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Abstract 

 

Background 

Chemometrics allows one to identify chemical patterns using spectrochemical 

information of biological materials, such as tissues and biofluids. This has fundamental 

importance to overcome limitations in traditional bioanalytical analysis, such as the need 

for laborious and extreme invasive procedures, high consumption of reagents, and 

expensive instrumentation. In biospectroscopy, a beam of light, usually in the infrared 

region, is projected onto the surface of a biological sample and, as a result, a chemical 

signature is generated containing the vibrational information of most of the molecules in 

that material. This can be performed in a single-spectra or hyperspectral imaging fashion, 

where a resultant spectrum is generated for each position (pixel) in the surface of a 

biological material segment, hence, allowing extraction of both spatial and 

spectrochemical information simultaneously. As an advantage, these methodologies are 

non-destructive, have a relatively low-cost, and require minimum sample preparation. 

However, in biospectroscopy, large datasets containing complex spectrochemical 

signatures are generated. These datasets are processed by computational tools in order to 

solve their signal complexity and then provide useful information that can be used for 

decision taking, such as the identification of clustering patterns distinguishing disease 

from healthy controls samples; differentiation of tumour grades; prediction of unknown 

samples categories; or identification of key molecular fragments (biomarkers) associated 

with the appearance of certain diseases, such as cancer. In this PhD thesis, new 

computational tools are developed in order to improve the processing of bio-

spectrochemical data, providing better clinical outcomes for both spectral and 

hyperspectral datasets.  

Materials and Methods 

Sample splitting. A new sampling methodology, called the Morais-Lima-Martin (MLM) 

algorithm, was developed to improve data splitting for classification applications. The 

MLM algorithm was developed by modifying the Kennard-Stone (KS) sample selection 

method with the addition of a 10% random-mutation factor to the sample splitting 

methodology. This methodology was tested in one simulated and six real-world datasets 

(4 for infrared (IR) spectroscopy and 2 for Raman spectroscopy) aiming to maximize 

sample discrimination using principal component analysis linear discriminant analysis 

(PCA-LDA). The results were compared with other two data splitting approaches: the 

random-selection (RS) and the KS algorithm alone. 

Hyperspectral imaging. Novel classification methods based on principal component 

analysis quadratic discriminant analysis (PCA-QDA), successive projections algorithm 

quadratic discriminant analysis (SPA-QDA), multivariate curve resolution alternating 

least squares (MCR-ALS), three-dimensional principal component analysis (3D-PCA) 

with linear discriminant analysis (3D-PCA-LDA) and quadratic discriminant analysis 

(3D-PCA-QDA) were developed to improve sample discrimination based on 

hyperspectral imaging datasets. PCA-QDA, SPA-QDA and MCR-ALS were applied to 

distinguish meningioma WHO Grade I (n = 66) and Grade II (n = 24) tissue samples 

based on Raman microspectroscopy imaging. 3D-PCA was applied to distinguish 5 

ovarian cancers from 5 healthy controls samples using Raman hyperspectral images of 

blood plasma in an unsupervised approach, and 3D-PCA-LDA and 3D-PCA-QDA were 
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applied to discriminate a further dataset of 38 samples (20 benign controls and 18 ovarian 

cancer samples) based on Raman hyperspectral images of blood plasma.  

Uncertainty estimation. A new method to calculate classification uncertainty for linear 

discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support vector 

machines (SVM) was developed based on bootstrap. This methodology was tested for 4 

datasets (one simulated and three real-world applications of IR spectroscopy) in order to 

estimate misclassification probability and evaluate classification robustness. 

Data standardisation. A dataset of 10 blood plasma samples (5 from healthy controls, 5 

from ovarian cancer patients) was measured under different experimental conditions: by 

three different attenuated total reflection Fourier-transform infrared (ATR-FTIR) 

instruments, operated by two different operators, using two different sets of co-additions 

scans and spectral resolution, and varying room temperature and air humidity in order to 

evaluate whether changes in instrumental and environmental conditions would alter the 

spectral response and modify sample discrimination. A novel protocol based on direct 

standardisation (DS) and piecewise direct standardisation (PDS) was developed in order 

to standardise spectral differences caused by instrumental and environmental changes.  

Results 

Sample splitting is an essential step for building classification models based on 

spectral data. The proposed MLM algorithm performed better than the KS and RS 

methods in terms of sensitivity and specificity. RS showed the poorest predictive 

response, followed by KS which showed good accuracy towards prediction, but relatively 

unbalanced sensitivities and specificities. The sensitivities and specificities obtained 

using MLM were more similar to each other, indicating a more reliable classification. 

MLM classification accuracies ranged from ~80–99% varying the dataset.  

Meningioma Grade I and Grade II tissue samples were discriminated with 96.2% 

accuracy, 85.7% sensitivity and 100% specificity using PCA-QDA and SPA-QDA. The 

PCA loadings, SPA-QDA selected wavenumbers, and the recovered imaging profiles 

after MCR-ALS indicated the following wavenumbers responsible for class 

differentiation: 850 cm-1 (amino acids or polysaccharides), 1130 cm-1 (phospholipid 

structural changes), 1230–1360 cm-1 (Amide III and CH2 deformation), 1450 cm-1 (CH2 

bending), and 1858 cm-1 (C=O stretching). For the ovarian cancer datasets, 3D-PCA was 

able to clearly distinguish healthy controls from ovarian cancer samples using the 

complete 3D hyperspectral images in the range from ∼780–1858 cm−1, and the new 3D-

PCA-LDA and 3D-PCA-QDA algorithms were able to discriminate healthy controls from 

ovarian cancer samples with 100% accuracy in comparison with standard classification 

methodologies which provided 64% accuracy.  

When applying the uncertainty estimation method to 4 different spectrochemical 

datasets, classification models with lower misclassification probabilities (𝑚𝑝) were 

substantially more stable when the spectra were perturbed with white Gaussian noise. The 

𝑚𝑝 is a quantitative metric of uncertainty that ranges from 0 to 1, where 𝑚𝑝 closer to 0 is 

an indicator of better classification robustness.  

Experimental conditions greatly affected the spectral profiles in the 

standardisation study. DS and PDS were able to correct for instrumental-related changes 

improving the classification accuracy from 66.7% to 77.8% (DS) and 74.1% (PDS), and 

for operator-related changes improving the accuracy from 75.6% to 82.2% (DS) and 

77.8% (PDS).  
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Discussion 

Sample splitting is a process performed after spectral pre-processing and prior 

model construction and consists of dividing the experimental sample set into at least two 

subsets called training and test, where the training set is used for model construction and 

the test set for model validation. The MLM algorithm combines the good spectral 

representativeness in the test set provided by the KS algorithm with a small degree of 

randomness that may be found in biological applications. MLM generated a better 

predictive performance in comparison with standard methodologies, providing more 

well-equilibrated sensitivity and specificity results.  

Classification of hyperspectral images is a process that requires large 

computational-cost, once the data are big in size and contain complex overlapping 

spectral features that require advanced chemometric tools for their analysis and 

interpretation. Herein, meningioma tissues were discriminated based on Raman 

microspectroscopy images where the classification results found by PCA-QDA and SPA-

QDA are very promising, showing the potential of this methodology for aiding clinicians 

to delineate patient treatment. 3D-PCA was applied for ovarian cancer detection using 

Raman hyperspectral imaging, generating scores showing clear differences between the 

two classes on both principal components (PCs) 1 and 2; and the loadings profiles on 

these components indicate that the main biomarkers contributing for class differentiation 

are amino acids, lipids and DNA. 3D-PCA provided fast exploratory analysis for 

hyperspectral data, having potential for future applications in other types of 

spectrochemical imaging data. The new 3D discriminant analysis approaches (3D-PCA-

LDA and 3D-PCA-QDA) provided fast class differentiation for multi-image 

hyperspectral datasets with superior discriminating performance compared to algorithms 

using unfolding procedures, which are often employed for this type of data. 

Misclassification probability can be used as a new metric to assess classification 

quality since it contains information of the model uncertainty and is also associated with 

model robustness. This methodology was validated against propagation coefficients for 

SVMs and the results between our proposed methodology based on bootstrap and the 

established method were found at R2 = 0.971, indicating agreement between the two 

methods. 

Finally, we have constructed a protocol for model standardisation using DS and 

PDS transfer technologies described for FTIR spectrochemical applications. This is a 

critical step toward the construction of a practical spectrochemical analysis model for 

daily routine analysis, where uncertain and random variations are present in the data.  

Conclusion 

This thesis is focused on developing computational tools that will improve sample 

splitting; tools for exploratory analysis and classification of hyperspectral images; 

uncertainty estimation to evaluate the robustness of biospectral classification models; and 

development of a chemometrics and standardisation protocol for handling spectral data 

acquired under different experimental conditions. The requirement for such techniques is 

demonstrated by the fact that applications of deep-learning algorithms of complex 

datasets are being increasingly recognized as critical for extracting important information 

from biospectroscopy datasets and visualizing them in a readily interpretable form. 

Hereby, we have provided new chemometric approaches for biospectroscopy where 

successful applications of these techniques will then allow trial biospectroscopy in 

clinical settings, where fast, reliable, and highly accurate diagnosis would be obtained. 
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CHAPTER 1 | INTRODUCTION TO BIOSPECTROSCOPY 

 

 

5.1 Vibrational Spectroscopy 

The use of spectroscopy techniques for quantitative or qualitative analysis of 

biochemical materials is well known (Baker et al., 2014; Butler et al., 2016; Santos et al., 

2017). Spectroscopic methods provide a chemical signature of the material being 

analysed according to the interaction between an electromagnetic radiation wave at a 

specific frequency and the molecules present in the material. In this phenomenon, the 

electrons that constitute the atoms and molecules in the material absorb photons with a 

specific light frequency, hence, being excited to higher energy states. This process is 

called excitation. Then, the electrons in a higher energy state release the total or part of 

the absorbed radiation returning to a lower energy state. This process is called emission.  

The excitation and emission processes can occur at different light frequencies, which 

determines the type of spectroscopy technique. The electromagnetic spectrum comprises 

a series of frequencies, from long radio waves (3 Hz) until gamma rays (>30 Ehz).  Figure 

1.1 illustrates the different types of electromagnetic radiation signals according to their 

frequency. 

 

Figure 1.1. The electromagnetic spectrum labelled by frequency and wavelength regions. 

UV: ultra-violet; IR: infrared; FM: frequency modulation; AM: amplitude modulation. 

Inset: expanded visible spectrum. (CC BY-NC-SA, Chemistry Library < 

https://chem.libretexts.org/>).  

https://chem.libretexts.org/
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The light frequency is proportional to the photon energy according to the Planck-

Einstein relation (Logiurato, 2014): 

𝐸 = ℎ𝜈           (1.1) 

where 𝐸 is the energy of the photon, ℎ is the Planck’s constant (6.626 × 10-34 J∙s), and 𝜈 

is the light frequency. 𝜈 can be replaced by the wavelength through the relationship 

between the wavelength (𝜆), frequency (𝜈) and the speed of light in vacuum (𝑐, 2.998 × 

108 m/s): 

𝑐 = 𝜆𝜈           (1.2) 

𝐸 =
ℎ𝑐

𝜆
           (1.3) 

Hence, the photon energy is inversely proportional to the wavelength. Vibrational 

spectroscopy encompasses techniques that excite molecules to absorb or emit energy in 

the infrared (IR) wavelength region between ~700 nm to 1 mm (frequency of 430 THz to 

300 GHz, energy of 1.7 eV to 1.24 meV) (Skoog et al., 2007). The spectrochemical signal 

is generated because all molecular bonds vibrate at any temperature above absolute zero 

(T > 0 K); and when a molecular bond is exposed to IR radiation with frequency equal to 

that fundamental vibration frequency, then it absorbs the radiation. IR radiation does not 

cause electronic transitions, only vibrational and rotational transitions. That is, the 

electron is not excited to a higher electronic energy levels but to a higher vibrational 

energy levels within the same electronic energy level (Figure 1.2).  
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Figure 1.2. Energy diagram showing electronic, vibrational, rotational and translational 

transitions. E stands for total energy.  

 

Each electronic energy level is composed of several vibrational energy levels 

which are composed of several rotational energy levels whose are composed of several 

translational energy levels. Electronic transitions are of higher energy frequency and are 

the basis of techniques such as ultraviolet-visible spectroscopy, while vibrational, 

rotational and translational transitions are of lower energy and associated with the 

techniques such as IR and Raman spectroscopy (vibrational transitions) and microwave 

spectroscopy (rotational transitions). Translational transitions are of a so small energy 

gap that any source of energy will cause this transition, hence, causing molecules to move.  

There are two types of molecular vibration movements affected by IR radiation: 

stretching (axial deformation) and bending (angular deformation). Stretching vibrations 

can be either symmetric  or asymmetric; while bending vibrations can be in-plane 

(symmetric or asymmetric) or out-of-plane (symmetric or asymmetric) (Nasdala et al., 

2004; Skoog et al., 2007). These vibration motions are shown in Figure 1.3. 

A molecule containing N atoms has 3N degrees of freedom, i.e., every atom in the 

molecule has 3 coordinates (x-, y- and z- coordinate) in a tridimensional space. Also, every 

molecule has three types of movements: (1) translation: motion of the entire molecule 
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through the space; (2) rotation: rotational motion of the entire molecule around its center 

of gravity; and (3) vibration: the motion of each of its atoms relative to the other atoms. 

In vibrational spectroscopy, only vibration movements are measured, thus, translation and 

rotation movements are subtracted from the total number of degrees of freedom (3N). 

Therefore, the number of vibrational degrees of freedom for a polyatomic non-linear 

molecule is 3N – 6, since there are 3 translation movements (along the x-, y- and z- axis) 

and 3 rotation movements (around the x-, y- and z- axis) for any non-linear molecule. For 

linear molecules, because the rotation along the bond axis is not valid, the number of 

vibrational degrees of freedom is 3N – 5. Thus, by knowing the number of atoms in a 

molecule, it is possible to estimate how many vibrational signals will be shown (3N – 6 

for non-linear molecules, and 3N – 5 for linear molecules) (Skoog et al., 2007). Further 

details about IR and Raman spectroscopy will be discussed hereafter. 

 

 

Figure 1.3. Type of molecular vibrations. + indicates motion from the page toward the 

reader and – indicates motion away from the reader. 
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5.1.2 Infrared Spectroscopy  

The IR region is divided into three sub-regions: near infrared (NIR), 0.78 – 3 μm; 

mid-infrared (MIR) region, 3 – 50 μm; and, far-infrared (FIR) region, 50 – 1000 μm. To 

have a detectable IR signal, the molecule must have a variation of its resultant dipole 

moment different from zero (μR ≠ 0), therefore, homonuclear species such as O2, N2, Cl2 

and I2 do not absorb IR radiation.  

The interaction between the IR radiation and molecular bonds happens because 

any covalent bond while vibrating creates an electromagnetic field proportional to the 

variation of dipole moment. When a wave of IR radiation reaches this electromagnetic 

field generated with same oscillating frequency, the radiation is absorbed (constructive 

interfering). A bond vibration can be approximately explained by a mechanical model 

composed by two masses connected by a spring (harmonic oscillator model). Thus, a 

diatomic molecule can be compared to an ideal harmonic oscillator, defined by Hooke’s 

law by (Skoog et al., 2007): 

𝐹 = −𝑘𝑦           (1.4) 

where 𝐹 is the force acting against the displacement 𝑦 from its equilibrium position. The 

proportionality constant 𝑘 is called the force constant. In an equilibrium position, the 

potential energy is zero; therefore, when the spring is compressed or stretched, the 

potential energy, 𝐸, will vary according to the work needed to move the mass: 

𝜕𝐸 = −𝐹𝜕𝑦 = 𝑘𝑦𝜕𝑦          

  

∫ 𝜕𝐸
𝐸

0
= 𝑘 ∫ 𝑦𝜕𝑦

𝑦

0
          

  

𝐸 =
1

2
𝑘𝑦2           (1.5) 

The potential energy curve of a simple harmonic oscillator is a parabola (dashed 

line, Figure 4). However, real molecules do not follow an ideal model, therefore a more 

accurate potential energy curve for diatomic molecules resembles an anharmornic 

oscillator (continuous line, Figure 1.4). Each energy level in these oscillator curves 

represents a vibrational level of a molecule where the electrons are excited. These 

vibrational levels are within the electronic level (Figure 1.2). For NIR, the vibrational 



26 
 

transitions happen in regions of high energy, where the absorptions are called overtones 

or combination bands. This generates a very superposed signal of chemical features in 

comparison with MIR (fundamental vibration modes), though it can be used to asses 

relevant chemical information such as concentration. On the other hand, FIR works in 

low frequencies (< 650 cm-1, > 15 μm), being particularly useful for studies involving 

bonds containing metallic atoms. 

 

Figure 1.4. Harmonic (dashed line) and anharmonic (continuous line) oscillators model 

for infrared spectroscopy, where E represents the potential energy, v the vibrational 

energy level, and y the bond stretching distance. 

 

 MIR spectroscopy has been the main type of technique employed for analysing 

biological materials (Bajer et al., 2014), since its signal contain fundamental vibration 

modes which are little convoluted in comparison with NIR and covers most of covalent 

bonds not detected by FIR. The main fundamental vibrational mode absorptions of 

functional groups within the MIR range are depicted in Figure 1.5 (Reusch, 1999). Most 

stretching vibrations occur in higher wavenumber region, since these require more 

energy; while bending vibrations tend to occur in lower wavenumber region. These 

signals shift towards higher or lower wavenumbers according to the molecular 

configuration and neighbouring functional groups.  
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Figure 1.5. Approximation of the main vibration modes in IR spectroscopy (3600–600 

cm-1). Sym.: symmetric; asym.: asymmetric.  

 

Experimental measurements using MIR spectroscopy are made using instruments 

composed basically of five parts: (1) light source, (2) spectrograph, (3) sampling area, (4) 

detector, and (5) computer module (Figure 1.6a). The light source is responsible for 

generating electromagnetic radiation at the infrared range; the spectrograph is an optical 

apparatus containing an interferometer, diffraction grating or prism for diffraction of the 

incident IR light; the sampling area contains the sample to be irradiated with IR light; the 

detector captures the diffracted IR light generating an electric potential response; and the 

computer module process the electric information transforming it into an interferogram 

and, by using a Fourier transform (FT), into a spectrum. The MIR spectrometer can work 

in two modes: transmission or reflection. In transmission mode (Figure 1.6b), the infrared 

light passes through the sample and reach the detector, so the final recorded IR signal is 

given by: 
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 𝑇 =
𝑃

𝑃0
           (1.6) 

where 𝑇 is the transmission (value between 0 and 1), 𝑃 is the signal potential through the 

sample, and 𝑃0 is the signal potential through the blank, i.e., background signal (e.g., 

reference material, air, sample matrix without substance of interest). Transmission does 

not have a linear relationship with concentration. For this reason, a mathematical 

transformation using the Beer-Lambert’s law is applied: 

𝐴 = − log 𝑇           (1.7) 

where 𝐴 is the absorbance, which is linearly proportional to the chemical concentration, 

since: 

𝐴 = 𝜀𝑏𝑐           (1.8) 

where 𝜀 is the molecular absorptivity coefficient, 𝑏 is the length of the optical path, and 

𝑐 is the concentration. 

In reflection mode, the IR light reaches the material surface and bounces in the 

material through a phenomenon called reflectance, where the incident light after a certain 

degree of depth penetration reflects back to the spectrometer in an angle close to 180o. 

The most popular technique for reflection is the attenuated total reflection (ATR) mode 

(Figure 1.6c), where a crystal, often diamond, is placed between the light source and 

sample to generate an evanescent wave that amplifies the signal intensity (Baker et al., 

2014). The main disadvantage of the transmission mode is that it is suitable only to 

analyse liquid in relative large volumes (> 2 mL) or thin materials; thus, reflectance by 

means of the ATR technique is more adequate to analyse solid, thick, or small volume of 

liquids. The penetration depth of ATR using a diamond crystal varies according to the 

incident radiation frequency and material properties, but it usually varies from 0.5 to 2 

μm. 

From an economical point of view, the use of MIR spectroscopy, in particular 

ATR-FTIR, has great advantages. This is because the instrumentation has a relative low-

cost, requires a low-cost maintenance, does not require laborious or wet-chemistry sample 

preparation procedures, has a fast data acquisition, and is non-destructive, that is, the 

sample can be reused after analysis. Thus, applications of this technique in biochemical 

areas are of great importance as substitute or auxiliary methods to reference analysis 

usually employed using electrochemical, chromatographic, mass spectrometric, and 

thermogravimetric techniques, or combination of these.  



29 
 

 

Figure 1.6. (a) FT-IR components spectrometer diagram, where the spectrograph is 

represented by a Michelson interferometer: (1) beam splitter, (2) fixed mirror, and (3) 

moving mirror; (b) transmission mode illustration; (c) ATR mode illustration. 

 

1.1.2 Raman Spectroscopy  

Raman spectroscopy is based on an anomalous scattering effect that happens with 

less than 1% of absorbed photons by a sample. More than 99% of the photons absorbed 

by a substance undergo elastic scattering (e.g., Rayleigh scattering), which does not 

change the state of the material, since these photons are absorbed, increasing the 

vibrational energy state of the molecules, and then emitted from the excited vibrational 

energy state to their initial vibrational energy state. However, a few percent of absorbed 

photons undergo an inelastic process, where the molecule does not return to the initial 

vibrational energy state, emitting photons with a specific frequency of deviation to 

maintain the equilibrium of the system (Skoog et al., 2007). The inelastic scattering can 

be the Stokes or anti-Stokes scattering, which occur in 1 out 10 million absorbed photons. 

The Stokes scattering occurs when a molecule absorbs part of the energy of the incoming 

monochromatic wavelength (e.g., laser) and emits a wavelength of less energy than the 

wavelength absorbed; and the anti-Stokes scattering happens when the molecule emits a 

wavelength of greater energy than the absorbed wavelength (Figure 1.7). The latter 

happens under certain circumstances where the molecule is in a partially excited energy 

state before absorbing electromagnetic radiation. 
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Figure 1.7. Energy diagram showing the IR absorption, Rayleigh scattering, Stokes and 

Anti-Stokes scattering in the vibrational energy states. E stands for total energy.  

 

 The elastic scattering is filtered by the instrument so that only the inelastic 

scattering is detected and used to produce the Raman spectrum. Both Stokes and anti-

Stokes phenomena occur, but at room temperature, there is a lower population of 

molecules in an initial excited energy state to absorb radiation, therefore the anti-Stokes 

signal is weaker than the Stokes signal (Skoog et al., 2007). For this reason, many 

spectrometers only work with the Stokes scattering. Differently from IR, Raman 

spectroscopy is based on the change of polarizability rather than the dipole moment, 

which makes the vibration bands in Raman quite different from IR. The main vibration 

modes for Raman are depicted in Figure 1.8 (HORIBA, 2020). 
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Figure 1.8. Approximation of the main vibration modes for Raman (Raman shift: 3600–

400 cm-1). Sym.: symmetric; asym.: asymmetric. 

 

 The main advantage of Raman in comparison with IR spectroscopy is that Raman 

is water transparent below 3000 cm-1, since it has a weak signal after 3000 cm-1 (Skoog 

et al., 2007). This is important for biological applications since liquid or fresh medium is 

composed mainly of water, which is a problem for IR. IR analysis is often performed on 

dry samples to minimise the water interferent signal. The Raman spectrometer is 

composed of 4 main parts: (1) a monochromatic laser source, (2) a spectrograph grating, 

(3) a charge-coupled device (CCD) detector, and (4) a computer module. The 

monochromatic laser light, often in the visible or NIR range, is used to excite the sample 

to the virtual energy states where the inelastic scattering phenomena occur. Most of 

Raman spectrographs use fixed diffraction grating instead of interferometers which have 

moving mirrors using in Fourier-transform infrared (FT-IR) spectrometers, hence, the 

detector is a CCD camera detector that records the whole spectrum at once, thus without 

needing a Fourier-transformation. The fix diffraction grating and CCD detector also 

makes the technique substantially faster than FT-IR for spectral acquisition in small 

wavenumber windows. A computer module is then responsible for converting the CCD 

detector signal into the spectrum. These parts are summarised in Figure 1.9. 
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Figure 1.9. Diagram showing the Raman spectrometer components, where: (1) beam 

splitter, (2) objective lenses, and (3) lens. 

 

1.2 Biospectroscopy 
 

The identification and diagnosis of diseases such as cancer are a global scale 

problem. The detection of these complex diseases in hospital environments usually 

requires laborious and extreme invasive procedures, causing much discomfort to patients 

and even leading them to surgical procedures; in addition to costs associated with sample 

preparation and complex machinery to the facility.  

Biospectroscopy is focused on using vibrational spectroscopy techniques to 

analyse biological materials (Trevisan et al., 2012). The identification of chemical 

patterns within biological samples using their spectrochemical information has 

fundamental importance to overcome issues on disease diagnostic, and corresponds to a 

breakthrough area of technological innovation having great social impact. 

Biospectroscopy allows fast, non-destructive and low-cost analysis of biological 

materials, and has been used in a wide range of applications, including cancer detection 

based on liquid biopsies and tissue analysis (Kendall et al., 2009; Trevisan et al., 2012), 

toxicology assays (Heys et al., 2017), environmental studies (Obinaju & Martin, 2013), 

taxonomic identification (Zimmermann et al., 2015), and detection of cellular 

mechanisms (Miller & Dumas, 2010).  

Biological samples have a specific spectrochemical signature within a region 

called the biofingerprint region, which is from 1800–900 cm-1 for IR and 2000–500 cm-1 

for Raman (Kelly et al., 2011). The biofingerprint region comprises key absorptions of 
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lipids (νs(C=O), δs(CH2)), proteins (amide I, amide II, νs(COO-)), nucleic acid (νas(PO2
-), 

νs(PO2
-)) and carbohydrates (νs(CO-O-C)) (Baker et al., 2014).  The main 

spectrochemical signatures of the spectral markers (or biomarkers) within the 

biofingerprint region for IR and Raman are shown in Figure 1.10.  

 

Figure 1.10. Biochemical-cell fingerprint of (A) IR and (B) Raman spectra with tentative 

peak assignments. (Reprinted (adapted) with permission from Kelly et al., 2011. 

Copyright 2011 American Chemical Society). 

 

 Several types of clinical samples, including biofluids (cerebrospinal fluid (CSF), 

saliva, blood or urine) or tissue, can be analysed using both IR or Raman spectroscopy in 

order for disease screening and diagnosis using this biofingerprint region, since the 

spectral data experimentally acquired can be used as input information for category 

a.

b.
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classification models using computational tools, or chemometrics (Figure 1.11) (Mitchell 

et al., 2014). 

 

Figure 1.11. Diagram showing a variety of clinical samples (cerebrospinal fluid, saliva, 

blood, urine) that can be used for disease screening and diagnosis using their 

biofingerprint spectrochemical signature. (Reprinted with permission from Mitchell et 

al., 2014. Copyright 2014 John Wiley & Sons, Inc.). 

 

1.2.1 Sample Preparation 

 

 Sample preparation for biospectroscopy is minimal, since both IR and Raman are 

non-destructive techniques. Blood is often centrifuged for extraction of plasma or serum 

which are subsequently used for spectral measurement. Small aliquots of these biofluids 

(50 to 250 μL) are usually pipetted onto low-emission (low-E) or aluminium-covered 

glass slides and allowed to dry overnight at room temperature (Baker et al., 2014; 

Paraskevaidi et al., 2018c). The same procedure is performed for urine, where the 

centrifugation process is performed to precipitate solid material and the supernatant is 

further analysed (Maitra et al., 2019). Saliva is measured as is after drying, while CSF 
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fluid is analysed diluted in an ethanol 70% (vol/vol) solution to avoid bacterial 

proliferation and contamination. Samples can be measured in liquid state using Raman 

since this technique is “water transparent”, however they must be properly dried and 

stored in desiccators prior to FTIR measurements using ATR.  

 Tissues can be analysed fresh, snap-frozen, formalin-fixed paraffin-embedded 

(FFPE) or FFPE after dewaxing. Ideally fresh tissue provide the most authentic 

spectrochemical information, however, this type of sample decompose quickly, hence, 

most applications involve snap-frozen or FFPE tissue samples. Snap-frozen samples are 

preferably analysed by Raman spectroscopy due to water interference on FT-IR (Baker 

et al., 2014; Butler et al., 2016), while FFPE tissue can be analysed either using Raman 

or FT-IR spectrometers. Dewaxing can be performed prior to analysis in order to remove 

the paraffin signal interfering (Baker et al., 2014), however there are computational ways 

to minimise the influence of the paraffin signal in the spectrum (Tfayli et al., 2009), thus 

FFPE tissue can also be measured as is. 

 

1.2.2 Chemometrics 

 

 Advancements on spectrometers instrumentation allow obtainment of complex 

spectral data of biological samples in a quick and almost automated fashion. However, 

the mathematical techniques to process the experimental data and extract relevant 

information are as important as the analytical instrumentation used to acquire them, where 

the information extraction process, and, as consequence, the clinical diagnosis is only 

possible to be achieved by using chemometric techniques. Chemometrics is defined as 

“the science of relating measurements made on a chemical system or process to the state 

of the system via application of mathematical or statistical methods” (Hibbert, 2016). 

Chemometrics is the tool used to convert complex spectrochemical data into meaningful 

information, thus enabling the analyst to draw relevant conclusions about the 

experimental data. Chemometric techniques must advance along the instrumentation and 

data complexity, and it is a keystone to obtain satisfactory and reliable diagnostic results. 

 Chemometrics include multivariate calibration and classification techniques, and 

should be used where the spectral signature has overlapping bands, unknown sources of 

variation or interference, poor signal-to-noise (S/N) ratio, non-linearity in absolute 



36 
 

wavelengths, or other adverse effects in the reactional medium (Brereton, 2003). 

Multivariate calibration techniques are employed when there are several discrete values 

as reference labels among the samples distributed in an order of importance (e.g., 1, 2, 

3…), hence, being mainly used to estimate chemical concentration values in quantitative 

analysis based on the spectral data. For qualitative analysis, where there are few category 

labels among the samples and the aim is to distinguish or classify them, multivariate 

classification techniques are employed. 

 Multivariate classification is divided into unsupervised and supervised methods 

(Beebe et al., 1998). Unsupervised methods are used mainly for exploratory analysis in 

order to identify natural patterns or clustering that arise from the data, hence, no pre-

defined labels are inputted in the model. The most common unsupervised method for 

exploratory analysis of spectral data is the principal component analysis (PCA) (Bro & 

Smilde, 2014). PCA decomposes the spectral data into a few principal components (PCs) 

responsible for most of the original data variance. Each PC is orthogonal to each other 

and they are distributed in a decreasing order of explained variance, so the 1st PC accounts 

the highest explained variance, followed by the 2nd PC and so on. Each PC is composed 

of scores (projections of the samples on the PC direction) and loadings (angle cosines of 

the wavenumbers projected on the PC direction) (Santos et al., 2017). The PCA scores 

show the variance on sample direction, thus showing clustering and trending patterns and 

being used to assess similarities/dissimilarities among the samples; and the PCA loadings 

show the variance on wavenumber direction, thus being used to identify important 

wavenumbers or spectral markers (Bro & Smilde, 2014) (Figure 1.12). 

In the example depicted in Figure 1.12, the features that distinguish the red from 

the blue class are characterized by an increase at the wavenumber 1590 cm-1 (+ loadings 

on PC1, + scores on PC1), and a decrease at the wavenumbers 1370 cm-1 and 1100 cm-1 

(- loadings on PC1, - scores on PC1). However, although PCA is a very useful technique 

for exploratory analysis of the dataset, PCA is not a proper classification technique, since 

even though PCA gives an indication of the sample nature, it is not able to predict the 

category of a given blind sample by itself. For this reason, supervised classification 

techniques are employed in the PCA scores, selected wavenumber features, or in the 

whole original spectrum region in order to obtain diagnostic results. 
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Figure 1.12. Example of PCA decomposition, where the scores show a segregation 

pattern between blue and red samples, and the loadings show the three wavenumbers 

(1590 cm-1, 1370 cm-1 and 1100 cm-1) responsible for class separation. X = spectra 

dataset, T = PCA scores, P = PCA loadings, E = residuals. Superscript T stands for the 

matrix transpose operation.  

 

  The most common supervised classification techniques are the K nearest 

neighbour (KNN), artificial neural networks (ANN), linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA) and support vector machines (SVM). KNN is a 

method that classifiers the samples based on the distance from each of the samples in the 

training set using the K nearest samples, so the classification of an unknown sample is 

based on the concept of majority vote, that is, the sample is classified to the group that 

has the most members of training samples amongst its neighbours (Naes et al., 2002). 

ANN is a more sophisticated method based on neuron interconnections, being inspired 

by how the human brain works. ANNs are based on a series of nodes that connects to 

each other in different depth layers. The contributions for all nodes are multiplied by 

constants and added before a non-linear transformation within the node, which are often 

a Gaussian transformation function that extract features from the dataset (Naes et al., 

2002). 
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 LDA is one of the most common methods used in supervised classification of 

spectral data LDA calculate the discriminant function between two classes according to 

the Mahalanobis distance between the samples. QDA works similarly, however is less 

used than LDA probably due to the lack of QDA algorithms available. The main 

difference between LDA and QDA is that LDA uses a pooled covariance matrix for 

sample distance calculation, while QDA uses the individual variance-covariance matrix 

of each class for this calculation (Dixon & Brereton, 2009; Wu et al., 1996). The LDA 

and QDA classification scores for sample I of class k are calculated as follows (Morais & 

Lima, 2018): 

LDA, 

𝐿𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂pooled
−1 (𝐱𝑖 − �̅�𝑘) − 2 log𝑒 𝜋𝑘      (1.9) 

QDA, 

𝑄𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂𝑘
−1(𝐱𝑖 − �̅�𝑘) + log𝑒|𝐂𝑘| − 2 log𝑒 𝜋𝑘     (1.10) 

where 𝐱𝑖 is the vector containing the input classification variables for sample I; �̅�𝑘 is the 

mean vector for class k; 𝐂pooled is the pooled covariance matrix; 𝐂𝑘 is the variance-

covariance matrix of class k; and 𝜋𝑘 is the prior probability of class k. These additional 

terms are calculated as follows: 

𝐂pooled =
1

𝑛
∑ 𝑛𝑘𝐂𝑘

𝐾
𝑘=1          (1.11) 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑖 − �̅�𝑘)(𝐱𝑖 − �̅�𝑘)T𝑛𝑘

𝑖=1         (1.12) 

𝜋𝑘 =
𝑛𝑘

𝑛
           (1.13) 

where n is the total number of samples in the training set, K is the total number of classes, 

and 𝑛𝑘 is the number of samples of class k in the training set. These scores are used to 

calculate the discriminant function (DF) between two classes as follows: 

LDA, 

𝐷𝐹 = 𝐿𝑖1 − 𝐿𝑖2          (1.14) 

QDA, 

𝐷𝐹 = 𝑄𝑖1 − 𝑄𝑖2          (1.15) 
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 SVM is defined as a method of supervised classification in which decision 

boundaries (hyperplanes) are determined that maximise the separation of data in different 

classes (Hibbert, 2016). In other words, SVMs are binary classifiers that work by finding 

a classification hyperplane in a high-dimensional space which separates two classes of 

samples providing the largest margin of separation (Harrington, 2015). SVM is a linear 

technique by nature, however it uses a non-linear step called the kernel transformation 

(Cortes & Vapnik, 1995). The SVM kernel function is responsible for transforming the 

data into a different feature space changing its classification ability (Dixon & Brereton, 

2009). This provides an extra power to SVM compared to other discriminant algorithms 

such as LDA and QDA. The LDA and QDA discriminant functions, as well as the SVM 

discrimination, are illustrated in Figure 1.13. 

  

Figure 1.13. Illustration of discriminant functions for classification. (a) Discriminant 

functions for LDA (fLDA) and QDA (fQDA); (b) SVM kernel transformation and 

discrimination in the feature space. The circled samples are the closest samples to the 

class margins, denominated support vectors. x1 and x2 represent spectral variables. 

a.

b.
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 LDA is less susceptible to overfitting and usually shows good classification ability 

when classes have similar variance structures, i.e., when they have similar distributions, 

and also performs well even with small datasets; while QDA performs better than LDA 

when classes have different variance structures/distributions, but underperforms LDA in 

small datasets (Wu et al., 1996). SVM generally performs better than LDA and QDA, 

however it is highly susceptible to overfitting and more time-consuming.  

 The input classification variables for LDA, QDA or SVM can be PCA scores in 

PCA-LDA, PCA-QDA and PCA-SVM algorithms, or specific wavenumbers selected by 

variable selection algorithms such as the successive projections algorithm (SPA) (Soares 

et al., 2013) or genetic algorithm (GA) (McCall, 2005). SVM can also work with the full 

spectrum region, however LDA and QDA requires a number of variables equal or smaller 

than the number of samples in the training set. Further details about the chemometric 

techniques employed to analyse biospectroscopy data are discussed in Chapter 2. 

 

1.3 Spectrochemical Imaging  
 

Despite many advantages, conventional spectroscopy techniques lack one 

fundamental aspect for analysing complex heterogenous samples: spatial information. 

Spectroscopy techniques using single-spectrum acquisition rely exclusively on positional 

measures, and no information on spatial distribution is extracted. This narrows down its 

usability in potential applications involving structural investigations of components 

distributed over tissue segments. To overcome these limitations and obtain both spatial 

and spectral information combined, hyperspectral imaging techniques are used. 

 Hyperspectral techniques combine imaging and spectroscopy. For this, an image 

is generated for the segment being analysed but, for each image position (pixel), a 

spectrum is also generated, creating a three-dimensional (3D) object for each sample 

measured, also called a hyperspectral “data-cube”. This enriches the data obtained since 

one can access spatial information in the x- and y-axis, and chemical information in the 

z-axis. Figure 1.14illustrates an example of hyperspectral data. 
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Figure 1.14. Hyperspectral “data-cube”, where the spatial information is shown on the x- 

and y-axis, and the spectral information on the z-axis. (CC BY-NC 2.0, < 

https://imgbin.com/png/6s6tUKPJ/hyperspectral-imaging-data-cube-photon-etc-market-

analysis-multispectral-png>).  

 

1.3.1 Hyperspectral Imaging Techniques 

Hyperspectral imaging techniques vary according to the frequency of the 

electromagnetic ration used for irradiating the sample, and most of classical spectroscopy 

techniques can be adapted for imaging. IR (MIR and NIR), UV or Vis (UV-Vis), 

fluorescence and Raman spectroscopy are the most used hyperspectral imaging 

techniques. MIR and Raman hyperspectral imaging can be used by coupling a microscope 

and automated sample stage to the conventional spectrometer, where the IR (for FT-IR) 

or laser (for Raman) light beam is focused by objective lenses onto a small area of the 

sample. Then, three data acquisition configurations are often used: point scan, line scan 

or area scan (Pu et al., 2015). Although having a great level of detail, point scans require 

a long acquisition time, therefore being unsuitable for real-time applications. Area scans 

enable the acquisition of whole images at discrete wavelengths, but it is not capable of 

detecting objects in great detail. Therefore, the best acquisition mode is usually line scan, 

since it combines fast acquisition with detailed information obtained through a 2D array 

detector. 

Z

https://imgbin.com/png/6s6tUKPJ/hyperspectral-imaging-data-cube-photon-etc-market-analysis-multispectral-png
https://imgbin.com/png/6s6tUKPJ/hyperspectral-imaging-data-cube-photon-etc-market-analysis-multispectral-png
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1.3.2 Data Acquisition 

The instrumental setup vary according to the instrumental technique used. 

Parameters such as distance from the sample to the detector and light source power may 

affect the result. Hyperspectral images can be obtained in reflectance, transmittance, 

fluorescence or scattering modes. Before measurement, the instrument is usually 

calibrated using white or dark references to account for the uneven intensity of the light 

source, the spectral response of the device, and the dark radiation present in the 

measurement chamber that may affect the imaging detector. However, this calibration 

procedure does not take into consideration morphological information of the sample 

being measured. Flat samples are not affected by morphological changes, but non-flat 

samples (e.g., round-shaped or cylindrical-shaped) are affected by their surface curvature 

that creates a gradient distance variation between the sample and detector, causing 

differences in the optical pathlength. This should be corrected by additional pre-

treatments prior to analysis (Pu et al., 2015).  

 

1.3.3 Data Analysis 

 Often, feature extraction techniques are applied to reduce and compress 

hyperspectral images, since this type of data usually requires extensive storage space and 

processing power. To speed up computational analysis, spatial- and chemical-relevant 

features are extracted from images by employing multivariate-based techniques. This is 

possible because although the hyperspectral data contains millions of data points, only a 

few of them contain relevant information to the property being measured. This is the most 

critical part for processing hyperspectral images, since the overall sensitivity and 

robustness of the machine vision system strongly depends upon the responsiveness of the 

features containing the desired information for analysis. Firstly, one has to decide which 

type of features to extract: spectral features, textural features or a combination of both. 

The key issue is to determine whether the desired information is proportional to the 

number of pixels or spectral signatures, regardless of how they are distributed in the 

hyperspectral image or if the desired information is related to the spatial distribution of 

pixels (Duchesne et al., 2012).  
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 The simplest method of feature selection is to select wavelengths at peaks or 

troughs of the spectral curve according to the maximum or minimum intensity difference 

(Pu et al., 2015). However, some relevant wavelengths might not be selected by this 

procedure due to the multivariate nature of the data, therefore, it might be necessary to 

use multivariate image analysis (MIA) procedures for this. MIA was introduced in the 

late 1980’s to deal with images that represent more than one measurement per pixel. It 

can perform at either a global or pixel level. The first is focused on analysing each 

hyperspectral image as a ‘sample’, therefore covering all the information contained in the 

image to obtain an analytical parameter. The second is focused on analysing individual 

pixel spectra within each hyperspectral image (Prats-Montalbán et al., 2011). 

 MIA is very efficient at extracting spectral features, where it starts unfolding the 

hyperspectral data cube into a 2D data matrix, so the spectral feature for each pixel refers 

to a row, and then some type of data reduction technique is employed. PCA and 

multivariate curve resolution alternating least squares (MCR-ALS) are the most used 

techniques. MCR-ALS decomposes the unfolded data 𝐗 in a bilinear model as follows 

(Prats-Montalbán et al., 2011): 

𝐗 = 𝐂𝐒T + 𝐄           (1.16) 

The MCR results are the concentration distribution maps 𝐂, the pure spectra of 

image constituents 𝐒, and the residuals 𝐄. This decomposition separates the information 

of different constituents in an image to find its purest information or to detect pixels with 

selective information. It can be applied to one or more images together, where multi-

image analysis is used when a multilayer image from a single sample or a series of images 

with related chemical composition (Prats-Montalbán et al., 2011). 

Similar methodologies focusing in finding ‘purest’ components is also explored 

by other algorithms, such as SIMPLISMA and fixed size image window-evolving factor 

analysis (FSIW-EFA). The purest pixels provide an approximation of the pure spectra 

sought, while the purest spectral channels, when unfolded, allow construction of 

approximate distribution maps of the purest constituents (Prats-Montalbán et al., 2011). 

Other algorithms for feature selection in hyperspectral images are minimum redundancy 

maximum relevance (MRMR), GA, SPA and neural network approaches by extracting 

the weight of each input in the back-propagation (Pu et al., 2015). Thereafter, the spectral 
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and/or spatial features extracted from the images are used as input variables for the 

classification algorithms detailed in section 1.2.2 and Chapter 2. 

 

1.4 Current Challenges in Biospectroscopy 
 

 Biospectroscopy is still a science in development, where the actual main challenge 

is the final clinical implementation of the developed methodologies in hospital 

environments. This is a challenge still in the horizon nowadays since before proceeding 

to this final step there are a series of other issues that must be addressed and validated, 

and these are almost exclusively related to the analysis of the spectral data; since protocols 

for sample preparation and experimental measurements are already well established 

(Baker et al., 2014; Butler et al., 2016; Martin et al., 2010). 

 

1.4.1 Sample and Data Complexity 

 Biological samples are extremely complex by nature, since the number of 

chemical components, hence, spectral features are exceptionally overlapping. Therefore, 

only multivariate techniques covering the analysis of multiple wavenumbers at the same 

time are capable of working in such complex environment. Traditionally, a pre-defined 

spectral dataset is used for model construction, i.e., to train the model, while an external 

test set is used to validate the model towards unknown samples. However, there is still a 

lack of understanding on how to select samples for training and test sets. Manual selection 

of samples spectra usually introduces bias, thus random selection is often used instead. 

But random selection adds a high-risk of extrapolation, that is, the classification model 

does not include enough source of variation that allow them to accurately predict 

unknown samples. Another strategy often used in analytical applications, is the Kennard-

Stone (KS) algorithm (Kennard & Stone, 1969), that systematically select samples for the 

training set based on maximising the training space, but it does not take into account 

random or extreme behaviours that often happen in biological medium. Therefore, there 

is a need for algorithms to optimally select samples for training and test sets in 

biospectroscopy applications. 
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1.4.2 Processing Imaging Data  

 The major drawback of hyperspectral imaging is the time required to analyse the 

data experimentally acquired. Hyperspectral image datasets occupy gigabytes of space 

and depending on the number and size of the images, simple data analysis such as PCA 

may take days or weeks to process using standard computers. Supercomputing is often 

used in this situation, but this adds a cost that many institutions cannot afford. For this 

reason, faster and accurate chemometric methods to analysis hyperspectral data-cubes are 

required in biological applications, where often many samples must be analysed and 

compared quickly using lower-capacity computers. 

 

1.4.3 Uncertainty in Diagnostic Accuracy 

 Overfitting is the major problem of predictive computational models. Many times 

the model is well trained and internally validated with a good accuracy, but the model is 

not robust enough to predict real external samples where subtle sources of variation or 

random noise is present. For this reason, mathematical tools to predict uncertainty in 

model diagnostic in order to foresee future performance are needed. 

 

1.4.4 Environmental Variability 

 Measurements made in different centres, even using the same sample preparation, 

instrument manufacturer and measurement settings, are different. That is because there 

are underlying variations in the environment, such as humidity and CO2 level, in the 

instrument, such as ageing of parts, and in sample handling that may affect the spectral 

response. For this reason, a protocol showing how to standardise spectral response across 

different centres using computational tools is needed as a final step before implementing 

biospectroscopy in real-routine applications, since in this scenario samples will need to 

be measured by different instruments, analysts and in different locations, and the 

diagnostic result will need to be consistent across these different environments.  
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1.5 Aims and Objectives  
 

1.5.1 Research Aim 

 

This PhD, entitled “Novel chemometric approaches towards handling 

biospectroscopy datasets”, aims to provide a novel protocol for the analysis of 

biospectroscopy datasets, solving current issues present in four fronts of spectrochemical 

analysis: (1) sample selection, (2) processing of imaging data, (3) uncertainty estimation 

in diagnostic accuracy, and (4) standardisation methods to account for environmental 

variability.  

 

1.5.2 Objectives 

 

i. To produce a chemometric protocol for multivariate classification of 

biospectroscopy data. 

ii. To develop a method for optimal sample selection in biospectroscopy 

application based on the combination of the Euclidian-distance-based 

Kennard-Stone (KS) selection with a random mutation factor. 

iii. To speed exploratory analysis and classification of hyperspectral imaging data 

through a three-dimensional principal component analysis (3D-PCA) 

approach. 

iv. To develop a methodology to estimate diagnostic uncertainty and model 

robustness in linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA) and support vector machines (SVM) classification. 

v. To produce a protocol showing how to standardise biospectroscopy datasets 

collected across different centres. 
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1.6 Statement of Originality   
 

All the chemometric techniques developed in Chapters 3 to 8 are new, and they 

were never applied in biological-derived spectrochemical datasets before. The protocols 

provided in Chapters 2 and 9, as well as the software interface provided in Chapter 10, 

are also new, and they were produced to assist the biospectroscopy community showing 

how to process complex spectrochemical data of biological materials. This thesis show 

how to obtain more reliable and accurate diagnostic performance and biomarkers 

identification for any biological or clinical application where at least two distinct 

categories are analysed. Successful development of such chemometric methods will allow 

to trial these tools in a clinical setting, where fast, reliable, and highly accurate diagnosis 

are required. 

 

1.7 Thesis Structure   
 

 This thesis is structured in 11 chapters plus appendices. Chapter 2 is a protocol on 

how to analyse biospectroscopy data towards classification applications; Chapters 3 and 

4 demonstrate a new algorithm for sample selection in biological applications; Chapters 

5 to 7 are related to hyperspectral image analysis, where Chapter 5 demonstrate a clinical 

application of MCR-ALS and Raman hyperspectral imaging for meningioma WHO 

tumour grade detection, Chapter 6 demonstrate a new chemometric algorithm for three-

dimensional exploratory analysis of hyperspectral images, and Chapter 7 is a further 

development if this algorithm coupled to LDA and QDA as discriminant analysis 

approaches. Chapter 8 demonstrates how to estimate uncertainty and model robustness 

for LDA, QDA and SVM applied to biospectroscopy datasets; and Chapter 9 is a protocol 

on how to standardise biospectroscopy datasets acquired across different centres. Chapter 

10 demonstrates an user-friendly software interface developed to process trilinear 3D 

data; and Chapter 11 is the overall discussion of the thesis conclusions and future 

perspectives for the field. The Appendices contain details about supplementary materials 

for Chapters 2, 5 and 9; and the Ethics Approval of this project. 
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CHAPTER 2 | MULTIVARIATE CLASSIFICATION 

TECHNIQUES FOR VIBRATIONAL SPECTROSCOPY IN 

BIOLOGICAL SAMPLES 

 

 This chapter is a protocol on how to analyse biospectroscopy data towards 

classification applications using traditional chemometric techniques. This chapter is part 

of a paper published in Nature Protocols (IF 11.334): 

➢ Morais CLM, Lima KMG, Singh M, Martin FL. Tutorial: multivariate 

classification for vibrational spectroscopy in biological samples. Nat. Protoc. 

2020. https://doi.org/10.1038/s41596-020-0322-8  

 

Abstract: The use of vibrational spectroscopy techniques, such as Fourier-transform 

infrared (FTIR) and Raman spectroscopy, has been a successful method to study the 

interaction of light with biological materials and facilitate novel cell biology analysis. 

Disease screening and diagnosis, microbiological studies, forensic and environmental 

investigations make use of spectrochemical analysis very attractive due to its low cost, 

minimal sample preparation, non-destructive nature and substantially accurate results. 

However, there is now an urgent need for multivariate classification protocols allowing 

one to analyse biological-derived spectrochemical data in order to obtain accurate and 

reliable results. This is stimulated by the fact that applications of deep-learning algorithms 

of complex datasets are being increasingly recognized as critical towards extracting 

important information and visualizing it in a readily interpretable form. Hereby, we have 

constructed a protocol for multivariate classification analysis of vibrational spectroscopy 

data [FTIR, Raman and near-infrared (NIR)] highlighting a series of critical steps, such 

as pre-processing, data selection, feature extraction, classification and model validation. 

This is an essential aspect towards the construction of a practical spectrochemical analysis 

model for biological analysis in real-world applications, where fast, accurate and reliable 

classification models are fundamental. 

 

Author contribution: C.L.M.M. performed the data analysis and wrote the manuscript.  

 

 

                                   

Camilo L. M. Morais, PhD candidate                               Prof. Francis L. Martin, Supervisor  

https://doi.org/10.1038/s41596-020-0322-8
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2.1 Introduction 
 

 Vibrational spectroscopy comprises techniques related to electronic changes in 

the internal vibrational energy levels of molecules. Biomolecules that contain chemical 

bonds that vibrate generating a change in the dipole moment as a result of the transition 

are IR active (Martin et al., 2010; Santos et al., 2017). Infrared (IR) and Raman 

spectroscopy are the main spectroscopic techniques used to assess vibrational molecular 

modes, where the first is based on molecular dipole changes and the latter on molecular 

polarizability changes. IR spectroscopy is dived into near-IR (NIR), mid-IR (MIR) and 

far-IR (FIR) spectroscopy depending on the incident light frequency. MIR is the main 

technique used to analyse biological materials since it covers fundamental vibrational 

modes of important biomolecules. Vibrational spectroscopy can provide rapid, label-free, 

and objective analysis for the clinical domain. The fingerprint region, between 1800-900 

cm-1, include important absorptions of lipids (C=O symmetric stretching at ~1750 cm-1,  

CH2 bending at ~1470 cm-1), proteins (Amide I at ~1650 cm-1, Amide II at ~1550 cm-1, 

Amide III at ~1260 cm-1), carbohydrates (CO-O-C symmetric stretching at ~1155 cm-1), 

nucleic acid (asymmetric phosphate stretching at ~1225 cm-1, symmetric phosphate 

stretching at ~1080 cm-1), glycogen (C-O stretching at ~1030 cm-1), and protein 

phosphorylation (~970 cm-1) (Baker et al., 2014; Kelly et al., 2011; Movasaghi et al., 

2008). The high-region, between 3700–2800 cm-1, can also be used for analysis, where 

information of water (-OH stretching at ~3275 cm-1), protein (symmetric -NH stretching 

at ~3132 cm-1), fatty acids and lipids (=C-H asymmetric stretching at 3005 cm-1, CH3 

asymmetric stretching at ~2970 cm-1, CH2 asymmetric stretching at ~2942 cm-1, CH2 

symmetric stretching at ~2855 cm-1) can be obtained (Paraskevaidi et al., 2017b). NIR 

spectroscopy can also be applied as a biospectroscopy tool. This technique is mainly 

composed of MIR overtones, hence, the signal is very complex containing many 

overlapping features. Therefore, biomarkers identification using NIR is harder and more 

ambiguous, although this technique is a powerful tool for quantification and classification 

applications (Pasquini et al., 2018). Raman spectroscopy is based on an inelastic 

scattering effect. Most of the photons absorbed by a molecule suffers elastic scattering; 

only a small portion of them (<1%) suffer inelastic scattering, where the released radiation 

has lower or higher energy than the initial incoming absorbed radiation (Santos et al., 

2017). Inelastic scattering can be Stokes (photons with lower energy are emitted) or anti-
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Stokes (photons with higher energy are emitted), and both correspond to the Raman 

signal. Due to the small probability of molecules in an initial high energy state at room 

temperature, the anti-Stokes signal is not so strong, and the Stokes signal is usually 

recorded as the final Raman spectrum. 

Since both IR and Raman are non-destructive and sensitive techniques with a 

relative low-cost, passive of automation, and translatable to portable devices, their use to 

investigate biological samples are of great interest (Baker et al., 2014; Butler et al., 2016). 

Biofluids offer an ideal diagnostic medium due to their ease and low cost of collection and 

daily use in clinical biology. Applications using IR and Raman spectroscopy to investigate 

biological samples for food (Jin et al., 2015; Karoui et al., 2010; Li-Chan et al., 1996; 

Prieto et al., 2017; Qu et al., 2015; Scotter et al., 1990), plant (Baranska et al., 2013; 

Bittner et al., 2013; Buitrago et al., 2018; Cozzolino, 2014), microorganism (Jarvis & 

Goodacre, 2004; Lorenz et al., 2017; Naumann et al., 1991; Quintelas et al., 2015; 

Rodriguez-Saona et al., 2001; Schmitt & Flemming, 1998; Stöckel et al., 2016; Strola et 

al., 2014; Weiss et al., 2019; Zarnowiec et al., 2015) and clinical analysis (Baker et al., 

2018; Bunaciu et al., 2014; De Bruyne et al., 2018; Pence & Mahadevan-Jansen, 2016; 

Sakudo et al., 2016) are many. These previously mentioned advantages associated with 

the application of multivariate statistical methods of data analysis make these techniques 

every day more attractive for routine application. Previous protocols for IR (Baker et al., 

2014) and Raman (Butler et al., 2016) spectroscopy to analyse biological samples have 

been already published, but there is still a lack of good practical procedures on how to 

analyse the acquired data for classification applications where, for example, the spectral 

data can be used to determine if a given sample is healthy or disease, or if it belongs or 

not to a given group. This is critical since the results obtained by these studies are directly 

dependent on the data analysis methodology being used. 

Bio-spectral data analysis is a science that requires multidisciplinary knowledge, 

where to obtain reliable and chemically-meaningful results, the application of 

chemometric techniques is fundamental. Chemometrics is defined as “the science of 

relating measurements made on a chemical system or process to the state of the system 

via application of mathematical or statistical methods” (Hibbert, 2016). The use of 

statistical methods to solve chemical problems trace back centuries, though in 1949, the 

first report of least squares regression, design of experiments and analysis of variance 

(ANOVA) appear in analytical chemistry, by Mandel (Mandel, 1949). In the early 1960’s, 
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multivariate methods were first reported in a modern physical-chemistry context to 

determine the number of components in spectral mixtures as theoretical chemistry 

approaches (Wallace, 1960; Weber, 1961). Practical implementation into experimental 

analysis started with the influence of statistical approaches by Pearson and Fisher, whose 

published work in multivariate analysis in the 1920’s and 1930’s, acted as inspiration to 

apply ideas such as principal component analysis (PCA), factor analysis and discriminant 

modelling in a chemical context (Brereton et al., 2017). During late 1960’s and the 

1970’s, advancements in computer power and availability, the development of artificial 

intelligence algorithms, and the work done by Bruce Kowalski in the US and Svante Wold 

in Sweden enabled the introduction of multivariate methods in analytical chemistry in a 

modern fashion, and the word “chemometrics” was defined (Brereton et al., 2017). 

Multivariate methods in a chemical context can be seen as an expansion of the 

Lambert-Beer’s law in a multi-component approach, where the absorbance (spectral 

response) is a linear combination of concentration time coefficients (Beebe et al., 1998). 

For the notation, generally, bold uppercase characters (e.g., X) represent matrices, bold 

lowercase characters (e.g., x) represent vectors, and italic characters (e.g., n) represent 

scalars. The concentrations are related to sample differences, thus being used to assess 

the real chemical concentration or to find similarities/dissimilarities between samples, 

while the coefficients represent the weight of each variable (e.g., wavenumber) in the 

linear combination, hence, being used to find possible spectral markers. In classification 

applications, most of the algorithms employed to discriminate spectral data are a 

combination of feature extraction or feature selection methods followed by discriminant 

or class modelling techniques, which are mostly distance-based; a classical example is 

the partial least squares discriminant analysis (PLS-DA) algorithm (Brereton & Lloyd, 

2014). 

There are several steps to process biospectroscopic data towards classification 

applications. Firstly, before analysing the data, one must think if the experiment was 

performed correctly, if the number of sample is representative to solve their problem, and 

if the data are bilinear, that is, if the product of spectrum times concentration is a constant. 

If design of experiments (DoE) (Jacyna et al., 2019) are required to acquire representative 

data, this should be performed. If the data are not bilinear, then non-linear data analysis 

approaches should be investigated. After data acquisition, the first step is to visualise the 

data. Anomalous spectral behaviours should be investigated and, depending on the 
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application of interest, removed from the dataset. Outlier detection is a powerful tool to 

systematically investigate anomalous spectral profiles, though one must always visualise 

the data during this procedure. Then, pre-processing, data selection, model construction 

and validation are the essential steps to obtain reliable results. These steps are summarized 

in Figure 2.1. We must stress that these steps are iterative and entwined and the user can 

go back and change them until convergence to a good model is achieved. For this reason, 

red arrows going backwards are shown in Figure 2.1; this means that in order to optimise 

the model the user must test different data selection (including outlier detection), pre-

processing and model construction techniques in an interconnected way since there is no 

single route to validation.  

 

Figure 2.1. Spectral data analysis flowchart.  

 

2.2 Experimental Design 

More important than the data analysis itself is the experimental setup used to 

acquire the spectral data. Previous protocols demonstrate all the materials and steps 

needed for spectral data acquisition of biological-derived samples using both IR and 

Raman spectroscopy (Baker et al., 2014; Butler et al., 2016; Martin et al., 2010; Morais 

et al., 2019c). Therefore, in this protocol, we will focus solely on the spectral data analysis 

aspect. 

 

 

Data acquisition Outlier detection Pre-processing

Outlier detectionData selectionModel construction

Validation
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2.2.1 Minimum Dataset Requirements  

 

Before carrying on with the experiments, the number of samples must be defined. 

For pilot studies, power tests are recommend, where a power of 80% can be used as the 

minimum number of samples for the dataset (Jones et al., 2003). Normally, 5 to 25 point 

spectra are collected per sample (Morais et al., 2019c), and 10 point spectra have been 

suggested in a previous protocol for ATR-FTIR (Baker et al., 2014). By increasing the 

number of spectra replicates, the standard-deviation between measurements is reduced, 

since the standard-deviation is proportional to 1/√𝑛, where 𝑛 is the number of spectra 

replicates. Extra caution should be taken when analysing heterogeneously distributed 

samples (e.g., tissues), where spectra replicates should be acquired in a way that covers 

the sample surface as uniformly as possible. Sample replicates are also recommended. 

For precision estimation, at least six replicates at three levels should be performed 

(Morais et al., 2019c). When patient variability is being measured, i.e., when the 

classification model is performed in a sample-basis, the spectral replicates per sample can 

be averaged so each resultant spectral response corresponds to a different patient. In this 

way, the chemometric model is modelled per patient rather than by spectral replicate. 

However, this requires a larger number of samples and might be difficult to be 

implemented in small pilot studies. In larger studies, especially before routine 

implementation, thousands of samples are necessary. This number is defined by the 

analyst experience and the classification rigour needed. The analyst while designing the 

experiment must think about confounding factors and the sources of variability that needs 

to be contemplated in the experiment. If needed, standardisation procedures should be 

performed to make sure that systematic variations due to environmental, instrumental or 

analyst changes do not affect the spectral response (Morais et al., 2019c). 

Also, the classes’ sizes must be taken into consideration. Ideally, classes should 

have equal size; however, in real clinical scenarios it is unlikely this will occur. For 

example, for general screening applications, it is very common in clinical settings to have 

more healthy patients than disease; while, when investigating a specific type of disease, 

it is more likely that the patients being recruited contain the disease of interest whilst the 

control group is reduced. When both situations are present, the analyst must take extra 

care in the data analysis to avoid overfitting the model towards the biggest class size. 

Some solutions are the application of prior-probability terms based on the classes’ size, 



54 
 

the use of non-parametric methods, or by increasing the number of samples for each class 

to ensure that the calibration model covers enough sources of variation for each classes.  

As well, according to the central limit theorem (CLT), by increasing the number of 

samples the data will tend to a normal distribution, which will make parametric 

classification methods more efficient. 

Before pre-processing, the data can be evaluated visually and through some 

statistical methods in order to identify anomalous behaviours or biased patterns. This is 

first performed by visual inspection (e.g., plotting the data to identify anomalous spectral 

features), followed by Hotelling’s T2 versus Q residuals charts using only the mean-

centred raw spectra. Principal component analysis (PCA) residuals can be explored to 

identify experimental bias, in which heteroscedastic distributions indicate biased 

experimental measurements, whereas homoscedastic distributions are associated with 

good sampling (Beebe et al., 1998). The signal-to-noise ratio (SNR) can be estimated by 

dividing the signal power (Psignal) by the power of the noise (Pnoise), that is, SNR =

Psignal Pnoise⁄ = (Asignal Anoise⁄ )
2
, where A is the amplitude; or by the inverse of the 

coefficient of variation, when only non-negative variables are measured (Morais et al., 

2019c). Collinearity can be evaluated by calculating the condition number, which shows 

how sensitive the result is to perturbations in the spectral data and to roundoff errors made 

during the solution process (this value is naturally elevated for spectral data, which 

indicates high collinearity) (Morais et al., 2019c). Visualising the data by plotting them 

throughout all the data analysis steps summarized in Figure 2.1 is essential. Prior 

scientific knowledge of the problem being addressed is also important. The data must be 

meaningful and the analyst has to make decisions based on how the spectral data look. 

All data analysis algorithms generate numbers based on the input data, thus if the data are 

not meaningful (i.e., the signal of interest is absent) the model will generate untrue values. 

Thus, adequate instrumental techniques allied with good chemometric practices is 

fundamental. 
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2.2.2 Pre-processing 

 

Pre-processing is applied to the spectral data in order to remove or reduce the 

contribution of signals which are not related to the analyte or target property, or to the 

sample discrimination (which depends on the chemical composition). Pre-processing of 

the raw data reduces chemically irrelevant variations with the goal of improving accuracy 

and precision of qualitative and quantitative analyses. The primary role of pre-processing 

is to transform the spectrum to the best fit condition and to ensure that optimum 

performance can be achieved in later steps. This process is essential to correct for physical 

interferences, such as light scattering due to different particle sizes, different sample 

thickness or different optical paths; and random instrumental noise. However, pre-

processing techniques also carry the risk of generating correlations in the noise structure, 

which would impact negatively on the quality of the multivariate model; thus one should 

use pre-processing techniques with caution and not overuse them.    

In biological applications, the first pre-processing usually consist of truncating the 

biofingerprint region: 1800-900 cm-1 for IR data (Kelly et al., 2011), 2000 to 500 cm-1 for 

Raman (Kelly et al., 2011), and 900 to 2600 nm for NIR (Paraskevaidi et al., 2018b). This 

removes spectral artefacts such as water and CO2 absorptions present in other parts of the 

IR spectrum, and additional baseline distortions that may be present in the spectrum 

(Morais et al., 2019c). The high-region associated mainly to lipids (3700 to 2800 cm-1) 

can also been used for IR (Paraskevaidi et al., 2017b) and Raman (Pence & Mahadevan-

Jansen, 2016), however this region is highly affected by water absorption in IR (free ν(O-

H) at 3600-3650 cm-1; hydrogen-bonded ν(O-H) at 3300-3400 cm-1) (Pavia et al., 2008) 

and Raman (fully hydrogen-bonded ν(O-H) at 3250 cm-1; partly hydrogen-bonded ν(O-

H) at 3300-3630 cm-1) (Hu et al., 2013). Usually, the model performance in the fingerprint 

region is better than in the high-region due to less water interference and the presence of 

more complex chemical features (Callery et al., 2019; Paraskevaidi et al., 2017b). 

Figure 2.2 depicts the effect of each pre-processing for a given spectral dataset; 

and Figure 2.3 shows a flowchart to define which pre-processing technique to use after 

removal of substrate contributions. Pre-processing techniques should be used in the most 

parsimonious way (Seasholtz & Kowalski, 1993). The order in which the pre-processing 

steps are performed is fundamental; they must be performed in a logical order so that the 

next pre-processing step does not mask the signal of interest highlighted with the previous 
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pre-processing (Morais et al., 2019c). Each pre-processing has its advantage, 

disadvantage and optimization step, which will be discussed hereafter. 

Digital removal of substrate contributions. Sometimes substrate contributions originating 

from components such as glass or wax are present in the spectral data. These effects can 

be mitigated or eliminated through digital filters, such as digital de-waxing (de Lima et 

al., 2017; Tfayli et al., 2009). For example, the extended multiplicative signal correction 

(EMSC) algorithm has been reported to neutralise variability caused by paraffin signal 

and allow selection of unique spectral features related to the sample composition in 

vibrational spectroscopy (de Lima et al., 2017; Tfayli et al., 2009); independent 

component analysis (ICA) and non-negatively constrained least squares (NCLS) are also 

common methods of digital de-waxing for vibrational spectroscopy (Ibrahim et al., 2017; 

Meksiarun et al., 2017; Tfayli et al., 2009). Glass contributions are reduced in the high-

wavenumber region of the mid-IR spectrum, thus allowing spectral data analysis within 

the region between ~2500–3800 cm-1 (Bassan et al., 2014); and can be reduced in NIR 

spectroscopy by subtracting the glass spectrum from the sample spectrum and by working 

in the wavelength range of 1850–2150 nm (Paraskevaidi et al., 2018b). 

Smoothing. Smoothing is made by spectral filters that remove random noise while 

preserving useful spectral information. The most used smoothing technique is the 

Savitzky-Golay (SG) algorithm (Savitzky & Golay, 1964). It is based on a polynomial 

equation fitted in a least squares sense within a pre-defined interval of spectral points, 

where the central point from the interval is removed and used as a fitting criteria. This 

interval is then displaced to the next point of the spectrum and the fitting procedure is 

repeated. SG smoothing is excellent to remove large instrumental noise and can be 

applied to any type of vibrational spectroscopy technique. Its major disadvantage is that 

the polynomial order and the window size used in the polynomial fitting affect the result, 

so one must use an polynomial order similar to the spectral shape features (e.g., 2nd order 

polynomial for vibrational spectroscopy data), and the window size must be an odd 

number not too small (which keeps the noise) nor too large (changing the spectral shape) 

(Morais et al., 2019c). In addition, moving-window mathematical pre-processing 

techniques introduce correlations in the noise structure, and this may complicate the use 

of chemometric models assuming that the noise is identically and independently 

distributed (iid) (Geladi et al., 1985).   
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Light scattering correction. Light scattering is present when particles with different sizes, 

especially smaller than the spectral electromagnetic wavelength, is present on the material 

being analysed. This shifts the absorbance or spectral intensity in a systematic fashion, 

affecting the y-axis. Light scattering effects are also generated by different probe 

pressures when portable spectrometers are used to analyse solid samples, or by different 

lengths of optical path. Light scattering is very common in NIR spectroscopy, and some 

techniques such as multiplicative scatter correction (MSC) (Geladi et al., 1985) and 

standard normal variate (SNV) (Barnes et al., 1989) can be used to correct this problem. 

MSC corrects light scattering (Mie scattering) maintaining the original spectral shape and 

the same spectral scale. As main disadvantage, it needs a reference spectrum 

representative of all measurements. Usually, this reference spectrum is not available, and 

then it is substituted by the average spectrum across all training samples (Morais et al., 

2019c). SNV also corrects light scattering (Mie scattering) maintaining the original 

spectral shape with no need of a reference spectrum, but it creates an artificial absorbance 

scale with negative values since the data are centralized to zero in the y-scale (Morais et 

al., 2019c). Resonant Mie scattering is also a frequent issue in IR spectroscopy of 

biological materials (Bassan et al., 2009), where a dispersion artefact occurs through a 

light scattering when there is simultaneous absorption. This can be often observed by a 

severe baseline distortion followed by a systematic shift in the y-axis (Bassan et al., 2009; 

Bassan et al., 2010). Bassan et al. (2009, 2010) have proposed a modified version of the 

EMSC algorithm to correct for resonant Mie scattering, named the RmieS-EMSC 

algorithm. Additionally, Mie scattering (elastic scattering) is also present in Raman 

spectroscopy (Kiefer et al., 1997), contributing to baseline distortions which are often 

mistakenly assigned to a fluorescence background. This can be also corrected by applying 

a modified version of the EMSC algorithm through the addition of polynomial extensions 

to the basic EMSC algorithm in order to correct for fluctuating baseline features (Liland 

et al., 2016).  

Baseline correction. Baseline correction techniques remove background absorptions 

interferences. Baseline distortions are commonly present in all types of vibrational 

spectroscopy techniques. For NIR, the baseline distortions are mainly a result of light 

scattering, which can be corrected by MSC or SNV; however, for IR and Raman 

spectroscopy, this effect is more apparent, especially in the latter due to fluorescence 

interferences. There are several techniques of baseline correction, most of them already 



58 
 

included in spectrometers’ software, in which the main ones are the rubber-band baseline 

correction, polynomial baseline correction, asymmetric least squares (ALS), automatic 

weighted least squares (AWLS), and Whittaker filter. The baseline correction technique 

being chosen affect the final result, therefore, they must be kept consistent throughout all 

the data analysis, especially if new samples are added after the model is developed. 

Spectral differentiation. First and second derivatives can be applied to the spectral data 

in order to correct both light scattering and baseline distortions. Also, these techniques 

highlight smaller spectral differences between the samples’ spectra, which can be critical 

to find distinctive spectral features amongst complex samples. It can also be coupled to 

SG smoothing in a single routine, making these procedures computationally easier. 

However, derivatives have great disadvantages. Spectral differentiation is not indicated 

to correct for resonant Mie scattering since it does not correctly deal with these spectral 

distortions. The order of the derivative function must be chosen carefully to avoid 

increasing the noise level too much. In addition, derivatives using moving-window 

procedures also carry the same risk of introducing correlations in the noise structure 

discussed to smoothing techniques, which affects the use of chemometric models 

assuming that the noise is iid. Also, derivatives change the spectral scale (y-axis scale) to 

mathematical coefficients instead of absorbance, thus the spectral intensity of derivative 

bands cannot be used for direct correlation with chemical concentrations; and spectral 

markers (biomarkers) identification needs to be performed carefully, since derivatives 

shift the spectral band positions in 𝑖 × 𝑑 wavenumbers, where 𝑖 is the derivative order 

and 𝑑 is the data spacing resolution. Some software automatically correct this spectral 

shift by deleting the first 𝑖 wavenumber position(s), thus matching the size of the spectral 

response (derivative result) with the reference wavenumber vector; but some software do 

not offer this correction. 

Normalisation. Spectral normalisation techniques are commonly employed in IR and 

Raman spectroscopy to correct for different sample thickness and concentration, hence, 

avoiding the influence of non-desired spectral signatures among the samples. However, 

this procedure must be performed only when needed and with care, since the 

normalisation might hide important spectral bands that could be discriminant features 

among the samples, such as amide I and amide II absorptions; and it also may introduce 

non-linearities to the data (Morais et al., 2019c). Amide I and vector normalisation are 

the commonest type of normalisation for IR data; the first can be used when the amide I 
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band is not a distinguishing feature between the classes; and the latter when this 

information is unknown but different sample thickness or concentration correction is 

needed. 

 

Figure 2.2. Effect of different pre-processing applied to an IR dataset. MSC: 

multiplicative scatter correction; SNV: standard normal variate. 

 

Raman spectrometers using CCD detectors also surfers from cosmic rays 

interferences, which create spikes in the spectral data compressing important Raman 

spectral signatures. Spikes removal is an essential step when analysing Raman data and 

must be performed before any data pre-processing. Most Raman spectrometers’ software 

have spikes removal routines. Finally, scaling methods (also referred as “standardization” 

by Hastie et al. (2009)) are fundamental when dealing with multivariate methods, in 

particular PCA and partial least squares (PLS). Mean-centring is a very reasonable 

approach to use with spectral data before modelling, after which all variables in the 

dataset will have zero mean. When data contain information represented by different 

scales (e.g., after data fusion using both IR and Raman spectra), block-scaling should be 

used. In this case, each block of data (i.e., data for each instrumental technique) would 
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have the same sum of squares (normally after mean-centring) (Morais et al., 2019c). For 

discrete data with different scales, autoscaling is recommend. 

 

 

Figure 2.3. Decision tree to define the pre-processing technique for a spectral dataset. 

MSC: multiplicative scatter correction; SNV: standard normal variate; EMSC: extended 

multiplicative signal correction; RmieS-EMSC: resonant Mie scattering – extended 

multiplicative signal correction. 

 

2.2.3 Outlier Detection 

 

When analysing real data, it often occurs that some observations are different from 

the majority. Such observations are called outliers. The spectral signal for some samples 

might differ from the spectral signal for the majority of the samples being measured. This 

can happen either by substantial differences in chemical structure or concentration for 

these specific samples, or by a measurement error. In the first case, we usually refer to an 

extreme sample, that is, a sample that belongs to the measurement set but with an extreme 

property value. This sample is characterized by a high Hotelling’s T2, and usually does 

not skew the model in a high degree; although it is recommended exclusion of this sample 
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from the dataset before modelling. In the latter case, when the spectral abnormality is 

caused by a measurement error, this sample is a true outlier, being characterized by a high 

Q residuals. This sample should be removed from the dataset before analysis. Both 

extreme samples and outliers should be investigated in order to find possible sources of 

abnormalities. 

There are several techniques for outlier detection, such as the Jack-knife (Martens 

& Martens, 2000), Z-score (Rousseuw & Hubert, 2011) and K-mode clustering (Jiang et 

al., 2016). However, one of the most popular and visually intuitive technique for outlier 

detection is the Hotelling’s T2 versus Q residuals test (Bakeev, 2010).  In this test, a chart 

is created using the Hotelling’s T2 values (sum of the normalised squared scores, which 

is the distance from the multivariate mean to the sample projection onto the PCA principal 

components (PCs) space) in the x-axis and the Q residuals (sum of squares of each sample 

in the PCA error matrix, representing the residuals between a sample and its projection 

onto the PCs space) in the y-axis, generating a scatter plot (Morais et al., 2019c). All 

samples far from the origin of this chart are considered candidates to outliers and should 

be investigated and removed.  Samples should be removed one at a time, since PCA is 

highly influenced by the samples that are included in the model. Samples with high values 

in both Hotelling’s T2 and Q residuals are the outliers with the greatest effect in PCA, 

while the samples with high values in only one of these parameters are the outliers with 

the second-greatest effect on the PCA model (Morais et al., 2019c). Figure 2.4 illustrates 

4 outliers detected amongst a set of 700 IR spectra by a Hotelling’s T2 versus Q residuals 

chart applied to the pre-processed data (AWLS baseline correction and vector 

normalisation). The outliers were spectra corresponding to background noise measured 

within the experimental set, most likely by a mistake made by the analyst when placing 

the samples in the attenuated total reflection (ATR) apparatus. 
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Figure 2.4. Outlier detection test by a Hotelling’s T2 versus Q residuals chart. Pre-

processing: AWLS baseline correction and vector normalisation. PCA model built with 

8 PCs (94.3% cumulative explained variance). Spectra in black: outliers. 

 

2.2.4 Data Selection 

 

A fundamental step towards building predictive chemometric models is data 

selection, that is, splitting an initial experimental dataset into at least two subsets: training 

and test. The training set contemplates the major fraction of the samples and is used to 

build the classifier, whereas the test set includes the remaining fraction of samples and is 

used to evaluate the model classification performance, since, although they are measured 

during the same experiment, the test set is considered external to the model (blind), thus 

reflecting the expected model behaviour toward new observations (Morais et al., 2019d). 

When two subsets are used, cross-validation is recommended to optimize the model 

parameters. Cross-validation uses samples from the training set to optimize model 

parameters, such as the number of PCs in PCA-based models or latent variables (LVs) in 

PLS-based models, in an iterative internal validation process. This is made by first 
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removing a certain number of samples from the training set and then building the model 

with the remaining samples, where the removed samples are predicted as a temporary 

validation set (Morais et al., 2019d). This is performed for a certain number of repetitions 

usually until all training samples are excluded once from the training set and predicted as 

an external validation set. One of the most popular cross-validation methods is the leave-

one-out cross-validation (also called leave-one-spectrum-out cross-validation). In this 

case, only one sample spectrum is removed from the training set per each interaction. 

Although much used, leave-one-out cross-validation is only indicated for small size 

datasets, usually with no more than 20 samples in the training set (Morais et al., 2019c). 

When this number is larger, other cross-validation approaches are recommended, such as 

venetian blinds or random subset selection. When there are replicate spectra, leave-one-

spectrum-out cross-validation should not be used at all, but rather a continuous-block 

cross-validation (also called leave-one-patient-out cross-validation when the number of 

replicate spectra is equal for each sample and organised in a sequential way within the 

spectral matrix X), otherwise during the cross-validation procedure the training and 

temporary validation sets will have spectra from the same sample, hence, giving 

overoptimistic cross-validation results. In continuous-block or leave-one-patient-out 

cross-validation, the whole set of replicas for a same sample is transferred to the 

temporary validation set during cross-validation, thus the training and temporary 

validation sets will not have spectra for the same sample, hence, giving more realistic 

results.  

When a large number of samples is measured, generally more than 100, it is 

recommended to split the experimental dataset into three groups: training, validation and 

test. In this case, an extra validation set that does not contain training samples is used to 

optimize the model. It is important to stress that the training, validation and/or test sets 

cannot contain spectra of the same sample distributed among them, i.e., the samples in 

each set must be independent. Extra caution must be taken when multiple spectral 

replicates are used to feed the model, to ensure that they do not overlap in different sets. 

There are several ways to split the samples into training, validation and/or test 

sets. Manual splitting is not recommend, since it can introduce bias to the model. Thus, 

computational-based methodologies are recommended instead. Random-selection and 

the Kennard-Stone (KS) algorithm (Kennard & Stone, 1969) are some well-known 

approaches. Random-selection is a simpler approach where samples are assigned to the 
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training, validation and/or test sets randomly. The KS algorithm works based on a 

Euclidian distance calculation by first assigning the sample with the maximum distance 

from all other samples to the training set, and then by selecting the samples that are as far 

away as possible from the selected sample to this set, until the designed number of 

selected samples is reached. This ensures that the training model will contain samples 

that uniformly cover the complete sample space, for which no or minimal extrapolation 

of the remaining samples is necessary (Morais et al., 2019c). KS has been proved to be 

superior than random-selection alone (Morais et al., 2019d), but for biological-derived 

samples, we have recently proposed a modification to the KS algorithm by adding a small 

degree of randomness to it, where the model predictive performance increased; this is 

called the MLM algorithm (Morais et al., 2019d). 

 

2.2.5 Modelling 

 

Exploratory analysis is the first step towards analysing complex spectral data, 

where the analyst can initially assess the data in order to identify clustering patterns and 

trends, thus helping them to draw conclusions about the nature of samples, outliers and 

experimental errors (Morais et al., 2019c). PCA is the most common method of 

exploratory analysis, in which the pre-processed spectral data are decomposed into a few 

number of PCs responsible for the majority of the variance within the original dataset. 

The PCs are orthogonal to each other and are generated in a decreasing order of explained 

variance, so that the first PC explain most of the data variance, followed by the second 

PC and so on (Bro & Smilde, 2014). PCA decomposition takes the form: 

𝐗 = 𝐓𝐏T + 𝐄            (2.1) 

where 𝐗 represents the pre-processed spectral data, 𝐓 is the PCA scores, 𝐏 the loadings, 

and 𝐄 the residuals. 

PCA is then often the first step of the data analysis, followed by classification, 

cluster analysis, or other multivariate techniques. The PCA scores represent the variance 

in the sample direction, being used to detect clustering patterns related to chemical 

similarities/dissimilarities between the samples. The PCA loadings represent the variance 

in the wavenumber direction, being used to identify spectral variables with high degree 

of importance for the pattern observed in the scores distribution (Morais et al., 2019c). 
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The PCA loadings are commonly used for searching spectral markers that distinguish 

samples from different biological classes. This can be performed by identifying the 

spectral bands with the highest absolute loadings coefficients (positive or negative) on 

the discriminant PCs directions (Morais et al., 2019c). Another strategy proposed by 

Martin et al. (2007) is the cluster vector approach, where a median score is calculated for 

each of the 3 PCs that represent the best samples’ clustering in a three-dimensional space 

and, thereafter, the three loading vectors for these PCs weighted by the median score are 

summed. As a result, a new loading vector is generated representing the effective loadings 

profile for the clustering (Martin et al., 2007; Santos et al., 2017). The PCA residuals 

represent the difference between the decomposed and original pre-processed data, being 

used to identify experimental errors. Ideally, the PCA residuals should be random and 

close to zero (homoscedastic distribution); otherwise they indicate experimental bias 

(Morais et al., 2019c). 

PCA is a fast, intuitive and reliable method to identify differences between 

spectral data, however, it is important to stress that PCA is not a classification technique. 

PCA is a data reduction and exploratory analysis method, but PCA solely cannot be used 

to systematically classify samples. For this, supervised classification techniques are 

needed. Supervised classification methods build computer-based classifiers that can 

predict future samples based on their training spectral profiles. Therefore, data selection 

as mentioned previously is fundamental before building supervised classification models. 

Classification methods are separated into two groups: one-class modelling (also 

called class-modelling) and discriminant models. In one-class modelling, the 

classification model output does not solely depend on the training classes, thus it can 

assume values such as “unknown” or that the test sample does not belong to any of the 

training classes. On the other hand, in discriminant models the model outputs are always 

referent to one of the training classes. The one-class modelling approach is very useful 

when only one class is modelled and the model output is whether the sample belongs or 

not to the reference class. However, one-class approaches requires a large number of 

samples, since the class boundaries must include all the sample space as much as possible, 

and usually provides worst classification results than discriminant models, since in one-

class modelling slightly extreme samples to the reference class could be interpreted as not 

belonging to the class. These problems are not present in discriminant models, since the 

model output is always one of the training classes, and the class space is much larger. 
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Discriminant approaches cannot predict samples that do not belong to the training classes, 

thus building meaningful training sets is fundamental in this type of analysis. 

The main algorithm of one-class modelling is the soft independent modelling by 

class analogy (SIMCA) (Wold & Sjöström, 1977). In SIMCA, each class is modelled by 

an independent PCA model of opportune dimensionality. Then, the class space is defined 

according to some statistically defined outlier detection criterion, which is often the 

distance-to-the-model criterion (Marini, 2010). This is made by calculating the 

probability distributions for the T2 statistics and Q statistics for the PCA model of each 

class, where a threshold corresponding to a determined confidence level (usually 95%) is 

chosen for both statistics to define the class space (Marini, 2010). Other ways to define 

the class space are possible, such as the method proposed by Pomerantsev (2008), 

although the T2 and Q statistics is the most common approach. 

There are several discriminant analysis algorithms, most of them based on 

distance calculations on the real or transformed sample space. The main discriminant 

analysis algorithms employed in biological-derived spectrochemical applications will be 

discussed below. 

Linear discriminant analysis (LDA). LDA is a discriminant analysis algorithm based on 

a Mahalanobis distance calculation between the samples for each class (Dixon & 

Brereton, 2009). This calculation can be performed with or without Bayesian probability 

terms, which can be applied when classes have different sizes (Dixon & Brereton, 2009). 

LDA uses the pooled variance-covariance matrix in the distance calculation, hence, the 

distance between a test sample and a given class centroid is weighted according to the 

overall variance of each spectral variable (Dixon & Brereton, 2009). This is particularly 

useful when the classes have similar variance structures or when the sample size is small 

(Wu et al., 1996). However, LDA is highly affected when classes have different variance 

structures, which often happens in complex biological medium. In addition, LDA is a 

parametric method that assumes the samples follow a normal distribution and cannot be 

applied to ill-conditioned data, e.g., when the number of spectral variables is larger than 

the number of samples (Morais et al., 2019c). Although spectral data usually do not 

perfectly follow a normal distribution, LDA is robust enough to handle spectroscopy data 

and, according to the CLT, this effect can be reduced by increasing the sample size. The 

issue related to ill-conditioned data can be solved by the application of PCA or variable 
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selection techniques to the pre-processed spectral data prior LDA, such as the principal 

component analysis linear discriminant analysis (PCA-LDA) algorithm, where LDA is 

applied to the PCA scores (Morais & Lima, 2018). 

Quadratic discriminant analysis (QDA). Similarly to LDA, QDA is a discriminant 

analysis algorithm based on a Mahalanobis distance calculation between the samples for 

each class, which can use Bayesian probability terms to correct for classes having 

different sizes (Dixon & Brereton, 2009). However, differently from LDA, QDA forms a 

separate variance model for each class, thus using a different variance-covariance matrix 

for each class (Dixon & Brereton, 2009). For this reason, QDA outperforms LDA when 

classes exhibiting different within-category variances are being analysed (Morais et al., 

2019a). Like LDA, QDA is also a parametric method that is highly affected by ill-

conditioned data; however, these issues can be solved in the same manner as described 

for LDA. Often, QDA is applied to the PCA scores in the principal component analysis 

quadratic discriminant analysis (PCA-QDA) algorithm (Morais & Lima, 2018). Its main 

disadvantages are that QDA underperforms LDA for small size datasets and it has a 

higher risk of overfitting than LDA (Morais et al., 2019a; Morais et al., 2019b; Wu et al., 

1996). 

Partial least squares discriminant analysis (PLS-DA). PLS-DA (Brereton & Lloyd, 2014) 

is a feature extraction and classification algorithm that usually performs better than PCA 

followed by LDA, as the scores from PCA do not necessarily describe the difference 

between the samples, but the variance in the spectral data (Morais et al., 2019b). In PLS-

DA, a PLS model (Geladi & Kowalski, 1986) is applied to the pre-processed spectral data 

reducing the original spectral variables to a small number of latent variables (LVs), where 

then a linear discriminant classifier is used for classifying the groups (Hibbert, 2016). It 

is important to stress that there are different ways of performing the PLS model, such as 

using the SIMPLS (de Jong, 1993) or the non-linear iterative partial least squares 

(NIPALS) algorithm (Wold et al., 2001), and that the classification rule of PLS-DA vary 

according to the application or software being used. Linear classifiers based on Euclidian 

distance to centroids (Brereton & Lloyd, 2014), LDA (Pomerantsev & Rodionova, 2018) 

and Bayesian decision rule (Pérez et al., 2009) are some examples that can be used in 

PLS-DA. In addition, PLS-DA can be adapted to one-class modelling, as described by 

Pomerantsev and Rodionova (2018). The main disadvantage of PLS-DA is that this 

algorithm is greatly affected by classes having different sizes and it requires optimization 
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of the number of LVs, which is often performed by cross-validation (Morais et al., 

2019b). Also, it is important to highlight that PLS-DA is a binary classifier, that is, when 

more than two classes are analysed a PLS2 model is built where the classes are codded in 

a matrix with size m (rows, samples) x n (columns, classes)  containing zeros when the 

sample does not belong to the target class and ones when the sample belong to the target 

class. In PLS-DA, class-coding cannot be made in a sequential manner (e.g., 1, 2, 3, …) 

since this imply a distance relationship between the samples (e.g., samples from class 1 

are farther from class 3 than the samples in class 2). Some softwares allow the input of 

sequential class-coding, but this information is internally convert into a zeros and ones 

matrix before model construction. 

K-nearest neighbours (KNN). KNN (Cover & Hart, 1967) is a local non-parametric 

classification method where samples are classified based on the “majority vote” approach, 

that is, a given test sample spectrum is projected in a feature space and based on the 

calculation of a distance or dissimilarity metric (Manhattan, Euclidian, Minkowski or 

Mahalanobis distance; or by correlation), depending on the number of nearest 

surrounding neighbour training samples to this test sample, the sample is classified 

towards the majority observed class. The main advantage of KNN is that it can be applied 

to almost all type of data independent of its probability distribution or condition number, 

and does not require a particular ratio between the number of samples and the number of 

spectral wavenumbers (Marini, 2010). KNN main disadvantages are that the model tends 

to overfit by skewing towards the bigger class size when unequal classes sizes are 

analysed, and that the model is highly sensitivity towards random spectral noise and to 

the “curse of dimensionality” (Marini, 2010; Morais et al., 2019c). In addition, KNN 

requires the optimization of the distance calculation method and the k value (number of 

neighbours), which can be performed through cross-validation (Morais et al., 2019c). 

Support vector machines (SVM). SVM is a binary linear classifier with a non-linear step 

called the kernel transformation (Cortes & Vapnik, 1995). A kernel function transforms 

the input spectral space into a feature space by applying a mathematical transformation 

which is often non-linear. Then, a linear decision boundary is fit between the closest 

samples to the border of each class (called support vectors), thus defining the 

classification rule. Although being highly accurate to classify spectral data, SVM requires 

many parameters optimization, such as the type of kernel function and its parameters, and 

it is highly susceptible to overfitting; besides being a highly time-consuming algorithm 
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(Morais et al., 2019c). The radial basis function (RBF) kernel is often the best kernel to 

use in SVM, since it can adapt to different data distribution. To avoid overfitting, cross-

validation should be always performed to estimate the best kernel parameters (Morais et 

al., 2019c). Multiclass SVMs are possible through the implementation of approaches such 

as one vs. all, one vs. one, fuzzy rules and directed acyclic graph trees (Brereton & Lloyd, 

2010), although the first approach is the most common. 

When data complexity increases, for instance, when the spectra data are not 

following a bilinear rule or when the components complexity are too excessive to be 

analysed by the previous methods, “black box” algorithms, i.e., machine learning 

techniques where the classification rules are hard to interpret, can be applied. Most of 

these algorithms were developed for applications such as face recognition, where a high 

degree of non-linearity is observed between the measurements, but they have found their 

way into spectrochemical applications. Artificial neural networks (ANN) (Marini et al., 

2008), random forests (Fawagreh et al., 2014) and deep-learning approaches (LeCun et 

al., 2015) are common classification methods applied in such situations. All these 

techniques have a non-linear classification nature and higher accuracy in comparison with 

more simpler methods, however in order for these algorithms work properly with a low-

risk of overfitting many parameters need to be optimised, which depends on the analyst 

skills and usually demands high computation cost (Morais et al., 2019c). Classification 

techniques should be used in a parsimonious order (Seasholtz & Kowalski, 1993), in 

which the simplest algorithms should be performed first before testing more complex 

algorithms. A suggested order for running these classification algorithms is: LDA > PLS-

DA > QDA > KNN > SVM > ANN > Random forests > deep-learning approaches 

(Morais et al., 2019c). 

Apart from these discriminant methods, there are many other discriminant 

analysis algorithms that are known but not much applied to biological-derived spectral 

data, such as learning vector quantization (LVQ) (Dixon & Brereton, 2009) and 

regularized discriminant analysis (RDA) (Wu et al., 1996). These algorithms are not 

much used probably due to the lack of available software containing these routines. The 

main chemometric softwares for classification applications are shown in Table 2.1. Apart 

from these main softwares, there are many open source freely-available options with 

specific algorithms for classification of spectral data, such as the MultiDA (Yang et al., 

2012) toolbox for MATLAB that contains some classification routines; the Biodata (De 
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Gussem et al., 2009) toolbox for MALTAB that contain PCA-LDA routines; the SAISIR 

(Cordella & Bertrand, 2014) toolbox that contains PCA-LDA, PLS-DA and QDA 

routines; the ParLeS (Rossel, 2008) software that contain routines including PCA and 

PLS; the Raman Processing Program (Reisner et al., 2011) that contains LDA, ANN and 

SVM routines; the PML (Jing et al., 2014) toolbox for machine learning; the DD-SIMCA 

(Zontov et al., 2017) toolbox for MATLAB that contain SIMCA routines; the libPLS (Li 

et al., 2018) library for MATLAB that contain PLS-DA routines; and the LIBSVM 

(Chang & Lin, 2011) library for SVM. Other classification routines can be found in 

spectrometer softwares or by specific libraries or toolbox available online for MATLAB, 

Octave, Scilab, R and Python. 

Octave and Scilab are open source freely-available platforms with syntax very 

similar to MATLAB and may interchangeable routines (Alsberg & Hagen, 2006), i.e., 

routines made for MATLAB often work in Octave or Scilab. Freely-available 

chemometric toolboxes for Octave and Scilab include the SAISIR toolbox (Cordella & 

Bertrand, 2014) (https://www.chimiometrie.fr/saisir_webpage.html) and the FACT (Free 

Access Chemometrics Toolbox) (https://www.scilab.org/fact-free-access-chemometrics-

toolbox). R is another powerful open source statistical platform often used for 

chemometric applications (Wehrens, 2011). Apart from the CAT (Chemometric Agile 

Tool) toolbox showed in Table 2.1, there are other freely-available chemometrics 

packages for R, such as the Chemometrics package 

(https://www.rdocumentation.org/packages/chemometrics/versions/1.4.2) and the 

CRAN package Chemometrics (Varmuza & Filzmoser, 2009) (https://cran.r-

project.org/web/packages/chemometrics/index.html). Python is a high-level computer 

programming language which is also becoming  popular for chemometric applications. 

Jarvis et al. (2006) developed an open source chemometric toolbox named PYCHEM for 

multivariate analysis of spectral data using Python. PYCHEM is freely-available at 

http://pychem.sourceforge.net/.  
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Table 2.1. Main chemometric softwares for multivariate classification. 

Software Website Classification 

algorithms 

Availability  

IrootLab 

(Trevisan et al., 

2013) 

http://trevisanj.githu

b.io/irootlab/  

LDA, PCA-LDA, ANN, 

fuzzy classification, 

KNN, logistic 

regression, SVM, PCA-

SVM, binary decision 

trees. 

Free 

Classification 

Toolbox for 

MATLAB 

(Ballabio & 

Consonni, 2013) 

http://www.michem.

unimib.it/  

LDA, QDA, PCA-LDA, 

PCA-QDA, 

classification trees 

(CART), PLS-DA, 

SIMCA, unequal class 

models (UNEQ), 

potential functions, 

SVM, KNN, 

backpropagation neural 

networks. 

Free 

CAT 

(Chemometric 

Agile Tool) 

http://gruppochemio

metria.it/index.php/s

oftware  

LDA, QDA, KNN. Free 

PLS_Toolbox http://www.eigenvec

tor.com/  

PLS-DA, SVM, 

SIMCA, KNN. 

Commercial 

Statistics and 

Machine 

Learning 

Toolbox for 

MATLAB 

https://mathworks.co

m/  

Binary decision trees, 

LDA, QDA, naïve 

Bayes classifier, KNN, 

SVM, random forest. 

Commercial 

Unscrambler X https://www.camo.co

m/unscrambler/  

SIMCA, LDA, PLS-

DA, SVM. 

Commercial 

Pirouette https://infometrix.co

m/  

KNN, SIMCA, PLS-

DA. 

Commercial 

SIMCA 

Umetrics 

https://umetrics.com/  SIMCA, PLS-DA, 

orthogonal partial least 

squares discriminant 

analysis (OPLS-DA). 

Commercial 

 

 

2.2.6 Feature Extraction and Selection 

 

The feature extraction stage is responsible for producing a smaller number of 

variables that are more informative than the original whole set of wavenumber/variables. 

Feature selection is commonly applied as a stage prior to classification as a means to 

prevent overfitting and to circumvent the “curse of dimensionality”. Feature extraction 

http://trevisanj.github.io/irootlab/
http://trevisanj.github.io/irootlab/
http://www.michem.unimib.it/
http://www.michem.unimib.it/
http://gruppochemiometria.it/index.php/software
http://gruppochemiometria.it/index.php/software
http://gruppochemiometria.it/index.php/software
http://www.eigenvector.com/
http://www.eigenvector.com/
https://mathworks.com/
https://mathworks.com/
https://www.camo.com/unscrambler/
https://www.camo.com/unscrambler/
https://infometrix.com/
https://infometrix.com/
https://umetrics.com/
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and selection can be used to reduce data complexity, to reduce redundant information, to 

speed computation-time, and to aid biomarkers identification. Feature extraction 

techniques allow one to extract spectral features related to important chemical 

components within the spectral dataset, and feature selection techniques significantly 

reduces the pre-processed spectral dataset to a small set of variables responsible for class 

differentiation. The most straightforward way to identify important spectral features is by 

plotting the colour-coded mean-centred data. As mentioned before, mean-centring is a 

key scaling step applied to the data before multivariate analysis. By plotting the mean-

centred data, the analyst can see spectral regions where the general data trend between 

the classes diverge. Spectral regions where one can clearly see a spectral difference are 

often the most important spectral regions within the dataset. These regions can be selected 

for model construction; though it is a trial and error procedure. I.e., the analyst needs to 

evaluate the model validation performance using the whole spectrum, some selected 

spectral regions, and spectral variables selected by other methods. Also, knowing the 

nature of the phenomena being measured can aid and guide the analyst to select important 

spectrochemical features. 

Feature extraction techniques can also be used directly or indirectly to identify 

important spectral variables. PCA and PLS-DA are two very common feature extraction 

techniques. PCA loadings and the PLS-DA regression coefficients can be used to identify 

important spectral features. Some approaches based on PLS such as variable importance 

in projections (VIP) scores (Ferrés et al., 2015), selectivity ratio (Ferrés et al., 2015) and 

interval partial least squares (iPLS) (Nørgaard et al., 2000) are useful tools to find 

important spectral variables. VIP scores, selection ratio and iPLS are very different 

techniques where the first two are methods employing the PLS loadings or the regression 

coefficients, which carry some risk of misinterpretation, since regression vectors of 

inverse calibration methods, such as PLS, can exhibit extremely complex behaviour in 

even the most simplistic circumstances (Brown & Green, 2009). On the other hand, 

methods employing the minimum error as guidance, such as iPLS, do not carry this risk 

and are in some degree more reliable for qualitative spectral interpretation.   

Another feature extraction technique particularly useful for hyperspectral imaging 

data is the multivariate curve resolution alternating least squares (MCR-ALS) algorithm 

(de Juan & Tauler, 2006; Jaumot et al., 2015). MCR-ALS can be applied to reduce the 

spectral dataset into important spectral features and aid biomarker identification through 
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the interpretation of the concentration and spectral profiles containing the purest 

components in the experimental spectral matrix. MCR-ALS allows the introduction of 

chemical constraints in the factor analysis model, improving the resolution of spectral 

mixtures through adjusting chemically-meaningful parameters; and allow the 

construction of concentration distribution maps based on the recovered MCR-ALS 

concentration profiles for hyperspectral images datasets (de Juan et al., 2004). For first-

order spectral data, MCR-ALS can also be applied to solve mixtures and to recover 

concentration and pure spectral profiles towards kinetic, quantitative or qualitative 

applications. However, MCR-ALS is limited by the fact that its bilinear decomposition 

may show a large degree of rotational ambiguity, precluding the obtainment of reliable 

results. 

Feature selection techniques allows the identification of specific spectral 

wavenumbers within the original spectral space responsible for maximizing the class 

differences. Some examples of feature selection algorithms include the minimum 

redundancy maximum relevance (MRMR) algorithm (Radovic et al., 2017), in which the 

variable selection process is based on the maximization of the relevance of extracted 

features and simultaneous minimization of redundancy between them (Morais et al., 

2019c); the successive projections algorithm (SPA) (Soares et al., 2013), which is an 

iterative forward feature selection method operating by solving co-linearity problems 

within the spectral dataset, thus selecting wavenumbers whose information content is 

minimally redundant (Theophilou et al., 2018); and the genetic algorithm (GA) (McCall, 

2005), which is a iterative combinational algorithm inspired by Mendelian genetics where 

a set of initial variables undergo selection, cross-over combinations and mutations until 

the fittest selected variables are found (Theophilou et al., 2018). The variables selected 

by these techniques can be used as input for the classification methods described 

previously, which is important since these techniques reduce the data size and 

collinearity, hence, improving the model accuracy and analysis time. Adaptations of 

PCA, PLS, SPA and GA (as feature extraction/selection techniques) to LDA, QDA, 

SVM, KNN and ANN (as classifiers) are well known (Siqueira & Lima, 2016a; Siqueira 

& Lima, 2016b; Siqueira et al., 2018). 
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2.2.7 Model Validation 

 

The performance of any classification model must be validated by calculating 

some quality metrics, or figures of merit, for a validation or test set. The training or cross-

validation performance reflects the model fitting but it does not reflect the model 

predictive performance towards unknown samples. For this reason, figures of merit such 

as accuracy (AC), sensitivity (SENS), specificity (SPEC), positive predictive value 

(PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative 

likelihood ratio (LR-), F-Score and G-Score are often calculated for external validation 

or test sets (Morais & Lima, 2017; Siqueira et al., 2017). The equations to calculate these 

parameters are depicted in Table 2.2. 

For binary models, i.e., models containing two classes, these parameters are 

calculated only once, where the positive class is the class of interest (e.g., disease) and 

the negative class is the control class (e.g., healthy controls). When more than two classes 

are modelled, then these parameters must be calculated individually per class. Often, 

receiver operating characteristic (ROC) curves, including the area under the curve (AUC) 

value; and confusion matrices containing the predicted number of samples or predicted 

classification rate per class are reported in a form of a table or graphically to aid the reader 

evaluating the model classification performance. Also, based on the confusion matrix, the 

Cohen’s kappa coefficient (κ) (Warrens, 2011) can be calculated, which is a weighted 

average of the model performance. Other parameters, such as model uncertainty, can be 

calculated. Uncertainty is related to the probability of misclassification and model 

robustness (Morais et al., 2019b), and can be calculated for LDA, QDA and SVM models 

(Morais et al., 2019b); PLS-DA (de Almeida et al., 2013; Rocha & Sheen, 2016); and 

ANN (Allegrini & Olivieri, 2016). The number of quality metrics to report depends on 

the application and rigor of the study. We recommend reporting at least the accuracy, 

sensitivity and specificity for small studies, while all the metrics in Table 2.2 can be 

reported for bigger studies. 
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Table 2.2. Quality parameters to evaluate the model classification performance. TP 

stands for true positives, FP for false positives, TN for true negatives, and FN for false 

negatives. 

Parameter Equation Meaning 

Accuracy (AC) / % TP + TN

TP + FP + TN + FN
× 100 

Number of samples correctly 

classified considering true and false 

negatives. Optimal value: 100%. 

Sensitivity (SENS) / 

% 

TP

TP + FN
× 100 

Proportion of positive samples (e.g., 

disease) that are correctly classified. 

Optimal value: 100%. 

Specificity (SPEC) / 

% 

TN

TN + FP
× 100 

Proportion of negative samples (e.g., 

healthy controls) that are correctly 

classified. Optimal value: 100%. 

Positive predictive 

value (PPV) / % 

TP

TP + FP
× 100 

Number of test positives that are true 

positives. Optimal value: 100%. 

Negative predictive 

value (NPV) / % 

TN

TN + FN
× 100 

Number of test negatives that are true 

negatives. Optimal value: 100% 

Positive likelihood 

ratio (LR+) 

SENS

1 − SPEC
 

Ratio between the probability of 

predicting a sample as positive when it 

is truly positive and the probability of 

predicting a sample as positive when it 

is actually negative. SENS and SPEC 

are not in percentage. Optimal value: 

infinite. 

Negative likelihood 

ratio (LR-) 

SPEC

1 − SENS
 

Ratio between the probability of 

predicting a sample as negative when 

it is actually positive and the 

probability of predicting a sample as 

negative when it is truly negative. 

SENS and SPEC are not in percentage. 

Optimal value: 0. 

F-Score 2 × SENS × SPEC

SENS + SPEC
 

Model performance considering 

imbalanced classes. Optimal value: 

100%. 

G-Score √SENS × SPEC Model performance not accounting for 

the classes size. Optimal value: 100%. 
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2.3  Procedure 
 

Loading the data ● Timing 5 min – 2 d, depending on the size of the dataset 

1. The spectra data must be loaded into the software for data analysis. Usually, the 

spectral data need to be converted to suitable .txt or .csv files within the 

spectrometer software, or saved in an extension format readable by the software 

used for data analysis. MATLAB commands such as ‘csvread’ and ‘importdata’, 

or the option right click > ‘Import Data…’ over the file in the “Current Folder” 

window of MATLAB, can be used to load standard .csv or .txt files.  IrootLab86 

toolbox for MATLAB contain an interface called “mergertool” to load different 

spectral formats: .DAT files, .csv files, OPUS binary files from Fourier transform 

infrared (FTIR) Bruker® spectrometers, and .txt and Wire files from Renishaw® 

Raman spectrometers. We strongly suggest saving the spectral files in .csv or .txt 

file formats since these are universal formats most chemometric software read 

regardless the instrument manufacturer brand. 

▲ CRITICAL Experimental procedures for sample preparation and Raman and 

FTIR spectral acquisition are demonstrated in other protocols (Baker et al., 2014; 

Butler et al., 2016; Martin et al., 2010; Morais et al., 2019c). 

▲ CRITICAL The routine to load the spectral data depends on the file format, 

spectrometer manufacturer, and software being used to analyse the data. 

? TROUBLESHOOTING  

In case of fail to load directly the spectral data into the software for data analysis, 

export the spectral data into readable .txt, .csv or .xls formats within the spectrometer 

software and load them into Microsoft® Excel or any spreadsheet software. Then, 

copy and paste the spectral data from the spreadsheet to the data analysis software. 

■ PAUSE POINT Save the spectral dataset in the data analysis software format (e.g., 

.mat for MATLAB) into a known folder for further analysis. 

Data quality evaluation ● Timing 40 min – 4 h, depending on the size of the dataset 

2. Evaluate the raw spectral data by plotting them and by performing quality tests to 

identify anomalous spectra or biased patterns before applying processing. This 
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can be done by visual inspection of the spectral profiles, followed by plotting 

Hotelling’s T2 versus Q residuals charts using only the mean-centred data, and the 

analysis of the PCA residuals. Samples far from the origin of the Hotelling’s T2 

versus Q residuals chart should be investigated and removed. Outliers must be 

removed one at the time from the PCA model. PCA residuals should be random 

and close to zero. Further instructions about data quality evaluation can be found 

in ‘Minimum dataset requirements’ and ‘Outlier detection’ in the ‘Experimental 

design’ section. Hotelling’s T2 versus Q residuals charts can be built using the 

automatic Outlier Detection algorithm (Morais et al., 2019c) for MATLAB at 

https://figshare.com/articles/Outlier_Detection/7066613/2. 

Data pre-processing ● Timing 15 min – 4 h, depending on the size of the dataset 

▲ CRITICAL Steps 3 – 8 below can be modified depending on the nature of the dataset. 

Pre-processing effects are depicted in Fig. 2.2 and a pre-processing decision flowchart is 

shown in Fig. 2.3. Further details about pre-processing techniques can be found in ‘Pre-

processing’ in the ‘Experimental design’ section. 

3. Selecting the biofingerprint region. Truncate the spectra dataset to the 

biofingerprint region to eliminate atmospheric interference present in other 

regions of the spectra. FTIR: 1800 – 900 cm-1; Raman: 2000 – 500 cm-1; NIR: 900 

– 2600 nm. 

4. Savitzky-Golay (SG) smoothing for removing spectral noise. When random noise 

is present, SG smoothing should be applied. Window size varies according to the 

spectral dataset resolution and size. The window size must be an odd number, 

since a central data point is required for the smoothing process. Try different 

window sizes from 3 to 21 and observe how the spectra change (in shape) and 

how the noise is reduced. Use the smallest window size that removes a 

considerable amount of the noise while maintaining the original spectral shape. 

E.g., using a spectral resolution of 4 cm-1, the IR biofingerprint region (900-1800 

cm-1) usually contains 235 wavenumbers; in this case, a window size of 5 points 

should be used. The polynomial order of the SG fitting should be second order for 

IR, Raman and NIR datasets due to the quadratic band shape of the spectrum. 

5. Light scattering correction using either MSC, SNV or second derivative. First, try 

using MSC or SNV, as MSC maintains the spectral scale and both methods 

https://figshare.com/articles/Outlier_Detection/7066613/2
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maintain the original spectral shape. If the results are not satisfactory (e.g., 

classification accuracy < 75% in the validation set), try using the second-

derivative spectra. 

▲ CRITICAL If resonant Mie scattering (Bassan et al., 2009) is present in the spectra 

(often detected by a severe baseline distortion followed by a systematic shift in the y-

axis), then the RmieS-EMSC algorithm (Bassan et al., 2010) should be used for spectral 

correction instead of MSC, SNV, second derivative or other baseline correction 

technique.  

6. Perform baseline correction using AWLS or rubber-band baseline correction. If 

EMSC or spectral differentiation is applied as the light scattering correction 

method, baseline correction is not necessary. 

7. Normalisation. Normalise the spectrum to the Amide I or Amide II peak, or 

perform a vector normalisation (2-norm, length = 1) to correct different scales 

across spectra (e.g., due to different sample thickness when using FTIR in 

transmission mode). 

8. Scaling. Mean-centre the spectral dataset. In case of data fusion, block-scaling 

should be used. 

▲ CRITICAL Plot the spectral data throughout all the pre-processing steps to identify 

anomalous behaviours. For parsimonious reason, only use the pre-processing methods 

that are needed for the dataset (see Fig. 3 and ‘Pre-processing’ in the ‘Experimental 

design’ section). 

■ PAUSE POINT Save the pre-processed spectral dataset in the data analysis software 

format (e.g., .mat for MATLAB) into a known folder for further analysis. 

Exploratory analysis ● Timing 1 h – 4 d, depending on the size of the dataset 

9. Perform a PCA model with the mean-centred pre-processed spectral data to 

identify clustering patterns, trends and outliers within the dataset. Determine the 

number of PCs by plotting the number of PCs versus the model explained 

variance, where the selected number of PCs should be the one that contains the 

majority of the cumulative explained variance before a constant trend is observed 

in the next following PCs. Usually the number of PCs should not exceed 10 PCs, 

since this can add random noise to the model. 
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10. Plot the PCA scores on PC1 versus PC2, and investigate other combinations of 

PCA scores plot on different PCs according to the number of selected PCs to 

identify possible clustering patterns or trends. Colour-code the samples to 

facilitate visualisation. If a clear segregation pattern between the classes is 

observed on the PCA scores space, this is an indication that PCA-based 

discriminant models, such as PCA-LDA and PCA-QDA, might work well with 

the dataset. 

11. Plot the Hotelling’s T2 versus Q residuals chart for the PCA model built in order 

to identify possible outliers still within the spectral dataset. The outliers should be 

removed from the dataset before proceeding to the next steps. 

▲ CRITICAL The pre-processed spectral data must be mean-centred before PCA. 

▲ CRITICAL PCA is not a classification method, thus the PCA scores plot is not the 

final classification model. 

? TROUBLESHOOTING 

If no segregation trend is observed in the PCA scores plot, this is an indicative of the 

dataset complexity. The visualisation of the PCA scores is limited to 3-demenions (3D) 

plots, hence, no apparent segregation trend does not mean that the dataset cannot be 

discriminated in the PCA scores space. Therefore, PCA-based discriminant models can 

still be built by using 4 to 10 PCs, or more. 

Data selection ● Timing 10 min – 4 h, depending on the size of the dataset 

12. Separate the samples that will be used for the training and test sets. Data selection 

should be performed before model construction. The samples can be split into 

training (70%) and test (30%) sets, using a cross-validated model; or they can be 

split into training (70%), validation (15%) and test (15%) sets without using cross-

validation. To maintain consistency and account for well-balanced training 

models, the KS or MLM algorithms are suggested to separate the samples into the 

sub-sets. The KS algorithm is freely available at 

https://doi.org/10.6084/m9.figshare.7607420.v1; and the MLM algorithm is 

freely available at https://doi.org/10.6084/m9.figshare.7393517.v2. 

https://doi.org/10.6084/m9.figshare.7607420.v1
https://doi.org/10.6084/m9.figshare.7393517.v2
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▲ CRITICAL Spectrum replicas for a same sample cannot be present in more than one 

sub-set; that is, spectral replicates cannot be distributed amongst the training, validation 

and/or test sets. 

? TROUBLESHOOTING  

When spectral replicates are present in the dataset, the data selection algorithm can be 

applied in a way to keep the spectrum replicas together, or by averaging the spectral 

replicates before applying the data selection algorithm. 

? TROUBLESHOOTING  

If the percentages of samples (70%, 30% or 15%) for each sub-set generate numbers with 

decimal places, round them to the closest integer values. 

■ PAUSE POINT Save the training, validation and/or test sets in the data analysis 

software format (e.g., .mat for MATLAB) into a known folder for further analysis. 

Model construction ● Timing 1 h – 4 d, depending on the size of the dataset 

▲ CRITICAL Feature extraction (e.g., by means of PCA) or feature selection (e.g., by 

means of SPA or GA) should be used to reduce data collinearity and speed up data 

processing and analysis time. PLS-DA is already a feature extraction method; thus 

performing a feature extraction technique prior PLS-DA is not necessary. KNN, SVM 

and ANN algorithms can be applied either without or after feature extraction/selection 

techniques. The classification technique being tested must follow a parsimony order: 

LDA > PLS-DA > QDA > KNN > SVM > ANN > random forests > deep-learning 

approaches. 

13. Apply the feature extraction or selection technique. The optimization of the 

number of PCs during PCA-based methods or LVs during PLS-DA can be 

performed using an external validation set (15% of the original dataset) or using 

cross-validation (leave-one-out for small datasets (≤20 samples); venetian blinds 

or random subsets with 10 data splits can be used for large datasets (>20 samples); 

or continuous-block (i.e., leave-one-patient-out cross-validation) when replicate 

spectra are present). GA should be performed three times, starting from different 

initial populations, and the best result using an external validation set (15% of the 

original dataset) should be used. Cross-over probability should be set to 40% and 

mutation probability should be set to 1–10%, according to the dataset size. 
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14. The classification method should be used optimized by an external validation set 

or by using cross-validation, especially for selecting the number of LVs of PLS-

DA, and the kernel parameters for SVM. The kernel function for SVM should be 

the radial basis function (RBF) kernel, due to its adaptation to different data 

distribution. To avoid overfitting, cross-validation should be always performed 

during model construction to estimate the best RBF parameters in SVM. 

▲ CRITICAL The final classification model must be built with the optimum classifier 

parameters. 

■ PAUSE POINT Save the training model parameters for further analysis. 

Model validation ● Timing 1 h – 8 h, depending on the size of the dataset 

15. After model construction using the training set, the model must be blindly 

validated by an external test set. The samples in the test set cannot be present in 

the training set; and the model output for the test set must be statistically compared 

with reference known values. 

16. Based on the model output for the training and test sets, calculate the accuracy, 

sensitivity and specificity for each set. The metrics for the training set are used to 

assess the fitting of the model, but they do not reflect the true model behaviour 

towards unknown samples. The metrics for the test set are the true expected results 

representing the predictive classification ability of the model. 

 

2.4  Troubleshooting 
 

5.1.2 Loading the Data 

The file format in which the spectral data is saved must be readable by the data 

analysis software. Check the importing data routines in the data analysis software 

beforehand to save the experimental files in a suitable file format. 

 

2.4.2 Data Pre-processing 

Data pre-processing techniques should be used in a parsimonious way, and they 

cannot mask the signal of interest. Testing different pre-processing techniques is 
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recommend to find the best solution in terms of cross-validation or validation 

performance. 

 

2.4.3 Model Construction 

In case of unsatisfactory classification results, the complexity of the model being 

tested should increase in the following order: LDA > PLS-DA > QDA > KNN > SVM > 

ANN > random forests > deep-learning approaches. Changing the type of classifier, the 

feature extraction/selection technique and the type of pre-processing are ways to narrow 

down the classification results and find the best classification model. The performance 

testing of candidates models can be made by cross-validation or by using an external 

validation test. The final performance of the classification model must be calculated using 

an external test set containing independent samples (samples not present in the training 

set). 

 

5.1 Timing 

 

2.5.1 Loading the Data 

Step 1, importing the data to the data analysis software: 5 min – 2 d, depending on the 

size of the dataset. 

 

2.5.2 Data Quality Evaluation 

Step 2(A), plotting and inspecting the spectral profiles: 15 min – 1 h, depending on the 

size of the dataset. 

Step 2(B), inspecting Hotelling’s T2 versus Q residuals charts for the mean-centred raw 

data: 15 min – 2 h, depending on the size of the dataset. 

Step 2I, analysis of PCA residuals: 10 min. 
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2.5.3 Data Pre-processing 

Step 3, selecting the biofingerprint region: 10 min. 

Step 4, Savitzky-Golay (SG) smoothing for removing spectral noise:  2 min – 20 min, 

depending on the size of the dataset. 

Step 5, light scattering correction using either MSC, SNV, second derivative or RmieS-

EMSC: 2 min – 20 min, depending on the size of the dataset. 

Step 6, performing baseline correction using AWLS or rubber-band baseline correction: 

2 min – 40 min, depending on the size of the dataset. 

Step 7, normalisation: 1 – 10 min, depending on the size of the dataset. 

Step 8, scaling: 1 – 10 min, depending on the size of the dataset. 

 

2.5.4 Exploratory Analysis 

Step 9, building a PCA model with the mean-centred pre-processed spectral data to 

identify clustering patterns: 10 min – 4 h, depending on the size of the dataset. 

Step 10, plot the PCA scores on PC1 versus PC2, and investigate other combinations of 

PCA scores plot on different PCs to identify possible clustering patterns or trends: 30 min 

– 12 h, depending on the number of selected PCs. 

Step 11, checking the Hotelling’s T2 versus Q residuals chart to identify outliers: 10 min 

– 2 h, depending on the size of the dataset. 

 

2.5.5 Data Selection 

Step 12, sample splitting: 10 min – 4 h, depending on the size of the dataset. 

 

2.5.6 Model Construction 

Step 13, application of feature extraction or selection techniques: 15 min – 8 h, depending 

on the size of the dataset and the feature selection technique being used. 

Step 14, construction of the classification model: 15 min – 4 d, depending on the size of 

the dataset, type of cross-validation and type of classifier. 
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2.5.7 Model Validation 

Step 15, obtaining the model outputs for the test set: 15 min – 1 h, depending on the size 

of the test set. 

Step 16, calculation of model performance metrics: 30 min – 8 h, depending on the 

number of metrics being calculated and the number of classes in the dataset. 

 

5.1 Anticipated Results 

 

To illustrate how this protocol can be used to analyse spectral data, we will 

conduct some classification models for 3 real datasets: (1) Syrian hamster embryo (SHE) 

cells dataset composed of FTIR spectra, free available as part of IrootLab toolbox 

(http://trevisanj.github.io/irootlab/); (2) Raman spectra of blood plasma to detect ovarian 

cancer, free available at https://doi.org/10.6084/m9.figshare.6744206.v1; and (3) NIR 

spectra of corn samples, free available at 

http://www.eigenvector.com/data/Corn/index.html. 

Dataset 1 (SHE cells) was originally published by Trevisan et al. (2010) and is 

composed of originally 10 classes, containing attenuated total reflection Fourier-

transform infrared (ATR-FTIR) spectra of cells exposed to 5 contaminants in two levels 

(non-transformed and transformed). In this example, only two classes are being used for 

analysis: class 1 (cells exposed to benzo[a]pyrene (B[a]P) non-transformed, n = 59) and 

class 2 (cells exposed to B[a]P transformed, n = 62). The spectra at the fingerprint region 

(1800-900 cm-1) was pre-processed by 2nd differentiation. The step-by-step analysis of 

this dataset using PCA-LDA/QDA is demonstrated in the Appendix A. Dataset 2, 

originally published by Paraskevaidi et al. (2018a), is also composed of two classes: class 

1 containing 182 Raman spectra of blood plasma from healthy individuals, and class 2 

containing 189 Raman spectra of blood plasma from ovarian cancer patients. The raw 

spectra were pre-processed by cutting the Raman fingerprint region (2000-500 cm-1), 

followed by Savitzky-Golay 2nd differentiation (window of 21 points, 2nd order 

polynomial fit) and vector normalisation. Dataset 3 consists of 80 corn samples measured 

on 3 different NIR spectrometers.  The spectra were acquired in the range between 1100 

– 2498 nm at 2 nm intervals. The classification models for this dataset were based on the 

spectra collected by instrument 5 (‘m5spec’) where class 1 was defined as the samples 

http://trevisanj.github.io/irootlab/
https://doi.org/10.6084/m9.figshare.6744206.v1
http://www.eigenvector.com/data/Corn/index.html
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with protein content ≤ 8.5 (n = 36), and class 2 the samples with protein content > 8.5 (n 

= 44). The spectra for this dataset were pre-processed by SNV. The raw spectra for 

datasets 1–3 are show in the Appendix A, Figure A1.1. 

A PCA was applied for exploratory analysis of the pre-processed spectral data 

followed by an outlier detection algorithm. The PCA scores plot and Hotelling’s T2 versus 

Q residuals charts for datasets 1–3 are show in the Appendix A, Figure A1.2. For dataset 

1, it is possible to identify a segregation trend between the samples from class 1 and 2 

along PC1, where the samples from class 1 are mostly distributed on the left-side, and the 

samples from class 2 on the right-side of the PCA scores plot (Figure S2a). The 

Hotelling’s T2 versus Q residuals chart (Figure S2b) does not show any sample 

significantly far from the origin, thus no outlier is present in this dataset. In dataset 2, the 

PCA scores plot on PC1 versus PC2 do not show any clear segregation between the 

classes (Figure S2c); and the Hotelling’s T2 versus Q residuals chart (Figure S2d) 

indicates the presence of 4 outliers in class 2. These 4 spectra were removed from the 

dataset before further analysis. The PCA scores plot for dataset 3 (Figure S2e) show a 

separation trend along PC2, where the samples from class 1 are mostly on the positive 

side of the scores on PC2, and the samples from class 2 are mostly in the negative side of 

the scores on PC2. The Hotelling’s T2 versus Q residuals chart for this dataset (Figure 

S2f) does not indicate the presence of outliers. 

After data selection using the MLM algorithm (70% of samples for training and 

30% of the samples for test), the mean-centred pre-processed spectra were used to build 

PCA-LDA, PCA-QDA and PLS-DA classification models. The training and cross-

validation accuracies for datasets 1–3 using PCA-LDA and PLS-DA are show in Table 

2.3. 

The optimal number of factors was selected by cross-validation (Figures S3–S5). 

Overall, the PLS-DA models are superior to the PCA-LDA models, which often happens 

since the PLS decomposition takes into consideration the reference classes labels for the 

training set in a way that the latent variables maximize the covariance between the 

samples, which emphasize the differences between the classes; while PCA decomposition 

only describe the variance in the data, which might not be totally related to class 

differences (Morais et al., 2019c). 
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Table 2.3. Training accuracies for PCA-LDA and PLS-DA algorithms applied to datasets 

1–3. Cross-validation using venetian-blinds with 10 data splits. PCs stands for principal 

components; LVs stands for latent variables; and EV stands for cumulative explained 

variance. 

Dataset Algorithm Number of factors Training 

accuracy  

Cross-validation 

accuracy  

1 PCA-LDA 10 PCs (97% EV) 93% 90% 

 PLS-DA 5 LVs (86% EV) 95% 92% 

2 PCA-LDA 9 PCs (27% EV) 61% 61% 

 PLS-DA 2 LVs (6% EV) 89% 72% 

3 PCA-LDA 8 PCs (100% EV) 91% 84% 

 PLS-DA 6 LVs (98% EV) 93% 88% 

 

The performance of the discriminant analysis models in Table 2.3 applied to an 

external test set is depicted in Table 2.4. PLS-DA models show superior predictive 

performance, where higher accuracies, sensitivities and specificities are observed in the 

test set in comparison to PCA-LDA. The mean pre-processed spectrum and discriminant 

function plot for PLS-DA applied in datasets 1–3 are show in Figure 2.5. The PLS-DA 

regression coefficients and ROC curves are show in the Appendix A, Figures A1.6–9. 

Table 2.4. Test performance of PCA-LDA and PLS-DA models applied to datasets 1–3.  

Dataset Algorithm Accuracy  Sensitivity  Specificity  

1 PCA-LDA 86% 95% 78% 

 PLS-DA 89% 95% 83% 

2 PCA-LDA 67% 59% 75% 

 PLS-DA 80% 75% 85% 

3 PCA-LDA 83% 69% 100% 

 PLS-DA 88% 77% 100% 

 

The classification performances of the PLS-DA models in Table 2.4 are 

satisfactory. Usually, in clinical applications, the minimum threshold for accuracy, 

sensitivity or specificity is 75%, the level often found in routine clinical procedures. The 

AUC values for the PLS-DA models in Table 2.4 were 0.99 (dataset 1), 0.96 (dataset 2) 

and 0.99 (dataset 3), indicating excellent predictive performance. Nevertheless, the 
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classification performance of these models might improve by changing the type of pre-

processing or by increasing the degree of complexity of the classification technique, such 

as by using feature selection techniques (e.g., SPA and GA) or non-linear classifiers (e.g., 

SVM and ANN). For sake of simplicity, herein only the results obtained by PCA-LDA 

and PLS-DA, which are the most common classification algorithms, are reported. 

 

Figure 2.5. Results for PLS-DA models in datasets 1–3. (a) Mean pre-processed FTIR 

spectra (2nd derivative) for dataset 1; (b) calculated PLS-DA response for dataset 1, where 

o = training samples and * = test samples; (c) mean pre-processed Raman spectra (2nd 

Savitzky-Golay derivative (window of 21 points, 2nd order polynomial function) and 

vector normalisation) for dataset 2; (d) calculated PLS-DA response for dataset 2, where 

o = training samples and * = test samples; I mean pre-processed NIR spectra (SNV) for 

dataset 3; (f) calculated PLS-DA response for dataset 3, where o = training samples and 

* = test samples. 

a. b.

c. d.

e. f.
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CHAPTER 3 | IMPROVING DATA SPLITTING FOR 

CLASSIFICATION APPLICATIONS IN 

SPECTROCHEMICAL ANALYSES EMPLOYING A 

RANDOM-MUTATION KENNARD-STONE ALGORITHM 

APPROACH 

 

This chapter is published in Bioinformatics (IF 4.531). It demonstrates a new 

algorithm called MLM for sample selection in biospectroscopy datasets: 

➢ Morais CLM, Santos MCD, Lima KMG, Martin FL. Improving data splitting for 

classification applications in spectrochemical analyses employing a random-

mutation Kennard-Stone algorithm approach. Bioinformatics 2019; 35(24): 

5257–5263. https://doi.org/10.1093/bioinformatics/btz421  

 

Abstract: Motivation: Data splitting is a fundamental step for building classification 

models with spectral data, especially in biomedical applications. This approach is 

performed following pre-processing and prior to model construction, and consists of 

dividing the samples into at least training and test sets; herein, the training set is used for 

model construction and the test set for model validation. Some of the most-used 

methodologies for data splitting are the random selection (RS) and the Kennard-Stone 

(KS) algorithms; here, the former works based on a random splitting process and the latter 

is based on the calculation of the Euclidian distance between the samples. We propose an 

algorithm called the Morais-Lima-Martin (MLM) algorithm, as an alternative method to 

improve data splitting in classification models. MLM is a modification of KS algorithm 

by adding a random-mutation factor. Results: RS, KS and MLM performance are 

compared in simulated and six real-world biospectroscopic applications using principal 

component analysis linear discriminant analysis (PCA-LDA). MLM generated a better 

predictive performance in comparison with RS and KS algorithms, in particular regarding 

sensitivity and specificity values. Classification is found to be more well-equilibrated 

using MLM. RS showed the poorest predictive response, followed by KS which showed 

good accuracy towards prediction, but relatively unbalanced sensitivities and 

specificities. These findings demonstrate the potential of this new MLM algorithm as a 

sample selection method for classification applications in comparison with other regular 

methods often applied in this type of data. Availability: MLM algorithm is freely 

available for MATLAB at https://doi.org/10.6084/m9.figshare.7393517.v1.  

Author contribution: C.L.M.M. developed the algorithm, performed the data analysis 

and wrote the manuscript. 

 

                                   

Camilo L. M. Morais, PhD candidate                               Prof. Francis L. Martin, Supervisor  
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3.1 Introduction 
 

Data splitting is a process used to separate a given dataset into at least two subsets 

called ‘training’ (or ‘calibration’) and ‘test’ (or ‘prediction’). This step is usually 

implemented after pre-processing, when the samples’ spectra have been corrected for 

noise or undesired variability. These subsets are used towards constructing chemometric 

models for quantification or classification applications. In quantification, calibration 

models are built to assign a concentration or discrete value to a sample based on its 

spectral signature, whilst in classification applications, samples or experimental 

observations are assigned to ‘classes’ based on their spectrochemical signature. This is 

made by using chemometric methods such as principal component analysis linear 

discriminant analysis (PCA-LDA) (Morais & Lima, 2018), partial least squares 

discriminant analysis (PLS-DA) (Brereton & Lloyd, 2014), or support vector machines 

(SVM) (Cortes & Vapnik, 1995). Sometimes, especially for large datasets, an extra subset 

called ‘validation’ is also obtained, containing measurements observations used for 

optimising factors in the chemometric model, such as the number of principal component 

(PCs) in PCA-LDA, latent variables in PLS-DA, and kernel parameters in SVM. When 

the validation set is not present, cross-validation is applied. In this case, samples from the 

training set are used in an iterative validation process for optimising these models 

parameters. This is made by firstly removing a certain number of samples from the 

training set and then building the classification model with the remaining samples, where 

the removed samples are predicted as a temporary validation set. This is performed for a 

certain number of repetitions until all training samples are excluded once from the training 

set and predicted as a temporary validation set. One of the most popular cross-validation 

methods is the leave-one-out cross-validation, where only one sample is removed from 

the training set per each iteration. A misclassification error is then calculated for this 

temporary validation set, where different models parameters, such as different number of 

factors or principal components, are tested. The training model with the lowest cross-

validation error is then chosen as final, where the classification parameters that led to the 

lowest cross-validation error value are selected. The samples primarily excluded from 

modelling (test set) are used for final model evaluation, since they are considered as being 

external to the model (blind). In this case, one simulates how the model would behave in 

the presence of new observations, though they are often measured in the same experiment 

with the training samples. 
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To avoid the presence of bias introduced by manual data splitting, there are a 

number of computational methods that can be used for sample selection, such as based 

on leverage (Wang et al., 1991), random selection (RS) or Kennard-Stone (KS) algorithm 

(Kennard & Stone, 1969). RS and KS are the most used methods for sample selection; 

the former due to its simplicity and the latter due to its adaptation to analytical chemistry 

applications, since it allows a training model covering most sources of variations within 

the dataset, ensuring the training model is more representative of the whole dataset. 

Currently, the original KS paper (Kennard & Stone, 1969) has >1,000 citations, being the 

method of choice in many classification applications. 

Although including as much variability as possible within the training model 

provides a good predictive performance, sometimes random phenomena might occur with 

new samples in a test set, in particular when samples come from complex matrices. An 

example of this is biological-derived samples. Biological samples can be affected by a 

series of factors that are difficult to include in relatively small datasets. For example, in 

clinical applications the spectrochemical response of a ‘healthy’ and ‘disease’ sample 

may vary according to changes in diet and lifestyle (Lindon et al., 2017). The same 

applies for bacteria or viruses extracted from certain media, since environmental 

variations may also change their spectral signature. Additionally, random factors such as 

genetic mutations might affect the predictive performance of a classification model for 

biological samples in the future. These phenomena add a degree of ‘randomness’ in the 

predictive behaviour of a classifier, since more extrapolations might be needed to address 

all of these issues. Thus, having in mind the inclusion of as much representativeness as 

possible in the training model but with a small degree of randomness, we propose a new 

algorithm based on a random-mutation Kennard-Stone approach; we call this the Morais-

Lima-Martin (MLM) algorithm. 

Towards comparison of the predictive response of MLM with RS and KS, we 

tested classification models on six real-world spectrochemical datasets using PCA-LDA, 

where the predictive performance in terms of accuracy, sensitivity and specificity were 

evaluated. In addition, simulations with normally distributed random data were performed 

to evidence the performance of the MLM algorithm in comparison with the RS and KS 

method. 
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3.2 System and Methods 
 

3.2.1 Datasets 

 

Six real-world datasets were used towards comparing the classification 

performance of RS, KS and MLM algorithms. Dataset 1 contains 280 infrared (IR) spectra 

of two Cryptococcus fungi specimens acquired via attenuated total reflection Fourier-

transform infrared (ATR-FTIR) spectroscopy. This dataset is publically available at 

https://doi.org/10.6084/m9.figshare.7427927.v1. Class 1 is composed of 140 spectra of 

Cryptococcus neoformans samples and class 2 of 140 spectra of Cryptococcus gattii 

samples. Spectra were acquired in the 400–4000 cm-1 spectral range with a resolution of 

4 cm-1 and 16 co-added scans using a Bruker VERTEX 70 FTIR spectrometer (Bruker 

Optics, Ltd., UK). The spectral data were pre-processed by excising the biofingerprint 

region (900–1800 cm-1), which was followed by automatic weighted least squares 

(AWLS) baseline correction and normalisation to the Amide I peak (1650 cm-1). More 

details regarding this dataset can be found in literature (Costa et al., 2016; Morais et al., 

2017). 

Dataset 2 contains 240 IR spectra derived from formalin-fixed paraffin-embedded 

brain tissues separated into two classes. Class 1 contains 140 spectra from normal brain 

tissue, and class 2 contains 100 spectra from glioblastoma brain tissue. Spectra were 

collected via ATR-FTIR spectroscopy using a Bruker VECTOR 27 FTIR spectrometer 

with a Helios ATR attachment (Bruker Optics, Ltd., UK). The raw spectra, acquired in 

the 400–4000 cm-1 spectral range with a resolution of 8 cm-1 and 32 co-added scans, were 

pre-processed by excising the biofingerprint region (900-1800 cm-1), which was followed 

by rubberband baseline correction and normalisation to the Amide I peak (1650 cm-1). 

This dataset is publicly available as part of the IrootLab toolbox 

(http://trevisanj.github.io/irootlab/) (Trevisan et al., 2013), and more information about it 

can be found in Gajjar (2013). 

Dataset 3 contains 183 IR spectra distributed into 3 classes. Class 1 contains 59 

spectra of Syrian hamster embryo (SHE) cells treated with benzo[a]pyrene (B[a]P), class 

2 contains 62 spectra of SHE cells treated with 3-methylcholanthrene (3-MCA) and class 

3 contains 62 spectra of SHE cells treated with anthracene (Ant). Spectra were acquired 

in the 400–4000 cm-1 spectral range with a resolution of 8 cm-1 by using a Bruker 

TENSOR 27 spectrometer with a Helios ATR attachment (Bruker Optics, Ltd., UK). Pre-

https://doi.org/10.6084/m9.figshare.7427927.v1
http://trevisanj.github.io/irootlab/
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processing was performed by excising the biofingerprint region (900–1800 cm-1), which 

was followed by rubberband baseline correction and normalisation to the Amide I peak 

(1650 cm-1). This dataset is publicly available as part of the IrootLab toolbox 

(http://trevisanj.github.io/irootlab/) (Trevisan et al., 2013), and further information can 

be found in Trevisan et al. (2010). 

Dataset 4 contains 270 IR spectra from blood samples divided into four classes. 

Class 1 is composed of 90 IR spectra of control samples, class 2 contains 88 spectra from 

patients with Dengue, class 3 contains 66 spectra from patients with Zika, and class 4 

contains 26 spectra from patients with Chikungunya. This dataset is publically available 

at https://doi.org/10.6084/m9.figshare.7427933.v1. Spectra were collected in ATR mode 

by using a Bruker VERTEX 70 FTIR spectrometer (Bruker Optics, Ltd., UK). 

Acquisition was performed in the 400–4000 cm-1 spectral range with a resolution of 4 cm-

1 and 16 co-added scans. Pre-processing was performed by excising the biofingerprint 

region (900–1800 cm-1), which was followed by Savitzky-Golay smoothing (window of 

7 points) (Savitzky and Golay, 1964), AWLS baseline correction, and normalisation to 

the Amide I peak (1650 cm-1). Further details about this dataset can be found in Santos et 

al. (2018). 

Dataset 5 contains 351 Raman spectra of blood plasma divided into two classes: 

162 spectra of healthy individuals (class 1), and 189 spectra of ovarian cancer patients 

(class 2). This dataset is publicly available at 

https://doi.org/10.6084/m9.figshare.6744206.v1. Raman spectra were collected using an 

InVia Renishaw Raman spectrometer coupled with a charge-coupled device (CCD) 

detector and Leica microscope, with 5% laser power (785 nm), 5x objective 

magnification, 10s exposure time and 2 accumulations in the spectral range of 400-2000 

cm-1. The spectral data were pre-processed by Savitzky-Golay smoothing (window of 15 

points), AWLS baseline correction, and vector normalisation. Further details about this 

dataset can be found in Paraskevaidi et al. (2018). 

Dataset 6 contains 322 surface-enhanced Raman spectroscopy (SERS) spectra of 

blood plasma also divided into two classes: 133 spectra of healthy individuals (class 1), 

and 189 spectra of ovarian cancer patients (class 2). This dataset is publicly available at  

https://doi.org/10.6084/m9.figshare.6744206.v1. SERS spectra were collected using the 

same settings for dataset 5 but, in this case, silver nanoparticles were mixed with the 

biofluid before spectral acquisition. The spectral pre-processing was performed using 

http://trevisanj.github.io/irootlab/
https://doi.org/10.6084/m9.figshare.7427933.v1
https://doi.org/10.6084/m9.figshare.6744206.v1
https://doi.org/10.6084/m9.figshare.6744206.v1
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Savitzky-Golay smoothing (window of 15 points), AWLS baseline correction, and vector 

normalisation. Further details about this dataset can be found in Paraskevaidi et al. (2018). 

Simulations were also performed with simulated data. This data were generated 

for each simulation (1000 simulations) based on a normally distributed random matrix 

with size of 100 × 1000 for class 1, and 100 × 1000 for class 2 (100 observations, 1000 

variables per observation). The matrix values ranged randomly from -10 to 10 units. A 

shift of 5 units was randomly added to class 2 to create a difference between the classes. 

The codes to produce class 1 and class 2 in MATLAB are ‘class_1 = 

randn(100,1000).*randn(100,1000);’ and ‘class_2 = 

(randn(100,1000)+5).*randn(100,1000);’. Class 1 and class 2 were generated for each 

simulation (1000 times), where all algorithms (RS, KS, and MLM) were independently 

applied per each simulation. 

 

3.2.2 Software 

 

Data analysis was performed within the MATLAB R2014b (MathWorks, Inc., 

USA) environment. Pre-processing was performed using PLS Toolbox 7.9.3. 

(Eigenvector Research, Inc., USA) and classification was performed using the 

Classification Toolbox for MATLAB (http://www.michem.unimib.it/) (Ballabio & 

Consonni, 2013). RS, KS and MLM algorithms were performed using laboratory-

generated routines. MLM algorithm is public available at 

https://doi.org/10.6084/m9.figshare.7393517.v1. 

 

3.2.3 Sample Selection 

 

Samples were divided into training (70%) and test (30%) sets using, 

independently, the RS, KS or MLM algorithms. RS is based on a random sample selection 

where spectra from the original dataset are randomly assigned to training or test. KS 

algorithm is based on an Euclidian distance calculation, where the sample with maximum 

distance to all other samples are selected, then the samples which are as far away as 

possible from the selected samples are selected, until the selected number of samples is 

reached. This means that the samples are selected in such a way that they will uniformly 

cover the complete sample space, reducing the need for extrapolation of the remaining 

samples. MLM algorithm, based on a KS-based approach, applies a KS method to the 

http://www.michem.unimib.it/
https://doi.org/10.6084/m9.figshare.7393517.v1
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data, as described before; then, a random-mutation factor is used in the KS results, where 

some samples from the training set are transferred to the test set, and some samples from 

the test set are transferred to training. Herein, the mutation factor was set at 10%. This 

value is inspired in the mutation probability of genetic algorithms (Morais et al., 2019c), 

where 10% is a common threshold employed to keep a balance between the degree of 

randomness and model convergence. MLM algorithm is visually illustrated in Figure 3.1. 

 

 

 

Figure 3.1. Illustration of the MLM algorithm based on a random-mutation of the 

Kennard-Stone (KS) method. Adapted from Morais et al. (2018a). 

 

3.2.4 Classification 

 

Classification was performed based on a PCA-LDA algorithm. For this, initially 

a principal component analysis (PCA) model is applied to the pre-processed data, 

decomposing the spectral space into a small number of PCs representing most of the 

original data-explained variance (Bro & Smilde, 2014). Each PC is composed of scores 

and loadings, the former representing the variance on samples direction, and the latter the 

variance on variables (e.g., wavenumber) direction. Then, the PCA scores are used as 

input for a linear discriminant analysis (LDA) classifier. LDA performs a Mahalanobis 

distance calculation to linearly classify the input space (PCA scores) into at least two 

1st step: KS method
Training set Test set

Samples

2nd step: Random-mutation

Training set Test set Training set Test set
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classes (Morais & Lima, 2018; Dixon & Brereton, 2009). The LDA classification scores 

(𝐿𝑖𝑘) can be calculated in a non-Bayesian form as (Morais & Lima, 2018; Dixon & 

Brereton, 2009): 

𝐿𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂pooled
−1 (𝐱𝑖 − �̅�𝑘)        (3.1) 

where 𝐱𝑖 is a vector containing the input variables for sample 𝑖; �̅�𝑘 is the mean vector of 

class 𝑘; 𝐂pooled is the pooled covariance matrix between the classes; and, T represents 

the matrix transpose operation. Model optimization was performed using cross-validation 

venetian blinds with 10 splits. 

The PCA-LDA classification performance was evaluated by means of accuracy, 

sensitivity and specificity calculations. Accuracy represents the total number of samples 

correctly classified considering true and false negatives; sensitivity measures the 

proportion of positives that are correctly identified; and, specificity measures the 

proportion of negatives that are correctly identified (Morais & Lima, 2017). These 

parameters are calculated as follows: 

Accuracy (%) = (
TP+TN

TP+FP+TN+FN
) × 100       (3.2) 

Sensitivity (%) = (
TP

TP+FN
) × 100        (3.3) 

Specificity (%) = (
TN

TN+FP
) × 100         (3.4) 

where TP stands for true positives; TN for true negatives; FP for false positives; and, FN 

for false negatives. 

 

3.3 Results and Discussion 
 

Six real-world datasets were evaluated using different data splitting techniques: 

RS, KS, and our new MLM algorithm. These datasets are composed of IR and Raman 

spectra from biological-derived applications involving: IR spectra of fungi (dataset 1); IR 

spectra of cancer brain tissue (dataset 2); IR spectra for toxicological study (dataset 3); 

IR spectra of viruses (dataset 4); Raman spectra of plasma for ovarian cancer detection 

(dataset 5); and, SERS spectra of plasma for ovarian cancer detection (dataset 6). Figure 

3.2 shows the pre-processed mean spectrum with standard deviation for each class in 

datasets 1–6. The pre-processed spectra from these datasets were used as input for the 

sample selection techniques, where their classification performances were evaluated via 

the PCA-LDA algorithm. 
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Figure 3.2. Mean pre-processed spectrum with standard deviation (shaded) for each class 

in dataset 1 (a), 2 (b), 3 (c), 4 (d), 5 I, and 6 (f). 
 

Dataset 1 is composed of 280 IR spectra for two fungi specimens groups 

(Cryptococcus neoformans [class 1]; Cryptococcus gattii [class 2]), each class having 170 

spectra each. Both fungi classes are pathogenic agents responsible for causing 

Cryptococcosis in humans, differing in their epidemiology, host range, virulence, 

antifungal susceptibility and geographic distribution (Morais et al., 2017). From a clinical 

point of view, Cryptococcus neoformans is a pathogen with a tendency to attack the 

central nervous system and its effects are mainly noted in immunosuppressed patients, 

a. b.

c. d.

Class 1

Class 2

Class 1

Class 2

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Class 4

e. f.

Class 1

Class 2
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Class 2



97 
 

whereas Cryptococcus gattii targets the lungs of immunocompetent, healthy individuals 

(Morais et al., 2017). RS, KS and MLM were independently applied to the pre-processed 

spectra separating 70% of them for training and 30% for testing. Cross-validated PCA-

LDA was applied for model construction using three PCs (99% cumulative explained 

variance) selected according to the minimum cross-validation error rate within the 

minimum number of PCs (Figure 3.3). The model fitting performance is shown in Table 

3.1, where the best training (84%) and cross-validation (83%) accuracy are observed 

using RS algorithm. KS generates the worst fitting performance with 80% accuracy in 

both training and cross-validation. The MLM algorithm shows an intermediary 

performance with 83% and 82% accuracy in training and cross-validation, respectively. 

 

Figure 3.3. PCA-LDA cross-validation error rate for datasets 1 (a), 2 (b), 3 (c), 4 (d), 5 I, 

and 6 (f). CV: cross-validation; PCs: principal components. 

a. b.

c. d.

e. f.
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Table 3.1. PCA-LDA fitting accuracy for training and cross-validation (CV) varying with 

the sample selection method (RS: random selection; KS: Kennard-Stone; MLM: Morais-

Lima-Martin) applied in datasets 1–6. 

 

Dataset Sample selection method Training Accuracy (%) CV Accuracy (%) 

1 RS 84 83 

 KS 80 80 

 MLM 83 82 

2 RS 85 83 

 KS 81 80 

 MLM 82 77 

3 RS 86 84 

 KS 83 82 

 MLM 84 80 

4 RS 92 91 

 KS 90 90 

 MLM 93 90 

5 RS 93 93 

 KS 89 88 

 MLM 91 88 

6 RS 74 72 

 KS 75 72 

 MLM 76 75 

 

Although the best fitting accuracy, the RS-based model exhibits a very poor 

sensitivity, at 69%, in the test set (Table 3.2). The specificity is high (88%), but the model 

seems to have a poor balance in terms of sensitivity and specificity, indicating that one 

class is much better classified than the other. The KS-based model with the worst fitting 

gives the best specificity (98%), but the sensitivity remains the same. On the other hand, 

the MLM-based model shows the best well-balanced performance, where the specificity 

falls to 78%, but the sensitivity increases to 74%, indicating that both classes are well-

classified, and the model is not skewed towards a good classification of just one of the 

classes. Overall accuracy varying with the sample selection method is depicted in Figure 

3.4, where the accuracy for dataset 1 using MLM (81%) is close to the KS algorithm 

(83%), which achieves the best accuracy due to the great specificity of this model. RS has 

the worst accuracy (79%), indicating that the performance of this method in the test set is 

inferior to the other algorithms that had worst fitting; thus, confirming that good fitting is 

not necessarily associated with good predictions. 

 



99 
 

Table 3.2. Sensitivity and specificity for the test set obtained by PCA-LDA varying with 

the sample selection method (RS: random selection; KS: Kennard-Stone; MLM: Morais-

Lima-Martin) applied in datasets 1–6. 

Dataset  Sample selection method Sensitivity (%) Specificity (%) 

1 RS 69 88 

 KS 69 98 

 MLM 74 78 

2 RS 79 63 

 KS 79 80 

 MLM 81 80 

3 RS   

 Class 1 83 87 

 Class 2 79 89 

 Class 3 89 100 

 KS   

 Class 1 94 97 

 Class 2 100 92 

 Class 3 84 100 

 MLM   

 Class 1 94 92 

 Class 2 95 95 

 Class 3 84 100 

4 RS   

 Class 1 96 100 

 Class 2 100 100 

 Class 3 85 98 

 Class 4 88 95 

 KS   

 Class 1 100 100 

 Class 2 100 100 

 Class 3 90 98 

 Class 4 88 97 

 MLM   

 Class 1 100 100 

 Class 2 100 100 

 Class 3 95 98 

 Class 4 88 99 

5 RS 94 88 

 KS 94 95 

 MLM 94 91 

6 RS 70 70 

 KS 72 84 

 MLM 72 89 
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Figure 3.4. Accuracy in the test set obtained by PCA-LDA varying with the sample 

selection method (RS: random selection; KS: Kennard-Stone; MLM: Morais-Lima-

Martin) applied in datasets 1–6. 

 

Dataset 2 is composed of 140 spectra of normal (class 1) and 100 spectra of 

glioblastoma (class 2) brain tissue samples. Glioblastoma is the brain cancer type with 

the poorest survival rate (Gajjar et al., 2013). Reference methods for detecting these types 

of cancer, such as immunohistochemical detection of isocitrate dehydrogenase (IDH), 

suffers from some limitations, especially their subjective nature (Gajjar et al., 2013). The 

use of IR spectroscopy has the potential to aid tumour differentiation based on a non-

analyst dependent, fast and non-destructive methodology. In this dataset, both tumour 

types are differentiated based on their IR spectrochemical signature. The pre-processed 

IR spectra for dataset 2 are shown in Figure 3.2b. As before, RS, KS and MLM algorithms 

were applied to this dataset separating the data into training and test sets. PCA-LDA was 

applied as a classification method using 9 PCs (Figure 3.3b), accounting to 99% of 

cumulative explained variance. The training performance of this model in dataset 2 is 

shown in Table 3.1, where the RS algorithm presents the best fitting (training and cross-

validation accuracy of 85% and 83%, respectively). The other algorithms (KS and MLM) 

have the lowest fitting performance with accuracies around 80%. Nevertheless, as before, 

the situation is reversed in the test set, where the RS algorithm has the worst sensitivity 

and specificity values (Table 3.2). In the test set, the best sensitivity and specificity values 

are obtained using MLM, with a slightly superior performance than KS algorithm. The 

overall model accuracy also is better for MLM (Figure 3.4), where the accuracy in the 
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test set is observed at 81% using MLM, at 79% using KS, and at 72% using RS. This 

confirms MLM to be the method of choice for this dataset. 

Dataset 3 consists of spectra derived from SHE cells treated with one of three 

agents: B[a]P, class 1; 3-MCA, class 2; or, Anthracene, class 3. Class 1 is composed of 

59 IR spectra, and both class 2 and 3 of 62 spectra. Pre-processed spectra for this dataset 

are shown in Figure 3.2c. PCA-LDA model was built using 10 PCs (99% cumulative 

explained variance) (Figure 3.3c). The best training performance was found using RS 

algorithm, followed by MLM and KS, which had similar fitting (Table 3.1). KS and MLM 

algorithms exhibit similar performance in the test set, with sensitivities and specificities 

for class 1 and 2 >90%. For class 3, both algorithms show 100% specificity and 84% 

sensitivity. On the other hand, the RS algorithm presents a slightly better sensitivity for 

class 3 (89%), but lower sensitivity and specificities for the other classes (<90%). 

Accuracy in the test set was found to be superior for KS (93%), followed by MLM (91%) 

and RS (84%) (Figure 3.4). Similarly to dataset 1, KS has a slightly better performance 

than MLM; however, the figures of merit for MLM are more well-balanced, where 

extreme situations in KS (100% sensitivity or specificity) are not found, but more 

coherent values between these two metrics (i.e., sensitivity and specificity values closer 

to each other). 

Dataset 4 is composed of control and typical virus-infected blood samples. Class 

1 contains 90 IR spectra of control samples; class 2 contains 88 spectra of blood from 

patients with Dengue; class 3 contains 66 spectra of blood from patients with the Zika 

virus; and, class 4 contains 26 spectra of blood from patients with Chikungunya. These 

viruses are transmitted by mosquitos of genus Aedes, having many chemical similarities 

(e.g., Dengue and Zika are from the same family, Flaviviridae), in particular in their 

surface proteins (Santos et al., 2018). Fast clinical diagnosis using reference 

methodologies is difficult; however, IR spectroscopy can be used as an alternative tool 

for viral infection differentiation (Santos et al., 2018). Pre-processed spectra for dataset 

4 are shown in Figure 3.2d. PCA-LDA model was built using 6 PCs (Figure 3.3d), 

accounting for 97% of cumulative explained variance using RS and MLM sample 

selection methods, and 96% using KS sample selection method. RS and MLM exhibit 

similar fitting performance, with accuracies >90% in the training set. KS shows a slightly 

lower training performance with an accuracy of 90% in the training set (Table 3.1). In the 

test set, MLM algorithm shows the best sensitivity and specificity values (Table 3.2), 

followed by KS and RS. The overall accuracy in the test set also follows this trend, where 
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the MLM algorithm has an accuracy of 98%, followed by KS (96%) and RS (94%) 

(Figure 3.4). 

Both datasets 5 and 6 are for diagnosis of ovarian cancer based respectively on 

the Raman and SERS spectra of blood plasma. These techniques have great potential 

towards liquid biopsy diagnosis of ovarian cancer in a minimally-invasive, rapid and 

objective fashion (Paraskevaidi et al., 2018).  Both datasets contain 2 classes, where 

dataset 5 is divided into 162 Raman spectra for class 1 (healthy controls) and 189 Raman 

spectra for class 2 (ovarian cancer); and dataset 6 is divided into 133 SERS spectra for 

class 1 (healthy controls) and 189 SERS spectra for class 2 (ovarian cancer). These spectra 

are shown in Figures 3.2e and 3.2f, respectively. Model construction was performed with 

PCA-LDA using 14 PCs (Figures 3.3e and 3.3f, respectively), which accounted to 98% 

of cumulative variance in dataset 5 and 94% of cumulative variance in dataset 6. Training 

performance was superior using RS in dataset 5 and MLM in dataset 6 (Table 3.1), while 

for prediction of the external test set, the MLM algorithm showed similar classification 

performance in comparison with KS for dataset 5 and the best performance amongst all 

three algorithms in dataset 6 (Table 3.2 and Figure 3.4), where the test accuracy for the 

MLM algorithm was equal to 92% in dataset 5 and 82% in dataset 6, in comparison with 

94% (dataset 5) and 79% (dataset 6) using the KS algorithm, and 91% (dataset 5) and 

70% (dataset 6) using the RS algorithm.  

Finally, 1000 simulations using a normally distributed randomly data were 

performed in order to compare the performance of the RS, KS and MLM algorithms in a 

more robust way. As depicted in Figure 3.5, the MLM algorithm achieved the best 

classification performance in terms of accuracy among all algorithms tested, with an 

average accuracy of 67% in the range between 53-82%. RS algorithm achieved the worst 

accuracy values, with an average of 66% and range 50-80%, while KS achieved an 

accuracy value similar to MLM (67%), but with a poorer lower-limit, where accuracies 

ranged between 50-82%. In addition, the histogram profiles in Figure 3.5 show that 

amongst all 1000 simulations, MLM algorithm achieved the highest frequency peak 

(>150 times) above the average accuracy of 67%, while for RS and KS algorithms the 

highest frequency peak is below the average accuracy of 67%.  
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Figure 3.5. PCA-LDA accuracy distribution and histogram for 1000 simulations using 

normally distributed randomly data, where (a) RS, (b) KS, and (c) MLM algorithm. 

 

These findings confirm the hypothesis that our new MLM algorithm based on a 

random-mutation KS algorithm approach presents a better overall performance than using 

RS or KS algorithms independently, especially due to the well-balanced sensitivity and 

specificity values in the prediction set for real-world samples. The fact that RS 

individually achieved good fitting but a lower predictive performance indicates that this 

algorithm might not include a representative variance in the training model. This 

reinforces the hypothesis that not necessarily an algorithm with good fitting, as 

demonstrated using RS, will generate good predictive results towards external samples. 
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50% 80%

82%50%

67%

a.

b.

c.



104 
 

3.4 Conclusion 
 

Herein, a new data splitting algorithm, called MLM, is proposed. RS, KS and 

MLM algorithms were compared for sample selection using six real-world datasets from 

spectrochemical applications (IR spectroscopy for fungi differentiation, IR spectroscopy 

for brain cancer tissue analysis, IR spectroscopy to investigate agent-treated cells, IR to 

identify viral infection, Raman spectroscopy to detect ovarian cancer, and SERS to detect 

ovarian cancer), where their classification performance are evaluated by means of PCA-

LDA models. The RS algorithm showed the best training performance, having the best 

fitting accuracies. However, when testing external samples, the RS performance was the 

worst amongst the algorithms tested, indicating that RS might not include all sources of 

variation within the training set, creating a non-representative model. The KS algorithm, 

on the other hand, provided much better classification results in comparison with the RS 

algorithm, where the accuracy in the test set is much superior. However, unbalanced 

sensitivities and specificities were often found in the test set using the KS algorithm, 

indicating that one class is far better classified than the other. The MLM algorithm 

combined the good predictive performance of the KS algorithm in terms of accuracy in 

the prediction samples, as also demonstrated with normally distributed randomly-based 

simulations, and has a well-balanced performance of sensitivities and specificities, since 

when using this algorithm these values are closer to each other for real-world datasets. 

The MLM algorithm might be the best algorithm for sample selection in spectrochemical 

applications, since it combines the good spectral representativeness in the test set 

provided by the KS algorithm, with a small degree of randomness that may be found in 

biological applications. 
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CHAPTER 4 | A COMPUTATIONAL PROTOCOL FOR 

SAMPLE SELECTION IN BIOLOGICAL-DERIVED 

INFRARED SPECTROSCOPY DATASETS USING 

MORAIS-LIMA-MARTIN (MLM) ALGORITHM 

 

This chapter is published in Nature Protocol Exchange. It contains a protocol 

showing the use of the MLM algorithm for sample selection in biospectroscopy datasets: 

➢ Morais CLM, Martin FL, Lima KMG. A computational protocol for sample 

selection in biological-derived infrared spectroscopy datasets using Morais-Lima-

Martin (MLM) algorithm. Protocol Exchange, 2018. 

https://doi.org/10.1038/protex.2018.141      

 

Abstract: Infrared (IR) spectroscopy is a powerful analytical technique that can be 

applied to investigate a wide range of biological materials (e.g., biofluids, cells, tissues), 

where a specific biochemical signature is obtained representing the ‘fingerprint’ signal of 

the sample being analysed. This chemical information can be used as an input data for 

classification models in order to distinguish or predict samples groups based on 

computational algorithms. One fundamental step towards building such computational 

models is sample selection, where a fraction of the samples measured during an 

experiment are used for building the classifier, whereas the remaining ones are used for 

evaluating the model classification performance. This protocol shows how sample 

selection can be performed in a computational environment (MATLAB) by using a 

combination of Euclidian-distance calculation and random selection, named Morais-

Lima-Martin (MLM) algorithm, as a previous step before building classification models 

in biological-derived IR datasets. 

 

Author contribution: C.L.M.M. developed the algorithm, performed the data analysis 

and wrote the manuscript. 

 

 

 

 

                                   

Camilo L. M. Morais, PhD candidate                               Prof. Francis L. Martin, Supervisor 

https://doi.org/10.1038/protex.2018.141
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4.1 Introduction 
 

Infrared (IR) spectroscopy is a vibrational spectroscopy technique that generates 

a unique chemical signature representing most of the molecules present in a material. It 

is much used to analyse biological materials (Baker et al., 2014), since it allows building 

protocols for analysing tissues, cells and biofluids in a non-destructive, fast and low-cost 

fashion (Baker et al., 2014; Martin et al., 2010). Computational methods are used to 

maximize processing time and extract relevant information. Chemometric methods are 

often applied to build predictive models where the complex spectral data are transformed 

to chemically-relevant and easy-to-interpret information by means of multivariate 

analysis techniques. In classification applications, samples are assigned to groups based 

on their IR spectrochemical signature. This includes, for example, differentiation of brain 

tumour types (Bury et al., 2019b), identification of neurodegenerative diseases 

(Paraskevaidi et al., 2017b), cervical cancer screening (Neves et al., 2016), endometrial 

and ovarian cancer identification (Paraskevaidi et al., 2018d), identification of prostate 

cancer tissue samples (Siqueira et al., 2017), differentiation of endometrial tissue regions 

(Theophilou et al., 2018), toxicology screening (Duan et al., 2019; Morais et al., 2018b), 

and microbiologic studies involving fungi and virus identification (Costa et al., 2016; 

Morais et al., 2017; Santos et al., 2017). 

However, before model construction, a fundamental step is to split the spectral 

dataset into at least two subsets: training and test. The training set is used for model 

construction and the test set for final model evaluation. Model optimization is often 

performed using cross-validation, where samples from the training set are used in an 

interactive process of model validation. Figure 4.1a contains a flowchart illustrating the 

fundamental steps for model construction. Usually, sample splitting is performed by 

random-selection or Euclidian-distance using the Kennard-Stone (KS) algorithm 

(Kennard & Stone, 1969). This protocol provides a computational methodology for 

sample splitting based on a combination of the Euclidian-distance methodology of KS 

with a random-mutation factor to optimize sample selection, maximizing classification 

rates. This algorithm, named Morais-Lima-Martin (MLM), is illustrated in Figure 4.1b. 
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Figure 4.1. A computational methodology for sample splitting based on a combination 

of the Euclidian-distance methodology of KS with a random-mutation factor to optimize 

sample selection. (a) Flowchart for IR data processing in classification applications; (b) 

illustration of sample selection using MLM algorithm. 

 

4.2 Equipment  
 

4.2.1 Requirements for Running this Protocol 

 

• MATLAB R2014b (version 8.4) or above (https://www.mathworks.com). The 

algorithm, however, might work in older versions of MATLAB; 

• MLM algorithm, available for download at 

https://doi.org/10.6084/m9.figshare.7393517.v1; 

• A classed spectroscopy dataset (a sample dataset is provided together with the 

algorithm). 

 

4.2.2 Preparing Data Files 

 

MLM algorithm only works within MATLAB environment. Data should be 

loaded and saved in .mat format. Spectral data must be organized into matrices, where 

each spectrum corresponds to a row, and spectral variables are distributed among the 

https://www.mathworks.com/
https://doi.org/10.6084/m9.figshare.7393517.v1
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columns. Figure 4.2a illustrates an example of dataset with 2 classes within MATLAB 

environment. 

CAUTION. IR spectra must be pre-processed before sample selection. Pre-processing 

methodologies for IR spectral data of biological materials can be found elsewhere (Baker 

et al., 2014). 

 

4.3 Procedure 
 

Algorithm installation 

(1) Download and extract the “MLM.zip” file to a folder of choice; 

(2) start MATLAB; 

(3) navigate within MATLAB to the folder where the “MLM.zip” file was extracted; 

(4) within MATLAB, right click on the folder “MLM” and select “Add to Path > Selected 

Folders and Subfolders”. 

Selecting the dataset 

To execute the example dataset, go to the folder “MLM > DATASET” within 

MATLAB, and double-click on the file ‘DATASET.mat’. For running the algorithm with 

another dataset, navigate within MATLAB to the “work” folder (i.e., the folder containing 

the dataset of interest), and double-click on it. 

Using MLM algorithm 

MLM algorithm was built to divide the spectral cohort into training and test sets. 

The training set should contain 70% of the samples, and the test set 30% of the samples. 

For this, firstly it is necessary to calculate how many samples must be assigned to the 

training and test set. For example, in the example dataset depicted in Figure 4.2a, class 1 

is divided into 98 samples for training (70%, 0.7 140 = 98) and 42 samples for test (30%, 

0.3 140 = 42); and class 2 is divided into 70 samples for training (70%, 0.7 100 = 70) and 

30 samples for test (30%, 0.3 100 = 30). 
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Figure 4.2. Using the MLM algorithm (a) Example dataset within MATLAB, containing 

140 spectra for class 1 and 100 spectra for class 2; (b) commands for running MLM 

algorithm. 

 

After the number of training and test sample for each class is calculated, the 

algorithm should be applied by typing the commands depicted in Figure 4.2b in the 

MATLAB Command Window. In this figure, the following steps are performed: 

Sample splitting for class 1, where 98 is the number of training samples and 42 is 

the number of test samples: 

[Train1,Test1,Group_Train1,Group_Test1] = mlm(X1,Y1,98,42); 

(2) Sample splitting for class 2, where 70 is the number of training samples and 30 is the 

number of test samples: 

[Train2,Test2,Group_Train2,Group_Test2] = mlm(X2,Y2,70,30); 

(3) Building the Training set by combining the training samples of class 1 and 2: 

Train=[Train1;Train2]; 

(4) Building the Test set by combining the test samples of class 1 and 2: 

Test=[Test1;Test2]; 

(5) Building the group category representing the training samples: 

Group_Train=[Group_Train1;Group_Train2]; 

(6) Building the group category representing the test samples: 
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Group_Test=[Group_Test1;Group_Test2]; 

For more than two classes, the procedure is the same, where the sample splitting 

is performed for each class separately. The random-mutation factor is set as 10% 

(default). 

CAUTION. The number of training and test samples for each class must be an integer 

value. In the case of 70% and 30% generate numbers with decimal places, they must be 

rounded to the closest integer value (e.g., 25.7 to 26; 14.2 to 14; 70.9 to 71; etc). 

 

4.4 Timing 
 

Time is dependent on the computer setup, number of spectra, and number of 

variables (wavenumbers) in the dataset. Time of analysis of each dataset was practically 

instantaneous (<1 second) using the follow computational settings: Intel® CoreTM i7 

(2.80 GHz) processor with 16.0 GB of RAM memory. 

 

4.5 Troubleshooting 
 

If MLM algorithm does not work: verify that the MLM folder containing the 

MATLAB routines was added to the MATLAB path. Also, verify if the input numbers of 

samples (i.e., number of training samples + number of test samples) are equal to the total 

number of samples. 

If you cannot load the sample dataset: verify that your current working directory 

within MATLAB is the folder containing the dataset (folder named ‘DATASET’). 

 

4.6 Anticipated Results 
 

The sample dataset used in this protocol is composed of 140 spectra representing 

control brain tissue samples (class 1) and 100 spectra representing cancer (glioblastoma) 

brain tissue samples (class 2) (Figure 4.3a). Further details about this dataset can be found 

in Gajjar et al. (2013). Samples were divided into training (70%) and test (30%) sets as 
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depicted in Figure 4.2b. Two classification algorithms were applied: principal component 

analysis linear discriminant analysis (PCA-LDA) (Morais & Lima, 2018) and partial least 

squares discriminant analysis (PLS-DA) (Brereton & Lloyd, 2014). PCA-LDA was 

applied using 9 principal components (99% cumulative explained variance) with cross-

validation venetian blinds (10 data splits). Similarly, PLS-DA was performed using 9 

latent variables (98% cumulative explained variance) with cross-validation venetian 

blinds (10 data splits). Models were built using the Classification Toolbox for MATLAB 

(http://www.michem.unimib.it/) (Ballabio & Consonni, 2013) and the PLS Toolbox 

version 7.9.3 (Eigenvector Research, Inc., US). Data were mean-cantered before analysis. 

The classification performance of these algorithms in the training and test sets are shown 

in Table 4.1. In both PCA-LDA and PLS-DA, the accuracy values of the training and test 

sets are similar, indicating absence of overfitting. Also, MLM algorithm provided well-

balanced sensitivities and specificities, indicating that the classification methods have 

similar predictive performance in both classes (control and cancer).  

PLS-DA model achieved the best classification performance, with an accuracy of 

94% in the test set. Figure 4.3b shows the discriminant function (DF) graph of PCA-LDA, 

where some superposition between control and cancer samples are observed. On the other 

hand, the DF graph for PLS-DA (Figure 4.3c), shows a clear separation between the two 

group of samples, with only a few cancer samples misclassified as control. The receiver 

operating characteristic (ROC) curve for PLS-DA shows the great performance of this 

algorithm towards differentiation of control and cancer brain tissue, where an area under 

the curve (AUC) value of 0.971 is obtained (Figure 4.3d). Glioblastoma is the type of 

brain cancer with the poorest survival rate, particularly due to its poor prognosis, and its 

clinical diagnosis is much dependent on subjective and time-consuming analysis (Gajjar 

et al., 2013). New clinical methodologies for tumour detection are needed in order to 

overcome these limitations; and IR spectroscopy, due to its non-destructive nature, fast 

data acquisition and processing, and relative low-cost might aid this type of diagnosis in 

the future. This protocol demonstrates the usage of sample selection, by means of MLM 

algorithm, for building classification models with good predictive performance in IR 

spectral datasets of biological-derived applications. 

http://www.michem.unimib.it/
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Figure 4.3. The sample dataset used in this protocol. (a) Pre-processed spectra (in blue: 

control samples; in red: cancer samples); (b) discriminant function (DF) graph 

representing the canonical variables of PCA-LDA (circles: training samples; diamonds: 

test samples); (c) discriminant function (DF) graph showing the predicted values of PLS-

DA (circles: training samples; diamonds: test samples); (d) Receiver operating 

characteristic (ROC) curve for PLS-DA, where AUC stands for area under the curve. 

 

Table 4.1. Classification performance of PCA-LDA and PLS-DA algorithms applied to 

the sample dataset. 

Algorithm Subset Accuracy (%)  Sensitivity (%) Specificity (%) 

PCA-LDA Training 82 83 80 

 Cross-

validation 

77 82 71 

 Test 81 81 80 

PLS-DA Training 98 99 97 

 Cross-

validation 

96 97 96 

 Test 94 98 90 
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CHAPTER 5 | DETERMINATION OF MENINGIOMA 

BRAIN TUMOUR GRADES USING RAMAN 

MICROSPECTROSCOPY IMAGING 

 

This chapter is published in Analyst (IF 4.019). It demonstrates the use of Raman 

microspectroscopy imaging to discriminate meningioma brain tumour grades based on 

chemometric techniques: 

➢ Morais CLM, Lilo T, Ashton KM, Davis C, Dawson TP, Gurusinghe N, Martin 

FL. Determination of meningioma brain tumour grades using Raman 

microspectroscopy imaging. Analyst 2019; 144: 7024–7031. 

https://doi.org/10.1039/C9AN01551E  

 

Abstract: Raman spectroscopy is a powerful technique used to analyse biological 

materials, where spectral markers such as proteins (1500–1700 cm−1), carbohydrates 

(470–1200 cm−1) and phosphate groups of DNA (980, 1080–1240 cm−1) can be detected 

in a complex biological medium. Herein, Raman microspectroscopy imaging was used to 

investigate 90 brain tissue samples in order to differentiate meningioma Grade I and 

Grade II samples, which are the commonest types of brain tumour. Several classification 

algorithms using feature extraction and selection methods were tested, in which the best 

classification performances were achieved by principal component analysis-quadratic 

discriminant analysis (PCA-QDA) and successive projections algorithm-quadratic 

discriminant analysis (SPA-QDA), resulting in accuracies of 96.2%, sensitivities of 

85.7% and specificities of 100% using both methods. A biochemical profiling in terms of 

spectral markers was investigated using the difference-between-mean (DBM) spectrum, 

PCA loadings, SPA-QDA selected wavenumbers, and the recovered imaging profiles 

after multivariate curve resolution alternating least squares (MCR-ALS), where the 

following wavenumbers were found to be associated with class differentiation: 850 cm−1 

(amino acids or polysaccharides), 1130 cm−1 (phospholipid structural changes), the region 

between 1230–1360 cm−1 (Amide III and CH2 deformation), 1450 cm−1 (CH2 bending), 

and 1858 cm−1 (C=O stretching). These findings highlight the potential of Raman 

microspectroscopy imaging for determination of meningioma tumour grades. 

 

Author contribution: C.L.M.M. performed the experiments, data analysis and wrote the 

manuscript. 

 

 

                                   

Camilo L. M. Morais, PhD candidate                               Prof. Francis L. Martin, Supervisor 

https://doi.org/10.1039/C9AN01551E


114 
 

5.1 Introduction 
 

Raman spectroscopy provides sensitive spectrochemical signatures of materials 

based on their molecular polarisability changes (Kelly et al., 2011). Raman is based on 

an inelastic scattering phenomenon that occurs in less than 1% of the absorbed photons 

by a molecule. This inelastic scattering is composed of Stokes and anti-Stokes scattering: 

the former occurs when the molecule emits a photon with less energy than the absorbed 

incoming radiation, and the latter happens when the molecule emits a photon with higher 

energy than the absorbed incoming radiation (Santos et al., 2017). At room temperature, 

the Stokes scattering is more frequent, thus most instruments filter the elastic and anti-

Stokes scattering and record the Stokes scattering signal as the final Raman spectrum. 

Microspectroscopy Raman imaging allows one to obtain microscopically spatially 

distributed spectral data, where each position in the image is composed of a Raman 

spectrum in a specific wavenumber range. The hyperspectral image data are represented 

by three-dimensional (3D) arrays, where the spatial coordinates are present in the x- and 

y-axis while the spectral information is in the z-axis. A major advantage of Raman 

imaging is that it can be non-destructive depending on the incident laser frequency, has 

minimum water interference, and has a relatively low cost in comparison with other 

analytical techniques. 

Raman imaging has been used in a wide range of applications, including 

pharmaceutical analysis (Kandpal et al., 2018), forensic investigations (Almeida et al., 

2017), food quality control (Yaseen et al., 2017), and to analyse biological materials 

(Butler et al., 2016). In the latter, cancer detection plays an important role, where Raman 

imaging has been successfully applied to investigate breast (Abramczyk & Brozek-

Pluska, 2013), cervical (Diem et al., 2013), lung (Diem et al., 2013), skin (Lui et al., 

2012), cancer (Kirsch et al., 2010), and ovarian cancer (Morais et al., 2019e). 

Most of brain cancers are gliomas or meningioma tumours (Gajjar et al., 2013). 

Gliomas are more aggressive types of tumours and have been widely investigated using 

Raman spectroscopy (Bury et al., 2019b; Desroches et al., 2018; Gajjar et al., 2013; 

Livermore et al., 2019), while meningiomas remain to be intensively investigated using 

vibrational spectroscopy. Meningiomas represent 20% to 35% of all primary intracranial 

tumours (Takahashi et al., 2019). The majority of them occur in a supratentorial location; 

however, a few of them can arise in the posterior cranial fossa and, more rarely, as 
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extracranial meningiomas (Takahashi et al., 2019). It usually manifests as single or 

sporadic lesions, causing symptoms such as sensory and motor deficits and gait 

disturbance; while multiple meningiomas are often associated with neurofibromatosis 

type II (Yeo et al., 2019). Meningiomas can be divided into WHO Grade I, Grade II and 

Grade III. Grade I meningiomas are the commonest type of tumours, with slower growth 

and lower likelihood of recurrence; Grade II meningiomas also have a slower growth but 

higher likelihood of recurrence; and Grade III meningiomas are a very rare type of tumour 

with fast growing rate and much higher likelihood of recurrence. Surgical outcomes and 

treatment are dependent on the meningioma grade and histological subtypes (Yeo et al., 

2019). 

In this thesis, Raman microspectroscopy imaging is applied to distinguish Grade 

I and Grade II meningiomas via the application of several chemometric approaches, 

including combination of feature extraction and selection methods with discriminant 

analysis techniques, and multivariate curve resolution alternating least squares (MCR-

ALS) for profiling and differentiation of Grade I and Grade II tumour tissues. 

 

5.2 Materials and Methods 
 

5.2.1 Samples 

 

Ninety brain tissue samples (66 meningiomas WHO Grade I, 24 meningiomas 

WHO Grade II) were analysed by a Renishaw InVia Basis Raman spectrometer coupled 

to a confocal microscope (Renishaw plc, UK). All samples were sourced from the Brain 

Tumour North West (BTNW) biobank (NRES14/EE/1270). All experiments were 

performed in accordance with the STEMH (Science, Technology, Engineering, Medicine 

and Health) Guidelines at the University of Central Lancashire, and approved by the 

ethics committee at the University of Central Lancashire (STEMH 917). Informed 

consents were obtained from human participants of this study. Formalin-fixed paraffin-

embedded (FFPE) tissue specimens (10-μm-thick) were placed onto aluminium-covered 

glass slides for spectroscopy measurement. Microspectroscopy imaging was performed 

with an acquisition area of approx. 100 x 50 μm (50× magnification, 785 nm laser, 50% 

laser power (150 mW), 0.1 s exposure time, 780–1858 cm-1 spectral range) using the 

StreamHRTM imaging technique (high-confocality mode) with a grid area of 42 x 28 
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pixels, resulting in 1176 spectra for each image (1 cm-1 data spacing). The laser power 

was set relatively high to ensure a good signal-to-noise ratio. To minimize any potential 

photodamage to the sample, the laser exposure time was set to only 0.1 s. Moreover, no 

damage was visually observed in the samples after measurement. The imaging acquisition 

time was approx. 8 min for each sample. 

 

5.2.2 Computational Analysis 

 

The Raman images were converted into suitable .txt files using the Renishaw 

WiRE software, and processed using MATLAB R2014b (MathWorks, Inc., USA) with 

lab-made routines. All the samples’ images were pre-processed by cosmic rays (spikes) 

removal, Savitzky-Golay smoothing (window of 15 points, 2nd order polynomial fitting), 

and asymmetric least squares baseline correction. The window size in the Savitzky-Golay 

smoothing was determined visually by testing different window sizes, where the smallest 

window size that removed random noise and kept the same spectral shape and intensity 

without smoothing-out relevant spectral peaks was chosen. MCR-ALS was applied to the 

image data using the HYPER-Tools toolbox in MATLAB (Mobaraki & Amigo, 2018). 

First-order classification. Each pre-processed image with size 42 x 28 x 1015 was 

averaged into a single spectrum (1 x 1015) as the classification was performed on a 

sample basis. Initially, an outlier detection test was performed by a Hotelling T2 versus Q 

residuals test (Morais et al., 2019c). The remaining samples after outlier removal were 

split into training (60%), validation (20%) and test (20%) sets using the MLM sample 

selection algorithm (Morais et al., 2018a; Morais et al., 2019d). All data were mean-

centred before further analysis. 

 For feature extraction and classification, principal component analysis combined 

with linear discriminant analysis (PCA-LDA), quadratic discriminant analysis (PCA-

QDA) and support vector machines (PCA-SVM) were applied to the pre-processed data. 

PCA reduces the pre-processed spectral variables to a small number of principal 

components (PCs) responsible for the majority of the original data-explained variance. 

Each PC is orthogonal to each other and is generated in a decreasing order of explained 

variance, where the first PC explains most of the data variance, followed by the second 

PC, and so on. The PCs are composed of scores and loadings, the scores representing the 

variance on the sample direction, thus being used to identify similarities and 
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dissimilarities between the samples; and, the loadings represent the variance on the 

wavenumber direction, being used to identify possible spectral markers associated with 

class differentiation (Bro & Smilde, 2014). PCA decomposition takes the form (Bro & 

Smilde, 2014): 

𝐗 = 𝐓𝐏𝐓 + 𝐄           (5.1) 

where 𝐗 is a matrix containing the mean-centred pre-processed spectral data; 𝐓 is a matrix 

containing the PCA scores for a determined number of PCs; 𝐏 is a matrix containing the 

PCA loadings for a determined number of PCs; 𝐄 is a residual matrix; and the superscript 

𝐓 represents the matrix transpose operation. 

 In PCA-LDA, PCA-QDA and PCA-SVM, a PCA model is applied to the pre-

processed data and then a LDA, QDA or SVM classifier is applied to the PCA scores, 

respectively. LDA and QDA are discriminant analysis methods based on a Mahalanobis 

distance calculation. LDA assumes classes having similar variance structures, therefore 

using a pooled covariance matrix to calculate the classification score for each class, while 

QDA assumes classes having different variance structures, therefore using the variance-

covariance matrix for each class individually when calculating the classification score 

(Dixon & Brereton, 2009; Morais & Lima, 2018). The LDA (𝑳𝒊𝒌) and QDA (𝑸𝒊𝒌) 

classification scores can be calculated in a non-Bayesian form by (Dixon & Brereton, 

2009; Morais & Lima, 2018):  

𝑳𝒊𝒌 = (𝐱𝒊 − �̅�𝒌)𝐓𝐂𝐩𝐨𝐨𝐥𝐞𝐝
−𝟏 (𝐱𝒊 − �̅�𝒌)        (5.2) 

𝑸𝒊𝒌 = (𝐱𝒊 − �̅�𝒌)𝐓𝐂𝒌
−𝟏(𝐱𝒊 − �̅�𝒌)        (5.3) 

 

where 𝐱𝒊 is a vector containing the input classification variables (e.g., PCA scores) for 

sample 𝒊; �̅�𝒌 is the mean vector of input classification variables for class 𝒌; 𝐂𝐩𝐨𝐨𝐥𝐞𝐝 is the 

pooled covariance matrix; and 𝐂𝒌 is the variance-covariance matrix of class 𝒌. 𝐂𝐩𝐨𝐨𝐥𝐞𝐝 

and 𝐂𝒌 are calculated as follows (Morais & Lima, 2018): 

𝐂𝐩𝐨𝐨𝐥𝐞𝐝 =
𝟏

𝒏
∑ 𝒏𝒌𝐂𝒌

𝑲
𝒌=𝟏          (5.4) 

𝐂𝒌 =
𝟏

𝒏𝒌−𝟏
∑ (𝐱𝒊 − �̅�𝒌)(𝐱𝒊 − �̅�𝒌)𝐓𝒏𝒌

𝒊=𝟏         (5.5) 

in which 𝒏 is the total number of samples in the training set; 𝑲 is the total number of 

classes; and 𝒏𝒌 is the number of samples in class 𝒌.  

 SVM is a binary linear classifier with a non-linear step called the kernel 

transformation (Cortes & Vapnik, 1995). A kernel function transforms the input data 
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space into a feature space by a applying a mathematical transformation which is often 

non-linear. Then, a linear decision boundary is fit between the closest samples to the 

border of each class (called support vectors), where each class is defined. SVM 

classification is performed as follows (Cortes & Vapnik, 1995; Morais et al., 2017): 

𝒇(𝒙) = 𝐬𝐢𝐠𝐧(∑ 𝜶𝒊𝒚𝒊𝛟(𝐱𝒊, 𝐳𝒋) + 𝒃
𝑵𝑺𝑽
𝒊=𝟏 )       (5.6) 

where 𝐱𝒊 and 𝐳𝒋 are vectors containing sample measurement vectors (e.g., PCA scores);  

𝑵𝑺𝑽 is the number of support vectors; 𝜶𝒊 is the Lagrange multiplier for sample 𝒊; 𝒚𝒊 is the 

class membership of sample 𝒊 (±1); 𝛟(𝐱𝒊, 𝐳𝒋) is the kernel function; and 𝒃 is the bias 

parameter.  

 SVM was performed using a radial basis function (RBF) kernel, which is defined 

by (Morais et al., 2017): 

𝛟(𝐱𝒊, 𝐳𝒋) = 𝐞𝐱𝐩 (−𝜸‖𝐱𝒊 − 𝐳𝒋‖
𝟐

)        (5.7) 

where 𝜸 is the kernel parameter that determines the RBF width. Cross-validation venetian 

blinds with 10 data splits was performed to optimise the bias and kernel parameter. 

 Some feature selection techniques were used to analyse the image spectral data. 

Successive projections algorithm (SPA) (Soares et al., 2013) and genetic algorithm (GA) 

(McCall, 2005) were used coupled with LDA, QDA and SVM. SPA is a forward feature 

selection method which operates by minimising the co-linearity of original pre-processed 

spectra; thus, selecting wavenumbers whose information content is minimally redundant 

(Theophilou et al., 2018). GA is an iterative algorithm inspired by Mendelian genetics, 

where the pre-processed spectral data is reduced to a set of selected wavenumbers based 

on an evolutionary process (McCall, 2005). For this, a set of variables is randomly chosen 

to go through combinations, cross-overs and mutations until the best set of variables 

reaches the minimum of a pre-defined cost function (McCall, 2005; Santos et al., 2017). 

The optimum number of variables for SPA and GA is obtained by minimizing the average 

risk 𝑮 of misclassification in the validation set (Theophilou et al., 2018; Siqueira et al., 

2017): 

𝑮 =
𝟏

𝑵𝑽
∑ 𝒈𝒏

𝑵𝑽
𝒏=𝟏           (5.8) 

where 𝑵𝑽 is the number of samples in the validation set and 𝒈𝒏 is defined by: 

𝒈𝒏 =
𝒓𝟐(𝐱𝒏,𝒎𝑰(𝒏))

𝐦𝐢𝐧𝑰(𝒎)≠𝑰(𝒏) 𝒓𝟐(𝐱𝒏,𝒎𝑰(𝒎))
         (5.9) 
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where 𝒓𝟐(𝐱𝒏, 𝒎𝑰(𝒏)) is the squared Mahalanobis distance between sample 𝐱𝒏 of class 

𝑰(𝒏) and the centre of its true class (𝒎𝑰(𝒏)); and 𝒓𝟐(𝐱𝒏, 𝒎𝑰(𝒎)) is the squared 

Mahalanobis distance between object 𝐱𝒏 and the centre of the closest incorrect class 

(𝒎𝑰(𝒎)). The GA routine was carried out using 100 generations containing 200 

chromosomes each. Cross-over and mutation probabilities were set to 60% and 1%, 

respectively. The algorithm was repeated three times, starting from different random 

initial populations, and the best solution in terms of fitness value was employed. 

MCR-ALS. Multivariate curve resolution alternating least squares (MCR-ALS) assumes 

a bilinear model that is the multi-wavelength extension of the Beer-Lambert’s law. It 

decomposes an experimental matrix 𝐃 into concentration and spectral profiles as follows 

(Jaumot et al., 2015): 

𝐃 = 𝐂𝐒𝐓 + 𝐄           (5.10) 

where 𝐂 is a matrix containing the concentration profiles for a determined number of pure 

components in 𝐃; 𝐒 is a matrix containing the spectral profiles for the pure components 

in 𝐃; and 𝐄 is a residual matrix. 

 MCR-ALS can remove noise and physical/chemical interferences from the 

spectral matrix 𝐃, and allow one to recover the pure concentration and spectral profiles 

of the components that make the spectral matrix 𝐃. MCR-ALS is very useful to handle 

image data since it allows the reconstruction of image maps based on the recovered 

concentration profiles, where one can identify spatial and chemical differences between 

the samples being imaged (Prats-Montalbán et al., 2011). 

Model validation. The models were validated by calculating some quality parameters 

such as accuracy, sensitivity, specificity, and F-score. Accuracy represents the total 

number of samples correctly classified considering true and false negatives; sensitivity 

represents the proportion of positives that are correctly classified; specificity represents 

the proportion of negatives that are correctly classified; and, F-score measures the model 

performance considering imbalanced data (Morais & Lima, 2017). The equations to 

calculate these parameters are depicted in Table 5.1. In addition, the area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve was evaluated to assess 

model quality. AUC values between 0.7 and 0.8 are considered acceptable, between 0.8 

and 0.9 are considered excellent, and above 0.9 are considered outstanding (Mandrekar, 

2010). 
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Table 5.1. Quality parameters for model validation. Where: TP stands for true positive, 

TN for true negative, FP for false positive, and FN for false negative. 

Parameter Equation 

Accuracy (%) 
(

𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐅𝐏 + 𝐓𝐍 + 𝐅𝐍
) × 𝟏𝟎𝟎 

Sensitivity (%) 
(

𝐓𝐏

𝐓𝐏 + 𝐅𝐍
) × 𝟏𝟎𝟎 

Specificity (%) 
(

𝐓𝐍

𝐓𝐍 + 𝐅𝐏
) × 𝟏𝟎𝟎 

F-score 𝟐 × 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 × 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 + 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲
 

 

  

5.3 Results and Discussion 
 

Ninety brain tissue samples (66 meningiomas Grade I, 24 meningiomas Grade II) 

were analysed by Raman microspectroscopy imaging. The median microscopic and 

Raman image for meningiomas Grade I and Grade II are depicted in Figures 5.1a–1d (the 

colour figures represent the mean response (average Raman intensity between 780–1858 

cm-1) of the median image for each group). Notably, each image presents different visual 

features due to the different distributions of chemicals on the sample surface, but their 

spectrochemical profile are very similar as shown in Figure 5.1e and 5.1f, indicating that 

chemical differences between meningiomas Grade I and Grade II are not visually clear. 

The pre-processed spectra from the images acquired in the spectral range between 

780–1858 cm-1 (Figure 5.1f) were used for further analysis. This spectral region includes 

the Raman fingerprint region, hence, encompassing spectrochemical signals of the main 

biomolecules present in the tissue samples (Kelly et al., 2011). The assignment of the 

main peaks of the pre-processed Raman spectrum is depicted in Figure 5.1f. These include 

C-C stretching [ν(C-C)1] in amino acids or polysaccharides at 850 cm-1, C-C stretching 

[ν(C-C)2] in proteins at 890 cm-1, C-C stretching [ν(C-C)3] in amino acids at 930 cm-1, C-

C stretching [ν(C-C)4] in phenylalanine at 1003 cm-1, phospholipid structural changes at 

1130 cm-1, Amide III peak at 1265 cm-1, CH2 bending [δ(CH2)1] in lipids at 1296 cm-1, 

CH3/CH2 deformation modes in DNA/RNA at 1336 cm-1, CH2 bending [δ(CH2)2] in 

malignant tissues at 1450 cm-1, NH2 bending [δ(NH2)] in cytosine at 1610 cm-1, and 

Amide I absorption at 1665 cm-1 (Movasaghi et al., 2007). Some of these peaks are 

discriminant features between the samples and some of them are common amongst the 
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tumour types. The identification of relevant distinguishing spectral features between 

Grade I and Grade II samples are achieved by chemometric techniques. 

 

Figure 5.1. Median Raman miscrospectroscopy images. (a) Microscopic image of Grade 

I meningioma tissue; (b) microscopic image of Grade II meningioma tissue; (c) median 

raw image for meningioma Grade I samples; (d) median raw image for meningioma 

Grade II samples; (e) median raw spectra for meningiomas Grade I and Grade II; (f) 

median pre-processed spectra (Savitzky-Golay smoothing and asymmetric least squares 

baseline correction) for meningiomas with a tentative assignment of the main Raman 

peaks. Grade I and Grade II. Colour bar: Raman intensity. ν: stretching vibration, δ: 

bending. 

 

Initially, outlier detection was performed by a Hotelling T2 versus Q residuals test, 

where 4 samples (2 meningiomas Grade I, 2 meningiomas Grade II) were removed (see 

Appendix B Figure B1). First-order algorithms were used to analyse the pre-processed 

spectral data after outlier removal. 
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Feature extraction and classification by means of PCA-LDA, PCA-QDA and 

PCA-SVM; and feature selection and classification by means of SPA-LDA, SPA-QDA, 

SPA-SVM, GA-LDA, GA-QDA and GA-SVM, were applied to distinguish meningiomas 

Grades I and II on sample basis. Amongst the PCA-based algorithms (using 8 PCs, 

98.94% explained variance, see ESI Figure S2 Appendix‡), the best performance was 

obtained with PCA-QDA (96.2% accuracy, 85.7% sensitivity, 100% specificity, and F-

score = 92.3%). Also, SPA-QDA was the best algorithm amongst SPA-based methods, 

with the same performance of PCA-QDA. GA-based methods showed overall poorer 

performance, where the best algorithm (GA-QDA) achieved 73.1% accuracy but 0% 

sensitivity, indicating that GA-based models are most likely overfitted. More details 

about the predictive performance of each of these algorithms are provided in Table 5.2. 

 The ROC curve for PCA-QDA and SPA-QDA models are shown in Figure 5.2, 

where the AUC value was found at 0.929 indicating an outstanding classification 

performance for both algorithms. 

Table 5.2. Quality parameter for distinguishing Grade I and Grade II meningiomas in the 

test set. 

Algorithm Accuracy Sensitivity Specificity F-score 
PCA-LDA 46.2% 85.7% 31.6% 46.2% 
PCA-QDA 96.2% 85.7% 100% 92.3% 
PCA-SVM 61.6% 28.6% 73.7% 41.2% 
SPA-LDA 57.7% 100% 42.1% 49.3% 
SPA-QDA 96.2% 85.7% 100% 92.3% 
SPA-SVM 34.6% 71.4% 21.1% 32.5% 
GA-LDA 61.5% 57.1% 63.2% 60.0% 
GA-QDA 73.1% 0% 100% 0% 
GA-SVM 42.3% 42.9% 42.1% 42.5% 

 

QDA-based algorithms exhibit superior performance in comparison with LDA- 

and SVM-based methods. Usually, for complex biological data, QDA outperforms LDA 

since QDA-based algorithms model each class variance individually, while LDA assumes 

classes having similar variance structures (Morais & Lima, 2018). This occurs because 

the performance of QDA ultimately depends on the variance structure of the data. QDA 

is expected to work better than LDA for most biological applications, since quite 

commonly biological samples are composed of complex chemical matrices with different 

variances structures for each class. For example, diseases’ samples can have a smaller 

variance distribution than healthy control samples, since the latter can be composed of 

individuals with different life habits, while patients with a same specific disease usually 
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have a similar life-style. The same can occur with different tumour grades, where one 

class can assume a different variance distribution in comparison with the other. The only 

situation where QDA underperforms LDA is when the number of samples in the dataset 

is small (Wu et al., 1996), since the variance of each group might not be totally covered 

by QDA hence increasing the degree of extrapolation needed and commonly leading the 

model to overfitting. 

SVM-based models seem to be highly overfitted, since the training performance 

for these algorithms are excellent (see ESI Table S1, Appendix‡), with near 100% correct 

classification rates; however, test performance is highly affected as demonstrated in Table 

5.2. SVM classification performance would probably improve by adding more samples 

to the training set, thus creating a most representative training model. Nevertheless, PCA-

QDA and SPA-QDA performance are both excellent in the test set, indicating that these 

algorithms are robust to provide a satisfactory prediction towards external samples. 

 

Figure 5.2. Receiver operating characteristic (ROC) curve for PCA-QDA and SPA-

QDA. AUC: area under the curve. 

 

The difference-between-mean (DBM) spectrum, PCA loadings on PC1 (56.64% 

explained variance), and SPA-QDA selected variables are shown in Figure 5.3. The PCA 

loadings indicate higher coefficients at ~850 cm-1, ~1003 cm-1, ~1130 cm-1, ~1337 cm-1, 

~1450 cm-1,  ~1665 cm-1, and ~1858 cm-1; and the SPA-QDA selected variables are: ~850 
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cm-1, ~1130 cm-1, ~1245 cm-1, ~1337 cm-1, ~1450 cm-1, and ~1858 cm-1. Only the variable 

at 1245 cm-1 selected by SPA-QDA does not have a high PCA loadings, while the other 

variables selected by SPA-QDA are very close or are a perfect match with the ones 

observed in PCA-QDA. The list of PCA and SPA-QDA selected variables and tentative 

assignment according to Movasaghi et al. (2007) are shown in Table 5.3. The Raman shift 

at 1858 cm-1 is unknown based on this reference, but this wavenumber has been associated 

to C=O stretching in other literature (Mayo et al., 2003). The peak at around 850 cm-1 has 

been previously detected in meningioma samples as belonging to tyrosine (Mehta et al., 

2018), an α-amino acid that constitute important structures in proteins responsible for 

signal transduction processes (Kato et al., 1993); and the peaks at 1003 cm-1 

(phenylalanine) and 1450 cm-1 (CH2 bending in DNA) have also been reported as 

biomarkers of meningioma tumours (Mehta et al., 2018; Zhou et al., 2012). Phospholipids 

(1130 cm-1), Amide III (1245 cm-1) and Amide I (1665 cm-1) have been reported for brain 

tumours in general (Gajjar et al., 2013; Zhou et al., 2012). 

 

Figure 5.3. PCA loadings and SPA-QDA selected variables. (a) Difference-between-

mean (DBM) spectrum (+ values: higher intensity in meningioma Grade I samples; - 

values: higher intensity in meningioma Grade II samples); (b) PCA loadings on PC1; (c) 

average training set spectrum and SPA-QDA selected variables (red circles) with their 

tentative assignment. ν: stretching vibration, δ: bending. 
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Table 5.3. Tentative assignment of PCA and SPA-QDA selected variables to distinguish 

meningiomas Grade I and Grade II. DBM: difference-between-mean spectrum, where ↑ 

represents higher intensity in meningioma Grade I samples, and ↓ represents higher 

intensity in meningioma Grade II samples. 

Peak Algorithm Assignment DBM 
850 cm-1 PCA/SPA-QDA Amino acids or polysaccharides ↑ 
1003 cm-1 PCA C-C in phenylalanine ↑ 
1130 cm-1 PCA/SPA-QDA Phospholipid structural changes ↓ 
1245 cm-1 SPA-QDA Amide III ↑ 
1337 cm-1 PCA/SPA-QDA Amide III and CH2 wagging vibrations ↑ 
1450 cm-1 PCA/SPA-QDA CH2 bending ↑ 
1665 cm-1 PCA Amide I ↑ 
1858 cm-1 PCA/SPA-QDA C=O stretching ↑ 

 

MCR-ALS was employed to resolve the median Grade I and Grade II meningioma 

images in order to identify spectrochemical changes associated with tumour 

aggressiveness. MCR-ALS was performed with 4 components selected by singular value 

decomposition (99.99% explained variance, 0.21 lack of fit, non-negativity in 

concentration mode). The recovered concentration and spectral profiles of the 4 

components are depicted in the ESI Figure S3 (Appendix‡). The 1st component of MCR-

ALS was found to be associated with Grade II appearance (Figure 5.4a), once it is clearly 

present in the Grade II tissue sample. The spectral profile of the 1st component (Sopt 1) 

indicates distinguishing features at the region between 1230 cm-1 and 1360 cm-1 in 

comparison with the spectral profiles for other components (see ESI Figure S3 

Appendix‡), where three peaks (1265 cm-1, 1296 cm-1 and 1336 cm-1) are presents. These 

peaks are associated with Amide III, CH2 deformation in lipids, and CH2/CH3 twisting in 

polynucleotide chains, respectively (Movasaghi et al., 2007). This region encompasses 

the wavenumber at 1337 cm-1 (amide III and CH2 wagging vibrations) in Table 5.3. 

Similarly to Figure 5.1f, the peaks at 850 cm-1 [ν(C-C)1, amino acids or polysaccharides], 

890 cm-1 [ν(C-C)2, proteins], 930 cm-1 [ν(C-C)3, amino acids], 1003 cm-1 [ν(C-C)4, 

phenylalanine], 1130 cm-1 (phospholipids), 1265 cm-1 (Amide III),  1296 cm-1 [δ(CH2)1, 

lipids], 1336 cm-1 [δ(CH3/CH2), DNA/RNA], 1450 cm-1 [δ(CH2)2, malignant tissue], and 

1665 cm-1 (Amide I) are also present. In addition, other peaks at 1060 cm-1 [ν(PO2
-), 

DNA/RNA], 1100 cm-1 [ν(C-C)5, lipids], and a small arm at 1459 cm-1 [δ(CH2)3, 

deoxyribose] ((Movasaghi et al., 2007) are observed as distinguishing features in the 

MCR-ALS Sopt 1 profile. 

Bury et al. (2019c) have recently used Raman spectroscopy to discriminate 

meningioma Grade I brain tissue among different brain pathologies (low-grade glioma, 
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high-grade glioma, metastasis, lymphoma, and no-tumour) with 94.8% accuracy, 63.9% 

sensitivity and 97.1% specificity using PCA-LDA with smear-based samples; and, 

meningioma Grade I brain tissue among low-grade glioma, high-grade glioma, metastasis 

and lymphoma with 90.8% accuracy, 91.7% sensitivity and 90.8% specificity using PCA-

LDA with FFPE samples. Mehta et al. (2018) have recently used Raman spectroscopy to 

discriminate healthy controls and meningioma patients based on serum using PCA-LDA. 

Seventy patients (35 controls, 35 meningiomas) were analysed, resulting in 70% accuracy 

to distinguish meningiomas versus controls in an independent test set; 72% accuracy to 

distinguish meningiomas Grade I versus controls; and 80% accuracy to distinguish 

meningiomas Grade II versus controls. The results reported herein (96.2% accuracy, 

85.7% sensitivity, 100% specificity) are very promising to distinguish meningioma tissue 

grades, which is critical to delineate patient treatment; and also evidences the potential of 

Raman spectroscopy to investigate brain tumour tissues. 

 

Figure 5.4. MCR-ALS results. (a) Recovered image using the MCR-ALS concentration 

profile for the 1st component; (b) MCR-ALS spectral profile for the 1st component with 

its tentative spectral markers assignment. Colour bar: relative concentration.   
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5.4 Conclusion 
 

Ninety meningioma brain tissue samples (66 meningiomas Grade I, 24 

meningiomas Grade II) were investigated using Raman microscpectroscopy imaging. 

Several chemometric algorithms were applied to distinguish the samples according to the 

tumour grade, where PCA-QDA and SPA-QDA were found to have to best classification 

performance at 96.2% accuracy, 85.7% sensitivity and 100% specificity (AUC = 0.929). 

Spectral bio-markers at 850 cm-1, 1130 cm-1, 1337 cm-1, 1450 cm-1 and 1858 cm-1 were 

found in common using both PCA-QDA and SPA-QDA, and a further analysis using 

MCR-ALS indicated distinguishing features at the region between 1230–1360 cm-1 

associated with increases in the WHO meningioma tumour grade. The classification 

results found by PCA-QDA and SPA-QDA are very promising, and show the potential 

of Raman microspectroscopy to distinguish meningioma tissue grades, thus aiding 

clinicians to delineate patient treatment. 
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CHAPTER 6 | A THREE-DIMENSIONAL PRINCIPAL 

COMPONENT ANALYSIS APPROACH FOR 

EXPLORATORY ANALYSIS OF HYPERSPECTRAL 

DATA: IDENTIFICATION OF OVARIAN CANCER 

SAMPLES BASED ON RAMAN MICROSPECTROSCOPY 

IMAGING OF BLOOD PLASMA 

 

This chapter is published in Analyst (IF 4.019). It demonstrates a new method 

(3D-PCA) for exploratory analysis of hyperspectral images: 

➢ Morais CLM, Martin-Hirsch PL, Martin FL. A three-dimensional principal 

component analysis approach for exploratory analysis of hyperspectral data: 

identification of ovarian cancer samples based on Raman microspectroscopy 

imaging of blood plasma. Analyst 2019; 144: 2312–2319. 

https://doi.org/10.1039/C8AN02031K  

 

Abstract: Hyperspectral imaging is a powerful tool to obtain both chemical and spatial 

information of biological systems. However, few algorithms are capable of working with 

full three-dimensional images, in which reshaping or averaging procedures are often 

performed to reduce the data complexity. Herein, we propose a new algorithm of three-

dimensional principal component analysis (3D-PCA) for exploratory analysis of 

complete 3D spectrochemical images obtained through Raman microspectroscopy. Blood 

plasma samples of ten patients (5 healthy controls, 5 diagnosed with ovarian cancer) were 

analysed by acquiring hyperspectral imaging in the fingerprint region (∼780–1858 cm−1). 

Results show that 3D-PCA can clearly differentiate both groups based on its scores plot, 

where higher loadings coefficients were observed in amino acids, lipids and DNA 

regions. 3D-PCA is a new methodology for exploratory analysis of hyperspectral 

imaging, providing fast information for class differentiation. 

 

Author contribution: C.L.M.M. developed the algorithm, performed the experiments, 

data analysis and wrote the manuscript. 

 

 

                                   

Camilo L. M. Morais, PhD candidate                               Prof. Francis L. Martin, Supervisor 

https://doi.org/10.1039/C8AN02031K


129 
 

6.1 Introduction 
 

In spectrochemical imaging, a spectrum is generated for each pixel in the original 

image, where both spatial and chemical information are considered. The data are 

represented by three-dimensional (3D) arrays for each sample measured, where the spatial 

coordinates are present in the x- and y-coordinates and the wavenumbers in the z-

coordinate. Thus, each wavenumber response (a 2D image) is stacked up one above the 

other in a manner similar to paper sheets in a book in order to form a 3D object (Porro-

Muñoz et al., 2011), informally called a “data cube”. 

There are many types of instrumental techniques that generate 3D 

spectrochemical imaging (i.e., multispectral or hyperspectral imaging), e.g., near-infrared 

(NIR), infrared (IR), Raman and mass spectrometry (MS) (Abramczyk & Brozek-Pluska, 

2013; Aguayo et al., 1986; Buchberger 2018; Türker-Kaya & Huck, 2017). Several 

matrices have been analysed by using spectrochemical imaging, e.g., food (Amigo et al., 

2013; Pierna JAF et al., 2012), soil (Eylenbosch et al., 2017), atmospheric particulate 

matter (Ofner et al., 2015), and tissues (Olmos et al., 2017). Many chemometric 

techniques can be used for analysing this type of data, such as principal component 

analysis (PCA), partial least squares (PLS), multivariate curve resolution (MCR), among 

others (Amigo et al., 2015; Mobaraki & Amigo, 2018); however, in many cases, 

reshaping, averaging procedures, and data compression are performed in order to reduce 

dimensionally (Amigo et al., 2015; Morais & Lima, 2017). Recently, some adaptations 

of first-order algorithms used for classical spectroscopy data, such as linear discriminant 

analysis (LDA) and PCA, were produced for 2D data obtained via excitation-emission 

matrix (EEM) fluorescence spectroscopy (da Silva et al., 2016; Morais & Lima, 2017). 

These algorithms, named 2D-LDA and 2D-PCA, are found to have excellent performance 

using 2D data without using previous dimensional reduction techniques (da Silva et al., 

2016; Morais & Lima, 2017), hence its usage could be extended for chemical imaging. 

One of the imaging techniques that has found increasingly applications is Raman 

microspectroscopy (Butler et al., 2016; Zhang et al., 2010). Raman imaging has been 

used in a wide range of applications, including investigation of drug delivery systems 

(Smith et al., 2015), pharmaceutical analysis (Tian et al., 2011), food quality control 

(Yaseen et al., 2017), and analysis of biological materials (Butler et al., 2016; Lohumi et 

al., 2017). For instance, in cancer detection, Raman imaging has been applied to diagnose 
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breast (Abramczyk & Brozek-Pluska, 2013), skin (Lui et al., 2012), cervical (Diem et al., 

2013), lung (Diem et al., 2013), and brain cancers (Kirsch et al., 2010). A major 

advantage is that the use of Raman imaging provides both chemical and structural 

information of the sample being analysed with minimum water interference. 

Ovarian cancer affects some 7,300 women in the UK alone per year and results in 

around 4,100 deaths per year (Paraskevaidi et al., 2018d). For standard ovarian cancer 

diagnosis, women with symptoms undergo a pelvic examination followed by 

measurement of serum cancer antigen (CA-125). If symptoms persist in the absence of 

raised CA-125 levels, an abdominal and transvaginal ultrasound is performed (Jayson et 

al., 2014; Paraskevaidi et al., 2018d). However, ovarian cancer often presents late 

symptoms in which the cancer has already metastasized within the abdomen, resulting in 

late-stage and poor prognoses (Jayson et al., 2014; Paraskevaidi et al., 2018d). Besides 

these limitations, the diagnosis tends to be extremely invasive, expensive and time-

consuming. Therefore, alternative methodologies to detect ovarian cancer that can reduce 

these drawbacks are of major importance, especially towards early-stage diagnosis. 

Herein, we propose a new algorithm of 3D principal component analysis (3D-PCA) for 

hyperspectral image analysis, exemplified in the exploratory analysis of plasma samples 

of healthy controls and ovarian cancer patients analysed by Raman microspectroscopy 

imaging. 

 

6.2 Methods 
 

6.2.1 Sample 

 

Ten plasma samples of five healthy controls and five patients diagnosed with 

ovarian cancer were analysed by a Renishaw InVia Basis Raman spectrometer coupled 

to a confocal microscope (Renishaw plc, UK). All experiments were performed in 

accordance with Royal Preston Hospital Guidelines, and approved by the ethics 

committee at Royal Preston Hospital UK (16/EE/0010). Informed consents were obtained 

from all human participants of this study. For analysis, 50 μL of plasma were deposited 

on aluminium covered glass slides and left to air-dry overnight. Samples were analysed 

with an acquisition area of 50 μm × 50 μm using 50× magnification and a laser power of 

100% at 785 nm with 0.1 ms exposure time. Hyperspectral images were acquired via 
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StreamHRTM imaging technique (high confocality mode) with a grid area of 57 × 57 

pixels, resulting in 3,249 spectra in the range of ~780–1858 cm-1 generated for each image 

(1 cm-1 data spacing, 1,016 wavenumbers per spectrum). Thus, each sample’s image was 

composed by a data array with dimension 57 × 57 × 1016. 

 

6.2.2 Software 

 

The Raman images were converted into suitable .txt files using Renishaw WiRE 

software; and processed using MATLAB R2014b (MathWorks, Inc., USA) with lab-

made routines. All the samples’ images were pre-processed by cosmic rays (spikes) 

removal and Savtizky-Golay smoothing (window of 9 points, 2nd order polynomial 

fitting). All data were mean-centred before further data analysis. A personal computer (16 

GB of RAM memory, Intel® CoreTM i7 processor 2.81 GHz) was used for data 

processing. 

 

6.2.3 3D-PCA 

 

PCA is an exploratory analysis technique characterized by the decomposition of 

a given spectral data matrix 𝐗 into a few number of principal component (PCs) 

responsible for the majority of the original data variance. Each PC is orthogonal to each 

other, being composed of scores (projections of the samples on the PC direction) and 

loadings (angle cosines of the variables projected on the PC direction) (Bro & Smilde, 

2014; Geladi & Kowalski, 1986; Santos et al., 2017). The PCA decomposition of a 

spectral matrix 𝐗 into scores (𝐓), loadings (𝐏) and residuals (𝐄) takes the form: 

𝐗 = 𝐓𝐏T + 𝐄           (6.1) 

The scores 𝐓 represent the variability on sample direction; the loadings 𝐏 the 

variability on variables (e.g., wavenumbers) direction; and the residuals 𝐄 the 

unexplained data after decomposition. 𝐓 is used for assessing similarities/dissimilarities 

among the samples in an exploratory analysis context, whereas 𝐏 contains the weights for 

each variable in the decomposition.  
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In 3D-PCA, a regular PCA decomposition (eqn. 6.1) using nonlinear iterative 

partial least squares (NIPALS) algorithm is applied to each point (i,j) on the surface of 

the hyperspectral image data set. However, before PCA, each point in the image is 

transformed into a temporary 2D structure 𝐗𝑖𝑗
∗  having s rows (samples) and k columns 

(variables) in order to keep the scores and loadings with their original meanings: 

𝐗𝑖𝑗
∗ = 𝐓𝑖𝑗𝐏𝑖𝑗

T + 𝐄𝑖𝑗          (6.2) 

The number of PCs is selected based on the singular values obtained by singular 

value decomposition (SVD) (Bro & Smilde, 2014) of the hyperspectral imaging, in a 

similar manner as described by Morais and Lima for florescence data (Morais & Lima, 

2017). After the number of PCs is selected, the scores 𝐓𝑖𝑗 and loadings 𝐏𝑖𝑗 are combined 

for all points (i,j) and separated for each PC. Hence, new three-dimensional arrays 𝐓𝒄 (s 

× n × m) and 𝐏𝒄 (k × n × m) are created for each PC, c. Figure 6.1 illustrate the 3D-PCA 

graphically. 

 

Figure 6.1. Illustration of data processing using 3D-PCA. d represents the z-axis 

coordinate dimension with size of k (number of wavenumbers) × s (number of images); 

n the number of pixels in the x-axis coordinate; m the number of pixels in the y-axis 

coordinate; and c the number of principal components (PCs).  
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6.3 Results and Discussion 
 

Ten plasma samples (5 health controls and 5 of patients diagnosed with ovarian 

cancer) were analysed by Raman microspectroscopy imaging. Their hyperspectral images 

were generated with dimension of 57 × 57 × 1016, accounting 3,300,984 data points for 

each sample. The hyperspectral images for healthy controls and ovarian cancer samples 

are depicted in Figure 6.2 and Figure 6.3, respectively. Notably, each image presents 

distinct visual features, characterized by physical differences, such as dents and surface 

anomalies, of the samples analysed. However, chemically they should be grouped into at 

least two clusters (healthy vs. cancer). 

The images were acquired in the spectral range of ~780–1858 cm-1, which 

includes the fingerprint region; therefore, encompassing Raman signals of the major 

biochemical molecules present in the samples (Kelly et al., 2011). 3D-PCA was applied 

to the pre-processed images using only 2 PCs (34.23% cumulative explained variance) 

(Table 6.1). The 3D-PCA took approximately 1 min to run the entire data set, which 

accounted to more than 33 million of data points (10 images × 3,300,984 data 

points/image), using a standard personal computer. The 3D-PCA scores on PC1 and PC2 

are shown in Figure 6.4. 

The scores on PC1 and PC2 across the x-axis (Figure 6.4A and 6.4B, respectively) 

show a separation tendency between healthy controls and ovarian cancer patients. 

However, a across the y-axis, the scores on both PC1 and PC2 are very noisy (Figure 

6.4C and 6.4D, respectively); although, a separation pattern is observed on the scores on 

PC2 (Figure 6.4D). Combining the average scores on PC1 and PC2, the PC1 vs. PC2 

scores plot (Figure 6.4E) shows a clear formation of two clusters separated along both 

PC1 and PC2. Healthy control patients are located in the bottom-right side of the graph, 

while ovarian cancer patients on the upper-left side. Only one ovarian cancer sample is 

within the healthy control cluster. Figure 6.5 shows the boxplots for comparing the 3D-

PCA scores individually along the axis and averaged. In all cases, statistical difference 

between healthy controls and ovarian cancer patients were observed at a 95% confidence 

level (p <0.05): p ≈ 10-25 for scores on PC1 across x-axis (Figure 6.5A); p ≈ 10-27 for 

scores on PC2 across x-axis (Figure 6.5B); p ≈ 10-46 for scores on PC1 across y-axis 

(Figure 5C); p ≈ 10-100 for scores on PC2 across y-axis (Figure 6.5D); p ≈ 0.004 for 
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average scores on PC1 (Figure 6.5E); and p ≈ 0.002 for average scores on PC2 (Figure 

6.5F).  

 

 

Figure 6.2. Raman hyperspectral images of healthy control samples. 
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Figure 6.3. Raman hyperspectral images of ovarian cancer samples. 
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Table 6.1. Explained variance for 3D-PCA. 

PC Explained variance (%) Cumulative explained variance (%) 

1 20.78 20.78 

2 13.45 34.23 

3 11.34 45.57 

4 10.32 55.88 

5 9.61 65.50 

6 9.12 74.62 

7 8.73 83.34 

8 8.46 91.80 

9 8.20 100 

 

The loadings profiles show larger coefficients around the Raman shift at 1400 cm-

1 for PC1 (Figure 6.6A), a region containing N-H in-plane deformation and (C=O)-O- 

stretching in amino acids; and at ~1800 cm-1 and ~825 cm-1 representing C=O stretching 

in lipids and O-P-O stretching vibration in DNA, respectively (Movasaghi et al., 2007). 

Vibrations around 820 cm-1 and 1400 cm-1 have been reported as protein biomarkers for 

cervical tumours (Movasaghi et al., 2007; Utzinger et al., 2001). 

The fast data processing and clear scores segregation between healthy controls 

and ovarian cancer patients depicts the power of 3D-PCA as an exploratory analysis 

method for assessing between-samples differences in hyperspectral images. Even being 

an unsupervised method, statistical differences were found at a 95% confidence level 

between the 3D-PCA scores of the two different classes, indicating its potential usage 

towards classification applications. However, to build proper classification models in this 

case, a large cohort should be analysed by means of supervised classification techniques, 

which can be easily adapted to 3D-PCA by employing discriminant analysis techniques 

(Siqueira et al., 2017) or support vector machines (Cortes & Vapnik, 1995) to the 3D-

PCA scores. 
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Figure 6.4. 3D-PCA scores plot. (A) Scores on PC1 and (B) PC2 across x-axis; (C) scores 

on PC1 and (D) PC2 across y-axis; (E) average scores on PC1 versus PC2. HC: healthy 

controls (in blue); OC: ovarian cancer (in red). 
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Figure 6.5. Boxplots for 3D-PCA scores. (A) Scores on PC1 across x-axis (p = 1.903×10-

25); B) scores on PC2 across x-axis (p = 4.884×10-27); C) scores on PC1 across y-axis 

(6.118×10-46); (D) scores on PC2 across y-axis (6.239×10-100); (E) average scores on PC1 

(p = 0.004); (F) average scores on PC2 (p = 0.002). HC: healthy controls; OC: ovarian 

cancer. 
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Figure 6.6. 3D-PCA loadings. (A) Loadings on PC1; (B) loadings on PC2. 

 

 

6.4 Conclusion 
 

This chapter reports a new 3D-PCA algorithm applied for exploratory analysis of 

plasma samples of healthy controls and ovarian cancer patients. Ten samples (5 healthy 

controls and 5 ovarian cancer) were analysed by Raman miscrospectrocopy imaging in 

the region of ~780–1858 cm-1, generating data tensors with size of 57 × 57 × 1016 data 

points. 3D-PCA was applied to the whole dataset, generating scores showing clear 

differences between the two classes on both PC1 and PC2; and the loadings profiles on 

these components indicate that the main biomarker contributing for class differentiation 

are amino acids, lipids and DNA. 3D-PCA provided fast exploratory analysis for 

hyperspectral data, having potential for future applications in other types of 

spectrochemical imaging techniques. 
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CHAPTER 7 | A THREE-DIMENSIONAL DISCRIMINANT 

ANALYSIS APPROACH FOR HYPERSPECTRAL 

IMAGES 

 

This chapter is under review in Analyst (IF 4.019). It demonstrates new 

chemometric techniques for discriminant analysis (3D-PCA-LDA and 3D-PCA-QDA) of 

hyperspectral images. 

 

Abstract: Raman hyperspectral imaging is a powerful technique that provides both 

chemical and spatial information of a sample matrix being studied. The generated data 

are composed of three-dimensional (3D) arrays containing the spatial information across 

the x- and y-axis, and the spectral information in the z-axis. Unfolding procedures are 

commonly employed to analyze this type of data in a multivariate fashion, where the 

spatial dimension is reshaped and the spectral data fits into a two-dimensional (2D) 

structure and, thereafter, common first-order chemometric algorithms are applied to 

process the data. There are only a few algorithms capable of working with the full 3D 

array. Herein, we propose new algorithms for 3D discriminant analysis of Raman 

hyperspectral images based on a three-dimensional principal component analysis linear 

discriminant analysis (3D-PCA-LDA) and a three-dimensional discriminant analysis 

quadratic discriminant analysis (3D-PCA-QDA) approach. The analysis was performed 

in order to discriminant benign controls and ovarian cancer samples based on Raman 

hyperspectral imaging, in which 3D-PCA-LDA and 3D-PCA-QDA achieved much 

superior performance than their respective algorithms using unfolding procedures (PCA-

LDA and PCA-QDA), where the classification accuracies improved from 64% to 100% 

after employing the 3D techniques. 3D-PCA-LDA and 3D-PCA-QDA are new 

approaches for discriminant analysis of hyperspectral images multisets to provide faster 

and superior classification performance than traditional techniques. 

 

Author contribution: C.L.M.M. developed the algorithms, performed the data analysis 

and wrote the manuscript. 
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7.1 Introduction 
 

Hyperspectral imaging techniques allows one to obtain specially distributed 

spectral data, where each image position (pixel) is composed of a spectrum in a specific 

wavelength range. These data are represented by three-dimensional (3D) arrays where the 

spatial coordinates are present in the x- and y-axis and the spectral information in the z-

axis. Looking at another point of view, each wavelength response represents a two-

dimensional (2D) image being stacked up one above the other to form a 3D object, 

informally called a “data cube” (Morais et al., 2019e). 

There are a number of hyperspectral imaging techniques depending on the 

electromagnetic radiation frequency of the light source or the spectrometric technique 

used to obtain the spectral response. For instance, several studies have been performed 

using visible, near-infrared, mid-infrared, and mass spectrometry hyperspectral imaging 

(Buchberger et al., 2018; Pilling & Gardner, 2016; Türker-Kaya & Huck, 2017; Zuzak et 

al., 2002). One of these imaging techniques that has found increasingly applications is 

Raman hyperspectral imaging (Lohumi et al., 2017), which is a generally non-destructive 

technique where a spectral response is obtained based on molecular polarizability changes 

(Santos et al., 2017). Raman hyperspectral imaging has been used in a wide range of 

applications, such as, pharmaceutical analysis (Kandpal et al., 2018), food quality control 

(Yaseen et al., 2017), forensic studies (Almeida et al., 2017), and to investigate biological 

materials (Butler et al., 2016). Some advantages of using Raman hyperspectral imaging 

to analyze biological samples include its relative low-cost, minimal or no sample 

preparation, high sensitivity to chemically-relevant information, and minimum water 

interference. For example, in cancer detection, Raman imaging has been successful 

applied to identify brain (Abramczyk & Brozek-Pluska, 2013), breast (Diem et al., 2013), 

cervical (Diem et al., 2013 Diem et al., 2013), lung (Diem et al., 2013), and skin cancer 

(Lui et al., 2012). 

Hyperspectral imaging data are analyzed by means of multivariate image analysis 

(MIA) techniques, where two approaches can be used: MIA at a pixel level (e.g., “within-

image” analysis), where chemical features are analyzed within a single image based on 

the spatial distribution of their spectral signatures, or MIA at a global image level (e.g., 

“between-image” analysis), where the chemical features of each image are compared to 

a set of different images (Prats-Montalbán et al., 2011). An imaging processing workflow 
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usually contemplates the following steps: pre-processing, feature extraction, feature 

selection and analysis, acquisition of desired information, and incorporation into 

prediction, monitoring or control schemes (Duchesne et al., 2012); in which as series of 

algorithms are employed to perform these tasks, e.g., principal component analysis (PCA) 

for feature extraction and exploratory analysis (Bro & Smilde, 2014), partial least squares 

(PLS) for feature extraction and quantification (Wold et al., 2001), partial least squares 

discriminant analysis (PLS-DA) for feature extraction and classification (Brereton & 

Lloyd, 2014), and multivariate curve resolution alternating least squares (MCR-ALS) for 

feature extraction, exploratory analysis, calibration and construction of concentration 

distribution maps (Jaumot et al., 2015; Prats-Montalbán et al., 2011). 

Since most algorithms used to process hyperspectral images are first-order-based, 

i.e., applied to an one-dimensional vectoral data, unfolding strategies are often performed 

to handle hyperspectral 3D arrays. In this process, a 3D array with size m × n × k is 

unfolded to a 2D matrix with size m * n × k. This process is very useful when doing 

“within-image” analysis, once the spatial information of the image is distributed on the 

row-wise direction. However, for “between-image” analysis, when multiple 

images/samples are compared, the unfolding process might affect the variance structure 

of the data, once the relationship between neighboring pixels is lost. Some strategies to 

deal with 2D and 3D arrays without unfolding have been reported, e.g., da Silva et al. 

(2016) reported a 2D linear discriminant analysis (2D-LDA) algorithm to classify three-

way chemical data; Morais and Lima (2017) reported a 2D principal component analysis 

with linear discriminant analysis (2D-PCA-LDA), quadratic discriminant analysis (2D-

PCA-QDA), and support vector machines (2D-PCA-SVM) to classify excitation-

emission matrix (EEM) fluorescence data; and, Morais et al. (2019e) have reported a 3D-

PCA approach to perform exploratory analysis in hyperspectral images. 

In this thesis, we propose new 3D discriminant analysis approaches to classify 

hyperspectral images, named three-dimensional principal component analysis linear 

discriminant analysis (3D-PCA-LDA) and three-dimensional principal component 

analysis quadratic discriminant analysis (3D-PCA-QDA). Results are reported to 

discriminate benign controls and ovarian cancer patients based on the Raman 

hyperspectral imaging. 
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7.2 Methods 
 

7.2.1 Samples 

 

Thirty-eight samples (20 benign control individuals, 18 ovarian cancer patients) 

were analyzed by a Renishaw InVia Basis Raman spectrometer coupled to a confocal 

microscope (Renishaw plc, UK). The samples were collected with ethics approval by the 

East of England – Cambridge Central Research Ethics Committee (REC reference 

number 16/EE/0010, IRAS project ID 195311). Informed consents were obtained from 

all human participants of this study. For spectroscopic analysis, 30 μL of blood plasma 

were deposited on an aluminum-covered glass slide and left to air-dry overnight. Samples 

were measured with an acquisition area of 100 × 50 μm using 20× magnification and laser 

power of 50% at 785 nm with 0.1 s exposure time. Hyperspectral images were acquired 

via StreamHRTM imaging technique (high-confocality mode) with a grid area of 22 × 13 

pixels. Each image was composed of a 3D array with dimensions 22 × 13 × 1015, where 

1015 wavenumbers were recorded per pixel (1 cm-1 data spacing, 725–1813 cm-1). 

 

7.2.2 Software 

 

The Raman images were imported and processed in MATLAB R2014b 

(MathWorks, Inc., USA). All the samples’ images were firstly pre-processed by cosmic 

rays (spikes) removal using a lab-made routine, followed by Savitzky-Golay (SG) 

smoothing (window of 15 points, 2nd order polynomial fitting) and automatic weighted 

least squares (AWLS) baseline correction using PLS Toolbox 7.9.3 (Eigenvector 

Research, Inc., USA). First-order discriminant analysis (PCA-LDA, PCA-QDA) were 

performed using the Classification Toolbox for MATLAB (Ballabio & Consonni, 2013), 

and 3D discriminant analysis (3D-PCA-LDA, 3D-PCA-QDA) were performed using lab-

made algorithms. The pre-processed hyperspectral images were split into training (70%) 

and test (30%) sets using the Kennard-Stone uniform sample selection algorithm 

(Kennard & Stone, 1969). 
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7.2.3 Computational Analysis 

 

Unfolded PCA-LDA and PCA-QDA were compared with 3D discriminant 

algorithms (3D-PCA-LDA and 3D-PCA-QDA). PCA is an exploratory analysis technique 

where a spectral data matrix X is decomposed into a few number of principal components 

(PCs) responsible for the majority of the original data variance. The first PC explains the 

biggest proportion of the data variance, followed by the second PC, and so on. Each PC 

is orthogonal to each other, being composed of scores (projections of the samples on the 

PC direction) and loadings (angle cosines of the variables projected on the PC direction). 

The scores represent the variability on sample direction, thus being used to assess 

similarities/dissimilarities among the samples based on their distribution pattern, and the 

loadings contain the weights for each variable in the decomposition, being used to find 

potential spectral markers (Bro & Smilde, 2014; Geladi & Kowalski, 1986; Morais et al., 

2019e). 

In this 3D-PCA approach (Morais et al., 2019e), a local bilinear PCA model is 

performed for each pixel position across the hyperspectral image dataset as follows: 

𝐗𝑖𝑗
∗ = 𝐓𝑖𝑗𝐏𝑖𝑗

T + 𝐄𝑖𝑗          (7.1) 

where 𝐗𝑖𝑗
∗  is a temporary matrix at the position (i,j) where rows represent samples, and 

columns represent wavenumbers; 𝐓𝑖𝑗 are the PCA scores at position (i,j); 𝐏𝑖𝑗 are the PCA 

loadings at position (i,j); 𝐄𝑖𝑗 are the residuals at position (i,j); and the superscript T 

represents the matrix transpose operation. At the end, 3D-PCA generates three 3D arrays 

representing the scores (𝐓), loadings (𝐏), and residuals (𝐄). This is different of 3D-PCA 

for trilinear data based on Tucker3 (“true 3D-PCA”), which decomposes a trilinear three-

dimensional array into three loadings and a core matrix (Tucker, 1966; Morais et al., 

2019a); and also different of Tucker3 model with orthogonal factors, known as “three-

way PCA” (Gemperline et al., 1992; Kroonenberg et al., 2004).  

In these 3D-PCA-LDA and 3D-PCA-QDA approaches, a linear discriminant 

analysis (LDA) and quadratic discriminant analysis (QDA) classifier are employed to the 

mean scores of 3D-PCA, respectively. The 3D-PCA-LDA (𝐿𝑠𝑘) and 3D-PCA-QDA (𝑄𝑠𝑘) 

classification scores are thus calculated as follows (Morais & Lima, 2018): 

𝐿𝑠𝑘 = (𝐱𝑠 − 𝐱𝑘)T𝐂pooled
−1 (𝐱𝑠 − 𝐱𝑘) − 2 log𝑒 𝜋𝑘      (7.2) 

𝑄𝑠𝑘 = (𝐱𝑠 − 𝐱𝑘)T𝐂𝑘
−1(𝐱𝑠 − 𝐱𝑘) + log𝑒|𝐂𝑘| − 2 log𝑒 𝜋𝑘      (7.3) 
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where 𝐱𝑠 is a row-vector 1 × N representing the mean scores of 𝐓 for sample 𝑠 for each 

principal component N; 𝐱𝑘 is a row-vector 1 × N representing the mean scores of class k 

for each principal component N; 𝐂pooled is the pooled covariance matrix; 𝐂𝑘 is the 

variance-covariance matrix of class k; and 𝜋𝑘 is the prior probability of class k. 𝐂pooled, 

𝐂𝑘 and 𝜋𝑘 are calculated as follows: 

𝐂pooled =
1

𝑛
∑ 𝑛𝑘𝐂𝑘

𝐾
𝑘=1         (7.4) 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑠 − 𝐱𝑘)(𝐱𝑠 − 𝐱𝑘)T𝑛𝑘

𝑠=1        (7.5) 

𝜋𝑘 =
𝑛𝑘

𝑛
          (7.6) 

where 𝑛 is the total number of samples in the training set; K is the total number of classes; 

and 𝑛𝑘 is the number of samples of class k. 

The calculation procedure is the same in the unfolded PCA-LDA and PCA-QDA, 

in which equations 7.2–7.6 are performed with the PCA scores of the unfolded 3D array. 

Both unfolded and 3D models were built using cross-validation leave-one-out, and 

evaluated using an external test set. 

 

7.2.4 Model Evaluation 

 

The unfolded and 3D models were evaluated by means of the following figures of 

merit calculated in the test set: accuracy (total number of samples correctly classified 

considering true and false negatives), sensitivity (proportion of positives correctly 

classified), and specificity (proportion of negatives correctly classified) (Morais & Lima, 

2017). These parameters are calculated as follows: 

Accuracy (%) = (
TP+TN

TP+FP+TN+FN
) × 100      (7.7) 

Sensitivity (%) = (
TP

TP+FN
) × 100       (7.8) 

Specificity (%) = (
TN

TN+FP
) × 100       (7.9) 

where TP stands for true positives; TN stands for true negatives; FP stands for false 

positives; and FN stands for false negatives. Additionally, confusion matrices containing 

the correct classification rates in the training, cross-validation and test sets were produced. 
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7.3 Results and Discussion 
 

The mean Raman hyperspectral images for the 20 samples of the benign control 

group and 18 samples of the ovarian cancer group are depicted in Figures 7.1a and 7.1b, 

respectively. Distinct visual features characterized by surface abnormalities are observed 

on the images. This adds a degree of variance in the image data across the spatial domain 

for each sample. The hyperspectral images were acquired in the region between 725–

1813 cm-1, which includes the fingerprint region that contains Raman signatures of the 

main biochemical molecules present in the sample (Kelly et al., 2011). The raw and pre-

processed (SG smoothing and AWLS baseline correction) mean spectra for both groups 

of samples are depicted in Figure 7.2. 

 

Figure 7.1. Raw Raman hyperspectral images. (a) Benign controls; (b) ovarian cancer 

patients. False-color images represented by the mean of the spectral dimension (725–

1813 cm-1). 

 

Unfolded PCA-LDA and PCA-QDA were applied to the pre-processed data using 

2 PCs (90.51% explained variance). Figures 7.3a and 7.3c show the unfolded PCA-LDA 

and PCA-QDA calculated classification boundaries between benign controls and ovarian 

cancer samples. The PCA scores response were average per sample, so each point in 

Figure 7.3 represents a sample (image). The superposition pattern observed in Figures 

7.3a and 7.3c reflects the poor classification of unfolded PCA-LDA and PCA-QDA as 

demonstrated in Table 7.1, where ovarian cancer samples are being highly misclassified 

in the test set (80% misclassification), and in Table 7.2, where accuracies (64%) and 

sensitivities (20%) for PCA-LDA and PCA-QDA are substantially low. 

a. b.
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Figure 7.2. Mean Raman spectra for benign controls and ovarian cancer samples. (a) 

Raw; and (b) pre-processed Raman spectra. Pre-processing: Savitzky-Golay (SG) 

smoothing (window of 15 points, 2nd order polynomial fitting) and automatic weighted 

least squares (AWLS) baseline correction. 

 

 

Figure 7.3. Calculated class boundaries on the PCA scores. (a) Unfolded PCA-LDA; 

(b) 3D-PCA-LDA; (c) Unfolded PCA-QDA; and (d) 3D-PCA-QDA. Numbers inside 

parenthesis on the x- and y-labels represent the percentage of explained variance in each 

principal component (PC). 

a. b.

a. b.

c. d.
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Table 7.1. Confusion matrices for the training, cross-validation and test sets using the 

unfolded and 3D hypespectral images. PCA-LDA: principal component analysis linear 

discriminant analysis; PCA-QDA: principal component analysis quadratic discriminant 

analysis; 3D-PCA-LDA: three-dimensional principal component analysis linear 

discriminant analysis; 3D-PCA-QDA: three-dimensional principal component analysis 

quadratic discriminant analysis; Control: benign control group; Cancer: ovarian cancer 

patients; CV: cross-validation. 

 PCA-LDA PCA-QDA 3D-PCA-LDA 3D-PCA-QDA 

Training Control Cancer Control Cancer Control Cancer Cancer Cancer 

Control 79% 21% 86% 14% 100% 0% 100% 0% 

Cancer 46% 54% 54% 46% 8% 92% 8% 92% 

CV         

Control 70% 30% 72% 28% 99% 1% 93% 7% 

Cancer 51% 49% 57% 43% 7% 93% 8% 92% 

Test         

Control 100% 0% 100% 0% 100% 0% 100% 0% 

Cancer 80% 20% 80% 20% 0% 100% 0% 100% 

 

 

Table 7.2. Quality parameters for the models using the unfolded hyperspectral images 

(PCA-LDA, PCA-QDA) and the full three-dimensional arrays (3D-PCA-LDA, 3D-PCA-

QDA) for discriminating benign controls from ovarian cancer patients. PCA-LDA: 

principal component analysis linear discriminant analysis; PCA-QDA: principal 

component analysis quadratic discriminant analysis; 3D-PCA-LDA: three-dimensional 

principal component analysis linear discriminant analysis; 3D-PCA-QDA: three-

dimensional principal component analysis quadratic discriminant analysis. 

Data Model Accuracy Sensitivity Specificity 

Unfolded PCA-LDA 64% 20% 100% 

 PCA-QDA 64% 20% 100% 

3D 3D-PCA-LDA 100% 100% 100% 

 3D-PCA-QDA 100% 100% 100% 

 

On the other hand, by using the 3D-based algorithms (3D-PCA-LDA and 3D-

PCA-QDA), the classification performance improved substantially. These algorithms 

were applied to the whole hyperspectral dataset without unfolding with a computation 

time of approximately 2 min per model using a standard laptop computer. Figures 7.3b 

and 7.3d show the 3D-PCA-LDA and 3D-PCA-QDA calculated classification boundaries 

between benign controls and ovarian cancer samples. There is a clear separation between 

the classes in both cases. For 3D-PCA-LDA (Figure 7.3b), one ovarian cancer sample of 

the training set is within the benign controls space; while in 3D-PCA-QDA this sample is 
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projected over the class boundary. This sample reduced the training and cross-validation 

fitting for these models, in which a correct classification rate of 92% was observed for 

the ovarian cancer group in the training set using both 3D-PCA-LDA and 3D-PCA-QDA; 

and 93% and 92% in cross-validation for 3D-PCA-LDA and 3D-PCA-QDA, respectively 

(Table 7.1). In the test set, the classification performance was perfect using the 3D 

algorithms (accuracy, sensitivity and specificity equal to 100%) (Table 7.2). These 

findings indicate the potential of 3D discriminant analysis compared to the unfolding 

procedure. 

 

Figure 7.4. 3D-PCA loadings. (a) Average pre-processed spectra for benign controls 

(continuous line) and ovarian cancer (dashed line) samples; (b) difference-between-mean 

spectrum for benign controls and ovarian cancer samples (negative signal indicates higher 

intensity in ovarian cancer samples); (c) 3D-PCA loadings on PC1; (d) 3D-PCA loadings 

on PC2. 

 

The difference-between-mean (DBM) spectrum and 3D-PCA loadings are shown 

in Figure 7.4. The ovarian cancer samples spectra appear to have overall higher intensity 

values than benign controls, as demonstrated in Figure 7.4a and 7.4b, where the negative 

a. b.

c. d.
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values in the latter indicate higher intensity influence in the ovarian cancer group. The 

3D-PCA loadings on PC1 contain higher coefficients at: 820 cm-1 (C-C stretching in 

protein), 990 cm-1 (C-C stretching in glucose/collagen), 1140 cm-1 (fatty acids), 1400 cm-

1 (NH in-plane deformation), 1510 cm-1 (ring breathing modes in DNA bases), 1592 cm-

1 (C=C stretching) (Figure 7.4c) (29). The 3D-PCA loadings on PC2 contain higher 

coefficients at: 727 cm-1 (C-C stretching in collagen), 860 cm-1 (phosphate group) and 

986 cm-1 (C-C stretching β-sheet in proteins) (Figure 7.4d) (Movasaghi et al., 2007). PC1 

seems to be related to wavenumbers of higher energy, encompassing mainly fatty acids, 

lipids and protein vibrations; while PC2  contain higher weights toward wavenumbers of 

lower energy, including collagen, phosphate groups of RNA, and C-C in proteins 

(Movasaghi et al., 2007). Vibrations around 820 cm-1 and 1400 cm-1 (PC1) have been 

previously reported as protein markers for cervical tumors (Utzinger et al., 2001) and 

ovarian cancer (Morais et al., 2019e). 

 

7.4 Conclusion 
 

This paper reports new 3D discriminant analysis approaches named three-

dimensional principal component analysis linear discriminant analysis (3D-PCA-LDA) 

and three-dimensional discriminant analysis quadratic discriminant analysis (3D-PCA-

QDA) for classification of hyperspectral images datasets. These algorithms were 

compared with their unfolded versions (PCA-LDA and PCA-QDA), where a much 

superior performance was obtained with the 3D-based techniques to discriminate benign 

controls and ovarian cancer patients based on the Raman hyperspectral imaging. An 

improvement in the accuracy (64% to 100%) and sensitivity (20 to 100%) in the test set 

was observed when the 3D discriminant algorithms were applied. 3D-PCA loadings 

indicated spectral markers associated with proteins, lipids and DNA along PC1 and PC2 

for class differentiation. These new 3D discriminant analysis approaches provide fast 

class differentiation for multi-image hyperspectral datasets with a superior discriminating 

performance compared to algorithms using unfolding procedures, which are often 

employed for this type of data. 
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CHAPTER 8 | UNCERTAINTY ESTIMATION AND 

MISCLASSIFICATION PROBABILITY FOR 

CLASSIFICATION MODELS BASED ON DISCRIMINANT 

ANALYSIS AND SUPPORT VECTOR MACHINES 

 

This chapter is published in Analytica Chimica Acta (IF 5.256). It demonstrates a 

new method to estimate model uncertainty and misclassification probabilities for 

classification models in spectral data using discriminant analysis and support vector 

machines: 

➢ Morais CLM, Lima KMG, Martin FL. Uncertainty estimation and 

misclassification probability for classification models based on discriminant 

analysis and support vector machines. Anal. Chim. Acta 2019; 1063: 40–46. 

https://doi.org/10.1016/j.aca.2018.09.022  

 

Abstract: Uncertainty estimation provides a quantitative value of the predictive 

performance of a classification model based on its misclassification probability. Low 

misclassification probabilities are associated with a low degree of uncertainty, indicating 

high trustworthiness; while high misclassification probabilities are associated with a high 

degree of uncertainty, indicating a high susceptibility to generate incorrect classification. 

Herein, misclassification probability estimations based on uncertainty estimation by 

bootstrap were developed for classification models using discriminant analysis [linear 

discriminant analysis (LDA) and quadratic discriminant analysis (QDA)] and support 

vector machines (SVM). Principal component analysis (PCA) was used as variable 

reduction technique prior classification. Four spectral datasets were tested (1 simulated 

and 3 real applications) for binary and ternary classifications. Models with lower 

misclassification probabilities were more stable when the spectra were perturbed with 

white Gaussian noise, indicating better robustness. Thus, misclassification probability 

can be used as an additional figure of merit to assess model robustness, providing a 

reliable metric to evaluate the predictive performance of a classifier. 
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and wrote the manuscript. 

 

 

 

                                   

Camilo L. M. Morais, PhD candidate                         Prof. Francis L. Martin, Supervisor   

https://doi.org/10.1016/j.aca.2018.09.022


152 
 

8.1 Introduction 
 

Multivariate classification models are commonly employed to segregate clusters 

based on a supervised learning approach. Commonly, the data are initially divided into 

training and external validation sets, where the first is used for model construction and 

the latter to assess the model performance. The predictive capacity of classification 

models is assessed by quality parameters also called “figures of merit”. The most used 

ones are the accuracy (total number of samples correctly classified considering true and 

false negatives), sensitivity (proportion of positives correctly identified) and specificity 

(proportion of negatives correctly identified) (Morais & Lima, 2017). Additional figures 

of merit can also be estimated to confirm the predictive performance of a classification 

model, such as precision (classifier ability to avoid wrong predictions), F-score (overall 

performance of the model considering imbalanced data), G-score (overall performance of 

the model not accounting for class sizes), area under the curve (AUC) of receiver 

operating characteristic curves, positive and negative prediction values, positive and 

negative likelihood ratios, and Youden’s index (Ballabio et al., 2018; Morais & Lima, 

2017; Neves et al., 2018; Parikh et al., 2016; Siqueira et al., 2017). The latter three are 

more commonly used for biomedical applications, where the ratio of true and false 

positives and negatives are an important factor towards making clinical decisions. 

 However, none of these figures of merit brings information of the degree of 

uncertainty in the classification model. Uncertainty is always present in any analytical 

measurement where a prior univariate or multivariate model is used to provide 

information of the property being analysed. For being non-specific, vibrational 

spectroscopy techniques generate thousands of data points for all chemical components 

that are susceptible to the radiation source incident on the sample, creating a very complex 

array of data for each sample analysed. To elucidate and extract information of the 

chemical components present in the spectrum, chemometric techniques are often 

employed. Multivariate calibration techniques, such as principal component regression 

(PCR) and partial least squares (PLS) regression, are used for quantification applications; 

and classification techniques, such as discriminant analysis (DA) and support vector 

machines (SVM), for qualitative applications (Naes et al., 2002). 

 In spectroscopy applications, due to problems of collinearity and ill-conditioned 

data, variable reduction or selection techniques are often employed prior to classification 
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analysis. Principal component analysis (PCA) is one of the most popular methods of 

variable reduction, since it reduces all the spectral variables into a small number of 

principal components accounting for the majority of the original variance in the data (Bro 

& Smilde, 2014). Since the principal components are orthogonal to each other, the 

computation of inverse matrix operations used in discriminant analysis are achieved with 

high accuracy. 

 Uncertainty estimation for calibration models is well known (Cacuci & Ionescu-

Bujor, 2010; Caja et al., 2015). However, for classification techniques, uncertainty 

estimation is still a new topic, so far mainly explored for partial least squares discriminant 

analysis (PLS-DA) (de Almeida et al., 2013; Rocha & Sheen, 2016). Herein, we propose 

an uncertainty estimation method based on bootstrap for calculation of misclassification 

probabilities in linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA) and SVM models applied to four different datasets, where the classification 

stability is also evaluated by adding white Gaussian noise to the spectral data. 

 

8.2 Experimental 
 

8.2.1 Datasets 

 

Four datasets were used for testing. Dataset 1 is composed of simulated spectra 

generated using a normal distribution function. Class 1 contains 30 spectra with 301 

variables each, with mean ranging from 0.15 to 0.42 intensity units and standard deviation 

ranging from 0.41 to 1.14 intensity units between samples. Class 2 contains also 30 

spectra with 301 variables each, with mean ranging from 0.19 to 0.35 intensity units and 

standard deviation ranging from 0.35 to 0.86 intensity units between samples. 

 Dataset 2 is composed of 280 infrared (IR) spectra of two Cryptococcus fungi 

specimens acquired via attenuated total reflection Fourier-transform infrared (ATR-

FTIR) spectroscopy. Class 1 contains 140 spectra of Cryptococcus neoformans samples, 

and class 2 contains 140 spectra of Cryptococcus gattii samples. Spectra were acquired 

in the range of 400-4000 cm-1 with resolution of 4 cm-1 and 16 co-added scans using a 

Bruker VEXTER 70 FTIR spectrometer (Bruker Optics Ltd., UK). The spectra were pre-

processed by cut in the biofingerprint region (900-1800 cm-1), followed by automatic 

weighted least squares baseline correction and normalisation to the Amide I peak (1650 
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cm-1). More information about this dataset can be found in literature (Costa et al., 2016; 

Morais et al., 2017). 

 Dataset 3 is composed of 240 IR spectra for two classes of formalin-fixed paraffin-

embedded brain tissues measured using ATR-FTIR spectroscopy. Class 1 contains 140 

spectra for normal brain tissue samples, and class 2 contains 100 spectra for glioblastoma 

brain tissue samples. Spectra were acquired in the range of 400-4000 cm-1 with resolution 

of 8 cm-1 and 32 co-added scans using a Bruker Vector 27 FTIR spectrometer with a 

Helios ATR attachement (Bruker Optics Ltd., UK). The spectra were pre-processed by 

cut in the biofingerprint region (900-1800 cm-1), followed by ruberband baseline 

correction and normalisation to the Amide I peak (1650 cm-1). This dataset is public 

available as part of IRootLab toolbox (http://trevisanj.github.io/irootlab/) (Martin et al., 

2010; Trevisan et al., 2013) and more information about it can be found in Gajjar et al. 

(2013). 

 Dataset 4 is composed of 183 IR spectra separated into 3 classes. Class 1 is 

composed of 59 spectra of Syrian hamster embryo (SHE) cells contaminated with 

benzo[a]pyrene (B[a]P); class 2 is composed of 62 spectra of SHE cells contaminated 

with 3-methylcholanthrene (3-MCA); and class 3 is composed of 62 spectra of SHE cells 

contaminated with anthracene (Ant). Spectra were acquired by using a Bruker TENSOR 

27 spectrometer with a Helios ATR attachement (Bruker Optics Ltd., UK). Spectra were 

recorded in the range of 400-4000 cm-1 with a resolution of 8 cm-1. Pre-processing was 

performed by cut in the biofingerprint region (900-1800 cm-1), rubberband baseline 

correction and normalisation to the Amide I peak (1650 cm-1). This dataset is public 

available as part of IRootLab toolbox (http://trevisanj.github.io/irootlab/) (Martin et al., 

2010; Trevisan et al., 2013); further information can be found in Trevisan et al. (2010). 

 

8.2.2 Software 

 

Data analysis was performed within MATLAB R2014b environment (The 

MathWorks, Inc., USA) using lab-made routines. Pre-processing was performed using 

PLS Toolbox 7.9.3 (Eigenvector Research, Inc., USA). Samples were divided into 

training (70%) and external validation (30%) sets using Kennard-Stone sample selection 

algorithm (Kennard & Stone, 1969). 

 

http://trevisanj.github.io/irootlab/
http://trevisanj.github.io/irootlab/
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8.2.3 Classification Techniques 

 

Data were initially processed by PCA in order to reduce the number of variables 

and solve ill-condition problems. PCA decomposes the original spectral matrix 𝐗 into 

scores (𝐓), loadings (𝐏) and residuals (𝐄) as follows (Bro & Smilde, 2014): 

𝐗 = 𝐓𝐏T + 𝐄           (8.1) 

 The PCA scores were used as input variables for the classification models (LDA, 

QDA and SVM) with the number of principal components selected by singular value 

decomposition (SVD) (Bro & Smilde, 2014; Morais & Lima, 2017) and root mean square 

error of cross-validation (RMSECV) values obtained with cross-validated PCA 

(Brereton, 2003). The cumulated explained variance was calculated based on SVD as 

follows (Morais & Lima, 2017): 

𝐗 = 𝐔𝐒𝐕−1           (8.2) 

v(%) = [
diag(𝐒)

∑ diag(𝐒)
] × 100         (8.3) 

where v(%) is the explained variance; 𝐔 and 𝐕 are orthogonal matrices; and 𝐒 is a matrix 

containing nonzero singular values on its diagonal. 

The LDA (𝐿𝑖𝑘) and QDA (𝑄𝑖𝑘) classification scores were calculated in a non-

Bayesian form as follows (Dixon & Brereton, 2009; Morais & Lima, 2018): 

𝐿𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂pooled
−1 (𝐱𝑖 − �̅�𝑘)        (8.4) 

𝑄𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂𝑘
−1(𝐱𝑖 − �̅�𝑘)        (8.5) 

where 𝐱𝑖 are the input variables for sample 𝑖; �̅�𝑘 is the mean vector of class 𝑘; 𝐂pooled is 

the pooled covariance matrix; and 𝐂𝑘 is the variance-covariance matrix of class 𝑘. 𝐂𝑘 and 

𝐂pooled are estimated as follows: 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑖 − �̅�𝑘)(𝐱𝑖 − �̅�𝑘)T𝑛𝑘

𝑖=1         (8.6) 

𝐂pooled =
1

𝑛
∑ 𝑛𝑘𝐂𝑘

𝐾
𝑘=1          (8.7) 

where 𝑛𝑘 is the number of samples of class 𝑘; 𝑛 is the total number of samples in the 

training set; and 𝐾 is the number of classes. 
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 SVM was applied to the PCA scores using a radial basis function (RBF) kernel 

(Cortes & Vapnik, 1995). The SVM classifier takes the form of (Morais et al., 2017): 

𝑟𝑖 = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐳𝑗) + 𝑏
𝑁𝑆𝑉
𝑖=1 )        (8.8) 

where 𝑟𝑖 is the classification response for sample 𝑖; 𝑁𝑆𝑉 is the number of support vectors; 

𝛼𝑖 is the Lagrange multiplier; 𝑦𝑖 is the class membership (±1) of sample 𝑖; 𝐾(𝐱𝑖, 𝐳𝑗) is 

the kernel function; and 𝑏 is the bias parameter. 

 

8.2.4 Misclassification Probability Estimation 

 

The uncertainty estimation was based on Bootstrap (Wehrens et al., 2000), a 

random sampling method with replacement that allows confidence intervals to be placed 

on the model predictions based on uncertainties of the original data (Rocha & Sheen, 

2016). The procedure for calculating uncertainties based on residual bootstrap was 

originally presented by de Almeida et al. (2013) and adapted herein for LDA, QDA and 

SVM-based models. For comparison, uncertainty propagation estimate for SVM was 

calculated by differentiation of Eq. 8.8 based on a previous uncertainty estimation for 

RBF kernel in artificial neural networks (ANN), assuming that noise only affects the test 

sample (Allegrini & Oliveiri, 2016): 

d𝑟 = ∑ 𝛼𝑖𝑦𝑖
d𝐾(x𝑖,z𝑗)

d𝑥𝑖
d𝑥𝑖

𝑁𝑆𝑉
𝑖=1 = 𝐛SVM

T dx       (8.9) 

where 𝐛SVM
T  represents the uncertainty propagation of SVM using RBF kernel. 

 For bootstrap uncertainty estimation, initially, the residuals for LDA, QDA or 

SVM models are calculated using: 

𝐟∗ =
𝐟

√1−
𝐷𝑓

𝑛⁄

           (8.10) 

where 𝐟∗ is the weighted model residual; 𝐟 is the model residual; and 𝐷𝑓 is the pseudo-

degrees of freedom (van der Voet, 1999). 𝐟 is estimated for LDA, QDA or SVM models 

as: 

𝐟 = 𝐲 − �̂�           (8.11) 
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where 𝐲 is the reference class category for all samples; and �̂� is the model response for 

LDA [�̂� = (𝐿1, ⋯ , 𝐿𝑛)]; QDA [�̂� = (𝑄1, ⋯ , 𝑄𝑛)]; or SVM [�̂� = (𝑟1, ⋯ , 𝑟𝑛)]. 

 Then, bootstrapping is applied by removing sample 𝑖 whose uncertainty is being 

estimated by the model. A new response matrix 𝐲∗ is generated by replacing the 

remaining values in 𝐲 with the model predicted �̂�. Then, a new random residual vector 

𝐟boot
∗  is generated by bootstrapping. The bootstrapping residual 𝐟boot

∗  is added to the �̂� 

predicted, generating a new response vector 𝐲∗∗: 

𝐲∗∗ = �̂� + 𝐟boot
∗           (8.12) 

 A new classification model is then created using 𝐲∗∗ as reference categories. 

Finally, a new residual vector 𝐟∗ is created by subtracting the bootstrapping predicted 

values �̂�∗∗  from the model predicted �̂�: 

𝐟∗ = �̂� − �̂�∗∗           (8.13) 

 The confidence intervals are calculated for sample 𝑖 based on the residual vector 

𝐟∗. For a 95% confidence interval, the lower bound (𝐜low) and the upper bond (𝐜up) are 

given by: 

𝐜low = 0.25𝐟∗          (8.14) 

𝐜up = 0.975𝐟∗          (8.15) 

 For misclassification probability calculation, the classification categories 𝐲 are 

treated as being normally distributed with mean equal to �̂� and standard deviation 𝜎 =

1
4⁄ (𝐜low − 𝐜up). The probability that sample 𝑖 is class k=1, denoted 𝑃1,𝑖, is equivalent 

to the probability that �̂�𝑖 is lower than the threshold value that separates the classes, 

𝑦bound. 𝑃1,𝑖 is given by the cumulative distribution function for the normal distribution 

(Rocha & Sheen, 2016): 

𝑃1,𝑖 = 𝑃(�̂�𝑖 ≤ 𝑦bound) =
1

2
[1 + erf (

𝑦bound−�̂�𝑖

√2𝜎𝑖
)]      (8.16) 

 Similarly, the probability that sample 𝑖 is class k=2, denoted 𝑃2,𝑖, is equal to 1 −

𝑃1,𝑖. The misclassification probability of sample 𝑖, 𝑚𝑝,𝑖, is therefore determined based on 

the classification of sample 𝑖 as: 

𝑚𝑝,𝑖 = 𝑃1−𝑦𝑖
           (8.17) 
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 The 𝑚𝑝 values range from 0 (no misclassification probability) to 1 (maximum 

misclassification probability). Values above 0.5 indicate higher probability of 

misclassification. A graphical flowchart illustrating the processing steps for 

misclassification probability calculation for PCA-LDA, PCA-QDA and PCA-SVM 

models is depicted in Figure 8.1. 

 

Figure 8.1. Flowchart illustrating data processing steps for misclassification probability 

calculation. 𝐷𝑓 stands for pseudo-degrees of freedom. 

 

8.3 Results and Discussion 
 

Datasets 1-4 were analysed in order to estimate the misclassification probability 

associated with the trustworthiness and robustness of three classification algorithms: 

PCA-LDA, PCA-QDA and PCA-SVM. Pre-processed spectra with mean and standard-

deviation for these datasets are depicted in Figure 8.2. 

Dataset 1 is composed of simulated spectra (Figure 8.2a). Although this dataset 

has no chemical meaning, simulated data are commonly used as a primary source to 

evaluate discriminatory performance of classification algorithms (Morais & Lima, 2017). 

PCA was applied to the data and 10 PCs were selected according to SVD and RMSECV 

values (Figure 8.3a and b) (cumulative variance of 97.2%). PCA-LDA did not show a 

good classification, with an accuracy of 44.4%. The average misclassification rate for the 

test set was equal to 0.520. This high misclassification probability indicates a large degree 

of uncertainty for the PCA-LDA model, which is confirmed by the high misclassification 

probability (𝑚𝑝 > 0.5). On the other hand, by applying a QDA classifier, the classification 

performance improved substantially. The accuracy in the external validation set was 

found at 88.9% with average misclassification probability of 0.113. QDA performance 

Raw data Pre-processing PCA PCA scores

LDA, QDA or 

SVM models
Calculation of 𝐷𝑓Bootstrap

Calculation of 

confidence intervals
Misclassification probability calculation
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was superior than the one found by LDA due to the difference variance structures of class 

1 and 2, as evidenced in the standard-deviation in Figure 8.2a. LDA assumes classes 

having similar variance structures, using a pooled covariance model. In contrast, QDA 

assumes classes having different variance structures, which improves considerably its 

performance over LDA when this condition happens (Dixon & Brereton, 2009; Morais 

& Lima, 2018). Additional figures of merit are depicted in Table 8.1. 

 

Figure 8.2. Mean and standard-deviation (shaded area) for (a) dataset 1, (b) dataset 2, (c) 

dataset 3, and (d) dataset 4.  

 

  

Class 1

Class 2 Class 2

Class 1

Class 2

Class 1
Class 1

Class 2

Class 3

a. b.

c. d.
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Figure 8.3. Singular value decomposition (SVD) for (a) dataset 1, (c) dataset 2, (e) dataset 

3 and (g) dataset4; root mean square error of cross-validation (RMSECV) of PCA for (b) 

dataset 1, (d) dataset 2, (f) dataset 3 and (h) dataset 4 varying the number of principal 

components (PCs). 

a. b.

c. d.

e. f.

g. h.
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Table 8.1. Figures of merit calculated for the external validation set in datasets 1–4. PPV 

stands for positive predictive value, NPV for negative predictive value, YOU for 

Youden’s index, and 𝑚𝑝 stands for average misclassification probability. 

Dataset 1 Accuracy Sensitivity Specificity PPV  NPV  YOU 𝑚𝑝 

PCA-LDA 44.4% 44.4% 44.4% 44.4% 44.4% -11.1% 0.520 

PCA-QDA 88.9% 77.8% 100% 100% 81.8% 77.8% 0.113 

PCA-SVM 94.4% 88.9% 100% 100% 90.0% 88.9% 0.152 

        

Dataset 2        

PCA-LDA 86.9% 97.6% 76.2% 80.4% 97.0% 73.8% 0.328 

PCA-QDA 100% 100% 100% 100% 100% 100% 0.212 

PCA-SVM 97.6% 95.2% 100% 100% 95.5% 95.2% 0.500 

        

Dataset 3        

PCA-LDA 68.1% 80.0% 59.5% 58.5% 80.6% 39.5% 0.319 

PCA-QDA 88.9% 90.0% 88.1% 84.4% 92.5% 78.1% 0.276 

PCA-SVM 100% 100% 100% 100% 100% 100% 0.244 

        

Dataset 4        

PCA-LDA         

Class 1 94.6% 94.7% 94.4% 97.3% 89.5% 89.2% 0.265 

Class 2 89.3% 83.8% 100% 100% 76.0% 83.8% 0.217 

Class 3 89.3% 91.9% 84.2% 91.9% 84.2% 76.1% 0.299 

PCA-QDA         

Class 1 76.8% 100% 27.8% 74.5% 100% 27.8% 0.500 

Class 2 73.2% 100% 21.1% 71.2% 100% 21.1% 0.434 

Class 3 75.0% 62.2% 100% 100% 57.6% 62.2% 0.217 

PCA-SVM         

Class 1 98.2% 97.4% 100% 100% 94.7% 97.4% 0.447 

Class 2 100% 100% 100% 100% 100% 100% 0.468 

Class 3 73.2% 59.5% 100% 100% 55.9% 59.5% 0.303 

 

SVM was applied to the PCA scores by means of PCA-SVM generating also a 

good prediction response (accuracy = 94.4%). Although SVM fitting and prediction are 

better than QDA in terms of accuracy, sensitivity and specificity; its average 

misclassification probability is slightly higher (𝑚𝑝 = 0.152). A robustness test was then 

performed by adding white Gaussian noise to the spectra in 6 different levels of signal-

to-noise ratio (S/N) measured in decibels (dB). S/N values of 50 dB, 45 dB, 40 dB, 35 

dB, 30 dB and 25 dB were tested. As can be seen in Figure 8.4a, by adding noise to the 

spectra, the predictive performance in terms of overall accuracy remained constant for 

PCA-QDA and PCA-SVM models. For PCA-LDA, the addition of noise at 25 dB 

improved the accuracy to 50%. This phenomenon could happen due to the poor-fitting of 
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the LDA model for dataset 1 (sensitivity and specificity of 44.4%), since in this case the 

model response might not be entirely reliable on the signal quality. 

For dataset 2 (Cryptococcus fungi specimens), PCA-QDA also had a better 

performance than PCA-LDA. According to Figure 8.2b, class 1 has a clear higher 

variance for the variables in the range of 900-1200 cm-1 (phosphodiester, polysaccharides, 

glycogen and PO2
- symmetric stretching in DNA/RNA (Movasaghi et al., 2008)) in 

comparison with class 2. PCA-QDA achieved perfect class segregation (accuracy = 

100%), while PCA-LDA achieved fair results with accuracy at 86.9%. All models were 

built using 8 PCs determined by SVD and RMSECV values (Figure 8.3c and d) 

(cumulative variance of 99.8%). Average misclassification probabilities of 0.328 and 

0.212 were found for LDA and QDA models, respectively; confirming the higher 

trustworthiness of PCA-QDA over PCA-LDA for this dataset (Table 8.1). PCA-SVM 

also achieved good classification results, with an accuracy of 97.6% in the external 

validation set. However, the average misclassification probability was found at 0.500, 

which indicates that this model is not stable. The negative predictive value (NPV) for 

PCA-SVM indicates that the presence of misclassification is present only in the negative 

samples (Cryptococcus neoformans), a possible overfitting sign. Robustness was again 

evaluated by adding white Gaussian noise to the spectra set. The PCA-QDA was the only 

model that remained stable with noise, while the other two models (PCA-LDA and PCA-

SVM) had an accentuated decrement of accuracy after S/N of 40 dB (Figure 8.4b). As 

expected by the misclassification probabilities values, the performance of PCA-SVM 

when the spectra were perturbated by noise was even worse than using PCA-LDA, since 

its accuracy dropped to 50% at 25 dB. 

 Dataset 3 is composed of IR spectra of normal brain tissue samples (class 1) and 

glioblastoma brain tissue samples (class 2) (Figure 8.2c). Both classes seem to have 

similar spectral profiles and standard-deviations. PCA-SVM classified the data with 

100% accuracy (misclassification probability of 0.244) using 10 PCs selected by SVD 

and RMSECV values (Figure 8.3e and f) (cumulative variance of 99.4%). The second 

best classification performance was found using PCA-QDA (accuracy = 88.9%, 

misclassification probability of 0.276) and, for last, PCA-LDA (accuracy = 68.1, 

misclassification probability of 0.319). The three models are stable until S/N 35 dB, but 

after this point, all the classifiers tend to lose their classification performance converging 



163 
 

to accuracies of 54.2% (PCA-LDA), 58.3% (PCA-QDA) and 62.5% (PCA-SVM) at 25 

dB (Figure 8.3c). 

 

Figure 8.4: Overall accuracy in percentage for PCA-LDA, PCA-QDA and PCA-SVM 

models in (a) dataset 1, (b) dataset 2, (c) dataset 3 and (d) dataset 4, by adding white 

Gaussian noise to the spectra datasets in the following levels of signal-to-noise ratio: 50 

dB, 45 dB, 40 dB, 35 dB, 30 dB and 25 dB. 

 

 Dataset 4 is composed of 3 classes of samples measured by ATR-FTIR. The 

average spectra with standard-deviation for class 1 (SHE cells contaminated with B[a]P), 

class 2 (SHE cells contaminated with 3-MCA) and class 3 (SHE cells contaminated with 

Ant) are depicted in Figure 8.2d. The variance among the classes seem to be evenly 

distributed, according to the similar standard-deviation observed in Figure 8.2d. PCA-

LDA was applied using 10 PCs selected by SVD and RMSECV values (Figure 8.3g and 

h) (cumulative variance of 98.9%), generating an overall accuracy of 91.1% (average 

misclassification probability = 0.260). This model had the best classification performance 

in comparison with PCA-QDA and PCA-SVM, which seem to be overfitted according to 

the small sensitivity and specificity values observed between the classes (Table 8.1). 

PCA-QDA achieved an overall accuracy of 75.0% (average misclassification probability 

of 0.384) and PCA-SVM with an overall accuracy of 90.4% (average misclassification 

0

10

20

30

40

50

60

70

80

90

100

Original 50 dB 45 dB 40 dB 35 dB 30 dB 25 dB

PCA-LDA PCA-QDA PCA-SVM

0

20

40

60

80

100

120

Original 50 dB 45 dB 40 dB 35 dB 30 dB 25 dB

PCA-LDA PCA-QDA PCA-SVM

0

20

40

60

80

100

120

Original 50 dB 45 dB 40 dB 35 dB 30 dB 25 dB

PCA-LDA PCA-QDA PCA-SVM

0

10

20

30

40

50

60

70

80

90

100

Original 50 dB 45 dB 40 dB 35 dB 30 dB 25 dB

PCA-LDA PCA-QDA PCA-SVM

a. b.

c. d.



164 
 

probability of 0.406). By applying noise to the data (Figure 8.4d), the model performance 

for PCA-LDA remained constant until 35 dB, then quickly dropped afterwards. For PCA-

SVM, the model maintained overall accuracy around 90% until 40 dB, followed by a 

quickly dropping at 35 dB; and for PCA-QDA, the overall accuracy decreased steadily 

until 25 dB. At 25 dB, all models converged to the same accuracy of 57%. 

 The mean misclassification probability and uncertainty propagation estimate 

based on Eq. 8.9 for SVM models are compared in Figure 8.5. An exponential trend is 

observed between the two parameters (Figure 8.5a), where the uncertainty propagation is 

proportional to the misclassification probability. A linear relationship between the two 

parameters is depicted in Figure 8.5b by the application of a natural logarithm function, 

where an R2 of 0.971 is found; indicating that the classification uncertainty by bootstrap 

behaves similar to that one found using RBF functions (Allegrini & Oliveiri, 2016). 

 

Figure 8.5. (a) Mean misclassification probability using bootstrap versus norm of 

uncertainty propagation coefficients (𝐛SVM
T ) calculated for SVM models with the training 

samples of datasets 1–4; and (b) mean misclassification probability using bootstrap versus 

natural logarithm of the norm of uncertainty propagation coefficients (𝐛SVM
T ) calculated 

for SVM models with the training samples of datasets 1–4 (linear equation: 𝑦 = 13.3𝑥 +
1.13). 
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8.4 Conclusion 
 

Misclassification probabilities were determined for PCA-LDA, PCA-QDA and 

PCA-SVM models applied to 4 different datasets (1 simulated and 4 real data). 

Uncertainty estimations were calculated by bootstrapping in order to obtain confidence 

intervals for misclassification probability calculations, presented herein as a new quality 

parameter to indicate model trustworthiness for these three classifiers. A correlation 

between the misclassification probability and model robustness was observed by adding 

white Gaussian noise to the spectral datasets, in which models with higher 

misclassification probabilities were more susceptible to error. Therefore, the 

misclassification probability can be used as a new figure of merit to assess model quality 

in classification applications, containing information of the model uncertainty and being 

also used to evaluate model robustness. 
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CHAPTER 9 | STANDARDIZATION OF COMPLEX 

BIOLOGICALLY-DERIVED SPECTROCHEMICAL 

DATASETS 

 

This chapter is published in Nature Protocols (IF 11.334). It is a protocol 

demonstrating how to standardise biospectroscopy datasets acquired in different 

laboratories or centres in order to have uniform classification results: 

➢ Morais CLM, Paraskevaidi M, Cui L, Fullwood NJ, Martin I, Lima KMG, Martin-

Hirsch PL, Sreedhar H, Trevisan J, Walsh MJ, Zhang D, Zhu YG, Martin FL. 

Standardization of complex biologically derived spectrochemical datasets. Nat. 

Protoc. 2019; 14: 1546–1577. https://doi.org/10.1038/s41596-019-0150-x  

 

Abstract: Spectroscopic techniques such as Fourier-transform infrared (FTIR) 

spectroscopy are used to study interactions of light with biological materials. This 

interaction forms the basis of many analytical assays used in disease screening/diagnosis, 

microbiological studies, and forensic/environmental investigations. Advantages of 

spectrochemical analysis are its low cost, minimal sample preparation, non-destructive 

nature and substantially accurate results. However, an urgent need exists for repetition 

and validation of these methods in large-scale studies and across different research 

groups, which would bring the method closer to clinical and/or industrial implementation. 

For this to succeed, it is important to understand and reduce the effect of random spectral 

alterations caused by inter-individual, inter-instrument and/or inter-laboratory variations, 

such as variations in air humidity and CO2 levels, and aging of instrument parts. Thus, it 

is evident that spectral standardization is critical to the widespread adoption of these 

spectrochemical technologies. By using calibration transfer procedures, in which the 

spectral response of a secondary instrument is standardized to resemble the spectral 

response of a primary instrument, different sources of variation can be normalized into a 

single model using computational-based methods, such as direct standardization (DS) and 

piecewise direct standardization (PDS); therefore, measurements performed under 

different conditions can generate the same result, eliminating the need for a full 

recalibration. Here, we have constructed a protocol for model standardization using 

different transfer technologies described for FTIR spectrochemical applications. This is 

a critical step toward the construction of a practical spectrochemical analysis model for 

daily routine analysis, where uncertain and random variations are present. 

 

Author contribution: C.L.M.M. performed the experiments, data analysis and wrote the 

manuscript draft.  

 

                                   

Camilo L. M. Morais, PhD candidate                         Prof. Francis L. Martin, Supervisor 
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9.1 Introduction 
 

Vibrational spectroscopy has shown great promise as an analytical tool for the 

investigation of numerous sample types with wide applications in diverse sectors, such as 

biomedicine, pharmaceutics or environmental sciences (Baker et al., 2014; Baker et al., 

2018; Eliasson & Matousek, 2007; Llabjnai et al., 2009; Melin et al., 2000). Fourier-

transform infrared (FTIR) spectroscopy is one of the preferred techniques for 

identification of biomolecules through the study of their characteristic vibrational 

movements. Another commonly used approach is Raman spectroscopy, which provides 

complementary spectral information to IR. Raman spectroscopy exploits the inelastic 

scattering of light whereas IR studies light absorption. Both methods have their benefits 

and drawbacks. A limitation of IR, for instance, is that water generates undesired peaks 

at the region of interest, which can mask important biological information, and therefore 

extra sample preparation and/or spectral processing is necessary. On the contrary, Raman 

spectroscopy has an inherently weak signal and fluorescence interference, which can, 

however, be addressed by optimizing the experimental settings or by applying 

enhancement techniques to increase the Raman signal. For the purposes of this protocol 

we have used FTIR spectroscopy to demonstrate our standardization model. 

 Using chemometric approaches, the system is trained to recognize unique spectral 

features within a sample, so that when unknown samples are introduced an accurate 

classification is feasible. Alterations in the measurement parameters could interfere with 

the spectral signature and produce random variations. Therefore, a crucial step is spectral 

correction, or standardization, which would provide comparable results and allow system 

transferability. The idea is that non-biological variations, such as those arising from 

different users, locations or instruments, will no longer affect the classification result; 

therefore any collected data could be imported into a central database and handled for 

further exploration or diagnostic purposes. Several groups and companies worldwide are 

developing spectrochemical approaches for diagnosis, discrimination and monitoring of 

diseases, as well as for other uses. Combination of multiple datasets would facilitate the 

conduction of large-scale studies which are still lacking in the field of bio-spectroscopy. 
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9.1.1 Sensor-based Technologies 

Sensor-based technologies are an integral part of daily life ranging from locating 

sensor-based technology, such as global positioning system (GPS) (Hofmann-Wellenhof 

et al., 2012), to image biosensors, such as X-rays (Kalita & Misra, 2000; Lagleyre et al., 

2009; Lee et al., 2009; Morris & Perkins, 2012) and γ-rays (Jagust et al., 2007; Schrevens 

et al., 2004; Zhou et al., 2009), which are used extensively for medical applications. Other 

powerful approaches that make use of sensor-based technologies toward medical disease 

examination and diagnostics include circular dichroism (CD) spectroscopy (Greenfield, 

2006; Micsonai et al., 2015; Miles & Wallace, 2016; Wallace et al., 2004), ultraviolet 

(UV) or visible spectroscopy (Brown et al., 2009; Yang et al., 2016), fluorescence 

(Shahzad et al., 2009; Shahzad et al., 2010; Shin et al., 2010; Sierón et al., 2013; World 

Health Organization, 2005), nuclear magnetic resonance (NMR) spectroscopy (Chan et 

al., 2016; Frisoni et al., 2010; Gowda et al., 2008; Möller-Hartmann et al., 2002; Palmnas 

& Vogel, 2013) and ultrasound (US) (Menon et al., 2009; Morris & Perkins, 2012; Navani 

et al., 2015; Patil & Dasgupta, 2012; Smith-Bindman et al., 1998). 

Over the last two decades, optical biosensors employing vibrational spectroscopy, 

particularly IR spectroscopy, have seen tremendous progress in biomedical and biological 

research. A number of studies using the above-mentioned methods have focused on 

cancer investigation with malignancies such as brain (Bury et al., 2019a; Gajjar et al., 

2013; Hands et al., 2014; Hands et al., 2016), breast (Backhaus et al., 2010; Lane & Seo, 

2012; Walsh et al., 2012), oesophagus (Maziak et al., 2007; Wang et al., 2003), skin 

(Hammondy et al., 2005; McIntosh et al., 1999; McIntosh et al., 2001; Mordechai et al., 

2004; Mostaço-Guidolin et al., 2009), colorectal (Kondepati et al., 2007; Rigas et al., 

1990; Yao et al., 2014), lung (Akalin et al., 2015; Großerueschkamp et al., 2015; Lewis 

et al., 2010), ovarian (Gajjar et al., 2013; Mehrotra et al., 2010; Owens et al., 2014; 

Theophilou et al., 2016), endometrial (Gajjar et al., 2013; Paraskevaidi et al., 2018c; 

Taylor et al., 2011), cervical (Gajjar et al., 2014; Podshyvalov et al., 2005; Walsh et al., 

2007; Wood et al., 1996) and prostate (Baker et al., 2009; Derenne et al., 2011; Gazi et 

al., 2006; Theophilou et al., 2015) cancer being some of them. Non-cancerous diseases 

have also been examined, namely neurodegenerative disorders (Carmona et al., 2013; 

Carmona et al., 2015; Paraskevaidi et al., 2017b; Paraskevaidi et al., 2018b), HIV/AIDS 

(Sitole et al., 2014), diabetes (Coopman et al., 2017; Scott et al., 2010; Varma et al., 

2016), rheumatoid arthritis (Canvin et al., 2003; Lechowicz et al., 2016), cardiovascular 
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diseases (Oemrawsingh et al., 2014; Wang et al., 2002), malaria (Khoshmanesh et al., 

2014; Martin et al., 2017; Roy et al., 2017), alkaptonuria (Markus et al., 2001), cystic 

fibrosis (Grimard et al., 2004), thalassemia (Aksoy et al., 2012), prenatal disorders (Graça 

et al., 2013; Hasegawa et al., 2010), macular degeneration (Semoun et al., 2009; Theelen 

et al., 2009), atherosclerosis (Peters et al., 2017; Wang et al., 2002) and osteoarthritis 

(Afara et al., 2017; Bi et al., 2007; David-Vaudey et al., 2005). 

 

9.1.2 Limitations 

Spectrochemical approaches are advantageous when compared with traditional 

molecular methods as they provide a holistic status of the sample under interrogation, 

thus generating typical spectral regions widely known as “fingerprint regions”. These 

methods have also been shown to be rapid, inexpensive and non-destructive while they 

also improve diagnostic performance and eliminate subjective diagnosis (e.g., 

histopathological diagnosis), where inter- and intra-observer variability are present 

(Trevisan et al., 2012). However, like any other analytical method, vibrational 

spectroscopy also comes with some limitations. For instance, prior to FTIR studies, 

optimization of instrumental settings, sample preparation and operation mode also needs 

to be conducted in order to improve the spectral quality and molecular sensitivity (Baker 

et al., 2014; Chan & Kazarian, 2016; Pilling & Gardner, 2016). Overall, the above-

mentioned barriers can be overcome after careful consideration of the experimental 

design. 

A considerable limitation that is yet under-investigated in the field of 

spectrochemical techniques is associated with the difficulties entailed in data 

conformation and system standardization. Currently, there are multiple pilot studies 

showing promising results but an approach towards standardization for biological 

applications is lacking. Random variation between studies can originate from differences 

in instrumentation, operators, and environmental conditions, such as room temperature 

and humidity. 

The main objective of this article is to present a protocol for model standardization 

which can be applied in FTIR spectrochemical techniques to rule out the chance of 

random spectral alterations. Inter-individual, inter-instrument, inter-sample and/or inter-

laboratory variations can be a source of unwanted, non-biological alterations, thus leading 
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to incorrect conclusions. However, for a method to become reliable and clinically 

translatable, it is important that measurements performed under different conditions 

generate comparable results. The aim of the spectral standardization model presented here 

is to expedite multi-centre studies with large numbers of samples; this would bring these 

spectrochemical techniques closer to clinical implementation and facilitate life-changing 

decisions. We describe a protocol that has four main components: (i) sample preparation, 

(ii) spectral acquisition, (iii) data pre-processing and (iv) model standardization. The 

current protocol has an in-depth insight obtained from cross-laboratory collaborations 

with leading experts in the field. This article offers a step-by-step procedure, which can 

be implemented by a non-specialist in spectrochemical studies. For further information 

about instrumental and software options, spectral acquisition steps and data analysis for 

a range of different analytical systems the reader is directed towards additional protocols 

(Baker et al., 2014; Beckonert et al., 2007; Butler et al., 2016; Felten et al., 2015; 

Harmsen et al., 2017; Kong et al., 2011; Martin et al., 2010; Sreedhar et al., 2015; Yang 

et al., 2015). 

 

9.1.3 Applications 

Spectrochemical approaches, in combination with computational analysis, have 

been proven to be effective for biomedical research through facilitating the diagnosis, 

classification, prognosis, treatment stratification and modulation or monitoring of a 

disease and treatment. However, these techniques are widely applicable to other fields as 

well, namely food industry (Osborne & Fearn, 2000; Qu et al., 2015; Song et al., 2013; 

Varriale et al., 2007), toxicology (Harrigan et al., 2004; Melin et al., 2000; Penido et al., 

2016; Ryder, 2002), microbiology (Carmona et al., 2005; Cui et al., 2018; Choo-Smith 

et al., 2001; Helm et al., 1991; Lasch & Naumann, 2015; Maquelin et al., 2002), forensics 

(Ali et al., 2008; Day et al., 2004; Hargreaves & Matousek, 2016; Lewis et al., 1995; 

Macleod & Matousek, 2008), pharmacy (Eliasson & Matousek, 2007; Melin et al., 2000; 

Vergote et al., 2002), environmental and plant science (Comino et al., 2018; Heys et al., 

2017; Lohr et al., 2017), as well as defence and security (Eliasson et al., 2007; Golightly 

et al., 2009; Liu et al., 2007). Applications of standardization algorithms vary according 

to the spectral technique and sample matrix studied, and have been mostly applied to 

Raman and Fourier-transform near-infrared (FT-NIR) spectroscopy. Table 9.1 

summarizes some standardization applications. 
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Table 9.1. Examples of applications involving standardization techniques.  

Sample matrix Spectroscopic technique Aim Ref. 

Tissue Raman Standardization of various perturbations on Raman spectra for diagnosis of breast cancer based on snap frozen 

tissues  

(Sattlecker et al., 

2011) 

 Raman Standardization of spectra acquired in 3 different sites for analysing oesophageal samples based on snap frozen 

tissues 

(Isabelle et al., 

2016) 

Cells Raman Standardization of spectra acquired with 4 different instruments for classification of three different cultured spore 

species 

(Guo et al., 2017) 

Biofluids FT-NIR Standardization of spectra acquired with 3 different instruments for measuring haematocrit in the blood of grazing 

cattle 

(Luo et al., 2017) 

 LC-MS Standardization of spectra acquired with 2 different instruments for mapping rendition times and matching 

metabolite features of subjects diagnosed with small cell lung cancer based on blood serum and plasma samples 

analysis 

(Vaughan et al., 

2012) 

Pharmaceutical materials Raman Standardization of spectra acquired with 5 different instruments for analysing various pharmaceutical excipients, 

active pharmaceutical ingredients (APIs) and common contaminants 

(Rodriguez et al., 

2011) 

 FT-NIR Standardization of spectra acquired with 2 different instruments for simultaneous determination of rifampicin and 

isoniazid in pharmaceutical formulations 

(de Andrade et 

al., 2018) 

 FT-NIR Standardization of spectra acquired with 2 different instruments for predicting content of 654 pharmaceutical tablets (Yu et al., 2016) 

Food FT-NIR Standardization of spectra acquired with 3 different instruments for predicting parameters in corn samples (Ni et al., 2019) 

 FT-NIR Standardization of spectra acquired with 2 different instruments for predicting vitamin C in navel orange (Hu & Xia, 2011) 

 FT-NIR Standardization of spectra recorded in 4 different labs for determining moisture, proteins and oil content in soy seeds (Forina et al., 

1995) 

 FT-NIR Standardization of spectra acquired by a benchtop and portable instrument for determining total soluble solid 

contents in single grape berry 

(Xiao et al., 

2017) 

 UV-Vis Standardization of visible spectra acquired with 3 different instruments for measuring pH of Sala mango (Yahaya et al., 

2015) 

Plant FT-NIR Standardization of spectra acquired with 2 different instruments for predicting baicalin contents in radix scutellariae 

samples 

(Ni et al., 2019) 

 FT-NIR Standardization of spectra acquired by 2 different instruments and in three physical states (powder, filament and 

intact leaf) for determining total sugars, reducing sugars and nicotine in tobacco leaf samples 

(Bin et al., 2017) 

 NMR Standardization of spectra acquired with 3 different instruments for authenticity control of sunflower lecithin (Monakhova & 

Diehl, 2016) 

Cosmetic CD spectroscopy Standardization of spectra acquired between standard and real-world samples for determining Pb2+ in cosmetic 

samples 

(Zuo et al., 2017) 

Inorganic substances FT-IR Standardization of interferogram spectra acquired with 2 instruments for classifying acetone and SF6 samples (Koehler et al., 

2000) 

Fuel FT-IR Standardization of spectra acquired with 2 different instruments for predicting density of crude oil samples (Rodrigues et al., 

2017) 

 



172 
 

9.1.4 Model Transferability 

Transferability models have been previously developed, however this is still an under-

investigated field, especially for biomedical applications. These models use computer-based 

methods to standardize spectral data generated across different experimental settings (e.g., 

different instruments, operators or laboratories). An inclusive standardization protocol that 

could be implemented in a range of different spectrochemical approaches is of great need. 

Differences are present even between identical instruments; for instance, changes in signal 

intensity caused by replacement, alignment or ageing of optical and spectrometer components, 

natural variations in optics and detectors construction, changes in measurement conditions 

(temperature and humidity), changes in physical constitution of the sample (particle size and 

surface texture) and operator discrepancies could all lead to wavenumber shifts and artefacts 

in the spectra. In all of these cases, prediction errors of the estimated group categories (e.g., 

whether the sample is classified as healthy or cancerous) can become very large, especially 

when the whole spectrum is used in the model. Standardization techniques aim to generate a 

uniform spectral response under differing conditions, ensuring the interchangeability of results 

obtained in different situations, without having to perform a full calibration for each situation. 

Previous standardization methods include the use of simple slope and bias correction 

(Brouckaert et al., 2018; Wang et al., 1991), direct standardization (DS) (de Andrade et al., 

2018; Khaydukova et al., 2017; Morais & Lima, 2015; Panchuk et al., 2017; Zamora-Rojas et 

al., 2012), piecewise direct standardization (PDS) (Barreiro et al., 2008; Sulub et al., 2008; 

Wang et al., 1991; Zhang et al., 2003), piecewise linear discriminant analysis (PLDA) (Koehler 

et al., 2000), guided model reoptimization (GMR) (Zhang et al., 2003), back-propagation 

neural network (BNN) (Koehler et al., 2000), generalized least squares weighting (GLSW) 

(Martens et al., 2003), model updating (MU) (Feudale et al., 2002; Woody et al., 2004), 

orthogonal signal correction (OSC) (Greensill et al., 2001; Sjöblom et al., 1998), orthogonal 

projections to latent structures (OPLS) (Rodrigues et al., 2017), wavelet hybrid direct 

standardization (WHDS) (Sulub et al., 2008), maximum likelihood PCA (MLPCA) (Andrews 

et al., 1997), Shenk and Westerhaus method (SW) (Bouveresse et al., 1994; Shenk & 

Westerhaus, 1991), positive matrix factorization (PMF) (Paatero & Tapper, 1994; Xie & 

Hopke, 1999), artificial neural networks (ANN) drift correction (Goodacre et al., 1997), 

transfer via extreme learning machine auto-encoder method (TEAM) (Chen et al., 2016), 

calibration transfer based on the maximum margin criterion (CTMMC) (Hu et al., 2012), 

calibration transfer based on canonical correlation analysis (CTCCA) (Fan et al., 2008) and 
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calibration methods, such as wavenumber offset correction, instrument response correction and 

baseline correction (Isabelle et al., 2016). In this protocol, we use direct standardization (DS) 

and piecewise direct standardization (PDS), because they are the most common methods for 

spectral standardization. 

Direct standardization. DS is one of the most used methods for data standardization. It was 

initially proposed to correct relatively large spectral differences between data collected from 

the same sample measured by two different instruments (Wang et al., 1991). In DS, the entire 

spectrum from a new secondary response (e.g., a different instrument) is transformed to 

resemble the spectrum from the primary source (e.g., original instrument) (de Andrade et al., 

2018). This is performed based on a linear relationship between the data acquired under 

different circumstances (Feudale et al., 2002): 

𝐒1 = 𝐒2𝐅           (9.1) 

where 𝐒1 represents the data acquired for the primary response; 𝐒2 represents the data acquired 

for the secondary response; and 𝐅 is the transformation matrix that maintains the relationship 

between 𝐒1 and 𝐒2. 

 The transformation matrix 𝐅 is estimated in a least-squares sense by (Wang et al., 1995): 

𝐅 = 𝐒2
+𝐒1           (9.2) 

where 𝐒2
+ is the pseudo-inverse of 𝐒2, calculated by: 

𝐒2
+ = (𝐒2

T𝐒2)−1𝐒2
T          (9.3) 

in which T stands for the matrix transpose operation. 

 Then, when samples are measured under the secondary system, the signals generated 𝐗 

are transformed to resemble the primary system response by (Feudale et al., 2002): 

�̂�T = 𝐗T𝐅           (9.4) 

where �̂� is the standardized response for X. 

 Problems related to different background information between instruments can affect 

the standardization procedure. To correct for this, the standardization process is usually adapted 

with the background correction method (Wang et al., 1995), in which the transformation matrix 

described in Eq. 9.2 is calculated with a background correction factor (𝐅b) and an additive 

background correction vector 𝐛s as follows: 
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𝐒1 = 𝐒2𝐅b + 𝟏𝐛s
T          (9.5) 

where 𝟏 is an all-ones vector and 𝐛s is obtained by: 

𝐛s = 𝐬1m − 𝐅b
T𝐬2m          (9.6) 

in which 𝐬1m is the mean vector of 𝐒1 and 𝐬2m is the mean vector of 𝐒2. 

 One of the key steps for DS is the selection of the number of samples to transfer (called 

“transfer samples”). These are samples’ spectra from the primary system (𝐒1) that will be used 

to transform the signal obtained using the secondary system (𝐒2). The transfer samples are 

obtained from a same cohort of samples (e.g., plasma samples) measured in the two instruments 

(primary and secondary systems). Usually, the procedure for selecting transfer samples is based 

on sample selection techniques, such as Kennard-Stone (KS) algorithm (Kennard & Stone, 

1969) or leverage (Wang et al., 1991). Subsequently, the number of transfer samples is 

evaluated using a validation set through an arbitrary cost function. For quantification 

applications, a common cost function is the root-mean-square error of prediction, while for 

classification one can use the misclassification rate. 

A disadvantage of DS is that each transformed variable is calculated using the whole 

spectrum, which carries a high risk of overfitting. The estimation of 𝐅 in Eq. (9.2) is an ill-

conditioned problem, because the number of variables (e.g., wavenumber) may be much larger 

than the number of standard samples. 

Piecewise direct standardization. PDS is another standardization procedure commonly 

employed for system transferability. It is based on DS, however it uses windows (e.g., 

wavenumber portions) to make the standardization process more suitable for smaller regions 

of the data. When compared to DS, PDS is calculated by using the transformation matrix F 

with most of its off-diagonal elements set to zero (Wang et al., 1991). With this, PDS fits minor 

spectral modifications not covered by DS. PDS is the technique of preference for correcting 

smaller spectral variations, such as small wavelengths shift, intensity variations, and bands 

enlargement and reduction (Wang et al., 1991). In addition, an advantage of PDS compared to 

DS is that the local rank of each window will be smaller than the rank of the whole data matrix, 

which means that the number of standard samples can be smaller, and indeed good results have 

been obtained with very few samples. 

 One disadvantage of PDS is the need of an additional optimization process, because in 

addition to the number of transfer samples, PDS also needs a window size optimization, which 
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might lead to a risk of overfitting. In this protocol, window size optimization is made using a 

cost function expressed as the misclassification rate calculated for each window size tested, 

being evaluated using a validation set where the window with smaller misclassification is 

selected for final model construction. 

 

9.2 Experimental Design 
 

Any study using vibrational spectroscopy, follows these general steps: careful 

experimental design, protocol optimisation and development of experimental procedure 

document, sample collection and preparation, spectral collection, pre-processing of the derived 

information and lastly the use of chemometrics for exploratory, classification and 

standardization purposes. FTIR spectroscopy is described in more detail in this study, however, 

the standardization protocol described here can be adapted to a range of techniques, including 

attenuated total reflection (ATR-FTIR), transmission and transflection FTIR, near-IR (NIR), 

UV-visible, NMR spectroscopy and mass spectrometry (MS). Nevertheless, intrinsic features 

of each technique should be taken into consideration before standardization and the protocol 

may change depending on the application of interest. 

A number of biological samples can be analyzed with the above-mentioned analytical 

methods such as tissues, cytological materials or biological fluids. Sample type and preparation 

may differ depending on the technique that is employed each time. For instance, IR 

spectroscopy is limited by water interference at the fingerprint region that can mask the signal 

of the analyte close to the water peak. This could be addressed with an extra step of sample 

drying, in contrast to Raman spectroscopy, for example, where water does not generate a signal 

in this region. 

Typical steps for sample preparation, acquisition of spectra and data pre-processing are 

briefly presented here. However, the main focus of this protocol is placed on the calibration 

transfer and standardization procedures. Readers are directed to additional literature for more 

detailed information regarding sample format and preparation4,98-100,105,175-177, suitability of 

substrates (Baker et al., 2014; Butler et al., 2016), instrumentation settings (Aebersold & Mann, 

2003; Baker et al., 2014; Butler et al., 2016; Martin et al., 2010; Palonpon et al., 2013; Pence 

& Mahadevan-Jansen, 2016; Sreedhar et al., 2015) or available software packages (Table 9.2) 

and manufacturers (Baker et al., 2014; Butler et al., 2016) . 
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Table 9.2. Software packages for data standardization. 

Software Website Description Availability 

PLS_Toolbox http://www.eigenvector.com/ 

 

MATLAB toolbox for chemometric 

analysis. Contains standardization 

routines using DS, PDS, double 

window PDS, spectral subspace 

transformation, GLSW, OSC, and 

alignment of matrices. 

Commercial 

Unscrambler® X http://www.camo.com/ 

 

Software for multivariate data 

analysis and design of experiments. 

Contains standardization routines 

using interpolation, bias and slope 

correction, and PDS. 

Commercial 

OPUS https://www.bruker.com/ 

 

Spectral acquisition software with 

data processing features. Contains a 

standardization routine using PDS. 

Commercial 

Pirouette® https://infometrix.com/ 

 

Chemometrics modelling software. 

Contains standardization routines 

using DS and PDS. 

Commercial 

 

 

9.2.1 Experimental Design: Sampling 

 

Sample preparation. Biological samples have been studied extensively with spectrochemical 

techniques for disease research. Tissue specimens can be analysed fresh, snap-frozen or 

formalin-fixed, paraffin-embedded (FFPE). Fresh or snap-frozen histology sections are 

preferable as they are devoid of contaminants whereas FFPE treatment contributes to 

characteristic peaks, hindering the biological information. FFPE tissues can be deparaffinized 

either by chemical methods (e.g., incubation in xylene, hexane or Histo-Clear solutions) (Baker 

et al., 2014), which can alter tissue structures and be inefficient for the complete wax removal 

(Ibrahim et al., 2017), or by applying chemometrics (e.g., digital dewaxing) (Byrne et al., 2016; 

Tfayli et al., 2009), which keeps the tissue intact but might introduce artefacts due to over- or 

under-estimation of the wax contribution (Ibrahim et al., 2017). 

Fixatives, such as ethanol, methanol or formalin, are often used for the preservation of 

cytological material, also generating strong peaks and interfering with the spectra; thus, a 

washing step is crucial before spectroscopic interrogation. Fixation in tissue or cells for 

preservation purposes generates protein cross-linking which can cause changes in the spectra, 

especially on the Amide I peak (Meade et al., 2010).  Alternatively, cells can be studied live 

after washing from residual medium. 

Preparation and pre-treatment of biological fluids depend on the sample type. Some of 

the biofluids that have been previously used in spectroscopic studies include blood (whole 

http://www.eigenvector.com/
http://www.camo.com/
https://www.bruker.com/
https://infometrix.com/
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blood, plasma or serum), urine, sputum, saliva, tears, cerebrospinal fluid (CSF), synovial fluid, 

ascitic fluid or amniotic fluid (Baker et al., 2016; Bonifacio et al., 2015; Mitchell et al., 2014). 

An initial centrifugation step should precede analysis in cases where the cells present in these 

fluids are not the focus of the study; the supernatant could then be kept for further analysis. In 

blood-based studies, the user should also consider the anticoagulant of preference (e.g., EDTA, 

citrate or heparin) as it could generate unwanted spectral peaks (Bonifacio et al., 2014; 

Lovergne et al., 2016; Paraskevaidi et al., 2017a). Careful planning of experiments as well as 

consistence throughout a study are of great importance for the generation of robust results. Care 

should be taken to generate samples that are stable, since the spectral differences between the 

data collected under different situations (e.g., different instruments or temperature) should be 

directly related to the difference between the systems and not a change caused by chemical or 

physical degradation of the samples. Optimal sample thickness, suitability of substrates and 

sample formats can differ from one analytical technique to another and thus the user should 

decide and tailor these according to the study’s objective (a list with appropriate substrates is 

given in the Materials-Equipment section). Another consideration is the number of freeze-thaw 

cycles and long-term storage as these could compromise the integrity of the samples (Lovergne 

et al., 2016; Mitchell et al., 2005). Preferably, FFPE tissue samples should be analysed after 

thorough dewaxing and freeze-thaw cycles or long-term storage avoided since these could 

result in many confounding factors for analysis. 

Spectral acquisition. Depending on the study’s objective, FTIR spectral information can be 

collected using either point spectra or imaging.  

 FTIR spectra can be collected in different operational modes, namely ATR-FTIR, 

transmission or transflection. Instrument parameters such as resolution, aperture size, 

interferometer mirror velocity and co-additions have to be optimised before acquisition of 

spectra to achieve high SNR (Baker et al., 2014; Martin et al., 2010). Metal surfaces can also 

be used to increase the IR signal in a technique known as surface-enhanced IR absorption 

(SEIRA) (Glassford et al., 2013; Kundu et al., 2008). As water interference can mask biological 

information in IR spectra, the user can purge the spectrometer with dry air or nitrogen gas to 

reduce the internal humidity of the instrument, or use computational analysis to remove the 

water signature. In addition, samples should be dried until all water content evaporates; 

however, drying of a sample is not without consequences, since chemical changes may occur 

such as loss of volatile compounds. A background sample is collected regularly to account for 

any changes in the atmospheric or instrument conditions. 
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For analysing homogenous samples (e.g., biofluids), measurements can be performed 

by acquiring spectra on different regions of the centre of a drop and across its borders. In 

transmission measurements, the sample can be measured raw or diluted. Usually, 10 spectra 

are collected per sample. A higher number of spectral replicas can be performed to decrease 

the standard-deviation (SD) between measurements, since the SD is proportion to 1/√𝑛, where 

𝑛 is the number of replicas. For heterogeneously distributed samples (e.g., tissues), spectra 

should be acquired covering the sample surface as uniformly as possible, to ensure that all 

sources of variation in the sample are stored in the spectral data. Sample replicas are also 

recommended at least as triplicates. For precision estimation, at least six replicates at three 

levels should be performed. The minimum number of samples for analysis can be estimated 

using a power test at an 80% power (Jones et al., 2003). Further details regarding sampling 

methodologies for analysing biological materials using FT-IR spectroscopy can be found in 

our previous protocols (Baker et al., 2014; Martin et al., 2010). 

 

9.2.2 Experimental Design: Data Quality Evaluation 

Before processing, the data can be assessed to identify the presence of anomalous 

behaviours or biased patterns. This can be made initially by visual inspection (e.g., 

identification of very anomalous spectra) followed by Hotelling T2 versus Q residuals charts 

using only the mean-centred spectra. PCA residuals (Beebe et al., 1998) can be explored to 

identify biased patterns, in which heteroscedastic distributions are signs of biased experimental 

measurements; while homoscedastic distributions are associated with good sampling. SNR can 

be estimated by dividing the power (𝑃) of signal by the power of noise, that is SNR =

𝑃𝑠𝑖𝑔𝑛𝑎𝑙 𝑃𝑛𝑜𝑖𝑠𝑒⁄ = (𝐴𝑠𝑖𝑔𝑛𝑎𝑙 𝐴𝑛𝑜𝑖𝑠𝑒⁄ )
2
, where 𝐴 is the amplitude; or by the inverse of the 

coefficient of variation, when only non-negative variables are measured. Collinearity can be 

evaluated by calculation of the condition number, which is a matrix calculation that measures 

how sensitive the result is to perturbations in the input data (i.e., spectra) and to roundoff errors 

made during the solution process. This value is naturally high for spectral data (high 

collinearity). 
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9.2.3 Experimental Design: Pre-processing 

Data pre-processing is used to maximise the SNR. This process is fundamental for 

correcting physical interferences, such as light scattering, different sample thickness, different 

optical paths and instrumental noise. Therefore, the pre-processing step has fundamental 

importance to highlight the signal of interest, reduce interferences and possibly correct 

anomalous samples. 

 For standardization applications, the pre-processing step is also important for reducing 

differences between the different systems that are used. Before any additional pre-processing, 

the spectrum should be trunctated to the biofingerprint region (e.g., 900-1800 cm-1) before 

analysis. This region contains the main absorptions from biochemical compounds and it suffers 

only minor effects of environmental variability, such as air humidity (free νO-H = 3650–3600 

cm-1, hydrogen-bonded νO-H = 3400 – 3300 cm-1) and air CO2 (νsCO2 = 2350 cm-1) (Pavia et 

al., 2008). Table 9.3 summarizes the main pre-processing techniques for correcting noise in 

biologically-derived datasets. 

Figure 9.1 shows the effect of a pre-processing approach employed for a blood plasma 

dataset acquired under different experimental conditions (i.e., different systems and operators). 

In this Figure, the reduction of the spectral differences between the systems is evident after 

data pre-processing (Savitzky-Golay smoothing, MSC, baseline correction and normalization). 

After pre-processing (Table 9.3), a scaling step should be done, because  most 

classification methods require all the variables (e.g., wavenumbers) in the dataset to be at the 

same scale in order to work properly. 

For spectral data, mean-centring (also referred as “standardization” by Hastie et al. 

(2009)) is a very reasonable approach, after which all variables in the dataset will have zero 

mean. When data contain values represented by different scales (e.g., after data fusion using 

both IR and Raman spectra), block-scaling should be used, where each block of data (i.e., data 

from each instrumental technique) would have the same sum-of-squares (normally after mean-

centring). 
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Table 9.3. Main pre-processing used for biologically-derived datasets. 

Pre-processing Interfering Technique Advantage Disadvantage Optimization 

Savitzky-Golay smoothing 

(Savitzky & Golay, 1964) 

Instrumental noise ATR-FTIR, FTIR, NIR, 

Raman, NMR, UV-Vis 

Corrects spectral noise 

without changing the shape 

of data significantly 

The polynomial order and 

window size for polynomial fit 

affects the result 

The polynomial function should have 

an order similar to the spectral data 

(e.g., 2nd order polynomial function for 

IR data) and the window size should be 

an odd number and not too small 

(keeping the noise) or too large 

(changing the spectral shape) 

Multiplicative scatter 

correction (MSC) (Geladi 

et al., 1985)  

Light scattering (Mie 

scattering), different 

pressure over the sample 

when using ATR or probe, 

different lengths of optical 

path 

ATR-FTIR, FTIR, NIR, 

Raman, NMR, UV-Vis 

Corrects light scattering 

maintaining the same 

spectral shape and signal 

scale 

Need of a reference spectrum 

representative of all 

measurements 

The reference spectrum is regularly set 

as the average spectrum across all 

training samples 

Standard normal variate 

(SNV) (Barnes et al., 

1989) 

Light scattering (Mie 

scattering), different 

pressure over the sample 

when using ATR or probe, 

different lengths of optical 

path 

ATR-FTIR, FTIR, NIR, 

Raman, NMR, UV-Vis 

Corrects light scattering 

maintaining the same 

spectral shape 

Creates negative signals since 

the data are centralized to zero 

(y-scale) 

-- 

Spectral differentiation 

(Savitzky & Golay, 1964) 

Light scattering (Mie 

scattering), different 

pressure over the sample 

when using ATR or probe, 

different lengths of optical 

path, background 

absorption interfering 

ATR-FTIR, FTIR, NIR, 

Raman, NMR, UV-Vis 

Corrects light scattering and 

baseline problems; 

highlights smaller spectral 

differences 

Changes the signal scale, shifts 

the data and increases noise 

The order of the derivative function 

should be used carefully to avoid 

increased noise (usually 1st or 2nd order 

differentiation is preferred). The 

differentiation can be coupled to 

Savitzky-Golay smoothing 

Baseline correction 

(Brereton, 2003) 

Background absorption 

interfering 

ATR-FTIR, FTIR, NIR, 

Raman, NMR, UV-Vis, 

MS 

Corrects the baseline 

maintaining the same 

spectral shape 

-- There are many methods for baseline 

correction (e.g., rubber band, automatic 

weighted least squares, Whittaker 

filter). The method chosen should be 

maintained consistent for all systems 

used 

Normalization (Trevisan et 

al., 2012) 

Different sample thickness 

and concentration 

ATR-FTIR, FTIR, 

Raman 

Avoids influence of non-

desired signals among the 

samples 

The normalization might hide 

signal differences between 

samples at important bands, 

such as Amide I and Amide II; 

and also may introduce non-

linearities 

-- 



 
 

181 

 

 

Figure 9.1. IR spectra of healthy control (absence of disease) samples varying ATR-FTIR 

instruments and operators. Average (a) raw and (b) pre-processed IR spectra for healthy 

control samples measured across three different ATR-FTIR spectrometers in the same 

institute (A, B and C). Average (c) raw and (d) pre-processed IR spectra for healthy control 

samples across two different operators (Operator 1 and 2). 

 

 Another important aspect of pre-processing is the order in which each step is applied. 

Pre-processing should be employed in a logical order so that the next pre-processing step is 

not affected by the previous one. For example, pure spectral differentiation cannot be 

employed before smoothing, since the spectral differentiation will increase the original noise. 

Therefore, smoothing should be applied before differentiation. Albeit, Savitzky-Golay 

routine incorporates smoothing and spectral differentiation so, in practical terms, these can 

be performed together. To summarise, the suggested order of pre-processing is as follows: 

1. Spectral Truncation 

2. Smoothing 
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3. Light scattering correction 

4. Baseline correction 

5. Normalization 

6. Scaling 

Further details about these pre-processing steps are provided in “Procedure: Data pre-

processing” section. When using different instruments but same type of sample, the pre-

processing steps should be the same for the data acquired under different circumstances. 

 

9.2.4 Experimental Design: Data Analysis 

Sample splitting. Sample splitting is fundamental for constructing a predictive chemometric 

model. It consists of a data analysis step performed before construction of a chemometric 

model, in which a portion of the samples are assigned to a training set, while the remaining 

samples are assigned to a validation and/or test set. The training set is used for model 

construction, the validation set for model optimization, and the test set for final model 

evaluation. The process of dividing the samples in three sets can be performed manually or 

by computer-based methodologies. Manual splitting can generate biased results, therefore we 

recommend a computational-based split instead. Some examples of these include random 

selection, leverage (Wang et al., 1991) or the KS algorithm (Kennard & Stone, 1969). KS 

works based on Euclidian distance calculation by firstly assigning the sample with the 

maximum distance to all other samples to the calibration set, and then by selecting the 

samples which are as far away as possible from the selected samples to this set, until the 

designed number of selected samples is reached. This ensures that the calibration model will 

contain samples that uniformly cover the complete sample space, where no or minimal 

extrapolation of the remaining samples are necessary; avoiding problems of manual or 

random selection, such as non-reproducibility and non-representative selection. Usually, the 

dataset is split with 70% of the samples assigned for training, 15% for validation and 15% 

for test. In this case, the test set is dependent on the initial group of samples measured, and it 

is not a regular independent test set where a new set of similar samples are measured. 

Exploratory analysis. Exploratory analysis is an important tool to provide an initial 

assessment of the data. Using exploratory analysis, the analyst can see the clustering patterns 
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and then draw conclusions related to the nature of samples, outliers and experimental errors. 

One of the most common techniques for exploratory analysis is principal component analysis 

(PCA), in which the original data are decomposed into a few principal components (PCs) 

responsible for most of the variance within the original dataset. The PCs are orthogonal to 

each other and are generated in a decreasing order of explained variance, so that the first PC 

represents most of the original data variance, followed by the second PC and so on (Bro & 

Smilde, 2014). Mathematically the decomposition takes the form: 

𝐗 = 𝐓𝐏T + 𝐄           (9.7) 

where 𝐗 represents the pre-processed data (e.g., pre-processed samples’ spectra); 𝐓 are the 

scores; 𝐏 are the loadings; and 𝐄 are the residuals. 

 The PCA scores represent the variance in the sample direction and they are used to 

assess similarities/dissimilarities among the samples, thus detecting clustering patterns. The 

PCA loadings represent the variance in the variable (e.g., wavenumber) direction and they 

are used to detect which variables show the highest importance for the pattern observed on 

the scores. The PCA loadings are commonly employed as a tool for searching spectral 

markers that distinguish different biological classes (Martin et al., 2007). The PCA residuals 

represent the difference between the decomposed and original data and can be used to 

identify experimental errors. Ideally, the PCA residuals should be random and close to zero, 

representing a heteroscedastic distribution. Otherwise, they can indicate experimental bias 

according to a homoscedastic distribution. 

 For standardization applications, PCA is a fast, intuitive and reliable tool to observe 

if there are differences between the spectra acquired by different systems. Ideally, if the same 

sample is measured under different conditions (different laboratories, instrument 

manufacturers or user operators) their PCA scores should be random and completely 

superposed. If a discrimination pattern is observed on the PCA scores, then it is indicative 

that the data need standardization. Figure 9.2 illustrates a PCA scores plot from the same 

samples (blood plasma of healthy controls) measured using three IR instruments before (Fig. 

9.2a) and after (Fig. 9.2b) PDS. Even though the samples in Fig. 9.2a are pre-processed, three 

different clusters are still evident. After PDS the samples measured using different systems 

are normalized into a single cluster. 
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Figure 9.2. PCA scores for healthy control (absence of disease) samples varying ATR-FTIR 

instruments before and after standardization. (a) PCA scores for healthy control samples 

across three different ATR-FTIR spectrometers in the same institute (A, B and C) after pre-

processing but before PDS; (b) PCA scores for healthy control samples across three different 

ATR-FTIR spectrometers in the same institute (A, B and C) after PDS (model built with 55 

transfer samples and window size of  23 wavenumbers). The dotted blue circle shows 95 % 

confidence ellipse (two-sided). Each measurement observation (circle) corresponds to the 

data acquired from a unique operator. 

 

Outlier detection. Outlier detection is important to prevent samples, which differ from the 

original dataset, from affecting the results using predictive models. Outliers can be attributed 

to experimental errors, such as inconsistent sample preparation or spectral acquisition, or to 

larger experimental noise, such as Johnson noise, shot noise, flicker noise and environmental 

noise. These samples can have large leverage for classification, masking the real signal from 

the samples of interest; therefore, it is advised that they be removed from the dataset used to 

train the predictive model. 

 To detect outliers, techniques such as Jack-knife (Martens & Martens, 2000), Z-score 

(Rousseeuw & Hubert, 2011) or K-modes clustering (Jiang et al., 2016) can be utilised among 

others (Domingues et al., 2018). One of the most popular and visually intuitive technique for 

detecting outliers is the Hotelling T2 vs Q residual test (Bakeev, 2010). In this test, a chart is 

created using the Hotelling T2 values in x-axis and the Q residuals in the y-axis, generating a 

scatter plot. The Hotelling T2 represents the sum of the normalized squared scores, which is 

the distance from the multivariate mean to the projection of the sample onto the PCs 

(Kuligowski et al., 2012). The Q residuals represent the sum of squares of each sample in the 
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error matrix, thus measuring the residues between a sample and its projection onto the PCs 

(Kuligowski et al., 2012). All samples far from the origin of this graph are considered outliers 

and should be removed one at a time, as the PCA is highly influenced by the samples that are 

included in the model. Samples with high values in both Hotelling T2 and Q residuals are the 

worst outliers; while samples with high values in only one of these axis are the second worst 

outliers. Appendix C illustrates an example for outlier detection. Squared confidence limits 

can be draw based on this graph; however, this can hinder outlier detection. For example, if 

the confidence limits is set at a 95% level, certain amount of data-points (5%) should be 

statistically outside these boundaries.  

Classification. Classification techniques are employed for sample discrimination. Using 

chemometric analysis, one can distinguish classes of samples based on their spectral features 

and then make further predictions based on these. The prediction capability of a classification 

model should be evaluated with external samples (unknown samples) through the calculation 

of figures of merit, including accuracy (proportion of samples correctly classified considering 

true positives and true negatives), sensitivity (proportion of positives that are correctly 

identified) and specificity (proportion of negatives that are correctly identified) (Morais & 

Lima, 2017). 

 There are many types of classification techniques for spectral data. Table 9.4 

summarizes the main classification techniques employed for bio-spectroscopy applications, 

along with their advantages and disadvantages. 

When employing classification techniques, one must follow a parsimony order 

(Seasholtz & Kowalski, 1993), where the simplest algorithms should be used first, reducing 

the need for more complex algorithms which would require more optimization steps. An 

order for using these classification algorithms is: LDA>PLS-

DA>QDA>KNN>SVM>ANN>Random forests>Deep learning approaches, from the 

simplest to the most complex. 
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 Table 9.4. Classification techniques. 

Classification Technique Advantage Disadvantage 

Linear discriminant 

analysis (LDA) (Dixon & 

Brereton, 2009)  

Simplicity, fast calculation Needs data reduction, does not account 

for classes having different variance 

structures, greatly affected by classes 

having different sizes 

Quadratic discriminant 

analysis (QDA) (Dixon & 

Brereton, 2009) 

Fast calculation, accounts for 

classes having different variance 

structures, not much affected by 

classes having different sizes 

Needs data reduction, higher risk of 

overfitting 

Partial least squares 

discriminant analysis 

(PLS-DA) (Brereton & 

Lloyd, 2014) 

Fast calculation, high accuracy Greatly affected by classes having 

different sizes, needs optimization of the 

number of latent variables (LVs) 

K-Nearest Neighbours 

(KNN) (Cover & Hart, 

1967) 

Simplicity, non-parametric, suitable 

for large datasets 

Time consuming, needs optimization of 

the distance calculation method and k 

value, highly sensitive to the “curse of 

dimensionality”199 

Support vector machines 

(SVM) (Cortes & Vapnik, 

1995) 

Non-linear classification nature, 

high accuracy 

High complexity, high risk of overfitting, 

needs optimization of kernel function 

and SVM parameters, time consuming 

Artificial neural networks 

(ANN) (Abraham, 2005) 

Non-linear classification nature, 

ability to work with incomplete 

knowledge, high accuracy 

High computational cost, needs 

optimization of the number of neurons 

and layers, no interpretability (“black 

box” model) 

Random forests (Fawagreh 

et al., 2014) 

Non-linear classification nature, 

high accuracy, relatively low 

computational cost 

High risk of overfitting, needs 

optimization of the number of trees, no 

interpretability (“black box” model) 

Deep learning approaches 

(LeCun et al., 2015) 

Non-linear classification nature, 

native feature extraction (e.g., in 

convolutional neural networks 

(CNN)), local spatial coherence 

(CNN),  high accuracy 

High computational cost, needs 

hyperparameter optimization, needs large 

datasets, time consuming, no 

interpretability (“black box” model) 

Classification algorithms can be coupled to feature extraction and feature selection 

techniques in order to reduce data collinearity/redundancy, thus reducing the risk of 

overfitting in the classifier training, and speeding up such training, as there are less variables 

involved.  An additional benefit of such a feature extraction/selection step is to provide 

spectral markers identification as a “side-effect” (depending on the feature 

extraction/selection method applied). For feature extraction, the most popular technique is 

PCA. In this case, a PCA is firstly applied to the data, and then the PCA scores are used as 

the input variables (instead of the wavenumbers data points) for the classification techniques 

mentioned above (Morais & Lima, 2017). PLS-DA is also a feature extraction technique 

(Brereton & Lloyd, 2014), and normally it performs better than a PCA followed by LDA, as 

the scores from a PCA does not necessarily describe the difference between the samples, but 

rather the variance in the data. In PLS-DA, a partial least squares (PLS) model is applied to 
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the data in an interactive process reducing the original variables to a few number of LVs, 

where a LDA is used for classifying the groups (Hibbert, 2016). Other discriminant 

classifiers, in particular QDA, also could be used in this classification step to circumvent 

problems observed with LDA. For feature selection, there are many techniques commonly 

employed in biological datasets, including genetic algorithm (GA) (McCall, 2005) and 

successive projections algorithm (SPA) (Soares et al., 2013). The variables (e.g., 

wavenumbers) selected by these techniques are used as input variables for the classification 

models described in Table 9.2. An important advantage of GA is its relatively low-

computational cost compared to SPA and reduction of data collinearity. Furthermore, GA-

based techniques are intuitive and simple to understand in the algorithmic sense but they also 

have a non-deterministic nature and require optimization of many parameters. SPA’s 

advantage relies on its deterministic nature, minor parameter optimization and reduction of 

data collinearity, however, it is very time consuming. For hyperspectral imaging, feature 

selection can also be performed by Minimum Redundancy Maximum Relevance (MRMR) 

algorithm (Kamandar & Ghassemian, 2010), where the selection process is based on 

maximizing the relevance of extracted features and simultaneously minimize redundancy 

between them. 

Standardization. Data standardization should be employed when a primary classification 

model is built and new data comes to be predicted from a secondary system (different 

laboratory or instrument manufacturers), or when there is a change in instrument components 

(e.g., laser, gratings, etc.) or when the data of the chemometric model are acquired under 

different circumstances (different analysts, days, instrumental settings, etc.). As previously 

mentioned, the most common and reliable methods for data standardization are the DS and 

PDS algorithms. These methods can be found in a few software packages (described in Table 

9.3). 

Figure 9.3 summarises the standardization protocol using DS applied to spectra 

acquired under different conditions. The first step consists of applying KS algorithm for 

selecting the number of transfer samples from the primary system as well as the number of 

training samples for the secondary systems, which is ideally 70% of the dataset. Thereafter, 

the DS transform generation algorithm is employed to estimate the transform matrix. The 

validation set of the secondary system is then used with the classification model of the 
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primary system to evaluate the optimum number of transfer samples. This optimization step 

is repeated depending on the number of transfer samples from the primary system. After this 

number is defined, the validation set of the secondary system is finally standardized and the 

final classification model is subsequently applied. This procedure is realized with a certain 

number of samples measured in all instruments being standardized. This procedure should 

be realized in as similar manner as possible to reduce spectral differences. After the model is 

standardized and proper validated, new external samples can be measured in any of the 

instruments and predicted by the standardized classification model. 

 

Figure 9.3. Flowchart for standardization using Direct Standardization (DS). 
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 For PDS, an extra step is added after defining the number of transfer samples to 

estimate the optimum window size. The dashed region in Fig. 9.3 is repeated according to 

the window size. 

 For multi-laboratory studies the flowchart depicted in Fig. 9.4 illustrates how the 

standardization protocol should be employed. 

 

Figure 9.4. Flowchart for a standardization protocol using different experimental conditions.  

 

 In Fig. 9.4, spectra acquired under different experimental conditions are used for a 

global standardization model. A primary system should be designated and then all spectra 

from secondary systems are equally pre-processed, followed by an exploratory analysis to 

assess samples’ similarities/dissimilarities, outlier detection, standardization by the method 

outlined in Figure 9.3; the final model construction follows last. With this, all sources of 

variations present in different systems can be included into a general chemometric model. 
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9.3 Materials 
 

9.3.1 Reagents 

• Biological samples (tissue, cells, biofluids)(see Reagent Setup).  

▲ CRITICAL Human samples should be collected with appropriate local institutional 

review board for ethical approval and adhere to the Declaration of Helsinki principles. 

Similarly, for studies involving animals, all experiments should be performed in accordance 

with relevant guidelines and regulations. Ethical approval has to be obtained before any 

sample collection. 

• Optimal cutting temperature (OCT) compound (Agar Scientific, cat. no. AGR1180) 

• Liquid nitrogen (BOC, CAS no. 7727-37-9) ! CAUTION Asphyxiation hazard; make 

sure room is well ventilated. Causes burns; wear face shield, gloves and protective 

clothing. 

• Paraplast Plus paraffin wax (Thermo Fisher Scientific, cat. no. SKU502004) 

• Isopentane (Fisher Scientific, cat. no. P/1030/08) ! CAUTION Extremely flammable, 

irritant, aspiration hazard and toxic; use in a fume hood. 

• Distilled water 

• PBS (10×; MP Biomedicals, cat. no. 0919610) 

• Virkon (Antec, DuPont, cat. no. A00960632) 

• Trypsin–EDTA (0.05%, Sigma-Aldrich, Thermo Fisher Scientific cat. no. 25300054) 

 

Anticoagulants 

• EDTA (Thermo Fisher Scientific, BD Vacutainer, cat. no. 02-687-107 ) 

• Sodium citrate (Thermo Fisher Scientific, BD Vacutainer) 

• Lithium/sodium heparin (Thermo Fisher Scientific, BD Vacutainer) 

 

Fixative and preservative agents 

• Formalin, 10% (vol/vol; Sigma-Aldrich, cat. no. HT501128) ! CAUTION Potential 

carcinogen, irritant and allergenic; use in a fume hood. 

• Ethanol (Fisher Scientific, cat. no. E/0600DF/17) 
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• Methanol (Fisher Scientific, cat. no. A456-212) ! CAUTION Toxic vapours; use in 

a fume hood. 

• Acetone (Fisher Scientific, cat. no. A19-1) ! CAUTION Acetone vapors may cause 

dizziness; use in a fume hood. 

• ThinPrep (PreservCyt Solution, Cytyc Corp) 

• SurePath (Becton Dickinson Diagnostics) 

 

Dewaxing agents 

• Xylene (Sigma-Aldrich, cat. no. 534056) ! CAUTION Potential carcinogen, irritant 

and allergenic; use in a fume hood. 

• Histo-Clear (Fisher Scientific, cat. no. HIS-010-010S) ! CAUTION It is an irritant. 

• Hexane (Fisher Scientific, cat. no. 10764371) ! CAUTION Extremely flammable 

liquid, can cause skin irritation; use protective equipment as required; use in a fume 

hood. 

 

9.3.2 Equipment 

• Microtome (Thermo Fisher Scientific, cat. no. 902100A; or cat. no. 956651) 

• Wax dispenser (Electrothermal, cat. no. MH8523B) 

• Sectioning bath (Electrothermal, cat. no. MH8517) 

• Centrifuge (Thermo Fisher Scientific, cat. no. 75002410) 

• Desiccator (Thermo Fisher Scientific, cat. no. 5311-0250) 

• Desiccant (Sigma-Aldrich, cat. no. 13767) 

• Laser power meter (Coherent, cat. no. 1098293) 

• Spectrometer 

• Computer system 
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Substrates 

▲ CRITICAL Substrate should be carefully chosen depending on the spectrochemical 

approach and the experimental mode that will be used. For more details about the choice of 

substrate see ref (Baker et al., 2014; Butler et al., 2016). 

• Low-E slides (Kevley Technologies, CFR) 

• BaF2 slides (Photox Optical Systems) 

• CaF2 slides (Crystran, cat. no. CAFP10-10-1) 

• Silicon multi-well plate (Bruker Optics) 

• Glass slides (Fisher Scientific, cat. no. 12657956) 

• Quartz slides (UQG Optics, cat. no. FQM-2521) 

• Aluminum-coated slides (EMF, cat. no. AL134) 

• Mirrored stainless steel (Renishaw, cat. no. A-9859-1825-01) 

 

9.3.3 Reagent Setup 

Tissue. For FFPE tissue, the excised specimen is immersed in fixative (e.g., formalin), 

dehydrated in ethanol, cleared in xylene and embedded in paraffin wax. Specimens can then 

be stored indefinitely at room temperature. For snap-frozen tissue, the specimen is immersed 

in OCT, followed by cooling of isopentane with liquid N2. 

▲ CRITICAL Snap-frozen tissue should be thawed before analysis. Spectroscopic analysis 

should be performed directly after excision in case of fresh tissue to avoid sample 

degradation. 

Cells. Cells can be treated with a suitable fixative or preservative solution or studied alive. 

▲ CRITICAL In case cells are fixed or stored in a preservative solution, a number of 

washing steps using centrifugation should be followed prior to spectroscopic analysis to 

remove unwanted signature. If cells are studied alive, optimum living conditions (e.g., growth 

medium, temperature and pH) should be maintained; washing of live cells from medium is 

also necessary. 
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Biofluids. Biofluids can be collected in designated, sterile tubes using standard operating 

procedures to achieve uniformity of performance. Preparation of biofluids depends on the 

sample type and the experiment’s objective. If cellular material is not directly studied, it 

should be removed from the biofluid before storage. Biofluids can be analysed right after 

their collection or stored at a -80°C freezer. 

▲ CRITICAL If biofluids have been stored in a freezer, it is essential that they are fully 

thawed before acquiring aliquots for spectroscopic analysis. 

▲ CRITICAL Users are advised to store biofluids in smaller, single-use aliquots at -80°C 

to avoid repeated freeze-thaw cycles. 

 

9.3.4 Equipment Setup 

The user can choose from a range of different instrumental setups and spectral 

acquisition modes. General information about FTIR systems is provided below. For more 

details about equipment setup see refs. (Baker et al., 2014; Butler et al, 2016; Martin et al., 

2010). 

The FTIR spectrometer can be left on for long periods of time. Before spectral 

acquisition, the user should check the interferogram signal for amplitude and position and 

keep a record of the measurements. 

▲ CRITICAL For detectors that require a prior cooling step using liquid nitrogen (e.g., 

mercury cadmium telluride (MCT) detectors), the signal should be allowed to stabilize for 

approximately 10 min before data collection. 

▲ CRITICAL In case that the interferogram signal deviates from the last measurement, re-

alignment or part replacement may be required. 

Software. Software for spectral acquisition is typically provided by the manufacturer. 

Software packages for spectral analysis and data standardization are provided in Table 9.3. 
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9.4 Procedure 

Sample preparation 

1| Prepare the biological samples for spectrochemical analysis using the following steps: 

option A for FFPE tissue samples, option B for snap-frozen or fresh tissue samples, option C 

for cells and option D for biofluids. 

▲ CRITICAL Sample preparation is briefly presented in this protocol. More details about 

sample preparation can be found in refs. (Baker et al., 2014; Butler et al, 2016; Martin et al., 

2010). 

(A) Tissue (FFPE) ● TIMING 1-1.5 h 

(i) Obtain FFPE tissue blocks. 

(ii) Section the whole tissue block using a microtome to obtain tissue sections at desired 

thickness (2-10 μm). 

▲ CRITICAL STEP Cooling of the tissue on an ice block for 10 min prior to sectioning, 

hardens the wax and allows easier cutting. 

(iii) Float the tissue ribbons in a warm H2O bath (40-44°C) and then deposit onto the substrate 

of choice. 

(iv) Allow the tissue sections to dry either at room temperature (30 min) or in a 60°C oven 

(10 min). 

▲ CRITICAL STEP The tissue slide may be dried in the oven for longer periods of time, 

depending on the type of tissue, to ensure optimal, initial melting of the wax. 

(v) Dewax the samples by performing three sequential immersions in a dewaxing reagent 

such as fresh xylene, Histo-Clear solution or hexane (each immersion should last at least 5 

min).  

▲ CRITICAL STEP Thorough dewaxing is important for eliminating all spectral peaks 

attributed to paraffin. 
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(vi) Immerse the tissue slide in acetone or ethanol (5 min) to remove the xylene and then left 

to air-dry. 

■ PAUSE POINT Slides can be stored in a desiccator at room temperature for at least 1 

year. 

(B) Tissue (Snap-frozen or fresh) ● TIMING 2 h + drying time (3 h for FTIR only) 

▲ CRITICAL Snap-frozen tissue can be stored at -80°C for several months.  

▲ CRITICAL For fresh tissue, proceed to step 1B(ii). 

(i) Acquire snap-frozen tissue from freezer and place onto a cryostat (30 min) to allow the 

tissue to reach the cryostat’s temperature (-20°C). 

(ii) Use a cryostat to obtain tissue sections at desired thickness (8-10 μm). 

(iii) Deposit the tissue sections onto an appropriate substrate before spectra are collected (see 

a list of substrates in the Materials-Equipment section). 

▲ CRITICAL For FTIR studies the tissue sections need to dry for at least 3 h to remove the 

H2O interference from the IR spectra. 

▲ CRITICAL Exposure to light should be minimised to prevent sample degradation due to 

oxidation. 

(C) Cells (fixed or live) ● TIMING 30 min + desiccation time (3 h for FTIR only) 

▲ CRITICAL If you are working with fixed cells, do step 1C(i) and then proceed to step 

1C(iii). If you are working with live cells,  proceed to step 1C(ii) 

(i) Wash fixed cells to remove the fixative or preservative solution as these chemicals cause 

spectral interference in the fingerprint region. Three sequential washes with distilled H2O or 

PBS have been shown to remove unwanted peaks. 

(ii) Detach cultured cells from the growth substrate adding 2-3 mL of fresh warm 

trypsin/EDTA solution to the side wall of the flask; gently swirl the contents to cover the cell 

layer. Wash with warmed sterile PBS to remove the medium and trypsin (×3 times; gentle 

centrifuge at 300 g for 7 min).  
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▲ CRITICAL STEP All reagents should be warmed to 37°C to reduce the shock to cells 

and maintain morphology. 

(iii) After the final wash, resuspend the remaining cell pellet in distilled H2O (~50-100 μL) 

and mount onto a substrate of choice; allow sample to dry before analysis. 

▲ CRITICAL STEP The final suspension of cells (~50-100 μL) should be evenly deposited 

on the slide either by cytospinning or by micro-pipetting. For cytospinning, take a maximum 

volume of 200 μL of cells in suspension (spin-fixed cells at 800 g for 5 min). After spinning, 

leave the slide to air-dry. 

▲ CRITICAL For FTIR studies the sample needs to dry for at least 3 h. 

(D) Biofluids (frozen or fresh) ● TIMING 5 min + thawing (20 min) + drying (1-1.5 h)  

▲ CRITICAL If biofluids are analysed fresh, immediately after collection, continue to step 

1D(ii). 

(i) Acquire biofluids from the -80°C freezer and allow them to fully thaw. 

(ii) Mix or gently vortex the sample before obtaining the desired volume for analysis. 

▲ CRITICAL STEP Only a small amount of the biofluid is typically required for 

spectroscopic studies (1-100 μL). However, this depends and should be tailored according to 

the study and experimental design. For instance, in case a substrate is used for experiments 

in the ATR mode, a larger volume is preferred as it allows spectral acquisition from multiple 

locations of the blood spot. On the contrary, if no substrate is used, such as in the case of the 

direct deposition of the sample on the ATR crystal, smaller volumes can also be used. 

(iii) Deposit the biological fluid onto an appropriate substrate. 

▲ CRITICAL STEP For ATR-FTIR spectroscopic studies, an alternative option is to 

deposit the sample directly on the ATR crystal instead of a substrate if the instrumentation 

setting allows (i.e., if crystal is facing upwards). However, if the sample is sufficiently thick 

(>2-3 μm) to avoid substrate interference, then the use of a holding substrate is advantageous 

as it allows measurements from multiple locations as well as longer storage. 
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▲ CRITICAL STEP For FTIR studies the sample needs to dry adequately before 

spectroscopic analysis (50 μL dry within approximately 1 h at room temperature). Drying 

can be sped up by using a gentle stream of air over the sample at a specific flow rate (in a 

sterile laminal flow hood). 

Spectral acquisition for FTIR spectroscopy ● TIMING 2 - 5 min per spectrum 

▲ CRITICAL Spectrochemical information can be collected as follows for FTIR 

spectroscopy. 

▲ CRITICAL Spectral acquisition is briefly presented in this protocol. More details can be 

found in refs. (Baker et al., 2014; Butler et al, 2016; Martin et al., 2010). 

2 | Optimise the settings before each new study to increase the SNR (see ‘Experimental 

design: spectral acquisition’). 

▲ CRITICAL STEP Some of the parameters that need to be adjusted include the resolution, 

spectral range, co-additions, aperture size, interferometer mirror velocity, and interferogram 

zero-filling. 

▲ CRITICAL STEP  To improve reproducibility and decrease differences between the data 

collected by different operators, the spectral resolution should be set constant, since it can 

cause major differences between data collected across different experimental setups.  

▲ CRITICAL STEP The pressure applied on the sample in the ATR mode affects the signal 

intensity (i.e., absorbance) between data collected by different instruments and operators. 

Thus, the pressure applied on the sample should be as similar as possible across different 

experimental setups to reduce differences between the spectra collected. Depending on the 

sampling mode that has been chosen (ATR-FTIR, transmission or transflection), deposit the 

sample onto the appropriate holding substrate. 

3 | Acquire a background spectrum to account for atmospheric changes. 

▲ CRITICAL STEP This should be done before every sample.  

4 | Load the sample and visualise the region of interest; information can then be acquired 

either as point map or as image maps. 
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▲ CRITICAL Typically, 5-25 point spectra are collected per sample while for image maps 

the step size should be the same or smaller than the selected aperture size divided by two. 

Sampling can be performed with 6 replicates in 3 levels. 

■ PAUSE POINT Save the acquired data in a database until further analysis. 

Data quality evaluation ● TIMING 15 min – 4 h (depending on the size of the dataset) 

5 | Evaluate the raw data using quality tests to identify anomalous spectra or biased 

patterns before applying pre-processing. This can be made by visual inspection of the 

collected spectra followed by Hotelling T2 versus Q residuals charts (see Appendix 

C) using only the mean-centred data, and analysis of PCA residuals. Samples far from 

the origin of the Hotelling T2 versus Q residuals chart should be removed, and PCA 

residuals should be random and close to zero. Further instructions about data quality 

evaluation can be found at “Experimental Design: data quality evaluation” section. 

Data pre-processing ● TIMING 15 min – 4 h (depending on the size of the dataset) 

▲ CRITICAL Steps 6-11 below can be modified depending on the nature of the dataset. 

Table 9.1 provides more details about these pre-processing steps. In case of an ATR-FTIR 

dataset where samples were acquired and analysed under different experimental conditions, 

the pre-processing method should follow this order: 

6 | Cutting at biofingerprint region (900-1800 cm-1). Truncate the spectra to the 

biofingerprint region, to eliminate atmospheric interference present in other regions 

of the spectra. 

7 | Savitzky-Golay smoothing for removing spectral-noise. Window size varies 

according to the size of the spectra dataset (e.g., wavenumber). The window size 

should be an odd number, since a central data point is required for the smoothing 

process.  Try different window sizes from 3 to 21 and observe how the spectra change 

(in shape) and how the noise is reduced. Use the smallest window that removes the 

noise considerably whilst maintaining the original spectral shape. Using a spectral 

resolution of 4 cm-1, the biofingerprint region (900-1800 cm-1) usually contains 235 

wavenumbers. In that case, a window size of 5 points should be used. The polynomial 
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order for Savitzky-Golay fitting should be 2nd order for IR spectroscopy due to the 

band shape. 

8 | Light scattering correction using either multiplicative scatter correction (MSC), 

SNV or 2nd derivative. First try using MSC or SNV, as MSC maintains the spectral 

scale and both methods maintain the original spectral shape. If the results are not 

satisfactory (e.g., classification accuracy < 75%), try using the 2nd derivative spectra. 

9 | Perform baseline correction using automatic weighted least squares or rubber 

band baseline correction. If spectral differentiation is applied as light scattering 

correction method, baseline correction is not necessary. 

10 | Normalization Normalize the spectrum to the amide I peak or amide II peak, or 

perform a vector normalization (2-Norm, length = 1) to correct different scales across 

spectra (e.g., due to different sample thicknesses when using FTIR in transmission 

mode). 

11 | Scaling Mean-centre the data for each variable, and divide this value by the variable 

standard deviation. In case of data fusion, block-scaling should be used. 

Data analysis  

Exploratory analysis. ● TIMING 1h – 4 d (depending on the data size) 

12 | Determine whether a standardisation procedure is necessary by performing PCA. The 

PCA scores plot (PC1 vs PC2) should generate a unique clustering pattern for the 

same type of sample. If two or more clusters are observed for the same type of sample 

measured under different experimental conditions, then a standardisation procedure 

is necessary (see Figure 9.2). 

Outlier detection. ● TIMING 1h – 1 d (depending on the data size) 

13 | Apply PCA to the dataset and then estimate the Q residuals and Hotelling T2 values. 

Use the chart of Q residuals versus Hotelling T2 to identify outliers. The outliers (e.g., 

cosmic rays, artefacts, low signal spectra and substrate only (non-tissue) spectra) 

should be removed from the data set before proceeding to the next steps. 

Sample split. ● TIMING 1 – 4 h (depending on the data size) 

14 | Separate the samples that will be used for the training and the test sets. Sample split 

should be performed before construction of standardization of multivariate 
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classification models. The samples can be split into training (70%) and test (30%) 

sets, using a cross-validated model; or split into training (70%), validation (15%) and 

test (15%) sets without using cross-validation. To maintain consistency and account 

for a well-balanced training model, KS algorithm should be employed to separate the 

samples into each set. KS algorithm is freely available at 

https://doi.org/10.6084/m9.figshare.7607420.v1. 

Standardization. ● TIMING 1h – 4 d (depending on the data size) 

▲ CRITICAL Standardization methods should be employed in the following order: DS > 

PDS (DS should be done before PDS), since the latter is more complex and requires an 

additional optimization step (window size optimization). The data from the secondary 

response should be separated into training (70%), validation (15%) and test (15%) sets using 

KS algorithm. The number of transfer samples should be firstly optimized using the 

validation set from the secondary response. Then, when employing PDS, the window size 

should be optimized according to the size of the dataset. 

15 | Use DS to vary the number of transfer samples from 10-100% of the training set from 

the primary system. Use the validation set from the secondary instrument to find the 

optimum number of transfer samples using the misclassification rate as cost function. 

16 | Perform PDS using the optimum number of samples found with DS. Test different 

window sizes using the validation set from the secondary system with the 

misclassification rate as cost function. The window size should vary from 3-29 for a 

spectral set with resolution of 4 cm-1 in the biofingerprint region (235 variables). 

Model construction. ● TIMING 1h – 4 d (depending on the data size) 

▲ CRITICAL Feature extraction (e.g., by means of PCA) or feature selection (e.g., by 

means of GA or SPA) should be employed to reduce data collinearity and speed up data 

processing and analysis time. PLS-DA is already a feature extraction method, thus the 

performance of prior feature extraction is not necessary in this case. The classification 

technique employed must follow a parsimony order: LDA>PLS-

DA>QDA>KNN>SVM>ANN>Random forests>Deep learning approaches. 

17 | Apply the feature extraction or selection technique. The optimization of the number 

of PCs during PCA can be performed using an external validation set (15% of the 

https://doi.org/10.6084/m9.figshare.7607420.v1
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original dataset) or using cross-validation (leave-one-out for small dataset [ppl 

samples] or venetian blinds [sample splitting: 10] for large datasets [>20 samples]). 

GA should be realized three-times starting from different initial populations and the 

best result using an external validation set (15% of the original dataset) should be 

used. Cross-over probability should be set for 40% and mutation probability should 

be set for 1-10% according to the size of the dataset. 

18 | The classification method should be employed using optimization with an external 

validation set or cross-validation, especially for selecting the number of latent 

variables of PLS-DA and the kernel parameters for SVM. The kernel function for 

SVM should be RBF kernel, due to its adaptation to different data distributions. To 

avoid overfitting, cross-validation should be always performed during model 

construction to estimate the best RBF parameters. 

 

9.5 Troubleshooting 

Spectral acquisition: Spectral resolution, spectral range, SNR and signal aperture should be 

optimized during experimental setup. Operators using different systems should try to keep 

these parameters constant to reduce spectral differences. 

Data pre-processing: To reduce spectral differences, the same data pre-processing should 

be applied for spectra acquired in different systems. 

Standardization: To improve the prediction capability of the classification model, the 

primary system used should be the one with highest spectral resolution and smallest noise, 

since all data from the secondary systems will be standardized to this pattern. 

 

9.6 Timing 

Sample preparation:  

Step 1(A) Tissue (FFPE): 1-1.5 h 

1(B) Tissue (Snap-frozen or fresh): 2 h + drying time (3 h) 
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1(C) Cells (fixed or live): 30 min + desiccation time (3 h) 

1(D) Biofluids (frozen or fresh): 5 min + thawing (20 min) + drying (1-1.5 h)  

Steps 2-4, Spectral acquisition:  1 s – 5 min per spectrum (depending on the instrument and 

spectral acquisition configurations) 

Step 5, Data quality evaluation: 15 min – 4 h (depending on the size of the dataset) 

Steps 6-11, Data pre-processing: 15 min – 4 h 

Data analysis:  

Step 12, Exploratory analysis: 1 h – 4 d 

Step 13, Outlier detection: 1 h – 1 d 

Step 14, Sample split: 1- 4h (depending on sample size) 

Step 15-16, Standardization: 1 h – 4 d 

Step 17-18, Model construction: 1 h – 4 d 

 

9.7 Anticipated Results 

 

To illustrate how this protocol can be used in practice, we conducted a pilot study to 

evaluate the effect of different instrument manufacturers and operators towards spectral 

acquisition of healthy controls and ovarian cancer samples based on blood plasma (5 healthy 

controls with 10 spectra per sample; 5 ovarian cancers with 10 spectra per sample) for a 

binary classification model using ATR-FTIR spectroscopy. All specimens were collected 

with ethical approval obtained at Royal Preston Hospital UK (16/EE/0010). Table 9.5 

summarizes the experimental conditions in which the experiments were performed. 

Instrument A and B were Bruker Tensor 27 with an HELIOS ATR attachment while 

instrument C was an ATR-FTIR Thermo Scientific Nicolet iS10. The spectra were collected 

for the same types of samples within three different days (operator 1: instrument A in day 1, 

instrument B in day 3, and instrument C in day 2; operator 2: instrument A in day 2, 
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instrument B in day 1, and instrument C in day 3) and across two different laboratories 

(instrument A and B in laboratory 1 and instrument C in laboratory 2). Each operator 

prepared the samples individually from the same bulk, and measured them individually. 

Spectral acquisition times were around 30 s for instruments A and B, and 40 s for instrument 

C. 

Table 9.5. Experimental conditions for pilot study. 

Instrument Operator Spectral range Number of 

co-additions 

Spectral 

resolution 

Room 

temperature 

Air 

humidity 

A  1 4000-400 cm-1 32 4 cm-1 23.0ºC 23% 

 2 4000-400 cm-1 32 4 cm-1 23.4ºC 26% 

B  1 4000-400 cm-1 32 4 cm-1 24.0ºC 26% 

 2 4000-400 cm-1 32 4 cm-1 24.9ºC 24% 

C  1 4000-400 cm-1 48 4 cm-1 22.5ºC 28% 

 2 4000-400 cm-1 48 1 cm-1 22.8ºC 26% 

 

9.7.1 Effect of Different Instruments  

 Three different ATR-FTIR spectrometers were used to analyse the samples. Data 

were pre-processed by truncating at the biological fingerprint region (900-1800 cm-1), 

followed by Savitzky-Golay smoothing (window of 15 points, 2nd order polynomial 

function), MSC, baseline correction using automatic weighted least squares and vector 

normalization (2-Norm, length = 1). Each data set (A, B and C) was pre-processed 

individually. The raw and pre-processed spectra for healthy controls and ovarian cancer 

samples are depicted in Appendix C, Figure C1.1. All spectra collected by the three 

instrument maintained the same spectral shape, indicating that the chemical information 

stayed the same; however, large differences between the absorbance intensity were observed 

between instrument C and the others (A, B), being caused due to different pressures applied 

on the sample in the ATR module. The pressure applied to keep the sample in contact with 

the ATR crystal directly affects the spectral signal intensity, which for instrument A and B 

(same manufactures) were somewhere controlled by a contra weight, while for instrument C 

the pressure was set based on a mechanical screw on the device, thus being biased by the 

operator usage. The absorbance intensity variation between A and B is observed for this same 

reason, but in a minor scale. Outlier detection was performed using a Hotelling T2 versus Q 

residual test (Appendix C, Figure C1.2). 
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(i) Classification. Classification was performed using PCA-LDA (10 PCs, explained 

variance of 99.21%). Fig. 9.5a depicts the discriminant function (DF) score plot for PCA-

LDA using only the primary system (ATR-FTIR A). As observed, there is an almost perfect 

separation between the samples from the two classes (accuracy = 100%, sensitivity = 100%, 

specificity = 100%). However, when the spectra acquired using instruments B and C are 

predicted using the model for A, the results decreased significantly (accuracy = 66.7%, 

sensitivity = 83.2%, specificity = 48.9%) (Fig. 9.5b), necessitating the use of a 

standardization procedure. 

 

Figure 9.5. Discriminant function (DF) plots using PCA-LDA to discriminate healthy 

control (absence of disease) samples from ovarian cancer samples varying the instrument. (a) 

DF plot of the PCA-LDA model for the primary system; (b) DF plot of the PCA-LDA model 

for the primary system predicting the samples from the secondary systems. Sample index 

represents the number of samples’ spectra. 

 

(i) Standardization. Standardization was employed using both DS and PDS in order to 

compare the two methods. The number of transfer samples for DS was optimized according 

to the misclassification rate obtained for the validation set using the secondary system (Fig. 

9.6a). An optimum number corresponding to 80% of the samples in the training set of the 

primary system (55 transfer samples) was obtained, resulting to a misclassification rate of 

22.2% in the validation set of the secondary system. This improved the accuracy (77.8%) and 

specificity (80.0%). Sensitivity decreased to 75.0%, which is an acceptable value. The results 

after DS are better balanced than without standardization. Fig. 9.6b shows the DF plot for the 
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PCA-LDA model using the training of the primary system and prediction with the secondary 

system after DS. 

 

Figure 9.6. PCA-LDA results for DS and PDS standardisation models for spectra collected 

by the three different instruments. (a) Misclassification rate in % for the validation set of the 

secondary system varying the number of transfer samples in % from the primary system for 

DS optimization; (b) DF plot of the PCA-LDA model for the primary system predicting the 

validation set from the secondary system after DS; (c) Misclassification rate in % for the 

validation set of the secondary system varying the window size for PDS optimization; (d) DF 

plot of the PCA-LDA model for the primary system predicting the validation set from the 

secondary system after PDS. Transfer samples (%) refer to the percentage of training 

samples’ spectra from the primary instrument that are used to transform the signal obtained 

using the secondary instrument. 

 

 PDS was also applied. The number of transfer samples was maintained as 55 (80% 

of the primary training set) and the window size was optimized by using the validation set of 

the secondary system. An optimum window size of 23 wavenumbers was selected with a 

misclassification rate of 25.9% (Fig. 9.6c). The accuracy, sensitivity and specificity using 
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PDS were 74.1%, 71.4% and 75.0%, respectively. The DS presented a slightly higher 

performance than PDS for this dataset. However, DS generated some outliers not observed 

before, while PDS did not. Thus, in general, PDS provided a better standardization of the 

data. The PCA-LDA DF plot after PDS is depicted in Fig. 9.6d. 

 

9.7.2 Effect of Different Operators 

The effect of different user operators acquiring spectra from the same samples using 

the same instruments was also evaluated. Similarly to before, data were pre-processed by 

cutting the biological fingerprint region (900-1800 cm-1), followed by Savitzky-Golay 

smoothing (window of 15 points, 2nd order polynomial function), MSC, baseline correction 

using automatic weighted least squares and vector normalization (2-Norm, length = 1). Each 

dataset was pre-processed individually. All raw and pre-processed spectra varying operators 

are depicted in Figures C1.4 and C1.5 (Appendix C). Outlier detection was performed using 

a Hotelling T2 versus Q residual test (Figure C1.7, Appendix C). The PCA scores plots for 

the pre-processed spectra are depicted in Figure C1.6, Appendix C. The main difference 

between the operators was observed for instrument C (Figure C1.5, Appendix C), since the 

spectral resolutions used by them were different, which can cause major data distortion. 

(i) Classification. Classification was performed using PCA-LDA (10 PCs, explained 

variance of 98.62%). Fig. 9.7a depicts the DF score plot for PCA-LDA using only the primary 

system (Operator 1). There is a significant separation between the samples from the two 

classes (accuracy = 88.4%, sensitivity = 77.3%, specificity = 100%). When the spectra 

acquired by Operator 2 are predicted using the model for Operator 1, the results decreased 

(accuracy = 75.6%, sensitivity = 66.7%, specificity = 84.6%) (Fig. 9.7b), which again 

necessitates the use of a standardization procedure. 
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Figure 9.7. Discriminant function (DF) plots using PCA-LDA to discriminate healthy 

control (absence of disease) samples from ovarian cancer samples varying the operator. (a) 

DF plot of the PCA-LDA model for the primary system (Operator 1); (b) DF plot of the PCA-

LDA model for the primary system predicting the samples from the secondary system 

(Operator 2). 

 

(i) Standardization. DS and PDS were employed as standardization methods. The number 

of transfer samples for DS was optimized according to the misclassification rate obtained for 

the validation set using the secondary system (Operator 2) (Fig. 9.8a). An optimum number 

of 59 transfer samples (30% of the samples in the training set of the primary system [Operator 

1]) was obtained, resulting in a misclassification rate of 17.8% in the validation set of the 

secondary system. This improved the accuracy (82.2%), sensitivity (69.6%) and specificity 

(95.5%) compared to the results without DS. Fig.9. 8b shows the DF plot for the PCA-LDA 

model using the training of the primary system and prediction with the secondary system 

after DS. 
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Figure 9.8. PCA-LDA results for DS and PDS standardisation models for spectra collected 

by two different operators. (a) Misclassification rate in % for the validation set of the 

secondary system (Operator 2) varying the number of transfer samples in % from the primary 

system (Operator 1) for DS optimization; (b) DF plot of the PCA-LDA model for the primary 

system predicting the validation set from the secondary system after DS; (c) Misclassification 

rate in % for the validation set of the secondary system varying the window size for PDS 

optimization; (d) DF plot of the PCA-LDA model for the primary system predicting the 

validation set from the secondary system after PDS.  

 

 The number of transfer samples was maintained as 59 for PDS; and the window size 

was optimized by using the validation set of the secondary system. An optimum window size 

of 23 wavenumbers was selected with a misclassification rate of 22.2% (Fig. 9.8c). The 

accuracy, sensitivity and specificity using PDS were 77.8%, 100% and 54.5%, respectively. 

Although DS obtained an average better classification performance than PDS for this dataset, 

it also generated some outliers as mentioned before. For this reason, the results after PDS 

seem better standardized. The PCA-LDA DF plot after PDS is depicted in Fig. 9.8d. 
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CHAPTER 10 | TTWD-DA: A MATLAB TOOLBOX FOR 

DISCRIMINANT ANALYSIS BASED ON TRILINEAR 

THREE-WAY DATA 

 

This chapter is published in Chemometrics and Intelligent Laboratory Systems (IF 

2.786). It demonstrates a new user-friendly graphical interface to classify trilinear 3D data: 

➢ Morais CLM, Lima KMG, Martin FL. TTWD-DA: A MATLAB toolbox for 

discriminant analysis based on trilinear three-way data. Chemom. Intell. Lab. Syst. 

2019; 188: 46–53. https://doi.org/10.1016/j.chemolab.2019.03.007  

 

Abstract: Three-way trilinear data is increasingly used in chemical and biochemical 

applications. This type of data is composed of three-way structures representing two different 

signal responses and one sample dimension distributed among a 3D structure, such as the 

data represented by fluorescence excitation-emission matrices (EMMs), spectral-pH 

responses, spectral-kinetic responses, spectral-electric potential responses, among others. 

Herein, we describe a new MATLAB toolbox for classification of trilinear three-way data 

using discriminant analysis techniques (linear discriminant analysis [LDA], quadratic 

discriminant analysis [QDA], and partial least squares discriminant analysis [PLS-DA]), 

termed “TTWD-DA”. These discrimination techniques were coupled to multivariate 

deconvolution techniques by means of parallel factor analysis (PARAFAC) and Tucker3 

algorithm. The toolbox is based on a user-friendly graphical interface, where these algorithms 

can be easily applied. Also, as output, multiple figures of merit are automatically calculated, 

such as accuracy, sensitivity and specificity. This software is freely available online. 
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10.1 Introduction 
 

Molecular fluorescence spectroscopy is an analytical technique based on the 

fluorescence capacity of a sample, where a beam of high energy light (e.g., in the ultraviolet 

region) is incident on a sample which, after excitation to a higher electronic state, will rapidly 

lose energy through internal conversion and return to the lowest vibrational state of the lowest 

electronic excited state. The molecule remains in this excited vibronic level for a short period 

of time known as fluorescence lifetime and then returns to the fundamental electronic state 

emitting a photon with energy lower that the one used for excitation. This process is called 

emission. The excitation and emission spectra can be combined by computer software 

generating a three-way data structure termed excitation-emission (EEM) matrix (Bachmann 

et al., 2006; Santos et al., 2017). The advantages of molecular fluorescence spectroscopy are 

its high sensitivity and relatively low-cost instrumentation (Santos et al., 2017). In addition, 

the EEM data generated is contemplated by the “second-order advantage” (Booksh & 

Kowalski, 1994), a property that allows concentrations and spectral profiles of the 

components of a sample to be extracted in the presence of unknown interferences using 

second-order chemometric methods (Calimag-Williams et al., 2014; Li et al., 2011). 

EEM data is an example of trilinear three-way array, in which a three-way structure 

representing two different signal responses and one sample dimension are distributed among 

a 3D structure. This type of data, mainly characterized by fluorescence EEM spectroscopy, 

also can be generated by combinations of different instrumental responses, such as spectral-

pH, spectral-kinetic and spectral-electric potential responses. Common second-order 

algorithms for decomposition of trilinear three-way data are the parallel factor analysis 

(PARAFAC) (Bro, 1997) and Tucker3 algorithm (Tucker, 1966). Both PARAFAC and 

Tucker3 decompose the three-way data into factors containing scores (information pertaining 

to the sample’s variability) and two different loadings, one for the 1st mode (e.g., emission) 

and another for the 2nd mode (e.g., excitation) profiles (Bro, 1997; Bro et al., 2009). The 

difference between these techniques is that the Tucker3 method also generates a core array 

containing the scores and loadings weights for each factor generated (Bro et al., 2009; Gallo, 

2015; Tucker, 1966). Both PARAFAC and Tucker3 significantly reduce the dataset, speeding 

up computational processing time, solving problems of ill-conditioned data and removing 
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interference. The scores generated from these techniques can then be used as input variables 

for calibration and classification models. 

 Discriminant analysis (DA) is a supervised classification technique employed for 

differentiating classes based on a Mahalanobis distance calculation (Dixon & Brereton, 2009; 

Morais & Lima, 2018). DA can be divided into linear discriminant analysis (LDA) or 

quadratic discriminant analysis (QDA). In LDA, the variance structures of the classes being 

analysed are considered similar, therefore the discriminant function is calculated using a 

pooled variance-covariance matrix among the classes. However, in QDA, each class is 

considered to have a different variance structure; therefore, the discriminant function is 

calculated using the variance-covariance matrix for each class individually (Morais & Lima, 

2018). This property increases the classification performance of QDA over LDA when 

classes exhibiting large within-category variances are being analysed. 

 Another common algorithm for discrimination of three-way data is the partial least 

squares discriminant analysis (PLS-DA), where the data is decomposed by partial least 

squares (PLS) followed by a linear discriminant function (Brereton & Lloyd, 2014). There 

are many applications for which chemometric techniques are employed for analysing three-

way data, such as for assessing food quality (Azcarate et al., 2015; Merás et al., 2018; 

Sádecká et al.; 2018), detection of substances in the atmosphere (Pan, 2015), and 

differentiation of fungi (Costa et al., 2017) using EEM spectroscopy; analysis of heavy metal 

ions using spectral-kinematic responses (da Silva & Oliveira, 1999); and evaluation of 

different juices colorants via spectral-pH responses (Marsili et al., 2005). However, despite 

the possible advantages of QDA for complex datasets, the number of applications using this 

approach with fluorescence spectroscopy are fewer compared to LDA (Costa et al., 2017; 

Morais & Lima, 2017; Stelzle et al., 2013; Stelzle et al., 2017). This is possibly the result of 

a lack of user-friendly or accessible algorithms for building QDA-based models towards 

analysing fluorescence data. Herein, a new user-friendly graphical user interface (GUI) was 

developed containing LDA and QDA routines combined with PARAFAC and Tucker3 for 

discrimination of fluorescence data. In addition, PLS-DA algorithm is also present for class 

discrimination. The software, named TTWD-DA (Trilinear Three-way Data – Discriminant 

Analysis) is free available and described hereafter. 
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10.2 Software 

10.2.1 System Requirements and Installation 

This software was developed in MATLAB R2014b environment (The MathWorks, 

Inc., USA). It makes use of MATLAB functions and lab-made routines, as well as the N-way 

toolbox for MATLAB version 3.30 (http://www.models.life.ku.dk/nwaytoolbox) (Andersson 

& Bro, 2000) for building PARAFAC and Tucker3 models. The software is an open-source 

toolbox for MATLAB users only. It is freely available under the University of Central 

Lancashire (UCLan) license using the following address: 

https://uclanip.co.uk/discriminant_analysis_fluorescence_data/5af2ba83c6b8fb6d28d76291

. It has been tested on MATLAB R2014b version 8.4.0 only, but it should work in any 

subsequent version. The authors are not responsible for misfunctioning in older MATLAB 

versions. For installation, the download file should be unzipped and added to the path within 

MATLAB. The main GUI can be accessed by typing the command ‘startup’ on MATLAB 

command window. For usage instructions, please refer to this paper or to the manual present 

in the software webpage. 

 

10.2.2 Theory 

The following classification algorithms are included in the toolbox: PARAFAC-

LDA, PARAFAC-QDA, Tucker3-LDA, Tucker3-QDA and PLS-DA. PARAFAC is a 

multivariate deconvolution approach of high-order data based on a trilinear system (Bro, 

1997). It decomposes the three-way data 𝐗 as follows (Costa et al., 2017): 

𝐗 = 𝐀(𝐂|⨂|𝐁)T + 𝐄          (10.1) 

where 𝐀 is the PARAFAC scores matrix representing the sample direction; 𝐁 is the 

PARAFAC loadings matrix representing the excitation direction; 𝐂 is the PARAFAC 

loadings matrix representing the emission direction; 𝐄 is a residual three-way array; and |⨂| 

represents the Khatri-Rao product (Liu, 1999). 

http://www.models.life.ku.dk/nwaytoolbox
https://uclanip.co.uk/discriminant_analysis_fluorescence_data/5af2ba83c6b8fb6d28d76291
https://uclanip.co.uk/discriminant_analysis_fluorescence_data/5af2ba83c6b8fb6d28d76291
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 Tucker3 is another multivariate deconvolution method for higher-order data also 

known as “3-way principal component analysis (PCA)” (Henrion, 1994). It decomposes the 

three-way data 𝐗 as follows (Gallo, 2015): 

𝐗 = 𝐀𝐆(𝐂⨂𝐁)T + 𝐄          (10.2) 

where 𝐀 is the Tucker3 scores matrix representing the sample direction; 𝐁 is the Tucker3 

loadings matrix representing the excitation direction; 𝐂 is the Tucker3 loadings matrix 

representing the emission direction; 𝐄 is a residual three-way array; 𝐆 is the core matrix; and 

⨂ represents the Kronecker product (Van Loan, 2000). 

 After these decompositions, the scores matrix from PARAFAC and Tucker3 are used 

as input variables for LDA and QDA algorithms. LDA and QDA classification scores can be 

calculated in a non-Bayesian form using the Mahalanobis distance as follows (Dixon & 

Brereton, 2009; Morais & Lima, 2018): 

𝐿𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂𝑝𝑜𝑜𝑙𝑒𝑑
−1 (𝐱𝑖 − �̅�𝑘)        (10.3) 

𝑄𝑖𝑘 = (𝐱𝑖 − �̅�𝑘)T𝐂𝑘
−1(𝐱𝑖 − �̅�𝑘)        (10.4) 

where 𝐿𝑖𝑘 is the LDA classification score for sample 𝑖 of class 𝑘; 𝑄𝑖𝑘 is the QDA 

classification score for sample 𝑖 of class 𝑘; 𝐱𝑖 is the vector containing the classification 

variables for sample 𝑖 (e.g., scores from PARAFAC or Tucker3);  �̅�𝑘 is the mean vector for 

class 𝑘;  𝐂𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled covariance matrix; and 𝐂𝑘 is the variance-covariance matrix 

of class 𝑘. 𝐂𝑝𝑜𝑜𝑙𝑒𝑑 and 𝐂𝑘 are calculated as: 

𝐶𝑝𝑜𝑜𝑙𝑒𝑑 =
1

𝑛
∑ 𝑛𝑘𝐂𝑘

𝐾
𝑘=1          (10.5) 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑖 − �̅�𝑘)𝑛𝑘

𝑖=1 (𝐱𝑖 − �̅�𝑘)T       (10.6) 

in which 𝑛 is the number of objects in the training set; 𝐾 is the number of classes; and 𝑛𝑘 is 

the number of objects in class 𝑘. 

 PLS-DA performs a partial least squares (PLS) decomposition of the reshaped 

spectral array [𝐗(𝑛 × 𝑚 × 𝑘) → 𝐗(𝑛 × 𝑚 ∗ 𝑘)] followed by a linear discriminant classifier 

(Brereton & Lloyd, 2014). PLS decomposition takes the form (Brereton & Lloyd, 2014): 
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𝐗 = 𝐓𝐏 + 𝐄           (10.7) 

𝐲 = 𝐓𝐪 + 𝐟           (10.8) 

where 𝐓 is a common scores matrix; 𝐏 are the spectral loadings; 𝐄 are the spectral residuals; 

y is the response vector (e.g., 0 or 1); 𝐪 is the response loadings; and 𝐟 the response residuals. 

This decomposition can be performed in an interactive process according to the number of 

selected components, as described by Brereton and Lloyd (2014). After the model is built, it 

is possible to predict the value of 𝐲 for the original training data or future test samples as 

follows (Brereton & Lloyd, 2014): 

𝐛 = 𝐖(𝐏𝐖)−𝟏𝐪          (10.9) 

�̂� = 𝐗𝐛           (10.10) 

where 𝐛 are PLS coefficients; 𝐖 is a weight matrix; and  �̂� is the predicted response vector. 

 

10.2.3 Figures of Merit 

Different quality parameters are used to evaluate the performance of LDA- and QDA-

based models. These figures of merit were: correction classification rate (CC%), accuracy 

(AC), sensitivity (SENS), specificity (SPEC) and F-score. The CC% represents the 

percentage of samples correctly classified considering their true classes; the AC represents 

the total number of samples correctly classified considering true and false negatives; the 

SENS represents the proportion of positives that are correctly identified; the SPEC represents 

the proportion of negatives that are correctly identified; and, the F-score represents the 

overall classification performance considering imbalanced data (Morais & Lima, 2017). 

These parameters are calculated as follows: 

CC% = 100 −
(𝜀1−𝜀2)

𝑁
× 100         (10.11) 

AC(%) = (
TP+TN

TP+FP+TN+FN
) × 100        (10.12) 

SENS(%) = (
TP

TP+FN
) × 100         (10.13) 
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SPEC(%) = (
TN

TN+FP
) × 100         (10.14) 

F − score =
2×SENS×SPEC

SENS+SPEC
         (10.15) 

where TP stands for true positive, TN for true negative, FP for false positive, FN for false 

negative; and 𝜀1 and 𝜀2 represents the number of errors in the test set for class 1 and 2, 

respectively. 

 

10.2.4 Software Overview 

The main GUI features of TTWD-DA are depicted in Figure 10.1. 

 

Figure 10.1. EEM-DA main interface overview. Insets (A)-(N) refer to the text. 

 

The main classification interface (Figure 10.1) contains four menu options (A, B, C 

and D). Menu (A) enables the user to open a new software window (A1); to load data from 

a .mat file (A2); load a pre-built training model in order to make new data predictions (A3); 

clear the training model (A4); save the training model in order to make further data 

predictions (A5); save prediction results into a .mat file (A6); to obtain information about the 

software (A7); and, exit (A8). Menu (B) contains constraint options: (B1) no constraints 

(default); (B2) constraints for PARAFAC and Tucker3 algorithms, which includes 
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orthogonality, nonnegativity, unimodality and nonnegativity, L1 fitting, and L1 fitting and 

nonnegativity (these are applied for each mode individually using a new window with options 

that appears after clicking on B2).  (C) Scaling options: (C1) no scaling; (C2) mean-centring 

scaling (default); and, (C3) autoscaling. Menu (D) contains plotting options: (D1) three-way 

data plotting, including profiles in mode 1 and 2; (D2a) PARAFAC scores; (D2b) Tucker3 

scores; (D2c) PLS-DA scores; (D3a) PARAFAC loadings; (D3b) Tucker3 loadings; (D3c) 

PLS-DA loadings and coefficients; and, (D4) canonical scores and predicted class. Menu (E) 

contains viewing options, including figures of merit (E1), which contains correct 

classification rates, accuracy, sensitivity, specificity and F-score; and, the predicted 

classification indexes (E2) using the chemometric method selected to build the model. The 

button (F) loads the data (same in A2); in the region (G), the user chooses the training, 

validation and test sets with their respective classes labels (the use of a validation set is 

optional, but recommended for optimization of the number of components); in the region 

(H), the user chooses the multivariate deconvolution method (PARAFAC or Tucker3); region 

(I) contains the type of discriminant analysis technique (LDA, QDA or PLS-DA); in button 

(J), the user can use singular value decomposition (SVD) (Morais & Lima, 2017) in order to 

select the number of components for PARAFAC and Tucker3, or training and validation 

misclassification errors for selecting the number of latent variables for PLS-DA; in (K), the 

user has to insert the number of components for PARAFAC or PLS-DA algorithms; the 

button (L) calculates the discriminant analysis model; in (M), the user can save a file to use 

as a training model for further predictions (same in A5); and, in (N), the user can export all 

prediction results in a .mat file, including PARAFAC scores and loadings; Tucker3 scores, 

loadings, and core matrix; PLS-DA scores and loadings; figures of merit; and the predicted 

class indexes for the samples in the training, validation and test set. 

 

10.3 Test Dataset 

The dataset tested herein is composed of fluorescence EEM data collected from cod 

(Gadus morhua) fillets. This dataset is publicly available at 

http://www.models.life.ku.dk/datasets by Andersen et al. (2003). Aqueous extracts 

containing fish muscle were measured in the range of 250–370 nm (resolution of 10 nm) for 

http://www.models.life.ku.dk/datasets
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excitation and 270–600 nm (resolution of 1 nm) for emission using a Perkin-Elmer LS50B 

spectrofluorimeter. The data were divided into 3 classes: class 1 containing 63 cod samples 

stored up to 1 week (0–7 days); class 2 containing 21 cod samples stored for 2 weeks (14 

days); and, class 3 containing 21 cod samples stored for 3 weeks (21 days). The average EEM 

for each class are depicted in Figure 10.2. More details about the experimental procedure for 

data acquisition can be found at Andersen et al. (2003). 

 

Figure 10.2. Average EEM for the test dataset. 

 

10.4 Software Application 

10.4.1 Before Loading the Data 

Before loading the dataset into TTWD-DA, the dataset can be pre-processed and must 

be organized in a three-dimensional manner and separated into Training, Validation and Test 

or Training and Test sets. Pre-processing and sample splitting techniques are not covered by 

this software; thus, it should be performed separately employing other routines available 

elsewhere. Herein, the dataset is already pre-processed by removing Rayleigh and Raman 
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scatterings using the ‘EEMscat’ algorithm (Bahram et al., 2006), which is of fundamental 

importance for EEM data; and the sample splitting was made with the Training (n = 59), 

Validation (n = 23) and Test (n = 23) sets separated using the Kennard-Stone algorithm 

(Kennard & Stone, 1969). Each three-way array size should be in the format: 𝑛 × 𝑚 × 𝑘, 

where n is the number of samples; m is the number of emission wavelengths; and k the 

number of excitation wavelengths. Figure 10.3 depicts these type of data in MATLAB. 

 

10.4.2 Loading the Data 

To load the data, the user should select the .mat file containing the three-way array 

for analysis and select the Training set, Training Labels, Validation set, Validation Labels, 

Test set and Test Labels (Figure 10.3). Only previously saved .mat files can be used as input. 

 

Figure 10.3. A) Main intertace with the dataset loaded and the number of components 

selected; B) workspace variables containing the dataset used; C) singular values varying the 

number of components. 
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10.4.3 Model Construction 

The user must select the deconvolution method (either PARAFAC or Tucker3) and 

type of discriminant technique to be employed (either LDA or QDA). PLS-DA can be chosen 

as feature extraction and discriminant method combined. Herein, all of them are tested. Next, 

the number of components for data deconvolution should be selected by clicking on “Find” 

button. This is performed based on a SVD model of the unfolded three-way array for 

PARAFAC and Tucker3 options, where the number of components (i.e., factors) should be 

selected as the minimum singular value before it becomes constant while varying the 

components; and based on the training and validation misclassification errors for PLS-DA, 

where the number of components (i.e., latent variables) that provides the minimum error 

should be selected. The number of components ≤10 should be preferred to avoid addition of 

random noise. However, this can be optimized by using the validation set. For this test 

dataset, 8 components were selected based on SVD (Figure 10.3). 

The number of classes for which there is capability to analyse within this toolbox 

varies from 2 to 10. The software is limited by 10 classes for two reasons: (1) the use of >10 

classes for classification implies the need for >10 components; (2) for a multi-class system, 

the classification is performed on a binary basis of one-against-the-others; thus, the size of 

the second relative class is enlarged by K-1 times, where K is the number of classes. Such a 

difference in size might greatly affect the classifier performance. In addition, the user has the 

option to include constraints in either PARAFAC or Tucker3 models by selecting the menu 

“Constraints > Apply constraints”. The user can choose between orthogonality, 

nonnegativity, unimodality and nonnegativity, L1 fitting, and L1 fitting and nonnegativity to 

be applied independently in each mode of the three-way data array. Finally, the model is built 

by clicking in “Build Model”. The data was mean-centred (default option) before analysis in 

the menu “Scaling”. 
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10.4.4 Results 

 After the model is built, a new window appears showing the correct classification 

rates for each dataset and the figures of merit for the test set (Figure 10.4). This window also 

can be accessed by clicking on View > Figures of Merit. 

 

Figure 10.4. Figures of merit for A) PARAFAC-LDA, B) PARAFAC-QDA, C) Tucker3-

LDA, D) Tucker3-QDA, E) PLS-DA. 

 

Cod fillets are used in this test dataset. The samples were divided into 3 classes 

according to their storage time (class 1 - relatively new samples stored up to 1 week; class 2 

- samples stored for 2 weeks; and, class 3 - relatively old samples stored for 3 weeks). 

Freshness is an important parameter to assess fish quality, since the fish retains its original 

characteristics closer to the harvest and the aging process leads to changes such as 

microbiological growth and alterations in biochemical, chemical and physical properties 

(Morais & Lima, 2017; Nilsen et al., 2002). For this dataset, the CC% for LDA-based 

methods were much higher compared to the QDA-based methods in the training (n=59), 

(A) (B)

(C) (D)

(E)
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validation (n=23) and test (n=23) sets. PARAFAC, Tucker3 and PLS-DA models were built 

using 8 components based on SVD. The model with best correct classification overall was 

the PARAFAC-LDA, showing 100% correct classification for all classes in the training, 

validation and test sets (Figure 10.4A). The predictive classification performance of 

PARAFAC-QDA was inferior than PARAFAC-LDA, in which the accuracy and F-score for 

PARAFAC-QDA were equal to 91.3–100% and 75.0–100%, respectively; and, for 

PARAFAC-LDA they were both equal to 100%. The same trend was observed for Tucker3-

LDA, where the accuracy and F-score were equal to 100%, compared to 91.3–100% and 

75.0–100% in Tucker3-QDA. QDA-based models perform better than LDA in systems 

containing different variance structures (Morais & Lima, 2018), however it has an inferior 

performance compared to LDA for datasets with small number of samples (Wu et al., 1996). 

Comparing the variance among the three classes in dataset 3 (Figure 10.5), classes 1 and 2 

have similar variance structures, whereas class 3 exhibits a different pattern with lower 

variance in the region of 330 nm in the excitation direction. The main disadvantage of QDA 

in relation to LDA is that QDA is more affected by classes having a small number of samples, 

since the variance structures of the classes are not well represented, which can lead to 

overfitting problems. Therefore, QDA usually achieves better classification performance 

when the number of samples in the dataset is relatively large (Wu et al., 1996). 

In comparison with the LDA- and QDA-based models, PLS-DA generated the poorer 

discriminant performance, with accuracies ranging from 46.7-61.9% and F-scores ranging 

from 30.0-47.5%. Class 1 seems to be well fitted in PLS-DA, with good correct classification 

values; however, for class 2 and 3, the prediction performance is greatly affected. Figure 10.6 

shows the PLS-DA canonical scores of latent variables 1 and 2, and the predicted class 

values. In this figure, it is clearly shown that class 2 and 3 are mixed together, while class 1 

distinguishes from them. 
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Figure 10.5. Variance calcualted for the test dataset. 

 

 

Figure 10.6. PLS-DA canonical scores (left) and predicted class (right). 
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After the model is built, the measured and predicted sample indexes for each class 

can be viewed in the Menu: View > Classification Index (Figure 10.6). These results can be 

saved in a .xls file by clicking on “Export”. Also, all the results and matrices generated during 

analysis can be saved by clicking on “Save Prediction” in the main window, or in the Menu: 

File > Save Prediction. The training model also can be saved by clicking on “Save Training” 

in the main window, or in the Menu: File > Save Training for further predictions of new test 

sets. 

 

Figure 10.7. Classification indexes predicted by the toolbox for the PARAFAC-LDA model. 
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10.5 Conclusion 
 

TTWD-DA is a user-friendly GUI for building discriminant analysis models (LDA, 

QDA and PLS-DA) for three-way data. The software makes use of PARAFAC and Tucker-

3 algorithms as multivariate deconvolution techniques, followed by LDA and QDA 

discrimination functions; or PLS-DA as joined feature extraction and discrimination 

techniques. Parameters such as accuracy, sensitivity and specificity are automatically 

calculated. The software is based on MATLAB environment, being open source and freely 

available online. It can be applied in any three-way array, in particular fluorescence EEM 

data. There is room for evolving the software by adding new classification algorithms and 

pre-processing options, thus having the potential to be a standard tool for analysing trilinear 

three-way data. 

 

10.6 Independent Testing 
 

TTWD-DA was independently tested by Prof. Héctor C. Goicoechea at the 

Laboratorio de Desarrollo Analítico y Quimiometría-LADAQ, Cátedra de Química Analítica 

I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 

CONICET, Ciudad Universitaria 3000 Santa Fe, Argentina (hgoico@fbcb.unl.edu.ar). It was 

reported that the software worked correctly in a user-friendly fashion: “This program allows 

implementation of classification using second-order data applying PARAFAC o Tuker3 (as 

compression tools) followed by LDA or QDA. I installed the files provided by the authors 

and used it not only with the data provided by them, but also with data generated in our lab. 

The program works as described in the user manual in a user friendly way”. 

  

mailto:hgoico@fbcb.unl.edu.ar
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CHAPTER 11 | DISCUSSION AND CONCLUSIONS 

 

Vibrational spectroscopy is a fast, low-cost and reliable sensor-based technique that 

when applied to investigate biological materials provides vast benefits towards quick 

biochemical profiling of biological-derived samples. IR and Raman spectroscopy are robust 

budget-omic tools capable of generating non-destructive spectrochemical fingerprints for 

samples with minimum or no sample preparation and acting as substitute or complementary 

techniques to traditional methods of analysis (Baker et al., 2014; Butlet et al., 2016; Martin 

et al., 2010). However, these techniques present complex overlapping spectral features that 

require the use of computational-aided methods in order to extract meaningful information 

from the experimental data and allow the analyst to draw significant conclusions about the 

samples. 

Chemometric techniques (Beebe et al., 1998) are employed in biospectroscopy 

datasets in four phases: (1) pre-processing, where the raw spectral data undergo a series of 

pre-treatments such as smoothing, baseline correction and normalisation to enhance the 

analyte signal and mitigate physical effects that may mask the signal of interest; (2) sample 

selection, where the experimental pre-processed data are split into training and test subsets, 

the first composed of representative spectra used to build the chemometric model and the 

latter composed of external samples used to validated it; (3) model construction, where the 

training data are used for feature extraction or selection techniques responsible for mining 

relevant features in the dataset, hence, removing redundant information and reducing the data 

complexity, followed by classification techniques where discriminant rules are defined based 

on distinguishing features within the spectral data so the spectra are assigned to pre-defined 

classes based on their spectrochemical signature; and (4) validation, where the results 

obtained blindly for the test set are used to calculate statistical metrics in order to assess the 

true model performance.  

Although there are a variety of chemometric methods used in steps (1) to (4), there 

are still some obstacles that hinder real implementation of biospectroscopy for routine 

applications. Experimental protocols for sample preparation and measurement are well 

defined (Baker et al., 2014; Butlet et al., 2016; Martin et al., 2010), however little has been 
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made regarding the spectral data analysis, specially towards sample selection, processing of 

digital images, standardisation and, finally, the production of chemometric protocols to 

analyse biospectroscopy data. This thesis was produced to address these issues, where new 

techniques for sample selection and processing of digital images, as well as chemometric 

protocols for spectral data analysis and standardisation are provided.  

Chapter 2 is a protocol demonstrating how to perform all the steps from (1) to (4) in 

order to build classification models based on the spectral data acquired from biological 

materials. The protocol encompasses most of classical and new chemometric techniques 

available along with software suggestions, examples, and step-by-step procedures. The aim 

of this protocol is to provide a solid support for students who need to build chemometric 

models for classification analysis of biospectroscopy data. 

Chapter 3 and 4 report a new algorithm for sample selection, called the MLM 

algorithm, that was created to improve the sample selection process. Sample selection (or 

data splitting) is the name given to the step where the experimental spectral data are split into 

training and validation or test sets. Commonly, there are two methods that can be employed 

for this: random selection, where these samples are split into training and validation/test 

randomly; or using the Kennard-Stone (KS) algorithm, where a set of samples as far away as 

possible from the others in an Euclidian-distance space are assigned to the training set and 

the remaining to the validation or test sets. At the end, this procedure includes the samples 

with the maximum variation from the mean in the training set and the samples closer to the 

mean to the validation or test sets. However, these two common methodologies have 

problems for biological applications. Random selection introduces a high-degree of 

extrapolation and overfitting, since not necessarily most source of variance within the dataset 

will be included in the trained model; and the KS method, apart from the risk of 

overoptimistic results in the validation/test sets since these are closer to the class mean, it 

does not account for extreme samples that may appear in future predictions due to the random 

behavior of the biological medium. The MLM algorithm combines both the random selection 

and KS into one single method. Initially, the samples are divided into training and test or 

validation sets using the Euclidean-distance approach of the KS algorithm; then, a random 

mutation factor is employed transferring some of the training samples to the validation/test 
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set and some of the validation/test samples to the training set. We have demonstrated in 

Chapter 3 by using 6 real-world datasets and 1000 simulations that the MLM algorithm 

provides a better classification ability than the random selection or KS method alone, since 

the classification models built after MLM are more robust and have a lower risk of overfitting 

demonstrated by the better predictive performance in the external test sets. Chapter 4 is a 

complement to Chapter 3, where we provide a protocol showing how to use the MLM 

algorithm in a step-by-step procedure. 

Chapters 5, 6 and 7 demonstrate new applications of chemometric techniques for the 

analysis of hyperspectral images of biological samples. Chapter 5 is a classic example of the 

application of Raman microspectroscopy imaging to distinguish WHO grade I and grade II 

meningioma tumours based on formalin-fixed paraffin-embedded (FFPE) tissue analysis. 

Determining the meningioma WHO tumour grade is critical for patient diagnosis and 

treatment (Yeo et al., 2019). In Chapter 5, 90 meningioma brain tissue samples (66 WHO 

grade I, 24 WHO grade II) were analysed in order to distinguish these two tumour grades in 

a fast and analyst-independent fashion. MCR-ALS was employed for image decomposition, 

where a single component was extract from the image datasets and used to build 

concentration distribution maps allowing to identify WHO grade II tumour regions within 

the tissue along with their specific Raman signature, where biomarkers such as 

phospholipids, amide III and amide I were obtained; and principal component analysis 

quadratic discriminant analysis (PCA-QDA) and successive projections algorithm quadratic 

discriminant analysis (SPA-QDA) were employed to systematically classify the samples into 

WHO grade I and grade II, where both techniques achieved an accuracy of 96.2% (85.7% 

sensitivity and 100% specificity) for WHO grade prediction in the test set.  

In Chapter 6, we propose a new algorithm for exploratory analysis of hyperspectral 

images multisets called the three-dimensional principal component analysis algorithm (3D-

PCA) algorithm. Ten sample images (5 healthy controls, 5 ovarian cancer patients) were used 

to exemplify the algorithm, where 3D-PCA provided an almost perfect separation between 

the samples based on the image data. In addition to the excellent sample segregation, the 

main outcome from this study was the speed of the 3D-PCA method in comparison with 
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classical PCA. 3D-PCA took approximately 1 min to analyse the whole set of 10 

hyperspectral images, while classical PCA or similar methods would take much longer. 

Chapter 7 is an extension of Chapter 6, where 3D-PCA was coupled to discriminant 

analysis techniques in order to quickly classify hyperspectral images multisets. For this, The 

3D-PCA scores are used as input variables for linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA) (3D-PCA-LDA and 3D-PCA-QDA) showing a much 

superior performance than traditional PCA-LDA and PCA-QDA applied to the hyperspectral 

data in the classical way, where the hyperspectral data-cube is unfolded into a series of 

spectra. 3D-PCA-LDA and 3D-PCA-QDA were used to classify 38 samples (20 benign 

controls, 18 ovarian cancer patients) with accuracy of 100% (100% sensitivity, 100% 

specificity); in comparison to 64% accuracy (20% sensitivity and 100% specificity) using the 

traditional PCA-LDA and PCA-QDA with the unfolded data. We believe that the reason for 

this improvement is that 3D-PCA works with the whole hyperspectral data structure without 

unfolding, thus maintaining the spatial relationship between the pixel positions, while in the 

unfolding procedure for classical PCA-LDA and PCA-QDA this relationship is lost. In this 

way, 3D-PCA accounts for the spectral information (as the unfolded method), but also the 

spatial information (pixel positions and their neighboring relationship) into a single method. 

Chapter 8 focus on the step (4), model validation. Although most studies report 

accuracy, sensitivity and specificity as classification metrics; these metrics do not bring 

information of the model uncertainty and robustness. We found a way inspired by previous 

work done with partial least squares discriminant analysis (PLS-DA) (de Almeida et al., 

2013; Rocha & Sheen, 2016) and artificial neural networks (ANN) (Allegrini & Olivieri, 

2016) to quantify uncertainty and estimate robustness in classification-based models for 

spectral data. Uncertainty is measured by the misclassification probability rate, a measure 

between 0 and 1 that inform the a posteriori probability of failure of a model; that is, a high 

misclassification probability rate indicates that the model is probably overfitted and will 

“struggle” to provide good future predictions; while a low misclassification probability 

indicates that the model has lower uncertainty and therefore is more stable and will provide 

more trustworthy predictions in the future. This was evaluated with 3 real-world datasets and 

1 simulated dataset. The results indicated that support vector machines (SVM) models tend 
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to be more susceptible to overfitting in comparison with LDA and QDA, and that models 

with lower misclassification probabilities will have a better predictive ability in the future 

when the data are subject to random noise variations, hence, the misclassification probability 

is also a measure of the model robustness.  

The last issue regarding data analysis, which is standardisation, is addressed in 

Chapter 9. Chapter 9 is a protocol showing how to standardise biospectral datasets acquired 

by different operators, by different instruments or in different laboratories in order to have 

the same or close to the same result. This is because factors such as air humidity, CO2 level, 

ageing of instrument parts, or even random environmental noise may affect the spectral 

response for samples being analysed under different conditions, hence, the chemometric 

model response may be affected and the model accuracy will decrease. Standardisation 

techniques allow to “standardise” the spectral response so physical variations in the spectral 

profile can be corrected mathematically. The protocol show in a step-by-step fashion how to 

standardise and analyse a given biological-derived spectral dataset from the start.  

Finally, Chapter 10 demonstrates a new user-friendly graphical interface developed 

in MATLAB to classify trilinear 3D data. Trilinear 3D data are spectrochemical data 

distributed in 3D dimensions, such as chromatography, fluorescence or imaging data. The 

software was developed to facilitate the use of LDA, QDA and PLS-DA algorithms to 

classify datasets in a simple and straightforward way. The software was independently tested 

and is freely available online under a UCLan license. 

The novel chemometric approaches developed during this PhD enrich the 

computational data analysis framework and provide support for the community interested in 

working with biospectroscopy, making this field one step closer to real-world 

implementation, where the successful development of these techniques may allow to trial 

biospectroscopy in clinical settings. 

 

 

 

 



 
 

230 

 

Future perspectives for the field 

Biospectroscopy is a science that continues to advance by using more sophisticated 

methods of data analysis and bigger cohort of samples every day. With the increase data 

complexity, machine learning approaches will be more often used; and studies will have 

much bigger cohorts of patients, from hundreds of patients in nowadays studies to thousands 

of patients in future investigations. In addition, real biomarking profiling will be attempted 

by combining spectroscopy data with other type of omics data such as mass spectrometry or 

genetic profiling, in order to provide anticipated and customised disease diagnosis.  

All these will require the development of advanced chemometric tools. Initially, 

algorithms and protocols to work with combined data (data-fusion) and better and faster 

imaging processing approaches will be required. Non-liner machine learning approaches will 

be developed using better forward feature selection methods for class separation. Ultimately, 

biospectroscopy will become a common omics tool to analyse biological materials and will 

start being used in routine applications.  
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APPENDIX A – SUPPLEMENTARY MATERIAL FOR 

CHAPTER 2 

 

A1. Supplementary Information 
 

 

Supplementary Figure A1.1. Raw spectra for datasets 1–3. a) Raw spectra for dataset 1 

(blue: class 1, red: class 2); (b) raw spectra for dataset 2 (blue: class 1; red: class 2); (c) raw 

spectra for dataset 3 (blue: class 1; red: class 2). 

a. b.

c.
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Supplementary Figure A1.2. PCA scores plot and Hotelling’s T2 versus Q residuals charts 

for datasets 1–3. a) PCA scores on PC1 versus PC2 for dataset 1; (b) Hotelling’s T2 versus Q 

residuals for dataset 1 (PCA model with 6 PCs (94.9% cumulative explained variance)); (c) 

PCA scores on PC1 versus PC2 for dataset 2; (d) Hotelling’s T2 versus Q residuals for dataset 

2 (PCA model with 4 PCs (15.3% cumulative explained variance)), where the arrows indicate 

outliers (samples 244, 263, 264 and 297); (e) PCA scores on PC1 versus PC2 for dataset 3; 

(f) Hotelling’s T2 versus Q residuals for dataset 3 (PCA model with 3 PCs (95.0% cumulative 

explained variance)). EV stands for explained variance. 

a. b.

c. d.

e. f.
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Supplementary Figure A1.3. PCA-LDA and PLS-DA results for dataset 1. (a) Cross-

validation error rate varying the number of principal components in PCA-LDA; (b) scores 

on canonical variable 1 of PCA-LDA, where o = training samples and * = test samples; (c) 

Cross-validation error rate varying the number of latent variables in PLS-DA; (d) calculated 

PLS-DA response, where o = training samples and * = test samples. 

 

a. b.

c. d.



 
 

263 

 

 

Supplementary Figure A1.4. PCA-LDA and PLS-DA results for dataset 2. (a) Cross-

validation error rate varying the number of principal components in PCA-LDA; (b) scores 

on canonical variable 1 of PCA-LDA, where o = training samples and * = test samples; (c) 

Cross-validation error rate varying the number of latent variables in PLS-DA; (d) calculated 

PLS-DA response, where o = training samples and * = test samples. 

a. b.

c. d.



 
 

264 

 

 
Supplementary Figure A1.5. PCA-LDA and PLS-DA results for dataset 3. (a) Cross-

validation error rate varying the number of principal components in PCA-LDA; (b) scores 

on canonical variable 1 of PCA-LDA, where o = training samples and * = test samples; (c) 

Cross-validation error rate varying the number of latent variables in PLS-DA; (d) calculated 

PLS-DA response, where o = training samples and * = test samples. 

a. b.

c. d.
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Supplementary Figure A1.6. PLS-DA regression coefficients for datasets 1–3. (a) Dataset 

1; (b) dataset 2; and (c) dataset 3. 

a. b.

c.
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Supplementary Figure A1.7. Receiver operating characteristic (ROC) curves for dataset 1. 

(a) ROC curve for class 1; (b) classification threshold for class 1; (c) ROC curve for class 1; 

and (d) classification threshold for class 2. AUC stands for area under the curve, sn for 

sensitivity and sp for specificity. 

a. b.

c. d.
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Supplementary Figure A1.8. Receiver operating characteristic (ROC) curves for dataset 2. 

(a) ROC curve for class 1; (b) classification threshold for class 1; (c) ROC curve for class 1; 

and (d) classification threshold for class 2. AUC stands for area under the curve, sn for 

sensitivity and sp for specificity. 

a. b.

c. d.
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Supplementary Figure A1.9. Receiver operating characteristic (ROC) curves for dataset 3. 

(a) ROC curve for class 1; (b) classification threshold for class 1; (c) ROC curve for class 1; 

and (d) classification threshold for class 2. AUC stands for area under the curve, sn for 

sensitivity and sp for specificity. 

 

A2. Supplementary Method – Protocol for Spectral Data Analysis: SHE 

Dataset 

A. Software requirements 

Required software (to download):  

A1: MATLAB, version R2011a or above. Free-trial version available at 

https://www.mathworks.com/. 

A2: IRootLab (version 0.17.8.22 or above) toolbox for MATLAB. Free version available at 

http://trevisanj.github.io/irootlab/.  

A3: Classification Toolbox for MATLAB. Free version available at 

http://www.michem.unimib.it/download/matlab-toolboxes/classification-toolbox-for-

matlab/.  

A4: PCA Toolbox for MATLAB. Free version available at 

http://www.michem.unimib.it/download/matlab-toolboxes/pca-toolbox-for-matlab/.  

a. b.

c. d.

https://www.mathworks.com/
http://trevisanj.github.io/irootlab/
http://www.michem.unimib.it/download/matlab-toolboxes/classification-toolbox-for-matlab/
http://www.michem.unimib.it/download/matlab-toolboxes/classification-toolbox-for-matlab/
http://www.michem.unimib.it/download/matlab-toolboxes/pca-toolbox-for-matlab/
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A5: Automatic Outlier Detection Algorithm. Free version available at 

https://doi.org/10.6084/m9.figshare.7066610.v2. 

A6: MLM Sample Selection Algorithm. Free version available at 

https://doi.org/10.6084/m9.figshare.7393517.v2.  

 

B. Loading the dataset 

In this example, we will use a dataset available within the IRootLab toolbox for 

MATLAB. We will modify it to contain 2 classes only, and perform (C) data quality 

visualisation, (D) pre-processing, (E) exploratory analysis by PCA, (F) outlier detection,  (G) 

sample selection,  and (H) supervised classification by PCA-LDA/QDA. 

To load the dataset, follow the instructions: 

Step B1: Go to IRootLab folder (‘irootlab-0.17.8.22-d’) within MATLAB: Click on (1) and 

then navigate to the IRootLab folder. Click on (2) ‘Select Folder’ to select the folder. 

 

Step B2: Type ‘startup’ on the Command Window and press <ENTER>: 

(1)

(2)

https://doi.org/10.6084/m9.figshare.7066610.v2
https://doi.org/10.6084/m9.figshare.7393517.v2
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Step B3: Click on (1) ‘browse_demos’: 

 

Step B4: Click on (1) ‘LOAD_DATA_SHE5TRAYS’ and close the window: 

(1)
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Step B5: Scroll up the Command Window page and click on (1) ‘objtool’: 

 

  

(1)

(1)
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C. Data quality visualization 

The original dataset contain 5 classes. To visualise the spectral data follow the steps: 

Step C1: Click on (1) ‘Apply new blocks/more actions’, (2) ‘vis’, (3) ‘All curves in dataset’ 

and (4) ‘Create, train & use’. 

 

 

 

(1)

(3)

(4)

(2)
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Step C2: Go to (1) ‘pre’, (2) ‘Normalization’, (3) ‘Creat, train & use’, (4) select ‘Mean-

centering’ and press ‘OK’. 

 

(1)

(2)

(3)

(4)
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Step C3: Select ‘ds01_norm01’, go to (1) ‘vis’, (2) ‘Class means’, (3) ‘Creat, train & use’ 

and click in ‘OK’. 

 

 

 

 

(1)

(2)

(3)

(4)
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Step C4: Select ‘ds01_norm01’, go to (1) ‘fcon’, (2) ‘Principal Component Analysis’, (3) 

‘Creat, train & use’ and (4) press ‘OK’. 

 

Step C5: Select ‘ds01_norm01_pca01’, go to (1) ‘vis’, (2) ‘2D Scatterplot’, (3) ‘Creat, train 

& use’, (4) input the PCs to plot and (5) press ‘OK’. 

 

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(5)
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D. Pre-processing 

Step D1: Select ‘ds01’, go to (1) ‘pre’, (2) ‘Differentiation’, (3) ‘Creat, train & use’, (4) insert 

the derivative order and (5) press ‘OK’. 

 

  

(1)

(2)

(3)

(4)

(5)
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Step D2: Select ‘ds01_diff01’, go to (1) ‘vis’, (2) ‘Class means’, (3) ‘Creat, train & use’ and 

(4) press ‘OK’. 

 

 

  

(1)

(2)

(3)

(4)
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E. Exploratory analysis by PCA 

Only class 1 (B[a]P | Non-transformed, control) and class 2 (B[a]P | transformed, treated) 

will be used for analysis. 

Step E1: Select only class 1 and 2 from the dataset. Type in the MATLAB Command 

Window: 
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Step E2: Navigate within MATLAB to the PCA Toolbox for MATLAB folder (step A4). 

Right-click on the folder and select Add to Path > Select Folders and Subfolders. 

 

Step E3: Type in the Command Window: 
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Step E4: Go to File > Load data. 

 

Step E5: Select the dataset (X12) and click on ‘load’. 

 

Step E6: Go to File > load class. 
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Step E7: Select the class labels (Y12). 

 

Step E8: Go to Calculate > optimal components for PCA. 

 

Step E9: Select the following settings and click on ‘calculate’. 
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Step E10: Select the following settings and observe the number of Principal Components 

to choose (6 in this case). 

 

Step E11: Go to Calculate > PCA. 

 

 

Step E12: Select the following settings and click on ‘calculate. 
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Step E13: Go to Results > PCA results > scores. 

 

Step E14: Use the following settings and visualise the PCA scores. Note that class 1 is 

predominantly in the left-side of the graph and class 2 in the right-side of the graph, hence, 

PC1 (68.32% explained variance) influences the separation between class 1 and class 2. 
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F. Outlier detection 

Step F1: Navigate within MATLAB to the folder containing the Outlier Detection 

Algorithm (step A5), so the files are shown in the Current Folder window. Type in the 

Command Window: 

 

Observe that there is no outlier. All the samples are distributed close to the origin (0,0), 

where no sample is observed very far from the clustering containing the datapoints.   

Step F2: Since no outlier is present, press <CTRL + C> to stop the MATLAB routine. 
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G. Sample selection 

Step G1: Navigate within MATLAB to the folder containing the MLM algorithm (step 

A6), so the files are shown in the Current Folder window. Type in the Command 

Window: 

 

 

H. Supervised classification by PCA-LDA/QDA 

Step H1: Navigate within MATLAB to the Classification Toolbox for MATLAB folder (step 

A3). Right-click on the folder and select Add to Path > Select Folders and Subfolders. 
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Step H2: Type ‘class_gui’. 

 

Step H3: Go to File > load data. 

 

Step H4: Select the training data. 
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Step H5: Go to File > load class. 

 

Step H6: Select the training class labels. 

 

Step H7: Go to Calculate > Discriminant Analysis > optimal components for PCA-DA. 
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Step H8: Use the following settings and click on ‘calculate’. To perform a PCA-QDA model, 

change ‘linear’ to ‘quadratic’ in the ‘discrimination’ field. 

 

Step H9: Select the number of principal components to retain (10 in this case). 
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Step H10: Go to Calculate > Discriminant Analysis > fit PCA-DA. 

 

Step H11: Use the following settings and click on ‘calculate’. To perform a PCA-QDA 

model, change ‘linear’ to ‘quadratic’ in the ‘discrimination’ field. 
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Step H12: Go to Results > classification measures, and observe the training and cross-

validation metrics. 

 

 

Step H13: Go to File > clear data. 
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Step H14: Go to File > load data. 

 

Step H15: Select the Test dataset and click on ‘load’. 

 

Step H16: Go to File > load class. 
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Step H17: Select the reference class labels for the Test set (this is used for calculation of the 

figures of merit only; the test samples are blind to the model). 

 

Step H18: Go to Predict > predict samples. Then, go to Predict > classification measures to 

see the classification performance for the test set. 
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Step H19: Go to Results > DA results > scores on canonical variables to see the discriminant 

function (DF) plot for PCA-LDA, where o = training samples and * = test samples. 

 



 
 

294 

 

 

Step H20: Save the model. 
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Step H21: Extract the PCA loadings and plot the loadings on PC1 (main discriminant 

feature). 
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APPENDIX B – SUPPLEMENTARY MATERIAL FOR 

CHAPTER 5 

 

Table B1. Correct classification rate for distinguishing Grade I and Grade II meningiomas. 

Algorithm Class Training Test 

PCA-LDA Grade I 80.0 31.6 

 Grade II 66.7 85.7  

PCA-QDA Grade I 97.8 100 

 Grade II 73.3 85.7 

PCA-SVM Grade I 100 73.7 

 Grade II 100 28.6 

SPA-LDA Grade I 75.6 42.1 

 Grade II 66.7 100 

SPA-QDA Grade I 95.6 100 

 Grade II 46.7 85.7 

SPA-SVM Grade I 77.8 21.1 

 Grade II 100 71.4 

GA-LDA Grade I 100 63.2 

 Grade II 93.3 57.1 

GA-QDA Grade I 100 100 

 Grade II 86.7 0 

GA-SVM Grade I 91.1 42.1 

 Grade II 100 42.9 
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Figure B1. Outliers identified by a Hotelling T2 versus Q residuals test (PCA with 8 PCs). 

(a) Meningioma Grade I samples (outliers: 58, 66); (b) meningioma Grade II samples 

(outliers: 11, 18); (c) meningioma Grade I outlier spectra in red; (d) meningioma Grade II 

outlier spectra in red. 

 

 

  

a. b.

c. d.
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Figure B2. Singular value varying the number of principal components (PCs) of PCA. 
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Figure B3. Concentration distribution maps and recovered spectral profiles by MCR-ALS 

for the 1st (a), 2nd (b), 3rd (c), and 4th (d) components. Colour bar: relative concentration. 
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APPENDIX C – SUPPLEMENTARY MATERIAL FOR 

CHAPTER 9 

 

C1. Supplementary Material: Additional Results from Pilot Study 
 

A. Effect of different instruments 

 

Figure C1.1. IR spectra of same type of samples measured by different ATR-FIR 

spectrometers at the same institution. Average (a) raw and (b) pre-processed spectra for 

healthy controls samples; average (c) raw and (d) pre-processed spectra for cancer samples 

across three different instruments (A, B and C). 
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B. Effect of different instruments 

 

Figure C1.2. PCA scores for pre-processed spectra acquired by different ATR-FIR 

spectrometers at the same institution and outlier detection test. (a) PCA scores for 

healthy control samples according to the instrument used for spectra acquisition (A, B and 

C); (b) PCA scores for cancer samples according to the instrument used for spectra 

acquisition (A, B and C); (c) Hotelling T2 versus Q residual test for healthy control samples 

according to the instrument used for spectra acquisition (A, B and C) based on a PCA using 

5 PCs (94.77% cumulative variance); (d) Hotelling T2 versus Q residual test for cancer 

samples according to the instrument used for spectra acquisition (A, B and C) based on a 

PCA using 5 PCs (92.96% cumulative variance). Circled samples in (c) and (d) indicate 

outliers removed. Confidence ellipse was 95%, depicted in blue in (a) and (b). 

 

 

 

 

 

a b

c d
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C.  Effect of different instruments 

 

Figure C1.3. PCA loadings for pre-processed spectra acquired by different ATR-FIR 

spectrometers at the same institution. (a) PCA loadings for healthy control samples 

measured in different instruments (A, B and C); (b) PCA loadings for cancer samples 

measured in different instruments (A, B and C). 

 

  

a b
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D. Effect of different operators 

 

Figure C1.4. IR spectra of healthy control samples measured by different operators at 

the same institution. Average (a) raw and (b) pre-processed spectra for healthy control 

samples acquired with instrument A depending on the operator; average (c) raw and (d) pre-

processed spectra for healthy control samples acquired with instrument B depending on the 

operator; average (e) raw and (f) pre-processed spectra for healthy control samples acquired 

with instrument C varying the operator. 

 

a b

c d

e f
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E. Effect of different operators 

 

Figure C1.5. IR spectra of ovarian cancer samples measured by different operators at 

the same institution. Average (a) raw and (b) pre-processed spectra for cancer samples 

acquired with instrument A depending on the operator; average (c) raw and (d) pre-processed 

spectra for cancer samples acquired with instrument B depending on the operator; average 

(e) raw and (f) pre-processed spectra for cancer samples acquired with instrument C 

depending on the operator.  

a b

c d

e f
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F. Effect of different operators 

 

Figure C1.6. PCA scores for pre-processed spectra acquired by different operators at 

the same institution. PCA scores for (a) healthy control and (b) cancer samples acquired 

with instrument A depending on the operator; PCA scores for (c) healthy control and (d) 

cancer samples acquired with instrument B depending on the operator; PCA scores for (e) 

healthy control and (f) cancer samples acquired with instrument C depending on the operator. 

Confidence ellipse was 95%, depicted in blue   

a b

c d

e f
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G. Effect of different instruments and operators 

 

Figure C1.7. Outlier detection test for healthy controls and ovarian cancer samples. (a) 

Hotelling T2 versus Q residual test based on a PCA using 8 PCs (99.07% cumulative 

variance) for healthy control samples depending on the instrument for spectra acquisition (A, 

B and C) used by Operator 2; (b) Hotelling T2 versus Q residual test based on a PCA using 5 

PCs (96.92% cumulative variance) for cancer samples depending on the instrument for 

spectra acquisition (A, B and C) used by Operator 2. Circled sample in a) indicates an outlier 

removed. The Hotelling T2 versus Q residual test for Operator 1 is depicted in Fig. S2c-d. 

 

H. Effect of different classes 

 

Figure C1.8. PCA scores for healthy controls (HC) and ovarian cancer (OC) samples 

based on the spectra acquired by both operators (1 and 2) and by all instruments (A, B 

and C). Confidence ellipse at a 95% confidence level is depicted in blue  

a b
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C2. Supplementary Method: Protocol for Outliers Detection 
 

A. Outlier detection using Hotelling T2 versus Q residuals test 

1st step: Build a PCA model. 

2nd step: Calculate Hotelling T2 and Q residuals. 

3rd step: Plot Hotelling T2 versus Q residuals 

4th step: Select the samples which are most distant to the plot origin (0,0) and remove them 

one at a time from the data set. This procedure can be performed manually after visual 

inspection or automatically by algorithms. 

Figure S1. Hotelling T2 versus Q residuals for healthy control samples (blood plasma) 

varying the instrument for spectra acquisition (A, B and C). PCA performed with 5 PCs 

(94.77% cumulative variance). Circled samples indicate outliers removed.  

 

 

B. Automatic outlier detection using MATLAB® 

Algorithm link to download: 

https://doi.org/10.6084/m9.figshare.7066613.v2 

1st step: Add the .m files within the file downloaded to the path. 

2nd step: Load the spectral data into MATLAB and organize all the spectra into a single 

matrix “X” containing each spectrum as a row. 

3rd step: Perform an initial PCA model to determine the number of principal components 

(PCs) to work with. 

https://doi.org/10.6084/m9.figshare.7066613.v2
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4th step: Run the algorithm as follows: 

 

where “Xc” is the spectral matrix without outliers, “X” is the input spectral data, and “Npcs” 

the number of PCs for PCA. 

 5th step: Input optimization parameters: 

 

In this case, the algorithm will perform a PCA model 10 times removing one sample at a time 

that follows one of these criteria: Hotteling T2 > 25 or Q residuals > 0.8x10-3. Then, these 

samples are automatic excluded from the new dataset (Xc). The list of excluded samples is 

also displayed in MATLAB. Example: 
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APPENDIX D – ETHICS APPROVAL 

 

  

27 July 2018  

  

Frank Martin and Camilo De Lelis Medeiros-de-morais  

School of Pharmacy and Biomedical Sciences  

University of Central Lancashire  

  

Dear Frank and Camilo  

  

Re: STEMH Ethics Committee Application 

Unique reference Number: STEMH 917  

  

The STEMH ethics committee has granted approval of your proposal application ‘Novel 

chemometric approaches towards handling biospectroscopy datasets’.  Approval is granted up to 

the end of project date*.  It is your responsibility to ensure that  

• the project is carried out in line with the information provided in the forms you have 

submitted   

• you regularly re-consider the ethical issues that may be raised in generating and analysing 

your data  

• any proposed amendments/changes - including transfer of samples to another researcher 

- to the project are raised with, and approved, initially by BTNW and then submitted to 

STEMH  

• you notify EthicsInfo@uclan.ac.uk if the end date changes or the project does not start  

• serious adverse events that occur from the project are reported to Committee  

• a closure report is submitted to complete the ethics governance procedures (Existing 

paperwork can be used for this purposes e.g. funder’s end of grant report; abstract for 

student award or NRES final report.  If none of these are available use e-Ethics Closure 

Report Proforma).  

• human tissue held under this project (which has been approved by BTNW) is stored and 

used in accordance with the HTA licence requirements. At the end of the project any 

unused human tissue samples must be returned to BTNW for further use/storage or 
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appropriate disposal.  Samples that do not fall within the HTA’s definition of ‘relevant 

material’ should be disposed of in accordance with all relevant H&S requirements 

including any specific BTNW disposal arrangements.  

Yours sincerely   

  
Karen Rouse  

Chair  

STEMH Ethics Committee  

  

Cc UCLan HT Technician   

  

* for research degree students this will be the final lapse date   

  

NB - Ethical approval is contingent on any health and safety checklists having been completed, and 

necessary approvals as a result of gained.  

 

 

 


