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Abstract 

We encounter thousands of species of fungi each day, only a few of these are pathogenic to humans and 

even fewer are life threatening.  However, current fungal infection treatments come with a wide variety 

of issues. With some exhibiting high nephrotoxicity due to targeting issues, and others a lack of 

efficiency.  

Aptamers are short oligonucleotides, which exhibit affinity and specificity for a target molecule. These 

aptamers are determined through the process of SELEX. This is where target molecules, or in this case 

whole cells, are incubated with a pool of random aptamers. Non-binding aptamers are removed and 

binding aptamers are eluted and amplified by PCR. This enriches the pool with binding aptamers. This 

process continues as a cycle with each round of selection removing non-binding aptamers, and further 

amplifying the numbers of binding aptamers. Once rounds of selection are completed then the 

aptamers can be tested individually for their binding properties. Aptamers have already been found to 

be useful in industrial settings, with some aptamers even beginning to show in clinical settings.    

This study took whole cell A. fumigatus and C. albicans, in order to select aptamers that were specific to 

these cells without limiting the targets by incubating with individual target molecules. This study found 

isolated 11 aptamers with binding potential; these were then tested further to determine the binding 

capabilities, and their specificity. These aptamers were then isolated, sequenced and characterised to 

compare against each other and to attempt to determine key binding regions of the aptamers.  
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1.1 Fungi 

There are estimated to be around 611,000 species of fungi on Earth, approximately 7% of all 

eukaryotic species (Mora et al., 2011). Of these around 600 species are human pathogens 

(Brown, Denning and Levitz, 2012), although a relatively small number, this group 

encompasses both those that cause mild infections and those that have the potential to cause 

life threatening infections.  Around 3 million people each year acquire an invasive fungal 

infection, with around 50% of these dying from the infection (Brown et al., 2012). The overall 

number of invasive fungal infections is on the rise with the increase in invasive medical 

interventions like haemopoietic stem cells transplants (Vazquez, Miceli and Alangaden, 2013) 

bringing with them an increased risk of infection. Also, the rise of immunosuppressive 

conditions like HIV/AIDS, where patients are especially vulnerable to fungal infections 

(Armstrong-James, Meintjes and Brown, 2014).   

1.2 Systemic Fungal Infections 

As with bacteria, most life threatening complications arise when microorganisms enter the 

tissue and bloodstream of a patient. Most healthy individuals have the immune capacity to 

prevent this from happening, however, patients with pre-existing conditions or patients who 

have undergone invasive surgical procedures are most at risk (Brown et al,. 2012). 

Mucosal Candidiasis is one of the early and most predominant infections in HIV infected 

patients (Greenspan and Greenspan, 1996).  Up to 90% of patients with HIV suffer from at 

least one case of oral candidiasis in their progression to AIDS. (Cassone and Cauda, 2012). This 

correlation is thought to be caused by the depletion of CD4 cells specific to Candida albicans, 

meaning that the immune systems no longer has the full capacity to control the spread of 

Candida (Nanteza et al., 2014). Other kinds of immunosuppression include conditions where 

the immune system neutrophil count is lowered, like with haemopoietic stem cell transplant or 
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certain kinds of chemotherapy, that can lead to cases of invasive Aspergillosis, as neutrophils 

play an important role in the control of Aspergillus species infection (Mircescu et al., 2009).  

A common risk of infection is patients that have undergone invasive treatments, for instance 

urinary catheterisation is a common cause of nosocomial infection especially in patients 

catheterised for a prolonged length of time. Urinary tract infections (UTI) caused by Candida 

species account for 10-15% of UTIs (Bukhary, 2008). 

 

1.3 Candida species 

Candida are a species of polymorphic fungi responsible for a wide range of cases of systemic 

fungal infections, referred to as Candidiasis. The most prevalent of these species is Candida 

albicans, which is responsible for the highest number of both invasive and superficial fungal 

infections. This opportunistic fungus lives commensally on the skin, the gastrointestinal tract 

and mucosal membranes of up to 75% of the population (White, 2004).  Public Health England 

(2018) reported 42% of cases of candidiasis as being caused by C. albicans, 24% being caused 

by Candida glabrata and 10% caused by Candida parapsilosis (Table 1.1). 
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Table 1.1 (Public Health England, 2018) A summary of Candida spp. and the % of Candida 

infections they cause, in the UK from 2013 to 2017. 

 

The overall increase in infections since 2013 suggest that Candida species infections are a 

continuing threat. There are also a number of concerns regarding the development of drug 

resistant strains of these fungi. One of the fastest emerging species is Candida auris 

(Chowdhary, Sharma and Meis, 2017), with instances of this strain worldwide having increased 

over the past few years. This strain is commonly misdiagnosed as Candida haemulonii, their 

close phylogenetic relationship only being differentiated by sequence analysis of the D1/D2 

domain of the large ribosomal subunit of 26S rRNA gene and the internal transcribed spacer 

regions of the nuclear rRNA gene operon (Satoh et al., 2009). 

Along with the problem of frequent misdiagnosis, this strain has developed resistance to many 

commonly used anti-fungal drugs. The strain is likely almost always resistant to fluconazole but 

relatively susceptible to the group echinocandins (Arendrup et al., 2017).  
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1.4 Candida albicans morphology 

C. albicans is a polymorphic fungus that grows in several different forms depending on a range 

of environmental cues. Under conditions that provide opportunity for infection, like low cell 

densities of competing organisms, (Hornby et al., 2001) Candida albicans will appear more in 

their hyphal form (known as psuedohyphae shown in figure 1.1). However, when living 

commensally, they exist in their more yeast like form (Lu, Su and Liu, 2014).  

 

Figure 1.1 Major morphologies of C. albicans. (Thompson, Carlisle and Kadosh, 2011). 
Visualised by differential image contrast (DIC) scale bar 10µm. Left, C. albicans in their yeast 
like form and schematic representation underneath. Right C. albicans in their pseudohyphal 
form and below a schematic representation of this.  

 

Although C. albicans predominantly exists in its yeast like form, when environmental aspects 

such as microbiota, temperature or host immunity change this gives C. albicans the 

opportunity to infect the host through its hyphal form. Initiation of the transformation can be 

triggered in a number of ways depending on the environmental cue, CO2 for example directly 

activates Cyr1 (Hall et al., 2010) whereas glucose as a signalling molecule activates expression 

of the Ras1 protein (Leberer et al., 2001) which then results in a signalling cascade of adenyl 
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cyclase Cyr1. This activates production of cAMP then activation of protein kinase A leading to 

the production of hyphae, critical for C. albicans virulence. Studies have shown that strains of 

C. albicans unable to produce hypha are avirulent (Lo et al., 1997).  

The presence of other microbes has also been shown to inhibit early stage morphogenesis of 

Candida albicans from their yeast like form to their hyphal form (Matsubara et al., 2016), (Cruz 

et al., 2013). For instance, within the gut biome Clostiridum difficile are a common organism 

and produce a substance called p-Cresol, which is toxic in high concentrations to most 

microbes but has been shown to directly inhibit the hyphal and biofilm formation of C. albicans 

(van Leeuwen et al., 2016). Studies like this have shown that there is more to the 

morphogenesis of C. albicans than environmental cues, and in complex environments like the 

gut biome, C. albicans may rely more on other microbes for signalling the start of infection. 

Biofilm formation is an important factor in the pathogenesis of C. albicans. A biofilm is a 

community of adherent cells with properties different to that of free floating cells. The 

formation of C. albicans biofilm is closely linked to its hyphal state and the formation of these 

biofilms is an important step in systemic infections. Cells adhere to a surface, regulated by Bcr-

1 and including Hwp1 and Als3 (Nobile et al., 2006) and begin to form hyphae which act as 

structural support for biofilm formation and with the regulation of Bcr-1 allows for the hyphae 

to adhere to one another (Nobile and Mitchell, 2005). These biofilms then produce an 

extracellular matrix, and release cells continuously. These released cells, although similar to C. 

albicans in their commensal state, exhibit increased adherence properties, the ability to form 

biofilms more readily and in mouse models, have shown increased virulence (Uppuluri et al., 

2010).  
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Figure 1.2 Structure of Candida albicans cell wall and membrane. The cell membrane is the inner 

most layer surrounding the contents of the cell, made up of a phospholipid bilayer. This is then 
surrounded by a layer of chitin, β 1,3 and β 1,6 - glucan comprising the inner wall. The outer wall is then 
a layer of mannoprotein (taken from Gow et al., 2011).  

 

The cell wall plays a crucial role in the virulence of C. albicans, containing many key proteins 

for the stages of infection.  Figure 1.2 shows a schematic diagram, along with an image of C. 

albicans cell wall and membrane. The cell wall has a layered structure with the inner wall 

comprised of chitin, a linear polysaccharide linked to β-1,3-glucans which provides the cell with 

structural integrity. β-1,6-glucan links the inner wall to the outer wall which is mainly 

comprised of mannan and β-1,6-glucan along with cell wall proteins. Beneath the cell wall is 

the cell membrane, structured the same as all mammalian cells, with a lipid bilayer. This lipid 

bilayer is interspersed with ergosterol (cholesterol in mammalian cells) an important sterol for 

the maintenance of the integrity, fluidity and rigidity of the plasma membrane (Abe, Usui and 

Hiraki, 2009). 
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1.4.2 Candida albicans pathogenicity 

Approximately 75% of women worldwide suffer from at least one case of vulvovaginal 

candidiasis in their life, with 40-50% of these suffering a reoccurrence (Sobel, 2007). 

Treatments for vulvovaginal candidiasis are readily available and infection causes a relatively 

small amount of damage to the host. However more serious infections occur in 

immunocompromised patients, as the host immune system, which monitors commensal 

growth and responds to pathogenic growth (mainly the formation of hyphae) is not fully 

functional thus allowing Candida albicans to readily form hyphae (Rast et al., 2016). 

There are three main stages of infection, adhesion, invasion and damage. The formation of 

hyphae is triggered by the adhesion of the cell to a mucosal membrane leading to the 

expression of two key hyphal proteins Hwp1 (Staab et al., 1999) and agglutinin-like sequence 3 

(Als3) (Zhao, 2004). Hyphal growth penetrates the epithelial tissue and secretes a cytolytic 

toxin called Candidalysin, a peptide encoded by the hypha-associated ECE1 gene, which causes 

significant damage. Candidalysin, when secreted in sufficient quantities, intercalates and 

permeabilises host epithelial membranes and induces cell lysis (Moyes et al., 2016). This leads 

to the formation of multiple necrotic nodules, which cause extensive organ damage and can 

eventually lead to organ failure. 

However, penetration of Candida albicans in the epithelial tissue is not the only concern. In 

2017 the rate of candidaemia was 3.6 per 100,000 population found in blood isolate. 42% of 

these were Candida albicans (Public Health England, 2018).  

 

1.5 Aspergillus fumigatus 

The thousands of species of fungi existing in many environmental niches make human contact 

with fungi a common occurrence.  Aspergillus fumigatus are a ubiquitous human fungal 
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pathogen, living in soil and decaying plant matter. The abundance of this organism is due to 

their ability to survive many environmental conditions. Like most human pathogens A. 

fumigatus has an optimal growth temperature of 37°C, however, unlike most other pathogens 

it has a high tolerance for temperature changes up to 60°C (Beffa, et al. 1998). The causes of 

this have been investigated and a link between thermotolerance and virulence was found. A 

fumigatus grows in hyphal form and spreads through its dispersion of spores.  In order for A. 

fumigatus spores to form hyphae they must germinate, in this process the number of 

ribosomes increases 10 fold to support hyphal growth (Brogden et al., 1984) 

 Aspergillus fumigatus is the most commonly recovered species from patients with 

aspergillosis followed by Aspergillus niger, flavus and terreus (Morgan et al. 2005). 

 

1.5.2 Aspergillus fumigatus morphology 

A. fumigatus are saprotrophic fungi thriving in soil with decaying plant and animal matter. A. 

fumigatus grows in multicellular branched structures in their hyphal form. However, when 

conditions are unfavourable A. fumigatus produces spores called conidia on specialised hyphal 

structures called conidiophores by a series of signalling cascades. These spores are then very 

efficiently (Taha et al., 2005) released into the air, where humans are estimated to inhale 100-

1000 conidia each day. Due to their small size(2-3µm) they can reach the alveoli of the lungs 

(Latgé, 1999) where they adhere to the surface. The cell wall of A. fumigatus conidia is similar 

to that of most fungal cell walls, with the presence of β 1,3 and β 1,6 - glucans and chitin, 

however they also contain a protective coating of melanin. The melanin is one of the reasons 

why the spores are so resilient. Melanin provides resistance to environmental stresses UV 

radiation and oxidising agents (Rosa et al., 2010).  The spores are able to reproduce asexually. 

Once the spores are established in an ideal growing environment the spores can then 
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germinate into full hyphae. The adherence of the spores to a suitable surface (like lung alveioli) 

is what triggers hyphal growth. 

1.5.3 Aspergillus fumigatus pathogenicity 

Rates of Aspergillus fumigatus infection in the UK are thought to be more substantial than 

previously reported. Groups of at risk patients include those living with AIDS, Patients who 

have undergone Haemopoietic stem cell transplants and those with chronic asthma (Baddley, 

2011). 

 

Invasive Infection Risk Group Number of Expected 

Cases 

Rates per 100,000 

population 

Invasive aspergillosis All risk groups* 

except critical care 

patients 

2901-2912 4.59 - 4.61 

 Critical care patients 387-1345 0.61 - 2.13 

Chronic pulmonary 

aspergillosis - all 

All risk groups** 204-3600 0.32 - 5.70 

Allergic 

bronchopulmonary 

aspergillosis (ABPA) 

All risk groups*** 110,667-235,070 175 - 372 

Severe asthma with 

fungal sensitisation 

(SAFS) 

All risk groups**** 121,734-413,724 192- 654 

 Table 1.2. (Pegorie, Denning and Welfare, 2017) Total Estimates of the burden of various types 
of aspergilliosis on the at risk UK population. * Risk groups include: Allogeneic hematopoietic stem cell 

transplantation (HSCT) and autologous HSCT patients; solid organ transplants; people living with AIDS; Acute 
myeloid leukaemia (AML), Acute lymphoblastic leukaemia (ALL), Chronic myeloid leukaemia (CML), Chronic 
lymphocytic leukaemia (CLL), Non Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL) and Myeloma patients; 
Chronic granulomatous disease (CGD) patients; Chronic obstructive pulmonary disease (COPD): emergency hospital 
admissions,; critical care patients; patients with lung cancer. ** Risk groups include: pulmonary tuberculosis (PTB), 
non-tuberculous mycobacterial lung infection, COPD, sarcoidosis, and allergic aspergillosis complicating asthma. *** 
Risk Groups include: Asthma and Cystic Fibrosis. **** Risk Groups include: Severe Asthma, usually those with poor 
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control of the condition (treatment- resistant severe asthma, undiagnosed severe asthma and difficult to treat 
severe asthma). 

 

Table 1.2 shows the estimated rates of various A. fumigatus infections on at risk patient 

groups. Severe asthma with fungal sensitivity is predicted to be the most prevalent estimated 

to occur in 192-654 patients per 100,000.  

Little work has been done on determining the incubation time of A. fumigatus, however, Bénet 

et al., (2013) found that incubation times in patients with acute myeloid leukaemia can be 

around 15 days. This has a knock on effect in many aspects of fungal infection firstly in 

determining the location of infection source, meaning that other cases of infection cannot 

easily be prevented. Also that treating infections early are very difficult as by the time the 

patient becomes symptomatic the infection is already deep within the tissue. 

Once adhered A. fumigatus establishes hyphal growth and, as previously described in C. 

albicans, biofilms are also formed by A. fumigatus. These are often highly resistant to 

antifungal therapies, as pathogenic aspergilli can expel antifungal compounds using multidrug 

efflux pumps, this means that a high concentration of antifungal drug is necessary to 

successfully treat infection. (Kaur and Singh, 2014). 

The previously discussed melanin coating on the spores contribute greatly to the infectious 

capabilities A. fumigatus.  

1.6 Fungal infection diagnosis  

Currently fungal infections are diagnosed with a series of laboratory test including the use of 

microscopy, sample culture and histopathology. Sample culture is the starting point for most 

suspected cases of fungal infection. A sample is taken and grown on a variety of growth 

mediums to determine the type of infection. However, in the case of invasive Candidiasis, this 

process can take between 24 - 72 hours and can miss infection in around 50% of patients when 
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sampled from blood culture  (Ostrosky-Zeichner, 2012) and may only yield a positive result in 

late stages of infection (Ellepola and Morrison, 2005).  

Symptoms of Aspergillus fumigatus infection include a fever, chest and joint pain, shortness of 

breath and coughing up blood. Once symptoms present, diagnosis can be a difficult and 

lengthy process. Current diagnoses are based on the results following treatment with broad 

spectrum antibiotics. As the symptoms are non-specific they are often treated as a bacterial 

infection, after no response to antibacterial drugs thoracic imaging is used. Primarily a CT scan 

of the lungs is the first port of call (Lim et al., 2012). 

 

1.7 Fungal infection treatments 

There are four main classes of antifungals. Firstly azoles, including the commonly prescribed 

fluconazole. These act by inhibiting synthesis of the cell membrane component ergosterol, by 

inhibiting the cytochrome p450 enzyme 14-α lanosterol demethylase which catalyses the 

conversion of lanosterol to ergosterol (Kathiravan et al., 2012).   

The next class are polyenes, most commonly prescribed being Amphotericin B which again 

targets ergosterol in the cell membrane. Amphotericin B binds to ergosterol in the membrane 

causing the formation of pores which leads to depolarisation of the membrane, leakage of 

intercellular components and eventually cell death (Brajtburg et al., 1990). 

Echinocandins are lipoproteins that act as non-competitive inhibitors of β 1, 3 – glucan 

synthase required for the synthesis of cell wall component β 1, 3 -glucans (Perlin, 2011). 

Defects in the synthesis of cell wall components affect the integrity of the cell and result 

osmotic sensitivity, reduced sterol contents and thickened cell wall.  

Finally, pyrimidine analogs like 5- flucytosine, impair fungal cells ability to synthesise proteins 

and DNA during nuclear division. (Waldorf and Polak, 1983. Diasio et al. 1978). This comes as a 
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result from the rapid conversion of 5-FC to 5-fluorouracil in susceptible fungal cells by the 

enzyme cytosine deaminase.  

  

1.8 Fungal infection treatment complications including the similarity of fungal cells to 

human cells 

Antifungal treatments have been proven to be relatively effective over the years, with 

variations in drug types and their targets meaning there are a wide range of options available 

for treatments. However, as with bacterial infections, treatment options are becoming much 

narrower with the emergence of antifungal resistant strains of fungi. 

The class of antifungals echinocandins for example have seen reported cases of resistance 

after just one week of treatment (Lewis et al. 2013).  Mechanisms of resistance vary by 

treatment and species of target. The most common factors contributing to antifungal 

resistance are the selective pressures these treatments place on the population of fungi. The 

most common being mutations that result in conformational changes to the target site. In C. 

albicans multiple strains resistant to azoles have been found to have a single mutation Tyr132 to 

Phe substitution in Cyp51 (Cools, 2008).  

Another factor of resistance is in the formation of biofilms during infection. There is an 

extracellular matrix present around the cells that comprise the biofilm, this extracellular matrix 

in A. fumigatus contains galactomannan, galactosaminogalactan, α-1,3 glucans, 

monosaccharides, polyols, melanin, and proteins (Beauvais and Latgé, 2015). In addition to this 

in a biofilm A. fumigatus releases extracellular DNA, which aids antifungal resistance 

(Rajendran et al., 2013 and Jöchl et al., 2009)  

A major issue of anti-fungal treatments is the target cells similarity to human cells. The main 

sterol component of fungal cell membranes is ergosterol, this is very similar to the cell 
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membrane sterol cholesterol in mammalian cells. Cholesterol is also synthesised in a pathway 

utilising members of the cytochrome p450 enzyme class. However, amphotericin B exhibits 

high nephrotoxicity (Torrado et al., 2008). These adverse effects are not limited to one class of 

antifungals, Itraconazole for example was found to have a 23% chance of treatment being 

discontinued due to adverse effects (Wang et al. 2010). 

Echinocandins have low bioavailability due to their large molecular weight; this means that 

they must be administered intravenously.  However, they have relatively low toxicity toward 

mammalian cells as they target the cell wall of fungi and therefore don’t affect mammalian 

cells (Shapiro, Robbins and Cowen, 2011). 

1.9 Aptamers 

The term aptamer refers to a section of DNA/RNA or protein that has specific binding to a 

target. These highly specific molecules have a high affinity for their targets as a result of the 

way in which they are produced. SELEX (Systemic Evolution of Ligands by Exponential 

enrichment), the means for in vitro selection of aptamers, was developed in the 1990s and 

demonstrates the ability of aptamers to bind to a wide variety of targets, from small molecules 

to large protein complexes (Tuerk and Gold, 1990). 

 

1.9.2 Systematic Evolution of Ligands by Exponential Enrichment (SELEX) 

SELEX is carried out by taking a target cell or molecule and incubating with a pool of random 

aptamers. Non-binding aptamers are removed and binding aptamers, eluted and amplified by 

Polymerase chain reaction (PCR). These aptamers are then incubated with targets again. This 

process is repeated and with each round of SELEX the pool of aptamers reduces to aptamers 

that bind specifically to the target. Some studies performed include the introduction of a 

counter selection step where the aptamer is incubated with a protein or cell type similar to the 
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target. Aptamers that do not bind during the counter selection step are taken forward to 

incubation with the target, whilst aptamers that did bind during counter selection are 

discarded. This helps to ensure the aptamers specificity by eliminating binding to unwanted 

targets. 

 

 

Figure 1.3, SELEX. A schematic diagram of the SELEX process. A random library of aptamers is incubated with 

the target molecule to determine which will bind. Non-binding sequences are separated off, and binding aptamers 

are eluted and amplified. The binding aptamers can then be identified and sequenced. The process is then repeated 

with the addition of new random aptamers to increase numbers of binding aptamers. (Blind and Blank, 2015). 

 

Figure 2 shows the SELEX process and how aptamers are identified for specific targets through 

the amplification of binding sequences and elimination of non-binding sequences. Once 

identified, aptamers have a number of uses including the identification of target cells or aiding 

treatments. 

 



16 
 

1.9.3 Structure and Function 

Aptamers are single-stranded DNA or RNA of 20-100 bases in length. Their unique properties 

are based on their ability to fold into unique secondary and tertiary structures because of the 

wide variations in size and sequence of each strand.  

1.9.4 Aptamers versus Antibodies 

Antibodies also have the ability to bind to specific targets, however, aptamers have a number 

of key advantages. Firstly in order to carry out the SELEX process the target of the aptamer 

does not have to be predetermined. This means that an aptamer will be selected on the 

affinity of its binding not the suitability of the target. Whereas antibodies are produced based 

on their specific antigen. Aptamers also offer many other advantages over antibodies, due to 

their oligonucleotide properties. (Sun et al. 2014). Aptamers have a lower molecular weight of 

around 8-24 kDa compared to antibodies at around 150 kDa, because of this, aptamers can 

penetrate tissue faster and more efficiently enabling smaller doses of drugs to be used as more 

would get to the target tissue and not be distributed and lost to the other parts of the body. 

Also directly compared to antibodies, aptamers have been shown to penetrate tissue faster 

and more efficiently in cases of cancer where tumours are denser than the surrounding tissue 

(Xiang et al., 2015) which, with antibodies, would mean reaching the centre of the tumour 

would be difficult. 

They have also been shown to not illicit an immune response in vivo (Eyetech study group, 

2002), which brings fewer complications for patients. Another issue with antibodies is their 

stability. A common cause of physical instability is aggregation of antibodies (Shire, Shahrokh 

and Liu, 2004). The higher the concentration of antibodies the more likely they are to form 

aggregates. Aggregates of immunoglobulin have also been shown to cause renal failure 

(Demeule, Gurny and Arvinte, 2006). Aptamers are more stable, due to the conditions which 

affect the folding of aptamers like pH, Magnesium (Mg) concentration and temperature. In a 
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clinical setting, within patients or patient samples these values do not vary enough to affect 

the binding and folding of DNA.  If a selection is carried out under the right conditions the 

aptamer will continually fold in the same way meaning that problems of aggregation don’t 

occur. Aptamers can be made more stable with the addition of post SELEX modifications 

(Boomer et al., 2005, De Smidt et al., 1991). 

1.9.5 Previously Identified aptamers 

In regards to microorganisms, previous studies mainly focus on the application of aptamers in 

bacterial treatments/detection. Chang et al. (2013) found two aptamers that selectively bind 

to Staphylococcus aureus with high affinity. Hamula et al. (2008) performed selections against 

live whole bacterial cells. Tang et al. (2016) found aptamers that specifically bound to β 1,3 - 

glucan in the membrane of C. albicans. 

1.9.6 Aptamers as therapeutic agents 

Aptamers have been used to fluorescently tag and bind to tumour initiating cells, a common 

precursor in brain cancer, thus indicating their diagnostic potential as a means of detecting 

tumour initiating cells (Kim et al., 2013). Many groups have demonstrated that aptamers with 

specificity to cell surface receptors can greatly aid the internalisation of drugs such as 

doxorubicin in cancer cells (Tan et al. 2011, Meng et al., 2012, Chu, 2006).   
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2.0 Materials and 

Methods 
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2.1 Fungal cell growth and maintenance 

Candida albicans (C.albicans), strain SC5314, and Saccharomyces cerevisiae (S. cerevisiae), 

strain BY4741a a derivative of S288C (MATa his31 leu20 met150 ura30) (Baker Brachmann et 

al., 1998) were grown in YPD broth (1% yeast extract, 1% peptone and 2% dextrose) at 30oC 

with shaking at 180 rpm and stored on YPD agar (YPD broth, 1% agar). Aspergillus fumigatus 

(A. fumigatus), strain ATCC 4660, was grown on Sabouraud (SAB) agar (4% glucose, 1% 

peptone, 2% agar, pH5.6) at 30oC.  

2.1.2 HeLa cells 

The HeLa cell line (obtained from ATCC, Manassas, USA) were maintained in Eagle’s Minimum 

Essential Media (EMEM, Earle's Balanced Salt Solution, non-essential amino acids, 2 mM L-

glutamine, 1 mM sodium pyruvate, and 1500 mg/L sodium bicarbonate.) supplemented with 

10% Foetal Bovine Serum (FBS), 1% non-essential amino acids (NEAA), 2mM L-glutamine, 1mM 

sodium pyruvate and 10U/ml Pen-Strep. Cells were grown in a 75ml flask, in a 37ºC, 5% CO2 

static incubator to around 80% confluency before being passaged. Cells were washed twice 

with phosphate buffered saline (PBS) (10mM phosphate, 137mM sodium chloride, 27mM 

potassium chloride, pH 7.41) then adding 3ml of 1x trypsin and incubating for 5 minutes at 

37ºC, in order to detach cells from the surface of the flask. Once detached the trypsin was 

neutralised by adding an equal quantity of EMEM (all solutions pre warmed to 37ºC), before 

being centrifuged at 570g for 5 minutes and pelleted cells re-suspended in fresh EMEM. Cells 

were only passaged to around passage 15, at this point cell lines were disposed of and a new 

line taken from cryogenic storage, defrosted and grown.  

2.2  Systematic evolution of ligands by exponential enrichment using cell lines (cell-SELEX). 
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Figure 2.1 A summary of the SELEX protocol (Schütze et al., 2011). The diagram shows the 

amplification of the initial library to generate the starting pool of aptamers, these are then incubated 

with the target. Non-binding aptamers are washed from the target, and the remaining bound aptamers 

are eluted and then amplified. These either form the pool for the next round of selection or are used for 

binding and diversity assays or sequencing.  

2.2.1 Amplification and purification of DNA Aptamer Library  

Figure 2.1 shows an overview of the SELEX process. Starting with a random library of aptamers, 

which were used to provide the stock aptamer library. This library consists of a random 1015 

DNA aptamers, synthesised by Integrated DNA Technologies (IDT, UK) through machine mixed 

randomisation. Each sequence (green) was flanked by aptForward (red) and aptReverse (blue) 

primer specific to the aptamer library.  

 5’- ATCCTAATACGACTCACTATGGGGAGAGGATTCTGGGCACAAGCGAATTTATATAAAGC 

CCGGCTCAACTGGCAAAGCAATCGGTCGAGTTTACCGCAGAATT – 3’ 

For amplification of each aptamer by PCR both primers are needed. 

 

An initial amplification of the aptamer library was undertaken by Polymerase Chain Reaction 

(PCR), the conditions of which are detailed in tables 2.1 and 2.2. 
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Table 2.1 Reagents used in the PCR reaction for amplification of aptamers. 

Reagent Final Concentration 

10x Taq Buffer 1x 
Deoxynucleotide Solution (10mM) 200µM 
AptForward (100µM) 2µM 
AptReverse (100µM) 2µM 
Sample/ Aptamer Library (100µg/µl) 10µg/µl 
MgCl2 (25mM) 4mM 
DMSO 5% 
DNA Taq Polymerase (4U/µl) 0.02 U/µl 

 

Table 2.2 PCR conditions for amplification of aptamer library. 

Action Time (sec) Temperature (ºC) 

Initial Denaturation 300 95 
        Phase One (10 Cycles)  
Denaturation 30 95 
Annealing 30 60 (decreased 1ºC/cycle) 
Extension 30 72 
        Phase Two (10 Cycles)  
Denaturation 30 95 
Annealing 30 64 
Extension 30 72 
   
Final Extension 420 72 

 

Confirmation of aptamer amplification was by visualisation of the PCR product on a 2% 

agarose gel, containing 0.005% Gel Red (see section 2.2.5) PCR products were pooled and 

concentrated by ethanol precipitation (see section 2.2.6). 

2.2.2 Aptamer preparation 

Concentrated PCR products (see section 1.2.4) were added to binding buffer (25mM glucose, 

0.1% bovine serum albumin, 0.25mM MgCl2 and 1x PBS), and heated to 95ºC for 5 minutes. 

The DNA aptamers were then snap cooled on ice for at least 10 minutes and kept on ice or at 

4ºC until required. 

2.2.3 Negative Selections 
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The DNA aptamer library and aptamers from each subsequent round were first incubated with 

HeLa cells, to ensure only aptamers that did not bind to HeLa cells were selected. HeLa cells 

were prepared for either room temperature or 4°C by first, washing in wash buffer (1x PBS, 

25mM glucose, 0.25mM MgCl2), before being  re-suspended in 175µl binding buffer at the 

required concentration, approx. 60,000 cells/ml (total 10,000 cells). HeLa cells were then 

incubated for 1 hour at 4°C or room temperature on a rotor at 20rpm. Samples were then 

centrifuged at 570g the supernatant was removed and kept for positive selection, while the 

pellet containing the cells and any bound aptamers was discarded.  

2.2.4 Positive Selections and controls 

 C. albicans and S. cerevisiae cultures were diluted to a concentration of 3x106CFU/ml during 

exponential growth phase. Cells were then centrifuged at 2660g for 2 minutes, washed with 

washing buffer to remove any remaining YPD media, and then re-suspended in 175µl of 

binding buffer. A. fumigatus spores were prepared by using an inoculating loop to gently 

scrape the spores from the surface of the plate and re-suspend in binding buffer. Aptamers 

were incubated at 4°C to restrict active uptake processes in the cell, in order to select an 

aptamer which bound the cell wall. Room temperature selections were performed to allow 

these processes to happen, in order to find an aptamer that is internalised by the cell. 

The supernatant from the negative selection was incubated with either C. albicans or A. 

fumigatus for 1 hour at 4°C or at room temperature on a rotor spinning at 20rpm. After 

incubation cells were washed 5 times with washing buffer, to remove any unbound aptamers, 

before being resuspended in 200µl of dH2O and heated at 95ºC for 10 minutes to elute bound 

aptamers. The samples were centrifuged at 15,000g for 1 minute and the supernatant 

retained. A test PCR was initially conducted to ensure elution of aptamers, before further 

amplification by PCR, purification and concentration, by ethanol precipitation. The resulting 
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PCR product was continued into subsequent rounds of selection (see section 1.2). A total of 10 

rounds of SELEX were completed for each condition (represented in figure 2.1).  

To ensure no amplification of non-specific sequences, the experiment was also undertaken 

with aptamer alone and fungal cells alone. When visualising resulting PCR products from each 

elution (see section 2.2.5), if a band was seen in either control this would indicate non-specific 

amplification and the round of SELEX was repeated from the previous round’s elution. 

2.2.5 Separation, Visualisation and Purification of PCR products 

PCR products were run on a 2% agarose gel prepared with 1x TAE buffer (1.85M Tris, 45mM 

EDTA and 1M glacial acetic acid), containing 0.002% Gel Red. Samples were prepared by 

mixing with 1x Orange G (0.2% Orange G, 4% glycerol) and then  run at 100volts on an agarose 

gel with a DNA ladder sample containing DNA fragments of a known size mixed (Thermo 

Scientific, UK). Gels were then imaged using UV light (Bio-Rad ChemiDoc XRS+ with Image Lab 

software). Successful amplification was determined by the presence of a band at approx. 

105bp, with no bands present in the relevant controls. If non-specific bands were also 

observed within the reaction, the required band was purified  by gel extraction using a Gel 

Extraction kit (Nucleospin Gel and PCR Clean-up, Machery-Nagel UK) as per the manufacturer’s 

instructions. The final product was then diluted approx. 1/50 and used as a template for PCR 

amplification of the purified aptamers.  The resulting PCR product was then concentrated by 

ethanol precipitation and continued into the next round of selection. 

2.2.6 Ethanol precipitation of PCR products 

Following PCR amplification, the purified aptamers were pooled and concentrated by ethanol 

precipitation. 1/10th the volume of 3M sodium acetate (NaAc) was added along with 2x volume 

of ice cold ethanol (100%) and incubated at -80°C for 1 hour. Samples were then centrifuged at 

17,000g, 4°C for 10 minutes, the supernatant removed, and the DNA pellet washed with 70% 
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ethanol and centrifuged at 14,000rpm for 5 minutes. 70% ethanol was then removed, and the 

pellet re-suspended in dH2O. Concentrations of each sample were determined using the 

Nanodrop 2000. 

2.3 Cloning and Sequencing of Aptamers 

2.3.1 Transformation and cloning of Aptamers 

After 10 rounds of SELEX, purified DNA aptamers were ligated into a TOPO 2.1 vector 

(Invitrogen) as per manufacturer’s instructions. These ligated plasmids were transformed into 

chemically competent DH5α Escherichia coli (E. coli) () (genotype: F- φ80 (lacZ)ΔM15 ΔlacX74 

hsdR (rk-, mk+) ΔrecA1398 endA1 tonA) prepared by calcium chloride method. Cells were 

incubated on ice for 1 hour, heat shocked at 42ºC for 90 seconds, snap cooled on ice for 2 

minutes and then recovered in LB media (63.5mM tryptone, 0.17 1M sodium chloride (NaCl), 

0.5% yeast extract) at 37ºC for 1 hour. Recovered E. coli were plated onto LB agar (LB broth, 1% 

agar) containing 25µg/µl ampicillin and incubated overnight at 37ºC.  

Colonies from the plates were re-suspended in dH2O, and initially screened for correctly 

ligated inserts by colony PCR using M13 forward and reverse primers. Results were visualised 

on a 1% agarose gel (as per section 1.2.3).  

Table 2.3 - Reagents used for colony PCR 

Reagent Final Concentration 

10x Taq Buffer 1x 
MgCl2 (25mM) 0.5mM 
dNTPs (10mM) 200µM 
M13 forward or Aptfor (100µM) 2µM 
M13 Reverse or Aptrev (100µM) 2µM 
E. coli Sample  
DNA Taq Polymerase (4U/µl) 0.02U/µl 

 

 

Table 2.4 – Colony PCR programme. 

Action Time (sec) Temperature (ºC) 
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Initial Denaturation 300 95 
Denaturation 30 95 
Annealing 30 45 
Extension 30 72 
Final Extension 420 72 

 

 Positive samples were checked with aptforward and aptreverse primers, then inoculated into 

LB media with 25µg/µl ampicillin and grown overnight at 37ºC with shaking at 180rpm. E. coli 

cells were then harvested by centrifugation at 10,000 x g and the plasmid purified as per 

manufacturer’s instructions using a GeneJet Plasmid Miniprep Kit (Thermo Fisher Scientific). 30 

cycles. 

2.3.2 Sequencing of Aptamers 

Purified plasmids were sent to Source Biosciences (Nottingham, UK) for Sanger sequencing, 

using M13 forward and reverse primers. Sequences were analysed using Clustal Omega 

(available at: https://www.ebi.ac.uk/Tools/msa/clustalo/) to determine sequence similarity. 

Structures of each DNA aptamer were predicted using Mfold software (available at: 

http://unafold.rna.albany.edu/?q=mfold/DNA-Folding-Form) under the conditions each 

aptamer binds to its target molecule in (137mM [Na+], 0.25 mM [Mg++] and at either 4ºC or 

25ºC). 

2.4 Testing of Purified aptamers 

2.4.1 Aptamer Binding using PCR 

Isolated aptamers were initially screened for their binding affinity and specificity via PCR. 

Aptamers were prepared, at a final concentration of 50nM - 200nM, (see section 2.2.2) and 

incubated for 30 minutes with C. albicans, S. cerevisiae and A. fumigatus separately at either 

4ºC or room temperature Cells were washed 5 times with washing buffer and resuspended in 

200µl of dH2O.  Bound aptamers were eluted by heating to 95°C for 10 minutes and underwent 

PCR (as described in section 1.2.2). PCR products were then visualised on 2% agarose gel, 
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alongside 95ng of aptamer library, concentration of 23.75ng/µl. Gels were then analysed by, 

Bio Rad Chemidoc XRS+, Image Lab+ software and the amount of DNA aptamer from each 

sample calculated by comparison to the intensity of the band from the aptamer library sample. 

The exposure time for each image was 0.5 seconds.   

2.4.2 Fluorescence microscopy 

Isolated aptamers were ordered tagged at the 5’ end with a fluorescent tag, either Alexa 488 

or Cy5, from IDT (UK). These aptamers were prepared as previously described (section 1.2.2) to 

a concentration of 200nm and incubated for 30 minutes, at either 4oC or RT with the relevant 

fungal species (as per section 2.1.1). Cells were then washed five times with washing buffer 

before being fixed in 3.7% formaldehyde (37% fomaldehyde, 1x PBS) for 15-20 minutes at 

room temperature, washed with 1x PBS and re-suspended in vectashield with DAPI for 

mounting onto slides. Cells were then imaged using Zeiss Fluorescent Microscope. For each 

slide a representative sample was imaged with a Brightfield, DAPI, Alexa 488 and Cy5 filter 

with a 1.2 second exposure time. 
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3.0 Results 
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3.1 Selection of aptamers against Candida albicans and Aspergillus fumigatus with different 

incubation conditions. 

The SELEX process was previously adapted from the protocol established by Sefah et al. (2010), 

and optimised to select aptamers specific for the fungi, C. albicans and A. fumigatus. The SELEX 

process was carried out at either 4°C or room temperature. This was to enable selection of 

aptamers specific to either the outside of the cell (wall and membrane) or those internalised 

into the cell, due to the changes is membrane fluidity caused by the differences in 

temperature, and the activity of uptake processes in to the cell. After initial amplification, by 

PCR, and concentration, via ethanol precipitation, the aptamer library was first incubated at 

4°C or room temperature for 1 hour with HeLa cells, as a negative selection.  Due to the 

similarities between these eukaryotic species, mammalian cells were used as a negative 

selection in order to select aptamers more specific to fungal species. Any unbound aptamers 

were then incubated with the appropriate fungal species at either 4oC or RT, along with 

controls containing no aptamer to ensure that any amplification is not due to non-specific 

DNA. At the end of each round of selection, a test PCR was conducted on the elution and the 

amplified aptamers, of 105bp in size, were purified by gel extraction. This ensured only 

aptamers of the correct size were amplified and carried through to subsequent rounds of 

SELEX. Ten rounds of selection were undertaken for each condition and fungal species.  Figure 

1, shows the PCR amplification from the elution following each round of selection in C. albicans 

and Figure 2 shows this for A. fumigatus.  
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(A) Candida albicans 4ºC 

105bp 

Control 

                        R1           R2          R3          R4        R5         R6          R7          R8          R9          R10 

(B) Candida albicans Room Temperature 

105bp 

Control 

                        R1         R2          R3           R4         R5          R6         R7         R8         R9         R10 

Figure 3.1. Amplification of aptamers from SELEX rounds 1 to 10 of selection in Candida 

albicans at 4ºC and room temperature. Aptamer library (round 1) or product from the previous 

round of selection (each subsequent round) was incubated for 1hr with C. albicans at either 4°C (A) or 

room temperature (B) and a control with no aptamer. Cells were washed and any bound aptamer 

eluted. A PCR from a sample of each elution was undertaken and run on a 2% agarose gel, imaged at an 

exposure of 500ms using BioRad ChemiDoc XRS+ Image Lab software. 

 

(A) Aspergillus fumigatus 4°C 

105bp 

Control  

                        R1         R2         R3        R4        R5       R6         R7        R8         R9       R10  

(B) Aspergillus fumigatus Room Temperature 

105bp 

Control 

                        R1          R2          R3          R4          R5          R6           R7         R8          R9         R10 

Figure 3.2. Amplification of aptamers from SELEX rounds 1 to 10 of selection in Aspergillus 

fumigatus at room temperature and 4°C. Aptamer library (round 1) or product from the previous 

round of selection (each subsequent round) was incubated with A. fumigatus spores at either 4°C (A) or 

room temperature (B) and a control with no aptamer. Cells were washed and any bound aptamer 

eluted. A PCR from a sample of each elution was undertaken and run on a 2% agarose gel, imaged at an 

exposure of 500ms using BioRad ChemiDoc XRS+ Image Lab software. 
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Figures 3.1 and 3.2 show the PCR product from each round of selection at 4°C (A) and room 

temperature (B) along with the no aptamer control from each round.  The presence of bands 

on the agarose gel was used to preliminarily determine whether aptamers had been isolated 

and whether the amount eluted from cells was sufficient to continue to the next round. The 

controls were used to confirm the lack of non-specific DNA amplification. In all cases no band 

was detected in the control indicating that the amplified band was due to the presence of 

aptamers. For round 1 (figure 3.1A and B and figure 3.2A and B), a clear band at 105bp 

indicates amplification of aptamers following PCR.  The overall intensity of this band decreases 

for each subsequent round of selection with slight increases in rounds 5, 7 and 8 for figure 1A 

and rounds 3, 4 and 8 for figure 3.1B. For figure 3.2A the intensity decreases up until round 9, 

where there was a slight increase, which then decreased again at round 10. Figure 2B shows 

more of a steady decrease throughout the rounds. Despite the varying intensities, it is still 

evident that following round 10 of SELEX all conditions have produced elutions that contain 

aptamers isolated against the target cells through each round of selection.  

3.2 Isolation and Sequencing of Aptamers 

To isolate these individual aptamers, the PCR product from round 10 was ligated into the 

TOPO cloning vector (Invitrogen), which relies on the A overhang added by Taq polymerase. 

After ligation, the resulting plasmids were transformed into chemically competent DH5α E. 

coli. Colonies were grown and selected, before the plasmids were purified. The resulting 

plasmids were then tested for successful cloning of the aptamer insert by PCR using 

aptForward and aptReverse primers. The resulting PCR products were run on a 2% agarose gel 

and visualised using GelRed, positive plasmids give a product of 105bp, as shown in Figure 3.3. 
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105bp 

                   CaRTA       B        AfRTA      B          C            D     Af4A        B        Ca4A         B         C 

Figure 3.3. Successful cloning of aptamer sequences into TOPO vector was confirmed by PCR. 
A sample was taken of each mini prep and tested by PCR using aptForward and aptReverse primers, all 

11 samples were tested and all 11 were positive for an aptamer insert. CaRTA and B were positive 

colonies from C. albicans at room temperature, AfRTA, B, C and D were positive colonies from A. 

fumigatus at room temperature. Af4A and B were positive colonies from A. fumigatus at 4°C and Ca4A, 

B and C were positive colonies from C. albicans at 4°C. 

 

11 colonies in total were obtained and tested, resulting in 3 positive colonies for C. albicans at 

4°C, 2 positive colonies for C. albicans at room temperature, 2 positive colonies for A. 

fumigatus at 4°C and 4 positive colonies for A. fumigatus at room temperature. Each positive 

plasmid was then sent for sequencing using the M13 reverse primer.  

Each sequence was then analysed, without the primer sequences, through Clustal Omega 

analysis software. The analysis from this software shows the similarities between the aptamers 

allowing for sequence comparisons. Sequences, with the primer sequences, were also 

analysed by Mfold analysis software to predict secondary folding structure of each aptamer, 

which is important for target binding.  
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(A) 
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AF4A       -------GCGGGAGAGAATTCAACAACAATGC-AGTCCAGGGACAGAGACAGACAGCAACACGA----------AGCTCCACG--------- 

AFRTD      ----CCGACGACAGAGTAAGGGGG-GAC--------AATCAGACAG---GAATGACAGGGACAAC------------------------G-- 

CARTA      ----CGAGAGGGAGAGAGAGGGAGAGAGAGGCAGAGACAGAGACAGAGAGAAAGAGAGAGACAATTCTGCGGTAAACTCGAAGGACAGCC-- 

CARTB      ----------------------------AGGCAGGAGGGAGATGAGGAGTGGTGAGCGGGATAAGCGTGGGGAG---AGCGGTG-------- 

CA4A       --------------------GGGCACACGAACAGAAGCGGCAAGACAAGGGGGGAATAACACAAGACGAAGGACCAGGCACGTG-------- 

AF4B       -------------------AGGCAAGACAAACAAGAGCGAACAGGGAACGGAAA-------------AGCGAACAATGCAC----------- 

AFRTB      --------GGGGAGAGGATTCTGGGCACAAGCGAATTTATATAAAGCCCGGCTC--------------------AACTGGCAAAGCAATCGG 

AFRTC      --------GGGGAGAGGATTCTGGGCACAAGCGAATTTATATAAAGCCCGGCTC--------------------AACTGGCAAAGCAATCGG 

CA4C       TGCCTGGTGTTGTGATTGTCCCCCCCTCGTTG------TTGTTCCCGTGTGCTG--------------------TGC---CGTT-------- 

AFRTA      --CCTAATACGACTCACTATCCTAA----TACGACTCACTATCCACACGCACAT--------------------CAC--CCGTTG------- 

CA4B       ---CTGGTCGTGATTGTTTTCCTTATTTGTTCGTCTTCTTATCCCCACCTTCTC--------------------TTT--GCGTG-------- 

(B) 

 

 

 

 

 

 

 

(C) 

 

 

 

 

 

 

 

 

Figure 3.4.  Analysis of aptamer sequences via Clustal Omega (A) Phylogenetic tree of isolated aptamer. Isolated sequences from the SELEX process were put 

through Clustal Omega software (primer sequences removed) and sequences compared for similarity shown as a phylogenetic tree. (B) AlignMent of isolated aptamer 

sequences. Clustal Omega ouput of sequences aligned. (C) Percentage similarity of all isolated sequences. Clustal Omega output of similarity of sequences expressed 

as percentage values between each sequence. 

Aptamer % Similarity 

 Af4A AfRTD CaRTA CaRTB Ca4A Af4B AfRTB AfRTC Ca4C AfRTA Ca4B 

Af4A 100 37.78 60.00 34.15 32.69 29.27 44.44 44.44 23.40 34.69 30.19 
AfRTD 37.78 100 64 42.31 42.42 43.48 45.71 45.71 25 17.14 26.32 
CaRTA 60 64 100 39.62 42.19 44.90 45.16 45.16 15.69 25.45 22.41 
CaRTB 34.15 42.31 39.62 100 47.17 40.54 24.24 24.24 41.67 20 19.35 
Ca4A 32.69 42.42 42.19 47.17 100 56.25 29.55 29.55 31.43 31.58 23.81 
Af4B 29.27 43.48 44.90 40.54 56.25 100 35.71 35.71 12.12 27.78 20 

AfRTB 44.44 45.71 45.16 24.24 29.55 35.71 100 100 31.91 33.33 38.89 
AfRTC 44.44 45.71 45.16 24.24 29.55 35.71 100 100 31.91 33.33 38.89 
Ca4C 23.40 25 15.69 41.67 31.43 12.12 31.91 31.91 100 36.73 53.85 
AfRTA 34.69 17.14 25.45 20 31.58 27.78 33.33 33.33 36.73 100 49.09 
Ca4B 30.19 26.32 22.41 19.35 23.81 20 38.89 38.89 53.85 49.09 100 
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The phylogenetic tree (figure 3.4A) groups aptamers together based on their similarities in 

sequences. Sequences were grouped into three main families, which may suggest three distinct 

epitopes. The first branch contains 6 aptamers, the second branch contains 2 aptamers of the same 

sequence, AfRTB and AfRTC, and the third branch which contains 3 aptamers. Within the first 

branch, AFRTD and CARTA are more closely related, as are CA4A and AF4B. In the third branch, CA4C 

and CA4B are more closely related to each other than AFRTA.  Based on the sequence homology, the 

majority of aptamers showed less than 60% similarity (Figure 3.4B and 3.4C) Ca4C and Af4B show 

the largest difference with only 12.12% similarity. Within each SELEX condition sequences show 

varying amounts of similarity. C. albicans at 4°C isolated sequences Ca4B and Ca4C show 53.85% 

similarity but only 23.81% (Ca4B) and 31.43% (Ca4C) to Ca4A. C. albicans at room temperature 

isolated sequences CaRTA and CaRTB show 39.62% similarity, with similar sequence alignments both 

showing long sequences rich in A and G. However CaRTA is 33 bases longer. Between the 2 

conditions again shows varying similarity, with the most similar being Ca4A and CaRTB at 47.17% 

similarity and the least being Ca4C and CaRTA with a 15.69% similarity. Aptamers selected at room 

temperature against A. fumigatus again show varying levels of similarity with the largest similarity 

(excluding the 100% similarity between AfRTB and AfRTC) between AfRTB/C and AfRTD at 45.71%, 

followed by AfRTA and AfRTB/C at 33.33% and finally the lowest similarity between AfRTD and 

AfRTA at 17.14%. For selection in A. fumigatus at 4°C Af4A and Af4B shared a 29.27% similarity. 

Figure 3.4B shows the sequence alignments generated by clustal omega, which demonstrates there 

were very few conserved regions between all aptamers. However, based on the phylogenetic 

mapping a number of aptamers were found to be closely associated. Therefore, these sequences 

were analysed separately (Figure 3.5A).  
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Figure 3.5.  Alignment of isolated aptamer sequences using Clustal Omega. (Alignment of two 

aptamers) (A) AFRTD and CARTA (B) CA4A and AF4B (C) CA4C and CA4B. Conserved regions are indicated in 

yellow and with a *. 

 

 

Based on the phylogenetic tree, the closely related sequences AFRTD and CARTA showed 32 

consensus bases, with one group of 6, one group of 5 and two groups of 4 conserved bases (Figure 

3.5A). CA4A and AF4B, were also shown to be closely related showing 26 consensus bases, with one 

group of 5 and one group of 4 conserved bases (Figure 3.5B). Finally, CA4C and CA4B showed 25 

consensus bases, with one group of 5 conserved bases (Figure 3.5C). 

 

3.3 Predicted Aptamer Folding structures.
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(A) Sequences from C. albicans at 4°C predicted folding structure. 
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(B). Sequences from C. albicans at room temperature predicted folding structure.  
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(C). Sequences from A. fumigatus at 4°C predicted folding structure. 
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(D). Sequences from A. fumigatus at room temperature predicted folding structure. 

     Figure 

3.6. Structure Analysis of Aptamer Sequences via Mfold (A) Sequences from C. albicans at 4°C predicted folding structure. (B) Sequences from C. albicans 

at room temperature predicted folding structure. (C) Sequences from A. fumigatus at 4°C predicted folding structure. (D) Sequences from A. fumigatus 

at room temperature predicted folding structure. All sequences were analysed using Mfold software and folding structure predicted based on SELEX 

conditions (Na+ 137mM and Mg++ 0.25mM) and 4°C or room temperature based on which SELEX condition. Structures shown are those with the lowest 

predicted Gibbs free energy. Aptforward primer sequences are highlighted in red and Aptreverse sequences highlights in blue.



40 
 

3.4 Characterisation of Isolated Aptamer 

Aptamers are strands of DNA that are able to fold into a 2D stable structure through complementary 

base pairing. By predicting the secondary structure of the aptamer, the bases available to bind to the 

target can be identified. Sequences were analysed using Mfold software and the folding structure 

based on conditions for each selection (Na+ 137mM and Mg++ 0.25nM and either 4°C or room 

temperature). These were set by ion concentrations contained within the binding buffer used for 

incubating aptamers with target cells. 

For each structure, the Gibbs free energy (ΔG) is determined, which refers to the amount of energy 

needed to disrupt the structure and break the bonds formed in each strand of DNA. The structure 

with the lowest Gibbs free energy was selected as this is most likely structure for the strand to form 

naturally.  

The structures of each aptamer show large similarities within each condition. Both aptamers Ca4B 

and Ca4C (figure 3.6A) have large loop regions and Ca4A (figure 3.6A) a smaller loop region and have 

the highest ΔG compared to aptamer structures from the other SELEX conditions. Aptamers from C. 

albicans selections at room temperature (figure 3.6B) again show similarities in structure, both 

consisting of a larger loop region with 3 stem and loop structures. The predicted secondary 

structures of aptamers from A. fumigatus at 4°C (figure 3.6C) have the lowest ΔG value compared to 

other conditions. Af4A and Af4B have larger portions of stem structures than other structures. This is 

stark contrast to aptamers selected against A. fumigatus at room temperature (figure 3.6D), which 

comprise of much larger loop regions with few stem portions. There appear to be no major 

consistencies between the selection temperature or what species the aptamer was selected against, 

with the exception of Ca4C which shares more similarities in the large central loop region, branching 

of with smaller stem loop regions with aptamers AfRTB and AfRTD.   
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To confirm whether the aptamers where able to bind to the target cells they were isolated against, 

the purified aptamers were tested to confirm binding and specificity using PCR. All aptamers were 

amplified by PCR and tested at a concentration of 200nM, as described by Apetkhar et al. (2015), 

both at room temperature and 4°C Aptamers were incubated with each cell type at the required 

temperature for 30 mins. The reduced incubation time ensured that only aptamers with high affinity 

to the target were identified.  Following incubation, aptamers were eluted from the cells and 

amplified by PCR before being analysed by gel electrophoresis. Concentration of the amplified 

aptamer was determined by comparison to a sample of known concentration on the same gel and 

analysed using ChemiDoc XRS+ software. It was assumed that the concentration of aptamer, 

following PCR, would be related to the amount of aptamer that bound to the cells. For each species 

incubated with the various aptamers a previously identified aptamer (C9 for C. albicans and Af20 for 

Aspergillus) for that species was also incubated to act as a positive control and a sample with no 

aptamer as a negative control. Each aptamer was tested twice and the results averaged, and 

standard error expressed as error bars on each graph. Figure 7 shows the concentration of aptamer 

in a PCR sample following incubation with C. albicans at both 4oC and room temperature.   
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Figure 3.7 Average binding of identified aptamers against C. albicans at 4°C and room 

temperature. 200nM of each identified aptamer was incubated with C. albicans for 30 minutes either at room 

temperature or 4°C, and bound aptamers eluted. Eluted aptamers were amplified by PCR using aptfor and aptrev primers, 

before being analysed on a 2% agarose gel using a BioRad ChemiDoc XRS+ system with a 500ms exposure. The 

concentration of amplified aptamer was measured by comparison to a sample of aptamer at a concentration of 171ng/µl. 

Intensity of the band of DNA was measured by BioRad Image Lab software, and compared to the sample of known 

concentration to determine the amount of DNA in each band. Repeated twice. Control was a sample of cells incubated 

with no aptamer, and C9 (a previously identified aptamer) an aptamer with known affinity for C. albicans. 
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Aptamers selected at 4°C for C. albicans showed recovery of varied concentrations of aptamer 

following amplification. Shown in figure 3.7, Ca4B showed the highest concentration following 

incubation at both at 4oC, 15ng/µl, and room temperature, 10.7ng/µl. Ca4A yielded 10.1ng/µl at 4°C 

and 7.9ng/µl at room temperature and Ca4C showed the lowest concentration with 8.9ng/µl at 4°C 

and 4.7ng/µl at room temperature. In all cases, the higher level of binding at 4oC aligns with the 

selection conditions for these aptamers. Those aptamers selected at room temperature, showed 

little difference in binding when selected against C. albicans at either temperature, CaRTA resulted 

in a concentration of 3.6ng/µl at 4°C and 3.ng/µl at room temperature and CaRTB 8.3ng/µl at 4°C 

and 8.6ng/µl at room temperature. Overall, binding of the aptamers selected against C. albicans at 

4oC was higher than those at room temperature. The 4oC selected aptamers, AF4A and Af4B, both 

showed binding to C.albicans cells at both temperatures. Concentrations of these aptamers 

following PCR were 10.5ng/µl (4oC) and 7.7ng/µl (RT) for Af4A and 12.1 ng/µl (4oC) and 10.7ng/µl 

(RT) for Af4B. These were similar levels as seen with Ca4A, Ca4B and CaRTB specifically selected 

against C. albicans. For those A. fumigatus aptamers selected at room temperature, AfRTA showed 

limited binding to C. albicans cells, however, AfRTB (10.7ng/µl – 4oC and 6ng/µl – RT) and AfRTD 

(9.7ng/µl – 4oC and 7.1ng/µl – RT) showed similar levels to the C.albicans specific aptamers Ca4A, 

Ca4C and CaRTB. Aptamers selected against A. fumigatus at 4°C showed similar yields to aptamers 

selected against C. albicans at 4°C, with a yield of 10.5ng/µl for Af4A at 4°C and 7.7ng/µl at room 

temperature and for Af4B, 12.1ng/µl at 4°C and 10.7ng/µl at room temperature. AfRTA yields the 

least amount of aptamer with 3.4ng/µl at 4°C and 3.6ng/µl at room temperature, whereas AfRTB 

(10.7ng/µl at 4°C and 6ng/µl at room temperature) and AfRTD (9.7ng/µl at 4°C and 7.1ng/µl at room 

temperature) show yields more consistent with most other aptamers. As with the C. albicans 

selected aptamers; higher concentrations of A. fumigatus aptamer was consistently seen when cells 

were incubated at 4oC, suggesting better affinity for the target. In all cases, the positive control 

aptamer (C9) showed significantly higher DNA levels than the test aptamers. 

 



44 
 

Figure 3.8 shows the concentration of aptamer in a PCR from a sample of elution following aptamer 

incubation with A. fumigatus. The aptamers selected against A. fumigatus AfRTB (16.854ng/µl at 4°C 

and 15.611ng/µl at room temperature) and AfRTD (12.998ng/µl at 4°C and 11.217ng/µl at room 

temperature) showed the best levels of biding for this condition with the levels of binding from 

AfRTB the most comparable to the control Af20. AfRTA only yielded 5.502ng/µl and 4°C and 

6.324ng/µl at room temperature. A. fumigatus selected aptamers at room temperature exhibited 

lower levels of binding than at 4°C (Af4A 10.464ng/µl at 4°C and 9.126ng/µl at room temperature. 

Af4B 9.927ng/µl at 4°C and 9.226ng/µl at room temperature) but better levels of binding than 

AfRTA. Aptamers selected against C. albicans at 4°C exhibited levels on binding similar to that of 

aptamers selected against A. fumigatus in either temperature condition. Ca4A yielded 11.165ng/µl 

at 4°C and 12.149ng/µl at room temperature, Ca4B yielded 7.686ng/µl at 4°C and 10.048ng/µl at 

room temperature and Ca4C yielded 9.215ng/µl at 4°C and 6.12ng/µl at room temperature following 

incubation with A. fumigatus. C. albicans aptamers selected at room temperature exhibited the 

overall lowest levels of binding to A. fumigatus with CaRTA as the lowest (3.363ng/µl at 4°C and 

1.308ng/µl at room temperature) and CaRTB (4.834ng/µl at 4°C and 7.149ng/µl at room 

temperature) more comparable to AfRTA. 
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Figure 3.8. Average binding of identified aptamers against A. fumigatus at 4°C and room 

temperature. 200nM of each identified aptamer was incubated with A. fumigatus for 30 minutes either at room 

temperature or 4°C, and bound aptamers eluted. Eluted aptamers were amplified by PCR using aptfor and aptrev primers, 

before being analysed on a 2% agarose gel using a BioRad ChemiDoc XRS+ system with a 500ms exposure. The 

concentration of amplified aptamer was measured by comparison to a sample of aptamer at a concentration of 171ng/µl. 

Intensity of the band of DNA was measured by BioRad Image Lab software, and compared to the sample of known 

concentration to determine the amount of DNA in each band. Repeated twice. Control was a sample of cells incubated 

with no aptamer, and Af20 (a previously identified aptamer) an aptamer with known affinity for C. albicans. 
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Across both figures 3.7 and 3.8 there is little difference between the binding of aptamers at 4°C and 

room temperature regardless of which condition they were selected in. However, there are marked 

differences between the binding of certain aptamers in A. fumigatus and C. albicans. Aptamers 

selected against C. albicans Ca4B showed the highest concentration following incubation at both at 

4oC, 15.081ng/µl, and room temperature, 10.772ng/µl in C. albicans but a concentration of 

7.686ng/µl at 4°C and 10.048ng/µ incubated with A. fumigatus. Ca4A (C. albicans 10.071ng/µl at 4°C 

and 7.960 ng/µl at room temperature and A. fumigatus 11.165ng/µl at 4°C and 12.149ng/µl at room 

temperature) and Ca4C (8.904 ng/µl at 4°C and 4.715 ng/µl at room temperature and A. fumigatus 

9.215ng/µl at 4°C and 6.12ng/µl at room temperature) show less affinity for C. albicans. For 

aptamers selected against C. albicans at room temperature there were lower levels of binding 

overall in addition to the lack of specificity (CaRTA C. albicans - 3.633 ng/µl at 4°C and 3.049 ng/µl at 

room temperature, A. fumigatus - 3.363ng/µl at 4°C and 1.308ng/µl at room temperature. CaRTB C. 

albicans - 8.341 ng/µl at 4°C and 8.649 ng/µl at room temperature and A. fumigatus - 4.834ng/µl at 

4°C and 7.149ng/µl at room temperature). Aptamers that were selected against A. fumigatus at 4°C 

showed similarly low levels of specificity with Af4B (C. albicans - 10.466ng/µl  at 4oC and 7.732ng/µl 

at room temperature and A. fumigatus - 9.927ng/µl at 4°C and 9.226ng/µl at room temperature)  

and Af4A  incubated with C. albicans - 12.069 ng/µl at 4oC and 10.686ng/µl at room temperature and 

A. fumigatus - 10.464ng/µl at 4°C and 9.126ng/µl at room temperature) and consistent levels of 

binding. The most promising levels of specificity were exhibited by AfRTB (10.656ng/µl – 4oC and 

5.951ng/µl – room temperature in C. albicans but 16.854ng/µl at 4°C and 15.611ng/µl at room 

temperature in A. fumigatus) followed by AfRTD (C. albicans - 9.738ng/µl at 4oC and 7.066ng/µl at 

room temperature and A. fumigatus - 12.998ng/µl at 4°C and 11.217ng/µl at room temperature). 

AfRTA however exhibited a low level of binding over all along with low specificity (C. albicans - 

5.502ng/µl at 4°C and 6.324ng/µl at room temperature and A. fumigatus - 5.502ng/µl and 4°C and 

6.324ng/µl at room temperature). 
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3.5 Further Testing of Shortlisted Aptamers 

Aptamers shortlisted for further testing were AfRTB and Ca4B with results indicating that these were 

one aptamer for each species that exhibited the most promising specificity and levels of binding. 

Shortlisted aptamers were further tested by determining their kd through testing binding levels from 

initial aptamer concentrations of 200nM, 100nM, 50nM and 25nM. This is to determine their affinity 

for their targets.   
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Figure 3.9. Binding of Aptamers, AfRTB and Ca4B, to C. albicans at a Variety of Concentrations. (A). 

Eluted aptamer, amplified by PCR (B) Binding Affinity of aptamer. Identified aptamers AfRTB and Ca4B 

were both incubated with C. albicans at a concentration of 200nM, 100nM, 50nM, and 25nM for 30minutes at room 

temperature. Aptamers were then eluted. These eluted aptamers were amplified by PCR using aptfor and aptrev primers, 

before being analysed on a 2% agarose gel using a BioRad ChemiDoc XRS+ system with a 500ms exposure. The 

concentration of amplified aptamer was measured by comparison to a sample of aptamer at a concentration of 171ng/µl. 

Intensity of the band of DNA was measured by BioRad Image Lab software, and compared to the sample of known 

concentration to determine the amount of DNA in each band.  
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Figure 3.10. Binding of Aptamers, AfRTB and Ca4B, to A. fumigatus at a Variety of Concentration. 

(A) Eluted aptamer, amplified by PCR (B) Binding Affinity of aptamer Identified aptamers AfRTB and Ca4B 

were both incubated with A. fumigatus at a concentration of 200nM, 100nM, 50nM, and 25nM for 30minutes at room 

temperature. Aptamers were then eluted. These eluted aptamers were amplified by PCR using aptfor and aptrev primers, 

before being analysed on a 2% agarose gel using a BioRad ChemiDoc XRS+ system with a 500ms exposure. The 

concentration of amplified aptamer was measured by comparison to a sample of aptamer at a concentration of 171ng/µl. 

Intensity of the band of DNA was measured by BioRad Image Lab software, and compared to the sample of known 

concentration to determine the amount of DNA in each band. 
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Figure 3.9a shows a difference in the binding of AfRTB and Ca4B to C. albicans following incubation 

with varying concentrations of aptamer. The PCR product from C. albicans incubation with 200nM 

AfRTB  yielded 2.8ng/µl of aptamer, whereas Ca4B incubated with C. albicans yielded 6.4ng/µl. This 

demonstrates a 3 fold increase in binding in C.albicans compared to A. fumigatus. As the 

concentration of AfRTB aptamer decreased, as did the amount of PCR product indicating that less 

aptamer is being isolated from the cells. However, there was still a clear trend of increased binding 

in C. albicans compared to A. fumigatus. Incubation of the aptamer at its lowest concentration of 

25nM still displays the same trend with AfRTB yielding 0.5ng/µl, but Ca4B yielding 1.8ng/µl. The 

graph overall shows that incubation of both aptamers with C. albicans resulted in some degree of 

binding. However, Ca4B appears to show a much higher affinity for C. albicans, the target it was 

selected against with a Kd of 87.3nM whereas AfRTB has a Kd of 123.3nM.   

In comparison, when AfRTB was incubated with its target cell (A. fumigatus), Figure 3.10, a higher 

level of binding was observed. 200nM of AfRTB incubated with A. fumigatus resulted in a 

concentration of 15.389ng/µl, this is in contrast to C. albicans where there was a 3 fold reduction in 

binding (Figure 9A) Decreasing the concentration of AfRTB to 100nM resulted in a similar 

concentration of aptamer being retained on the target cells. As the concentration of AfRTB reduced 

to 25nM, amplification of the aptamer from A. fumigatus was reduced to approximately 4.3ng/µl. A 

similar reduction trend was also seen in the levels of Ca4B bound to A. fumigatus. From this data the 

Kd of the aptamers was determined in A. fumigatus, with AfRTB showing a lower Kd 81.78nM with 

Ca4B showing a Kd of 93.43nM (Figure 9B). 

Comparison of the Kd of the aptamers from each experiment (table 3.1), indicates that there is a 

clear difference between binding of each aptamer to their target. In C.albicans the Ca4B aptamer 

has a much lower Kd (87.3nM) than is seen in A. fumigatus (123.3nM), indicating a higher affinity for 

C.albicans. A similar trend is seen with the AfRTB aptamer when incubated with A. fumigatus 

(81.8nM) compared to C. albicans (93.3nM), which also indicates a clear affinity for the target cell.   
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Fungal species Kd of Aptamer (nM) 

Ca4B AfRTB 

C. albicans 87.3 93.4 

A. fumigatus 123.3 81.8 

 

Table 3.1 Summary of kd of shortlisted aptamers against each target cell. Ca4B and AfRTB were both 

incubated with both C. albicans and A. fumigatus at different concentrations. The table summarises data from figures 8B 

and 9B. 

However, when comparing the results from figure 8 and 9, as previously observed, the overall level 

of aptamer binding is reduced in C. albicans compared to A. fumigatus, i.e. the highest level of 

binding in C. albicans was approx. 6ng/µl compared with 15ng/µl in A. fumigatus. In regards to Ca4B, 

this means the level of binding seen with the aptamer in C.albicans is similar to that in A. fumigatus.  

For example, at 200nM the concentration of aptamer obtained from C. albicans is 6.5ng/µl and in A. 

fumigatus it is 4.5ng/µl. This may mean that it would be difficult to identify C. albicans using the 

Ca4B aptamer within  a mixed culture of both fungi, due to level of binding of this aptamer to both 

species, you would be unable to distinguish between them.  

3.6 Fluorescence Microscopy 

An alternatively way to determine binding of an aptamer to a target cell is visually with a microscopy 

using a fluorescently tagged aptamer. Both Ca4B and AfRTB were fluorescently tagged at the 5’ end 

with Cy5 by PCR. After incubating 200nM of the tagged aptamers with both C. albicans and A. 

fumigatus, the cells were fixed, and mounted on slides with Vectashield mountant containing DAPI 

counterstain. These were then visualised using a Zeiss fluorescent microscope. Representative 

images are shown in Figures 3.11 and 3.12. 
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Figure 3.11. Cy5 labelled AfRTB incubated with A. fumigatus and C. albicans. Shortlisted aptamer 

AfRTB labelled with Cy5 fluorescent tag (IDT, UK) was incubated with A. fumigatus and C. albicans 

for 30 minutes at room temperature using an aptamer concentration of 200nM. Cells were fixed in 

3.7% formaldehyde and washed with 1x PBS, before being resuspended in vectashield with DAPI for 

mounting onto slides. Slides were imaged using Ziess fluorescent microscope, using a DAPI, Cy5 and 

brightfield filter, exposed for 1.2 seconds.   
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Figure 3.12. Cy5 labelled Ca4B incubated with A. fumigatus and C. albicans. Shortlisted aptamer Ca4B labelled with Cy5 fluorescent tag (IDT, UK) was 

incubated with A. fumigatus and C. albicans at room temperature for 30minutes at a concentration of 200nM. Cells were fixed in 3.7% formaldehyde and 

washed with 1x PBS before being resuspended in vectashield with DAPI for mounting onto slides. Slides were imaged using Zeiss fluorescent microscope, 

with DAPI, Cy5 and brightfield filters for an exposure of 1.2 seconds. 
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Figure 3.11 shows faint staining of A. fumigatus with AfRTB within the Cy5 channel, with no 

fluorescence observed in C. albicans. The data seems to suggest binding of AfRTB to its target cell 

and supports the PCR results (Figures 8A and 8B).  

Figure 3.12 shows Cy5 bound Ca4B incubated with C. albicans, which seems to indicate no binding. 

However, when incubated with A. fumigatus, several areas of intense fluorescence were observed 

which corresponded with clumping of the cells.  The PCR data suggested that Ca4B was able to bind 

to both cells types, but with more specificity to C. albicans. This result is not supported by the 

fluorescence data.  
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3.7 Characterisation of previously Identified Aptamers. 

A set of 14 novel aptamers had been previous isolated in the lab against several fungal species. 

Sixteen rounds of SELEX were undertaken at 4°C against A. fumigatus, C. albicans and 

Saccharomyces cerevisiae (S. cerevisiae) using HeLa cells as a negative selection. These aptamers had 

yet to be characterised, so were investigated as part of this study. 

Initially, each sequence was analysed, without the primer sequences, through Clustal Omega 

analysis software. The analysis from this software shows the similarities between the aptamers 

allowing for sequence comparisons. Sequences, with the primer sequences, were also analysed by 

Mfold analysis software to predict secondary folding structure of each aptamer, which is important 

for target binding. 

 

(A)  
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(B) 

 

 

C9269         -------------CCGGGGACGCACCGCATTCAACACGTCGCGAGCACCGCATCA----- 42 

A21279        -------CGTACCACCACACGCCCCGACCATTC---------------AGCATCCGCACC 38 

A20279B       -------CGTACCACCACACGCCCCGACCATTC---------------AGCATCCGCACC 38 

A202710       ---------CCGCGCCAGCACACCACA---------CAGCCATTACCCGGAACCCGTCAC 42 

Af021810      ------------------CACAGCGCACACTACCCAACGCCACACACCTGGACCCCCCC- 41 

Af031810      TCACCGCTC------------TCCCCACGCTTATCCCG----------CTCACCACTCCT 38 

S12709        -----------CCCCGAGTTTACCGCAGAGTTCAGCACACGCCACACTGCCATCCCACAC 49 

S71810        CCACCACTGTCCTTCGAGTTTACCGCAGAATTCGCCGATCCACCACACCTCATCACACCC 60 

C009269       ------CTG--TCGCTGTTT-GCAGTAGCCATGTGTCGTTCTCTCA---GGCTCC----- 43 

C05269        -----CGCG--TCGCTAGTT-GTGTTTGGTTTGTGGTTGTCTTACT---TGGTCT----- 44 

C5269         -----CGCG--TCGCTAGTT-GTGTTTGGTTTGTGGTTGTCTTACT---TGGTCT----- 44 

S8279         --------------CGGTTG-ATGGCACCAGTGTGTCGCCCATTGGC-GGGGTTG----- 39 

Ca28269       ------CTA--CGGACGTCT-TTGCCCTGCGTTCCGCTGCAACTGT---GTGTTC----- 43 

A24279        --------C--CCTACGTGC-GTGGCCGCATTGTGCCTTTTGATGG---GTGTTG----- 41 

                                                                           

 

C9269         -----TTCCGTTCCCC-- 53 

A21279        AGCCTGTCCCTCG----- 51 

A20279B       AGCCTGTCCCTCG----- 51 

A202710       CATCTGTTCGT------- 53 

Af021810      ------------------ 41 

Af031810      CATCTCCCTCCTGCGC-- 54 

S12709        CCTGTCCACCCTGC---- 63 

S71810        CCTCCGTGCC-------- 70 

C009269       -GGGTGTG---------- 50 

C05269        -GTGTGTCCCC------- 54 

C5269         -GTGTGTCCCC------- 54 

S8279         -GATTGTGTCGCGTCCCT 56 

Ca28269       -GTG-CTTCCTTCTCCCT 59 

A24279        -TCC-TGTCCT------- 50 
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Figure 3.13.  Analysis of aptamer sequences via Clustal Omega (A) Phylogenetic tree of isolated aptamer. Isolated sequences from the SELEX process were put 

through Clustal Omega software (primer sequences removed) and sequences compared for similarity shown as a phylogenetic tree. (B) Alignment of isolated aptamer 

sequences. Clustal Omega output of sequences aligned. (C) Percentage similarity of all isolated sequences. Clustal Omega output of similarity of sequences 

expressed as percentage values between each sequence.   

Aptamer % Similarity 

 C9269 A21279 A20279B A202710 Af021810 Af031810 S12709 S71810 C009269 C05269 C5269 S8279 Ca28269 A24279 

C9269 100 40 40 43.59 37.84 51.43 39.22 44.69 29.27 25 25 28 32.65 29.55 

A21279 40.00 100 100.00    46.34    42.31    41.03    42.55    47.92    41.67    41.03    41.03    40.54    30.00    40.54 

A20279B 40.00 100 100 46.34    42.31    41.03    42.55    47.92    41.67    41.03    41.03    40.54    30.00    40.54 

A202710 43.59 46.34 46.34   100 59.38    48.39    43.14    50.00    36.84    34.15    34.15    40.00    40.00    25.00 

Af021810 37.84 42.31 100.00    59.38   100 46.43    51.22    46.34    33.33    21.21    21.21    31.43    33.33    12.12 

Af031810 51.43 41.03    41.03    48.39    46.43   100 51.16    56.25    33.33    29.73    29.73    30.77    37.50    27.27 

S12709 39.22 42.55    42.55    43.14    51.22    51.16   100 59.32    38.30    40.00    40.00    30.77    26.92    24.49 

S71810 44.69 47.92    47.92    50.00    46.34    56.25    59.32   100 38.00    33.96    33.96    35.42    29.41    28.57 

C009269 29.27 41.67    41.67    36.84    33.33    33.33    38.30    38.00   100 54.00    54.00    54.55    34.69    36.17 

C05269 25.00 41.03    41.03    34.15    21.21    29.73    40.00    33.96    54.00   100 100   38.30    34.62    32.00 

C5269 25.00 41.03    41.03    34.15    21.21    29.73    40.00    33.96    54.00   100 100 38.30    34.62    32.00 

S8279 28.00 40.54    40.54    40.00    31.43    30.77    30.77    35.42    54.55    38.30    38.30   100 45.28    47.83 

Ca28269 32.65 30.00    30.00    40.00    33.33    37.50    26.92    29.41    34.69    34.62    34.62    45.28   100 46.00 

A24279 29.55 40.54    40.54    25.00    12.12    27.27    24.49    28.57    36.17    32.00    32.00    47.83    46.00   100 
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The phylogenetic tree (figure 3.13A) groups aptamers together based on their similarities in 

sequences. Sequences were grouped into three main families, which may suggest three distinct 

epitopes. The first branch contains 2 aptamers, the second branch contains 10 aptamers and the 

third branch, 2 aptamers. Within the second branch, A21279 and A20279B, have the same 

sequence, as do C05269 and C5269. Further, Ca28269 and A24279 are very closely related as are 

A202710 and Af021810. In the third branch, S12709 and S71810 are closely related to each other.  

Based on the sequence homologue, the majority of aptamers showed less than 60% similarity 

(Figure 12B and 12C).  

 

Figure 3.13B shows the sequence alignments generated by clustal omega, which demonstrates there 

were no conserved regions between all aptamers. However, based on the phylogenetic mapping a 

number of aptamers were found to be closely associated. Therefore, these sequences were analysed 

separately (Figure 3.14).  

 

 

Figure 3.14.  Alignment of isolated aptamer sequences using Clustal Omega. Alignment of two 

aptamers  (A) Ca28269 and A24279 (B) A202710 and Af021810 (C) S12709 and S71810. Conserved 

regions are indicated in yellow and with a *. 
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Based on the phylogenetic tree, the closely related sequences Ca28269 and A24279 showed 22 

consensus bases, with one group of 5 and two groups of 4 conserved bases (Figure 3.14A). A202710 

and Af021810, were also shown to be closely related showing 21 consensus bases, with two group of 

4 and one group of 3 conserved bases. Finally, S12709 and S71810 showed 35 consensus bases, with 

one group of 15 and two groups of 4 conserved bases. 

 

 

3.8  Previously Identified aptamer predicted folding structure. 
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Figure 3.15. Predicted secondary folding structure of previously identified aptamers. All sequences were analysed using Mfold software and folding 

structure predicted based on SELEX conditions (Na+ 137mM and Mg++ 0.25mM) and 4°C. Structures shown are those with the lowest predicted Gibbs free 

energy. Aptforward primer sequences are highlighted in red and Aptreverse sequences highlights in blue.  
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Figure 3.15 shows the predicted secondary structures of the previously identified aptamers. The 

predicted folding shows some similarities in structures. With aptamers either showing large loop 

regions, with smaller stem regions or mostly consisting of large stem loop regions.  

3.9 Further Testing of Previously Identified aptamers  

To determine binding of these novel aptamers to different fungal species, 200nM of each aptamer 

was incubated with a different fungal cell type at 4ºC for 30 minutes. The bound aptamer was then 

eluted and used as a template for a PCR. It was assumed that the more aptamer bound to the cell, 

the higher the available template for the PCR, which would result in a higher concentration of the 

final aptamer product. The resulting product was visualised on an agarose gel and quantified using 

the ChemiDoc XRS+ software by comparing to a product of known concentration.
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Figure 3.16. C. albicans incubated with all previously identified aptamers. C. albicans incubated with all 

previously identified aptamers at a concentration of 200nM, for 30 minutes at 4ºC. Cells were then washed with washing 

buffer, and resuspended in water. Aptamer was then eluted from target cells by heating at 95ºC. A sample of eluted 

aptamer was then amplified by PCR and a sample of the PCR product separated by gel electrophoresis on a 2% agarose gel, 

and visualised by UV light using the ChemDoc XRS+. A sample of known concentration was run alongside the PCR product 

sample and the intensity of each band measured. The concentration of aptamer was calculated by comparison to the 

sample of known concentration (171.1.ng/µl). Each value displayed is an average of 2 repeats, with an amplified aptamer 

library as a positive control and a sample with no aptamer as a negative control. 
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 Of the aptamers that were selected against C. albicans there was varying levels of binding when 

incubated with C. albicans, with C5269 (4.6ng/µl), showing the most binding overall. This was 

followed by C05269 (3.8ng/µl), which based on the sequence information is the same sequence. The 

aptamer that appeared to show the lowest level of binding was C9269 (0.5ng/µl). The remaining two 

aptamers showed intermediate levels of binding, C009269 (2.2ng/µl) and Ca28269 (3.3ng/µl).  

Aptamers selected against A. fumigatus when incubated with C. albicans also showed a wide range 

of binding, A21279 (4.2ng/µl) was the highest of these aptamers, followed by A202710 (3.1ng/µl), 

then Af031810 (2.1ng/µl), Af021810 (2.1ng/µl). The lowest levels of binding from this group of 

aptamers were A20279B (0.7ng/µl) and A24279 (0.5ng/µl). The final aptamers incubated with C. 

albicans in figure 3.16 were those selected against S. cerevisiae, again with varied levels of binding. 

S12709 (3.4ng/µl) being the highest, followed by S8279 (3.2ng/µl) and the lowest being S71810 

(1.1ng/µl). 

In most cases, the aptamers selected against S. cerevisiae and A. fumigatus, show significant binding 

to C. albicans when compared to the negative control and the library alone. As previously noted, the 

overall level of aptamer binding in C.albicans was lower than that reported in other fungal species.  
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Figure 3.17. A. fumigatus incubated with all previously identified aptamers. A. fumigatus incubated with 

all previously identified aptamers at a concentration of 200nM, for 30 minutes at 4ºC. Cells were then washed with 

washing buffer, and resuspended in water. Aptamer was then eluted from target cells by heating at 95ºC. A sample of 

eluted aptamer was then amplified by PCR and a sample of the PCR product separated by gel electrophoresis on a 2% 

agarose gel, and visualised by UV light using the ChemDoc XRS+. A sample of known concentration was run alongside the 

PCR product sample and the intensity of each band measured. The concentration of aptamer was calculated by comparison 

to the sample of known concentration (171.1.ng/µl). Each value displayed is an average of 2 repeats, with an amplified 

aptamer library as a positive control and a sample with no aptamer as a negative control. 
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Figure 3.17 shows the previously identified aptamers now incubated with A. fumigatus. In most 

cases, the binding of the aptamers shows a similar trend as that seen in Figure 3.16 however; 

concentrations of the final aptamer product are consistently higher than seen in C. albicans. 

Aptamers that were selected against A. fumigatus generally show the best yield of aptamer after 

incubation, the highest being A202710 at 9.6ng/µl, followed by A20279 at 9.3ng/µl, then Af031810 

at 6.2ng/µl, A21279 at 5.9ng/µl and the lowest A24279 (4.3ng/µl) and Af021810 at 4.086ng/µl). 

Whereas all aptamers selected against C. albicans generally show much lower yields with Ca28269 at 

3.5ng/µl, followed byC009269 at 3.1ng/µl and the lowest being C9269 at 0.626ng/µl. With the 

exception of C5269 (7.6ng/µl) and C05269 (4.9ng/µl) which exhibited levels of binding more 

comparable to that of Af031810, Af021810 and A24279. Aptamers selected against S. cerevisiae 

show varying yields. S122709 is the highest at 8.4ng/µl followed by S8279 at 6.0ng/µl. S71810 

(1.1ng/µl) was the second lowest from all aptamers. The aptamer library control yielded 1.229ng/µl 

and the no aptamer control 0.111ng/µl. S71810 and C9269 both exhibited binding levels lower than 

the aptamer library control. 
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Figure 3.18. S. cerevisiae incubated with all previously identified aptamers. S. cerevisiae was incubated 

with all previously identified aptamers at a concentration of 200nM, for 30 minutes at 4ºC. Cells were then washed with 

washing buffer, and resuspended in water. Aptamer was then eluted from target cells by heating at 95ºC. A sample of 

eluted aptamer was then amplified by PCR and a sample of the PCR product separated by gel electrophoresis on a 2% 

agarose gel, and visualised by UV light using ChemiDoc XRS+. A sample of known concentration was run alongside the PCR 

product sample and the intensity of each band measured. The concentration of aptamer was calculated by comparison to 

the sample of known concentration (171.1.ng/µl). Each value displayed is an average of 2 repeats, with an amplified 

aptamer library as a positive control and a sample with no aptamer as a negative control. 
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Figure 3.18 shows the data for the aptamers incubated with S. cerevisiae cells. Aptamers that were 

selected against C. albicans showed levels of binding similar to their incubation with C. albicans with 

the exception of Ca28269 being considerably higher at 12.2ng/µl. C5269 was the second highest at 

7.2ng/µl, followed by C009269 with 6.075ng/µl, then C9269 at 4.5ng/µl and the lowest being 

C05269 at 3.5ng/µl. Aptamers selected against A. fumigatus had a range of levels of binding, the 

highest being A202710 at 7.9ng/µl, followed by Af031810 at 7.7ng/µl, then A21279 with 7.5ng/µl, 

then Af021810 with 3.9ng/µl and finally the lowest, Af20279B with 3.8ng/µl. Aptamers selected 

against S. cerevisiae also had varied levels of binding. S8279 had the highest level of binding with 

6.5ng/µl, followed by S71810 at 2.6ng/µl and the lowest being S12709 at 0.3ng/µl. 

Comparing these aptamers to their incubation in other species it shows they have some specificity 

fungal species and, in some cases, increased binding to the non-target cell. For example, Ca28269 

was isolated at a concentration of 12.2ng/µl when incubated with S. cerevisiae but at 3 fold less in its 

target fungi, C. albicans(3.7ng/µl) and 4ng/µl with A.fumigatus.. However, a number of aptamers 

were isolated that where specific for their target cell, for example Af20279B gave a yield of 9.4ng/µl 

when incubated with its target fungi, A. fumigatus, but this was significantly reduced in C. albicans 

and(0.5ng/µl( in and, to some extent,  in S. cerevisiae(4ng/µl). Whereas some aptamers bind to all 

the fungal species for example A21279, which bound to all fungi equally well. 

Following on from the results of the PCR assay, five aptamers were short listed that showed some 

specific binding to fungal cells (Table 3.2). These aptamers where C009269 (binding to A. fumigatus 

and S. cerevisiae), Ca28269 (high level of binding to S.cerevisiae), C5269 (binding to C. albicans, A. 

fumigatus and S. cerevisiae), Af20279B (high level of binding to A. fumigatus) and A24279 (binding to 

A. fumigatus and S. cerevisiae). 
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 Aptamer Binding 

Aptamer C. albicans A. fumigatus S. cerevisiae 

C009269 -   

Ca28269    

C05269    

C5269    

C9269 - -  

A21279    

A20279B -   

S12709   - 

A202710    

Af031810    

Af021810    

S8279    

S71810 - -  

A24279 -  - 

 

Table 3.2 Summary of Aptamer binding to fungal cells. A summary table of all previously identified aptamers 

incubated with C. albicans, A. fumigatus and S. cerevisiae and their level of binding to those species.  indicates 2.5-

4.9ng/µl concentration.  indicates 5.0-7.4ng/µl concentration.  indicates 7.5-9.9ng/µl concentration.  

indicates 10ng/µl and above concentration. 

 

The binding of the short-listed aptamers was further characterised by testing the aptamers at 

varying concentrations (200nM to 25nM) with C. albicans, A. fumigatus and S. cerevisiae cells. This 

would also allow the determination of the Kd, which will help determine their affinity for the target 

cell.  As previously described, following a 30-minute incubation at 4oC with the required aptamer 

concentration, cells where washed and the bound aptamer was eluted. This was then used as the 

template DNA for a PCR. Amplified aptamers were analysed by gel electrophoresis and quantified 

using ChemiDoc software against a control of known concentration. 
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Figure 3.19. C. albicans incubated with selected aptamers at differing concentrations. (A) Eluted 

aptamer, amplified by PCR (B) Binding Affinity of aptamer Shortlisted aptamers C009269, Ca28269 and 

C5269 were incubated with C. albicans for 30minutes at a concentration of 200nM, 100nM, 50nM and 25nM. Cells were 

washed with washing buffer, and resuspended in water before bound aptamer was then eluted from target cells. A sample 

of each elution was then amplified by PCR and a sample of this product separated and visualised by gel electrophoresis 

under UV light using ChemiDoc XRS+ on a 2% agarose gel. A sample of known concentration was also run on the same gel 

and the concentration of each sample determined by measuring the visual intensity of each band (using ChemiDoc XRS+ 

Image lab software) in comparison to the sample of known concentration. The Bmax and Kd were calculated using the 

graph. 
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Figure 3.19 shows the final concentration of aptamer following incubation with C. albicans of the 

shortlisted aptamers C009269, Ca28269 and C5269 for 30 minutes at 4°C. Ca28269 shows the 

highest concentration of aptamer with a yield of 9.9ng/µl at 200nM and 9.7ng/µl at 100nM 

concentrations. The Kd for this aptamer was determined (calculated from data from figure 18, using 

Graphpad Prism software) to be 117nM. This was much higher than the concentration seen in Figure 

12 when C. albicans was also incubated with 200nM of this Ca28269. As the initial concentration of 

aptamer decreased so did the final concentration; 3.6ng/µl at 50nM and 2.9ng/µl at 25nM. Both 

C009269 (Kd 1.78nM) and C5269 (Kd19.8nM) had less variation in the final aptamer concentration, 

with values staying constant as the initial aptamer concentration decreased. C009269 was the higher 

of the two with concentrations of 6.6ng/µl (200nM) 6.0ng/µl (100nM) 5.8ng/µl (50nM) and 

6.084ng/µl. C5269 gave a yield of 2.5ng/µl at 200nM and 2.5ng/µl 100nM concentrations, 2.2ng/µl 

at 50nM and 1.5ng/µl at 25nM.  
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Figure 3.20. A. fumigatus incubated with selected aptamers at differing concentrations. Shortlisted 

aptamers C009269, Ca28269 and C5269 were incubated with A. fumigatus for 30minutes at a concentration of 200nM, 

100nM, 50nM and 25nM. Cells were washed with washing buffer, and resuspended in water before bound aptamer was 

then eluted from target cells. A sample of each elution was then amplified by PCR and a sample of this product separated 

and visualised by gel electrophoresis under UV light using ChemiDoc XRS+ on a 2% agarose gel. A sample of known 

concentration was also run on the same gel and the concentration of each sample determined by measuring the visual 

intensity of each band (using ChemiDoc XRS+ Image lab software) in comparison to the sample of known concentration. 
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Figure 3.20 shows yield of aptamer following incubation with A. fumigatus of the shortlisted 

aptamers C009269, Ca28269 and C5269 for 30 minutes at 4°C. C009269 (Kd 49.78nM) shows the 

highest yield of aptamer with 6.2ng/µl at a concentration of 200nM and 6.8ng/µl at 100nM, 

dropping to 2.9ng/µl at 50nM and rising to 3.267ng/µl at 25nM. Ca28269 (Kd 11.55) yielded 4.9ng/µl 

at 200nM and 4.654ng/µl at 100nM. The yield then drops to 2.9ng/µl at 50nM and then rises slightly 

to 3.984ng/µl at 25nM. C5269 (Kd 90.01nM) shows the lowest overall yield as it did in figure 3.19, 

with yields decreasing with decreasing aptamer concentration. 
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Figure 3.21. S. cerevisiae incubated with selected aptamers at different concentrations. (A) Binding 

Affinity of aptamer (B) Eluted aptamer, amplified by PCR. Shortlisted aptamers C009269, Ca28269 and 

C5269 were incubated with S. cerevisae for 30minutes at a concentration of 200nM, 100nM, 50nM and 25nM. Cells were 

washed with washing buffer, and resuspended in water before bound aptamer was then eluted from target cells. A sample 

of each elution was then amplified by PCR and a sample of this product separated and visualised by gel electrophoresis 

under UV light using ChemiDoc XRS+ on a 2% agarose gel. A sample of known concentration was also run on the same gel 

and the concentration of each sample determined by measuring the visual intensity of each band (using ChemiDoc XRS+ 

Image lab software) in comparison to the sample of known concentration. 
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Figure 3.21 shows yield of aptamer following incubation with S. cerevisiae of the shortlisted 

aptamers C009269, Ca28269 and C5269 for 30 minutes at 4°C. Ca28269 shows the best yield of 

aptamer with 9.9ng/µl at 200nM, which stayed consistent with decreasing aptamer concentration 

until 25nM, when the yield dropped to 2.7ng/µl. C009269 and C5269 both have relatively low yields 

with C009269 at approximately 2.0ng/µl at both 200nM and100nM, before dropping to 1.3ng/µl at 

50nM and then 0.576ng/µl at 25nM. A similar trend was observed with C5269, with a maximum 

yield of 2.3ng/µl at 200nM which gradually reduced with decreasing aptamer concentration. 
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Figure 3.22. C. albicans incubated with selected aptamers at differing concentrations. (A) Binding 

Affinity of aptamer (B) Eluted aptamer, amplified by PCR. Shortlisted aptamers Af20279B and A24279 were 

incubated with C. albicans for 30minutes at a concentration of 200nM, 100nM, 50nM and 25nM. Cells were washed with 

washing buffer, and resuspended in water before bound aptamer was then eluted from target cells. A sample of each 

elution was then amplified by PCR and a sample of this product separated and visualised by gel electrophoresis under UV 

light using ChemiDoc XRS+ on a 2% agarose gel. A sample of known concentration was also run on the same gel and the 

concentration of each sample determined by measuring the visual intensity of each band (using ChemiDoc XRS+ Image lab 

software) in comparison to the sample of known concentration. 
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Figure 3.22 shows the yields of aptamer obtained from the incubation of Af20279B and A24279 with 

C. albicans for 30minutes at 4°C. Af20279B shows a higher yield compared to A24279 with 3.6ng/µl 

at 200nM, which reduced and plateaued at 50nM to 31.9ng/µl. A24279 gave a much lower yield of 

1.575ng/µl at 200nM, which remained relatively consistent as the aptamer concentration reduced to 

25nM.  
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Figure 3.23. A. fumigatus incubated with selected aptamers at differing concentrations. (A) 

Binding Affinity of aptamer (B) Eluted aptamer, amplified by PCR Shortlisted aptamers Af20279B and 

A24279 were incubated with A. fumigatus for 30minutes at a concentration of 200nM, 100nM, 50nM and 25nM. Cells 

were washed with washing buffer, and resuspended in water before bound aptamer was then eluted from target cells. A 

sample of each elution was then amplified by PCR and a sample of this product separated and visualised by gel 

electrophoresis under UV light using ChemiDoc XRS+ on a 2% agarose gel. A sample of known concentration was also run 

on the same gel and the concentration of each sample determined by measuring the visual intensity of each band (using 

ChemiDoc XRS+ Image lab software) in comparison to the sample of known concentration. 
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Figure 3.23 shows the yield of aptamer following incubation of Af20279B and A24279 with A. 

fumigatus for 30minutes at 4°C. Af20279B exhibits the best binding of any of the aptamers selected 

for further testing for its selected cell type. At 200nM the concentration following incubation was 

25.069ng/µl, which reduced slightly at 100nM (17.612ng/µl), before reaching a plateau. Aptamer 

A24279 showed limited binding to the target cell, with no concentration related change observed. 
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Figure 3.24. S. cerevisiae incubated with selected aptamers at differing concentrations. (A) Binding 

Affinity of aptamer (B) Eluted aptamer, amplified by PCR. Shortlisted aptamers Af20279B and A24279 were 

incubated with S. cerevisiae for 30minutes at a concentration of 200nM, 100nM, 50nM and 25nM. Cells were washed with 

washing buffer, and resuspended in water before bound aptamer was then eluted from target cells. A sample of each 

elution was then amplified by PCR and a sample of this product separated and visualised by gel electrophoresis under UV 

light using ChemiDoc XRS+ on a 2% agarose gel. A sample of known concentration was also run on the same gel and the 

concentration of each sample determined by measuring the visual intensity of each band (using ChemiDoc XRS+ Image lab 

software) in comparison to the sample of known concentration. 
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Figure 3.24 shows the binding affinity of Af20279B and A24279 to S. cerevisiae. Af20279B shows the 

highest binding affinity, but this is still considerably lower than in A. fumigatus with 2.9ng/µl at 

200nM. . As the concentration decreased below 100nM, the level of binding also reduced until it 

reached 1.5ng/µl at 25nM. A24279 showed slightly less binding affinity with 2.4ng/µl at 200nM, 

which also decreased with decreasing aptamer concentration from 1.6ng/µl at 100nM to 0.4ng/µl at 

25nM. 

 

 

Aptamer Kd of Aptamer (nM) 

C. albicans  A. fumigatus S. cerevisiae 

Ca009269 1.78 49.78 67.92 

Ca28269 117 11.5 38.82 

C5269 19.8 90.01 65.92 

Af20279B 38.04 10.84 31.92 

A24279 7.95 32.98 284.5 

Table 3.3 A summary of the kd of all shortlisted aptamers against each target cell. Each kd was 

calculated following incubation of each aptamer with each target cell at 200nM, 100nM, 50nM and 

25nM. This tables summarises data from figures  

 

Table 3.3 shows a summary of the kd of all shortlisted aptamers against each target cell. 

Following the high levels of specificity seen in Af20279 (in figures 3.22, 3.23 and 3.24) the binding 

affinity was then assessed visually by fluorescence microscopy. 

3.10 Confirmation of binding of shortlisted aptamers by fluorescence microscopy 

 A sample of Af20279 was ordered tagged with alexa488, cells were then incubated with each target 

for 30minutes using an aptamer concentration of 200nM. Aptamers were not eluted following 

incubation, and cells were washed and fixed in formaldehyde and mounted onto slides using 

Vectashield. Slides were then imaged using Ziess fluorescence microscope, with a 1.2 second 

exposure time.  
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Figure 3.25.  Af20279 tagged with Alexa488 and viewed by fluorescence microscopy. Shortlisted aptamer Af20279 labelled with Alex488 fluorescent tag 

(IDT, UK) was incubated with A. fumigatus and C. albicans for 30 minutes at room temperature using an aptamer concentration of 200nM. Cells were fixed 

in 3.7% formaldehyde and washed with 1x PBS, before being resuspended in vectashield with DAPI for mounting onto slides. Slides were imaged using Ziess 

fluorescent microscope, using a DAPI, Alex488 and brightfield filter, exposed for 1.2 seconds.   
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Figure 3.26 Counts of fluorescent/ non-fluorescent cells of each microbial species when 

incubated with Af20279 tagged with Alexa488.  

 

The results in Figure 3.25, show an increased fluorescence in the Alex488 channel when A. 

fumagatius cells are incubated with this aptamer. This fluorescence is not observed in either of 

the other two fungal species, C. albicans or S. cerevisiae, indicating that this aptamer appears 

to be species specific. This supports the data obtained from the PCR experiments.  This data is 

supported by a cell count that was performed, on this set of slides and another (figure 3.26).   
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3.11 Outcome of Negative Selections 

 

 

Figure 3.27. Shortlisted aptamers incubated with HeLa cells. Each shortlisted aptamer was incubated 

with HeLa cells for 1 hour at room temperature at concentrations of 400nM, 200nM and 100nM. Samples of elution 

were taken and amplified by PCR, samples of PCR product were then run on a 2% agarose gel by gel electrophoresis. 

Gels were then viwed under UV light and images taken by ChemiDoc XRS+ image lab software.  

 

Figure 3.27 shows all shortlisted aptamers (A20279, C5269, C28279, C009269, A242710 Ca4B 

and AfRTB) incubated with HeLa cells to confirm whether any binding to HeLa cells takes place. 

Each aptamer was incubated for 1 hour at concentrations of 400nM, 200nM and 100nM with 

HeLa cells. A sample of aptamer library was used as a positive control.  No samples of aptamer 

were yielded by PCR following incubation implying no binding of aptamer. 
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4.0 Discussion 
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The aim of this study was to find DNA aptamers that selectively bind to the medically 

important fungi, C. albicans and A. fumigatus, as a means of improving both the treatment and 

diagnosis of infection caused by these microbes. Much like the current issues facing 

antibacterial treatments, many fungi are now resistant to known antifungal agents. The class 

of antifungals echinocandins for example have seen reported cases of resistance after just one 

week of treatment (Lewis et al. 2013). There are also specificity issues associated with some 

antifungal drugs, for instance the commonly used amphotericin B targets ergosterol in the cell 

membrane causing depolarisation of the membrane, leakage of intercellular components and 

eventually cell death (Brajtburg et al., 1990). However, amphotericin B exhibits high 

nephrotoxicity (Torrado et al., 2008). Amphotericin B is also capable of binding to cholesterol 

in mammalian cell membranes, which leads to depolarisation of the membrane and leakage of 

intracellular components. The addition of leaked K+ and other intracellular ions into the body 

creates strain on the kidneys to process the excess concentration in the blood in addition to 

this the cells membranes of nephrons are particularly rich in sterols meaning that the effects of 

amphotericin B are exaggerated in kidney cells. These adverse effects are not limited to one 

class of antifungals, Itraconazole for example was found to have a 23% chance of treatment 

being discontinued due to adverse effects (Wang et al. 2010). The high mortality rate 

associated with invasive fungal infections means that the aggressive side effects are part of a 

necessary treatment, however, there are ways to dramatically improve this. One way in which 

this can be done is through the use of targeting molecules such as DNA aptamers. Their high 

affinity and specificity for a target and their potential for conjugation to drugs means that they 

can be used in conjunction with current treatments to improve the quality of treatment for 

patients, without the need for new drug development. As well as treatments, the slow and 

inefficient means of diagnosis of fungal infections can also be improved with the use of 

aptamer based assays (Drolet, Moon-McDermott and Romig, 1996, Tang et al. 2016) to create 
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point of care testing kits.  Which in turn, lead to faster identification of treatment options and 

better patient prognosis (Barnes, 2008). 

4.1 Optimisation of the SELEX procedure using fungal cells 

The SELEX protocol was adapted from the whole cell SELEX protocol set out by Sefah et al. 

(2010). This is a published standardised method for the selection of any aptamers derived from 

the original aptamer work developed by Tuerk and Gold (1990). An important aspect of SELEX 

is the optimisation of PCR and influences of initial library amplification, in order to ensure 

efficiency throughout (Takahashi et al., 2016). Previous work had shown that amplification of 

the aptamer library using the PCR conditions in this paper, resulted in the formation of primer 

dimers, where primers anneal to each other as opposed to corresponding ends of the template 

sequence. This can also leads to incorrect formation of the template strand, including the 

addition of hairpin loops in the template from the strand folding (Tolle et al., 2014). Changes 

were made to the PCR programme to reduce the production of non-specific DNA amplification 

through the addition of DMSO (Hardjasa et al., 2010) and increase in annealing temperature to 

enhance the specificity of the primers used. DMSO improves amplification of the template in G 

and C rich sequences by lowering the denaturation temperature between G and C reducing the 

formation of primer-dimers and increases the accuracy of template reproduction. The ideal 

concentration of MgCl2 was also optimised to control the folding of template strands during 

PCR.  It is important for the PCR stages of SELEX to be optimised, as aptamer amplification is 

very different to homogenous DNA amplification (Musheev and Krylov, 2006). An important 

aspect of this is the choice of enzyme for PCR. In this case Taq polymerase 

To ensure the sole amplification of aptamers and not non-specific DNA, target cells were 

incubated with no aptamers. These samples were then heated, eluted and centrifuged just as 

the positive selections were and a sample of these put through the same PCR and run on 

agarose gel. These samples needed to be free of any DNA to ensure that non-specific 
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amplification had not occurred. Figures 3.1a and 3.1b and 3.2a and 3.2b, show the positive 

results from each rounds PCR along with negative controls, there is no evidence of 

amplification of non-specific DNA, which suggests the PCR protocol has been optimised for 

amplification of the aptamer sequence.  

4.1.2 Cell SELEX in fungi 

Candida albicans and Aspergillus fumigatus are two of the most prevalent invasive fungi to 

cause infections in humans so this study concentrated on isolating aptamers against these 

microorganisms. 

There are no published papers that detail selection of aptamers against whole cell fungi, 

however, there are many examples of studies describing the selection of aptamers against 

whole cell bacteria. Chen et al. (2007) found aptamers selected against Mycobacterium 

tuberculosis using 108 CFU/ml, decreasing to 105 CFU/ml in later rounds to increase selection 

pressure on the aptamers. Duan et al., 2013 also used 108 CFU/ml of Shigella dysenteraie for 

selection of aptamers. Initially rounds of one round of selection was undertaken with different 

numbers of cells, which resulted in the optimal 3x106 CFU/ml C. albicans and 7.5x106 CFU/ml 

of A. fumigatus for this study. This was found to provide enough target to narrow the aptamer 

pool in the initial SELEX rounds, as seen by the presence of aptamer post incubation from 

round one of selections (Figures 3.1a and b and 3.2a and b).  

In terms of fungi there are studies detailing selection against ideal targets for aptamers like 

Tang et al. (2016) selecting aptamers against fungal cell wall component β 1- 3 D Glucan.  

Purified β -1,3-D glucan was used as the target molecule for rounds of selection. This study 

resulted in aptamers specific to β, 1-3, D glucan, however testing of the aptamer against whole 

cells was not performed in this study. Previous studies have indicated that while using an 

isolated protein as a target is a viable option, there can be problems with the binding of the 

aptamer when the protein is in its native conformation (Pestourie et al., 2006) due to the 
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specific nature of aptamers and the conditions that can affect protein folding. As well as β-1,3- 

glucans being present in all species of fungi, potentially leading to incorrect diagnosis, it is also 

present after some medical procedures. β-1,3- D glucans are present in cellulose membranes 

used in haemodialysis (leading to an increased concentration patient serum (Kanda et al., 

2001) and cotton gauze and sponges used in surgeries (Usami et al., 2002). 

However, aptamers they found with the highest binding affinity were taken forward for use 

testing patient plasma samples by sandwich ELONA (Enzyme linked oligonucleotide assay, 

Drolet, Moon-McDermott and Romig, 1996). The ELONA method was developed for use with 

existing ELISA systems, but with aptamers replacing the antibody component, and is a reliable 

replacement for ELISA (Toh et al., 2015).  An industry example of this is the development of an 

aptamer based assay for the detection of Ochratoxin A, produced by Aspergillus and 

Penicillium spp. that grow on agricultural products. This mycotoxin is highly toxic even at low 

doses, so detection of contamination is very important. Neoventures Biotechnology Inc. 

commercialised a highly sensitive assay for the detection of this mycotoxin that is now 

commercially available (Penner, 2012). Methods like this that utilise the reliable binding 

potential of aptamers make for faster, cheaper and more stable point of care testing, which 

would help to reduce the long diagnostic processes currently used and aid with earlier 

detection and treatment leading to better outcomes for the patient. 

C. albicans is a yeast like fungus that lives, in a budding yeast form, commensally as part of the 

gut biome in most healthy individuals. For the purposes of this study, aptamers were selected 

against the C. albicans yeast like form, as many of the proteins needed for hyphal formation 

are expressed at the cell surface in both hyphal and budding forms. In the case of C. albicans 

infection when C. albicans has formed a biofilm it releases cells in their yeast like form to 

circulate the body and spread the infection. In terms of detection, being able to identify C. 

albicans reliably in a blood test would make for better diagnosis especially because infection is 
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missed in around 50% of sample from blood culture (Ostrosky-Zeichner, 2012). For future work 

it may be beneficial to perform selections of aptamers with C. albicans in its hyphal form. By 

growing C. albicans in it hyphal form more specific aptamers for the infectious stages could be 

isolated and could be useful in the diagnosis of systemic Candida infections within isolated 

tissue samples. 

For A. fumigatus the spores were used for selections as they could be readily re-suspended in 

solution whereas the whole filamentous cell does not re-suspend in solution as readily. A. 

fumigatus grows in its hyphal form once it has been established in a stationary location; 

however with the long incubation time of the spores it is difficult to detect infections before 

they have started. By selecting against the spores this would enable aptamers to be used for 

diagnostic purposes such as on point testing kits that could provide a quick and simple check 

for potential infection in patients that are known to be a high risk for infection.  

Also due to the melanin coating on the cell wall of the spores, they often go undetected by the 

body in at risk patients because of failings in other aspects of the immune response. Other 

studies have detailed the use of aptamer conjugates as a means of improving the bodies non-

specific immune response (Bruno, Carrillo and Phillips, 2008). 

Preliminary rounds of SELEX were performed to optimise the number of C. albicans cells and A. 

fumigatus spores used.  Saccharomyces cerevisiae was used as part of the initial optimisation 

of the SELEX procedure (data not shown) due to its similarities to C. albicans and its wide use 

as a model organism (Karathia et al., 2011). The number of cells used is a key part of 

optimisation, too many cells and the likelihood of selecting aptamers with high levels of 

specificity decreases as cell numbers is a selection pressure, but not enough cells and there 

would not be enough to isolate aptamers from the library as the selection pressures would be 

too high (Spill et al., 2016 and Wang et al., 2012). 
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Diagnosis is not the only issue with patient treatment, high toxicity resulting from non-specific 

action of current antifungal treatments could be reduced with the development of drug 

aptamer conjugates. For instance an aptamer that would bind specifically to ergosterol in the 

cell membrane and not affect cholesterol synthesis in surrounding mammalian tissue would 

greatly improve the efficacy of amphotericin B. Also more specific targeting would reduce the 

necessary dose and also help to reduce the toxicity of amphotericin B. By using whole cell 

SELEX the target of the aptamer is not limited, and the addition of negative selections to 

reduce the number of non-specific aptamers greatly improves the quality of aptamers from 

the final round.  

4.1.3 Temperature as a condition for SELEX in fungal cells. 

Fungi have long been used for the transformation of DNA exhibiting their ability to internalise 

extracellular DNA. Aptamers were selected at 4°C and room temperature. At 4°C cell 

membrane transport processes are inactive (komai et al., 1992) so this limits the 

internalisation of aptamers thus limiting aptamer targets to the cell membrane. Room 

temperature selections were also performed to allow active transport processes to continue 

and aptamers be internalised with the hopes of gaining aptamers that were internalised and 

aptamers with cell membrane targets.  Room temperature selections also served as a more 

real world applicable condition. As diagnostic tests, on blood culture for example, would be 

run at room temperature, having an aptamer that’s binding has been optimised for room 

temperature would make the transition from discovery to application easier. 

Temperature is also important for the folding of aptamers as temperature affects secondary 

and tertiary structure of DNA.  
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4.1.4 Negative Selections in whole cell SELEX 

The addition of a negative selection step in the SELEX process allows aptamers that bind with 

the negative control to be removed from the aptamer library. As suggested by Sefah et al. 

(2010) and carried out by Dwivedi, Smiley and Jaykus, (2013) and Tang et al. (2016). A closely 

related cell type was added and the aptamers that bound to his cell type were removed from 

selections, this improves specificity of aptamers. This was especially critical for this study as 

one of the issues associated with antifungals is their non-specific action affecting human 

tissue. Other aptamer studies have also used a counter selection step to distinguish between 

closely related targets (Cerchia et al., 2009) and to improve the specificity of aptamers to the 

target cell (Moon et al., 2015). HeLa cells were used in this study as a negative selection to 

eliminate binding to mammalian cells. HeLa cells are a well-established and versatile cell line 

used in many branches of research.  

HeLa cells were treated with trypsin to detach them from the surface of the flask to be used 

for selections. Trypsin is a common method for detaching cells from their surface however 

trypsin damages the cell membrane in order to detach cells, so prolonged incubation with 

trypsin causes cell membrane damage, and can affect many of the proteins that are expressed 

on the membrane of the cell (Huang et al., 2010). This can affect the binding of the aptamer as 

using damaged cells for a negative selection might only guarantee no binding to the damaged 

protein. This could mean that, the aptamer could bind to the wild type, expressing a normal 

version of that protein as very subtle changes in structure of the target can differentiate 

between a binding and non-binding aptamer.  10,000 HeLa cells were used in this study, to 

provide sufficient exclusion of binding aptamers.  
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4.1.5 Isolating aptamers against A. fumigatus and C. albicans using cell SELEX 

A total of ten rounds of selections were undertaken for this study. Through each round of 

selection the amount of aptamer amplification is monitored (shown in figures 3.1 and 3.2) to 

show whether amplification of binding aptamers has occurred between rounds. There were 

instances where bands of varying sizes were separated during gel electrophoresis, to eliminate 

the DNA from these bands  and to reduce the amplification of non-specific DNA (Tolle et al., 

2014 and Musheev and Krylov, 2006) a gel extraction was performed (Dwivedi, Smiley and 

Jaykus, 2013) between each round to carry forward amplification of aptamers of the correct 

size.  However there are issues associated with gel extraction, the yield of the desired size DNA 

sample following gel extraction can reduce dramatically (Langridge, Langridge and Bergquist, 

1980). This can be due to the improper melting of the agarose gel, or loss during the many 

washing steps involved with a gel extraction. In future it may be beneficial to limit the number 

of gel extractions performed throughout the selection process, to reduce the potential loss of 

aptamers.  

The apparent decrease in the amount of aptamers through each round could be caused by the 

narrowing of the aptamer pool as each round further excludes non-binding aptamers. 

However, there are variations in each selection, most studies expect to see a decrease in the 

amount of aptamer amplified as the aptamer pool narrows as non-binding aptamers are 

eliminated from the pool. This is expected to then be followed by an increase in PCR product 

concentrations as the binding aptamers remaining in the pool are amplified. A. fumigatus at 

room temperature (figure 3.2b) reflects this pattern the best out of all conditions, and was the 

only condition to produce 4 positive colonies at the cloning stage, and also the only conditions 

to produce 2 of the same sequence, suggesting this condition was more abundant in binding 

aptamers. Figure 3.2a shows the PCR products of rounds of selection in A. fumigatus at 4°C, 

the concentration of PCR product  appears to decline up to round 9, where is suddenly 
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increases. This suggests that the process of narrowing the aptamer pool took more rounds of 

selection in this condition, and that to improve the quality of aptamers gained from this 

condition it would be beneficial to carry out more rounds of selection to allow sufficient 

amplification of binding sequences.  Figures 3.1a and b show selections in C. albicans at both 

temperature selections, these are far more varied and do not seem to show the same pattern 

that figures 3.2a and b show. There are a number of uncertainties during the SELEX procedure, 

one of which is the unexpected loss of aptamers 

4.1.6 Determining levels of aptamer binding 

However other studies use different methods of measuring their post selections amplification. 

Shangguan, Bing and Zhang (2015) used flow cytometry binding assays to determine the levels 

of binding after certain rounds of selection. They also saw a much more consistent level of 

amplification throughout the rounds of selection. Duan et al. (2013) used fluorescence 

intensity as a measure of aptamer binding as part of their second stage testing to calculate the 

Kd for their aptamers. For future work it would be worth considering using fluorescence 

intensity to confirm the viability of the method used and better monitor the amount of 

amplification following each round. 

4.1.7 Isolating aptamers by TOPO Cloning 

The product from round 10 of each selection condition was amplified by PCR as previously 

described and then cloned into a TOPO vector. These vectors were then transformed in 

chemically competent E. coli and grown. Only 11 colonies in total were obtained from all four 

selection conditions, considerably less than expected. This may have been due to the fact that 

the TOPO vector relies on an A overhang on the end of each sequence which must be added 

post PCR. A different vector like JetClone could have been used which relies on blunt ends, and 

therefore does not rely on additions during PCR. 
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4.2 Characterisation of isolated aptamers 

4.2.1 Sequencing of isolated aptamers 

The primary structure of DNA is made up of a series of nucleotides, the sequence of which is 

important for folding and, therefore, binding of the aptamer to its target.  

The isolated aptamers, obtained following cloning from SELEX round 10 of, were sent for 

sequencing. The sequences were then analysed through the Clustal Omega software (with 

primer sequences removed) and an output of percentage similarities between each sequence 

was analysed. 

The phylogenetic tree (figure 3.4a) groups the sequences into three main families, suggesting 

three distinct epitopes. Aptamers that were selected at the same temperature appear to be 

more closely related than aptamer that were selected against the same species. Within the 

first branch, AFRTD and CARTA are more closely related, as are CA4A and AF4B, than CaRTA to 

Ca4A or AfRTD to Af4B. In the third branch, CA4C and CA4B are closely related to each other 

than AFRTA.  

For instance aptamers Ca4B and Ca4C share 53.85% similarity whereas between other 

aptamers from C. albicans at 4°C it is below 35%. Between conditions, within C. albicans varies 

again with the highest homologue being between Ca4A and CaRTB at 47.17% and the lowest 

Ca4C and CaRTA at 15.69%. For A. fumigtus sequences AfRTB and AfRTC were found to be the 

same sequence implying that this sequence was more abundant following isolation against this 

condition. These sequences also had their own distinct epitope in figure 4a, meaning they are 

not closely related to any of the other aptamers.  

Sequences were also aligned by Clustal Omega to show any conserved regions between 

aptamers, as this may indicate whether aptamers share similar targets or whether there are 
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regions of aptamers that are important for binding.  The aptamers indicated to be closely 

related by the phylogenetic tree (figure 3.4a) were aligned, AfRTD and CaRTA showed a total of 

32 consensus bases, with one group six, one group of five and two groups of four.  CA4A and 

AF4B, were also shown to be closely related showing 26 consensus bases, with one group of 5 

and one group of 4 conserved bases. Finally, CA4C and CA4B showed 25 consensus bases, with 

one group of 5 conserved bases. 

4.2.2 Secondary Structure of isolated aptamers 

Secondary structure was predicted using Mfold software, as this can indicate key regions of 

aptamers for binding.  Conditions set for folding were based on the ion concentration dictated 

by the binding buffer used during incubation of aptamers and target cells, as the folding during 

incubation heavily influences the aptamers binding ability. Mg++ concentration was 0.25mM in 

binding buffer. Hamula et al. (2008) used a binding buffer with 1mM Mg++, this study opted for 

a much lower concentration as aptamers with a higher binding affinity rely less on Mg++ 

concentration (Carothers et al., 2010). Predicted secondary structure has been used to identify 

specific regions of aptamers, key for binding, based on the comparison of several aptamers 

secondary structures (Mei et al., 2012). These predictions have also been used in the 

modification of identified aptamers to improve binding.  Kaur and Yung (2012), after 

determining the structure of an aptamer against VEGF165, truncated stem loop regions of the 

aptamer and found that a truncation of one of the stem loop regions led to a dramatic increase 

in binding affinity of the aptamer. However, tertiary structure is also important for aptamer 

binding (Wang et al., 1993) as many targets are complex three dimensional structures, 

aptamers must fold to fit these structures for better binding affinity (Choi and Ban, 2016). 

The predicted structures of identified aptamers vary considerably in similarity. Figure 4a shows 

aptamers selected against C. albicans at 4°C, Ca4A and Ca4B show similarities in predicted 

folding, with both aptamers having predicted stem loop structures which have been shown to 
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be important for aptamer binding (Kaur and Yung 2012). For aptamers selected against C. 

albicans at room temperature there is less stem structures than seen in the 4°C aptamers, with 

larger loop regions comprising the main structure. The aptamers selected at 4°C in C. albicans 

share more similarities in structure with aptamers selected at 4°C in A. fumigatus, with these 

aptamers also containing more stem regions. Aptamers selected against A. fumigatus at room 

temperature show the largest loop regions of all of the structures, but bearing most similarity 

to C. albicans at room temperature aptamers.  

4.2.3 Characterisation of Identified Aptamers 

All identified aptamers were further tested in both temperature conditions and against each 

target cell. Incubation time was reduced from 1 hour to 30minutes to increase selective 

pressure (as performed by Meyer et al., 2013). 200nm of each aptamer was incubated with 

both C. albicans and A. fumigatus at 4°C and room temperature. PCR samples from each 

elution was then run on agarose gel and visualised by UV light. To enable quantification of the 

bound aptamer, a sample of aptamer library at a concentration of 171ng/µl was used a 

reference.  

Each aptamer was tested at both room temperature and 4°C despite the selection. When 

testing all aptamers some showed little to no difference between binding levels at 4°C and 

room temperature, CaRTB, AfRTA, CaRTA and Af4B for example in figure 6 all show a 

difference of less that 2ng/µl in aptamer binding between 4°C and room temperature.   

The aptamers with the highest yield following incubation in their target cells, but limited 

product in the opposing cell type, were considered for further testing.  This was determined by 

comparing the yields of aptamers to each other, aptamers were judged based on the levels of 

binding they exhibited between species of targets and also compared to a control of an 

aptamer with known specificity for that species. For instance Ca4A yielded 10ng/µl at 4°C, 

which implies recovery from elution and thus binding to C. albicans, however, when incubated 
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with A. fumigatus yielded 11.2ng/µl showing that this aptamer also binds to A. fumigatus. So 

although this aptamer shows levels of binding, it was not to be tested further as it does not 

exhibit the desired level of specificity.  Aptamers CaRTA and AfRTA showed relatively poor 

binding in both C. albicans and A. fumigatus with a minimum 4 fold decrease in binding 

compared to Af20 and C9. AfRTD and Ca4A showed very little difference in their binding 

between species, both at around 9ng/µl in C. albicans and around 12ng/µl in A. fumigatus. 

Aptamers Af4A and Af4B also followed the same pattern. This may be due to the targets that 

the aptamer has bound to. A common target in fungal cells for antifungals is the cell wall 

component β 1-3 D Glucans and their abundance throughout the cell wall, and non-existence 

in mammalian cells makes them an easy target. It is likely that a lot of the aptamers have this 

as their target or other cell wall components and thus no matter the selection temperature 

were not taken up into the cell meaning they would bind just as well at room temperature 

than 4°C.  

 The aptamers that were taken forward for further testing were AfRTB and Ca4B. AfRTB 

showed promising amounts of specificity to A. fumigatus with a yield of only 5.9ng/µl after 

incubation with C. albicans but a near threefold increase in binding after incubation with A. 

fumigatus. This was also the most comparable to the control aptamer Af20 which 19ng/µl at 

room temperature and was also the highest yield from aptamers incubated with A. fumigatus.  

Ca4B was also selected because of its promising specificity for C. albicans, yielding 7.6ng/µl 

after incubation with A. fumigatus at 4°C but yielding double that (15ng/µl) after incubation 

with C. albicans. Despite the control aptamer C9 exhibiting double the levels of binding this 

Ca4B showed the best levels of specificity in comparison to other identified aptamers selected 

against C. albicans.  
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4.2.4 Further Testing of Selected Aptamer 

Aptamers that showed the most specificity and affinity in binding by PCR were selected to 

move forward to further testing. Aptamers were tested at different concentrations to 

determine the limitations of their binding, allowing the Kd for each aptamer to be calculated. 

The Kd (disassociation constant) represents the concentration of a ligand that binds to half of 

the receptor population. In this case, half the concentration of aptamer required to bind to all 

of its targets. By testing the binding of the isolated aptamers at 200nM, 100nM, 50nM and 

25nM a pattern of binding potential can be determined and the kd calculated. In this instance 

kd was calculated using Graphpad Prism software, from the determined concentration of 

aptamer in each band of DNA following elution and PCR (as described in section 4.2.3). The kd 

could have been calculated using fluorescence intensity. An aptamer tagged with a fluorescent 

molecule, incubated with target cells and processed by flow cytometry would mean a larger 

number of cells could be processed, at a larger number of different aptamer concentrations 

and a more accurate representation of binding in the target gained. 

Each of the aptamers shortlisted for further testing were incubated with HeLa cells for 1 hour 

at concentrations of 400nm, 200nm and 100nm. Covering a range of concentrations both 

above and below the selection concentration and incubating aptamers with HeLa cells for 

longer meant that the conditions for aptamers to potentially bind were favourable. However 

no binding occurred of the aptamers to HeLa cells indicating the effectiveness of the use of a 

negative selection. Although only on one cell line, shows the potential use of aptamers as a 

means of clearly distinguishing between fungal cells components and their similar mammalian 

counterparts.  

4.3 Visualisation of Binding 

Binding was visualised by use of fluorescence microscopy. Aptamers were conjugated with 

either Alexa488 or Cy5 fluorescence molecule and the SELEX protocol carried out as previously 
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described without removal of the aptamer from target cells. Cells were then fixed with 

formaldehyde and mounted on slides with Vectasheild.  

 Figure 10 shows very faint fluorescence AfRTB tagged with Cy5 in A. fumigatus, with no 

fluorescence observed in  C. albicans. The data seems to suggest binding of AfRTB to its target 

cell and supports the PCR results (Figures 8A and 8B). However it is very faint, and  

Figure 11 shows Cy5 bound Ca4B incubated with C. albicans, which seems to indicate no 

binding. However, when incubated with A. fumigatus, several areas of intense fluorescence 

were observed which corresponded with clumping of the cells.  The PCR data suggested that 

Ca4B was able to bind to both cells types, but with more specificity to C. albicans. This result is 

not supported by the fluorescence data.  This image when viewed with DAPI stain and 

brightfield, appears to shows a large clump of A. fumigatus cells, a mixture of spores and the 

hyphae. Before use, spores of A. fumigatus were cultivated by loop transfer from an SAB agar 

plate, washed, and vortexed to ensure free suspension of the spores. However, it is possible 

that in this process, an amount of hyphal cells were inadvertently included in transfer. These 

hyphal cells are very difficult to separate, so it is likely that they would maintain this structure 

even with rigorous vortexing. The images are representative of this set of data and a repeat, 

where the same results were observed. Controls with no aptamer were imaged to account for 

and remove background fluorescence.   

4.4 Future Improvements 

The selected aptamers show some specificity but this is limited. A potential solution to this 

would be to include each of the other cell types as negative selections. As done by Bachtiar, 

Srisawat and Bachtiar, (2019) who used S. cerevisiae as a counter selection. This study would 

benefit from the use of the same, using S. cerevisiae as a counter selection for C. albicans and 

also A. fumigatus. This would improve the specificity issues between species. 
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4.5.1 Characterisation of Previously Identified Aptamers 

A set of 14 aptamers had been previously identified following 16 rounds of selection against A. 

fumigatus, C. albicans and S. cerevisiae at 4°C, with a negative selection against HeLa cells. 

These aptamers hadn’t been characterised, so they were tested to determine their specificity 

to the relevant fungal species. Each aptamer was incubated with each target cell for 30minutes 

before the concentration of the bound aptamer was determined by PCR.  These 

concentrations of aptamer following incubation were compared to the elution concentration 

of aptamer library sample incubated with each cell type. In order for an amount to be 

considered a good level of binding it must be higher than the amount from the aptamer library 

sample to demonstrate the higher abundance of binding sequences. 

4.5.2 Sequencing of Previously Identified Aptamers 

As with the above set of aptamers, this set was sent for sequencing following isolation. The 

phloygenetic tree (figure 12a) suggests three distinct epitopes. Two of the branches containing 

two aptamers each (C9269 and Af031810 together and S12709 and S71810 together) and a 

third branch containing the remaining 10 aptamers, within this Ca28269 and A24279 are very 

closely related, and the sequences A21279 and A20279B are the same, as are C005269 and 

C5269. The sequences grouped as closely related were aligned to highlight any conserved 

regions between them. Based on the phylogenetic tree, the closely related sequences Ca28269 

and A24279 showed 22 consensus bases, with one group of 5 and two groups of 4 conserved 

bases (Figure ?A). A202710 and Af021810, were also shown to be closely related showing 21 

consensus bases, with two group of 4 and one group of 3 conserved bases. Finally, S12709 and 

S71810 showed 35 consensus bases, with one group of 15 and two groups of 4 conserved 

bases. 
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4.5.3 Secondary structures of previously identified aptamers 

The predicted secondary structures of the previously identified aptamers vary considerably 

regardless of the target cell they were selected against. C. albicans selected aptamers C009269 

and C9269 show a majority of stem loop structures, whilst Ca28269 consists of a larger middle 

loop region with 4 smaller stems. C5269 again shows a middle loop region, but much smaller 

than that of Ca28269 and 4 stem loop structures, with one much longer stem.  S1279 and 

S71810 (both selected against S. cerevisiae) both show long stem regions with small loops. 

When these two sequences were aligned they showed 59% similarity with 35 consensus bases, 

one group of 15 and two groups of four.  However both aptamers did not share consistent 

similarities in binding properties. Incubated with S. cerevisae S12709 yielded the lowest 

aptamer following incubation (0.3ng/µl) and S71810 the second lowest (2.6ng/µl). The 

aptamer library control was 2.3ng/µl, meaning that S71810 is deemed as showing very poor 

binding and S12709 shows poor binding being barely above the control. However, S12709 

shows better levels of binding in C. albicans (3.4ng/µl) and considerably better levels of 

binding in A. fumigatus (8.4ng/µl) whilst S71810 remains below the levels of aptamer library 

control binding for all targets. This could indicate that the consensus bases, more probably the 

larger group of 15 consensus bases (as this would likely have the largest impact on structure) 

could be detrimental to binding of this aptamer to S. cerevisiae. 

Aptamers selected against A. fumigatus appear to show less variation in the predicted 

secondary structure than described in the previous aptamers. All appear to form a large loop in 

the middle, with 4-5 small stem loop structures. With the exception of Af021810, which is 

mainly comprised of a long stem loop region, and a smaller loop, with another stem loop 

region attached.  Af021810 was grouped closely with A202710 on the phylogenetic tree 

(figure12A) and shares 21 consensus bases. As summarised on table 3.2, Af021810, shows less 
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affinity against all target cell types than Af202710, this suggests that the consensus regions 

highlighted are not crucial for binding. 

4.5.4 Binding of previously identified aptamers 

Figure 15 shows all the aptamers tested against C. albicans. The aptamers that were originally 

selected against C. albicans showed relatively low levels of binding compared to the levels of 

binding seen with aptamers selected against A. fumigatus of S. cerevisiae. For example all 

aptamers selected against C. albicans yield less than 5ng/µl, whereas aptamers incubated with 

A. fumigatus range from no binding, to just under 10ng/µl and aptamers incubated with S. 

cerevisiae range from no binding to over 10ng/µl. There is also an abundance of aptamers that 

show degrees of binding across species.  Af021810 and S8279 show similar levels of binding 

across species, whereas C5269 shows binding across species but with even more binding to A. 

fumigatus. As previously mentioned, all species of fungi share the general composition of the 

cell wall and membrane. However there are differences in the levels that these components 

are expressed at.  Chitin for example, represents a relatively low proportion of fungi cell wall, 

however it is far more abundant in S. cerevisiae (Lesage and Bussey, 2006). This could explain 

the binding of Ca28269, where there were relatively low levels of binding in C. albicans and A. 

fumigatus but much higher levels of binding in S. cerevisiae. Chitin is present in the membrane 

of C. albicans and therefore a viable target for aptamer binding during selection. 

Figure 16 shows the binding of all previously identified aptamers against A. fumigatus. As 

previously stated the aptamers incubated showed more varied levels of binding than in C. 

albicans. The aptamers C5269, C05269 and C009269 all showed higher levels of binding affinity 

despite the fact that they were selected against C. albicans.  

 



106 
 

All of the aptamers incubated with C. albicans for figure 15 appear to have a much lower yield 

than those incubated in A. fumigatus and S. cerevisiae. For instance, C009269 was taken 

forward for further testing, in figure 15 the yield of this aptamer is 2.2ng/µl whereas when 

incubated at a 200nM concentration (figure 15) to determine its Kd the yield was much higher 

at 6.6ng/µl. The same is also true for Ca28269 which yielded 9.867ng/µl in figure 14 compared 

to just 3.1ng/µl in figure 15. Each incubation was repeated twice and controls containing cells 

with no aptamer and aptamer with no cells gave the expected results. This suggests that there 

was no non-specific amplification occurring and that there was sufficient amplification of DNA 

during PCR. This would then leave the inconsistencies to have occurred during incubation.  

There are many points at which error could occur. The amount of aptamer bound to target 

cells was measured by comparing the intensity of visualised PCR samples at the end of each 

round to DNA aptamer of known concentration. This method relies on the elution of all bound 

aptamers from the cell (if not all then a similar percentage of each sample) which was not 

investigated. This could affect yields of aptamer between the same samples. However, the 

same aptamer PCR programme and conditions were used for every PCR so the amplification of 

each sample is kept at a constant.  Also the measuring of each sample was always compared to 

the same sample of known concentration, and was run on every gel. So variations in overall 

intensity of bands on the agarose gel following electrophoresis was accounted for. In addition 

to this, according to other sources 95°C heating followed by centrifugation is sufficient to elute 

enough aptamers to use in subsequent rounds of SELEX (Mozioglu et al., 2015 and Turek, 

2013) so with this assumption the amount of aptamer remaining within the discarded cells 

should not make a large difference to the aptamer pool. 

4.5.5 Af20279B 

Af20279B was determined as having the best affinity for A. fumigatus and the best specificity, 

with a kd of The aptamer Af202710 showed good levels of affinity and specificity and when 
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analysed under fluorescence microscope showed good binding to A. fumigatus and low levels 

of binding to C. albicans and S. cerevisiae. The fluorescence data is supported by a cell count of 

100 cells, and their fluorescence for each target species, this was repeated twice, and the 

images shown in figure  

4.5.6 Further Testing 

In order to take the testing of these aptamers further a target of each aptamer would need to 

be defined, done by Aptoprecipitation as performed by Aptekhar et al. (2015). This uses the 

isolated aptamer to bind to separated proteins from the target cell. Whichever proteins bind 

can then be characterised and therefor the target determined. 

An important aspect of this study would be to determine kd of the aptamers from this study 

compared to aptamers identified by published literature. Currently in this study there is only 

reference to each of the aptamers for how well each aptamer binds, in order to gain a better 

picture of overall binding, and how well the binding of these aptamers would be used in the 

real world a comparison to the binding affinity of other aptamers would have to be performed. 
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