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A prominent view within the serial short-term memory literature is the notion of a functional

equivalence for the maintenance of order information across the domains of immediate memory.

Despite extensive research examining this for verbal, spatial, and, to some extent, visual material,

there is a distinct lack of research into the maintenance of item order for manual gestures. As

such, the current study aimed to rectify this by examining serial recall performance for manual

gestures under varying conditions. Sequences were presented in silence, or in the presence of

steady- or changing-state irrelevant sound. Furthermore, in one block of each experiment,

articulatory suppression was employed. Serial position effects and relative recency were also

examined for the secondary aim of investigating similarities in the encoding and processing of

manual gestures. Experiment 1 made use of meaningless manual gestures, with results showing

the presence of the changing-state effect which was subsequently eliminated by articulatory

suppression. Articulatory suppression also significantly disrupted serial recall performance in all

sound conditions. In Experiment 2, non-iconic gestures were used to reduce the potential for

verbal recoding. In contrast to Experiment 1, the changing-state effect did not present, and while

there was a main effect of articulatory suppression, corrected post-hoc tests revealed

non-significant differences. While these results may suggest that participants relied on verbal

recoding and subvocal rehearsal in Experiment 1, resulting in similarities to verbal serial recall,

the mere ability of irrelevant sound and articulatory suppression to disrupt serial recall

performance for manual gestures goes against the working memory model and points towards an

amodal mechanism for the maintenance of serial order. As such, it is argued that the

perceptual-gestural account is currently better suited to account for the observed effects.
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Chapter 1

Introduction

1.1 Overview

The importance of sequential organisation in many forms of human behaviour has been discussed

at great length, from simple movements to more complex processes like the production of speech

and acquisition of language (see e.g., Agam, Bullock, & Sekuler, 2005; Agam, Galperin, Gold, &

Sekuler, 2007; Baddeley, 2007; Estes, 1985; Gupta, 2003; Lashley, 1951). While Lashley (1951)

posed the question “What then determines the order?” (p. 117), the question asked today by many

cognitive psychologists and memory researchers is “What maintains the order?”. To perform many

human behaviours, one must be able to retain each element within an actionable sequence in the

correct order, otherwise the integrity of the sequence is lost, and the action is performed incorrectly.

For instance, imagine trying to remember a phone number long enough to write it down. Often,

the digits which make up the number will be rehearsed subvocally in the order they were given.

This process of subvocal rehearsal allows for sequences which contain strict order information

to be maintained in that order, while also allowing for a more long-term representation of that

information to be formed (Baddeley, Gathercole, & Papagno, 1998; Gathercole, Alloway, Willis,

& Adams, 2006). A similar process could be used to remember a sequence of spatial items, such

as locations on a map (see e.g., Tremblay, Parmentier, Guérard, Nicholls, & Jones, 2006) however,

one area wherein very little is known regarding how order information is maintained relates to

sequences of manual gestures (i.e., movements of the hands and/or arms).

A prominent view within the literature suggests that a single mechanism is responsible for

the maintenance of order information, regardless of the perceptual nature of the input (e.g., verbal,

spatial), i.e., a functional equivalence (see e.g., Jones, Farrand, Stuart, & Morris, 1995). Should

this be the case, serial position curves and effects for manual-gestural serial recall should be akin

to those observed with verbal and spatial material, with distractors and secondary tasks – such

as irrelevant sound and articulatory suppression – resulting in similar levels of disruption (Jones

et al., 1995). As such, the aim of the current study is to examine serial recall performance for

sequences of manual gestures under various conditions; results from this study will be compared
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with previous research using verbal, spatial, and visual serial recall tasks in order to probe the

suggestion of functional equivalence. First, it is essential to gain an understanding of the models

and theories surrounding serial recall and the research which has attempted to elucidate how order

information is maintained for verbal, spatial, and more recently, visual material.

1.2 The Working Memory Model

Currently, one way in which serial short-term memory (STM) is best understood is through the

working memory (WM) model (see, Baddeley, 2000; Baddeley & Hitch, 1974). The WM model

is a theory of memory proposed to account for the ability to store and manipulate information

temporarily, which acts as a basis for all cognitive functions that require such storage and manipu-

lation (see e.g., Hambrick, Kane, & Engle, 2005). It is based on the multistore model (Atkinson &

Shiffrin, 1968), a unitary model of memory which Baddeley and Hitch argued was too simplistic,

stating that different storage components were required for different types of information. As such,

the initial WM model consisted of three components, two of which were stores for distinct forms of

information. The central executive is responsible for the overall control of attention (i.e., directing

WM resources), with two slave systems, the visuospatial sketchpad and the phonological loop, re-

sponsible for temporary storage and manipulation of visual-spatial and speech-based information

respectively. Perhaps one of the most well-researched of these components is the phonological loop,

made up of two subcomponents; the phonological store and an articulatory rehearsal system.

The role of the phonological store is to hold speech-based information in an abstract phono-

logical form over short periods of time, with its primary function to generate a more long-term

representation of that information, and a secondary function in supporting the short-term repro-

duction of verbal sequences (Baddeley et al., 1998; Gathercole et al., 2006). Memory traces within

the store are prone to rapid decay (trace decay), which can occur within two seconds in the ab-

sence of rehearsal (see e.g., Repovs & Baddeley, 2006; Schweickert & Boruff, 1986), with one of

the articulatory rehearsal systems two main functions being the facilitation of a rehearsal process

to refresh items within the phonological store in order to prevent such decay from occurring (Bad-

deley, Thomson, & Buchanan, 1975). This rehearsal system has been described as analogous to

a closed loop of inner speech (Baddeley, 1986), with this control process of subvocalisation also

required for visual-verbal material to enter the phonological store – the second function of the

articulatory rehearsal system. As auditory-verbal material is in phonological form when presented,

it thus has direct and obligatory access to the phonological store, whereas visual-verbal material

must undergo a grapheme-to-phoneme conversion process in order to gain access (i.e., phonological

coding; Baddeley, 2003, see, Leinenger, 2014 for a comprehensive review of phonological coding).

As the WM model reflects temporary storage and manipulation, it is concerned with active

processes that an individual may be undertaking. If we take the example of trying to remember

a phone number, in most instances, an individual possesses the ability to direct attention to
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remembering the number in order to utilise WM resources to complete the task. This is not

to say that WM does not have limits; it is indeed held to be a capacity-limited system, with

performance on tasks that utilise WM resources limited to the amount of information which can

be stored temporarily (e.g., Baddeley et al., 1975). Furthermore, while some tasks can be completed

simultaneously, there are others which compete for WM resources, thus interfering with each other

and causing reduced task performance (e.g., Richardson & Baddeley, 1975).

While the interaction between the phonological store and articulatory rehearsal system was

able to account for a number of serial recall phenomena (e.g., phonological similarity, irrelevant

speech, and word length effects; see e.g., Baddeley, 1986), there were a number of criticisms of the

WM model. Perhaps one of the most substantial criticisms was that the model did not account

for any relationship between long-term memory (LTM) and WM, and, as a result, the model was

revised. Baddeley (2000) added a fourth component, the episodic buffer, which provided a number

of additional features to the model. Here, provision was made to link WM and LTM by the addition

of a mechanism through which information from other components of WM could be collated into a

unitary representation. The addition of the episodic buffer also provided extra storage space which

was independent of the perceptual nature of the information, meaning that items held in the other

components of WM could be bound with semantic and linguistic knowledge held in LTM to create

an ‘episode’ which is then held in a ‘multidimensional’ code (Baddeley & Wilson, 2002). In the

context of manual gestures, particularly with regard to sign language, the episodic buffer would

facilitate the amalgamation of visual and spatial information obtained from the movement itself,

which enables semantic information to be drawn from LTM, allowing the viewer to recognise the

movement and its meaning.

It should also be highlighted that the functioning of the phonological loop has been modelled

in terms of the primacy model (Page & Norris, 1998). This model makes a number of assumptions;

items are represented as activated nodes with the assumption that the first item in a sequence

has maximal activation and a further assumption that activation decreases with each item in

the sequence, resulting in a primacy gradient. Retrieval of an item is carried out by a process

called competitive cueing, wherein the item with the strongest activation will be selected for recall.

Additionally, it is assumed that once an item has been recalled, it is suppressed and therefore is

not available to be recalled again (see, Lewandowsky & Farrell, 2008). In general terms, this model

stores the order of items within a sequence based on the assumption that for each successive item

within a list, activation strength decreases, i.e., an item in serial position one will have a greater

activation strength than an item in serial position two, an item in serial position two will have a

greater activation strength than an item in serial position three, and so on. Thus, based on the

primacy model, serial recall performance is expected to deteriorate as a result of time-based decay,

with the duration between presentation and commencement of recall of a sequence dictating the

strength of the primacy gradient, as evident from the word- and list-length effects observed within

Page and Norris (1998).
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1.3 The Perceptual-gestural Account

The WM model has been accepted as the ‘standard’ account of serial STM for a significant time

however, in recent years, a new and alternative view has been developed; the perceptual-gestural

account (see, Hughes, Chamberland, Tremblay, & Jones, 2016; Hughes & Marsh, 2017; Hughes,

Marsh, & Jones, 2009; Jones, Hughes, & Macken, 2006, 2007; Jones, Macken, & Nicholls, 2004;

Macken & Jones, 2003). This account posits that general-purpose perceptual input and motor

output processes that are considered as peripheral in phonological store-based models, are manip-

ulated in an ‘on-the-fly’ manner in order to meet the demands of a task (Hughes et al., 2016). In

general terms, serial recall makes use of general-purpose vocal-motor processes in order to retain

the order of a presented sequence. Thus, the basis of the account is the interplay of perceptual and

vocal-motor processes however, there is the potential for this to be extended to include manual

gestures, as it has been for oculomotor processes (see e.g., Guérard & Tremblay, 2011). While this

‘parasitic’ view of serial recall has been suggested in some capacity by others (e.g., Buchsbaum &

D’Esposito, 2008; Reisberg, Rappaport, & O’Shaughnessy, 1984), the perceptual-gestural account

is the first to fully flesh out the concept. On the WM model, it is postulated that the process

of articulatory rehearsal is in service to the revivification of decaying memory traces within the

phonological store and/or the conversion of graphemes to phonemes in the case of visual-verbal

material. However, the perceptual-gestural view is that articulatory rehearsal binds the individ-

ual items within a sequence into a single motor object (Hughes et al., 2016). This binding also

provides a surrogate set of paralinguistic speech habits which replace information (e.g., semantic)

that has been intentionally stripped from serial recall sequences, aiding constraint of item order

and providing sequentiality (Hughes et al., 2009).

1.4 Disruption of Short-term Memory

The way in which the maintenance of item order in STM has been investigated is through the use

of immediate serial recall (ISR) tasks, wherein a participant is required to reproduce a sequence

of items (e.g., permutations of the digits 1-7, or locations of dots on a screen) in the order they

were presented. A large number of studies have also employed articulatory suppression and to-be-

ignored (TBI) irrelevant sound in order to examine the extent to which these can interfere with

serial recall performance (e.g., Baddeley, Lewis, & Vallar, 1984; Colle, 1980; Colle & Welsh, 1976;

Elliott, 2002; Jones et al., 1995; Jones & Macken, 1993; Jones, Macken, & Murray, 1993; Levy,

1971; Morris, Quayle, & Jones, 1989; Murray, 1968; Salamé & Baddeley, 1982). In a recent paper

by Oberauer et al. (2018), a set of benchmarks were proposed as a starting point for models of

STM. These benchmarks are a number of well-replicated phenomena, including the irrelevant sound

and articulatory suppression effects, that the authors suggest STM models should be evaluated

against in the initial stages, with the view that these will become “common empirical constraints

for competing theories and models” (Oberauer et al., 2018, p.5). Thus, on the basis of the paper
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by Oberauer and colleagues, in order for a new model of STM to gain any degree of validity, it

should be able to account for these phenomena.

1.5 Articulatory Suppression

Articulatory suppression refers to the overt articulation of an irrelevant item (e.g., “the, the, the...”)

or irrelevant items (e.g., “A, B, C...”) by participants during a task (Baddeley et al., 1984; Levy,

1971; Murray, 1968). On the WM model, it is believed that articulatory suppression impedes the

ability of the articulatory rehearsal system to revivify decaying memory traces held within the

phonological store. Additionally, it is believed that articulatory suppression prevents visual-verbal

material from undergoing the grapheme-to-phoneme conversion process it requires to enter the

phonological store. While auditory-verbal information is in phonological form when presented,

thus giving it direct access to the store, visual-verbal material must be converted however, as the

articulatory rehearsal system is engaged with suppression, this conversion cannot occur (Baddeley,

2003). As such, when articulatory suppression is employed in a task such as ISR, performance is

reduced due to the failure of two fundamental processes within the phonological loop; information

within the store cannot be rehearsed resulting in its decay, and new visual-verbal information

cannot be converted and thus, cannot enter the store (Baddeley, 1986; Baddeley et al., 1984;

Macken & Jones, 1995; Nairne, 1990).

With regard to the Primacy Model (Page & Norris, 1998), the (assumed) prevention of

subvocal rehearsal by articulatory suppression has a noticeable effect on the strength of the primacy

gradient. When subvocal rehearsal is permitted, the strength of the primacy gradient upon recall is

not dependant on the commencement of list presentation, but rather on the most recent rehearsal

of the sequence. As such, the time between rehearsal and recall is reduced, strengthening the

gradient. However, the employment of articulatory suppression to prevent the use of subvocal

rehearsal results in a reduced primacy gradient as the time between presentation and recall is

increased.

In terms of spatial recall, the analogue of articulatory suppression is tapping (e.g., tapping

on a desk or tapping keys on a keyboard). Despite findings from Jones et al. (1995) showing

that articulatory suppression and tapping result in comparable levels of disruption for both verbal

and spatial serial recall, it is widely accepted that there are crossover effects, with articulatory

suppression disrupting verbal serial recall to a greater extent than spatial serial recall and tapping

disrupting spatial serial recall to a greater extent than verbal serial recall (see e.g., Guérard &

Tremblay, 2008; Meiser & Klauer, 1999). Additionally, it has also been shown that both articula-

tory suppression and tapping disrupt serial recall for visual material (see, Smyth, Hay, Hitch, &

Horton, 2005, see also, Section 1.11).
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1.6 The Irrelevant Sound Effect

During initial investigation of the effect of irrelevant sound on serial recall performance, speech

was used as the TBI background sound, hence the phenomenon was first known as the irrelevant

speech effect. During presentation of the to-be-remembered (TBR) items, a repeated speech token

(e.g., “A, A, A...”) or changing sequence of tokens (e.g., “A, B, C...”) is played in the background,

with participants instructed to ignore this. Typically, serial recall performance is disrupted in the

presence of this background speech (e.g., Colle, 1980; Colle & Welsh, 1976; Morris et al., 1989;

Salamé & Baddeley, 1982), with some suggesting, based on the WM model, that disruption occurs

as a result of interfering phonemes within the phonological store, with the degree of similarity

between phonemes in the TBR and auditory streams influencing the magnitude of this disruption

(i.e., interference-by-content ; e.g., Burgess & Hitch, 1992; Gathercole & Baddeley, 1993; Salamé &

Baddeley, 1982). Interestingly, the general view that disruption of serial recall by irrelevant speech

is due to interference is also adopted by those favouring the feature model (Nairne, 1990) however,

the mechanism of interference differs (see, Neath, 2000, for the account of interference according

to the feature model).

Based on findings which had shown that broadband noise produced little, or indeed, no

disruption, it had been suggested that disruption of serial recall performance only occurs when

speech is used as the irrelevant auditory stimuli (e.g., Salamé & Baddeley, 1982, 1989). This

claim was later refuted by studies which found that non-speech sounds could elicit the same effect

(e.g., Elliott, 2002; Jones & Macken, 1993), thus, the phenomenon was renamed the irrelevant

sound effect (Beaman & Jones, 1997). While Salamé and Baddeley (1982, 1989) utilised a steady,

continuous broadband sound, it was later found that an important characteristic of the disruption

of serial recall performance by irrelevant auditory stimuli was the changing nature of the irrelevant

material and not its content (Jones, Madden, & Miles, 1992). Results from a number of studies

showed that repetition of a single irrelevant sound did not always cause significant disruption

of performance however, performance was significantly disrupted in the presence of a changing

sequence of irrelevant sounds (e.g., Jones & Macken, 1993; Jones et al., 1993), termed the changing-

state effect. Specifically, the changes within a sequence of irrelevant items can refer to a number of

different characteristics, for example, each item having a distinct pitch or timbre, which has been

shown to disrupt serial recall performance (e.g., Jones, Macken, & Harries, 1997).

1.7 Towards a Functional Equivalence in Short-term Mem-

ory

The finding that a changing sequence of irrelevant auditory tokens disrupted serial recall perfor-

mance to a greater extent than a repeated irrelevant token led to the development of the changing-

state hypothesis (Jones & Macken, 1993; Jones et al., 1992). This suggests that disruption of serial
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recall performance due to irrelevant sound occurs not as a result of interference due to similarity of

the TBR and TBI items, but rather due to interference between two simultaneous processes that

maintain item order for both sets of stimuli. Even though the auditory items are irrelevant to the

task, each change in auditory token generates order cues as a result of preattentive streaming (see,

Bregman, 1990). Consequently, when rehearsal is employed to maintain serial order for the TBR

items, the order cues for the irrelevant changing-state sequence are processed obligatorily. These

order cues then vie for inclusion in the formation and maintenance of the motor-plan utilised to

retain the order of the TBR sequence, with this resulting in reduced serial recall performance i.e.,

interference-by-process (see, Hughes, Hurlstone, Marsh, Vachon, & Jones, 2013; Hughes, Vachon,

& Jones, 2005, 2007), thus demonstrating that non-speech sounds have the potential to disrupt

serial recall performance.

Evidence to support the view that disruption of performance is due to interfering processes

rather than similarity of the TBR and TBI content can be found in studies that have manipulated

the perceptual organisation of the irrelevant sequences. For example, Jones and Macken (1995)

presented the same changing irrelevant sequence (“X, Y, Z”) monoaurally, that is to say, emanating

from one source (the centre), which resulted in significant disruption of serial recall performance.

Conversely, assigning each item within the same changing irrelevant sequence to a different location

(e.g., “X” to the left ear, “Y” to the right ear, and “Z” to the centre), reduced the degree to

which serial recall performance is disrupted (Jones & Macken, 1993, 1995; Jones, Saint-Aubin, &

Tremblay, 1999). Note that while perceptual organisation was manipulated, the content within the

TBR and TBI sequences remained the same. It has been suggested that this reduction in disruption

of serial recall performance is due to the irrelevant sequence no longer conforming to the conditions

required for changing-state; the partition of items within the sequence to different locations leads

to three steady-state streams, thus resulting in reduced disruption (Macken, Tremblay, Houghton,

Nicholls, & Jones, 2003, see also, Bregman, 1990).

Additionally, the effect of irrelevant sound and articulatory suppression has been investi-

gated for lipread sequences. In a series of experiments, Divin, Coyle, and James (2001) found that

irrelevant sound was able to disrupt sequences of lipread digits, supporting results from previous

studies (Campbell & Dodd, 1984; Jones, 1994). However, upon addition of articulatory suppres-

sion, the disruption of recall by irrelevant sound was eliminated. In a further experiment, the

authors found that irrelevant speech and tones that varied in frequency disrupted recall of lipread

sequences to an equal extent, providing further support for the changing-state hypothesis. As

stated previously, those favouring the WM model suggest that speech should be more disruptive

than tones (e.g., Salamé & Baddeley, 1982, 1989) however, these results clearly support the view

of the changing-state hypothesis in that it is the changing nature of the irrelevant sound which

dictates disruption of recall.

Other evidence to support the changing-state hypothesis can be found in studies which

examined the effects of phonological similarity, irrelevant sound, articulatory suppression, and
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task type. Several studies investigated the influence of phonological similarity – the phenomenon

wherein similar ‘sounding’ items (e.g., B, V, C) within the TBR and TBI sequences result in greater

disruption of serial recall than items which do not ‘sound’ similar (e.g., X, M, L; see, Conrad, 1964)

(e.g., Jones & Macken, 1993, 1995; LeCompte & Shaibe, 1997; Martin-Loeches, Schweinberger, &

Sommer, 1997). It was found that phonological similarity between the two streams of information

did not mediate the degree to which serial recall is disrupted by irrelevant sound, providing evidence

contrary to a key empirical signature of the phonological store. On the WM model, it was initially

postulated that as irrelevant speech gains obligatory access to the phonological store wherein it

can interfere with memory traces of TBR items, phonological similarity between the TBR and TBI

items would mediate the degree of disruption (Salamé & Baddeley, 1982), a view contradicted by

the aforementioned studies.

The finding that disruption of serial recall is not mediated by the phonological similarity

of the TBR and TBI sequences goes against a central, theoretical tenet of the WM model which

proposes that it is the action of dedicated memory stores (i.e., the phonological loop and visu-

ospatial sketchpad) that give rise to storage functions within WM (see, Postle, 2006). However, if

the similarity between the TBR and TBI items does not determine serial recall performance, it is

difficult to invoke these storage mechanisms. Furthermore, Macken and Jones (1995) investigated a

prediction of the Object-Oriented Episodic Record (O-OER) model, a precursor of the perceptual-

gestural account (see, Jones et al., 1993, see also, Hughes et al., 2005, 2007), which suggested

that articulatory suppression would also give rise to a changing-state effect, with results showing

that suppression during serial recall did indeed produce a changing-state effect for articulatory

suppression, akin to that observed with irrelevant auditory material. Additionally, the authors

found that the changing-state effect for articulatory material was only found in tasks that require

the retention of serial order, with further support for this provided by later studies (e.g., Beaman

& Jones, 1997, 1998).

As stated previously, the primacy model (Page & Norris, 1998) suggests that the storage of

items within a sequence is based on a primacy gradient, wherein recall performance of a sequence

deteriorates as a function of list position. As such, should changing-state irrelevant sound be added

to a serial recall task, the order of the irrelevant auditory sequence would be based on a primacy

gradient similar to that of the TBR material. Thus, this would suggest, on the primacy model,

that any disruption as a result of irrelevant sound occurs due to interference-by-process, as the

order of items within the TBR and TBI sequences is being maintained by the same mechanism.

With regard to verbal serial recall tasks, wherein phonological similarity between TBR and TBI

items could affect performance, the primacy model states that this occurs at a stage after (and

thus, distinct from) the ordering stage (see, Lewandowsky & Farrell, 2008; Page & Norris, 1998).

Taken together, these studies provide evidence to support the changing-state hypothesis, as well

as the interference-by-process account, with Macken and Jones (1995) also suggesting a functional

equivalence between codes from auditory, articulatory, and visual origins.
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1.8 The Visuospatial Sketchpad

Prior to discussing research which has examined serial recall for spatial items, it is important to

highlight the mechanism within the WM model concerned with storage and manipulation of visual-

spatial information – the visuospatial sketchpad (Baddeley & Hitch, 1974). While this component

deals with both visual and spatial information, it has been suggested by some (e.g., Vicari, Bellucci,

& Carlesimo, 2006) that there are distinct subcomponents which deal with each type of input. In

Logie’s (1995) model of working memory, it was proposed that visual information (e.g., colour)

was stored in a visual cache, with spatial material being stored by an inner scribe. Material held

within the visuospatial sketchpad, like that held in the phonological store, is prone to decay unless

rehearsed, with Logie (1995) suggesting that the inner scribe facilitates this rehearsal. Rehearsal

of spatial material is believed to be facilitated by a spatial-attention mechanism, wherein attention

shifts to the target area, with studies utilising eye-tracking corroborating this view (see, Awh &

Jonides, 2001; Awh, Vogel, & Oh, 2006; Postle, Druzgal, & D’Esposito, 2003; Tremblay, Saint-

Aubin, & Jalbert, 2006). Note that while interference to this rehearsal mechanism in spatial tasks

has been shown to disrupt performance, use of visual tasks – devoid of a spatial component – no

effect of interference has been observed (see e.g., Cocchini, Logie, Sala, MacPherson, & Baddeley,

2002).

1.9 Jones, Farrand, Stuart, and Morris (1995) and Replica-

tion Attempts

The suggestion of functional equivalence between codes implies the existence of an amodal mecha-

nism for the representation of order in serial recall for all perceptual modalities (e.g., verbal, visual,

spatial). Perhaps one of the most important studies that examined this notion of functional equiv-

alence was conducted by Jones et al. (1995). In a series of experiments, the authors investigated

the effects of irrelevant sound and articulatory suppression on spatial serial recall performance,

comparing results with performance on verbal serial recall tasks. Based on the findings from stud-

ies investigating the changing-state hypothesis, it was postulated that analogous effects would be

observed in serial recall for spatial material. While Jones et al. (1995) do provide evidence in

support of this view, not all of the findings from this study have been replicated in a number of

attempts (e.g., Guérard & Tremblay, 2008; Guitard & Saint-Aubin, 2015; Kvetnaya, 2018; Meiser

& Klauer, 1999).

Experiment 1 of Jones et al. (1995) showed that serial recall for spatial items (sequences of

dots presented in different locations on a screen) displayed similar characteristics to that of verbal

serial recall, with both primacy and recency effects – the finding that the first and last items

respectively, are better remembered than those in the middle – as well as improved performance

as a result of rehearsal and greater error with longer sequence lengths. The authors state that this
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alone provides a degree of evidence to support the notion of a functional equivalence between verbal

and spatial serial recall performance, with Guérard and Tremblay (2008) replicating the effects.

Furthermore, a number of other studies that also utilised spatial serial recall tasks found serial

position effects akin to those observed in verbal serial recall (Avons, 2007; Farrand, Parmentier, &

Jones, 2001; Tremblay, Saint-Aubin, & Jalbert, 2006).

Experiments 2 and 3 of Jones et al. (1995) also provide support for the notion of a func-

tional equivalence through investigation of the interference of a spatial-manual task (Experiment 2;

tapping either one key or multiple keys on a keyboard) and articulatory suppression (Experiment

3), on both verbal and spatial serial recall. Findings from Experiment 2 show that the changing-

state spatial-manual task (tapping multiple keys), results in comparable levels of disruption for

both verbal and spatial serial recall. In Experiment 3, a similar pattern of results was found, with

disruption of serial recall by articulatory suppression the same order of magnitude for both verbal

and spatial items. These results clearly contradict the view of the WM model which suggests that

disruption of serial recall is due to both the primary and secondary tasks utilising the same WM

resources (e.g., spatial primary and secondary tasks which both utilise the visuospatial sketchpad).

However, in two replication attempts of these experiments, it was found that performance on the

spatial serial recall task was disrupted to a greater extent than the verbal serial recall task when

the same spatial-manual task was carried out simultaneously (Guérard & Tremblay, 2008; Meiser &

Klauer, 1999). Furthermore, these studies also found no effect of articulatory suppression on both

verbal and spatial serial recall performance, with Guitard and Saint-Aubin (2015) also showing no

difference between steady- and changing-state suppression.

Experiment 4 of Jones et al. (1995) examined the extent to which both steady- and changing-

state irrelevant sound (in this instance, either repetition of the syllable “Ah” or the letters A

through G) disrupted both verbal and spatial serial recall. Results show that the irrelevant sound

was able to disrupt both verbal and spatial serial recall performance, with significant differences

between steady- and changing-state irrelevant sound found in each task i.e., a changing-state effect

for both verbal and spatial sequences. The authors suggest that the mere presence of disruption of

performance on spatial serial recall by irrelevant sound provides robust support for the interference-

by-process account however, a recent replication attempt of this experiment by Kvetnaya (2018),

failed to find an effect of sound type, with a further replication conducted by our lab also failing

to find an effect (Marsh et al., unpublished data).

It is possible that the inability to replicate the findings from Experiment 4 is simply due to

the sample size of the original study. A between-participants design was used, with 18 participants

taking part in each experimental condition (verbal and spatial serial recall), in contrast with

Kvetnaya (2018), wherein a within-participants design was used (only spatial serial recall was

investigated), with 40 participants. The overall failure to replicate the findings of Jones et al.

(1995) by no means suggests that the notion of an amodal mechanism for the maintenance of item

order across perceptual modalities should be abandoned altogether. Indeed, there is evidence from
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other areas of research that provides support for this view (e.g., Avons, 1998; Farrand & Jones,

1996; Smyth et al., 2005; Smyth & Scholey, 1996).

1.10 Evidence from Visual Short-term Memory

Visual STM is a capacity-limited system that allows for the temporary storage of visual information

necessary to complete a task (Phillips, 1974). This memory system is distinct from iconic memory

in that it has a longer duration, with most regarding iconic memory as simply being the very

brief perseverance of the original image (Neisser, 1967; Sperling, 1960). It was initially believed

that in order for visual information to be held for a longer duration than iconic memory, verbal

recoding was being employed (e.g., Sperling, 1963, 1967) however, this theory can be attributed

to the characteristics of the tasks used during initial investigation of visual STM which required

either vocalised or written verbal responses (e.g., Brener, 1940; Sperling, 1960). In recent years,

the capacity limitation of visual STM has been the subject of increased discussion, with some

suggesting that this is determined by how many items can be held in STM, how many features

can be remembered, or a function of both (see e.g., Lee & Ahn, 2013; Luck & Vogel, 2013; Sewell,

Lilburn, & Smith, 2014, 2018). Within the WM model, the visuospatial sketchpad is responsible

for the storage and manipulation of visual information (see, Section 1.8). An aspect of visual STM

which can inform the current research is that of serial recall performance for sequences of faces.

1.11 Serial Recall for Faces

Some investigations of visual serial recall performance utilised novel patterns/matrices (e.g., Avons,

1998; Phillips & Christie, 1977) however, as stated by Smyth et al. (2005), there are a number of

limitations when using this form of stimuli. In verbal serial recall tasks, stimuli are usually formed

from a familiar set of items (e.g., digits, letters) however, the patterns and matrices used in visual

serial recall studies are unfamiliar, thus potentially resulting in excessive encoding demands and

subsequent effects on serial position. Furthermore, while ‘nonsense’ items in the verbal domain

(e.g., non-words) can be used to assess serial recall performance, these often follow a linguistic

structure which can aid in the encoding process. Conversely, there is no such familiar structure for

novel patterns and matrices that can assist with their encoding, meaning that results from studies

using this type of stimuli should be interpreted with a degree of caution. Smyth et al. (2005)

sought to overcome this issue by using faces as the stimuli, providing a number of characteristics

well-suited for serial recall. For example, while the basic features of faces are the same, an unlimited

number of stimuli can be generated, as well as the ability to manipulate similarity. Furthermore,

it has been shown that ones ability to verbally recode faces is limited, even when recoding is

encouraged (see, Chin & Schooler, 2008).

In two experiments, Smyth et al. (2005) presented images of unfamiliar faces with partic-

ipants required to reproduce the order the faces were presented. Three conditions were used; no
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concurrent task, articulatory suppression, and spatial tapping, with four set sizes (3, 4, 5, and

6 faces). Results from Experiment 1 show that serial recall performance was similar to that ob-

served in verbal serial recall, with results from Experiment 2 showing that order reconstruction

after a longer retention period (6s) was comparable to that of a shorter retention period (2s).

Additionally, it was found that while visual similarity, articulatory suppression, and spatial tap-

ping affected serial recall independently, articulatory suppression did not interact with similarity

in both experiments, leading to the conclusion that participants were not relying on verbal recod-

ing. It should be noted that while articulatory suppression and spatial tapping both disrupted

serial recall performance, articulatory suppression was more disruptive. The general scarcity of

interactions with articulatory suppression led the authors to suggest that the similarities between

verbal serial recall and the results obtained in these experiments were not due to verbal recoding or

subvocal rehearsal, stating that these findings add to the idea that subvocal rehearsal may not be

a precondition for serial position effects to arise. The authors conclude that the lack of substantial

differences between verbal and non-verbal serial recall performance suggest maintenance of order

information in serial recall is facilitated by either a domain-general mechanism, or domain-specific

mechanisms which exude similar characteristics due to their performance of the same process.

1.12 Movement in Short-term Memory

Based on the research discussed previously, there appears to be some evidence in favour of an

amodal mechanism responsible for the maintenance of item order across perceptual modalities

however, this view has not yet been examined in the context of manual gestures. There has

been some suggestion of a third subcomponent within the visuospatial sketchpad which can hold

action sequences in a kinaesthetic code (e.g., Baddeley, 1983, 2007; Smyth, Pearson, & Pendleton,

1988; Smyth & Pendleton, 1989). For example, Smyth et al. (1988) found that serial recall

performance for movements was disrupted by a secondary task involving sizeable arm movements,

but not by a secondary task involving movements to specific spatial targets. The authors suggest

that this provides evidence for a rehearsal mechanism for body movements that is distinct from

spatial rehearsal. However, as stated by Smyth and Pendleton (1989), whole-body movements

were compared with hand movements to spatial targets, with this difference potentially being the

important factor rather than the nature of the movements (i.e., spatial vs. configured; cf. Rudner,

2015). Interestingly, one aspect of this research suggests that motor processes are involved in

the manipulation of spatial information (see also, Logie, 1986; Quinn & Ralston, 1986), which

harmonises with the view proposed by the perceptual-gestural account. Indeed, there is evidence to

support this, with some research examining the potential for an ’articulatory’ loop-like mechanism

for movements, facilitated by motoric (and sensory) processes (see, Wilson & Fox, 2007).
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1.13 An ‘Articulatory’ Loop for Movement?

While there has been a substantial amount of research surrounding the mechanisms that facilitate

verbal STM and to a lesser extent, visual-spatial STM, there is a distinct lack of research examining

similar mechanisms in the context of manual gestures. One area in which there is some research

involves the use of sign language as stimuli. Like spoken languages, signed languages exhibit a

structure wherein components of the language which would otherwise be meaningless, can contain

meaningful information (see, Emmorey, 2007; Emmorey, McCullough, Mehta, & Grabowski, 2014);

in other words, the lexicon of signed languages is made up of ‘random’ manual movements which,

when structured, are associated with semantic information. However, this is not to say that signed

and spoken languages do not have ‘iconic’ lexical items (see, Baus, Carreiras, & Emmorey, 2013).

Furthermore, several studies have found that effects akin to phonological similarity, articulatory

suppression, and word-length – all signatures of the phonological loop – presented with American

Sign Language, which suggests that speech is not unique and that a mechanism similar to that of the

phonological loop may facilitate STM for movement, and potentially distinct forms of information

that are not solely verbal (see, Wilson & Fox, 2007). This view corresponds with a suggestion

by Smyth et al. (2005); they state that while various computational models of verbal serial recall

(e.g., Brown, Preece, & Hulme, 2000; Burgess & Hitch, 1999; Henson, 1998; Page & Norris, 1998)

are based on the framework of the phonological loop, there are parts within these models such

as the context signals contained in the models proposed by Brown et al. (2000) and Burgess and

Hitch (1999), that could be linked to non-verbal material.

Evidence to support this view can be found in Wilson and Fox (2007), who questioned

whether language was a necessary precondition for the development of an ‘articulatory’ loop for

non-verbal material. In order to investigate this, they used a serial recall task with meaningless

manual gestures that followed the phonological structure of sign language as the stimuli. Results

from this study show effects of ‘phonological’ similarity, ‘articulatory’ suppression, and ‘word’-

length, leading the authors to suggest that a sensorimotor mechanism akin to that of the phono-

logical loop can be formed ‘on-the-fly’ in order to meet the demands of the task. Later research

by Rudner (2015) investigated whether similarity in the formation of meaningless manual gestures

can influence performance; this was based on the gestures within Wilson and Fox (2007) following

the phonological structure of sign language, thus allowing for categorisation of the gestures which

may influence performance as a result of linguistic similarities held in LTM. Results from this

study show that manual gestures with no linguistic representation in LTM (catching a ball in this

instance), can be stored and manipulated in STM, with performance in an N -back task disrupted

by increases in memory load and by use of spatially similar non-target manual gestures. This not

only supports the previous work by Wilson and Fox (2007) but also highlights the potential of

visual similarity effects in sign language.
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1.14 The Modality Effect

One strand of research which may prove fruitful in investigating not only how gestures are encoded

and processed in STM, but also the notion of a functional equivalence between memory domains,

relates to modality. With regard to the verbal domain, it has been a long-held view that linguistic

information acquired from both auditory and visual modalities is stored in an abstract phonological

form, distinct from perceptual input and motor output processes (e.g., Baddeley, 2000; Baddeley

& Hitch, 1974). Those adopting this view attribute observed differences in modalities to modality-

specific features such as encoding, while storage and manipulation of the common, phonological

representation of all information, is responsible for any observed similarities. However, there is

contrasting evidence to suggest that modality-specific perceptual input and motor output processes

play a more central role in verbal STM than phonological store-based models of memory would

suggest (see e.g., Maidment & Macken, 2012; Maidment, Macken, & Jones, 2013).

The notion that verbal material garnered from auditory and visual modalities obtains the

same phonological representation has been investigated through the examination of serial recall

performance for auditory and silently lipread items. Previous research has shown that serial recall

performance is enhanced for the final item within an auditory sequence when compared to a visual

sequence, termed the modality effect (see e.g., Crowder & Morton, 1969; Frankish, 1996; Penney,

1989; Surprenant, Pitt, & Crowder, 1993). It should also be noted that more recent studies

have also shown similar effects with visual and spatial material. For example, Tremblay et al.

(2006, Experiment 2) equated visual-spatial, visual-verbal, auditory-spatial, and auditory-verbal

sequences on the basis of order reconstruction. Results show not only the manifestation of the

classical modality effect, but also a modality effect for auditory-spatial sequences (see also, Avons,

1998; Farrand & Jones, 1996; Nairne & Dutta, 1992; Smyth et al., 2005; Smyth & Scholey, 1996).

Regarding silently lipread sequences, studies have shown that these gain the same final

item recall advantage as auditory sequences (e.g., Campbell & Dodd, 1980), with the addition of a

redundant suffix of the same modality at the end of a sequence negating this enhanced performance

for both auditory and silently lipread sequences, termed the suffix effect (see, Campbell & Dodd,

1982). Furthermore, it has also been shown that an auditory suffix at the end of a silently lipread

sequence will disrupt the enhanced recall of the final item, with a silently lipread suffix at the end

of an auditory sequence having the same outcome (however, cf. Maidment et al., 2013).

Thus, it appears that silently lipread sequences behave in much the same manner as au-

ditory sequences, both with regard to the modality effect and the effects of irrelevant sound and

articulatory suppression as discussed previously (see, Section 1.7). Therefore, this could provide

a framework from which to begin investigating the way in which gestures are encoded and pro-

cessed in STM. The presence of a modality effect for manual gestures, paired with disruption of

serial recall performance by irrelevant sound, which is subsequently eliminated under articulatory

suppression, could lead to the suggestion that manual gestures are encoded in a manner similar to

that of auditory or lipread items.

23



1.15 The Current Study

The most important aspect of the research discussed previously comes from results that suggest

an amodal mechanism is responsible for the maintenance of order information across perceptual

modalities. This is at odds with the WM model which states that distinct components within

the model are responsible for the storage and maintenance of specific types of information (e.g.,

Baddeley & Hitch, 1974), while simultaneously providing support for the perceptual-gestural ac-

count which posits that general-purpose perceptual input and motor output processes are co-opted

in order to meet the demands of a task (e.g., Hughes et al., 2016). In order to fully elucidate

the way in which order information is maintained in STM, it is important to determine this for

other forms of material, such as manual gestures. It is important to note at this point that in this

study ‘manual gestures’ refer to gestures that do not accompany speech (see e.g., McNeill, 1992),

with Experiment 1 making use of meaningless manual gestures and Experiment 2 using non-iconic

manual gestures.

Thus, the current study will assess serial recall performance for manual gestures with steady-

and changing-state irrelevant sound used to investigate whether the changing-state effect presents

with manual gestures. Articulatory suppression will also be used in order to minimise the potential

for participants to verbally recode the manual gestures. In addition, a relative recency measure will

be employed in an attempt to investigate the manner in which manual gestures are encoded. On

the basis of previous research, it is hypothesised that irrelevant sound will have a disruptive effect

on recall, with changing-state irrelevant sound being more disruptive than steady-state irrelevant

sound i.e., the changing-state effect. Additionally, it is hypothesised that articulatory suppression

will also disrupt recall, with the effect of changing-state eliminated under suppression. With regard

to the secondary aim of the study, it is difficult to speculate whether similar serial position effects

will present with manual gestures, particularly given the use of relative recency over the ‘traditional’

measure of recency. As previous research has shown, both auditory and lipread sequences gain a

final item recall advantage (see, Sections 1.7 & 1.14) however, this has not yet been investigated

for manual gestures therefore, it remains to be seen if relative recency measures will provide insight

in this regard.
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Chapter 2

Experiment 1

2.1 Overview

This experiment will utilise sequences of meaningless manual gestures in order to examine the

maintenance of order information for movements. One of the major issues with achieving this

is equating the serial recall task to those found in other domains of memory with Avons (1998)

suggesting that should serial recall tasks be equated, similar serial position effects will be observed,

including the characteristic bow-shaped serial position curve. Thus, the extent to which the task

used in the current experiment is equated to other serial recall tasks will be based on the shape of

the serial position curves.

2.2 Method

Participants, Design, and Ethics

Thirty-three (33) participants (female; N = 23; age; M = 22.63, SD = 4.17; Appendix 1) consented

(Appendix 2) to take part in this study. All participants had normal or corrected-to-normal visual

acuity and hearing. Participants were awarded a small honorarium for taking part. A within-

participant design was used, with all participants completing all aspects of the task.

Serial Recall Task

This experiment utilised a simple serial recall task, wherein sequences of videos depicting mean-

ingless manual gestures were used (see, Wu & Coulson, 2014, for full repository of videos see,

http://bclab.ucsd.edu/movementSpanMaterials). In total, 12 sequences were created with seven

videos in each sequence with one video displaying one manual gesture. Each individual movement

video lasted a total of 1.75 seconds (s), with an interstimulus interval (ISI) of 0.25s. As a result,

each sequence lasted for a total of 14s. Two main experimental blocks were used in this experiment,

containing 24 sequences each; one block with articulatory suppression (WS) and one block without

suppression (NS). Within each of these blocks, there were three sound conditions; eight sequences

were presented in silence (Sil), eight in the presence of steady-state irrelevant sound (SS), and eight
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in the presence of changing-state irrelevant sound (CS). Note, the same sequences were used in

each block however, the order in which these sequences were presented was randomised by the soft-

ware. Irrelevant sounds were edited onto the video sequences, with SS irrelevant sound consisting

of repetitions of the syllable “Ah” and CS irrelevant sound consisting of the letters A through G

with varying starting points. Irrelevant sounds were spoken at a rate of two per second. It should

be highlighted that the irrelevant sounds adhered to those used within Jones et al. (1995). In the

articulatory suppression block, participants were required to say aloud the word “saxophone” at a

rate of once per second during presentation of the manual gestures. At the beginning of each block,

a video of the movements that would be used in the experimental blocks was played through twice.

Furthermore, a practice block containing three trials played in silence and containing no manual

gestures used in the main experimental blocks, preceded each experimental block. For sequence

reproduction, still images showing the end position of the movements were used, with care taken

to ensure that no two images appearing on the same reproduction screen displayed similarities.

The task was created using E-Prime 3 (Psychology Software Tools; Pittsburgh: PA).

Figure 2.1: Image showing starting position of all manual gestures in Experiment 1.

Procedure

Participants were welcomed and asked to read through the information sheet (Appendix 3) had

they not already done so. Once seated in front of the computer which ran the task, participants

were able to read through the task instructions, with the researcher also providing verbal expla-

nation. All participants were reminded of the requirement to wear headphones throughout the

entire experimental procedure and prior to the articulatory suppression block, reminded of the

requirement to articulate the word “saxophone” at a rate of once per second during presentation

of the sequences; the researcher remained within earshot to ensure all participants complied with

this instruction. Upon completion of the experiment, participants were debriefed via the use of a

debrief sheet (Appendix 4) and also verbally by the experimenter. Participants were reminded that

they were free to withdraw their data from the study up to the point of leaving the experimental
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session, after which data would be anonymised.

Figure 2.2: Image showing an example end position of a manual gesture in Experiment 1.

Statistical Analysis

A repeated measures ANOVA was carried out on mean performance scores to examine main effects

of sound and suppression as well as interaction effects. Planned comparison paired samples t-tests

were also carried out on mean performance scores to determine whether there was a significant

difference in performance between steady- and changing-state irrelevant sound in each block of the

experiment; reduced performance in changing-state trials compared to steady-state is indicative

of the changing-state effect. A further repeated measures ANOVA was carried out on relative

recency scores in order to investigate the effect of irrelevant sound and articulatory suppression

on relative recency. This may provide insight into way in which manual gestures are encoded,

allowing comparisons to be made between relative recency and effects of suppression and irrelevant

sound between manual gestures and lipread and auditory stimuli. It should be noted that the

relative recency measure was adopted over the more ‘traditional’ absolute recency as it provides

a more robust measure of recency in the current experiment (as outlined by Maidment et al.,

2013); overall performance within any given condition affects absolute recency and as there is an

expectation that performance will differ across conditions, absolute recency is thus not the most

appropriate measure to use. Finally, due to the repetition of sequences in Experiment 1, further

repeated measures ANOVAs were carried out in order to determine if performance was affected

by block and/or sequence order. The alpha level for all statistical analyses was set at .05. All

analyses were carried out using Statistical Package for the Social Sciences (SPSS) 25 (IBM; United

Kingdom) and Microsoft Excel (Microsoft; United States).
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Chapter 3

Results

3.1 Serial Position Curves

Figure 3.1: Serial position curves for all sound and suppression conditions in Experiment 1.

From Figure 3.1 it can be seen that the serial position curves obtained from Experiment 1 bear

some resemblance to the characteristic bow-shaped curves found in previous verbal serial recall

experiments. It is also apparent that serial recall performance is disrupted by irrelevant sound

to some extent – note the slightly improved performance for steady-state, no suppression over

silent, no suppression in the latter serial positions – with this disruption eliminated by articulatory

suppression, and recall also noticeably enhanced for the final item in all conditions. It should

also be highlighted that there is scalloping of the serial position curves within the no suppression

condition after the second serial position. A ‘typical’ serial position curve displays a consistent

reduction in performance from serial position one, with an increase in performance for the final

item; however, the presence of scalloping within serial position curves is not unique to manual

gestures (see, Section 4 for discussion).
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3.2 Main Analysis

A 3 (sound: silent, steady-state, changing-state) × 2 (suppression: no suppression, with suppres-

sion) repeated measures ANOVA on mean performance scores for each participant revealed a signif-

icant main effect of suppression [F(1, 32) = 82.79,MSE = .02, p < .001, η2 = .72], a non-significant

main effect of sound [F(2, 64) = 2.95,MSE = .07, p = .060, η2 = .08], and a non-significant inter-

action of sound and suppression [F(2, 64) = 1.29,MSE = .007, p = .283, η2 = .04] (see Appendix 5

for output).

3.3 Effect of Articulatory Suppression

Post-hoc paired samples t-tests were carried out on mean performance scores for each participant

to determine the effect of suppression on each of the sound conditions. These revealed a significant

difference between performance on silent, no suppression (M = .54, SD = .19) and silent, with

suppression (M = .36, SD = .14) trials; t(32) = 5.89, p < .001; a significant difference between

performance on steady-state, no suppression (M = .55, SD = .18) and steady-state, with sup-

pression (M = .35, SD = .13) trials; t(32) = 8.13, p < .001; and a significant difference between

performance on changing-state, no suppression (M = .49, SD = .14) and changing-state, with

suppression (M = .34, SD = .14) trials; t(32) = 7.20, p < .001 (see Appendix 6 for output). Due

to multiple comparisons being made, the Holm-Bonferroni correction (see, Gaetano, 2013; Holm,

1979) was used to protect against Type I error. All three post-hoc t-tests remained significant

with a corrected p-value of .000 (see Appendix 7). These results clearly show that serial recall

performance was significantly reduced by articulatory suppression.

3.4 Changing-state Effect

Planned comparison paired samples t-tests were carried out on mean performance scores for each

participant to investigate whether the changing-state effect presented with manual gestures and

whether this effect (if present) would be eliminated when articulatory suppression was employed.

These revealed a significant difference between performance on steady- (M = .55, SD = .18) and

changing-state (M = .49, SD = .14) trials in the no suppression condition; t(32) = 2.40, p = .022,

with this significance eliminated upon the addition of articulatory suppression: steady-state, with

suppression (M = .35, SD = .13); changing-state, with suppression (M = .34, SD = .14); t(32) =

.39, p = .701 (see Appendix 8 for output). These results clearly show that the changing-state effect

presents with manual gestures and is subsequently eliminated with the addition of articulatory

suppression.
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3.5 Relative Recency Analysis

Figure 3.2: Graph showing relative recency for all experimental conditions in Experiment 1.

Relative recency scores were calculated by taking performance on the final serial position (7),

minus performance on the penultimate serial position (6) for each participant, and then finding

the mean value. Error bars show the standard error of the mean.

A 3 (sound: silent, steady-state, changing-state) × 2 (suppression: no suppression, with suppres-

sion) repeated measures ANOVA on relative recency scores revealed non-significant main effects of

sound [F(2, 64) = .51,MSE = .04, p = .601, η2 = .02], suppression [F(1, 32) = 2.16,MSE = .03, p =

.151, η2 = .06], and a non-significant interaction of sound and suppression [F(2, 64) = 1.59,MSE =

.04, p = .213, η2 = .05] (see Appendix 9 for output). Despite the non-significant results, one inter-

esting observation is that relative recency scores for both silent and steady-state trials improved

when articulatory suppression was used compared to when it was not.

3.6 Block Analysis

Due to Experiment 1 utilising the same sequences in each block of the experiment, it was pertinent

to determine whether learning effects arose as a result of the order in which participants undertook

each block of the task. A 3 (sound: silent, steady-state, changing-state) × 2 (suppression: no sup-

pression, with suppression) repeated measures ANOVA on mean performance scores for each par-

ticipant, with block order (no suppression first, with suppression first) as a between subjects factor,

revealed a significant main effect of suppression [F(1, 31) = 84.72,MSE = .02, p =< .001, η2 = .73],

a non-significant main effect of sound [F(2, 62) = 2.86,MSE = .007, p < .065, η2 = .09], as well as

a non-significant interaction of sound and suppression [F(2, 62) = 1.24,MSE = .008, p = .296, η2 =

.04], of sound and block order [F(2, 62) = .05,MSE = .007, p = .952, η2 = .002], of suppression

and block order [F(1, 31) = 2.09,MSE = .02, p = .158, η2 = .06], and of sound, suppression, and

block order [F(2, 62) = .03,MSE = .008, p = .975, η2 = .001]. The between-participant main ef-

fect of block order was also non-significant [F(1, 31) = .05,MSE = .098, p = .828, η2 = .002] (see
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Appendix 10 for output).

3.7 Trial Analysis

In order to fully ensure that learning effects were not responsible for the results obtained in this

experiment, performance over the duration of the experiment was assessed. A 3 (sound: silent,

steady-state, changing-state) × 8 (trials: 1-8) repeated measures ANOVA, conducted using mean

performance on each trial for each participant in the no suppression condition, revealed a significant

main effect of sound [F(2, 64) = 3.25,MSE = .07, p = .045, η2 = .09], a non-significant main effect

of trial order [F(4.86, 155.56) = 2.26,MSE = .095, p = .053, η2 = .07], and a non-significant

interaction of sound and trial order [F(14, 448) = 1.15,MSE = .064, p = .313, η2 = .04] (see

Appendix 11 for output). Taken together, the results of the block and trial analyses show that

learning effects were not responsible for increased performance over the course of the experiment.
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Chapter 4

Discussion

Experiment 1 utilised meaningless manual gestures in an attempt to investigate how item order

is maintained in serial recall of movements. One of the major issues with attempting to examine

this lies in equating the serial recall task with others from the various domains of immediate

memory. Avons (1998) argued that it is the characteristics of the task that determine the pattern

of performance, suggesting that should serial recall tasks be equated, similar bow-shaped serial

recall curves may be observed regardless of the nature of the input. Indeed, it appears that in

Experiment 1 this bow-shaped pattern has been obtained, suggesting that the task was somewhat

equated with others from previous research. From the curves (see, Figure 3.1) it can be seen that

serial recall performance is reduced by irrelevant sound, with articulatory suppression negating

this effect. Additionally, there is also a noticeable improvement in recall for the final item in each

of the conditions, with these results bearing a close resemblance to previous research examining

serial recall for lipread sequences.

As stated previously, it has been suggested that lipread sequences appear to behave in

the same manner as auditorily presented sequences, with articulatory suppression eliminating the

effect of irrelevant sound (Divin et al., 2001), and a modality effect for lipread sequences also being

observed (Campbell & Dodd, 1980). As a result, it could be suggested that manual gestures are

processed in the same manner however, this cannot be stated conclusively as recency effects have

been observed with visual and spatial material (Avons, 1998; Farrand & Jones, 1996; Nairne &

Dutta, 1992; Smyth et al., 2005; Smyth & Scholey, 1996; Tremblay, Parmentier, et al., 2006).

There may be evidence from Experiment 1 however, when compared with results from Maidment

et al. (2013), that may lead to the suggestion that gestures behave more similarly to auditory

items than lipread. In Experiment 1 of Maidment et al. (2013), when compared with control,

relative recency for auditory sequences is enhanced when articulatory suppression is utilised, with

suppression reducing relative recency for lipread sequences. The same effect was observed here,

with recency on silent trials also enhanced with the addition of articulatory suppression however,

there is a noticeable difference with regard to the magnitude of the effect between studies.

Maidment et al. (2013) also found that the addition of changing-state irrelevant sound –
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in the absence of articulatory suppression – resulted in almost identical (if not slightly improved)

relative recency scores compared to control, with recency for lipread sequences reduced. In Exper-

iment 1 of the current study, changing-state irrelevant sound caused an improvement in relative

recency, with this improvement reduced by articulatory suppression. Thus, on the basis of relative

recency scores, it appears that gestures behave in a somewhat similar manner to auditory items

in STM. The authors also show that despite certain observed similarities between serial recall for

auditory and lipread sequences, there is the suggestion that the mechanisms by which they mani-

fest rely more on attentional and perceptual processes, both modality-specific and domain-general.

Maidment et al. (2013) suggest that disruption of recency for a silently lipread sequence by an

auditory suffix occurs as a result of attentional capture (see, Hughes, 2014), whereas disruption of

recency for an auditory list by a silently lipread suffix occurs as a result of the lexical content of the

suffix being misidentified by participants. Thus, there is a requirement for further research in order

to fully investigate the way in which different forms of information are encoded and processed in

STM.

From Figure 3.1, it can also be seen that there is some scalloping of the serial position

curves within the no suppression condition; in each of the sound conditions, performance either

improves or plateaus from serial position two, to serial position three. While a ‘typical’ serial

position curve shows a somewhat uniform decrease in performance from serial positions one or two

to serial positions five or six, with a increase in performance at serial positions six or seven, the

curves obtained in the no suppression condition within Experiment 1 are not distinct to manual

gestures. Madigan (1980) discusses the prevalence of this Type II curve – with the typical serial

position curve being referred to as a Type I curve – making reference to a verbal serial recall study

study conducted by Morton, Crowder, and Prussin (1971) which contained 32 instances of this

form of serial position curve. It is believed that this shape of curve arises due to chunking.

The term chunking simply refers to the grouping together of individual pieces of information

(see Cowan, Chen, & Rouder, 2004; Miller, 1956; Tulving & Patkau, 1962). One of the most

common examples of chunking is observed with phone numbers; the digits are often grouped in

a pattern, e.g., 012. . . 34. . . 56 to aid in memory, with the number being recalled in the same

pattern. It is possible that chunking occurred in Experiment 1 in the no suppression condition,

with participants grouping items 1-3 together, which results in a smaller serial position curve within

the overall curve – performance is best at position one, decreases at position two, and gains some

form of recency advantage at position three. It can also be seen from Figure 3.1 that there are

some less prominent plateaus in performance at later positions in the changing-state no suppression

condition.

The finding that articulatory suppression significantly disrupted serial recall performance

for meaningless manual gestures conflicts with a central tenet of the WM model which states that

disruption in a focal task is due to a secondary task drawing from the same WM resource (e.g.,

both tasks utilising the phonological loop). Results from Experiment 1 however, suggest that this
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is not the case, implying that disruption can occur regardless of whether the focal and secondary

tasks draw from the same resource. The lack of an interaction between sound and suppression was

surprising given that there is an expectation for articulatory suppression to eliminate the changing-

state effect. Despite the main effect of sound being non-significant, the planned comparisons

revealed the presence of a significant changing-state effect which was eliminated with articulatory

suppression. This is at odds with the interference-by-content account of auditory distraction while

offering support for the interference-by-process account.
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Chapter 5

Experiment 2

5.1 Overview

Results from Experiment 1 show that serial recall for meaningless manual gestures displays similar

characteristics to that of verbal serial recall. While this finding points towards a functional equiv-

alence in the maintenance of order information across perceptual modalities, it is possible that

participants were able to verbally recode the manual gestures. Even though the manual gestures

in Experiment 1 were meaningless, participants may have been able to draw some similarities be-

tween these and known gestures, thus adding a verbal label and subvocally rehearsing this label.

If this was the case, it could be argued that the similarities observed between the results obtained

from Experiment 1 and those from verbal serial recall are due to the use of verbal performance

strategies. As such, Experiment 2 aims to make the potential use of verbal recoding more difficult

by using non-iconic manual gestures as the stimuli. An iconic gesture is one which contains some

semantic content related to the meaning of accompanying speech. In contrast, a non-iconic gesture

contains no semantic content related to the meaning of accompanying speech, thus, making it ex-

tremely difficult to verbally label (see, McNeill, 1985; Rudner, 2015). As such, this should provide

a better insight into the idea of a functional equivalence in STM as it will reduce the potential for

verbal recoding.

5.2 Method

Participants, Design, and Ethics

Eighteen (18) participants (female; N = 11; age; M = 28.72; SD = 11.90; Appendix 12) consented

(see, Appendix 2) to take part in this study. All participants had normal or corrected-to-normal

visual acuity and hearing and participants were not fluent in either British or Swedish sign language.

Participants were awarded a small honorarium for taking part. A within-participant design was

used, with all participants completing all aspects of the task. Ethical approval was obtained from

the University of Central Lancashire Ethics Committee.
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Serial Recall Task

A simple serial recall task – similar to that used in Experiment 1 – was utilised in this experiment

however, sequences of videos depicting non-iconic (see, Rudner, 2015) manual gestures were used

in place of meaningless manual gestures and the total number of trials were increased. In total,

30 unique sequences were created, with seven videos in each sequence. Each individual movement

video lasted a total of 1.75s, with an ISI of 0.25s. As a result, each sequence lasted for a total

of 14s. The same experimental blocks were used in this experiment (WS, NS), with the same

sound conditions (Sil, N = 10; SS, N = 10; CS, N = 10) in each block. The same irrelevant

sounds used in Experiment 1 (repetition of the syllable “Ah” or the letters A through G) were

again edited onto each video sequence. In order to control for potential learning effects, the sound

condition sequences were presented under differed between blocks; Sil trials within the NS block

became CS trials within the WS block, SS trials within the NS block became Sil trials within the

WS block, and CS trials within the NS block became SS trials in the WS block. Additionally,

no gestures were repeated in the same serial position within each block and no gestures were

repeated within each sound condition. The same articulatory suppression used in Experiment

1 (articulation of the word “saxophone”) was again used in this experiment. Practice blocks

containing three trials played in silence and containing no gestures used in the main experimental

blocks, preceded each experimental block. For sequence reproduction, still images showing the end

position of the movements were used, with care taken to ensure that no two images appearing

on the same reproduction screen displayed similarities. The task was created using E-Prime 3

(Psychology Software Tools; Pittsburgh: PA).

Figure 5.1: Image showing starting position of all non-iconic gestures in Experiment 2.

Procedure

Participants were welcomed and asked to read through the information sheet (see, Appendix 13)

had they not already done so. Once seated in front of the computer that ran the task, participants

were able to read through the task instructions, with the researcher providing verbal explanation.

All participants were reminded of the requirement to wear headphones throughout the entire exper-

imental procedure and prior to the articulatory suppression block, reminded of the requirement to
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articulate the word “saxophone” at a rate of once per second during presentation of the sequences;

the researcher remained within earshot to ensure all participants complied with this instruction.

Upon completion of the experiment, participants were debriefed through the use of a debrief sheet

(see, Appendix 14) and also verbally by the experimenter. Participants were reminded that they

were free to withdraw their data from the study up to the point of leaving the experimental session,

after which data would be anonymised.

Figure 5.2: Image showing an example end position of a non-iconic gesture in Experiment 2.

Statistical Analysis

A repeated measures ANOVA carried out on mean performance scores to examine main effects of

articulatory suppression and irrelevant sound as well as interaction effects. The same planned com-

parison paired samples t-tests used in Experiment 1 were also carried out on mean performance

scores for steady- and changing-state irrelevant sound conditions in each experimental block to

determine if the changing-state effect presented. The same relative recency analysis used in Exper-

iment 1 was also employed here. The alpha level for all statistical tests was set a .05. All statistical

analysis was carried out using SPSS 25 (IBM; United Kingdom) and Microsoft Excel (Microsoft;

United States).
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Chapter 6

Results

6.1 Serial Position Curves

Figure 6.1: Serial position curves for all sound and suppression conditions in Experiment 2.

From Figure 6.1, it can be seen that performance is noticeably reduced compared to performance in

Experiment 1 (see, Figure 3.1). In both silent conditions, it appears that the curves are somewhat

similar to the serial position curves observed in other serial recall studies however, there is a great

deal of variability in the serial position curves for all other conditions. Additionally, there appears

to be significantly more scalloping within the curves, suggesting that chunking was employed to

a greater extent than in Experiment 1. This may be due to the difference in stimuli used; the

non-iconic manual gestures used in Experiment 2 may have indeed made verbal recoding more

difficult for participants thus, there may have been a reliance on chunking to maintain item order.

6.2 Main Analysis

A 3 (sound: silent, steady-state, changing-state) × 2 (suppression: no suppression, with suppres-

sion) repeated measures ANOVA on mean performance scores for each participant revealed a signif-

icant main effect of suppression [F(1, 17) = 8.51,MSE = .006, p = .010, η2 = .33], a non-significant
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main effect of sound [F(2, 34) = .61,MSE = .003, p = .551, η2 = .03], and a non-significant in-

teraction effect of sound and suppression [F(2, 34) = 1.23,MSE = .005, p = .306, η2 = .07] (see

Appendix 15 for output).

6.3 Effect of Articulatory Suppression

Post-hoc paired samples t-tests were carried out on mean performance scores for each participant to

determine the effect of suppression on each sound condition. Again, due to multiple comparisons

being made, the Holm-Bonferroni correction (Gaetano, 2013; Holm, 1979) was used to protect

against Type I error. Results revealed a non-significant difference between silent trials (p = .09),

steady-state trials (p = .07), and changing-state trials (p = .56; see Appendix 16 for output) across

suppression conditions, with these results suggesting a floor effect was reached with regard to the

changing-state irrelevant sound condition and articulatory suppression. It should be pointed out

that, prior to correction, all p-values were significant.

6.4 Changing-state Effect

Planned comparison paired samples t-tests were carried out on mean performance scores for each

participant to investigate whether the changing-state effect presented with non-iconic manual ges-

tures and whether articulatory suppression would eliminate this effect if present. These tests

revealed a non-significant difference between steady- and changing-state trials in the no suppres-

sion condition (p = .17) and a non-significant difference between steady- and changing-state trials

in the suppression condition (p = .48; see Appendix 17 for output).

6.5 Relative Recency Analysis

Figure 6.2: Graph showing relative recency for all experimental conditions in Experiment 2.
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Relative recency was again used in an attempt to investigate the way in which manual gestures

are processed in STM. A 3 (sound: silent, steady-state, changing-state) × 2 (suppression: no

suppression, with suppression) repeated measures ANOVA on relative recency scores revealed a

significant main effect of sound [F(2, 34) = 4.54,MSE = .03, p = .018, η2 = .21], a non-significant

main effect of suppression [F(1, 17) = .57,MSE = .02, p = .462, η2 = .03], and a non-significant

interaction effect of sound and suppression [F(2, 34) = .54,MSE = .04, p = .590, η2 = .03] (see

Appendix 18 for output). Post-hoc paired samples t-tests revealed a significant difference between

silent, with suppression (M = .01, SD = .15) and steady-state, with suppression (M = .17, SD

= .20) relative recency scores; t(17) = 3.15, p = .036. All other results were non-significant and

again, the Holm-Bonferroni correction was used to protect against Type I error (see Table 6.1;

see also, Appendix 19 for output). While relative recency was improved on steady-state with

suppression trials compared to without suppression, suppression reduced relative recency for silent

trials, contrasting results observed in Experiment 1.

Table 6.1: Table showing means, standard deviations, significance values, and corrected significance

values for all non-significant relative recency post-hoc tests

Pair Sil-NS × SS-NS Sil-NS × CS-NS SS-NS × CS-NS Sil-WS × SS-WS Sil-WS × CS-WS SS-WS × CS-WS

M .083 × .144 .083 × .139 .144 × .139 .011 × .167 .011 × .122 .167 × .122

SD .203 × .146 .203 × .191 .146 × .191 .149 × .203 .149 × .152 .203 × .152

p .373 .410 .926 .006 .030 .502

p (corrected) 1.00 1.00 1.00 .036 .150 1.00
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Chapter 7

Discussion

Experiment 2 employed the use of non-iconic manual gestures in an attempt to prevent participants

from utilising verbal recoding as a performance strategy. As stated previously, non-iconic gestures

are difficult to verbally label due to their lack of semantic content and as such, verbal recoding

becomes a less effective strategy for maintaining item order. From Figure 6.1, it can be seen that

the use of non-iconic gestures may indeed have reduced participants ability to verbally recode the

movements as overall performance is reduced when compared with performance in Experiment 1.

Support for this view may be provided by the increased prevalence of scalloping observed in the

serial position curves in Experiment 2. This may suggest that participants relied on chunking as

a performance strategy, potentially due to the ineffectiveness of verbal recoding. However, it is

also possible that overall performance may have been reduced as a result of the complexity of the

task (see later in this section). While there appears to be considerably more variability in the

serial position curves in Experiment 2, it should be noted that both silent conditions displayed a

somewhat similar bow-shaped curve found in Experiment 1 and previous research into serial recall

for other forms of immediate memory.

With regard to the relative recency results observed in Experiment 2, while there was a sig-

nificant main effect of sound, this should be interpreted with a high degree of caution; no effect was

found in Experiment 1 which consisted of a much larger sample size and from previous research, it

is evident that sample size may dictate the presence or absence of a significant result (see e.g., Jones

et al., 1995; Kvetnaya, 2018). However, there are some similarities to be highlighted between the

experiments. Again, the addition of articulatory suppression caused relative recency performance

to improve with steady-state irrelevant sound and reduce with changing-state irrelevant sound –

on silent trials, performance was reduced in contrast to the improvement observed in Experiment

1. This pattern of results may prove a fruitful starting point for further investigation into the

manner in which manual gestures are processed however, to reiterate, caution should be taken

when interpreting the relative recency results obtained in Experiment 2 given the small sample

size.

Interestingly, while the curves for no suppression and suppression blocks in Figure 6.1 lack
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the same distinct separation seen in Experiment 1 (see Figure 3.1), a significant main effect of

articulatory suppression was found, indicating disruption of serial recall performance. While post-

hoc tests did reveal significant differences between silent and steady-state and silent and changing-

state trials, these became non-significant upon correction. It is possible that with a larger sample

size, the significant differences found during initial analyses may survive correction, as observed in

Experiment 1. Despite this, the mere suggestion that articulatory suppression can disrupt serial

recall of manual gestures shown in this study goes against the view of the WM model in that

reduced performance on a focal task is as a result of a secondary task or distractor utilising the

same WM resources.

While a significant changing-state effect was found in Experiment 1, no such effect presented

in Experiment 2. This may be due to some of the limitations of the experiment, two of which

warrant further discussion in this section. First, the sample size is considerably lower than that of

Experiment 1. As can be seen from (Kvetnaya, 2018), sample size can have a considerable effect

on the outcome of a study; while (Kvetnaya, 2018) found non-significant results compared to the

significant results found in (Jones et al., 1995), it is still possible that with a larger sample size,

significant results may have been observed with regard to the changing-state effect, particularly

given the results of Experiment 1 however, it should be reiterated that the results in Experiment

1 may have been obtained due to the use of verbal recoding.

Secondly, the demands of the task may also have contributed to the non-significant changing-

state effect. While task difficulty and participant focus were not recorded during either Experiment

1 or 2, upon completion of Experiment 2, a number of participants reported that the task was

extremely difficult, with some reporting that they used guessing in order to reconstruct some of

the sequences1. Therefore, it could be suggested that the difficulty of the task may have caused

participants to lose focus and employ guessing in order to complete the task. Clearly, this would not

facilitate the manifestation of the changing-state effect however, these are purely subjective reports

and future research should include more objective measures of task difficulty and participant focus.

1When data from participants with an average performance of .3 or higher across steady- and changing-state

trials, both with and without articulatory suppression were analysed, the changing-state effect presented which was

subsequently eliminated by articulatory suppression. However, the conclusions that can be drawn from this, and

indeed, Experiment 2 in general, are limited due to the small sample size
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Chapter 8

General Discussion

8.1 Overview

The present study aimed to investigate how order information is maintained for sequences of

manual gestures. Previous research on verbal, spatial, and visual domains alludes to an amodal

mechanism for the maintenance of order information in serial recall (e.g., Jones et al., 1995; Smyth

et al., 2005) however, there is minimal research relating to how order is maintained for sequences

of manual gestures, and indeed, movements in general. While results of the present study are

somewhat mixed, there are some of note which should be useful to the ongoing debate regarding

the notion of functional equivalence, as well as in relation to models of serial STM and auditory

distraction. It is important to highlight that while there are some limitations with regard to the

tasks used in the current study, they appear to have been equated with other serial recall tasks

to some extent. Avons (1998) suggested that should serial recall tasks be equated with regard to

task composition and demands, similar bow-shaped serial position curves should result. Indeed,

this appears to be the case in the current study (to a greater extent in Experiment 1), with both

Type I and Type II curves being observed. In terms of the primacy model (Page & Norris, 1998) –

which models the function of the phonological loop – the majority of serial position curves from the

current study follow the model in that recall at serial position one is maximal (however, see Figure

3.1, steady-state, with suppression) and that performance decreases as the sequence progresses,

with some exceptions in the current study. Thus, it should be stated that the results should be

interpreted with some degree of caution.

8.2 Processing of Manual Gestures in Short-term Memory

As stated previously, there is a distinct lack of research into how manual gestures are processed

in STM. Despite some research suggesting that an aspect of the visuospatial sketchpad plays

a role in this (see e.g., Baddeley, 1983, 2007; Smyth et al., 1988; Smyth & Pendleton, 1989),

with movements stored in a kinaesthetic code, it has not been fully elucidated as to whether this
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kinaesthetic code is distinct from, or draws upon visual and spatial processing. Indeed, there is

also the distinct possibility that processing of movements in STM draws upon verbal processes

(i.e., verbal recoding and subvocal rehearsal), with reduced performance as a result of an inability

to verbally recode and therefore rehearse movements. In relation to previous research examining

serial recall for manual gestures, Wilson and Fox (2007) suggested that an ’articulatory’ loop for

movements, facilitated by sensory and motoric processes, could be responsible for the maintenance

of order information. The results of the current study support this notion in theory however, it

remains to be determined whether the mechanism by which order information is maintained for

manual gestures is a distinct entity or an amodal mechanism, responsible for order maintenance

across all STM domains. A direction for future research could be to utilise various suppression

tasks (e.g., articulatory suppression, tapping) in order to determine which causes most disruption

to serial recall of manual gestures.

The addition of relative recency analyses was in service to a secondary aim of the study

to investigate the way in which manual gestures are processed in STM. While the results should

indeed be interpreted with a degree of caution, there are some interesting patterns. The addition of

articulatory suppression was able to – in both experiments – increase relative recency scores with

changing-state irrelevant sound and reduce relative recency scores with changing-state irrelevant

sound. While some of the scores observed follow along with previous research examining relative

recency for lipread and auditory material (see, Maidment et al., 2013), there is a need for further

research with the main goal of comparing and contrasting the encoding and processing of various

forms of information in STM with, based on the results of the current study, a particular focus on

the impact of articulatory suppression and irrelevant sound.

8.3 The Effect of Irrelevant Sound

The stimuli used as the TBR material in both experiments of the current study was non-phonological

and as such – on the WM model – disruption by means of irrelevant sound interfering with TBR

items should not be possible; however, results from the current study go against this central tenet

of the WM model (see e.g., Postle, 2006). Indeed, it could be suggested that participants utilised

verbal recoding that allowed some verbal representation of the movement to enter the phonological

store however, to assume that participants had the ability to verbally recode and rehearse each

meaningless or non-iconic gesture given each movement lasted a total of 1.25s, with an ISI of 0.75s,

could be considered somewhat implausible. This is particularly true when considering the non-

iconic nature of the gestures used in Experiment 2 however, comparison of the results from each

experiment may lead to this suggestion. Despite this potential conflict, as the stimuli used were

non-phonological and, in theory, did not gain access to the phonological store, disruption of serial

recall performance by irrelevant sound provides support for the interference-by-process account of

auditory distraction over the interference-by-content account.
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The interference-by content account of auditory distraction states that disruption of serial

recall performance is mediated by the similarity of the TBR and TBI items (Cowan, 1999; Ober-

auer & Lange, 2008; Salamé & Baddeley, 1982). As stated previously, the stimuli used in both

experiments of the current study were distinctly dissimilar, with short videos depicting manual

gestures used in the TBR sequences and speech sounds used in the TBI sequences. Therefore, it

cannot be suggested that the similarity between the TBR and TBI items was the cause of any

disruption. Rather, the results from the current study, particularly those from Experiment 1, pro-

vide support for the interference-by-process account (see e.g., Hughes et al., 2013; Hughes et al.,

2005, 2007), which states that the process of maintaining item order for both the TBR and TBI

stimuli, interfere with each other, resulting in reduced serial recall performance. Thus, the result

obtained from the current study, suggest that, in its current state, the WM model is not best

suited to account for the disruption of serial recall for manual gestures by irrelevant sound; rather,

the perceptual-gestural account (see, Hughes et al., 2016; Hughes & Marsh, 2017; Hughes et al.,

2009; Jones et al., 2006, 2007; Jones et al., 2004; Macken & Jones, 2003) better accounts for the

disruption observed.

The perceptual-gestural account posits that general-purpose perceptual input and motor

output processes are co-opted in order to meet the demands of a task, with subvocal rehearsal

binding the items within a sequence into a single motor object in verbal serial recall, thus con-

straining item order (see, Hughes et al., 2016, see also, Section 1.3). As stated previously, it

cannot be assumed that participants verbally recoded the TBR items, therefore it cannot be as-

sumed that rehearsal was utilised in order to maintain the order of the TBR sequences however,

the perceptual-gestural account has been extended to include oculomotor processes (see, Guérard

& Tremblay, 2011) therefore, there is the possibility that it could be extended to manual gestures.

Given that the interference-by-process account suggests an amodal representation of order infor-

mation across memory domains, it is expected that serial recall performance for manual gestures

would be impaired, as it was in Experiment 1, with the potential that the same, more substantial

disruptions would have been observed in Experiment 2 with a larger sample size. This falls in line

with the disruption of serial recall for spatial material by changing-state irrelevant sound (see e.g.,

Jones et al., 1995) however, this remains to be elucidated further given the results of (Kvetnaya,

2018) and our lab (Marsh et al., unpublished data). It may also be possible that the primacy

model (Page & Norris, 1998) could account for the changing-state effect observed in Experiment 1

however, this would only be the case if verbal recoding was utilised by participants.

While there is little known regarding how order information for sequences of manual gestures

is maintained in STM, there has been the suggestion that the manual-motoric system is recruited

in order to better retain sequences of movements. Evidence in support of this view can be found

in studies that have utilised electromyography (EMG). For example, Morsella and Krauss (2005)

requested that their participants retrieve a word from a presented definition. The results showed

increased electromyographic activity when the words were concrete (e.g., castanets) compared with
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abstract words (e.g., paradox). As such, should the manual-motoric system be co-opted in order

to retain the order of sequences of movements in STM, the disruption of serial recall as a result

of irrelevant sound could be better accounted for by not only the perceptual-gestural account, but

also the interference-by-process account of auditory distraction as this account does not place focus

on the similarity of the TBR and TBI items, but rather the simultaneous process of maintaining

item order.

8.4 The Effect of Articulatory Suppression

The perceptual-gestural account may also be better suited to account for the disruption observed

as a result of articulatory suppression. On the WM model, articulatory suppression is believed

to impede the revivification of decaying memory traces within the phonological store, as well as

prevent the conversion of of visual-verbal material to phonological from (see, Baddeley, 2003; Bad-

deley et al., 1975, see also, Section 1.5). As the material within the TBR sequences in the present

study are neither phonological or verbal in nature, and it cannot be assumed that participants were

able to effectively utilise verbal recoding, it thus, cannot be inferred that articulatory suppression

resulted in disruption of performance by preventing revivification or conversion of the TBR items.

Additionally, the results from the current study are at odds with a central view of the WM model

which states that disruption on a focal task occurs as a result of a secondary task or distractor

drawing from the same WM resource (e.g., both focal and secondary tasks utilising the phonolog-

ical loop). As stated, the TBR material used in both experiments was non-phonological meaning

it cannot be robustly stated that disruption by articulatory suppression was caused by overuse

of the same WM resource. Since it remains to be determined whether the processing of manual

gestures relies more on verbal or visual-spatial processes, it would be pertinent to examine if the

use of tapping as a secondary task disrupts serial recall of manual gestures to a greater extent than

articulatory suppression.

As previously discussed, there is a suggestion that the manual-motoric system is adopted

in order to maintain sequences of manual gestures in STM. If this is indeed the case, disruption

of serial recall as a result of articulatory suppression may be caused by a high demand being

placed on the motor system. As the perceptual-gestural account states, items within a sequence

are bound in a single motor object, meaning both TBR and TBI sequences would be bound in

the same manner. Paired with the addition of articulatory suppression which is known to utilise

vocal-motor processes, it may be suggested that this places a high demand on the motor system,

with this increased demand leading to disruption of performance. Indeed, it seems reasonable to

invoke this limitation of the motor system as it appears somewhat analogous to the view of the

WM model wherein disruption on a task is as a result of primary and secondary tasks drawing from

the same WM resource however, in the case of the former, there is no need to invoke conceptual

storage mechanisms.
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8.5 Evidence for an Amodal Seriation Mechanism

The results from the current study offer some support for the notion of an amodal mechanism

for the maintenance of order information in STM. As the stimuli in the TBR sequences are non-

phonological and it cannot be assumed that participants utilised verbal recoding in order to re-

member the order of items, it cannot therefore be stated that subvocal rehearsal was used to

maintain the order of the items within the TBR sequences. This leads to the suggestion that order

information is maintained by some other mechanism that can be disrupted by irrelevant sound and

articulatory suppression. There are also a number of similarities between the results of the current

study and previous research in the various domains of immediate memory which provide further

support for this view.

Experiment 1 of Jones et al. (1995) found that serial recall for spatial items resulted in both

primacy and recency effects with a number of other studies (Avons, 2007; Farrand et al., 2001;

Guérard & Tremblay, 2008; Tremblay, Parmentier, et al., 2006) providing evidence in support of

this finding. That the serial position curves from both experiments of the current study display

similar characteristics to that of Jones et al. (1995) and previous research utilising verbal serial

recall, offers support for the suggestion of Jones and colleagues in that this provides some degree

of support for a functional equivalence between not only verbal and spatial material, but now

also manual-gestural material. The results of Experiment 1 in the current study are similar to

those obtained in Experiment 4 of Jones et al. (1995) in that both steady- and changing-state

irrelevant sound was able to disrupt serial recall performance, with changing-state irrelevant sound

being significantly more disruptive. However, it should be noted that Kvetnaya (2018) failed to

find an effect of sound type, which is also consistent with the results obtained in the current

study, even though significant differences were found with planned comparisons in relation to the

changing-state effect.

In relation to previous visual STM research, the effect of articulatory suppression observed in

the present study is similar to that observed in Experiment 2 of Smyth et al. (2005). It was shown

that both articulatory suppression and spatial tapping disrupted serial recall for faces however,

articulatory suppression was more disruptive. Taken together with the result of the current study,

this provides evidence in support of either a domain-general mechanism for the maintenance of

item order, or at least, a domain-specific mechanism which results in similar effects due to the

similarity of their action, a view adopted by Smyth et al. (2005). This is based on the fact that

performance on both visual and manual-gestural serial recall tasks have been shown to be disrupted

by articulatory suppression, a distinctly phonological task.

While it cannot be conclusively stated that an amodal mechanism is responsible for the

maintenance of item order, it could be suggested that the results show maintenance of order infor-

mation for manual gestures is maintained by the same mechanism responsible for the maintenance

of order information for visual items given the similarities between the results of the current study

and the results observed in Smyth et al. (2005). Further research is needed to determine whether
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this mechanism is responsible for the maintenance of order information for all forms of stimuli,

with further equating of the serial recall task for manual gestures key to determining whether this

is the case.

8.6 Limitations and Considerations

Clearly, there are a number of limitations with the current study, not least the sample size of each

experiment, particularly Experiment 2. Another noteworthy limitation was the reuse of sequences

across blocks in each of the experiments. As Avons (1998) argued, should serial recall tasks

be equated across memory domains, similar results may be observed. While the tasks utilised in

Experiments 1 and 2 were equated in terms of overall structure, the sequences themselves contained

a rather large number of distinct stimuli compared to, for example, the closed sets used in verbal

serial recall thus, making it illogical to assume that similar serial position effects would arise.

Additionally, the stimuli used were not from a learned set, as is the case with most verbal serial

recall studies, hence the reuse of sequences across blocks in Experiment 1. Furthermore, while the

movements used in Experiment 1 were played twice at the beginning of each block, it cannot be

assumed that participants had sufficient time to learn these.

It is also worth stating that the stimuli used within Experiment 2 may have impacted upon

performance. In Experiment 1, the stimuli depicted gross movements of the hands and/or arms,

whereas in Experiment 2, there were a number of smaller hand movements within the overall

movement which could lead to the suggestion that participants had to maintain a sequence of

movements for each item within the TBR sequence. Furthermore, the use of still images on the

order reconstruction screen was a significant limitation of each experiment. The task required par-

ticipants to remember the order of sequences of manual gestures and had the order reconstruction

screen shown videos or graphic interchange formats (GIFs), this may have resulted in improved

performance. Unfortunately, this was out of the control of the researcher as the software was un-

able to deal with such heavy demand given that there was a minimum of 84 videos in each block of

the experiments. While this can be seen as a limitation, it may also highlight a potential direction

for future research. Reproduction of the sequences in these experiments was achieved through the

use of still images which may suggest that participants were utilising visual STM rather than some

form of kinaesthetic STM. Subsequent research may benefit from examining the possibility that

memory for sequences of movements does not rely on a currently undefined kinaesthetic store, but

rather from visual and spatial mechanisms that are already known to give rise to similar results.

Another limitation in the current study was in the attempt to prevent participants from

utilising verbal recoding and subvocal rehearsal. While the re-enactment of movements may have

reduced participants desire to verbally recode the manual gestures, enactment of a movement (or

action phrase, e.g., ‘waving’) has been shown to improve item-specific processing however, it does

not improve relational processing (i.e., processing the items based on relations with one another,
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e.g., the order items were presented; Engelkamp and Dehn, 2000). However, an interesting direction

for future research would be to utilise mental re-enactment of movements during manual-gestural

serial recall as this would act as an analogue of subvocal rehearsal, allowing for a more direct

comparison of the effects of irrelevant sound and articulatory (and spatial) suppression. It would

also be beneficial to directly compare performance on manual-gestural serial recall with that of

verbal, spatial, and visual material, utilising as close to identical methodologies as possible.

As such, there are a number of considerations for future research. First and foremost, the

serial recall task used should be equated to a greater extent in order to provide more validity and

reliability. For example, a small, closed group of manual gestures could be provided to participants

prior to the experimental procedure. Participants could then be given a short period of time to

learn these manual gestures via re-enactment. This may encourage participants to use some form of

mental re-enactment of the gestures rather than a reliance on verbal recoding however, the learning

phase should be done in the presence of the researcher to ensure that participants do not add verbal

labels to each of the stimuli. The task itself could then include sequences of the learned gestures,

or smaller, constituent parts of the gestures in order to further reduce the potential for verbal

recoding. The order reproduction screen should also replay the gestures contained within the TBR

sequences rather than use still images. While this is one potential method for future research, it

would be pertinent to examine all possible methods for examining serial recall of manual gestures

in order to optimally equate this task with others from previous research in other domains of

immediate memory.

8.7 Conclusion

The findings from the current study, while inconclusive, provide some evidence for a functional

equivalence across domains of immediate memory, as well as the suggestion that manual gestures

are encoded in a manner similar to that of auditory material, i.e., heard and not seen. Clearly,

further research needs to be carried out in order to fully determine if a domain-general or domain-

specific mechanism is responsible for the maintenance of item order however, the results obtained

in this study show distinct similarities to serial recall for other domains of immediate memory

thus, pointing towards an amodal mechanism. Additionally, the results of this study suggest that

the perceptual-gestural account, rather than the WM model, is currently in a better position to

account for the effects observed; however, the requirements for further research leaves not only

the notion of a functional equivalence across domains of STM, but also the model which can best

account for these effects, yet to be fully elucidated.
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