 36×3 = 108. Finally, extracting the rotation-

invariant uniform LBP feature is shown in Figure 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 The process of extracting rotation-invariant uniform LBP feature from the gland image 
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Figure 4.11 illustrates the process of extracting the rotation invariant LBP feature 

from the same patches in the same image. The left-hand part is the same training image, 

with another background patch to its right, then three different greyscale images from 

the different colour channels in the selected patch. The right-hand side indicates the 

rotation-invariant uniform LBP feature. The number of patterns of each greyscale image 

is 10, as explained on page 73, and the total number of patterns of each selected patch 

is 10×3 = 30.  

All of these four LBP features are used in the segmentation without pre-

classification. The evaluation results of these four LBP features are described in detail in 

Chapter 6 Section 6.3.3. 

4.5 Histogram of oriented gradients 

HOG (Histogram of Oriented Gradient) is one type of gradient-based features, 

widely used in human face recognition and object tracking problems. The gradient in the 

images builds gradient-based features. Dalal and Triggs (2005) introduced two types of 

HOG, C-HOG (circular HOG) and R-HOG (rectangular HOG), to extract the local patterns 

achieving good performance for face recognition. The limitation of the images is that 

they are sampled in a short video, and most of the faces located in the centre of images, 

which is not always the case in the image. Neither of these two types of HOG feature has 

the rotation-invariant property, which was later developed by Skibbe and Reisert (2012). 

They simply involved mapping the original images into a Fourier domain to extract the 

local information. The Fourier HOG feature is represented in a similar way to the ordinary 

HOG feature. 

For significant variations in the shape and size of the glands in the histopathological 

gland database, the HOG feature is employed to describe the difference between the 

gland and the background. In segmentation with and without pre-classification, original 

HOG and circular Fourier HOG features are used to represent the local patterns. The 

reason for the original HOG feature not working will be explained in Chapter 6. In this 

work, in the summary of segmentation with and without pre-classification, the results 

of circular HOG but not original HOG will be included. Figure 4.12 describes the process 
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of generation of original HOG features.  

 

 

 

 

 

 

Figure 4.12 The process of generating the original HOG features 

The middle part of the figure illustrates the generating process. Each patch is divided into 

four blocks and each block into nine cells. For each cell, eight bin histograms are 

extracted. The RGB patches are treated sequentially for each colour component (shown 

in the mid-right part in Figure 4.12). So, the final number of the original HOG feature is 

8×4×9×3 = 864, which is the size of the feature vector shown in the right-hand part of 

the figure. This version of the HOG feature was only used in the segmentation without 

pre-classification in this work.  

The magnitude of the gradient and the gradient orientation as determined by the 

original HOG feature are defined by (Gonzalez and Woods, 2002):  

Gradient magnitude:     G(x, y) =  √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2            (4.5) 

 Gradient orientation:          α =  argtan
𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
                   (4.6) 

where 𝐺𝑥(𝑥, 𝑦) and 𝐺𝑦(𝑥, 𝑦) are the horizontal and vertical gradients of the pixel (x,y) 

in the image. The equations (5.7) and (5.8) indicate the expression of these two concepts 

are defined by (Gonzalez and Woods, 2002):  

𝐺𝑥(𝑥, 𝑦) = H(𝑥 + 1, 𝑦) − H(𝑥 − 1, 𝑦)              (4.7) 

𝐺𝑦(𝑥, 𝑦) = H(𝑥, 𝑦 + 1) − H(𝑥, 𝑦 − 1)              (4.8) 

where (𝑥, 𝑦) indicates the position index of one pixel in the image. H(𝑥, 𝑦) is the pixel 

intensity of the pixel (𝑥, 𝑦).  

In the segmentation with pre-classification approach, the circular Fourier HOG 

feature is employed to describe the different categories in these models. This feature 
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incorporates rotation-invariant properties by converting the images into the Fourier 

domain and extracting the HOG feature from it. Fourier HOG also uses the gamma 

correction in order to handle the non-linear illumination and contrast changes. The 

expression is defined by (Skibbe and Reisert, 2012): 

g𝛾 ∶= ‖g‖𝛾ĝ    𝛾 ∈ (0,1]                     (4.9) 

where g is the gradient field of the image, ĝ ∶=
g

‖g‖
, and ĝ is the gradient orientation 

field. ‖g‖ is the gradient magnitude.  

The circular Fourier HOG feature applies the 2D Gaussian function to capture the 

local patterns of the images. The mathematical expression is defined by (Skibbe and 

Reisert, 2012): 

CHOG{f}𝜔(𝑥, 𝑛) = ∫‖g(r)‖𝛿𝑛(ĝ (𝑟))𝜔(𝑥 − 𝑟)𝑑𝑟       (4.10) 

where CHOG{f} represents the dense field of the Fourier HOG over the whole image. 

g  is the gradient field of the image  f . 𝑛  indicates the current histogram entry. 𝛿𝑛 

indicates the Dirac delta function on the circle that selected the gradient out of g with 

orientation 𝑛. 

Figure 4.13 illustrates the process of extracting the local circular Fourier HOG feature 

from the gland images. All the parameters used in the experiments are estimated based 

on multiple experiments.  

 

 

 

 

  

 

Figure 4.13 The process of extracting the local circular Fourier HOG from histology image 

The output of patch is the input to generate the response of circular Fourier HOG 

showing in the right-hand part. Blue represents low response and yellow high response 

in the right-hand side in the figure. 
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4.6 Deep learning features 

Deep learning techniques are used not only for the segmentation problem, 

described in detail in Chapter 3, but also for feature extraction. The features extracted 

from deep learning techniques are known as deep learning features or deep features. 

Some models could be used as feature extractors applied to this problem. LeNet-5 

architecture, GoogleNet architecture and AlexNet architectures were achieved excellent 

performance in recognition tasks. He et al. (2016) introduced the ResNet architecture, 

and achieved better performance on ImageNet classification. Recently, DenseNet 

(Huang et al., 2017) was introduced and performed better than ResNet in the same 

object recognition task. There are also other deep learning techniques that could be 

used as feature extractors.  

In this work, two deep learning architectures, LeNet-5 and GoogleNet, are 

employed to extract the local patterns from histology images from gland data, discussed 

below. The reason for choosing LeNet-5 architecture is that this architecture is often 

used nowadays, and this architecture (LeNet-5) still can achieve better performance. The 

reason for choosing GoogleNet architecture is that GoogleNet is a more up-to-date deep 

learning architecture compared with LeNet-5 architecture, and GoogleNet is a powerful 

tool compared with LeNet-5. 

4.6.1 LeNet-5 architecture 

This deep learning model is the first well-known architecture in handwriting 

recognition. Pattern recognition is related to feature extraction, and its aims to classify 

the objects into a set of given categories or classes. Features or feature vectors are used 

in order to describe the characteristic of the objects (Theodoridis and Koutroumbas, 

2014). Feature extraction methods are applied to the given training data to extract the 

local representation of that data. The architecture (shown in Figure 4.14) has been used 

to adapted in gland segmentation to extract the local patterns in histology images.  
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Figure 4.14 LeNet5 architecture adapted in gland segmentation  

The LeNet5 architecture was used to extract the local patterns of the gland and the 

background. Extracting the local patterns and gland segmentation are not the same but 

related. As mentioned in Chapter 3 (on page 41), this work focused on using supervised 

machine learning methods to deal with gland segmentation. For supervised learning, it 

contains training and testing phases. In both training and testing phases, local patterns 

(or features) of gland and background in histology images are necessary to train the 

classifier. The experiments which used these architectures (shown on Figures 4.14 and 

4.15) as feature extractor are discussed in Chapter 6, Section 6.3.2.  

The green bounding box is the feature extraction part of this architecture, and the 

blue bounding box is the classification section of the network. The deep feature learnt 

by this model is extracted before the input of the 5th layer. C1 and C3 represent the 1st 

and 3rd convolution layers in the network respectively, and S2 and S4 indicate the 2nd and 

4th sub-sampling layers in the network model. The symbols below the corresponding 

layers are the number of feature maps and their size in feature extraction part. For 

example, the symbol C1: feature maps is 16@15×15 means that there are 16 15-by-15 

feature maps of the 1st convolution layer in the network. The symbols in the classification 

part are the names of the layers and the output for the corresponding layer.  

The architecture shown in Figure 4.14 is used in both segmentation with and 

without pre-classification. For the 2-classes pixel-level classification problem, this 

architecture has been used in the benign and malignant category. For 3-classes pixel-

level classification problem in segmentation with pre-classification, a similar LeNet-5 

architecture was used to extract the local patterns, as shown in Figure 4.15. The 

difference between these two architectures (shown in Figures 4.14 and 4.15) is the 

number of the output. The 2-classes and 3-classes classification are to find the best way 
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to describe the morphological structure of gland objects in benign and malignant tissue, 

and the details for generating the ground truth for these two classifications are discussed 

in Chapter 5, Sections 5.4.2.1 and 5.4.2.2. 

 

 

 

 

 

 

 

 

Figure 4.15 The architecture used in segmentation with a pre-classification method for three-classes 

pixel-level classification method 

The parameters in each layer in these architectures, as shown in Figures 4.14 and 

4.15, were used without optimising. All these architectures have been adapted in 

extracting the local pattern in gland segmentation.  

4.6.2 GoogleNet architecture  

GoogleNet (Szegedy et al., 2015) is a 22-layer deep learning architecture; in this 

research, it is employed to extract the local patterns in the gland images. Any size of 

input image could be used to train the GoogleNet architecture, but the size of all these 

image will change to 224-by-224 in order to fit the requirement of training GoogleNet 

(Szegedy et al., 2015). The size and number of the input images for GoogleNet 

architectures will affect the segmentation results. The experiments set to find the best 

parameters for GoogleNet will be detailed in the segmentation without pre-classification 

in Chapter 6 Section 6.3.3. For segmentation with pre-classification, the experiments 

using GoogleNet architecture are shown in Appendix E. The architecture shown in Figure 

4.16 is the same as the original architecture, and it has been adapted to gland 

segmentation used as feature extraction.  

For the segmentation with pre-classification method, the architecture used for 2-

classes pixel-level classification for the images with one category tissue (benign or 

malignant) is the same as the architecture shown in Figure 4.16. For 3-classes pixel-level 

classification in segmentation with pre-classification for one specific category cases, the 
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features were extracted using the similar GoogleNet architecture but with 3 outputs 

(inside, outside and boundary of that category cases).  

The segmentation results of features from GoogleNet architecture in segmentation 

with and without pre-classification are discussed in Chapter 6, Sections 6.3.3 and 6.4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 GoogleNet architecture to extract the local patterns in gland segmentation 
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The GoogleNet architecture is described by Szegedy et al. (2015), and the bounding 

box with a black dashed line is the feature extraction part in GoogleNet. Deep learning 

features are extracted after the bounding box before the fully connected layer. 

4.7 Features discriminative analysis 

Before using these feature vectors, it is useful to investigate their discriminative 

properties. One of the techniques is to use K-means clustering (Lloyd, 1982) in order to 

check if the features could cluster into distinctive categories as in the training data. The 

reason for choosing K-means algorithm is that it is often used, and it can be easily 

interpreted (discussed in Chapter 3, Section 3.5).  

The K-means algorithm was used to estimate the discriminative properties of 

different feature vectors extracted from histology images. The estimation process is 

detailed in this section, and the reason for choosing this technique. The K-means 

algorithm uses Euclidean distance when performing the clustering.  

The estimation process used K-means algorithm in this research follows: 

⚫ Input: The feature 𝑿 = {𝒙1, 𝒙2,⋯ , 𝒙𝑛}  extracted from histology images, and 

the number of distinctive clusters 𝑲  

⚫ Step 1: Using K-means algorithm to partition the features into 𝑲  different 

clusters.  

⚫ Step 2: Using the original category of the features 𝑿  to label the new 𝑲 

clusters; the label of the cluster will be the label with the maximum samples of 

that category. 

⚫ Step 3: Calculate the accuracy between 𝑲  clusters and the original feature 

vectors.   

The number of clusters is different for different feature vectors. For example, the 

value of 𝑲 in the segmentation without a pre-classification method is 2, and the value 

of 𝑲 in segmentation with a pre-classification approach is either 2 or 3, depending on 

the number of the classes. The evaluation measure selected to describe the 

discriminative properties is accuracy. The label for corresponding cluster is return to the 

maximum classes contained in that cluster.  
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All the experiments which evaluating the discriminative properties are detailed in 

Appendix E. From the results shown in Appendix, the features generated from GLCM 

have the worst discriminative properties (only achieving 50% accuracy), and the 

GoogleNet deep learning features have the best discriminative properties with above 90% 

accuracy. Some other data features from histology images have the results somewhere 

in between these two.  

4.8 Summary  

This chapter discussed the feature extraction methods used in gland segmentation. 

The motivation for using each of these methods was discussed, followed by application 

of the feature extraction approaches themselves. Both hand-crafted and deep learning 

features were considered. For the hand-crafted features, ring histograms, LBP and HOG 

all achieved good performance for local patterns in the images. The features generated 

from the GLCM performed well for whole texture information in the images. All deep 

learning techniques could be used as feature extractors, and two deep learning models 

were employed to extract the local patterns. 

Most of the related studies focused on demonstrating only the algorithm to solve 

the problem, ignoring the discriminative properties of the feature vectors before the 

training process takes place. However, in this research, after extracting all the features 

from the histology images, the unsupervised learning technique, K-means, was used to 

investigate their discriminative properties, a significant difference with other studies. In 

summary, the estimation results of all feature vectors extracted from histology images 

show that the discriminative properties and could be used in further testing in 

segmentation.  

The following chapter demonstrates two segmentation approaches, with and 

without pre-classification method. The pre-processing method to process the colour in 

the histology images, and the post-processing method processed the probability map 

will be discussed. 
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Chapter 5 

Segmentation method and pre-/post-processing  

Chapter 4 discussed the feature extraction for the histopathological gland 

segmentation data, and the estimation of the discriminative properties of features 

extracted from the histology images. In this chapter, two types of segmentation, with 

and without pre-classification, are employed to classify the gland and non-gland parts in 

testing images. Due to the variation in colour, histogram correction is used to convert 

the colour in all the images to the same level. The output of the pixel-level (this term is 

discussed on page 20) classifier, random forest, is the probability maps, and two post-

processing methods are used in order to produce better segmentation results.  

5.1 Image classification and segmentation 

Image classification applications use machine learning techniques to learn the 

characteristics of a set of labelled data, and to predict a set of unlabelled data using the 

trained classifier. Image classification and image segmentation are related but not the 

same, and these two terms are discussed in ‘Thesaurus’ (starts from page 19). Image 

classification and segmentation use some of feature vectors to represent the 

characteristics of the different regions in the image to train the classifier, and the 

prediction will be made based on the trained classifier.  

In this work, the histopathological segmentation problem is involved in 

distinguishing between the background and the foreground (gland) in testing gland 

images, using the two types of the segmentation technique, as described follows.  

5.2 Segmentation without pre-classification 

The segmentation without pre-classification is the typical method for gland 

segmentation. This method (Segmentation without pre-classification) is designed based 
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on the aim and objectives of the work. The segmentation without pre-classification 

employs the sliding window technique to extract local patterns from the training gland 

images. The aim of the gland segmentation is to separate the background and the gland 

parts in histology images. The local patterns of gland and non-gland parts are extracted 

based on the provided ground truth. Chapter 4 explained the methods to extract the 

local patterns from selected patches in these images.  

Figures 5.1 and 5.2 show the traditional way of solving this problem; Figure 5.1 

shows the training phase of the classifier, and Figure 5.2 illustrates the testing phase of 

the gland segmentation process.  

 

 

 

 

 

 

 

 

Figure 5.1 The process of the training phase of segmentation without pre-classification method 

(Manivannan et al., 2017). (a) sample image from the gland dataset. (b) represents the label for the 

same sample image. (c) represents the feature vector generated from the gland image, and (d) the label 

vector generated from the label image. (e) represents the trained random forest model 

 

Figure 5.1 indicates the segmentation without pre-classification approach to train 

the forest models using the sliding window technique. Figure 5.1.a is the sample image 

from the gland database, and the blue and green squares are extracted from it. Figure 

5.1.b represents the label for the same sample, the white part being the gland label, and 

the black part the background. The blue and the green squares are the background and 

gland categories for the image. Figure 5.1.c demonstrates the feature vector generated 

from the selected patches, with the blue and the green parts the features for the gland 

and the background respectively. Figure 5.1.d is the label for the feature vector, the 

colours corresponding to the same categories. Figure 5.1.e establishes the trained 

classifier; in this work, the random forest is used as the primary classifier, using the 

feature vector and its label to train the models.  
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The testing process follows, using the trained classifier to predict the testing images. 

Figure 5.2 shows this process for an image from the gland database.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 Testing process of segmentation without pre-classification (Manivannan et al., 2017). (a) 

sample testing gland image from the gland database. (b) feature vector for the selected area. (c) the 

trained classifier (the same classifier as shown in 5.1.e). (d) prediction for the selected patches from the 

testing image. 

Figure 5.2 indicates the testing process for the segmentation without pre-

classification. Figure 5.2.a illustrates the sample testing image and Figure 5.2.b the 

feature vector generated from the yellow square in the histology image. Figure 5.2.c 

represents the classifier previously trained (see Figure 5.1), and Figure 5.2.d represents 

the prediction for the feature vector generated by the selected patches from the testing 

image.  

Figures 5.1 and 5.2 show the segmentation without pre-classification approach to 

identifying the gland and the background in histology images, referred to the traditional 

or usual way to solve the gland segmentation. These two figures (Figure 5.1 on page 88 

and Figure 5.2 on page 89) are referred to the typical method that would be used in this 

work.   

5.3 Limitations of segmentation without pre-classification 

Chapter 2 discussed the various components in benign and malignant cases, and 

gave examples of images from the gland dataset. From visual inspection of images with 

benign tissue and those with malignant tissue in the gland dataset, the morphological 

structure in the images with benign tissue is seen to be different from that in images 
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with malignant tissue. Figure 5.3 shows a sample of training images from the gland 

dataset, the top row being malignant cases, and the bottom row is benign cases.  

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Sample images from the gland dataset 

From Figure 5.3, it is easy to observe that the patterns in the malignant cases and 

that in benign cases are different. In the images with benign glands, lumen, cytoplasm 

and epithelial cell comprise the gland parts in corresponding histology images, and 

others are the background parts in histology images. In the images with malignant glands, 

cytoplasm and epithelial cells comprise the gland parts, and others are the background 

part. The differences in texture between these two types are the glandular tube in 

images with malignant tissue, which are broader than that in images with benign tissue, 

and there is no bubble structure in the malignant images that occurs in images with 

benign tissue. These two examples demonstrate the most significant differences in 

distinguishing between these images with two different types (benign and malignant) 

tissue.  

By inputting all extracted features from histology images into random forest, the 

forest model will learn the differences between the gland and the background. It is 

harder for the classifier to learn the significant differences between the images with 

benign tissue and those with malignant tissue, and the segmentation results are 

inadequate based on the performance of three segmentation methods shown in Chapter 

6, Section 6.6. The solution for further improving the performance is to separate the 

images first (image-level classification) and then deal with gland segmentation (pixel-

level classification). Segmentation with pre-classification is designed in order to force the 

forest model to learn the characteristics between the gland and the background in 

images with two different types of tissue (benign and malignant tissue).  
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Segmentation with pre-classification approach was therefore employed in this 

research in order to help the classifier distinguish between the characteristics of the 

gland and the background in these two types of image. This approach originated with 

the CVML group described by Sirinukunwattana et al. (2017), and employs three 

categories of pattern in the gland images to apply a deep learning technique.  

Unlike the original CVML, segmentation with pre-classification employs two or 

three categories of pattern in one of the types of gland image to train and to predict the 

gland parts in that type of the image. In this case, the patterns in images with benign or 

malignant tissue are manually separated and train the forest model. The classifier seems 

to learn the differences between different classes in image with benign or malignant 

tissue improving the segmentation results. The following section discusses the details of 

segmentation with pre-classification.  

5.4 Segmentation with pre-classification approach 

Figure 5.4 illustrates the process of the segmentation with pre-classification 

method used in this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 The process of segmentation with the pre-classification approach 

From Figure 5.4, it is easy to see that the process of segmentation with pre-

classification contains two-level classification, image-level and pixel-level. The meaning 

of these two terms are discussed in ‘Thesaurus’ (start from page 19). In the image-level 

classification part, both traditional approaches and deep learning techniques are 
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employed to distinguish benign or malignant images in gland dataset. In the pixel-level 

classification step, different feature extraction approaches demonstrated in Chapter 4 

are employed to extract the corresponding patterns in the gland images. For the pixel-

level segmentation problem, two or three categories of patterns of the gland images are 

extracted by applying the sliding window technique (see Figure 5.4). The two or three 

categories are designed in order to find the best way to describe the morphological 

structure of the gland in either benign or malignant tissue. The methods used in image-

level and pixel-level classification are discussed in the following sections.  

5.4.1 Image-level classification  

The previous section introduced segmentation with pre-classification applied to the 

gland segmentation problem. In this section, the traditional hybrid method which 

combines the HMAX model with random forest and deep learning techniques is 

discussed and applied to the image-level classification problem. This step aims to 

separate the images in the gland dataset into benign or malignant.  

HMAX model  

Theriault et al. (2013) introduced the HMAX model and achieved excellent 

performance in image classification problems. There are both similarities and differences 

between the HMAX model and the deep learning techniques (also known as a 

convolutional neural network or CNN). The crucial difference between these two models 

is that the back-propagation approach is employed in deep learning but not within HMAX. 

The HMAX model employs a bank of Gabor and convolving filters to achieve the feature 

extraction. The reason for choosing HMAX and forest model is that this method can be 

easily interpreted, whereas the LeNet is hard to understand the details of generating 

these classification results. 

In this work, the HMAX model is adopted, although only to extract features from 

the benign and malignant images, using them to train the forest models to classify 

histology images in testing data benign or malignant. Figure 5.5 shows the structure of 

the HMAX model; each layer is then discussed.  
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Figure 5.5 Structure of the HMAX model (Theriault et al., 2013) 

The structure of the HMAX model is similar to that of the network shown in Figure 

4.12. The input is a greyscale image generated by converting one of the original gland 

images from the gland dataset. The figures next to the input images are sample outputs 

from layer 1 in the HMAX model, generated by convolving the set of Gabor filters with 

the input image. The sample outputs from layer 2 are determined by applying max-

pooling sampling, which stores the most useful information in a fixed section in the 

images, by storing the maximum value in a fixed region of the original images. 

The output of layer 1 in the model is determined by the results of the convolution 

operation between the input images and a set of Gabor filters; the size and direction of 

the Gabor filters are defined by the following formulae in the reference (Theriault et al., 

2013): 

G𝜎,𝜃(𝑥, 𝑦) = exp (
𝑥0

2+𝛾∙𝑦0
2

2𝜎
) ∙ cos(

2𝜋

𝜆
𝑥0)                (5.1)                               

𝑥0 = 𝑥 cos𝜃 + 𝑦 sin 𝜃                       (5.2) 

𝑦0 = 𝑦 cos𝜃 − 𝑥 sin 𝜃                       (5.3) 

where 𝜃 , 𝜆  and 𝜎  respectively represent the direction, wavelength and size of the 

Gabor filter; (𝑥, 𝑦) indicates the coordinate index of the pixels in the input images, and 

𝛾 is the aspect ratio of the Gabor filter. The output from layer 1 is the absolute value of 

the results of the convolution operations between the input images 𝐼(𝑥, 𝑦)  and the 

Gabor filters, and the mathematical expression is defined by (Theriault et al., 2013): 

L1𝜎,𝜃 = |𝐺𝜎,𝜃 ∗ 𝐼(𝑥, 𝑦)|                      (5.4) 

where L1σ,θ indicates the output of layer 1; 𝐼(𝑥, 𝑦) and 𝐺𝜎,𝜃  respectively represent 
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the images input into layer 1 in the HMAX model and the Gabor filters used in layer 1, as 

introduced above. 

Layer 2 in both the HMAX model and the convolutional neural network is similar, 

using the selected feature map from layer 1 for dimensionality reduction, and selecting 

one small neighbour in the feature map of layer 1 and the maximum value of each 

position (𝑥, 𝑦)  in  𝐻x,y  as the output of this layer. The mathematical expression is 

given by (Theriault et al., 2013): 

L2𝜎,𝜃(𝑥, 𝑦) =  max
 𝐻x,y∈L1𝜎,𝜃

 𝐻x,y                    (5.5) 

Layer 3 in the HMAX model is composed of one convolving filter. This filter combines 

the low-level features from the Gabor filter and the regional mid-level features in the 

image. The corresponding mathematical expression is defined by (Theriault et al., 2013): 

𝐿3𝜎
𝑚 =  𝛼𝑚  ∗ 𝐿2𝜎                         (5.6) 

where 𝛼𝑚    and 𝐿3𝜎
𝑚  respectively represent the convolving filter of layer 3 and the 

output of this layer. 

The essence of layers 4 and 2 in the HMAX model is the same. The maximum value 

of 𝐿3𝜎
𝑚 in layer 3 is selected to form the output of layer 4. That is, the output of layer 4 

is a feature vector composed of the maximum values of features selected by a series of 

convolving filters. 

After extraction from the histology images, these features are input into the 

random forest model to train the classifier. The types of gland image in testing will use 

the trained forest model for prediction.  

AlexNet 

Most of the deep learning techniques (i.e. LeNet5, AlexNet and GoogleNet) can be 

used in the image classification problem, and they have achieved better performance 

compared with typical machine learning methods (i.e. SVM, decision trees and random 

forest).  

Krizhevsky et al. (2012) introduced the AlexNet architecture and achieved a top-5 
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classification error rate of 15.3% significantly better than the second best method with 

26.2%. Compared with LeNet-5, AlexNet is deeper and more powerful. The original 

contribution of this architecture was to introduce the ReLU function and dropout. The 

reasons for introducing ReLU are: (1) AlexNet is not efficient if the activation functions 

were using a sigmoid function, but with ReLU function the computation time is reduced; 

(2) for a deeper convolution network, the gradient will decrease close to 0 when the 

sigmoid function is employed in training. In this case, it is difficult to complete the 

training of the corresponding deep learning model. The reason for using dropout in 

AlexNet is that this technique could reduce the number of correlations with other 

neurons in the architecture, helping the network to learn more robust features.  

GoogleNet and ResNet 

GoogleNet and ResNet-50 are two up-to-date deep learning methods for image 

classification. The reason for choosing these methods is that the excellent performance 

in related tasks. GoogleNet has performed well on food image classification (Singla et al., 

2016) and medical image classification (Khan et al., 2019; Bayramoglu et al., 2016). There 

are several ResNet architectures, such as ResNet-34 and ResNet-50. The ResNet-based 

network achieved better results in vehicle classification (Jung et al., 2017) and the 

classification of medical image (Yu et al., 2017). The reason for discussing deep learning 

methods here is that they have been used for different purposes. Deep learning methods 

discussed in Chapter 4, Section 4.6 are used for feature extraction. These architectures 

(GoogleNet, ResNet and AlexNet) have been used in image-level classification.   

The above three deep learning models are used as part of the image-level classifier. 

The details of creating the training data, the validation data and testing data will be 

provided in Chapter 6, and the training process and parameters used in these models 

will also be discussed.  

Image augmentation  

The overfitting could be an issue when training deep learning models. Image 

augmentation methods are used to avoid overfitting when training deep learning models. 
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Malignant 

Original image Image after local image deformation  

There are many possible image augmentation methods used to increase the number of 

training images. The local image deformation and colour jitter methods are proposed 

here to improve training of the deep architectures.  

 

Local image deformation is to change the appearance of the image by mapping the 

points in the images to new positions without changing the colours. It should only 

slightly change the morphological structures in the images. It reflects a possible 

variations in tissue morphology during the preperation of the histology tissue sample. 

Figure 5.6 shows a sample of the local image deformation method applied in histology 

images from gland data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.6 Original images and images after local image deformation 

The images with a bright blue boundary are examples of the images with benign 

tissue and images with malignant tissue from the gland dataset (Nasir, 2015). Those 

outlined in bright green are the results after using local image deformation. From the 

visual inspection, it is readily seen that the contours of the glands in the original images 

are different from those after using local image deformation methods. Slight changes 

in the contours of the gland in benign and malignant cases could help the classifier to 

learn more information to improve the performance.  

Colour jittering is another type of data augmentation widely used in deep learning 

Benign  
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Images after using colour jitter  

to change the value of the pixels in order to change the colour of the images without 

changing the texture information. The following steps are required: 

⚫ Step 1: Convert the original RGB image into HSV colour space.  

⚫ Step 2: Adding an random number in each dimension of HSV colour space, using:  

𝐼𝑚𝑎𝑔𝑒𝑖𝜖(ℎ,𝑠,𝑣) = 𝐼𝑚𝑎𝑔𝑒𝑖𝜖(ℎ,𝑠,𝑣) + 𝑛             (5.7) 

where 𝐼𝑚𝑎𝑔𝑒𝑖𝜖(ℎ,𝑠,𝑣) represents each channel of the image. 𝑛 is the random number, 

and the range of this value is between 0 and 1. The range of 𝑛 is different, and will be 

different again if different data is selected.  

⚫ Step 3: Convert the image, 𝐼𝑚𝑎𝑔𝑒, from HSV colour space into the original RGB 

colour space.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 Original images and images after colour jitter 

Figure 5.7 shows original images from the gland data, and the resulting after using 

the colour jittering approach. From visual inspection, the colour jittering changed the 

colour in the original images and without changing structure of the glands in the images.  

5.4.2 Pixel-level classification 

The pixel-level classification in segmentation with pre-classification aims to 

segment the background and the gland in the testing images, using the sliding window 

technique. The morphological structure of the gland generates the different categories 

Original image  

Benign  

Malignant 
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of benign or malignant image in the pixel-level classification part. For example, the 

segmentation with pre-classification method two benign classes are used in extracting 

the gland and the background features in benign training images and in predicting these 

sections in the testing images.  

5.4.2.1 Two-categories pixel-level classification problem 

In this section, data for the two classes of the pixel-level classification problem, 

benign or malignant, are considered as one category of gland images to extract the 

features and train the classifier, and then make the prediction for the corresponding 

category of gland images. For example, the two benign classes in segmentation with pre-

classification enter the features extracted from the images with benign tissue into the 

forest models, and predict the benign testing images based on the trained forest model. 

A similar technique is employed for the two malignant classes in the improved 

segmentation problem.  

For these 2-category labels, the original background and foreground (gland) labels 

are provided in the gland segmentation data. The features extracted from the benign or 

malignant images employ the feature extraction approaches demonstrated in the 

Chapter 4. The experiments’ details of two target classes classification using are shown 

in Appendix E. For the benign cases, the results are shown in Appendix E, Section E.1. 

The results of malignant cases are shown in Appendix E, Section E.3.  

5.4.2.2 Three-categories pixel-level classification problem 

From Figure 5.3, it is clear that the patterns of the gland and the background in the 

benign and malignant gland images are different. For both benign and malignant images, 

three different categories were created based on the morphological structure of the 

gland in the histopathological images: the inside region, the boundary region and the 

outside part of the gland respectively. The labels for these three classes were not 

provided in the original database, and so have to be created before extracting the 

patterns of the three classes. The following section indicates the process of creating the 

labels for these three categories, for benign and malignant gland images respectively. 

The details of three target categories pixel-level classification are shown in Appendix E. 
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The results of three target classes classification of benign cases are shown in Appendix 

E, Section E.2, and the results of malignant cases using three target classes are shown in 

Appendix E, Section E.4. 

Benign categories  

This section discusses the process of creating the labels for the three categories for 

benign gland images. Figure 5.8 indicates the sample images from the benign category 

in the training database, and the corresponding label image is located on the right-hand 

side of each image. Different colours represent different gland objects in corresponding 

images, and the black area in the label image indicates the label of the background.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.8 Sample images and corresponding ground truth from gland dataset 

This segmentation problem is to classify glands by the inside region, the boundary 

or the outside part in the testing images. The inside region labels are generated from 

those provided for the original training images. A 15-iteration image erosion operation 

(Van Den Boomgaard and Van Balen, 1992) is employed to get only the inside of benign 

glands. The reason for choosing 15 iterations is that the value comes from the 

experiments; the significant pattern of the inside gland in images with benign tissue is 

that there are white bubbles. If there are no white bubbles in the original gland labels, 

they are manually labelled as boundary labels.  

Figure 5.9 indicates the sample images and the corresponding labels for the inside 

gland class, and the black area in the label image indicates the background. The label for 

the background in benign category images is same as in the original gland dataset; 

different colours in the image represent different inside gland objects.  
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Figure 5.9 Sample images and the inside gland labels of corresponding images 

The outside labels in the histology images are the same as the background labels  

provided in the histology images, indicated by the black area shown in the ground truth 

in Figure 5.8. The boundary label for benign gland images is generated by performing an 

XOR operation (Davies, 2002) between the outside label and the inside gland labels. 

Figure 5.10 illustrates the sample image and the boundary labels; similarly different 

colours indicate different gland boundaries.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10 Sample image and the boundary label for corresponding image 

Malignant categories  

For the three malignant categories segmentation approach, the features were 

extracted from these three classes in the malignant gland images. The morphological 

structure of the gland in malignant images is different from that in images with benign 

tissue, but the three labels are generated in a similar way.  

The inside labels are determined using 20 image erosion (Van Den Boomgaard and 

Van Balen, 1992) iterations of the original gland labels; the cell walls in malignant images 
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are broad, and this figure of 20 fits the entire range. Figure 5.11 indicates sample images 

and corresponding inside labels, and different colours illustrate different gland inside 

regions. 

 

 

 

 

 

 

 

 

 

 
Figure 5.11 Sample images and inside labels for malignant category 

A similar approach was used to generate the boundary label for malignant category 

gland images, an XOR operation between the inside and outside labels. Figure 5.12 

illustrates the sample images and corresponding boundary labels. The different colours 

illustrate the boundary for different gland objects.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Sample images and boundary labels for malignant category 

The features for these three categories of malignant images are generated by 

applying the feature extraction methods demonstrated in Chapter 4. The forest models 

use these features to train and to make the predictions.  

5.4.2.3 Segmentation with pre-classification at different levels 

Segmentation with pre-classification method is described at the beginning of 

Chapter 5 Section 5.4. That method could be used with both hand-crafted and deep 
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learning features. In this section, two segmentation methods with pre-classification at 

different level are introduced. Method 1 (on page 103) shown in Figure 5.13 is the typical 

method for solving gland segmentation, and this method is named as segmentation 

without pre-classification in this work. As shown in Figure 5.13, the difference between 

methods 2 and 3 is that for the method 2 extracted local patterns separately to train the 

feature extraction methods for the benign and malignant gland images, whereas for the 

method 3 the features are learnt for all images and the separation between the benign 

and malignant is preformed of the feature level with two separate random forest models.  

Both methods 2 and 3 are using GoogleNet for extracting the local patterns. These 

two variants of the segmentation with pre-classification should only be used with deep 

features, as there is no difference between them when using hand-crafted features.  
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5.5 Pre-processing  

The details of preparation of the histology image were provided in Chapter 2. 

Different individuals stained the images in different way so that the colours would not 

be at the same level. From the sample images from the gland dataset shown in Chapter 

2, the images are varying in colours and tones throughout the whole dataset. The pre-

processing method is important and necessary in order to reduce the need for pre-

categorisation colour harmonisation. Histogram matching is a widely used method for 

dealing with the issue of colour disparity (Veta et al., 2015).  

Histogram matching refers to matching the histogram of the target image to one 

reference histogram according to certain rules. Histogram equalisation (Hum et al., 2014) 

is a special form of histogram matching using discrete distribution. This method is 

effective for images whose histogram is densely distributed. In this work, the reference 

histogram is the mean of all the images in the training part. Using the mean histogram 

as reference, the histogram of the target image will be matched against it. The output of 

this process is the results of the pre-classification work. From the various components 

discussed in these histology images, the cytoplasm in malignant images is one of the 

texture features. To preserve this texture information in the results, large white areas 

are not retained, but are replaced by black pixels. Figure 5.14 shows an example of the 

white area in histology images needing or not needing to be removed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.14 Sample histology images with white areas that need/don’t need to be removed 
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Top row images in Figure 5.14 contain white areas but do not need to be replaced 

by the black pixels; to the bottom row images in contain large white areas that do need 

to be replaced by black pixels. The method used for removing unwanted extensive white 

areas in the images was by setting the thresholds in the green channel of RGB images. 

Figure 5.15 shows the results of removing the white areas identified in the previous 

figure.  

 

 

 

 

 

 

 
Figure 5.15 The results of removing unwanted white areas in histology images 

Figure 5.16 shows samples of output after using the histogram matching method. 

The top row images are benign after histogram correction, and the images in bottom 

row are malignant after correction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.16 Sample images after using histogram correction 

Comparing the sample images shown in Figure 5.16 and those in Figure 5.14, the 

colours and tones in the latter are at the same level. To identify the effect of the variation 

in the colour and the tones of gland objects, the experiment results of methods 

with/without colour correcting are shown in Appendix E , Section E.7.  
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5.6 Post-processing  

The output for machine learning and deep learning techniques, and also for the 

random forest techniques, is probability maps. The output of the image segmentation 

problem aims to categories each pixel in the testing images in a class that is already 

known in training data based on learning the distribution. Figure 5.17 presents the 

examples of the probability maps generated by random forest using different features in 

the segmentation without pre-classification method. The probability maps generated by 

random forest using different features in segmentation with pre-classification are not 

shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.17 Sample of the probability maps in segmentation without pre-classification 

 

The closer the colour to white, the higher the probability of the pixel belonging to 

a gland. To achieve better segmentation results, probability maps used as segmentation 

results would not provide a good quantitative result. If the segmentation results 

(generated by using the morphological post processing method) are choosing as the 

results, the quantitative results would improve. In this case, post-processing involves a 

set of operations to remove the imperfections. Two post-processing methods were used 

in this work to transform the probability maps into segmentation results (label image): 

morphological post-processing and the level set approach, discussed in detail in the 

following sections.  
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5.6.1 Morphological post-processing  

Morphological post-processing is a set of non-linear operations relevant to the 

shape or the morphology of an image. It aims to remove imperfections by determining 

the form and structure of the images, with methods including dilation, erosion, opening 

and closing. In this research, a set of morphological post-processing methods were used 

to process the probability maps generated by random forest using different types of the 

features. From the above discussion, two proposed segmentation methods were used 

to solve gland segmentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.18 Morphological post-processing of processing probability maps 

 

Figure 5.18 illustrates the details of morphological post-processing of the 

probability maps. The top left image illustrates one of the probability maps generated 

from random forest, and the top middle image illustrates the binary image after 

thresholding. The top right image illustrates filling the holes in the binary image and 

removing the small objects. The bottom right image shows the results of eroding objects 

in the previous image. The bottom middle image shows the results of smoothing the 

gland objects, and the bottom left image shows the segmentation results after labelling 

different gland objects. 

To find the best segmentation performance of different segmentation methods 

with different features, several experiments with different value of the parameters are 
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designed. The best performance of different methods using different features are 

provided by using different value of parameters in the experiments. For different 

experiments, the values of the parameters are different for different segmentation 

method. The source code of these experiments could be found in accompanying 

software.   

In segmentation with pre-classification, post-processing method used a pixel-level 

classification method. For both benign and malignant images, the steps in processing the 

probability maps are the same as those shown in Figure 5.15. However, the parameters 

used in each step were different from those used in above. Again, all the best 

segmentation results were tested based on multiple experiments and the best 

segmentation results based on the evaluation measures, described in detail in Chapter 

6.  

5.6.2 Level set algorithm 

This approach is also widely used in medical image processing, and the active 

contour models for segmentation have become increasingly popular. The first active 

contour model was introduced by Kass et al. (1988), has developed dramatically over the 

last two decades. It iteratively involves the initial curve of the boundary of the target 

objects. The level set algorithm could handle topological changes of the object contour, 

and is easily adapted to any dimensional segmentation problem (Zhang et al., 2008). The 

method was also used in this work to process the probability maps, combined with the 

geodesic active contour model (Caselles et al., 1997) for boundary-based segmentation 

and the Chan-Vese model (Chan and Vese, 2001) for region-based segmentation.  

Before discussing the details of the level set algorithm, some of the concepts are 

introduced. The function 𝜙 is used to indicate the active contour 𝑪 = {𝑥 | 𝜙(𝑥) = 0} 

and the points inside or outside this contour have either positive or negative values. The 

direction of the curve normal 𝑵⃗⃗  determines the point of propagation of the contour. 

Figure 5.19 illustrates the conventions used in the level set algorithm. 
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Figure 5.19 Conventions used in the level set algorithm (Zhang et al., 2008) 

Most of the active contour algorithm is to minimise the function which defines the 

contour close to the target boundary with small values. As one of the active contour 

algorithms, the level set algorithm minimises the function as described by (Zhang et al., 

2008):  

𝜀(𝜙) = −𝛼∫ (𝑰 − 𝜇)𝐻(𝜙)
0

𝛺
𝑑𝛺 + 𝛽 ∫ 𝑔|∇𝐻(𝜙)|

0

𝛺
𝑑𝛺        (5.7) 

where 𝐼 is the binary image after applying simple thresholding to the probability maps 

generated by the random forest technique 𝑔 = 𝑔|∇𝑰| is the boundary feature of the 

maps relevant to the image, 𝛺  indicates the image domain. 𝛼  is a pre-defined 

parameter to represent the low boundary of the target object. The first term of the 

function is to confine the contours to the region with a grey level bigger than 𝜇. The 

assumption for this process is that the grey-level value of the target contour is high; 

otherwise, a grey-level mapping approach will be used. The second term is the geodesic 

active contour function, used to control the contour to attach it to the region with a high 

gradient.  

The partial differential equation (PDE) can be determined from the directional 

derivative applied to the function (5.7) given by the equation (Zhang et al., 2008): 

𝜙𝑡 = |∇𝜙| [𝛼(𝑰 − 𝜇) + 𝛽div(𝑔
∇𝜙

|∇𝜙|
)]               (5.8) 

Using an identity of div(𝑔𝑓 ) = ⟨∇𝑔|𝑓 ⟩ + 𝑔div(𝑓 ), equation (5.8) could be written 

as described in the reference (Zhang et al., 2008): 
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𝜙𝑡 = |∇𝜙| [𝛼(𝑰 − 𝜇) + 𝛽 〈∇g,
𝛻𝜙

|𝛻𝜙|
〉 + 𝛽𝑔div(

𝛻𝜙

|𝛻𝜙|
)]         (5.9) 

This equation can be rewritten as follows because in Osher et al. (1988) the 𝐶𝑡 =

𝛾 𝑵⃗⃗  and 𝜙𝑡 = 𝛾|∇𝜙| represent the same curve envolution, it is given by (Zhang et al., 

2008): 

𝐶𝑡 = 𝛼(𝑰 − 𝜇)𝑵⃗⃗ − 𝛽〈∇g, 𝑵⃗⃗  〉𝑵⃗⃗ + 𝛽𝑔 κ 𝑵⃗⃗⃗⃗             (5.10) 

where 𝑵⃗⃗  is the normal vector and 𝑵⃗⃗ =  
−∇𝜙

|∇𝜙|
, and κ = div(

∇𝜙

|∇𝜙|
) is the curveture. The 

first term in the above equation is to control the propagation movement of the curve. 

The second term is to move the curve to the target object contour. The third term is to 

control the smoothness of the curve. If |∇𝜙| = 1, the equation (5.8) could be simplified 

as given by (Zhang et al., 2008):  

𝜙𝑡 =  𝛼(𝑰 − 𝜇) +  𝛽 div(g ∇𝜙)                (5.11) 

 All these equations have been used in the provided post-processing (level-set) 

method in this work. The reason for listing these equations is to help understand the 

development of level-set proposed by Zhang et al. (2008).   

 

Figure 5.20 indicates the steps in using the level set algorithm to process the probability 

maps generated from the pixel-level classifier, random forest, using different features 

extracted from the histology images.  
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Figure 5.20 Steps in the level set post-processing method 

The top left image is one of the probability maps generated by random forest, the 

middle image is the output after applying the probability map, and the top right image 

is the initial level set parameters. The right bottom image is the first iteration of the level 

set results, and the middle image is the output of the level set algorithm. The bottom 

right image is the final segmentation result for this image, using different colours to 

represent different gland objects.  

For different values of the propagation and smooth parameters in this algorithm, 

the segmentation results are also affected. The value of the propagation parameter is 15 

and the value of the smooth parameter is 90; these values were selected after comparing 

the values of the corresponding best results. 

5.7 Summary 

This chapter discussed gland segmentation without pre-classification and its 

limitation, that there is no understanding of the texture features in the images in the 

gland dataset. To overcome this limitation, an improved version of the method, 

segmentation with pre-classification, was introduced. The reason for using this method 

is that the morphological structure in benign and malignant images is different, and this 

method helps the random forest classifier to learn the specific rule for differentiating the 

gland and the background in benign or malignant images. Segmentation with pre-

classification has two steps: image-level and pixel-level classification. For the image-level 
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classification step, the histology images are partitioned into benign and malignant 

category. In the pixel-level classification step, the segmentation results are generated 

from processing the probability maps using morphological post-processing; the 

probability maps were predicted by random forest. The random forest classifier was 

trained by the features extracted from only benign or malignant images.   

With the various colours and tones in the original histology images, the pre-

processing method used to achieve colour harmonisation. The probability maps were 

generated from random forest, and they could not be used directly as segmentation 

results. Two post-processing methods were used to process the probability maps to 

obtain the segmentation results, as discussed at the end of the chapter.  

In the next chapter, the results of these two proposed segmentation methods are 

evaluated.   
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Chapter 6 

Results 

Chapter 6 focuses on examining different evaluation metrics for instance 

segmentation, and performance evaluation of different segmentation methods on the 

gland database. Random forest model is used as the primary classifier in this work. The 

reasons behind choosing random forest were discussed in the previous chapter (Chapter 

3). The various data features and random forest design parameters are also discussed. 

The results of segmentation with and without pre-classification are then presented. 

Finally, the best results of segmentation with and without pre-classification are stated 

and compared using the introduced evaluation metrics. 

The gland instance segmentation problem, including: clinical problem justification 

(e.g. explanations of the clinical significance of the gland segmentation), clinical data 

collection and baseline assessment (including ground truth segmentation results) were 

defined by clinical pathologists from Warwick University involved in development of the 

dataset. The reported work is wholly focused on solving the segmentation problem. 

Additional work will be needed to translate the proposed segmentation technologies 

into clinical practice. This though was considered to be outside the scope of the research. 

6.1 Evaluation metrics 

The key objective of this section is to describe different metrics used for evaluation 

of instance segmentation methods. Two types of metrics are described: region-based 

and contour-based.  

6.1.1 Region-based evaluation metrics 

In gland segmentation problems, two region-based evaluation measures are 

frequently used: F1 score and object-level Dice index. F1 score is used to evaluate the 

detection accuracy of gland objects. Object-level Dice index is used for assessing the 

overall area-based segmentation accuracy of individual gland object. These evaluation 
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measures were introduced in Sirinukunwattana et al. (2015).  

The F1 score is employed to estimate the detection accuracy of glands. A 

segmented gland structure which has more than 50% overlap with its ground truth 

objects is treated as a true positive (TP); otherwise, it is treated as a false positive (FP). 

The difference between the number of ground truth and true positive objects is treated 

as the number of false negatives (FN). The mathematical expression for the F1 score is 

defined by (Sirinukunwattana et al., 2017):  

𝐹1 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                (6.1) 

where the mathematical expressions for precision and recall are given by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                       (6.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
                       (6.3) 

where 𝑻𝑷 indicates the number of true positives, 𝑭𝑷 represents the number of false 

positives, and 𝑭𝑵 represents the number of false negatives.  

Suppose 𝒔 represents a set of segmented glands, and 𝒈 indicates a corresponding 

set of ground truth. A function 𝑮∗ ∶  𝒔 → 𝒈  is introduced for each segmented gland 

𝑆 𝜖 𝒔, 𝑮∗(𝑆) = 𝐺 𝜖 𝒈 where G has the largest overlapping area with 𝑆. If there is no 

overlap between the segmented gland and the ground truth, the value of this function 

is an empty set. A similar function 𝑺∗ ∶ 𝒈 → 𝒔 is used, for each 𝐺 𝜖 𝒈, 𝑺∗(𝐺) = 𝑆 𝜖 𝒔 

where 𝑆 has the largest overlapping area with the ground truth 𝐺.  

The object-level Dice index evaluates the segmentation accuracy of the results. 

Given 𝑮 as a set of pixels belonging to the ground truth of the gland object, and 𝑺 

representing a set of pixels belonging to the segmented gland, the mathematical 

expression for the Dice index is defined by (Dice, 1945):  

𝐷𝑖𝑐𝑒 =
2 (|𝑮∩𝑺|)

|𝑮|+|𝑺|
                        (6.4) 

However, the Dice index in (6.4) is defined on the pixel level, not the object level. In 

this work, an object-level Dice index is employed to evaluate the segmentation 
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performance (Sirinukunwattana et al., 2015). The object-level Dice index is introduced 

to distinguish between different instances of the gland. Suppose 𝑛𝑔  indicates the 

number of ground truth occurrences for gland objects in the test image, manually 

labelled by pathology experts and 𝑛𝑠 is the number of segmented objects. 𝐺𝑖 is the 

ground truth for the 𝑖th gland object, and 𝑆𝑝 represents the segmentation results for 

the 𝑝th segmented object. The object-level Dice index is defined by (Sirinukunwattana 

et al., 2017): 

 𝐷𝑖𝑐𝑒obj(𝒈, 𝒔) =  
1

2
[∑ 𝜔𝑖𝐷𝑖𝑐𝑒(𝐺𝑖, 𝑺∗(𝐺𝑖))

𝑛𝑔

𝑖=1
+ ∑ 𝜔𝑞̃

𝑛𝑠
𝑖=1 𝐷𝑖𝑐𝑒(𝐆∗(𝑆𝑝), 𝑆𝑝)] (6.5) 

where           

 𝜔𝑖 = 
|𝐺𝑖|

∑ |𝐺𝑗|
𝑛𝑔

𝑗=1

⁄  , 𝜔𝑞̃ = 
|𝑆𝑞|

∑ |𝑆𝑝|
𝑛𝑠
𝑝=1

⁄                (6.6) 

𝐷𝑖𝑐𝑒(𝐺𝑖 , 𝑺∗(𝐺𝑖))  in equation (6.5) is to evaluate the overlapping area between each 

ground truth and the corresponding segmented object, and 𝐷𝑖𝑐𝑒(𝐆∗(𝑆𝑝), 𝑆𝑝)  is to 

evaluate the overlapping area between each segmented object and its corresponding 

ground truth. Both of the terms are weighted by the corresponding area of glands, 

providing less significance to small segmented gland and small ground truth objects. The 

functions 𝑮∗ and 𝑺∗ are explained in previous paragraph.  

6.1.2 Contour-based evaluation metrics

In gland instance segmentation problem, object-level Hausdorff distance is one of 

the contour-based evaluation measures used. This method was used as one of the 

evaluation measures in the MICCAI 2015 Gland Segmentation Challenge. However, 

another evaluation contour-based measure used in this work is the Boundary Jaccard (BJ) 

metric, introduced by Fernandez-Moral et al. (2018). The contour-based evaluation 

measures are generated based on the distance between two contours. The reason for 

the object-level BJ index being better than the object-level Hausdorff distance in 

evaluation of the shape similarity for gland segmentation is discussed in Chapter 6, 

Section 6.1.3. The following part describes these two contour-based evaluation 

measures.   
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Object-level Hausdorff distance is often employed to evaluate the shape similarity 

between the ground truth and the segmented object. The general mathematical 

expression of the Hausdorff distance between ground truth 𝐺  and segmentation 

results 𝑆 is defined by (Beauchemin et al., 1998): 

𝐇(G, S) = max {𝑠𝑢𝑝𝑥∈𝐺𝑖𝑛𝑓𝑦∈𝑆‖𝑥 − 𝑦‖, 𝑠𝑢𝑝𝑦∈𝑆𝑖𝑛𝑓𝑥∈𝐺‖𝑥 − 𝑦‖}       (6.7) 

where ‖∙‖ indicates the Euclidean distance between pixels 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝑆.  

Such defined measure is though not suitable for evaluation of instance 

segmentation method. In case of instance segmentation, the object-level Hausdorff 

distance needs to be used. The object-level Hausdorff distance is defined by 

(Sirinukunwattana et al., 2017):  

𝐇obj(𝒈, 𝒔) =  
1

2
[∑ 𝜔𝑖𝐇(𝐺𝑖, 𝑺∗(𝐺𝑖))

𝑛𝑔

𝑖=1
+ ∑ 𝜔𝑞̃

𝑛𝑠
𝑖=1 𝐇(𝑮∗(𝑆𝑝), 𝑆𝑝)]     (6.8) 

where the meaning of the mathematical symbols used in equation 6.8 is the same as in 

equation 6.6. If a ground truth 𝐺  has no corresponding segmented gland (where 

𝑺∗(𝐺) = ∅), the Hausdorff distance is calculated between the ground truth 𝐺 and the 

nearest segmented gland 𝑆 𝜖 𝒔  instead. A similar approach applies for a segmented 

object which has no corresponding ground truth object.  

BJ metric was introduced by Fernandez-Moral et al. (2018), and this evaluation 

measure is sensitive to infra-segmentation and over-segmentation results. This metric is 

developed from the BF metric, which was described in Csurka et al. (2013), which has 

two main disadvantages. If the distance between the two contours is greater than the 

threshold θ, the value of the BF metric is 0. Otherwise, the value of this metric will be 

close to 1; in short, this metric is not continuous. Second, the value of this measure will 

be the same if the same number of boundary pixels are in the distance θ. 

The BJ measure can handle these two drawbacks, and this value is used to calculate 

the distance from the boundary in ground truth to the boundary in segmentation results 

𝐵𝑔𝑡
𝑐 → 𝑆𝑝𝑠

𝑐   for the class 𝑐 , to obtain the number of true positives (𝑻𝑷𝐵𝑔𝑡

𝑐  ) and false 

negatives (𝑭𝑵𝑐). Similarly, the distance from the boundary in segmentation results to 
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the boundary in ground truth 𝐵𝑝𝑠
𝑐 → 𝑆𝑔𝑡

𝑐   for the same class 𝑐 , to determine the 

number of true positives (𝑻𝑷𝐵𝑝𝑠

𝑐 ) and false positives (𝑭𝑷𝑐). The total number of true 

positives is defined as (𝑻𝑷𝑐 = 𝑻𝑷𝐵𝑝𝑠

𝑐 + 𝑻𝑷𝐵𝑔𝑡

𝑐   ). The values of these parameters are 

defined by (Fernandez-Moral et al., 2018): 

𝑻𝑷𝐵𝑔𝑡

𝑐 = ∑ 𝑧 𝑥∈𝐵𝑔𝑡
𝑐  with 𝑧 = {1 − (

𝑑(𝑥,𝑆𝑝𝑠
𝑐 )

𝜃
)
2

          if 𝑑(𝑥, 𝑆𝑝𝑠
𝑐 ) < 𝜃

0                                 otherwise 
        (6.9) 

   𝑭𝑵𝑐 = |𝐵𝑔𝑡
𝑐 | − 𝑻𝑷𝐵𝑔𝑡

𝑐                       (6.10) 

𝑻𝑷𝐵𝑝𝑠

𝑐 = ∑ 𝑧 𝑥∈𝐵𝑝𝑠
𝑐  with 𝑧 = {1 − (

𝑑(𝑥,𝑆𝑔𝑡
𝑐 )

𝜃
)
2

          if 𝑑(𝑥, 𝑆𝑔𝑡
𝑐 ) < 𝜃

0                                 otherwise 

        (6.11) 

   𝑭𝑷𝑐 =  |𝐵𝑝𝑠
𝑐 | − 𝑻𝑷𝐵𝑝𝑠

𝑐                       (6.12) 

The Boundary Jaccard metric is defined according to the BJ index described by 

(Fernandez-Moral et al., 2018): 

𝑩𝑱 =  
𝑻𝑷𝑐

𝑻𝑷𝑐+𝑭𝑵𝑐+𝑭𝑷𝑐                      (6.13) 

The BJ metric described above is used to evaluate semantic segmentation 

methods. In this work, this Boundary Jaccard (BJ) index has been extended for 

evaluation of instance segmentation. In a way similar to the extensions proposed for 

Dice index and Hausdorff distance. The object-level BJ index proposed in this work is an 

extension of BJ. It is used for evaluation of gland instance segmentation, and is defined 

by:  

𝑩𝑱𝒊𝒏𝒔(𝑔, 𝑠) =  
1

2
[∑ 𝜔𝑖𝐁𝐉(𝐺𝑖, 𝑆∗(𝐺𝑖))

𝑛𝑔

𝑖=1
+  ∑ 𝜔𝑞̃

𝑛𝑠
p=1 𝐁𝐉(𝐺∗(𝑆𝑝), 𝑆𝑝)] (6.14) 

where 𝐁𝐉(𝐺𝑖, 𝑆∗(𝐺𝑖)) is to determine the BJ Index between the ground truth objects 

and the corresponding segmented objects. 𝐁𝐉(𝐺∗(𝑆𝑝), 𝑆𝑝) is to evaluate the BJ index 

between the segmented objects and the corresponding ground truth. 

The object-level BJ index is an extension of BJ, and it has the similar properties as 

BJ. However, in this work, the experiment results only show that the object-level BJ 
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Segmentation result 1 

 

 

Segmentation result 2 

 

index is not sensitive to segmentation outliers, which is not described in the reference 

(Fernandez-Moral et al., 2018).  

The object-level Hausdorff distance was proposed before for evaluation of the 

gland instance segmentation methods. In this work, the object-level BJ metric is also 

used as the fourth evaluation measure to assess the instance segmentation results. 

Both BJ and Hausdorff metrics are used to measure the shape similarity. However, 

object-level Hausdorff distance is sensitive to the segmentation outliers, whereas BJ is 

not sensitive to such outliers. The evidence is shown in the following section.  

6.1.3 Analysis of evaluation metrics  

The following examples help to understand the meaning and significance of 

different evaluation measures introduced in the previous sections.  

Figure 6.1 illustrates the meaning and significance of F1 score. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.1 F1 score evaluation example 

Following the description in Chapter 6 Section 6.1.1, the F1 score used in this work 

is a region-based evaluation measure. Both segmented gland objects in segmentation 

result 1 (shown in Figure 6.1) have more than 50% overlapping area with the 

corresponding ground truth glands, so both of them are treated as TP; there is no FN or 

FP. The brown object in segmentation result 2 has more than 50% overlap with the 

ground truth and is treated as TP (TP =1). The yellow gland object has less than 50% 

overlap and so is treated as FP (FP = 1). Based on the definition of FN in Chapter 6, 

Section 6.1.1, FN is calculated as the difference between the number of ground truth 

objects and the number of true positives, and therefore in this case FN = 1. Once TP, FP 

 

Ground truth 
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Segmentation result 1 

Segmentation result 2 

and FN have been computed, the value of the F1 score is calculated based on equations 

(6.1-6.3). Table 6.1 shows the F1 score for the two results. As discussed in Section 6.1.1, 

The range of F1 scores is between 0 and 1, and the closer the value of F1 is to 1 the 

better are the segmentation results.  

Table 6.1 F1 score for the segmentation results in Figure 6.1 

Segmentation methods F1 score  

1 1 

2 0.5 

 

Figure 6.2 illustrates the meaning and significance of object-level Dice index.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 Object-level Dice index evaluation example 

From visual inspection, segmentation result 1 has more overlap with the ground truth 

than does segmentation result 2. Table 6.2 confirms this observation showing, the 

object-level Dice index for results 1 and 2, as respectively 0.595 and 0.389. The closer 

the value of this parameter is to 1, the more overlap there is between the ground truth 

and the segmentation results; in this case, segmentation result 1 is better than result 2. 

Table 6.2 Object-level Dice index for the results in Figure 6.2 

segmentation result Object-level Dice index 

1 0.595 

2 0.389 

Ground truth 
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Ground truth 

Result 1  

Result 2  

 

Another evaluation measure used in this research is object-level Hausdorff distance, 

which measures the shape similarity between segmentation results and ground truth, as 

illustrated in Figure 6.3.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3 Object-level Hausdorff distance evaluation measure 

Based on visual inspection, the shapes of the two gland objects in segmentation result 1 

are closer to the ground truth than those in segmentation result 2. Table 6.3 shows the 

object-level Hausdorff distance calculated for the two results. In this case, the smaller 

the value, the better is the result. The results in Table 6.3 confirm the conclusion from 

the visual inspection.  

Table 6.3 Shape similarity for the segmentation results shown in Figure 6.3 

Segmentation result Object-level Hausdorff distance 

1 17.899 

2 57.608 
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The last evaluation measure used in this work is object-level Boundary Jaccard index. 

Figure 6.4 shows the value of Boundary Jaccard index for infra-segmentation and over-

segmentation for two different gland objects. 

 

 

 

 

 

 

 

Figure 6.4 Example of infra-segmentation and over-segmentation of two different gland objects 

The centre of Figure 6.4 shows the ground truth for the two different gland objects; the 

right part and the left part of the diagram show over-segmentation and infra-

segmentation of the same gland objects respectively. The number below each 

segmentation result is the corresponding Boundary Jaccard index. As with the F1 score, 

the range of the boundary Jaccard index is between 0 and 1. The closer this index is to 1, 

the better the segmentation results are.  

Figures 6.1, 6.2, 6.3 and 6.4 provide illustrative examples for an intuitive 

interpretation (the explanation is based on the simulated examples) of the evaluation 

measures used in this work. The ground truth and the segmentation results shown in 

Figures 6.1-6.7 are simulated results, not the real segmented results generated using 

gland data. These simple examples help to explain the meaning and significance of the 

metrics for evaluation of gland segmentation results. The following examples (Figures 

6.5-6.7) and short discussion illustrate the reasons for using different measures rather 

than a single measure for evaluation of the gland segmentation results; the reasons why 

the object-level BJ index is considered to be better than the object-level Hausdorff 

distance are discussed.  
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Ground truth 

Result 1 

Result 2 

 

Figure 6.5 illustrates a situation where the values of the F1 score and the object-

level Dice index are practically the same, but the value of object-level Hausdorff distance 

is significantly different between results 1 and 2. Table 6.4 shows the values of the three 

evaluation measures for the corresponding results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5 Significance of the object-level Hausdorff distance measure 

 

Table 6.4 Evaluation measures for the segmentation results shown in Figure 6.5 

Segmentation result F1 score 
Object-level Dice 

index 

Object-level 

Hausdorff distance 

1 1 0.833 44 640 

2 1 0.833 68.370 

If only two evaluation measures, F1 score and object-level Dice index, are used, 

there is no apparent difference between segmentation results 1 and 2. However, based 

on visual inspection, the shape of segmentation result 1 is closer to the shape of the 

ground truth than that of result 2. The shape of the left gland object in result 2 has a 

small number of outliers. It is discussed before the smaller the value of object-level 

Hausdorff distance, the better the segmentation is. Table 6.4, thus, indicates that result 

1 is better than segmentation result 2. 
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Ground truth 

Result 1  

Result 2 

 

The following example shows the importance of including F1 score in the evaluation 

of the gland segmentation. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

   

  

 

 
Figure 6.6 Significance of the F1 score 

Table 6.5 Evaluation measures for the segmentation results shown in Figure 6.6 

Segmentation result F1 score Object-level Dice index Object-level Hausdorff distance 

1 0.380 0.531 64 546 

2 0 647 0 550 70.012 

This time, there are four different gland objects and it is difficult to indentify the 

best results from visual inspection. If the object-level Dice index and Hausdorff distance 

are used for evaluation, result 1 has less overlap with ground truth than result 2, but 

more shape similarity with the ground truth than result 2. If only one evaluation measure 

is used, the result of the segmentation ranking could be different. Using two measures, 

results 1 and 2 achieve the same ranking (see Chapter 6 Section 6.2). In this case, it is 

important to have a third evaluation measure. From detection accuracy, that is the F1 

score. The F1 score indicates that result 2 is better than 1 breaking the tie. 
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Ground truth 

Result 1 

Result 2 

 The above two examples represent the importance of using both object-level 

Hausdorff distance and the F1 score in evaluating the segmentation results. The 

following example shows the importance of using the object-level Dice index: (see Figure 

6.7 and Table 6.6)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

  
Figure 6.7 Significance of the object-level Dice index 

Table 6.6 Evaluation measures for the segmentation result shown in Figure 6.6 

Segmentation result F1 score 
Object-level 

Dice index 

Object-level 

Hausdorff distance 

1 0.837 0 815 38 104 

2 1 0.767 47.482 

For results 1 and 2 shown in Figure 6.7, the object-level Hausdorff distance indicates 

the result 1 to be better, but using the F1 score, the result 2 seems to be better. If only 

used one measure, the ranking of these two results could be different. If both of these 

measures used, results 1 and 2 achieved the same ranking. It is therefore useful to use a 

third measure, in this case that the best segmentation results based on ranking score is 

results 1.  
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The above figures explain why a single evaluation measure for gland segmentation 

is inappropriate. Figure 6.8 shows why the object-level Boundary Jaccard index is better 

than object-level Hausdorff distance for evaluation of segmentation performance.   

 

 

 

 

 

 

 

 

Figure 6.8 Object-level Boundary Jaccard index VS object-level Hausdorff distance 

Table 6.7 Evaluation measures for the segmentation result shown in Figure 6.8 

Segmentation result Object-level Boundary Jaccard index  Object-level Hausdorff distance 

1 (orange contour) 0 985 148.323 

2 (blue contour) 0.653 87 891 

The orange and blue contours are the shapes of two segmentation results. The 

numbers in bold shown in Table 6.7 are the best results when using different evaluation 

metrics. Based on a visual inspection, the orange contours for both objects are closer to 

their ground truth than blue contours. These two metrics have different properties. The 

object-level BJ index is not sensitive to outliers and is bounded with the possible values 

between 0 and 1, whereas the object-level Hausdorff distance is sensitive to the and is 

unbounded. For high-quality evaluation of the segmentation results, the ranking of the 

segmentation should not change significantly when only a small number of pixels are 

misclassified. From this point of view the object-level BJ measure is better for evaluation 

of gland segmentation than object-level Hausdorff distance.  
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To assess gland instance segmentation results, these four evaluation measures: F1 

score, object-level Dice index and object-level Hausdorff distance and object-level 

Boundary Jaccard index have been introduced, explained and tested. It has been shown 

that these measures convey complementary information about quality of segmentation 

results. It is therefore important to use at least a subset of these measures (if not all) 

when evaluating quality of gland segmentation.  

 

6.2 Ranking strategy 

Different feature extraction methods (including ring histogram, rotation invariant 

uniform LBP, circular Fourier HOG, LeNet5 and GoogleNet) used in this research were 

discussed in Chapter 4. For each feature extraction method, the corresponding 

segmentation performance is assigned one ranking score per evaluated metric and test 

data partition: with three evaluated metrics F1 score, object-level Dice index and object-

level Hausdorff distance and two testing subsets of gland images.  

Figure 6.9 shows the ground truth and three segmented results (they are all results 

using histogram feature not simulated data) using the gland data. Table 6.8 shows the 

values of measures obtained three for each segmentation result.  

 

 

 

 

 
Figure 6.9 Example of the ground truth and three different segmentation results 

Table 6.8 Evaluation measures for the segmentation result shown in Figure 6.9 

 

From Table 6.8, results 1, 2 and 3 have an object-level Dice index of 0.91, 0.88 and 

0.84 respectively. In Chapter 6 Section 6.1.4, it has been explained that the bigger the 

value of object-level Dice index, the better the segmentation performance is. The ranking 



127 
 

scores are therefore 1, 2 and 3 respectively. The rankings of the object-level Hausdorff 

distance and F1 score for the different segmentation results are determined similarly.  

The aim of this work is to find a stable method for gland segmentation, but using 

only the mean value is not sufficient to evaluate a method stability. Therefore, both 

mean and the standard deviation are used in order to evaluate different configuration of 

the segmentation methods. The numbers in brackets listed next to mean values 

correspond to computed standard deviation obtained for each corresponding metric on 

the test sample used in the experiments. The methods with low standard deviation and 

high mean value are considered to perform well.  

The lowest value of the rank sum score indicates the best performing configuration 

in each test. For example, for the experiment reported in Table 6.9, result obtained with 

500 trees is considered the best as it has achieved the lowest rank sum for both the 

mean and combined mean and standard deviation (reported in brackets). 

6.3 Results for segmentation without pre-classification  

The evaluation measures used for gland segmentation and the ranking strategy for 

these results were detailed in Chapter 6, Sections 6.1 and 6.2. In this section, the results 

of the segmentation method without pre-classification with different features are 

presented. Different feature extraction methods are used to extract local patterns in 

selected patches, and random forest was used as the classifier.  

6.3.1 Segmentation results for histogram features 

This section describes the evaluation measures for the histogram features in 

segmentation without pre-classification. The details of the ring histogram feature used 

in gland segmentation are discussed in Chapter 4, Section 4.3. Sliding window 

techniques are used to extract the local features. The values of the design parameters 

(size of input patch, number of rings per patch and number of trees in the forest) affected 

the segmentation results. The experiments described in this section are designed to find 

the significance of different design parameters on the segmentation performance.  

The first experiment aims to test the significance of a number of trees in the forest. 
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To compare the effect of the number of trees, the values of other parameters are fixed. 

For the reported results, the 19-by-19 pixel input patches, 8 different rings per patch 

and 85,000 training patches are used. The reason for choosing these values for this 

experiment, are discussed below. Table 6.9 indicates the results from using different 

numbers of trees in the random forest model; 100, 300 and 500 trees were used to 

produce separate probability maps, and the final results were determined by using a set 

of morphological post-processing operations (discussed in Chapter 5, Section 5.6.1).  

Table 6.9 Comparison of results when using different numbers of trees in random forest 

 

 

 

The best performance, highlighted in blue, was provided by the random forest with 500 

decision trees. From this experiment, the conclusion is drawn that increasing the number 

of trees could help to improve the segmentation performance. Although the 

performance of random forest is likely to continue to improve as the number of decision 

trees increases, that improvement is bounded. Based on the experimental evidences 

shown in (Probst and Boulesteix, 2017; Latinne et al., 2001), the performance of the 

random forest will stop improving at a certain point, even if the number of decision trees 

in the forest model will continue to increase. For a forest with 2000 decision trees, 29.2 

GB RAM is needed for training, whereas for the forest with 500 trees only 15.8 GB RAM 

is needed for training. The increasing size of the forest model leads to higher storage and 

computational demands, therefore as a compromise it has been decided to use 500 

forest trees for all subsequent experiments. All these experiments run on a computer 

with Intel Core™ i7-4720HQ CPU and 16 GB RAM using MATLAB 2015b.  

The next experiment is designed to estimate the significance of the size of the input 

patch. A small input patch contains limited information for the classifier to identify the 

differences between classes. Any input size that is too big will also confuse the classifier 

in recognising different regions in images. As it is impractical to test all possible sizes of 

the input patch in gland segmentation, requiring a large number of experiment and 

resulting in only small changes in segmentation performance, four different sizes (15x15, 
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19x19, 27x27 and 35x35) have been selected for test. The other parameters used to 

extract the ring histogram are fixed. 

Figure 6.10 shows the segmentation results using different sizes of input patch; 

again, these results were generated using morphological post-processing; different 

colours indicate different gland objects.  

 

 

 

 

 

 

 
Figure 6.10 Comparison of the results of ring histograms with different sizes of input patches in 

segmentation without pre-classification. Different colours indicate different gland objects. 

Table 6.10 shows the evaluation measures for the corresponding results, with the 

best segmentation performance highlighted in blue.   

Table 6.10 Comparison results when using different patch size 

 

 

 

 

 

Using the evaluation measures to rank segmentaion performance, 19-by-19 was 

found to give the best segmentation results, therefore 19-by-19 patches have been 

selected for subsequent experiments. 

Based on these two experiments, 500 trees and 19-by-19 patches are selected, this 

is considered a good choice for the available hardware configuration (see the description 

on page 128). The following experiment is designed to find the best value of number of 

rings per patch. As before, the values of the other design parameters are fixed. Table 

6.11 shows the comparative results from using a different number of rings in each 

selected patch. 

Table 6.11 Comparison results when using different number of rings 
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Eight rings per patch deliver the best results. After comparing all the ring histogram 

features design parameters, the following experiment is designed to test the significance 

of post-processing method. Table 6.12 indicates the results of processing the probability 

maps generated from 19-by-19 patches with eight different rings. 

Table 6.12 Comparison results when using different post-processing methods 

 

 

 

 

Figure 6.11 is an example of segmentation results using the post-processing 

methods whose evaluation is shown in Table 6.12. 

 

 

 

 

 

 

 

 
Figure 6.11 Comparison of results of different post-processing method 

The segmentation results using level set post-processing method are worse than those 

using morphological post-processing. For the benign case segmentation results, it seems 

that the level set algorithm provided smooth and accurate results, but for the malignant 

result, although the results are smooth, a bridge connecting two close glands seriously 

affects the Hausdorff distance. Chapter 2 indicated that there are more images with 

malignant tissue (43 testing images) than images with benign tissue (37 testing images) 

in the whole dataset. The level set algorithm provides poorer object-level Hausdorff 

distance performance in the images with malignant tissue, which strongly affected the 

overall results of this method. For this reason, the following experiments use the 

morphological post-processing method rather than the level set algorithm in order to 

achieve better numerical scores. 
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27x27 

pathches 

6.3.2 Segmentation results with deep learning features 

The LeNet-5 architecture (introduced in Chapter 4, Section 4.6) is used as a feature 

extraction method adapted for gland segmentation. The following experiments are 

designed to find values of the design parameters of the LeNet5 deep learning features. 

The hardware and software environments are the same as described in Chapter 6 

Section 6.3.1. The forest with 500 trees is used for the pixel-level classification.  

Table 6.13 shows the results of using different sized input patches on deep features. 

A sample of the segmentation results is shown in Figure 6.12. The number of input 

patches to train LeNet5 should not be too small, as this could cause overfitting, nor can 

it be too big due to the limitations of the hardware (see Chapter 6, Section 6.3.1). 

Although the number of chosen patches per image could be different, in this experiment 

1,000 patches per image have been selected (there are 85 images in training dataset, 

85,000 patches in total) to describe the local patterns. 

Table 6.13 The results of deep learning features using LeNet-5 with different size of input patches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.12 Segmentation results of deep learning using LeNet-5 with different size of input patches 

   From both the qualitative visual inspection and the quantitative results, 

segmentation using 19-by-19 patches detected more gland objects, giving the most 

accurate results.  

The last experiment is designed to find the significance of the number of input 

patches, with other parameters being fixed. Table 6.14 shows the results of deep 
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learning features with different numbers of training input patch, and a sample of  

segmentation results is shown in Figure 6.13.  

Table 6.14 Results of deep feature from LeNet-5 with different number of input patches 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

Figure 6.13 A sample of segmentation results with LeNet-5 features as function of different number of 

training input patches. 

This experiment shows that increasing the number of patches does not significantly 

improve the performance, indeed it does not improve if the standard deviation is also 

taken into account. If high performance alone is the priority, more patches (170,000 in 

this experiment) are used.  

The above experiments show the effect of different parameters when LeNet5 

features are used. GoogleNet architecture is also used as feature extractor for gland 

segmentation (the details of GoogleNet feature were discussed in Chapter 4, Section 

4.6.2). The parameters used to generate GoogleNet features will affect the performance. 

As for LeNet-5 features, the patch size and the number of patches used for training of 

GoogleNet features are tested in the following experiments. In order to reduce 

overfitting, 1000 patches per image (85,000 in total) are used to train the GoogleNet. 

This value has been chosen based on the available hardware (see Chapter 6, Section 

6.3.1). Table 6.15 reports the evaluation measures for the GoogleNet deep learning 

features learnt using 85,000 patches of different sizes, and Figure 6.14 shows a sample 

of the corresponding segmentation results. 
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Table 6.15 Evaluation measures for GoogleNet deep features with different sizes of input patch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 A sample of segmentation results with GoogleNet deep features using different sizes of input 

patch 

Based on visual inspection and quantitative results, using 225-by-225 patches detected 

more gland objects than the other two values. From the quality measure, it also shows 

the best results are using 225-by-225 patches among these three results. From this 

experiment, 225-by-225 patches are the one close to the optimal size for GoogleNet 

feature based on the hardware. 

After comparing the significance of the size of input patches, the following 

experiment tests the significance of the number of input patches for gland segmentation. 

Again, 1000 and 2000 patches per image are selected for tests. Table 6.16 shows the 

results for GoogleNet deep features with different numbers of training input patches, 

and a sample of corresponding segmentation results is shown in Figure 6.15.  

Table 6.16 Evaluation measures for the GoogleNet features with different numbers of training patches 
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Figure 6.15 A sample of segmentation results with the GoogleNet deep features using different numbers 

of training patches 

From the results shown in Figure 6.15, it can be concluded that using large number 

of training patches improves the segmentation results. This observation is confirmed by 

the quantitative evaluation shown in Table 6.16. This experiment has shown that the 

more input patches used for training the GoogleNet helps the network learn more 

discriminative patterns. However, in practice the number of patches is limited by the 

available hardware (see Chapter 6, Section 6.3.1).  

6.3.3 Summary of segmentation without pre-classification  

The above sections discuss the segmentation results with three most effective 

features used in segmentation without pre-classification. The results with other features 

(the details were discussed in Chapter 3) are shown in Appendix D. This section 

summarises of the best results of the different features in segmentation without pre-

classification.  

The reasons for choosing the values of the design parameters for each feature were 

discussed in the corresponding sections. For example, the reasons for choosing specific 

values of the design parameters for the ring histograms are discussed in Chapter 6 

Section 6.3.1. All design parameters for that feature are discussed in Chapter 3.  

Table 6.17 summarises the best segmentation results with different features using 

segmentation without pre-classification. Chapter 2 Section 2.2 provided details of the 

database used in this work. RIULBP in Table 6.17 denotes the rotation-invariant uniform 

LBP. CHOG is the circular Fourier HOG feature. RIULBP&ring histogram indicates the 

combination of rotation-invariant uniform LBP and ring histogram. LeNet5 & Ring 

histogram represents the hybrid features which combines the LeNet5 feature and ring 
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histogram.  

Table 6.17 The overall performance of different features in segmentation without pre-classification 

 

 

 

 

 

 

The best segmentation results, highlighted in blue, have been achieved using 

GoogleNet features. The results are sorted, from top to bottom, according the overall 

ranking (using rank sum) of the segmentation results. In general, deep features 

(GoogleNet and LeNet5) perform better than the hand-crafted features (ring histogram, 

rotation-invariant uniform LBP and circular Fourier HOG). For the same pixel-level 

classifier. As demonstrated in this section the performance of segmentation without pre-

classification method using different features depends significantly on the selection of 

the correct values of the corresponding design parameters. As the deep features are 

optimised for specific segmentation problem (i.e. training data), the fact that they 

provide better segmentation results than the hand-crafted features has been somewhat 

expected.  

The results reported in Section E.6 (in Appendix E) demonstrate that the intensity-

based features (ring histogram and rotation-invariant uniform LBP) perform better than 

the gradient-based features (circular Fourier HOG) on the investigated gland 

segmentation problem.  

Images with the benign and malignant tissue look very dissimilar; therefore, it is 

interesting to investigate the difference between performances of tested features on 

corresponding data subsets. Tables 6.18 and 6.19 show segmentation results with tested 

features for benign and malignant only cases respectively. One of the reasons to 

investigate such configurations is that it can give an insight into, and indeed motivation 

for, developing hybrid segmentation methods, i.e. methods using image pre-

classification.  
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Table 6.18 Performance of different features for the benign category only, using segmentation 

without pre-classification 

 

 

 

 

 

 

 

 
 

Table 6.19 Performance of different features for the malignant category only, using segmentation 

without pre-classification 

 

 

 

 

 

 

 

 

From these two tables (6.18 and 6.19), it can be seen that on average the 

segmentation performance on the benign category is better than on the malignant 

category. This is because the morphological structure of malignant tissue is more 

complex than that of benign tissue (see Chapter 2 Section 2.3). Therefore, the proposed 

methods are more effective in dealing with the morphological structure of benign tissue. 

It can be also noticed that performance on each category alone is better than the overall 

performance, when all images are processed in the same way. This indicates that the 

proposed hybrid methods (which combines two-level classification) should perform 

better than the method described in this section, i.e. segmentation without pre-

classification. Interestingly, the second best performing feature include the ring-

histograms, when benign and malignant glands are segmented using methods trained 

respectively on the benign or malignant training data alone. This shows that ring-

histograms extract discriminative enough characteristics of the glands.  
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6.4 Results for segmentation with pre-classification method 

The details of segmentation with pre-classification methods were described in 

Chapter 5, Section 5.4, where two segmentation methods with pre-classification were 

introduced. Both these methods have two-stage classification approach, using image 

and pixel level classifications. This section reports on the results for image-level and 

pixel-level classifications. 

6.4.1 Results for image-level classification 

Chapter 5 introduced two segmentation methods, with and without pre-

classification. The segmentation with pre-classification is a two-level classification 

problem. Image-level classification is to assign an image to one of the classes 

representing benign or malignant tissue.  

For the image-level classification, a fusion method using the HMAX model and 

random forest techniques as well as deep learning techniques are tested. Classification 

using the fusion method could only achieve 70% classification accuracy no matter how 

the parameters in the HMAX model were selected. The 70% accuracy for an image 

classification problem is not satisfactory.  

Three deep learning algorithms have been tested for image-level classification in 

the segmentation with pre-classification: AlexNet, GoogleNet and ResNet50. Although 

many versions of ResNet architecture could be used for the image-level classification, 

ResNet-50 was chosen for practical reasons as a good compromise between expected 

performance and the available resources (GTX 1080 Nvidia Graphic card was used in the 

experiments). 

As explained in Chapter 2, there are 85 histology training images in the gland 

database. They include 37 images with benign tissue and 48 images with malignant 

tissue. First, 80% of each category was used for training and the rest of the corresponding 

category for validation. To avoid the networks overfitting, local image deformation and 

colour jitter techniques were used for data augmentation, what increased the number 

of images in the training dataset to a total of 6,392 (3,572 images with malignant tissue 

generated from 38 base images, and 2,820 images with benign tissue derived from 30 
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base images). The remaining 17 images used for validation consisted of 7 images with 

benign tissue and 10 images with malignant tissue. The details of colour jitter and local 

image deformation are explained in Chapter 5 Section 5.4.1. The original 80 test images 

were only used for testing. The Adam optimising method was chosen for each model, 

and the initial learning rate for all the networks was set to 0.0001. The maximum number 

of epochs was set to 200, if the classification accuracy for validation data achieved 100%, 

the network would stop training. The model selected was based on the best 

segmentation accuracy obtained on validation data. The screenshots of classification 

results for the networks are shown in Appendix H.  

Table 6.20 shows the image-level classification results for the deep learning models 

(AlexNet, GoogleNet, ResNet-50) on the test data. TP refers to detecting image showing 

benign tissue; TN refers to detecting image showing malignant tissue; FN represents 

images with benign category predicted as images showing malignant tissue, FP 

represents images depicting malignant tissue predicted as images showing benign tissue.  

Table 6.20 Image-level classification results of deep learning models (AlexNet, GoogleNet, ResNet-50) on 

testing data 

Model Name Number of TP Number of FP Number of FN Number of TN 

GoogleNet 34 3 8 35 

AlexNet 23 14 13 30 

ResNet-50 37 0 0 43 

Based on the results shown in Table 6.20, the best image-level classification is 

obtained using the ResNet-50 architecture. The reason for the ResNet-50 being the best 

might be that there are more layers in that network than in the other two networks; 

residual connections between layers is another powerful tool in ResNet-50 to improve 

the network training process and therefore the classification results. In practice, however, 

the best performance is not always provided by the network with more layers. The 

performance for a specific problem depends on many criteria, such as the data 

augmentation used for increasing the amount of training data. ResNet-50 achieves 100% 

classification accuracy on these test data; the performance of segmentation with pre-

classification depend on the results of pixel-level classification. 

After image-level classification, the histology gland images are divided into benign 

and malignant categories. Subsequently, the pixel-level classification used for 
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segmentation implements a sliding window to extract the local patterns from images 

with either benign or malignant tissue to make predictions at a pixel level. In the next 

sections, the segmentation results of benign and malignant categories are discussed.  

6.4.2 Summary of pixel-level classification 

This section summaries the segmentation results with pre-classification method at 

feature extraction level (see Chapter 5, Section 5.4.2.3), and the results for either benign 

or malignant categories are shown in Appendix E. The results for two target classes and 

benign cases are shown in Appendix E, Section E.1, and the results for three target 

classes and benign cases are shown in Appendix E, Section E.2. The results for two target 

classes and malignant cases are shown in Appendix E, Section E.3, and finally the results 

for three target and malignant cases are shown in Appendix E, Section E.4.  

The details for generating the three target classes’ ground truth for images with 

benign and malignant tissue are explained in Chapter 5, Section 5.4.2.2. The parameters 

used for each feature are fixed, based on previous experiments, with the same hardware 

and the software environment (see Chapter 6, Section 6.3.1) as the other experiments. 

Again, the pixel-level classifier is the random forest model with 500 trees and the final 

segmentation results are generated by a set of morphological post-processing 

operations. However, unlike in the previous experiments, the features for pixel level-

classification are only extracted from images representing a single category (i.e. benign 

or malignant). The experiments are designed in order to find the best way to describe 

the morphological structure in images with benign tissue and those with malignant 

tissue.  

Table 6.21 shows the results obtained for different features using different number 

of target classes on the benign image category. Taking the LeNet5 feature in benign cases 

as an example, the performance of the three target classes is better than those of two 

target classes. This is because the morphological structure of benign gland tissue 

contains three main target structures (inside glands (cytoplasm), gland boundary 
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(epithelial cells) and gland outside (stroma)). This can be confirmed by visual inspection 

of Figure 2.2 shown in Chapter 2. 

Table 6.21 Overall ranking of segmentation results for different features on images with benign tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.22 shows the results for different features with different number of target 

classes for images with malignant cases. Contrary to the benign cases, for the malignant 

tissue it is better to use the two target classes to describe the morphological structure. 

The reason for this is that the morphological structure of glands in malignant cases lacks 

the clear ‘inside’ pattern. This could be confirmed when comparing the benign and 

malignant tissue in images in Chapter 2.  

Table 6.22 Overall ranking of segmentation results for different features on images with malignant tissue 
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Based on the results shown in this section, the conclusion from these experiments 

is that the best way to describe benign tissue is to use the three target classes, but for 

malignant cases it is two target classes.  

6.5 Comparison of the two segmentation methods  

Two main approaches have been proposed in this work for gland segmentation 

problem: segmentation with and without pre-classification. The proposed segmentation 

with the pre-classification has two variants: pre-classification, at the feature extraction 

level and at the pixel-level classifier (see Chapter 5, section 5.4.2.3). In this section the 

performance of the segmentation without pre-classification (so called Method 1) and 

the segmentation with pre-classification at the feature extraction level (so called Method 

2) are compared. As reported in Chapter 6, Section 6.3, the best segmentation results 

for segmentation without pre-classification have been obtained using the GoogleNet 

features. The best results in segmentation with pre-classification (at the feature 

extraction level) are obtained by combining the best results from benign and malignant 

categories, as reported in Chapter 6, Section 6.4. Table 6.23 shows the ranking of these 

two approaches using three evaluation measures frequently used for gland 

segmentation evaluation. 

Table 6.23 Performance of the best gland segmentation methods with and without pre-classification 

 

 

 

Using F1 score, object-level Dice index and object-level Hausdorff distance as evaluation 

measures, the best results of segmentation with pre-classification is not as good as the 

best results of segmentation without pre-classification. The segmentation with pre-

classification has not improved the segmentation performance when compared to 

segmentation without pre-classification. This somewhat surprising result could be 

explained by the fact that the deep feature extraction methods are using smaller number 

of patches for training and therefore could not find strong discriminative features.  

As discussed in Section 6.1.3, the object-level Hausdorff distance is not suitable for 

evaluation of the segmentation performance in gland segmentation. The object-level 
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Boundary Jaccard index is considered better suited for that purpose as it is not sensitive 

to outliers and is bounded with values between 0 and 1. Table 6.24 shows the ranking of 

the same two proposed segmentation methods using the object-level Boundary Jaccard 

index. 

Table 6.24 Performance of the best gland segmentation methods with and without pre-classification 

based on the object-level Boundary Jaccard index 

Segmentation 

using pre-

classification  

Boundary Jaccard index  

Rank sum Test A Test B 

Value  Rank Value Rank 

No 0.769 (0.140) 1 (1) 0.663 (0.138) 1 (1) 2 (4) 

Yes 0.744 (0.149) 2 (2) 0.594 (0.231) 2 (2) 4 (8) 

From the results shown in Table 6.26 the result of segmentation without pre-

classification is better than the result of segmentation with pre-classification using 

object-level Boundary Jaccard index as the evaluation measure. It is suggested that it is 

better to use object-level boundary Jaccard index as the shape similarity evaluation 

measure. The reason is that frequently used object-level Hausdorff distance is sensitive 

to outliers and is not bounded, what makes it difficult to combine it with existing other 

metrics such as Dice index.  

6.6 Comparison of three segmentation methods  

As reported in the previous section (Chapter 6, Section 6.5) the segmentation with 

pre-classification did not improve the segmentation results as expected. It is 

hypothesized that one of the reasons might be that the number of input samples used 

to learn the deep features when using pre-classification is smaller than when using 

segmentation without pre-classification method, and therefore the learned deep 

features are suboptimal. This was one of the reasons to propose a different version of 

the segmentation with pre-classification, i.e. segmentation with the pre-classification at 

the pixel level classifier (the so called “Method 3” - see Chapter 5, Section 5.4.2.3). In 

this case, all the training images, with both benign and malignant tissue are used for 

learning deep features. In the subsequent step after images are directed into separate 

respective decisions paths for the images showing benign and malignant tissue, the 

dedicated pixel-level classifiers are trained independently but with the same set of 
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training features. 

The GoogleNet architecture (shown in Figure 4.16) has been selected and used for 

learning local features. One thousand 224-by-224 patches are sampled from each 

training histology image in the gland data for training. The reasons for choosing these 

parameters are discussed in Chapter 6 Section 6.3.2. The results reported in Chapter 6 

Section 6.3.3 describe performance of the segmentation without pre-classification 

(Method 1), whereas the results reported in Chapter 6 Section 6.4 represent 

performance of the segmentation with pre-classification at the feature extraction level 

(Method 2). Segmentation with pre-classification at the pixel-level classifier (Method 3) 

uses two random forest models trained separately for benign and malignant cases but 

with the same set of features. 

For the results reported in this section, the subsets Part A and Part B, previously 

used for evaluation, have been combined and the results are reported for the whole test 

dataset. The reason for combining these two sets and reporting the results for the whole 

dataset is to focus on the overall performance of the method, rather than on somewhat 

arbitrary selected two subsets (Part A and Part B).  

Table 6.25 The overall segmentation results for the three methods shown in Figure 5.13 

 

 

 

 Tables 6.26 and 6.27 show the results for malignant and benign categories using 

three segmentation methods introduced in Section 5.5.  

Table 6.26 Malignant category segmentation results for three methods shown in Figure 5.13 
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Table 6.27 Benign category segmentation results for three methods shown in Figure 5.13 

 

 

 

 Segmentation with pre-classification at feature extraction level (Method 2 in Table 

6.25) is the worst performing method. Segmentation with pre-classification at feature 

extraction level (Method 3 in Table 6.25) achieved the best segmentation results. The 

reason for performance of Method 1 being better than that of Method 2 is that the 

Method 2 uses two GoogleNet networks trained on smaller data subsets, leading to their 

poorer feature extraction performance. The reason why Method 3 performs better than 

Method 1 is that Method 3 uses two random forests (classifiers) to discriminate between 

morphological structures separately for images with benign and malignant tissue, 

whereas Method 1 only uses a single classifier (random forest) which may find harder to 

draw decision boundary between features representing gland and surrounding tissue 

where glands have very different morphology. 

6.7 Summary  

This chapter is focused on experimental validation of various methods proposed in 

the reported research. First, a number of metrics are proposed for region and shape 

based evaluation of the segmentation results. The properties of these metrics are 

discussed and the argument is but forward, for using proposed object-level boundary 

Jaccard index measure instead of frequently used in literature (Sirinukunwattana et al., 

2017) object-level Hausdorff distance. Subsequently, the ranking strategy adopted for 

comparing different segmentation schemes is explained. Performance of segmentation 

methods is strongly depended on values of their design parameters. Therefore, design 

parameters for the investigated feature spaces, including hand-crafted and deep 

features, are experimentally investigated with the relevant values selected based on 

their best experimental performance. 

In Chapter 5, a number of image segmentation approaches have been proposed. In 
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this chapter the performance of these methods have been experimentally validated 

using consisted validation framework. Firstly, segmentation without pre-classification 

has been tested when used with different set of feature spaces. It has been shown that 

this approach achieved best results when used with the GooleNet deep features. It has 

been also demonstrated that when the segmentation is performed on the subset of the 

data, representing exclusively benign or malignant tissue only, the segmentation 

performance improves and the hand-crafted features, namely ring histograms, can 

provide competitive results. This has confirmed hypothesis proposed in chapter 5, that 

a hybrid method combining image-level and pixel-level classification could improve 

overall performance of gland segmentation. Subsequently a number of the image-level 

classification methods, necessary for implementation of the hybrid methods, have been 

tested. It has been demonstrated that with the proposed local deformation and colour 

jitter training data augmentation, the ResNet-50 deep model provides excellent image 

level classification, with 100% accuracy on the available test data.  

Two hybrid segmentation methods with the image pre-classification have been 

tested. Segmentation with pre-classification at the feature extraction level is to separate 

images into benign or malignant categories first and then train the corresponding pixel-

level classifiers, whereas segmentation with pre-classification at the classifier level is to 

extracted the features first and then separate the features into benign and malignant 

cases and train the corresponding random forest models. From the reported 

experimental results, it can be seen that the hybrid segmentation method with the pre-

classification at the pixel-level classifier, using deep GoogleNet features, provides the 

best segmentation results overall, but also when only images with benign or malignant 

tissue are segmented. This is because the pre-classification helps the classifiers in each 

classification path adopted to specific characteristics of the benign or malignant gland 

tissue, and in the same time, the deep features are trained with all the available data 

enabling the learning method to find the most discriminative deep image features. 

  



146 
 

Chapter 7 

Summary, contributions and future work 

This chapter summarises the research reported in the thesis, details the novel 

contributions and describes future research plans. The publication list is provided in 

Appendix G. 

7.1 Summary  

A brief review of image segmentation methods is included in Chapter 1. The 

described methods are generic image segmentation ordered by increasing complexity, 

starting with simple segmentation approaches based on the homogeneous regions, 

through semantic segmentation, to the most complex approach (instance segmentation).  

The definition of gland instance segmentation and the comprehensive review of 

gland segmentation methods are provided in Chapter 2. Subsequently, the principles of 

the segmentation methodology adopted in this work, utilising pixel-level classification 

and the corresponding feature spaces (including both deep and hand-crafted features) 

investigated in this work, are provided in Chapters 3 and 4. 

The two main approaches investigated in this work, i.e. segmentation with and 

without pre-classification, are detailed in Chapter 5. The reasons for developing the 

proposed hybrid methods, with pre-classification, are explained in Section 5.3, whereas 

the hybrid methods themselves are introduced in Section 5.4. 

For these proposed hybrid methods, Chapter 6 describes extensive comparative 

experiments, with both deep and hand-crafted features. Based on the experimental 

results, it can be concluded that hybrid segmentation using learned deep features  

performs better than when using hand-crated features. The strong discriminative 

properties of deep features are also confirmed with the evidence provided in Appendix 

D. Although hand-crafted features don’t provide as strong discrimination between 

different tissue types (i.e. benign and malignant), they still can be effectively used for 
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segmentation, especially for benign tissue glands. 

The performance of hybrid methods, combining two-level classifications (i.e. image 

and pixel level) highly depends on the performance of pixel-level classification, as the 

proposed image level classification is very effective achieving 100% accuracy on the 

available test data. The experimental evidence demonstrates that segmentation with 

pre-classification is more effective in forcing the random forest classifier to separate 

between different tissue categories. 

Four evaluation metrics are used to assess quality of the gland segmentation, with 

two of them used for assessment of shape similarity between predefined ground truth 

and segmentation results. The Boundary Jaccard index measure has been adapted for 

assessment of gland instance segmentation. It is more suitable for a shape similarity 

measure than the previously used object-level Hausdorff distance, as it is not sensitive 

to the outliers and is bounded. The relevant evidence is reported in Chapter 6, Section 

6.1.3.  

7.2 Contributions 

The novel research contributions include image classification with proposed data 

augmentation for re-training deep learning models, a hybrid segmentation model 

combining image and pixel level classification, and the object-level Boundary Jaccard 

metric adopted for evaluation of instance segmentation methods. 

Image classification 
In Chapter 5, Section 5.4.1, an image classification algorithm is proposed as part of 

the segmentation method with image pre-classification. In Chapter 6, Section 6.4.1, it is 

shown that this method is able to effectively differentiate between benign and malignant 

gland images with very high accuracy (100% on the available test data), when used with 

the proposed data augmentation methods. 

The data augmentation methods have been used in this work, include colour jitter 

and local deformations. The colour jitter is introduced to change the colour without 

changing the morphological structure of the gland objects, whereas local image 

deformations are used to modify shape of structures and textures without changing the 
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colour. With the proposed augmentations, the image-level classifier can learn more 

generic image features differentiating between benign and malignant glands, improving 

overall performance of the image classifier. 

Segmentation methods  
A number of segmentation methods are proposed in Chapter 5, Section 5.4.2.3. The 

random forest method is selected for the pixel-level classification. This is because it 

provides a good compromise between accuracy, scalability and flexibility of the design. 

Different configurations of random forests and their corresponding design parameters 

are evaluated using representative selection of data subsets from the UCI database in 

Chapter 3, Section 3.4. Subsequently the best preforming M-A-GI configuration was 

selected for the pixel-level classification in the proposed segmentation methods. 

Two segmentation processing pipelines, with and without image pre-classification, 

are proposed. The processing with image pre-classification is further divided into pre-

classification at the feature extraction level and the pixel-classification level. In Chapter 6, 

Section 6.3 to 6.6, these processing architectures are extensively tested with different 

gland categories, number of target classes, and different image feature sets. It is 

demonstrated that all these parameters are important when selecting the optimal 

segmentation method for a given problem. The experimental test results demonstrate 

that the segmentation with pre-classification, implemented at the pixel-classification 

level, with the Google deep image features provides the most competitive results overall. 

The reason for the segmentation with pre-classification at pixel-level classification 

(Method 3 in Chapter 5, Section 5.4.2.3) having the best performance is that the deep 

features are learned using all the available data, i.e. including images of both benign and 

malignant tissue. However, the pre-classification step helps the pixel-level classifiers to 

select the most distinctive deep features for segmentation of gland objects separately 

for the benign and malignant cases.  

Evaluation metrics  
In Chapter 6, Section 6.1, a number of region and contour based metrics are 

described for evaluation of the proposed gland instance segmentation methods. These 

include object-level F1 score, object-level Dice index, object-level Hausdorff distance and 
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the proposed object-level Boundary Jaccard index adopted for the instance 

segmentation evaluation. It has been demonstrated that all these metrics have 

complementary characteristics, leading to the conclusion that they should be combined 

to provide a more holistic assessment of the segmentation methods.  

These different metrics are evaluated from the perspective of their significance for 

ranking different segmentation methods. It is argued that the object-level Boundary 

Jaccard metric adopted in the thesis for evaluation of instance segmentation methods is 

more suitable for segmentation ranking than the previously used object-level Hausdorff 

distance, as it is not sensitive to outliers and is bounded, therefore can be easily 

integrated with region-based metrics such as the object-level Dice index.  

7.3 Future research 

Image representation for images with malignant tissue 

Although this research provides comprehensive comparative results for different 

image representations for both benign and malignant tissue, more features could be 

investigated providing a more complete picture for selection of the optimal image 

features. For example, the Gabor features, Haar features or SIFT features are possible 

options for further investigations.  

The random forests techniques can facilitate semi-supervised learning. It would be 

interesting to adopt the techniques proposed in this research to work in a semi-

supervised fashion and therefore enable handling larger, not fully annotated training 

datasets – reducing the burden for manual segmentation were much larger datasets to 

become eventually available. Furthermore, operation of the classifier could be better 

understood, by finding the most important features or by describing feature interactions.  

Several sizes of input patches have been tested in order to find the one that 

effectively describes the local patterns. However, one could instead consider using 

patches of different sizes at the same time. For example, small input patches would 

represent the local image characteristics (corners, edges, etc.) with high spatial 

resolution, medium size patches would describe local morphological structure, whereas 

the largest patches would describe local image context. The classifier, in this case, would 



150 
 

not only use the local information but also take advantage of the more global contextual 

image information, which might improve the segmentation performance. 

End-to-end feature extraction methods and random forest techniques 

Both segmentation with and without pre-classification are patch-based approaches 

which use sliding windows to extract the local patterns from the histology gland images 

and use these patterns to train the classifier and make predictions. One of the 

disadvantages of these patch-based approaches is that the classifier could not learn and 

use the global contextual information present in the histology images.  

In recent years, fully convolutional end-to-end architectures have become popular 

for semantic instance image segmentation. These end-to-end approaches can directly 

compute the segmentation results, and can utilise contextual information about the 

overall structure and the patterns in a whole image. It would be interesting to test the 

limitations of the end-to-end architectures and consider construction of hybrid methods 

which would combine fully convolutional deep learning architecture for feature vector 

estimation and random forest models as the pixel-level classifier. 

The results reported in literature (Long et al., 2015; Xu et al., 2016) on using of the 

fully convolutional neural networks for semantic and instance segmentation are 

impressive (the performance of fully convolutional neural networks achieves top-rank). 

However, interpretation and understanding of these results is somewhat difficult. 

Although the overall performance of these networks is very good, it is not easy to 

associate this with any particular characteristics of the images or indeed specific parts of 

the network. It would be interesting to understand what specific image characteristic 

lead to successful gland segmentation. 

Post-processing method 

In this work, morphological and level-set techniques have been used for post-

processing. Although currently segmentation using morphological processing provides 

overall better segmentation rankings, a more complex level-set method could be further 

investigated, i.e. including analysis of the level-set segmentation with topology 

constraints which proved useful for other segmentation problems.  
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Appendix A 

Random forest results on UCI dataset 

The following figures A.1 to A.4 shows the results of different forest models on different 

datasets using different evaluation measures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A.1 Different evaluation measures of different forest models on tic-tac-toe endgame  
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Figure A.2 Different evaluation measures of different forest models on Ionosphere data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3 Different evaluation measures of different forest models on Sonar data 
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Figure A.4 Different evaluation measures of different forest models on Tic-tac-toe data  
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Appendix B 

Visualised extracted features  

In the following figures, the green points represent the gland feature and the red 

points represent the background feature.  

Ring histogram in segmentation without pre-classification 

 

 

 

 

 

 

  

 

 

  

 

 

 
Figure B.1 Ring histogram after using PCA algorithm in 2D feature space. 

 

HOG feature in segmentation without pre-classification 

 

 

 

 

 

 

 

 

Figure B.2 The original HOG feature after using PCA algorithm in 2D feature space 
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Visualising circular Fourier HOG feature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.3 The circular Fourier HOG feature after using PCA in 2D feature space 

 

LBP feature in segmentation without pre-classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.4 Original LBP feature after PCA algorithm in 2D feature space 
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Figure B.5 Original rotation-invariant LBP feature after PCA algorithm in 2D feature space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.6 Uniform LBP after using PCA algorithm in 2D feature space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.7 Rotation-invariant uniform LBP after using PCA algorithm in 2D feature space 
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Deep features in segmentation without pre-classification 

Figure B.8 shows the deep features from the LeNet-5 architecture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.8 Deep feature from LeNet-5 after using PCA algorithm in 2D feature space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.9 Deep features from GoogleNet after using PCA algorithm in 2D feature space 
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Visualised features for benign category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.10 Deep features from LeNet-5 with three classes after using PCA in 2D feature space 

  

 

 

 

 

 

 

 

 

 

 

 

Figure B.11 Deep features from LeNet-5 with 2 classes after using PCA in 2D feature space 
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Visualised features for malignant category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.12 Ring histogram with 2 classes after using PCA in 2D feature space in segmentation with pre-

classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.13 Ring histogram with 3 classes after using PCA in 2D feature space in segmentation with pre-

classification 
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Appendix C 

Evaluation of features discriminative properties 

C.1 Estimation of the features generated from the GLCM 

Four different feature vectors are generated from the gland images: 

⚫ Model 1: The feature generated from the co-occurrence matrix in direction {0°} 

⚫ Model 2: The feature generated from the co-occurrence matrix in direction {45°} 

⚫ Model 3: The feature generated from the co-occurrence matrix in direction {90°} 

⚫ Model 4: The feature generated from the co-occurrence matrix in direction {135°} 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure C.1 The accuracy of different features generated from different co-occurrence matrices from the 

gland images 
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C.2 Estimation of discriminative properties of histogram features 

Estimate discriminative properties of different sizes of patch using histogram feature 

in segmentation without pre-classification 

⚫ Model 1: the ring histogram feature generated from 15-by-15 patches 

⚫ Model 2: the ring histogram feature generated from 19-by-19 patches 

⚫ Model 3: the ring histogram feature generated from 23-by-23 patches 

⚫ Model 4: the ring histogram feature generated from 27-by-27 patches 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure C.2 Accuracy of different models (different sized patches) using K-means algorithm 

 

Estimate discriminative properties for different number of rings in each patch of ring 

histogram in segmentation without pre-classification 

⚫ Model 1: 7 different rings were used to extract the patterns from the patches. 

⚫ Model 2: 8 different rings were used to extract the patterns from the patches. 

⚫ Model 3: 9 different rings were used to extract the patterns from the patches.  
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Figure C.3 Accuracy of different models (different number of rings in each patch) using K-means 

 

 

Estimate discriminative properties for all ring histogram features in segmentation 

with a pre-classification approach 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.4 Accuracy of ring histogram features in segmentation with pre-classification method 
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C.3 Estimation of the LBP features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.5 The estimation results for different LBP features in segmentation without pre-classification 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.6 Estimation results for different size of rotation-invariant uniform LBP feature 
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Figure C.7 Accuracy of rotation-invariant uniform LBP features in segmentation with pre-classification 

 

C.4 Estimation of the HOG features 

⚫ Model 1: Extracting the original HOG feature vectors from the histology images  

⚫ Model 2: Extracting the circular Fourier HOG feature from histology images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.8 Accuracy of two versions of HOG features in segmentation without pre-classification. 
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⚫ Model 1: Extracting circular Fourier HOG feature using 19-by-19 patches 

⚫ Model 2: Extracting circular Fourier HOG feature using 27-by-27 patches 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure C.9 Accuracy for different Fourier HOG features in segmentation with pre-classification 

 

⚫ Model 1: Extracting circular Fourier HOG using 2-by-2 circle in each selected patch 

⚫ Model 2: Extracting circular Fourier HOG using 5-by-5 circle in each selected patch 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure C.10 The accuracy of circular Fourier HOG with different sizes of circles in each patch 
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Figure C.11 Accuracy of different circular Fourier HOG in segmentation with pre-classification 

 

C.5 Estimation of the deep features 

⚫ Model 1: Using 85,000 19-by-19 patches to generate deep learning features from 

LeNet-5 architecture. 

⚫ Model 2: Using 170,000 19-by-19 patches to generate deep learning features from 

LeNet-5 architecture. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure C.12 Accuracy of deep feature from LeNet-5 architecture with different numbers of input patches 

in segmentation without pre-classification 
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⚫ Model 1: Using 85,000 15-by-15 patches to generate deep learning features from 

LeNet-5 architecture. 

⚫ Model 2: Using 85,000 19-by-19 patches to generate deep learning features from 

LeNet-5 architecture. 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

Figure C.13 Accuracy for different deep learning feature vectors from LeNet-5 architecture with different 

sizes of input patches in segmentation with pre-classification 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure C.14 Accuracy of different deep learning features with LeNet-5 architecture in segmentation with 

pre-classification. 
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⚫ Model 1: Using 85,000 49-by-49 patches to generate deep learning features from 

GoogleNet architecture. 

⚫ Model 2: Using 85,000 97-by-97 patches to generate deep learning features from 

GoogleNet architecture. 

⚫ Model 3: Using 85,000 225-by-225 patches to generate deep learning features from 

GoogleNet architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.15 Accuracy for different deep learning features from GoogleNet with different sizes of input 

patches in segmentation with pre-classification 

Over 90% of data after K-means clustering could separate data in the same category as 

the original deep features.  
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⚫ Model 1: Using 85,000 225-by-225 patches to generate deep learning features from 

GoogleNet architecture. 

⚫ Model 2: Using 170,000 225-by-225 patches to generate deep learning features 

from GoogleNet architecture. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure C.16 Accuracy of deep features from GoogleNet with different input patches after using K-means 

clustering in segmentation without pre-classification 
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Figure C.17 Accuracy of deep features from GoogleNet with different input patches after using K-means 

clustering in segmentation without pre-classification 
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Appendix D 

Segmentation results without pre-classification 

D.1 Segmentation results for grey-level co-occurrence matrix 

Figure D.1 is an example of the probability maps generated by random forest using 

the features from co-occurrence matrix.  

 

 

 

 

 

 

 

 
Figure D.1 Example of a probability map using features from co-occurrence matrix 

The background and the gland patterns from the selected patches are similar, the 

classifier could not learn the differences between these two classes.  

 D.2 Segmentation results for LBP features  

Figure D.2 shows examples of probability maps obtained from these features, which 

could not be used to describe the differences between gland and non-gland in the 

histology images. 

 

 

 

 

 

 

 
Figure D.2 Probability maps for the two failed LBP features 
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Figure D.3 shows segmentation results using the rotation-invariant uniform LBP and 

uniform LBP features.  

 

 

 

 

 

 

 

 

 
Figure D.3 Example of segmentation performance with the two uniform LBP features 

 

Table D.1 Ranking of segmentation performance of different uniform LBP features 

 

 

 

 

 

The reason for rotation invariant uniform LBP being better is LBP with rotation-invariant 

properties could using fewer patterns to describe more characteristics in the images.  

Table D.2 shows the quantitative results of different sized input patches for rotation-

invariant uniform LBP in segmentation without pre-classification. The segmentation 

results are shown in Figure D.4. 

Table D.2 Ranking of rotation-invariant uniform LBP feature using different sizes of input patch 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D.4 Results of different input patches size using rotation invariant uniform LBP 
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D.3 Segmentation results for HOG features 

Figure D.5 shows one map from random forest using the original HOG feature.  

 

 

 

 

 

 

 

 
Figure D.5 Probability maps for HOG feature 

 

The following experiment is designed to evaluation of significance of different size 

of input patches.  

Table D.3 Ranking of Fourier HOG features using different sizes of circle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D.6 Results of different input patches size using circular Fourier HOG 
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Appendix E  

Segmentation results with pre-classification 

E.1 Segmentation results for the two classes of benign category 

Table E.1 shows the ranking of the segmentation performance of the different 

feature extraction techniques for benign category images, and again the best results are 

highlighted in blue. 

Table E.1 Ranking of different feature of two classes of benign category in segmentation with pre-

classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1 Examples of results for the benign category with two classes of different features in 

segmentation with pre-classification 
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E.2 Segmentation results for the three classes of benign category 

Table E.2 shows the ranking of the segmentation performance of different feature 

extraction methods for three classes of the benign category, with the best segmentation 

results again highlighted.  

 Table E.2 Ranking of different features of three categories of benign images in segmentation with pre-

classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E.2 Example results of benign category with three classes of different features in segmentation 

with pre-classification method. 
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E.3 Segmentation results for two classes of malignant category 

Table E.3 shows the ranking of the segmentation results for different features of the 

two classes of malignant category gland images. The best performance is the ring 

histogram feature, highlighted in blue. 

Table E.3 Ranking of segmentation results of different feature of two classes of malignant images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E.3 Example results of malignant category with two classes of different features in segmentation 

with pre-classification method. 
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E.4 Segmentation results of three classes of malignant category 

Table E.4 shows the ranking of the segmentation results of malignant category with 

three target classes.  

Table E.4 Ranking of segmentation results of different features of three classes in the malignant category 

  

 

 

 

 

 

Figure F.4 shows examples of results of different features of three classes of 

malignant category in segmentation with pre-classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E.4 Example of results of malignant category with two classes of different features in 

segmentation with pre-classification 
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E.5 Further improvement of the best performance of pixel-level classification in 

segmentation with the pre-classification method 

F.5 shows examples of malignant images in the training part (on the left) compared 

with the corresponding images after applying local image deformation (on the right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E.5 Examples of training malignant images and the image after using local image deformation 

 

Table E.5 Ranking of two classes of malignant category of the ring histogram feature with/without local 

image deformation 

 

 

 

 

Even using the hand-crafted feature, the local image deformation could improve the 

segmentation performance.  
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Figure E.6 shows examples of benign images in training data (left) and the results 

after using local deformation (right).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure E.6 Example of training benign images and the corresponding images after using local image 

deformation 

The evaluation measure of three classes of benign category of ring histogram 

with/without local image deformation is shown in Table E.6. 

Table E.6 Ranking of segmentation results of benign category three classes using histogram with/without 

local image deformation 

 

 

 

Using local image deformation, the patterns provided for training the classifier is more 

but the results is not improve. The reason might be that they are not providing the 

effective patterns to classifier the patterns in malignant tissue.  
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E.6 Comparison of intensity-based and gradient-based histograms 

Tables E.7 and E.8 show the ranking of segmentation performance of benign 

category glands with two and three class labels respectively.  

Table E.7 Segmentation results for two types of histogram with three classes of benign category images 

 

 

 

 

Table E.8 Segmentation results for two types of histogram with two classes of benign category images 

 

 

 

 

Tables E.9 and E.10 show the segmentation results with two and three classes 

respectively for malignant images, with the best again highlighted.  

Table E.9 Segmentation results for two types of histogram for two classes of malignant category images 

 

 

 

 

 

Table E.10 Segmentation results for two types of histogram for two classes of malignant category images 

 

 

 

 

 

E.7 Comparison of results of with/without histogram correction  

Table E.11 therefore indicates the results of histogram features with/without histogram 

correction in segmentation without pre-classification method.  

Table E.11 Segmentation results of histogram feature with/without histogram correction in 

segmentation without pre-classification 
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Appendix F 

Ranking of different methods in gland segmentation  

Table F.1 shows the ranking for all the methods that participated in the MICCAI 2015 

Gland Segmentation Challenge. This table does include three methods introduced in this 

work indicated by the red bounding box. Two proposed method achieved the middle 

ranking. 

Table F.1 The ranking of different methods in Gland Segmentation Challenge (Warwick.ac.uk, 2018b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image Analysis Lab Freiburg: Freiburg 2 = post-processing, Freiburg 1 = raw 

CVIP Dundee: Feature level fusion 

Ching-Wei Wang: Ching-Wei Wang 1 = no preprocess fill hole, Ching-Wei Wang 2 = no preprocess hole 

    Ching-Wei Wang 3 = preprocess fill hole 

Method 1: Segmentation method without pre-classification 

Method 2: Segmentation method with pre-classification at the pixel-level classifier 

The two proposed methods introduced in this work used the random forest as the 

pixel-level classifier to predict the classes of each pixel in testing images. The two 

proposed methods not only achieved better results than any other method not using 

deep classifier, but also outperformed same methods using deep learning.   

 

 



183 
 

Appendix G 

Publications 

 

1. Sirinukunwattana, K., Pluim, J.P., Chen, H., Qi, X., Heng, P.A., Guo, Y.B., Wang, L.Y., 

Matuszewski, B.J., Bruni, E., Sanchez, U. and Böhm, A., 2017. Gland segmentation in 

colon histology images: The glas challenge contest. Medical image analysis, 35, 

pp.489-502. 

 

 

2. Wang L., Zhou Yu, Matuszewski B.J. (2019) A New Hybrid Method for Gland 

Segmentation in Histology images. In: Vento M. et al. (eds) Computer Analysis of 

Images and Patterns. CAIP 2019. Communications in Computer and information 

Science, vol 1089, Springer, Cham.  
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Appendix H 

Screenshot of image-level classification results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.1 Screenshot for Image-level classification results using AlexNet In DIGITS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.2 Screenshot for image-level classification results using GoogleNe In DIGITS 
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Figure H.3 Screenshot for image-level classification results using ResNet50 in DIGITS 
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