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Abstract 

 
Synaptic communication involves action potentials (AP) being generated and travelling along the 

axon such that they depolarise the presynaptic nerve terminal to induce synaptic vesicles (SVs) to 

exocytose and release their neurotransmitter. Changes in the properties of the synapse is the basis 

of synaptic plasticity and memory and defects in this process can lead to neuronal dysfunction. 

However, a full molecular description of synaptic transmission is lacking and this means that our 

understanding of many neuronal diseases is incomplete. 

The research reported in this thesis concerns the properties of three distinct pools of SVs that are 

present within nerve terminals. Normally, both the readily releasable pool (RRP) and the reserve 

pool (RP) can contribute to release during strong stimulation. However, the third pool, silent pool 

(SP), of vesicles does not normally get released and so this has not been very well characterised. 

Herein, we have successfully managed to evoke the release of the SP of glutamate (GLU) 

containing SVs. This was achieved using Roscovitine, a Cdk5 inhibitor. We have established that 

this drug truly can allow the evoked release of the SP as such release is not due to the RRP and RP 

recycling and re-releasing. Some properties of the SP were: (i) it has very specific Ca2+ requirements 

and it is inhibited if one reduces Ca2+ entry through any of three VDCCs: P/Q, N or L type; (ii) it is 

perturbed by activation of PKCs or inhibition of protein phosphatase 2; (iii) it can still be released 

if the actin cytoskeleton is stabilised by treating nerve terminals with Jasplakinolide (JASP) or non-

muscle myosin 2 (NM-II) activity is blocked by Blebbistatin. Synapsin 1 (Syn 1) is a phospho-

protein which has been suggested to regulate the SP. Using western blotting of synaptosomes that 

had been stimulated under various conditions, preliminary experiments were performed to ascertain 

whether changes in specific phosphorylation sites on Syn 1 correlated with SP release: the Cdk5 

phosphorylated site at Ser-553 seemed to have reduced phosphorylation whilst the CaMKII 

phosphorylated site Ser-603 seemed to have an increase in phosphorylation.  

Very intriguingly, an antidepressant drug, Fluoxetine, can also allow the evoked release of the SP 

of GLU containing SVs and this drug works on the same pool as Roscovitine and there is no 

additivity in SP release if both drugs are employed.   
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Previously, it was found that using High Potassium (HK5C) or Ionomycin (ION5C) the RRP is 

released by a Kiss-and-Run exocytotic mechanism (KR) whilst the RP is released by a full fusion 

(FF) mechanism. Furthermore, it was discovered that ION5C acts on a dynamin (Dyn) dependent 

KR pathway whilst HK5C works through a NM-II dependent KR pathway. Herein, some further 

properties of these 2 distinct pathways have been deduced. Some properties of the Dyn dependent 

KR pathway dissected, herein, were: (i) utilises Dyn already located on a membrane compartment 

for the closure of the fusion pore. This was ascertained by the fact that MITMAB – a drug that 

prevents Dyn binding to membranes – failed to perturb this KR process whereas this is switched to 

FF by the drug Dynasore that inhibits the GTPase activity of Dyn; (ii) requires the activity of 

endogenous PKA because this mode is switched to FF when PKAs are blocked by the drug KT 

5720; (iii) regulated specifically by P/Q VDCCs because blockade of these channels, but not others, 

switched this KR mode to FF;  (iv)  requires intact actin microfilaments for the closure of the fusion 

pore because disassembly of these cytoskeletal components by Latrunculin (LAT) switches this 

mode to FF and this drug action is not perturbed by blockade of PKCs with Go 6983;  (v) 

stabilisation of actin microfilaments with JASP does not perturb this KR. Additionaly, the NM-II 

dependent KR shows some distinct properties from the Dyn dependent KR: (i) it is not switched to 

FF following inhibition of PKAs; (ii) L-type VDCCs blockers switched this mode to FF but 

blockers of other VDCCs did not; (iii) LAT treatment seems to switch this KR mode but further 

investigation suggests that this treatment may perturb the action of the stimulus itself (HK5C) rather 

than the mode and it would appear that LAT may activate PKCs that induce the apparent effect 

since this is blocked by Go 6983. 

The RP of GLU containing SVs evoked by both ION5C or HK5C is also dependent on the actin 

microfilaments because LAT induced disassembly blocks its release although JASP does not. As 

the RP is blocked by LAT, the effect of actin microfilament disassembly on the release of the SP 

could not be studied. 

In conclusion, some properties of the SP of GLU containing SVs have been characterized whilst 

there were further differences determined between the Dyn dependent and the NM-II dependent 

KR modes. These latter findings suggest that rather than one common KR mechanism that can be 

regulated by either Dyn or NM-II, there is probably two distinct KR mechanisms that get activated 

by different stimulation conditions.  
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1.1. Synaptic Transmission 

Synaptic transmission is the basis of neuronal communication and disturbance of this 

process is linked to the pathophysiology of numerous neuronal and psychiatric disorders 

(e.g. Parkinson disease, Alzheimer’s disease, and others). Therefore, it is imperative to 

elucidate the molecular mechanism of synaptic vesicle (SV) exocytosis. In synaptic 

transmission, action potentials (AP) travelling along axons induce the depolarisation of 

presynaptic nerve terminals, this leads to the opening of voltage gated Ca2+ channels 

(VGCC), with a consequent increase in Ca2+ entry and an increase in intracellular Ca2+ 

([Ca2+ ]i). This [Ca2+]i increase promotes fusion between SV membranes and the 

presynaptic plasma membrane (PM), with the initial production of a fusion pore (FP). 

Following the creation of FPs, SVs undergo exocytosis and release their neurotransmitter 

(NT) content. Such released NTs then diffuse across the synaptic cleft, and bind to 

postsynaptic receptors leading to either excitation or inhibition of the postsynaptic neuron. 

The exocytosed SV proteins and lipids are then recovered from the PM via endocytosis. 

After the endocytosis and the reformation of the SVs, these are re-acidified and re-filled 

with NT so that they are prepared for subsequent rounds of release. This whole process is 

referred to as SV recycling. The limited number of SVs contained in the neurons means 

that a highly efficient and fast recycling process is required to allow maintenance of 

neurotransmission in response to various stimulation intensities (Sudhof, 2004; Becherer 

and Rettig, 2006; Di Maio, 2008; Alabi and Tsien, 2012).  

1.2 SV pools 

The development of the electron microscope (EM) in the early 1950s enabled the 

discovery of synaptic vesicles (SVs). During this period, Bernard Katz, with Jose del 

Castillo and Paul Fatt, had proposed the quantal theory of transmitter release in which NT 

molecules were released in discrete packages. This theory, alongside the first EM images 

of the synapse, led to the development of the vesicular hypothesis of neurotransmission. 
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In this hypothesis, transmitter is stored in SVs and its release from the vesicle interior 

following vesicular exocytosis forms the structural basis of quantal neurotransmission. 

Clearly, SVs are important structural features of presynaptic terminals and the disruption 

of their normal function is related to various neurological or psychiatric diseases (Alabi 

and Tsien, 2012).  

Many studies have highlighted that neurons contain three distinct pools of SVs: the 

Readily Releasable Pool (RRP), the Reserve Pool (RP; also known as Recycling pool), 

and the Silent Pool (SP; also known as Resting pool and Reserve pool) (Denker and Rizzoli, 

2010; Alabi and Tsien, 2012; Crawford and Kavalali, 2015; Fowler and Staras, 2015). 

High frequency repetitive stimulation of nerve terminals induces dramatic drops in NT 

release and this eventually leads to lower steady-state level of neurotransmission. This 

phenomenon of synaptic depression represents the depletion of SVs from the RRPs. RRPs 

are replenished by their recycling or by recruitment of the SVs from the RP. These two 

pools, which participate in exo- and endocytosis under prolonged stimulation, are jointly 

referred to as the total recycling pool. In cultured hippocampal cells, it was estimated that 

the total recycling pool contained ~21-25 vesicles per terminal, with ~4-8 vesicles in the 

RRP and ~17-20 vesicles in the RP (Fig 1.1). Considering the total amount of SVs in the 

terminal are >200, these values are strikingly low, suggesting that there is a large group of 

SVs in a distinct pool other than the RRP and RP exists, and this is the SP (Sudhof, 2004).  



4 
 

 

Figure 1.1. Vesicle pools and size (From Sudhof, 2000). 

Rizzoli and Betz (2005) have proposed a three-pool model consisting of the RRP, RP, and 

SP organised in the order of their release. The model suggests that when stimulation arrives 

in the nerve terminal, the RRP, which are already docked at the active zone (AZ), release 

first, and the RP replenishes the RRP in the case of repetitive stimulation and any release, 

but that the SP is only released under extremely intense non-physiological stimulations 

conditions (Fig 1.2).  
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Figure 1.2. Three-pool model of SV pools (From Denker and Rizzoli, 2010). 

This three-pool model fits in quite well with data produced utilising pHluorin experiments. 

Fernandez-Alfonso and Ryan (2008) showed that for three main SVs components (vGlut-

1, VAMP-2, and Synaptotagmin 1 all linked to pHluorin molecules), around half of the 

tagged proteins appeared in the recycling pool that respond readily to prolonged 

stimulation by mobilising and fusing with the PM so these underwent exocytosis and 

endocytosis as detected by the pH sensitive pHluourin linked to these vesicular proteins. 

However, half of the labelled vesicles were targeted to a non-recycling, acidic 

compartment. The fraction of recycling and SPs varies across boutons within an individual 

axons, from 100% silent to 100% recycling. However, morphological studies on 

localisation of these pools shows strong evidence of intermixing between the SP and the 

recycling pools. Whilst RRPs, that are understood to release first following the stimulation, 

may be docked at the AZ release sites, all other vesicles are positioned throughout the 



6 
 

synapse. Indeed, not all SVs docked at the AZ are necessarily releasing first. Moreover, in 

a study at frog neuromuscular junctions (NMJs), it was found that AZs were largely 

occupied by vesicles that do not normally release during physiological stimulation (Rizzoli 

and Betz, 2004; Denker and Rizzoli, 2010). 

The properties of the RRP and RP have been well characterised. Currently one major 

debate is what mode of vesicle exocytosis occurs under particular stimulation conditions 

(Richards, 2009, 2010; Zhang et al, 2009; Alabi and Tsien, 2013). Ashton’s group has 

shown that under strong stimulation-conditions, the RRP and the RP SVs are found to 

undergo different modes of fusion to release their NT contents. The RP SVs undergo a full 

fusion mode (FF), where during vesicular membrane fusion with the PM the FP opens, 

transmitter is released, but concurrently the FP continues to expand and the vesicle 

membrane collapses and fully integrates into the PM. Subsequently, the SV membrane is 

recovered via a clathrin- and dynamin (Dyn)-dependent process or via a Dyn-dependent 

process alone. Intriguingly, under strong stimulation conditions Asthon’s group (Bhuva, 

2015; Singh, 2017) have shown that the RRP SV undergoes a Kiss-and-run (KR) mode in 

which the FP opens, but rather than fully expanding and causing vesicle membrane 

collapse into the PM, it recloses via a process independent of clathrin. Research by Ashton 

and colleagues has discovered that these modes of exocytosis can switch and this depends 

upon changes in intracellular calcium levels and in protein 

phosphorylation/dephosphorylation (Ashton and Ushkaryov, 2005; Ashton et al, 2009, 

2011, 2013).  

1.3  The Silent Pool (SP) 

There are many challenges in order for one to study the third pool, the SP. Studies on 

synapses have shown that this pool can contain up to 80% of all terminal SVs, but that 

under normal physiological conditions these SVs are not released. Why such a large 

number of SVs do not normally release remains an enigma. Some studies have suggested 
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that the SP may act as a buffer for proteins involved in SV recycling (Denker et al, 2011). 

The SP has been investigated at the neuromuscular junction (NMJ) of Drosophila 

melanogaster through various manipulations to this model. Particularly, it was determined 

that in flies carrying the temperature sensitive mutation of ShibireTS, which is a homologue 

to the mammalian Dyn protein, extra release due to the SP SVs undergoing exocytosis was 

found under non-permissive raised temperatures. This is because at such increased 

temperature Dyn was inactive so that the RRP and the RP cannot recycle and this, therefore, 

allowed the SP to participate in the release. Subsequent reduction of the temperature back 

to a permissive temperature, Dyn became active again and allowed the recovery of all 

pools of SVs, and such results indicate that the SP is localised at a specific position within 

the SV aggregates (Kuromi and Kidokoro, 1998). This model further revealed that the SP 

vesicles share distinct biochemical properties with vesicles from the other two pools and 

they were released under normal physiological condition, and they could be involved in 

exocytosis under high frequency stimulation in this model (Kuromi and Kidokoro, 2005). 

Equivalent studies have not been made in mammalian nerve terminals because whilst there 

are Dyn knockout animals (Ferguson et al, 2007; Raimondi et al, 2011), there are no 

temperature sensitive Dyn mutations that might allow the SP to come on line and release 

following the release of the RRP and the RP.  

Afuwape et al (2017) investigated the stability of recycling SVs via performing an 

extended incubation of FM 1-43 labelled terminals prior to a stimulation. They 

subsequently triggered the dye release from the hippocampal culture cells after incubation 

of FM labelled terminals at physiological temperature for 6 hours. It was found that 

vesicles in the SP are highly reluctant to intermix with the labelled recycling pool because 

the kinetics of FM dye release were the same after this extended incubation as after only 

a 10 min resting period following initial loading (Afuwape et al, 2017). 

Molecular mechanisms underpinning the SP are mainly unknown. In contrast to the RRP 

that is known to dock at the AZ membrane, the RP and SP are identified to be highly 
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intermixed at the presynaptic terminal (Denker and Rizzoli, 2010). Despite this intermix, 

the fact that SVs are still capable of releasing in organised sequence means it is highly 

likely that there are unknown molecular tags that partition the SVs. It is possible that the 

SP has distinctive morphological features, such as size or shape of the vesicle that could 

distinguish this group of pool from others, but, ultrastructural studies have failed to 

discover significant morphological parameters that one could refer to when classifying 

each pool (Rizzoli & Betz, 2005). As over 400 different proteins are found on SVs 

(Takamori et al, 2006), it could be that variation in these proteins could provide the 

diversity in these vesicle pools. Thus, a combination of certain proteins on vesicle surface 

could explain how vesicles within the same presynaptic terminal have varying functional 

characteristics (Chamberland and Toth, 2015).  

One of the possibilities is that there are molecular tags that associate with SV membrane 

that specify their identity and direct them to one pool or the other (Guarnieri, 2017). 

Synapsin I (Syn I) is a SV associated protein, and it is also a molecular marker of the RP, 

restricting SVs from this pool participating in neurotransmission (Denker et al, 2011). 

Thus, it could also contribute to restrict the mobilisation of the SP, justifying Syn I as one 

of the likely candidates to regulate the SP organisation. Another study has also suggested 

that the presence of vesicular zinc could be a possible hallmark of the SP. This study 

showed that zinc predominantly exists in a subpopulation of SVs and that such zinc-

containing SVs only preferentially release during high frequency stimulation, an indication 

that these SVs may be derived from the SP (Lavoie et al, 2011). 

1.4  Roscovitine 

Recently Kim & Ryan (2010) used a small molecule inhibitor of Cdk5 [a proline-directed 

Ser/Thr kinase that is characterised to be implicated in cytoskeleton assembly and its 

organisation during axonal growth (Maccioni et al, 2001) and in many other processes 

such as SV recycling (Evans and Cousins, 2007)], called Roscovitine, and successfully 



9 
 

released SVs that were previously in a silent state from mammalian hippocampal cell 

cultures, i.e. part of the SP. The study reported that following Roscovitine treatment, 

stimulation with 100 action potentials (APs) was able to evoke 80%-90% of the entire 

vesicle pool in the terminal. The fact that a small stimulation like 100 AP, can drive 

exocytosis of virtually all of the SVs in the terminal suggests that Cdk5 inhibition has 

increased the size of the available SV pool. Kim and Ryan (2010) concluded that an 

inhibition of Cdk5 via Roscovitine leads to an elevation of the recycling vesicle pool size 

by converting the SP vesicles into functional recycling vesicles.  

Kim and Ryan (2013) have further claimed that the balance of Cdk5 with Calcineurin 

operates a release probability of SV pools, and it is mediated through Cav 2.2 voltage-

gated calcium channels (N-type Ca2+ channel). Such studies and others outlined below 

suggest that Cdk5 has an important role in regulation of the SP and other vesicle pools, 

and also outline which proteins Cdk5 could potentially work on in this regulation (Kim 

and Ryan, 2013).  

1.5  Cdk5 Phosphorylation targets 

1.5.1 Dynamin I 

Cdk5 is known to phosphorylate Dyn I at Ser 778 (Evans and Cousin, 2007) and in the 

absence of this, Ser-774 cannot be phosphorylated by GSK3 (Clayton et al, 2010) and both 

of these sites are targets of calcineurin (CN)-induced dephosphorylation. These sites have 

been found to be involved in clathrin-dependent endocytosis (Armbruster et al, 2013) and 

it was also suggested that they may be involved in the control of phospho-dependent bulk 

endocytosis of SVs (Clayton and Cousin, 2009). As Dyn I requires Cdk5 phosphorylation 

for its continued recycling activity, it is likely to be involved in SP recycling and re-

releasing following release of this pool. Intriguingly, Dyn can also be involved in the 

regulation of the actin cytoskeleton (Gu et al, 2010).  
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1.5.2 Myosin 2 

The role of non-muscle myosin 2 (NM-II) in exocytosis has been highlighted in various 

studies on non-neuronal cells (Neco et al, 2008; Bhat and Thorn, 2009; Doreian et al, 2009) 

and Ashton’s group has shown that it has a role in regulating the FP of SVs in nerve 

terminals (Bhuva, 2015; Singh, 2017). It is also possible that NM-II may regulate the SP 

independent of its fusion mode. In studies focused exclusively on the RRP and RP, the 

myosin light chain kinase (MLCK) inhibitors were shown to perturb (Ryan, 1999) or 

augment (Srinivasan et al, 2008) the release while other works have shown that the role of 

MLCK is independent of actin cytoskeleton (Tokuoka and Goda, 2006). Actin 

microfilaments may be involved in the regulation of the SP. A study on Drosophila NMJ 

has found that the SP SVs require actin microfilament for their recruitment (Kuromi and 

Kidokoro, 2005). It is therefore, possible that one might be able to link the properties of 

NM-II as a motor protein for the SP and its requirement for actin microfilaments (e.g. 

Neco et al, 2004; Dorein et al, 2008; Haviv et al, 2008). Hence, it will be worth studying 

the phosphorylated state of non-muscle myosin under the condition investigating the 

regulation of the SP (Ludowyke et al, 2006; Beach et al, 2011; Sanborn et al, 2011). 

1.5.3 Synapsin I 

Syns are SV associated phosphoproteins that are proposed to have a key role in the 

regulation of neurotransmitter release and synapse formation. They are substrates of 

multiple kinases that phosphorylate the proteins at several distinct sites (Cesca et al, 2010). 

Syn was first discovered by Paul Greengard’s group. The neuronal specific Protein I (later 

named Syn I) was found to be one of the main endogenous substrates for cAMP-dependent 

protein kinase (PKA) in synaptic fractions. Early evidences has demonstrated that Syn 

phosphorylation was induced following electric stimulation in rabbit cervical ganglia 

(Nestler and Greengard, 1982) and in the rat neurohypophysis (Tsou and Greengard, 1982). 

Later, Syn phosphorylation by CaMKII was studied intensively as such phosphorylation 
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induced a major conformational change in Syn (Benfenati et al, 1990) and this reduced its 

association with SVs (Schiebler et al, 1986) and with the actin cytoskeleton (Valtorta et 

al, 1992). The relevance of this to synaptic transmission was shown by the fact that 

microinjections of Syn phosphorylated at the CaMK II sites failed to stop the SV release, 

whilst dephospho-Syn inhibited release (Llinas et al, 1985, 1991). However, it is now clear 

that Syn function in vivo is regulated through multiple activity dependent phosphorylation 

pathways, and PKA, Cdk5, and CaMK II all have important roles in Syn regulation (Cesca 

et al, 2010; Shupliakov et al, 2011; Bykhovskala, 2011). 

The Syn family consists of ten homologous proteins, Syn Ia-b, IIa-b, and IIIa-f, and an 

analysis of the amino acid sequence of Syn I and Syn II allowed the domain structure of 

the Syn family to be elucidated. Syn are composed of a highly homologous N-terminal 

region, and a more variable C-terminus. The N-terminal region can be split into three 

domains, called domain A, B, C, which except from domain B, are highly conserved across 

isoforms and species. In contrast, the C-terminal region of Syn is more divergent, and is 

composed of various spliced domains (domain D-I). Domain A is a short N-terminal region, 

that exist in all Syn isoforms. It contains the phosphorylation site (site 1) for PKA, CaMK 

I and IV. Domain B, shows relatively weak similarity between Syn isoforms, and it is 

suggested to be a linker region connecting domain A to domain C. In Syn I, domain B 

contains phosphophrylation sites 4 and 5 for MAP kinase/Erk. Domain C is a large region 

of about 300 amino acid which consists of both hydrophobic and highly charged sequences 

with the potential to assume -helix and -sheet conformations. It is considered to be 

important region for Syn interaction with the actin cytoskeleton and SV phospholipids, as 

well as contributing to Syn homo or heterodimerisation. The amino acid sequence diverges 

after domain C. However, all isoforms contain a proline-rich domain (domain D in Syn Ia 

and Ib; domain G in Syn IIa, domain G and H in Syn IIb, and domain J in Syn IIIa). 

Domain D in Syn Ia and Ib contains phosphorylation site 2 for CaMKII, site 3 for CaMKII 
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and PAK, and sites 6 and 7 for MAPK/Erk, Cdk1 and Cdk5 (Cesca et al, 2010) (see Fig 

1.3).  

 

 

 

Figure 1.3. Phosphorylation sites in synapsins. (A) Phosphorylation sites in synapsins Ia-IIIa; 

(B) Summary of kinases and the phosphorylation sites in synapsin Ia, the diagram describes 

changes in phosphorylation levels in response to Ca2+ entry and the effect that site specific 

phosphorylation has upon synapsin function (Taken from Cesca et al, 2010). 

The exact functions of Syn are not yet fully elucidated. The classical view suggests that 

vesicles are tethered to the cytoskeleton by Syn and cages these vesicles. Phosphorylation 

of Syn leads to these vesicles becoming uncaged and makes these vesicles available for 

release (Bykhovskala, 2011). An early study in squid giant synapses from Llinas and 

colleagues (1985) demonstrated that the presynaptic injection of dephosphorylated Syn I 

reduced the amplitude and rate of rise of postsynaptic potential (i.e. neurotransmitter 

release was decreased) whilst injection of either phosphorylated or heat inactivated 
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dephosphorylated Syn I had no effect. Injection of CaMKII was found to increase the post 

synaptic potentials by increasing release (Llinas et al, 1985, 1991). Later, the introduction 

of dephosphorylated Syn I, phosphorylated Syn I or activated CaMKII into rat brain 

synaptosomes produced a similar result in vitro (Nichols et al, 1992), outlining that Syn 

dephosphorylation acts as an organiser of the SV pool, keeping SVs together and 

connecting them to actin filaments, whereas phosphorylated Syn allows SV to becomes 

untethered so that they can fuse with the PM. In addition, presynaptic injection of a highly 

conserved peptide fragment of domain E in to the squid giant synapse revealed a drastically 

reduced number of SVs located distal from the AZ and this increased the synaptic 

depression following relevant stimulation. Similar results were also observed when a 

peptide corresponding to domain C was injected. Importantly, both peptides were found 

to inhibit the Syn-actin interaction, indicating the importance of Syn I in maintaining the 

SV pools distal to the AZ through an interaction with actin (Hilficker et al, 1998, 2005).  

Other characteristics of Syn have been highlighted in relatively recent research. Kim et al 

(2017) have observed alterations in SVs at presynaptic terminal on mice exposed to 835 

MHz RF-EMF (Radiofrequency electromagnetic fields), and in such mice there is a 

marked decrease of expression of Syn I and II genes and their protein product (Kim et al, 

2017). Furthermore, the phosphorylation of Syn I was found to be reduced upon Lead (Pb) 

exposure. Lead is a toxin that impairs the nervous system and it was found that it reduces 

presynaptic neurotransmission through the disarrangement of the distribution, and a 

decrease in the density, of presynaptic vesicles. These authors were able to reverse the 

effect of the Pb exposure using Roscovitine, suggesting that Pb disrupted the distribution 

of SVs and impaired the neurotransmitter release by changing the Cdk5 dependent 

phosphorylation levels of Syn I through Cdk5 (Ding et al, 2018). 

Much research has linked Syn activity to regulation and maintenance of SVs located distal 

to AZ (Li et al, 1995b; Samigullin et al, 2004; Siksou et al, 2007; Akbergenova and 

Bykhovaskaia, 2007; Fornasiero et al, 2012; Orenbuch et al, 2012). This suggests that Syn 
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is one of the major proteins that contribute to the SP regulation. Electron microscopy (EM) 

investigation of boutons from Syn deficient mice has demonstrated that Syn maintains 

vesicle clustering at the periphery of the bouton. Syn deficiency did not affect the mixing 

of the RP and SP but it did selectively reduced the size of the SP. Intriguingly, under 

intense stimulation, a significant amount of vesicles were found to be distributed at the 

central core of the bouton in the presence of Syn, but in the absence of Syn, the area 

occupied by vesicles appeared unchanged. Further, whilst strong stimulation led to an 

elevated basal release in Syn deficient terminals, this was not the case in Syn containing 

terminals indicating that Syn may direct vesicles to the SP (Akbergenova and Bykhovskaia, 

2010). Verstegen et al (2014) demonstrated that Cdk5 phosphorylation of Syn I at Ser 549 

(site 6) and Ser 551 (site 7) isolates recycling SVs to the SP via a mechanism involving 

the actin cytoskeleton. They claimed that the phosphorylation of Syn I with Cdk5 at Ser551 

site enhances its interaction with F-actin. F-actin can dynamically regulate SV 

transmission and may be responsible for scaffolding and the cycling, turnover, and 

mobility of SVs (Cingolani and Goda, 2008). This cytoskeletal component does not 

regulate the RP size, although, an absence of F-actin was reported to perturb the spatial 

segregation of recycling SVs (Marra et al, 2012; Ratnayaka et al, 2012). Such information 

led Verstegen et al (2014) to conclude that increased phosphorylation of Syn I with Cdk5 

leads to an elevation of SV interaction with F-actin, leading to the relocation of the 

recycling SVs to the SP, such that SV in the recycling pool are reduced (i.e. the RRP and 

the RP) (Verstegen et al, 2014).  

Recent evidence has reported that Cdk5 phosphorylates Tomosyn I, a SNARE binding 

protein, and this can also regulate the SP. This protein appear to exert its function through 

an interaction with Syn I via Rab3A-GTP and this tomosyn function is independent of its 

SNARE binding properties (Cazares et al, 2016). Clearly such studies demonstrate that 

phosphorylation of Syn I plays an important role in organising the SV pools located distal 

from the AZ, and leads to the idea that changes in the phosphorylated state of Syn I (at 
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various phosphorylation sites) may potentially contribute to the regulation of the 

exocytosis of the SP. 

1.5.4 -Synuclein 

The synuclein protein family consists of -, -, and -synuclein. Amongst all the synuclein 

proteins, interest in the - form of the protein is high due to the fact that it has previously 

been found to contribute to Parkinson disease (PD) (Polymeropoulos et al, 1997; Clayton 

and George, 1999; Spinelli et al, 2014). An exact role of -synuclein in the synapse has 

yet to be discovered. Previous studies investigating the protein’s structure and localisation 

suggest that it does feature in various synaptic transmission processes including SV 

endocytosis, regulation of SV pool size, SV mobilisation and the trafficking between 

synapses (Gedalya et al, 2009; Cabin et al, 2002, Nemani et al, 2010; Scott and Roy, 2012; 

Vargas et al, 2014). The study by Vargas and colleagues (2014) used optical imaging, 

electron microscopy and slice electrophysiology to determine that synucleins are required 

for rapid and efficient clathrin dependent SV endocytosis, and by comparing the WT 

synapses to those from Dyn DKO synapses led to the suggestion that synuclein acts at an 

early step of SV endocytosis. Others have suggested that -synuclein is organised into 

multimers and these cluster SVs and restrict their motility (Wang et al, 2014). Another 

study demonstrated that the -synuclein decreases the trafficking of recycling pool 

vesicles between presynaptic boutons – such SVs constitute a pool known as the superpool 

– and that -synuclein also has a role in maintaining the overall size of the recycling pool. 

Overexpression of -synuclein led to a smaller recycling pool size and blocked the 

trafficking between the synaptic boutons. Whereas, removal of this protein resulted in 

larger recycling pools and enhanced trafficking between boutons (Scott and Roy, 2012). 

Nemani and colleagues (2010) had previously suggested that overexpression of -

synuclein reduced the size of the SV recycling pool and this significantly inhibited NT 

release. These authors demonstrated a decreased SV density at the AZ and defects in the 
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reclustering of SV after endocytosis by using ultrastructural analysis. Clearly, -synuclein 

does participate in synaptic transmission and as it is involved in regulation of the size of 

the recycling pool it may also be potentially involved in the regulation of the SP. Although 

this thesis does not address the role of -synuclein, it is felt that data detained in this thesis 

may lead on to some studies to investigate the role of this enigmatic protein. That is why 

it is mentioned here. 

1.6  Fluoxetine 

Recently, it has been found that the antidepressant drug, Fluoxetine can induce extra 

release from synapses (Jung et al, 2014). Fluoxetine is a selective serotonin reuptake 

inhibitor (SSRI) and it is one of the most widely prescribed treatment for depression. 

SSRIs are understood to operate through an inhibition of the uptake of exocytosed 

serotonin into the presynaptic terminal, and this leads to an increase of serotonin levels in 

the synaptic clefts of drug treated patients suffering from depression. Jung et al (2014) 

reported that a clinically relevant dosage of Fluoxetine, 1 M, had an effect on SV 

recycling and plasticity, and that the drug mobilises the SP of SVs so that they can be 

released. Higher drug concentrations attenuated evoked exocytosis. They showed that the 

observed increase of SVs exocytosis was due to an increase in the number of active 

vesicles after Fluoxetine incubation (Jung et al, 2014). This study is significant as it could 

reflect that the antidepressant effect of SSRIs might involve an expansion of the releasable 

SVs from nerve terminals.  

Research in this thesis utilises synaptosomes prepared from rat cerebral cortex. Such 

preparation contain 80% glutamatergic terminals but only a very small % of serotonergic 

terminals. Therefore, it would be interesting to investigate whether Fluoxetine could 

produce equivalent effect to the one from Jung and colleagues’ study utilising these 

cortical synaptosomes. This is some evidence from earlier study that Fluoxetine could 

affect the release of nerve terminals that do not involve serotonin. Bymaster et al (2003) 
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showed that Fluoxetine increases that extracellular levels of dopamine and norepinephrine 

in the hypothalamus, cortex and prefrontal cortex (Bymaster et al, 2003). Although, 

studies highlighted claimed that Fluoxetine has several additional effects besides 

inhibiting neuronal serotonin reuptake and this includes effects on glutamate release from 

nerve terminals and it was found that Fluoxetine inhibited 4-aminopyridine (4AP) evoked 

glutamate release from cerebral cortical synaptosomes primarily by suppression of P/Q 

type calcium channels (Wang et al, 2003).  

1.7  SV cycling 

SV cycling has two major stages; exocytosis and endocytosis. In nerve terminals, NTs are 

stored in SVs, and such NTs are release through exocytosis. Subsequently, empty SVs can 

be rapidly recycled by undergoing endocytosis to enable them to become ready for reuse 

(For detailed review, see Rizzoli, 2014). Much progress has been made in our knowledge 

about exocytosis, but details on certain specific mechanisms and endocytosis regulation 

are less well understood.  

A study from Heuser and Reese in the early 1970s, contributed to the establishment of a 

concept of SV recycling using EM on frog NMJs. The study proposed that SV membranes 

are recycled by clathrin mediated endocytosis (CME) via cisternal structures located at 

AZs (Heuser and Reece, 1973). Intriguingly in the preparation using a distinct stimulation 

paradigm, Ceccarelli and colleagues suggested an alternative clathrin-independent fast 

mode of SV recycling called Kiss and Run (KR) that involves a transient FP opening 

(Ceccarelli et al, 1973). Later on it was shown that a sustained strong stimulation of nerve 

terminals could trigger activity dependent bulk endocytosis (ADBE) of extensive 

membrane patches containing membrane. This pathway may serve during very high 

frequency stimulation, as an emergency response, as it might not selectively recover SV 

proteins alone. For definite, this produces a large endosome and SVs have to bud off from 

this before entering the cytosol and being able to load up NT. Recently, data using high-
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pressure freezing EM paired with optogenetic stimulation proposed that at invertebrate 

and mammalian synapses there was another distinctive mode of SV recycling, called 

ultrafast endocytosis (UE) existed (Fig 1.4) (Kononenko and Haucke, 2015; Soykan et al, 

2016; Watanabe et al, 2017). 

 

Figure 1.4. Overview of KR, CME, UE, ADBE. (A) Kiss and Run mode. Characterised with 

a transient opening of a fusion pore to discharge SV content followed by closure and 

detachment of the SV from the plasma membrane and directly reused through a fast 

mechanism. (B) CME. Classical model of endocytosis with open of a fusion pore followed by 

complete flattening of SV to the plasma membrane. Subsequently, SV components are 

retrieved directly from the cell surface via formation of a clathrin coated vesicle. (C) UE. Fast 

invagination of a larger area of the PM (2 to 4 times larger than the area that one SV would 

produce which then becomes an endosome and SVs pinch off of this via a clathrin dependent 

process. (D). Strong stimulation results in appearance of large bulk endocytic structures, 

which later resolved into SVs through clathrin dependent or clathrin independent 

mechanisms (ADBE) (From Kononenko and Haucke, 2015). 
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Each pathway of recycling operates through distinctive mechanism to retrieve SVs from 

the PM and each possesses its own advantages and disadvantages (He et al, 2006; Granseth 

et al, 2007; Watanabe et al, 2013, 2014). Which endocytic pathway is the most prevalently 

used is still a matter of fierce debate, although it is clear that this can be dependent on 

many factors such as stimulation intensity and duration. For instance, CME maybe the 

dominant SV endocytosis mode during low levels of stimulation, and at even milder 

neuronal activity, UE is proposed to be the most prevalently used pathway. This is because 

this has routinely only been measured after the equivalent of one AP and even then for one 

SV fusion, there appear to be 2-4 SV recycled. This clearly could not be maintained over 

a strong stimulation period otherwise the terminal would shrink. At elevated stimulation, 

these two mechanisms saturate and ADBE is found to get triggered and therefore, ADBE 

may be the predominant pathway during elevated neuronal activity (Granseth et al, 2006; 

Harata et al, 2006; Wu and Wu, 2007; Mellander et al, 2012; Nicholson-fish et al, 2015; 

Morton et al, 2005; Kokotos et al, 2018).  

For these three distinctive pathways of endocytosis, CME, ADBE, and UE SV undergo 

classical exocytosis such that vesicles fully collapse into the PM prior to their endocytotic 

retrieval. In this exocytotic mode, vesicles are found to be completely flattened into the 

PM via FF (Rizzoli and Jahn, 2007). Following these types of exocytosis, endocytosis 

involves invagination of membrane containing vesicular component that may require Dyn-

dependent vesicle fission. Whilst CME utilises clathrin at the PM invagination step, in UE, 

the Dyn-dependent fission produces an endosome and clathrin acts at the endosomal stage 

– at physiological temperature – to produce pinched off SVs (Watanabe et al, 2014). 

Whilst Dyn has been suggested to pinch off a large invagination to produce an endosome 

during ADBE, this is controversial since bulk endocytosis still occurs in Dyn deficient 

nerve terminals. Subsequent uncoating, trafficking, re-acidification and recharging with 

transmitter allows the vesicle to be ready for reuse (Brodin et al, 2000; Smith et al, 2008). 
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1.8  Kiss-and-Run 

The other mode of release known as KR is characterised with a transient FP without 

complete loss of vesicle identity. Since the KR mechanism does not involve collapse of 

the vesicular membrane it possesses some advantage over FF in terms of speed of recycling. 

Studies estimate that in KR mode of fusion process, the vesicle recycles within 1s, which 

is faster compared to FF that takes ~20s, although, others have claimed that CDE can occur 

in <10s, but this is still slower than KR. Also, KR allows one to utilise less energy than 

full vesicles collapse and subsequent vesicle reformation. There is also rapid clearance of 

the vesicle membrane and proteins from the AZ release site if KR recycling occurs, which 

can facilitate vesicle replenishment of the release sites. Although, UE can allow some SV 

membrane to endocytosed in 30 ms, faster than KR, the actual recycled endosomal 

compartment needs SVs to pinch off from this and then take up NT and this process 

actually takes about 5s and so UE is still slower than KR in producing a SV that is ready 

to re-release (Zhang et al, 2007; Park et al, 2012; Alabi and Tsien, 2013; Watanabe et al, 

2014).  

SVs are proposed to use different modes of exocytosis depending on various factors such 

as intensity of stimulation. Evidence supporting this hypothesis was proposed from 

Elhamdani et al (2001) studying chromaffin granule exocytosis. The group used 

amperometric recording to monitor single exocytotic events in chromaffin cells and found 

that the intensity of stimulation determines the amount of catecholamine release through 

an individual FP. These authors reported that at low frequency stimulation, 0.25 Hz, the 

quantal size was more than two-fold smaller compared to under high frequency, 10 Hz 

(Elhamdani et al, 2001). Research from Fulop et al (2005) has obtained a similar result. 

This group revealed that the quantal size of amperometric spikes triggered by 0.5 Hz 

stimulation was more than two-fold smaller than the one induced by 15 Hz stimulation. 

Additionally, the size of amperometric spikes at 0.5 Hz was very similar to the value of 

the one from pre-spike current recorded at 15 Hz. This part of spike is often referred to as 
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‘foot’, and these currents represent the slow release of catecholamine through the FP. At 

this stage, FP can either close or expand into a larger pore. In the case of the FP closing, 

one may get an incomplete release of the vesicle as it may close before all the 

catecholamine has been released. Thus, at a lower frequency, the catecholamine is partially 

released through a relatively narrow FP that closes back after short period of time, whilst 

under higher frequency stimulation, the FP totally expands into the PM and so there is 

complete release of the vesicular contents (Fulop et al, 2005). In these chromaffin cells, 

the rapid closure of a non-expanded FP represents KR whilst the full release of an 

expanded FP is FF (Cardenas and Marengo, 2016).   

Ceccarelli and colleagues (1973) showed morphological vesicle depletion and the elevated 

plasma membrane area under 10 Hz stimulation (i.e. FF), as reported by others (Heuser 

and Reese, 1973), but they did not get an equivalent result under a lower frequency of 

stimulation, 2 Hz where there was neither a substantial reduction in the amount of SVs nor 

evidence of any coated vesicles. Moreover, a 10 Hz stimulation for 20 minutes led to an 

increased number of dimples (representing exo-endocytosis events) near the AZ but the 

number and location of SVs were unchanged during the first minute of recovery when 

endocytosis would predominate. Additionally, under quick-freeze procedure, the image of 

dimples remained the same during 2, 5, and 10 ms after initial stimulation, and they were 

also found inside the AZ. Vesicles were often observed to form narrow pores while in 

contact with PM under conditions in which neurotransmission occurred. Based on these 

observations, Ceccarelli and colleagues proposed the mechanism of KR in which there 

was vesicular retrieval on the spot without the vesicle collapsing into the PM and losing 

its identity (Harata et al, 2006). 

There is strong evidence for KR using preparations with fluorescently labelled SVs. SVs 

can be filled with FM dyes during recycling, and subsequent rounds of stimulation evokes 

these fluorescent dyes to exocytose. Direct measurement of this dyes to determine 

properties of exocytosis has been used for a substantial time period (FM dyes first used in 
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the 1990s). Work carried out by Richard Tsien and colleagues (Aravanis et al, 2003; 

Harata et al, 2006) and earlier by Stevens and colleagues (Stevens and Williams, 2000) 

suggested that whilst some SVs underwent exocytosis with release of FM dye, other SVs 

underwent exocytosis without the release of the dye. This was due to the fact that FM dye 

takes time to departition from the vesicle membrane after it is exposed to the extracellular 

buffer following exocytosis and if the initial FP formed closes quickly (<0.5s) the dye will 

not be released, although glutamate will be, and this represents KR. For FF all dye will be 

released. The use of bromophenol blue (BPB) also revealed that there was a significant 

proportion of FM dye that was retained in a BPB sensitive pool. BPB will quench FM dye 

fluorescence but it is membrane impermeable. However, BPB is a small molecule and so 

it can penetrate into the vesicles through fusion pores formed during exocytosis even 

though these pores maybe too short lived for FM dyes to departition and escape. However, 

under such circumstances the FM dye fluorescence will be quenched by the BPB. However, 

vesicles undergoing FF will lose all the dye in FM fluorescence and so this reduction in 

FM fluoresce during exocytosis will not be altered by BPB. The fact that significant 

proportion of FM dye could remain in a BPB sensitive pool allowed one to interpret that 

this pool of SVs must be undergoing KR (Rizzoli and Jahn, 2007). 

The KR mode of exocytosis is regulated through various mechanisms, including the Ca2+ 

level and the presence or absence of various proteins (Dyn, myosin, or actin cytoskeleton). 

As previously mentioned, KR is the prevalent exocytosis mechanism used under low 

frequency stimulation whilst FF is the dominate mechanism for high frequency. This result 

would appear to suggest that a lower increase in [Ca2+]i may induce KR whilst a higher 

level may induce FF. However, Ashton and colleagues (Bhuva, 2015; Singh, 2017) have 

found that it is the RRP that undergoes KR and this is released under mild stimulation 

whilst the RP undergoes FF and this would only be released under high frequency 

stimulation. Furthermore, the RRP SVs docked at the AZ release sites will be nearest to 

the Ca2+ channels involved in release and so these SVs will see the highest local [Ca2+]i 
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whereas the RP SVs that come on line are exposed to a lower [Ca2+]i as they get activated 

and move and fuse at the AZ after the RRP SVs. Importantly, it was shown that an increase 

of extracellular calcium concentrations shifted the preferred mode of exocytosis to the KR 

mechanism in calcium dependent manner (Ales et al, 1999). The level of Ca2+ has been 

linked to the regulation of KR via synaptotagmins. Synaptotagmin (Syt) are a family of 

membrane proteins that are well characterised as a Ca2+ sensors that initiate SNARE-

dependent vesicle fusion during synaptic transmission (Xie et al, 2017). Amongst this 

large family of Syt, Ca2+ interaction with Syt 7 C2A domain could regulate the triggering 

of the fusion pore opening. Such pore opening through this process is unstable, so that the 

pore closure leads to KR fusion events (Segovia et al, 2010, Neuland et al, 2014).  

Modification of Ca2+ level has also been implicated in the regulation of dynamin and actin 

meshwork (Cardenas and Marengo, 2016) which may play a role in regulating the fusion 

mode. Dyn is a large GTPase that has been established to control fission of invaginated 

pits that are produced during some forms of endocytosis. Dyn forms rings or collars around 

the necks of budding endocytic vesicles inducing GTP hydrolysis which result in 

membrane remodelling and eventual fission of the invaginated pit. However, the role of 

Dyn GTPase activity has also been linked to the regulation of FP expansion (Decamilli et 

al, 1995; Warnock and Schmid, 1996; Ramachandran, 2011; Anantharam et al, 2011). 

Samasilp et al (2012) showed that under elevated stimulation, Dyn I is dephosphorylated 

at Ser-774 site by CN and this leads to an association between Dyn I-syndapin binding, 

but that disruption of this interaction may limits FP (Samasilp et al, 2012). Recently, Wu 

et al (2019) reported that most Ca2+ induced exocytosis occurs through the KR mode; 

author referred to this as subquantal mode because in chromaffin granules not all 

catecholamine is release by KR mode. The study proposed that this releasing mode is 

promoted by Dyn I because in the absence of it, substantial increase of FF was identified 

(Wu et al, 2019).  
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Actin microfilaments, in conjunction with NM-II, have also been suggested to regulate KR. 

Doreian et al (2008) demonstrated that at low frequency stimulation, actin microfilaments 

were found to play an important role in stabilising the KR fusion event. Under increased 

stimulation, actin was disrupted and FF fusion became abundant. These authors tried to 

correlate the activity of NM-II with this cytoskeleton-dependent control of the fusion event 

since inhibition of NM-II or blockade of MLCK led to perturbation of FP dilation during 

increased stimulation frequencies which maintains the granule in KR mode of exocytosis 

(Doreian et al, 2008). These results were in chromaffin cells, which are distinct from nerve 

terminals. Ashton and colleagues (Bhuva, 2015; Singh, 2017) have actually found that 

NM-II can regulate the KR mode of the RRP of SVs in nerve terminals because this mode 

is switched to FF if the motor protein activity is blocked by Blebbistatin. The activator of 

NM-II does appear to involve protein kinase C (PKC) induced phosphorylation (Bhuva, 

2015; Singh, 2017).  Others have found that inhibition of NM-II with Blebbistatin led to a 

decreased mobility of the granule near to the AZ. A reduction in FP expansion speed and 

longer FP life times were identified when actin microfilaments were disassembled with 

cytochalasin D. This study in chromaffin cells demonstrated an increase spike half widths 

in amperometric recordings without change in quantal size after either NM-II or actin 

activities were silenced. These authors proposed that actin and NM-II facilitate release 

from individual chromaffin granules by accelerating dissociation of catecholamines from 

the intragranular matric potentially via generation of mechanical forces which is distinct 

from regulating the exocytotic mode and such regulation would not occur in glutamatergic 

SVs in which glutamate is not bound to a matrix (Berberian et al, 2009). 

Thus, there has been much research suggests that regulation of the KR mode of exocytosis 

involves the contribution of numerous proteins, including Dyn, NM-II, and actin, and these 

may be regulated by Ca2+ levels. Further, investigation into the precise properties of such 

proteins would be helpful in furthering the understanding of the mechanism mediating the 

release mode of the SVs. 



25 
 

1.9 AIMS 

The research in this thesis involves studying both the different pools of SVs and also 

investigating further the properties of the distinct modes of exocytosis. This work will all 

be carried out using rat cerbrocortical synaptosomes from adult animals. Some of the 

research represents a total new area for research for the Ashton laboratory whereas others 

represents a continuation of research that has been going on in the lab for over 10 years. 

 The areas to be investigated in this thesis are as follows: 

(i) Release of the silent pool (SP) of SVs. This pool is not normally released but previous 

work on hippocampal cultured cells utilising electrophysiological measurements 

suggested that roscovitine is able to induce the release of the SP of SVs. Thus, we will 

employ Roscovitine and determine whether we can indeed induce extra glutamate release 

from treated nerve terminals. Provided that we can study the SP we will perform further 

experiments to determine: (a) the calcium requirements for SP release; (b) the voltage 

dependent Calcium channel requirements for SP release;  (c) the regulation of the SP 

release by Protein Kinase C; (d) the release of the SP following the stabilisation of actin 

microfilaments; (e) a correlation between roscovitine induce release of the SP with 

changes in the phosphorylation of Syn 1 at various Ser residues that are regulated by 

distinct protein kinases and phosphatases. 

(ii) the use of Fluoxetine to study the silent pool of SVs. Recently, Jung et al (2014) 

suggested that this anti-depressant actually can induce the release of the SP of 

glutamatergic SVs. Thus, we will seek conditions to induce the SP of GLU containing SVs 

in synaptosomes following treatment with Fluoexetine. We will establish that any extra 

release is truly coming from the SP. 

(iii) The role that actin cytoskeleton has on the release of distinct pools of SVs. The effect 

that actin disassembly (using Latrunculin) or actin microfilament stabilisation (using 

Jasplakinolide) has on the release of the RRP and the RP and also what effect this might 
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have on the modes of exocytosis can be determined. This will be studied by measuring 

GLU release evoked by either high potassium (HK5C) or Ionomycin (ION5C). 

Subsequently, SV exocytosis can be studied using FM2-10 dye release and any differences 

in the requirements for these 2 stimuli may reveal differences in the Dyn dependent KR 

mode (induced by ION5C) and the NM-II dependent KR mode (induced by HK5C). This 

work is required before one could investigate any role of this cytoskeleton on the release 

of the SP. 

(iv) Determining whether Dyn is already present on a membrane compartment during 

synaptic vesicle exocytosis involving the Dyn dependent KR mode. This can be done using 

a drug MITMAB that prevents dynamin binding to membranes. 

(v) Determining whether the Dyn dependent KR mode requires the activity of endogenous 

PKA whilst the NM-II dependent KR mode does not. This will be investigated by 

inhibiting PKAs with KT 5720. 

(vi) Determining whether the Dyn dependent KR mode and the NM-II dependent KR 

mode can be regulated by distinct voltage dependent Calcium channels. This will be 

investigated by blocking P/Q, N and L-type channels with distinct toxins/drugs and 

investigating whether this regulates the distinct modes. 
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2.1 Materials 

2.1.1 Buffering Reagents 

- Physiological buffer (L0): 125 mM NaCl, 5 mM KCl, 1 mM MgCl2, 20 mM Hepes 

and 10 mM glucose; pH 7.4. Note, where required, 5 mM Ca2+ was added to this 

(final concentration). 

- Homogenisation sucrose buffer: 320 mM sucrose and 10 mM Hepes; pH 7.4 

- Stock high potassium (HK0) buffer: 130 mM KCl, 20 mM Hepes, 1 mM MgCl2 

and 10 mM glucose; pH 7.4. Note, where required, 25 mM Ca2+ is added to this 

such that when diluted the final concentration of KCl is 30 mM and that of CaCl2 

is 5 mM. 

- Bioenergetics buffer: 120 mM NaCl, 14 mM D-glucose, 3 mM KCl, 2 mM MgSO4, 

12 mM NaSO4, 1.3 mM CaCl2, 0.4 mM KH2PO4, 10 mM pyruvate, 60 M bovine 

serum albumin (BSA), pH 7.4, This was employed as previous synaptosomal 

bioenergetics studies in the Seahorse flux analyser has utilised this buffer 

(Seahorse Bioscience, N.D). 

2.1.2 Stimulation Solutions 

The current study employed three 5 mM Ca2+ based stimuli, High potassium (30 mM K+; 

HK5C), Ionomycin (5 M ionomycin; ION5C) and 4-aminopyridine (1 mM 4-

aminopyridine; 4AP5C) to induce SV release. It has been established from previous 

studies by Ashton and colleagues that 5 mM Ca2+ with HK or ION containing buffers give 

maximal release of glutamate (GLU) from both the RRP and the RP, and equivalent 

amount of 4AP only gives maximal release of GLU exclusively from the RRP (see 

appendix 1). This latter stimulus, therefore allows investigation of RRP separately from 

the RP using the assays listed below (Bhuva, 2015; Singh, 2017; Rostron, 2019). Ca2+ free 

solutions; HK0 and 4AP0, were employed for HK5C and 4AP5C as a basal condition for 
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GLU assays (such Ca2+ free stimuli may induce some non-vesicular glutamate release), 

while L0 was used for the FM 2-10 dye assay as this only measure vesicular exocytosis 

which is totally Ca2+ dependent. The natural characteristic of ION where it can insert into 

terminal membranes and also internal membranes to cause Ca2+ release from intracellular 

stores disallowed the possibility of creating Ca2+ free solution contacting ION alone, 

therefore L0 was used instead. A. Ashton has established through comparison studies that 

L0 produces indistinguishable results from HK0 and 4AP0 for FM 2-10 dye, and therefore 

L0 was used as the control condition for these experiments, as the latter two have no impact 

upon vesicular release (as mentioned above). 

2.1.3 Drugs employed and their final concentrations (all Dissolved 

in DMSO unless specified otherwise)  

All optimum concentration of the following drugs have been established previously in 

A.Ashton’s laboratory. 

- Roscovitine (10 M, 33 M, 100 M, 200 M) 

- Dynasore (80-160 M) 

- Blebbistatin (50 M) 

- Pitstop 2TM (15 M) 

- Phorbol 12-myristate 13-acetate (PMA) (40 nM, or 1 M) 

- Go6983 (1 M) 

- KT5720 (2M) 

- Latrunculin (LAT) (15 M) 

- -Conotoxin GVIA (CONO) (1 M) 

- -Agatoxin TK (AGA) (50 nM) 

- Nifedipine (NIF) (1 M) 

- Jasplakinolide (JASP) (2.5 M) 
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- Cyclosporine A (Cys A) (1 M) 

- Okadaic acid (OA) (0.8 M) 

- Fluoxetine (1 M, 200 nM, 100 nM, 60 nM, 40 nM, 20 nM, 5 nM) 

- KN-93 (10 M) 

Drug utilised in bioenergetics measurements (stock and final) 

- Oligomycin (32 M, 4 M Final) 

- FCCP (18 M, 2 M Final) 

- Rotenone ( 50 M, and 5 M, or 5 M and 0.5 M Final) 

- Antimycin A (50 M, 5 M or 5 M and 0.5 M Final) 

2.1.4 Other drugs employed 

- 1 x sample buffer with DTT for NuPAGE gel system (Life Technologies) 

- 1 x NuPAGE MES SDS Running buffer 

- 3-5 l Unstained MagicMarkTM XP Western Protein Standard 

- 3 ml SuperSignalTM West Dura Extended Duration Substrate 

- 15 ml RestoreTM PLUS Western Blot Stripping Buffer 

- 35 milli-Units (mUnits) of glutamate dehydrogenase type-II (GDH) 

- 1 mM NADPH 

- 100 M FM 2-10 dye 

- 5 M Fura-2 AM 

2.1.5 Measuring Instruments 

- Tecan Genious Pro Infinite 200 multimode microplate reader. 

- Seahorse Bioscience – Xfp extracellular flux analyser 

- Motor driven, Teflon (pestle)-based homogeniser (Similar to a Potter-Elvehjem tissue 

homogeniser) 
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- Beckman-Coulter Avanti®  J-25 series centrifuge, utilising the JA-17 rotor.  

- PowerEase 500 power packs. 

- Thermo Fisher – iBlot and iBlot 2. 

- NuPAGE gel electrophoresis tanks and pre-cast gel system 

- Bio-Rad ChemiDoc XRS+ imaging system with Image Lab software version 3.0.1. 

2.1.6 Antibodies used for Western blotting 

For western blot analysis, specific commercially available antibodies shown in figure 2.1 

were employed to investigate the phosphorylation profile of Syn-I. All antibodies were 

sourced from Santa Cruz Biotechonlogy, Inc., USA.  

Primary antibody 

raised against 

Dilution Secondary 

antibody 

Dilution 

Pan synapsin I 1:2000 Anti-rabbit 1:2000 

Phospho-Ser-9 

Synapsin I 

1:2000 Anti-rabbit 1:2000 

Phospho-Ser-553 

Synapsin I 

1:4000 Anti-rabbit 1:2000 

Phospho-Ser-603 

Synapsin I 

1:1000 Anti-rabbit 1:2000 

Figure 2.1: Antibodies employed for Western Blotting 

2.2 Preparation of Synaptosomes 

A Wister rat was killed by cervical dislocation and the cerebral cortex was removed. The 

dissected brain tissue was then homogenised in chilled homogenising buffer (320 mM 

sucrose, 10 mM Hepes, pH 7.4). The suspension was centrifuged at 1941 x g for 10 min 

at 4oC with Beckman 25 centrifuge. The pellet was discarded, and the supernatant 

centrifuged at 21,075 x g for 20 min at 4oC. The supernatant was discarded, and the pellet 
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was resuspended and homogenised in 40 ml chilled, gassed basal physiological buffer. 

Supernatant was then re-centrifuged at 21,075 x g for 20 min at 4oC. The supernatant was 

discarded, and pellet resuspended and homogenised in gassed L0 (varying volumes that 

depended upon the assay being employed). The resulting synaptosomes (P2) were kept on 

ice and gassed with oxygen until use. Note that synaptosomes were resuspended in 

physiological buffer that has been saturated with oxygen.  

2.3 Glutamate Release Assay 

This glutamate (GLU) release assay was developed by Nicholls et al (1987) and adapted 

by Sim et al (2006) for use on a fluorescence plate reader. A volume of 2 ml synaptosomes 

(from an 8 ml initial suspension) were centrifuged with L0 and resuspended in 1 ml of L0. 

The resulting suspension was then stimulated for 90 sec with HK5C (induce all the 

releasable vesicles to exocytose). Synaptosomes were then centrifuged, resuspended in L0, 

centrifuged and resuspended in L0, this ensured complete removal of the stimulus. The 

synaptosomes were then incubated at room temperature (RT) for 10 min to allow all the 

originally stimulated exocytosed SVs to recycle. Subsequently, the appropriate drug or 

equivalent amount of drug solvent (DMSO only in control tests) was added to the 

synaptosomes and these were incubated at 37oC for 5, 10, or 20 min depending on the 

particular drug being used. The samples were then washed, and resuspended in 1.6 ml of 

L0 containing the relevant concentration of drug being tested (control simply had the 

equivalent amount of DMSO added) in order to prevent the reversibility of the drug action. 

A volume of 121 l aliquots of the resulting sample was then added to each of 12 wells of 

a row of a Grenier 96 well microtitrate plate (black with transparent bottom); 20 l of L0 

was also added to these wells. Subsequently, 10 l NADP+ (20 mM stock NADP+, 1 mM 

final conc.) and 9 l (36 mUnits final conc.) of glutamate dehydrogenase type-II (GDH) 

were then added to each well and synaptosomes were incubated at RT for 10 min. At this 
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stage, non-evoked extracellular glutamate is converted to -ketoglutarate by GDH in the 

presence of NADP+ which is itself converted to NADPH (see the equation below).  

GLDH2 + H2O + NADP+ = -ketoglutarate + NH3 + NADPH + H+ 

The NADPH is measured by its fluorescence; this enables all the non-evoked GLU to be 

reacted and a background fluorescence to be established. After the incubation, an 

appropriate stimulus without Ca2+ (e.g. HK0) was added to wells 6-12 and the 

corresponding Ca2+ containing stimulus (e.g. HK5C) was added to well 1-5. For ION, L0 

was added to the basal sample (6-12) whilst L0 + 5 mM Ca2+ plus 5 M ION was added 

to wells 1-5. For 4AP5C, 4AP0 was added to wells 6-12 whilst 1 mM 4AP plus 5mM Ca2+ 

was added to wells 1-5. 

The plate was inserted into Tecan GENIOS pro infinite 200 plate reader (at excitation 

wavelength: 340 nm; emission wavelength: 465 nm; gain: 100; read mode: bottom) and 

measurements were made for 21 cycles for wells 1-9 (this represented just over 5 minutes 

at which times all the release GLU had reacted with GDH). After these measurements, 10 

l of L0 was added to wells 7-9 and to wells 10-12, 10 l of 1 mM GLU (freshly prepared 

from 679 mM stock glutamate) was added. The plate was reinserted into the plate reader, 

and the effect of the addition of this stock GLU (10 nmol) was measured for 15 cycles 

using the same settings as above but just measuring wells 7-12. Subtracting the average 

background values (6-9) from the average stimulation values (1-5) provided a measure of 

the Ca2+ dependent GLU release. This was in arbitrary fluorescent units (AFU). The AFU 

measured following the inclusion of 10 nmol GLU enables one to convert the data from 

AFU to nmol of evoked GLU release. Also, since 10 nmol GLU was added after the 

measurement of each row of the microtitre plate, this value of fluorescence could be 

utilised to correct for the sensitivity of the assay in each row which allows a direct 

comparisons between rows containing different conditions within the same experiment 

and this can also be used between different trial of experiments to ensure all samples 
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measure are normalised to similar sensitivity. The corrected values for all relevant 

stimulated samples from all experiments were averaged and the SD determined as were 

the corresping basal release mean determined plus its SD. The basal mean was subtracted 

from the release in the presence of the stimulus to produce the Calcium dependent release. 

The SD for the release induced by the stimulus was squared and was added to the square 

of the SD for the basal condition. The square root of this sum represented the SD of the 

Calcium dependent evoked release. The two conditions were compared using two-tailed 

Student’s t-test, with a significance threshold of 0.05. This was following the averaging of 

at least 3 independent repeates of the experiment (see further comments below). 

2.4 FM 2-10 Styryl Dye Release Assay 

A volume of 1 ml synaptosomes was taken from an initial 8 ml final resuspension stored 

in ice, prepared as outlined above and pelleted, and re-suspended in 1 ml L0 at room 

temperature. 100 M of FM 2-10 dye (final) was added to this and incubated for 60s 

followed by stimulation with HK5C for 90 sec. 

After the incubation, the stimulus was removed via centrifugation and the synaptosomes 

were resuspended in 1 ml L0 containing FM 2-10, and spun down again (to ensure stimulus 

removed), it was then resuspended in buffer containing 100 M FM2-10 dye and incubated 

for 10 min; this allowed all SVs labelled with FM dye to recycle. Subsequently, 

synaptosomes were treated with the desired amount of drug or equivalent amount of 

DMSO (control samples) and incubated at 37oC for 5-20 min. A 4 l of 250 mM advasep-

7 (1 mM final) was then added to the mixture (at RT), this removes the FM 2-10 dye from 

the synaptosomal plasma membrane and reduces the background fluorescence. The 

samples were then washed twice and re-suspended in 1.5 ml of L0 along with the 

corresponding concentration of the drug or DMSO. 

A volume of 160 l of aliquots were then added to the 8 wells of Greiner 96 well microtitre 

plate (black with opaque bottom). A Tecan GENIOS Pro infinite 200 plate reader was used 
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to determine fluorescence measurement with the following settings; excitation wavelength: 

465 nm; emission wavelength: 555 nm; gain: 40; read mode: top; number of cycles: 461. 

Each well was measured individually (just over 2 min per well) 

Just before measuring the fluorescence, the synaptosomes in the well were stimulated 

using the relevant stimulus (HK5C, ION5C, or 4AP5C) or were subjected to the equivalent 

amount of L0. For each row, 4 wells were stimulated and 4 just had basal buffer added 

(L0). These steps repeated for the eight rows of the plate for different treatment conditions. 

The precise treatment conditions were repeated again during the same experiment, but this 

time, the order of wells that had stimulus or basal buffer added was changed to ensure that 

there were at the end of the experiment 8 readings for basal and 8 for stimulus and that the 

time before the measurement of each well were on average equivalent. After the 

experiment, the basal data were subtracted from the average stimuli data (for the relevant 

treatment). Prior to this, all individual wells were corrected such that they had the 

equivalent starting value of FM 2-10 dye fluorescence. This normalisation allowed the one 

to directly compare each individual experiments. This value represented the true Ca2+- 

dependent FM dye released, expressed in terms of decrease in fluorescence. 

The actual starting fluorescence allowed one to see whether the drug treatment perturbed 

the total dye labelled SV content prior to stimulation (see appendix 3). 

Significance values were calculated using a two-way student’s t-test with a significance 

threshold of 0.05. This was following a minimum of 3 independent repeats of the 

experiment. 

2.5 Fura-2 Assay 

2.5.1 Background 

The current study has used Fura-2-acetoxymethyl ester (Fura-2-AM) assay to measure the 

evoked change in the level of intracellular Ca2+ level ([Ca2+]i). Fura-2-AM is a Ca2+ 
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insensitive, cell permeable ester which when it is taken up by a cell, its AM is cleaved off 

by esterases. Following this procedure, the drug (free Fura-2) is unable to cross the plasma 

membrane but it is now Ca2+ sensitive, which binds to the Ca2+ within the cell. When it 

combines with Ca2+ Fura-2 produces an increase in fluorescence when excited at a 

wavelength of 340 nm and fluorescence measured at 535 nM. When it is in a Ca2+ free 

environment, Fura-2 produces a maximum fluorescence when excited at a wavelength of 

380; the emission wavelength of Fura-2 is always 535. Hence the ratio between the 

collected 340:380 fluorescence values is proportional to the concentration of [Ca2+]i (nM). 

This can be calculated via the Grynkiewicz equation (Grynkiewicz et al., 1985):  

[𝐶𝑎2+]𝑖(nM) = kd X B X 
(R − Rmin)

(R max − 𝑅)
 

Kd represent the constant of Ca2+ binding: 224 nM; B is the ratio of average fluorescence 

at 380 nm under Ca2+ free and Ca2+ bound condition; R stand of the ratio of 340/380; Rmin 

is 340/380 ratio in Ca2+ free environment; Rmax is 340/380 ratio in a Ca2+ saturated 

environment. 

2.5.2 Procedure 

Cerebrocortical synaptosomes were prepared by the above method and resuspended in 10 

ml L0. Then 50 g Fura-2-AM in 50 l DMSO (1 mM stock; 5 M final) was added and 

the synaptosomes were incubated for 30 min at 37oC. Subsequently, 3 ml L0 were added 

to this suspension and 12 x 1 ml fractions were taken, then spun down in an Eppendorf 

centrifuge, each fraction was then washed with 1 ml L0 at room temperature before being 

centrifuged again. These samples were resuspended 12 x 0.7 ml L0 (cold buffer) pooled 

and kept on ice and oxygenated. When required, a 1 ml aliquot of stimulus was added to 

0.25 ml (130 mM K+, 25 mM Ca2+) i.e. HK5C, and incubated for 90 sec. The samples were 

then spun down and resuspended in 1 ml L0 following another centrifugation (to reproduce 

the pre-stimulation used for GLU and FM dye release assays) and then resuspended in 
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0.88 ml L0 (final volume 1 ml as pellet has some volume) before being incubated for 10 

minutes at room temperature. Then, either control solvent or drug was added and the 

resulting synaptosomes were incubated for 5-20 min at 37oC before being centrifuged. 

Subsequently, the sample was washed with 1 ml L0 buffer and recentrifuged before being 

resuspended in 1.6 ml L0 containing relevant drug or solvent. 12 x 0.12 ml aliquots were 

added to wells 1-12 of a black flat bottom plate and 40 l L0 was also added to these wells. 

The plate was then inserted into the plate reader. 

The plate reader was programmed with the following settings; measurement mode: top; 

excitation wavelength: 340 or 390 nm; emission wavelength: 535 nm; gain 30; well 

kinetics 40 (no injection) or 160 (injection); injection volume: 40 l. Pump A contained: 

130 mM K+ containing buffer, 25 mM Ca2+ or L0 plus 25 mM Ca2+, or 5 mM 4AP in L0 

plus 25 mM Ca2+. Pump B contained L0. Fluorescence was measured from each well 

individually. The first well was read for 40 cycles at the excitation wavelength of 340 nm 

and emission wavelength 535 nm, which is equivalent to approximated 10s, providing an 

average, baseline-fluorescence value. Subsequently, 40 l of either a particular stimuli or 

L0 was injected into the well and the well was measured for 160 cycles, which took ~40 

sec, at the same excitation and emission wavelength. For the next well, a similar procedure 

is used, but this time the excitation is at 390 nm (this was the nearest filter available to 380 

nm, but it had a bandwidth which includes 380 nm). 

The benefit of using two excitation wavelengths is that it allows calculation of the 340/390 

ratio metric value for these wells. For each row, six wells were injected with 40 l of a 

stimuli (for ION, it could not be injected and thus it was added to the relevant well just 

prior to the injection of L0 containing 25 mM Ca2+ (final concentration of it was 5 M)), 

and other six wells were injected with 40 l of L0. The 340/390 ratio calculated for L0 

treated wells were subtracted from the ratio from stimulated wells in order to determine 

the change in [Ca2+]i evoked by the stimulation alone. Hence each row produces three 

340/390 ratio sets for stimulation and control conditions of the drug treatment. 



38 
 

Following the measurements of all 12 wells in a row, aliquots of 2.25 mM Ca2+ and 0.3% 

Triton X-100 (final concentrations) were added to the six wells that had been injected with 

a stimuli (final volume: 240 l). For the other six wells with L0, aliquots of 15 mM EGTA 

and 0.3% Triton X-100 (final concentration) were added. Subsequently, all 12 wells were 

measured for 40 cycles, first at the excitation wavelength 340 nm then at excitation 

wavelength 390 nm. Data collected through this procedure allowed one to calculate Rmax 

and Rmin from samples treated with 2.25 mM Ca2+ and 15 mM EGTA respectively. A 

spreadsheet was designed which used the Grynkiewicz equation (see equation above) to 

calculate the concentration of [Ca2+]i. Significance values were calculated using two-tailed 

student’s t-test, with a significance threshold of 0.05, after the experiment had been 

performed at least 3 independent times.  

2.6 Data analysis 

The data shown herein are the average of several independent experiments (n). All basal 

values and stimulated values from all experiments were averaged. The average basal value 

was subtracted from average stimulated value with the statistical analysis performed using 

Microsoft Excel. The values were statistically analysed by comparing control and tested 

values using two-tailed student’s t-test with P<0.05 being considered as significant. The 

results were shown in graph as a percentage of maximum control. For a convenience in 

presentation, selective data points at an interval of 10 sec were shown, wherein the error 

bar indicates the standard error of mean (S.E.M). In chapter 3-6, ‘n’ value shown in the 

figures represents is the total number of independent replicates performed whilst in the 

legends of figure this same n values is shown together with the total number of independent 

experiments. Previously, A. Ashton had ascertained that the data exhibited a normal 

distribution with these types of experiments and that two-way ANOVA produced exactly 

the same P values as the student’s t-test. Thus, we used the student’s t-test in the 

experiments herein.  
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2.7 Western Blotting 

2.7.1 Sample Preparation 

Synaptosomes were prepared by above method, pre-stimulated with HK5C, incubated for 

10 mins at RT and then treated with the relevant drugs or DMSO (control) for 5 min at 

37oC. Following this treatment and the relevant washes, the appropriate stimulus (HK5C, 

ION5C, 4AP5C or L0) was applied for various time points (2, 15, 30, 120 sec) before the 

reaction was terminated by the applying LDS (lithium dodecyl sulfate) sample buffer 

containing reducing agent DTT (dithiothreitol). Samples were then heated for 10 min at 

70oC. Subsequently, samples were stored at -20oC until required.  

2.7.2 Bradford Assay 

Protein concentration in each sample was determined using Bradford assay. Final 

concentration of the protein was adjusted to 1.5 mg/ml. Bradford assay measurements were 

read on a Tecan GENIOS Pro infinite 200 plate reader (absorbance wavelength: 595 nm). 

Note an equivalent sample to that used on stimulation for western blotting was used for 

the protein assay, but no LDS was added. Samples were solubilised in 1 M NaOH and then 

diluted to 0.25 M NaOH. All standards also dissolve in 0.25 M NaOH. 

2.7.3 Electrophoresis and Transfer 

The frozen stored samples were re-heated for 10 min at 70oC before carrying out 

electrophoresis on 4-12% NuPAGETM gels in the NuPAGETM gel system from Life 

Technologies using NuPAGETM MES running buffer. Western blotting was then 

performed using iBlotTM or iBlot2 from Thermo Fisher, transferring the proteins to PVDF 

membrane. The membrane was subsequently blocked for 60 min with either 30 ml of 

blocking buffer (3% dried milk powder, 1% Tween-20 in tris buffered saline (TBS); pH 

7.4) or 15 ml of StartingblockTM T20 blocking buffer. The blocking buffer was discarded 

and the blots were washed for 10s with 1% Tween-20 in TBS.  
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2.7.4 Probing and Chemiluminescence 

After the transferring of the PVDF membrane, it was then probed for the study of specific 

phosphorylation sites on proteins by adding 10-15 ml buffer (dried milk powder, 1% 

Tween-20 in TBS; pH 7.4) containing specific primary antibody for 60-90 min at room 

temperature (see table above for dilution of antibody employed). Antibody solution was 

removed from the membrane and membrane was washed for 6 x 5 min with 25 ml wash 

buffer (0.5% Tween-20 in TBS; pH 7.4). Wash buffer was then discarded and a HRP 

conjugated secondary antibody, relevant to the primary antibody, was then added. This 

was added to 10-15 ml antibody buffer and incubated for another 60-90 min at room 

temperature. 

After the incubation, antibody buffer was removed and washed using same procedure. 

Then, PVDF membrane were incubated with 3 ml SuperSignalTM West Dura Extended 

Duration Substrate chemiluminescence agent for 5 min and then its bands were visualised 

using BioRad ChemiDoc XRS+ with Image lab software. For re-probing of blots, they 

were stripped using 15 ml Restore TM PLUS Western Blot Stripping Buffer and blocked 

ready for antibody probing (Bhuva, 2015). 

2.7.5 Quantification of bands 

The combination of ChemiDoc XRS+ system with Image Lab software reads the 

chemiluminescence of protein bands on the membrane, where signal intensity is directly 

associated with the amount of protein or phospho-protein in the band of interest. However, 

the signal intensity is also closely related to duration of exposure, whereby a longer 

exposure time means higher chance of error to occur in band quantification because of 

over-exposure. Thus each blot was developed for many exposure times to ensure the 

linearity of the chemi-luminescence signal (see appendix 2). 
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Such semi-quantification analysis also employed internal controls whereby bands are 

quantified relative to each other and the relevant internal control. Bands of interest were 

quantified via the volume calculation tool from the Image Lab software where the user 

could draw a box around the bands of interest and the software calculates average signal 

intensity within the box (higher the intensity of the box means higher reading in arbitrary 

units). In addition, the software could also reduce the localised errors as it accounts for 

changes in background signal intensity between bands, reducing artefacts potentially been 

detected by uneven background signal. Once all the bands from the blot are quantified 

through this method, they were expressed as a percentage of the unstimulated control 

sample (in order to get the relative quantities of protein present in the given set of bands). 

Note usually the phospho-band was detected and quantified. Then the same blot was 

stripped and re-probed for the total content of that protein (pan antibody). Then the 

phospho-bands could be normalised to the total pan-content of the band.  

2.8 Bioenergetic measurement with Seahorse XF machine 

2.8.1 Background 

The XF Cell Mito stress test measured the mitochondrial respiratory activity of 

synaptosomes under various conditions. Mitochondrial are acknowledged as an essential 

energy supplier for the cell and it is responsible of producing the majority of energy in the 

form of ATP through numerous pathways (Johri and Beal, 2012). Hence such 

measurement could indicate whether any of the drugs employed in this study might perturb 

the bioenergetics of the terminals. This could indicate a non-specific action of such drugs. 

The protocol measured key parameters of mitochondria function via the direct 

measurement of oxygen consumption rate (OCR) from the synaptosomes. The machine 

used modulators of respiration which focused on the components of the electron transport 

chain (ETC) of the mitochondria; thus, revealing the key parameter of metabolic function 

(see diagram 2 and 3). The compounds (oligomycin, FCCP, and rotenone/anitimycin A) 



42 
 

were serially injected into the well and these revealed levels of ATP production, maximal 

respiration, and non-mitochondrial respiration. Proton leak (represents a remaining basal 

respiration not coupled to ATP production, hence showed the mitochondrial damage) and 

spare respiratory capacity (measure of the cell’s ability to respond to increased energy 

demand) could then be calculated using these parameters then compared to basal 

respiration (Seahorse Bioscience, N.D) 

 

 

 

 

 

Figure 2.2. Diagram showing the key parameters of mitochondrial respiration measured by 

the instrument; Oxygen consumption rate (OCR) is a parameter to study mitochondrial 

function (Taken from Seahorse Bioscience, N.D). 

Figure 2.3. Diagram showing the complexes in electron transport chain (ETC) that each 

modulators targets (Taken from Seahorse Bioscience, N.D). 

 

 



43 
 

Oligomycin (C45H74O11) disturbs ATP synthase and the injection of this drug leads to the 

decrease in OCR which represents the basal mitochondrial respiration associated with 

cellular ATP production. Carbonyl cynanide-4 (trifluoromethoxy) phenylhydrazone 

(FCCP) (C10H5F3N4O) is an uncoupling agent that collapses the proton gradient and 

disrupts the mitochondrial membrane potential. Consequently, electrons flow into the 

electron transport chain (ETC) and this leads to maximum oxygen consumption by the cell, 

such measurement could then be calculated to reveal spare respiratory capacity. The third 

injection included a combination of rotenone (C23H22O6) (complex I inhibitor) and 

antimycin A (C28H40N2O9) (a complex III inhibitor). These stopped the mitochondrial 

respiration and allowed the determination of the non-mitochondrial respiration driven by 

processes outside the mitochondria (see Fig 2.3) (Seahorse Bioscience, N.D).  

2.8.2 Method 

A volume of 0.04 ml of the final synaptosomes suspension (from 8 ml total) was 

centrifuged and resuspended in 1.2 ml of the bioenergetics solution containing 4 mg/ml 

bovine serum albumin (60 M) (see sections 2.1.1 for buffer composition: note this was 

carefully titrated to pH 7.4 just prior to its use after 10 mM pyruvate had been added). 

0.175 ml of this synaptosomal suspension was aliquoted into wells B-G of XF Miniplate 

which has been pre-treated with 1:1500 dilution of a 50% solution of polyethylenemine 

(plate coated overnight, and then solution removed and plate allowed to dry). The 

synaptosomes were then spun in an Eppendorf A-2 MTP swing out rotor for 20 min at 4oC 

at 2000 x g for synaptosomes adherence onto the well floors. The supernatant in the wells 

were removed from the immobilised synaptosomes and these were then treated with 37oC 

bioenergetics buffer containing the required concentration of selected drug dissolved in 

DMSO into wells A-D or buffer and DMSO only into wells E-H for control. This was 

incubated for 5-20 min at 37oC prior to two washes at RT, with the bioenergetics buffer. 

Note that wells A and H are a background control hence it just has buffer and DMSO 

added without synaptosomes. 
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A sensor cartridge was hydrated overnight at 37oC in calibration buffer (supplied by 

company but represents phosphate buffered saline). The relevant drugs for the 

mitochondrial stress test assay were dissolved in DMSO, apart from antimycin A which 

was in ethanol, and were added into the injector ports (32 M oligomycin in port A, 18 

M FCCP in port B, 50 M or 5 M rotenone/antimycin A in port C) prior to the 

experiment. The sensor cartridge was added to XP extracellular flux analyser to calibrate 

and the loaded miniplate was added. The synaptosomes had to be fresh so only one 

experiment was run per synaptosomes preparation. The measurement were performed at 

either 37oC or RT (22-27oC) and the Seahorse XFp flux analyser was kept at 37oC with 

the inbuilt heater or the heater was not employed and with the aid of a cooling mobile air 

conditioning unit the temperatures was kept at RT. This was dependent on the actual RT 

which varied such that the actual measurement temperature varied between 22 oC to 27oC.  

The machine then measured 3 x 3 min measurement of basal oxygen consumption rate 

(OCR). Then oligomycin was automatically injected into each well and a further 3 x 3 min 

measurement performed. Subsequently, FCCP were injected and 3 x 3 min measurements 

taken. Lastly, rotenone/antimycin A was injected and another 3 x 3 min measurement 

made. The result enabled one to obtain average oxygen consumption rate (OCR) traces of 

the wells following the drug treatment (wells B-D) and control (wells E-F), minus the 

baseline (wells A and H). The data was saved in an Excel spreadsheet and the raw data for 

each well could then be analysed and such data was then combined with the repeated 

experiments and produced average values which then could be statistically analysed with 

two-tailed Student’s t-test.  
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Chapter 3: 

Roscovitine and the Silent Pool 
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3.1 SP SVs are released by HK5C or ION5C following pre-

treatment with Roscovitine 

The SP of SVs has been largely an enigma because it is not released under normal 

physiological conditions, and therefore it is difficult to explore its properties. Kim and 

Ryan (2010) in their research have used Roscovitine, a Cdk5 inhibitor, to induce extra 

release from hippocampal cultured cells, which they suggested is from the SP. The results 

from the following research has indicated that it is possible to investigate the properties of 

the SP by pre-treating synaptosomes with Roscovitine and then evoking release with 

various stimuli. 

3.1.1 100 M Roscovitine induced maximum HK5C evoked GLU 

release 

It was essential to establish whether a suitable concentration of Roscovitine could induce 

more GLU release than just that due to exocytosis of the RRP and RP (see appendix 1 Fig 

A1). A dose-response curve for Roscovitine action on HK5C evoked GLU release was 

established. Synaptosomes were pre-treated with 10 M, 33 M, 100 M, and 200 M 

Roscovitine and the GLU release was evoked using HK5C. The results demonstrate that 

Roscovitine increased the amount of HK5C evoked GLU release in a dose dependent 

manner with 100 M inducing the maximum release (Fig 3.1). As HK5C maximally 

released the RRP and the RP (see appendix 1 Fig A1), it can be deduced that the extra 

release must be from the SP. Increasing the concentration of Roscovitine from 100 M to 

200 M failed to produce any further release relative to that induced by HK5C in the 

presence of a 100 M (Fig 3.2).  
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Figure 3.1. Increasing Roscovitine concentration induced greater HK5C evoked GLU release 

relative to non-drug treated control. Data are mean ± SEM, N=3 independent experiments; 

P <0.05 for 100 M i.e. 100 M Roscovitine can evoke a significant increase in release of GLU 

compared to control. 

 

Figure 3.2. 200 M Roscovitine does not evoke significantly higher GLU release compared to 

100 M Roscovitine. HK5C evoked GLU release following treatment with 100 M and 200 

M Roscovitine. Data are mean ± SEM, N=3 independent experiments; P <0.05 for both 100 

and 200 M drug.   
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3.1.2 ION5C also releases the SP following 100 M Roscovitine 

treatment 

Ionomycin (ION) has a different mechanism than HK action but it can induce the maximal 

release of the RRP and RP in the presence of 5 mM Ca2+ (see appendix 1 Fig A1). This 

ionophore bypasses the requirement for activated Ca2+ channels, as it transports Ca2+ 

across the PM, thereby increase the [Ca2+]i level throughout the cell. It was important to 

establish that the SP could be released using ION5C and Roscovitine. Indeed, there was a 

significant increase in the ION5C evoked GLU release when terminals were treated with 

100 M Roscovitine (Fig 3.3).  

Figure 3.3. 100 M Roscovitine is able to produce significantly higher ION5C evoked GLU 

release compared to non-drug treated control. ION5C evoked GLU release following 100 M 

Roscovitine pre-treatment. Data are mean ± SEM, N=3 independent experiments; P <0.05. 
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3.1.3 Inhibition of Cdk5 with Roscovitine does not perturb the 

HK5C and ION5C-induced changes in [Ca2+]i in synaptosomes 

As Ca2+ levels play a pivotal role in regulating the release of the neurotransmitter, it was 

important to establish whether the SP release induced by HK5C and ION5C in Roscovitine 

treated terminals was due to any changes in evoked [Ca2+]i. The change in [Ca2+]i induced 

by HK5C was measured using the Fura-2 assay for both 100 M Roscovitine and in non-

drug treated terminals. However, Roscovitine did not affect the HK5C-evoked change in 

[Ca2+]i (Fig 3.4).  

 

Figure 3.4. 100 M Roscovitine treatment did not change HK5C evoked [Ca2+]i compared 

to control. [Ca2+]i induced by HK5C in control and 100 M Roscovitine treated terminals. 

Data are mean ± SEM, N=3 independent experiments; P>0.05 for test compared to control 

(i.e. no significant differences). 

Similarly, there were no significant differences in  [Ca2+]i identified between control and 

100 M Roscovitine treated conditions when ION5C was employed (Fig 3.5). 

Basal 
↑HK5C 
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Figure 3.5. ION5C evoked [Ca2+]i was unaffected by Roscovitine treatment compared to 

control.  [Ca2+]i induced by ION5C in control and 100 M Roscovitine treated terminals. 

Data are mean ± SEM, N=7 independent experiments; P>0.05 for test compared to control 

(i.e. no significant differences). 

 

3.2 Roscovitine did not induce recycling and re-release of the RRP 

and the RP 

Research from Ashton’s group has shown that neither HK5C nor ION5C can induce more 

than one round of release of the RRP and the RP, such that there is no recycling, reloading 

and re-release of these vesicle pools in the presence of these stimuli (see Appendix 1 Fig 

A3). However, there was still a potential that Roscovitine – by blocking Cdk5 activity – 

could actually enable the recycling, reloading, and re-release which mean the release 

observed could possibly be from recycling of the vesicle from the RRP and the RP rather 

than release from the SP. As such, this study checked this by blocking all forms of Dyn 

dependent endocytosis including bulk endocytosis and clathrin mediated endocytosis by 

inhibiting the GTPase of Dyn with 160 M Dynasore (i.e. Macia et al, 2006). Comparing 
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HK5C evoked release in control and 100 M Roscovitine treated terminals (Fig 3.6a) vs 

HK5C evoked release in control and 160 M Dynasore plus 100 M Roscovitine 

synaptosomes (Fig 3.6b) clearly demonstrated that SVs recycling via a Dyn dependent 

process did not contribute to the extra GLU release. Similarly, inhibition of clathrin-

dependent endocytosis with 15 M Pitstop2TM (Dutta et al, 2012) failed to perturb the 

extra release evoked by HK5C in Roscovitine treated terminal (Fig 3.6c). The 

concentration of 80-160 M dynasore has been shown by others to inhibit dynamin 

dependent endocytosis (e.g. Macia et al, 2006). Likewise, 15 M Pitstop 2TM has been 

shown to inhibit clathrin dependent endocytosis. Further, A.Ashton (unpublished results) 

has shown that pre-treatment of synaptosomes wither either of these drugs – at these 

concentrations – prior to HK5C pre-stiumation, inhibits the recycling of those SVs that 

recycle by a clathrin and or dynamin dependent pathway; these represent those SVs that 

undergo FF during the pre-stimulation phase. These earlier results clearly indicate that the 

concentration of the drugs employed and the incubation condition used do allow such 

drugs to act on their target in synaptosomes 
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3.3 Roscovitine induces the HK5C evoked release of the SP of SVs 

independently of NM-II activity 

A previous study has shown that non-muscle myosin II (NM-II) activity can regulate the 

kiss-and-run (KR) mode of the RRP SVs evoked by HK5C (Bhuva, 2015; appendix 1 Fig 

A8, A9) and others have suggested a role for this motor protein regulating the release of 

various SV pools including the SP. Therefore, this study used the inhibitor Blebbistatin 

(50 M) (Kovacs et al, 2004; Shu et al, 2005) to block the enzyme activity of NM-II and 

looked to see whether this had any impact on Roscovitine’s action on the SP released by 

HK5C. Note that this concentration was shown to inhibit NM-II previously (e.g. Kovacs 

et al, 2004) and it was shown to exhibit an effect on the mode of RRP SV exocytosis 

evoked by HK5C (Bhuva, 2015; Singh 2017). The result show that Blebbistatin did not 

prevent the SP from being released from Roscovitine treated terminals (Fig 3.7) 

Figure 3.7. Extra release of GLU in Roscovitine treated terminals are independent of NM-II 

activity. HK5C evoked GLU release with 50 M Blebbistatin plus 100 M Roscovitine. Data 

are mean ± SEM, N=3 independent experiments; P <0.05 between control and drug treated 

samples. 
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3.4. Calcium dependency of Roscovitine induced SP release 

Entry of external calcium ions into the cytosol of the nerve terminal via Ca2+ channels has 

been acknowledged as a major step in neurotransmitter release. An arrival of action 

potential to a nerve terminal leads to opening of Ca2+ channels, which promote highly 

localised, transient rise in intracellular Ca2+ level at the active zone. Subsequently, Ca2+ 

stimulates synaptic vesicle exocytosis, release of the neurotransmitters contained within 

such vesicles and this initiates synaptic transmission. This mechanism was elucidated in 

the classical study on neuromuscular junction (NMJ) by Katz and Miledi (1967) (Sudhof, 

2012). Katz and Miledi (1968) later tested whether a residue of the active calcium entering 

the cell during the nerve impulse could be responsible for short term facilitation. This was 

tested through varying the external calcium level so that in the first of two nerve impulse 

[Ca2+]e is much lower than that for the subsequent impulse. They found that facilitation 

was more substantial in the latter condition; this was in accordance with the calcium 

hypothesis (Katz and Miledi, 1968). Calcium was also proposed to have two distinct role 

in vesicle recruitment; its role in accelerating SV docking and the buildup of a release 

machinery, and the other enhancing the coupling between releasable vesicles and the Ca2+ 

channels (Neher and Sakaba, 2008). In addition, Luo et al (2015) has also reported that 

SV exocytosis in NMJ is mainly triggered by calcium ion entering through the nearest 

calcium channel to the SV that is open, highlighting not only calcium entry as an essential 

feature of initiating the neurotransmission, but also an importance of the role calcium 

channels have in the course of exocytosis.  

The presynaptic active zone contains various types of voltage dependent calcium channels 

(VDCC), including N-type, P/Q-type and L-type. The role and specificity of such calcium 

channels on various processes occurring in active zones has been an issue of debate for a 

long time (Catterall et al, 2013). Previously for the release of the SP, evidence has been 

provided for some Ca2+ channel specificity. For instance, an electrophysiological study - 

using specific calcium channel blockers for each subtype - has demonstrated that Cdk5 
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inhibition with Roscovitine led to enhanced Ca2+ influx through the P/Q-type VDCCs 

(Tomizawa et al, 2002). Intriguingly, research showed that the intracellular loop 

connecting domains II and III (LII-III) between amino acid residues 724 and 981 of the rat 

brain 1A subunit of P/Q-type Ca2+ channels was phosphorylated by Cdk5, but that such 

phosphorylation perturbed the interaction of LII-III with SNAP-25 and synaptotagmin I. 

However, this information led to the suggestion that Cdk5 prevents neurotransmitter 

release through the phosphorylation of P/Q-type VDCC and downregulation of the channel 

activity (Tomizawa et al, 2002). Clearly this does not fit in with our results, but Kim and 

Ryan (2013) reported that the SP exocytosis triggered with Roscovitine (i.e. increased 

release) is predominately operated through N-type calcium channel. They showed this by 

pharmacologically blocking each channel types with specific toxins and then stimulating 

the SP release with Roscovitine in hippocampal neurons. This study indicated that in the 

condition when P/Q type was blocked with AGA, further release was identified when 

Roscovitine was treated together with AGA, whilst when N-type channel was blocked 

using CONO, no further release was observed, which suggest that it is N-type calcium 

channel that operates the SP release (Kim and Ryan, 2013). Herein, we re-examined the 

Ca2+ and Ca2+ channel requirement for release of the SP. 

3.4.1 Higher [Ca2+]e did not support the SP release 

Whether higher [Ca2+]e combined with HK and 100 M Roscovitine pre-treatment may 

give a further increase in the release of the SP was investigated. As previously shown (e.g. 

appendix 1 Fig A), relative to HK5C, HK10C (Fig. 3.8a) or HK20C (Fig. 3.8b) failed to 

produce any further release in control terminals. Furthermore, in 100 M Roscovitine pre-

treated terminals HK10C (Fig 3.9a) or HK20C (Fig 3.9b) did not produce any release from 

the SP, therefore, it would appear that the higher [Ca2+]e did not support exocytosis of the 

SP in rat cerebrocortical synaptosomes.  
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For further understanding of the result, the intracellular Ca2+ level was measured with 

Fura-2 assay. Employing HK10C (Fig 3.10) or HK20C (Fig 3.11), the [Ca2+]i level was 

reduced in Roscovitine treated terminal compared to that for non-drug treated and this 

implies that the higher [Ca2+]e level may perturb the SP release by actually reducing the 

evoked change in intracellular Ca2+ levels in such Roscovitine treated synaptosomes. 
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Figure 3.10. HK10C evoked [Ca2+]i in Roscovitine treated terminals were significantly lower 

than non-drug treated terminals. Change in [Ca2+]i induce by HK10C in control and 100 M 

Roscovitine treated synaptosomes. Data are mean ± SEM, N=3 independent experiments; 

P<0.05.  

 

Figure 3.11. HK20C evoked [Ca2+]i in Roscovitine treated terminals were significantly lower 

than non-drug treated terminals Change in [Ca2+]i induced by HK20C in control and 100 

M Roscovitine treated terminals. Data are mean ± SEM, N=3 independent experiments; 

P<0.05. 
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3.4.2 Regulation of PKC activity can inhibit the SP release evoked 

in Roscovitine-treated synaptosomes 

The previous result from 3.4.1 has revealed that the higher extracellular calcium levels (i.e. 

HK10C or HK20C) do not support the SP exocytosis in the Roscovitine treated 

synaptosomes and in fact such conditions reduced the intracellular calcium level, This 

suggests a critical role for the precise [Ca2+]i level for SP exocytosis. This may involve 

Ca2+ dependent regulation of certain enzymes. Therefore, we looked to see if changes in 

PKC activation could regulate the SP. 1 M Phorbol 12-myristate 13-acetate (PMA) 

(Virmani et al, 2005) was employed to activate most PKCs within the terminal and the 

effect this had on the SP in Roscovitine-treated terminals was investigated. PMA pre-

treatment failed to perturb normal amount of the SP in HK5C stimulated Roscovitine 

treated terminals (Fig 3.12). Thus, activation of PKCs does not interfere with the action of 

Roscovitine in inducing the SP release evoked by HK5C. However, HK5C alone activates 

some specific PKC, which complicates the conclusion derived from using PMA. ION5C, 

unlike HK5C, appears not to activate certain PKCs at the active zone (Ashton, unpublished 

observation) so we also tested this stimulus. PMA pre-treatment failed to induce any 

further increase in the release evoked by ION5C (Fig 3.13a). However, such pre-treatment 

prevented the ION5C evoked release of the SP in terminals that were also treated with 

Roscovitine (Fig 3.13b). Therefore, under certain circumstances the activation of PKCs 

can inhibit the release of the SP induced when Cdk5 is inhibited. 

Fura-2 measurements were performed under the same conditions outlined above and the 

results demonstrated that HK5C evoked [Ca2+]i was similar in Roscovitine or 

Roscovitine plus PMA treated terminals (Fig 3.14) whilst higher [Ca2+]i was observed in 

Roscovitine plus PMA relative to Roscovitine alone when ION5C was employed (Fig 

3.15). As it was found that PMA treatment blocked ION5C evoked SP in Roscovitine 

treated terminals, it would appear that this failure to induce the SP is due to an increase of 
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the intracellular Ca2+ level elicited by stimulation with ION5C. It should be noted that in 

these experiments ION5C induced a larger [Ca2+]i than HK5C which may explain the 

results. Furthermore, the difference between HK5C and ION5C may reflect the difference 

in activation of certain PKCs. 

 

Figure 3.12. Supramaximal activation of PKC with 1 M PMA pre-treatment failed to 

perturb normal amount of the SP in HK5C stimulated Roscovitine treated terminals. HK5C 

evoked GLU release in non-drug treated control and 1 M PMA plus 100 M Roscovitine 

treated synaptosomes. Data are mean ± SEM, N=3 independent experiments; P <0.05 

between control and drug treated samples. 
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Figure 3.14. HK5C evoked [Ca2+]i was similar in Roscovitine treated terminals and 

Roscovitine plus PMA treated terminals. HK5C evoked [Ca2+]i comparing Roscovitine alone 

and 1 M PMA plus 100 M Roscovitine. This results are an average from 3 independent 

experiments and there is no significant difference (P>0.05) between these conditions. 

 

Figure 3.15. Roscovitine plus PMA shown higher [Ca2+]i relative to Roscovitine alone when 

ION5C was employed. ION5C evoked [Ca2+]i in Roscovitine plus 1 M PMA and 100 M 

Roscovitine treated terminals. These traces are an average from 3 independent experiments 

and there is a significant difference between the 2 conditions (P<0.05). 



64 
 

Intriguingly as HK5C is able to activate certain PKCs at the AZ, there was actually the 

possibility that the release of the SP in Roscovitine treated terminals was not maximal with 

HK5C because some of this pool was being blocked by the activated PKCs. To test this, 

we pre-treated the terminals with 1 M of the PKC inhibitor Go6983 (this is known to 

inhibit conventional, novel and atypical PKCs (Gschwendet et al, 1996) and A.Ashton 

(unpublished) has shown that this blocks PMA evoked effects in both release asays and 

phosphorylation assays in synaptosomes) with or without 100 M Roscovitine and then 

stimulated the terminals with HK5C. Terminals in which PKCs are inhibited with Go6983 

had a similar amount of release evoked by HK5C as control (Fig 3.16a). Moreover, 

inhibition of PKCs with Go6983 did not perturb the HK5C evoked release of the SP in 

Roscovitine treated terminal (Fig 3.16b). Thus, the activation of certain active zone PKCs 

with HK5C did not perturb the release of the SP in Roscovitine treated terminals. A 

possible explanation for the earlier finding that very high [Ca2+]e plus HK (HK10C or 

HK20C) actually blocks the SP is that this level of [Ca2+]e was able to stimulate PKCs 

further and this may fit in with the data in ION5C experiments with PMA and Roscovitine.   
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3.4.3 Inhibition of Ca2+ entry through N-, P/Q-, L-type Ca2+ 

channels does not perturb the HK5C evoked release of the RRP 

and the RP but it does inhibit the release of the SP in Roscovitine 

treated terminals. 

Previously, Ashton’s group has shown that N-type Ca2+ channel blockade with 1 M -

conotoxin GVIA (CONO) fails to inhibit the release of the RRP and the RP SVs evoked 

by HK5C and this study repeated the findings (Fig 3.17a): this is despite the fact that this 

toxin does reduce the HK5C evoked change in [Ca2+]i (Fig 3.18). However, addition of 

CONO did inhibit the HK5C evoked release of the SP in Roscovitine treated terminals 

(Fig 3.17b). The toxin’s action in reducing HK5C evoked changes in [Ca2+]i was still 

apparent in the Roscovitine treated terminals (Fig 3.19). This result suggests that the SP 

does require a certain level of change in [Ca2+]i for it to be induced and this does not occur 

in CONO treated terminals. 
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Figure 3.18. Inhibiting N-type Ca2+ channel reduce HK5C evoked [Ca2+]i. HK5C evoked 

[Ca2+]i in control and 1 M CONO treated synaptosomes. The number of independent 

experiments was N=3. Note that there was significant decrease in [Ca2+]i with 1 M CONO 

treatment (P<0.05). 

 

 

 

 

Basal 
  ↑HK5C 
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Figure 3.19. CONO plus Roscovitine treatment reduced the HK5C evoked [Ca2+]i compared 

to control. HK5C evoked [Ca2+]i in control and 1 M CONO plus 100 M Roscovitine 

treated terminals. This trace is an average from 3 independent experiments There was a 

significant decrease in [Ca2+]e with 1 M CONO plus 100 M Roscovitine compared to control 

(P>0.05). 

nMAgatoxin TK (AGA) was used to block P/Q-type Ca2+ channels in synaptosomes. 

HK5C evoked GLU release in AGA plus Roscovitine treated terminals was not 

significantly different compared to release from control non-drug treated terminals (Fig 

3.20 a) and also it was significantly lower compared to Roscovitine alone (Fig 3.20 b) 

indicating that this toxin does prevent the SP from being released. Furthermore, it was 

apparent in the Fura-2 assay that AGA plus Roscovitine treatment has significantly 

reduced HK5C induce [Ca2+]i in comparison with either control (Fig 3.21 a) or 

Roscovitine treated terminals (Fig 3.21 b) (Note this latter experiment was performed 

twice so statistical analysis could not be conducted).  

  

↑HK5C Basal 
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L-type Calcium channel blockade with Nifidepine (NIF) produced results that were similar 

to the other Ca2+ channel blockers. Its presence substantially attenuated the HK5C evoked 

release compared to Roscovitine alone (Fig 3.22 b) and its presence produce a similar 

amount of HK5C evoked release in Roscovitine treated terminals as found in the non-drug 

treated controls (Fig 3.22 a). Clearly, SP release is perturbed by the treatment with NIF. 

Fura-2 assay has demonstrated that NIF treatment of Roscovitine treated terminals leads 

to significant decrease in the HK5C evoked [Ca2+]i compared to Roscovitine treated 

terminals (Fig 3.23 b) and to non-drug treated control synaptosomes (Fig 3.23 a). Note 

that the choice of concentrations of calcium channel blockers to use was taken from the 

literature including papers that studied synaptosomes (Thomas et al, 1994; Meder et al, 

1997). It is clear that these blockers do exert an action as they were shown to reduce the 

HK5C evoked change in [Ca2+]i and Asthon and colleagues (unpublished) have shown that 

the combitnation of all three drugs can greatly perturb the HK5C evoked change and each 

drug can work more extensively if a lower [Ca2+]e is employed (0.3 mM). 
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3.5 The role of actin microfilament in the SP exocytosis 

Several lines of evidence have suggested that Actin dynamics play a major role in 

presynaptic functions and is implicated in various stages of the synaptic vesicle cycle, 

including vesicle clustering, neurotransmitter exocytosis, and endocytosis (Pollard, 2014). 

Morales et al (2000) have used Latrunculin (LAT), a toxin promoting actin 

depolymerisation by sequestering actin monomers, to monitor the role of actin on fusion 

of a single SV, represented with spontaneous mEPSCs. They have treated the preparation 

with LAT and found it rapidly increased the frequency of mEPSC by 5-fold. They have 

also treated the sample with Jasplamide, which promotes the stabilisation of actin 

filaments, and found this blocks the LAT induced increase in mEPSC frequency, 

indicating that the LAT triggered increase was derived from regulation of actin dynamics 

instead of a non-specific effect of the drug. This research suggested that LAT did not 

induce this effect by increasing the actual size of the RRP (Morales et al, 2000). Cole et 

al (2000) suggested that actin filaments facilitate a transmitter release rather than delaying 

it. They have tested this by treating nerve-muscle preparations from garter snake with LAT 

and measured the FM 1-43 release and found that LAT treatment reduced the evoked 

destaining (due to FM dye release) which suggests that transmitter release is partially 

blocked by the drug treatment (Cole et al, 2000).  

Actin microfilaments are known to interact with several other proteins, such as Syn I and 

-synuclein, to play pivotal role in presynaptic functions (Lee et al, 2018). Bloom et al 

(2003) used immunogold electron microscopy to investigate the subcellular localisation of 

actin and Syn and found that in synapses at rest, Syn was localised near to the vesicle 

cluster that was located distal from the AZ, but that during synaptic activity, Syn migrated 

to the pool of vesicles near to the AZ. Furthermore, actin and Syn were seen to colocalise 

in a dynamic filametous cytomatrix at the endocytic zone. These results highlight that actin 

and Syn co-operate during their participation in synaptic activity (Bloom et al, 2003). In 

the study from Bellani et al (2010), it was indicated that actin is a possible target for -
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synuclein (-syn) function. The precise role of -syn in synaptic function is not yet fully 

understood but few studies have suggested that it is important in regulation of SV mobility. 

In this study, -syn binds to actin and, through regulation of actin dynamic, -syn 

participates in the tuning of the vesicle release process, and consequently modulate 

synaptic function and plasticity (Bellani et al, 2010). Cleary, from such research it is 

evident that actin contributes to neurotransmission, and therefore, an investigation to 

ascertain whether the actin microfilaments are also involved in the release or regulation of 

the SP is warranted. 

3.5.1 The SP cannot be studied following disassembly of actin 

microfilaments as the RP is perturbed 

An investigation into how actin microfilaments could affect the properties of the SP 

appears an important point to study and we aimed to explore this by employing LAT to 

disassemble the actin microfilaments. However, before studying the release of the SP, it 

was necessary to first ascertain the effect that disassembly of actin microfilaments may 

have on the release of the RRP and RP (Chapter 6 outlines these results). Whilst for 4AP5C 

evoked release of GLU from the RRP of synaptosomes (Fig 6.1c) there were no difference 

between non-drug treated control and terminals treated with 15 M LAT (10 min at 37oC), 

for HK5C or ION5C stimulation - where both RRP and the RP are exocytosed - the release 

appears to be reduced by LAT compared to control (Fig 6.1a and b). This indicated that 

whilst the RRP is not blocked, the RP release has been blocked by disassembly of actin. 

This means that our results would be complicated if we determined the effect of 

Roscovitine after the disassembly of actin by LAT. The SP may not release at all because 

the RP is not released because SP release only occurs after all of the RP is released. Thus 

this result would not actually indicate any actin filament requirement for the SP. 
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3.5.2 RRP, RP, and SP SVs release normally when actin 

microfilament is stabilised 

As disassembly of actin microfilaments by LAT was shown to perturb the RP exocytosis 

(concluded as RRP induced by 4AP5C is not perturbed), we investigated whether actin 

stabilisation would affect the release of either the RRP or the RP. 2.5 M Jasplakinolide 

(JASP) (a drug that promotes the stabilisation of the actin) was applied to the synaptosome 

and GLU release was subsequently measured. These experiments revealed that JASP 

treatment failed to effect HK5C evoked GLU release as this was the same as in drug-free 

control (Fig 6.11). This indicates that, in contrast to disassembly of the actin, the RRP and 

the RP are released normally when actin is stabilised. 

From our results on the RRP and RP, the properties of SP was investigated when actin is 

stabilised (see chapter 6). Synaptosomes were pre-treated with Roscovitine and JASP, and 

GLU release was subsequently evoked by HK5C. A significant increase in HK5C evoked 

GLU release was found in JASP plus Roscovitine treated terminals compared to control 

(Fig 3.24) and this release was similar to that with Roscovitine is treated alone (Fig 3.25). 

This indicates that the stabilisation of actin microfilaments does not have significant 

detrimental effect upon the evoked release of the SP SVs in Roscovitine treated terminals. 

Note that it is known that 2.5 M JASP is exherting its effect on actin microfilament 

because pretreatment of synaptosomes with this drug prevents 15 M LAT from 

perturbing the release of the RP (see chapter 6). 

 

.  
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Figure 3.24. HK5C evoked SP release in Roscovitine treated terminals are unaffected by Actin 

stabilisation. HK5C evoked GLU release from terminals treated with or without 100 M 

Roscovitine plus 2.5 M JASP. Data are mean ± SEM, N=13-14 from 4 independent 

experiments; There is a significant difference between control and Roscovitine plus JASP 

treated samples (P<0.05). 

 

Figure 3.25. Actin stabilisation had no effect on HK5C evoked SP release in Roscovitine 

treated terminals. HK5C evoked GLU release from 100 M Roscovitine or 100 M 

Roscovitine plus 2.5 M JASP treated synaptosomes. Data are mean ± SEM, N=13-14 from 

4 independent experiments; Note that there were no significant difference between the 2 

conditions (P>0.05). 
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3.6 Antagonism between Cdk5 and PP2B 

It was highlighted by Kim and Ryan (2013) that the balance between Cdk5 and Calcineurin 

(CN, PP2B) can regulate neurotransmission. The study reported that a removal of CN 

activity significantly reduces AP-driven calcium influx and exocytosis, whereas inhibition 

of Cdk5 activity leads to a large potentiation of calcium influx and exocytosis (Kim and 

Ryan, 2013). We investigated these interaction between Cdk5 and CN in synapstosomes 

using Roscovitine to inhibit Cdk5 and cyclosporine A (Cys A) to inhibit CN. 

3.6.1 Inhibition of CN and Cdk5 with Cys A and Roscovitine did 

not affect the RRP and the RP release but inhibited the SP 

exocytosis. 

Synaptosomes were treated with 1 M Cys A and Roscovitine together and results were 

compared with non-drug treated control and Roscovitine treated terminals. Previous work 

has shown that 1 M Cys A does not inhibit the release of the RRP or RP evoked by HK5C 

(appendix 1 Fig 10a). Cys A plus Roscovitine treated synaptosomes released the same 

amount of HK5C evoked GLU as the non-drug treated control (Fig 3.26b), indicating that 

the RRP and RP SVs undergoing exocytosis following this dual treatment but intriguingly 

the SP SVs were prevented from undergoing exocytosis. When release was compared to 

that in Roscovitine treated terminals, clearly the SP release has been suppressed following 

the treatment with Cys A (Fig 3.26a). These results suggest that there is clear antagonism 

existing between CN and Cdk5 and that such enzymes may contribute towards the SP 

exocytosis under varying conditions.   
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3.6.2 The SP exocytosis is disturbed following Cys A plus 

Roscovitine treatment because of reduction in the HK5C evoked 

[Ca2+]i. 

Previous observation from A.Ashton has discovered that Cys A treatment elevates the 

HK5C evoked [Ca2+]i levels compared to the control (see Fig 3.27b). Intriguingly, 

treatment with Roscovitine plus Cys A has led to substantial reduction in [Ca2+]i level  

evoked by HK5C compared to that achieved by HK5C stimulated in Roscovitine treated 

synaptosomes (Fig 3.27a). Thus, inhibition of Cdk5 antagonises the normal effect of 

blocking CN so that rather than getting an increased [Ca2+]i following HK5C stimulus 

compared to the control, there is a reduction. Such results again demonstrate that evoked 

calcium entry strongly regulates the release of the SP. 
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3.7 Measurement of the bioenergetics of synaptosomes following 

various drug treatments  

It was important to determine that the effect of the drugs employed, herein, were 

specifically acting on the pathway/substrate that were being tested and that they were not 

affecting the SV exocytosis non-specifically by perturbing the bioenergetics of the 

synaptosomes. Fortunately, it was possible to measure certain bioenergetics parameters by 

utilising the Seahorse XFp flux analyser and the mitochondria stress test assay. It should 

be noted that whilst the terminals were treated with the drugs for the same time as for the 

release assays, the synaptosomes were then actually incubated for an extended period (100 

min) in order to carry out the stress test assay. Thus, this could mean that over this greater 

period (much longer than used for the other tests) some detrimental effects of the drugs 

could possibly be determined. Furthermore, whilst the initial incubation with the drugs 

were done at 37 oC, all the release assays employed herein were then performed at room 

temperature. However, some of the initial bioenergetics measurement (highlighted in 

figure legends and text) were performed at 37 oC because this was the lowest temperature 

that originally could be employed with the Seahorse XFp flux analyser. Thus, not only 

were the synaptosomes incubated for an extended period but they were incubated at a 

higher temperature. Fortunately, the Seahorse Company recently made a manifold that 

allowed the machine to incubate at lower temperatures and following the purchase of this, 

it was then possible to do the assays at room temperature. It was discovered that one 

difference in carrying out these assays at the two temperatures is that at 37oC, 0.5 M 

rotenone and 0.5 M antimycin A was able to fully work and enable the values for proton 

leakage and non-mitochondrial respiration to be determined, but at RT these drugs (in the 

time scale) did not fully work. However, this study herein determined that by using 10 

times more of each of these drugs (5 M of each) then these were able to block all 

mitochondrial respiration. For some of the drugs tested in the Seahorse XFp analyser at 

room temperature – PMA, Dynasore – these higher rotenone/antimycin A concentrations 
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were not employed and so one was unable to determine the proton leakage and the non-

mitochondrial respiration. 

The data are shown as Oxygen consumption vs time for the different conditions. These 

data could then be used to determine the following parameters: basal respiration; ATP 

production; spare capacity; maximal respiration; proton leakage; non-mitochondrial 

respiration. These values were determined by using the three individual time points for the 

different conditions (in some cases one time point might have been erroneous and this was 

removed) for each experiment, and combining these for the repeated experiments so that 

one obtained an average and a SEM for each condition in the assay. 
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3.7.1 100 M Roscovitine 

The treatment with 100 M Roscovitine failed to perturb the bioenergetics of 

synaptosomes even using the extended 37oC conditions (Fig 3.28). This is made more 

obvious when the different parameters are plotted in Fig 3.29 A-F. 

Figure 3.28. Synaptosomal bioenergetics were unaffected by 100 M Roscovitine treatment 

using the extended 37oC conditions. The experiment was repeated 3 times and the data 

represents the average of 8 individual synaptosome samples. Data points represent the mean 

and the error bars represent the SD; P>0.05 which means that there is no significant 

difference between drug treated and non-treated synaptosomes. 
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Figure. 3.29. 100 M Roscovitine treatment did not perturb any bioenergetics parameter 

measured as it looks similar to those for the controls. Bar charts showing the effect of 100 M 

Roscovitine compared to non-drug treated control on (A) basal respiration, (B) ATP 

production, (C) spare capacity, (D) maximal respiration, (E) proton leakage and (F) non-

mitochondrial respiration. The data was calculated from the average of the three time points 

for each condition in the assay and these were averaged for the 3 repeat independent 

experiments shown in Fig 3.27. The histobars represent the mean and the error bar shows the 

SEM; P>0.05. 

It should be noted that 200 M Roscovitine, that had also been employed in release assays 

was also tested. However this concentration also did not perturb the bioenergetics integrity 

of the synaptosomes. Thus, Roscovitine action is not due to some non-specific perturbation 

of the respiratory capacity of the synaptosomes. 
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3.7.2 Dynasore 

As Roscovitine did not perturb the synaptosomes, the effect of some of the individual 

drugs that was employed in conjunction with Roscovitine were also tested to ensure that 

these did not perturb the bioenergetics integrity of the nerve terminals.  

An amount of 160 M Dynasore pre-treatment of synaptosomes had negligible effect on 

the bionenergetics of the terminals employing assay at 27oC (Fig 3.30). Although, there 

appears to be a slight difference in these curves the only parameter that showed any 

significant difference was in the basal respiration and this was minimal (Fig 3.31 A-D). 

Note that this study only used 0.5 M rotenone/ 0.5 M antimycin A and it was not 

possible to measure proton leakage and non-mitochondrial respiration. 

 

Figure 3.30. Synaptosomal bioenergetics were unaffected by 160 M Dynasore treatment. 

Data are mean ± SD, n=6 from 3 independent experiments. Note that there was no significant 

difference (P > 0.05) in the data comparing control with test. 
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Figure 3.31. 160 M Dynasore treatment did not perturb majority of the bioenergetics 

parameter measured as it looks similar to those for the controls. Bar charts showing effect 

of 160 M Dynasore on (A) basal respiration, (B) ATP production, (C) spare capacity, and 

(D) maximal respiration. The data was calculated from the average of the three time points 

for each condition and included data from 3 independent experiments shown in Fig 3.30 

(n=18). The histobars represent the mean and the error bar shows the SEM. Note that there 

was no significant difference (P > 0.05) in the data comparing control with test apart from 

basal respiration and this was a minimal difference. 

The use of 80 M Dynasore produced no effect on any parameter. However, if the assay 

was done with the extended time course at 37oC, it was evident that Dynasore did seem to 

perturb certain parameters (data not shown). This result might actually be important for 

the use of Dynasore to study Dyn action. This study only used Dynasore acutely and it is 

tested only after about 20 mins post-initial incubation at RT. At this time, the Dynasore 

does not appear to have much detrimental effect on the bioenergetics. However, clearly 
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after the prolonged 37oC incubation Dynasore starts affecting the bioenergetic integrity of 

the terminals. This interesting finding could explain some recent findings (Park et al, 2013) 

which claimed that Dynasore had an off target effect that meant that it could not be used 

to study Dyn. However, they treated fibroblasts for many hours (24 hours or more) with 

Dynasore and this may very well disturb the cells bioenergetics which would then produce 

some extra effects. In fact, this may still reflect a specific action of Dynasore on a Dyn but 

rather than Dyn I, this could be that the drug can also block the mitochondrial specific Drp 

I (Dyn-related protein 1). Such a perturbation could very well disturb mitochondrial 

function. However, in the present studies by only using an acute treatment with Dynasore 

and not a chronic treatment it would appear that the experiment is specifically targeting on 

Dyn 1. Although, Dynasore also works on Dyn 2, the Asthon group (unpublished 

observation) has shown that inhibiting Dyn 2 specifically (using a low dose of a drug called 

Dyngo-4aTM (50 nM)) does not have any effect on SV exocytosis or GLU release. 
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3.7.3 Blebbistatin 

Acute treatment with 50 M Blebbistatin failed to perturb the bioenergetics of 

synaptosomes (Fig 3.32, Fig 3.33 A-F) even with the extended 37oC assay 

employed with the Seahorse XFp flux analyser.  

 

 

Figure 3.32. Synaptosomal bioenergetics were unaffected by 50 M Blebbistatin treatment. 

The experiment was done three times and the mean values represent an average of 6 

independent measurements and error bars represent the SD. Note that there was no 

significant difference (P > 0.05) in the data comparing control with test. 



91 
 

 

 

Figure 3.33. 50 M Blebbistatin treatment did not perturb any bioenergetics parameter 

measured as it looks similar to those for the controls. The effect of 50 M Blebbistatin on 

(A) basal respiration, (B) ATP production, (C) spare capacity, (D) maximal respiration (E) 

proton leakage, and (F) non-mitochondrial respirations. The data was calculated from the 

average of the three time points for each treatment shown in Fig 3.32. Depending on the 

number of values that were removed due to error the different parameters have different 

numbers of values employed in their analysis (as shown in the figures). The histobars 

represent the mean and the error bar shows the SEM. Note that there was no significant 

difference (P > 0.05) in the data comparing control with test. 
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3.7.4 PMA 

Although, we tested PMA with Roscovitine, it was necessary to initially test PMA alone. 

Acute treatment with 1 M PMA failed to perturb the bioenergetics of synaptosomes (Fig 

3.34, Fig 3.35 A-D) with the extended 27oC assay employed with the Seahorse XFp flux 

analyser. 

 

Figure 3.34. The effect of 1 M PMA on the bioenergetics of synaptosomes using the Seahorse 

XFp analyser at 27oC. The experiment was done three times and the mean values represent 

an average of 9 independent measurements and error bars represent the SD; P>0.05. 
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Fig 3.35. The effect of 1 M PMA on (A) basal respiration, (B) ATP production, (C) spare 

capacity, and (D) maximal respiration. The data was calculated from the average of the three 

time points for each treatment and average data from the 3 independent experiments shown 

in Fig 3.34. The histobars represent the mean and the error bar shows the SEM. 
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3.7.5 PMA with Roscovitine 

Acute treatment with 1 M PMA plus 100 M Roscovitine failed to perturb the 

bioenergetics of synaptosomes (Fig 3.36, Fig 3.37 A-F) with the Seahorse XFp flux 

analyser. 

 

Figure 3.36. The effect of 1 M PMA plus 100 M Roscovitine on the bioenergetics of 

synaptosomes using the Seahorse XFp analyser at 27oC. The experiment was done three times 

and the mean values represent an average of 9 independent measurements and error bars 

represent the SD. There is no significant difference between drug treated and control for any 

components of the mito stress test assay (P>0.05). 
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Figure 3.37. The effect of 1 M PMA plus Roscovitine on (A) basal respiration, (B) ATP 

production, (C) spare capacity, (D) maximal respiration, (E) Proton leakage, and (F) Non-

mitochondrial respiration. The data was calculated from the average of the three time points 

for each treatment and averaged the 3 independent experiments shown in Fig 3.36 (n=18 as 

some values were incorrect and removed). The histobars represent the mean and the error 

bar shows the SEM. 
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3.7.6 Go6983 

Although, we tested Go6983 plus Roscovitine, there was a need to check Go6983 alone 

first. Acute treatment with 1 M Go6983 failed to perturb the bioenergetics of 

synaptosomes (Fig 3.38, Fig 3.39 A-F) even with the extended 37oC assay employed with 

the Seahorse XFp flux analyser.  

 

Figure 3.38. The effect of 1 M Go 6983 on the bioenergetics of synaptosomes using the 

Seahorse XFp analyser at 37oC conditions. The experiment was done three times and the 

mean values represent an average of 9 independent measurements and error bars represent 

the SD. Note that there was no significant difference (P > 0.05) in the data comparing control 

with test. 

 



97 
 

 

 

Figure. 3.39. The effect of 1 M Go 6987 on (A) basal respiration, (B) ATP production, (C) 

spare capacity, (D) maximal respiration, (E) proton leakage and (F) non-mitochondrial 

respiration. The data was calculated from the average of the three time points for each 

treatment shown in Fig 3.38 and average for the 3 independent exepriments. However, for 

some measurement, certain values were wrong and so were removed. The histobars represent 

the mean and the error bar shows the SEM. Note that there was no significant difference (P 

> 0.05) in the data comparing control with test. 
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3.7.7 Go6983 with Roscovitine 

Acute treatment with 1 M Go6983 plus 100 M Roscovitine failed to perturb the 

bioenergetics of synaptosomes (Fig 3.40, Fig 3.41 A-F) even with the extended 

37oC assay employed with the Seahorse XFp flux analyser.  

 

Figure 3.40. The effect of 1 M Go 6983 plus 100 M Roscovitine on the bioenergetics of 

synaptosomes using the Seahorse XFp anyalyser at 37oC. The experiment was done three 

times and the mean values represent an average of 7 independent measurements and error 

bars represent the SD. Note that there was no significant difference (P > 0.05) in the data 

comparing control with test. 
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Figure 3.41. The effect of 1 M Go6983 plus 100 M Roscovitine on (A) basal respiration, (B) 

ATP production, (C) spare capacity, (D) maximal respiration, (E) Proton leakage, and (F) 

Non-mitochondrial respiration in synaptosomes. The histobars represent the mean and the 

error bar shows the SEM. Note that there was no significant difference (P>0.05) in the data 

comparing control with test. 
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3.7.8 JASP plus Roscovitine 

Treatment with 2.5 M JASP alone had no effect on the bioenergetics (see Fig 6.28 and 

6.29) and furthermore, treatment with 2.5 M JASP plus 100 M Roscovitine failed to 

perturb the bioenergetics of synaptosomes when assay performed at 24oC (Fig 3.42, Fig 

3.43 A-F). 

 

Figure 3.42. The effect of 2.5 M JASP plus 100 M Roscovitine on the bioenergetics of 

synaptosomes. The experiment was done 3 times and the mean values represent an average 

of 8 independent measurements and error bars represent the SD. Note that there was no 

significant difference (P > 0.05) in the data comparing control with test. 
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Figure. 3.43. The effect of 2.5 M JASP plus 100 M Roscovitine on (A) basal respiration, (B) 

ATP production, (C) spare capacity, (D) maximal respiration, (E) proton leakage and (F) non-

mitochondrial respiration. The histobars represent the mean and the error bar shows the 

SEM. Note that there was no significant difference (P > 0.05) in the data comparing control 

with test. 
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3.7.9 Cys A plus Roscovitine 

Treatment with 1 M Cys A plus 100 M Roscovitine failed to perturb the bioenergetics 

of synaptosomes when assay performed at 24oC (Fig 3.44, Fig 3.45 A-F). 

 

Figure 3.44. The effect of 1 M Cys A and 100 M Roscovitine on the bioenergetics of 

synaptosomes. The experiment was done 3 times and the mean values represent an average 

of 9 independent measurements and error bars represent the SD. Note that there was no 

significant difference (P > 0.05) in the data comparing control with test. 
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Figure 3.45. The effect of 1 M Cys A plus 100 M Roscovitine on (A) basal respiration, (B) 

ATP production, (C) spare capacity, (D) maximal respiration, (E) proton leakage and (F) non-

mitochondrial respiration. The histobars represent the mean and the error bar shows the 

SEM. Note that there was no significant difference (P > 0.05) in the data comparing control 

with test. 
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3.8 Phosphorylation profiles of various sites in Syn I following 

Roscovitine treatment 

Earlier we have showed that 100 M Roscovitine treatment of synaptosomes allows HK5C 

and ION5C to evoke SP release. Roscovitine is a Cdk5 inhibitor, thus the HK5C or ION5C 

evoked SP release following application of this drug is proposed to be due to an attenuation 

of Cdk5 activity. However, a detailed understanding of how Cdk5 inhibition leads to the 

evoked SP release is not fully known. One of the methods used to investigate this is to 

study phosphorylated profiles of particular proteins that are speculated to be involved in 

the SP regulation. One such protein is Synapsin I (Syn I) and its phosphorylation can be 

studied using western blotting following the evoked release of the SP after Roscovitine 

treatment. 

3.8.1 Results 

To determine the effect of Cdk5 inhibition on the phosphorylated state of different sites 

on Syn I, synaptosomes were treated with Roscovitine (to block Cdk5) or 10 M KN-93 

(to block CaMKII) (i.e. Sumi et al, 1991) (shown previoslu to induce specitic action on 

synaptosomes (Bhuva, 2015; Singh, 2017)) in the first trial and Roscovitine or 2 M 

KT5720 (to block PKA) (i.e. Murray, 2008) ( shown previously to induce specific action 

on synaptosomes (Rostron, 2019)) in the second trial. Following such drug treatment, 

synaptosomes were subsequently stimulated with various stimuli (4AP5C, HK5C, and 

ION5C) for different time points (2s, 15s, 30 s and 120 sec) before being solubilised in 

NuPAGE sample buffer and subsequently used for western blotting. Note, in first trial, 

lane 1-4 of the blots contained samples with non-drug treated control, lane 5-8 samples 

treated with KN-93, and lane 9-12 samples treated with Roscovitine, whilst in second trial, 

1-4 contained samples with non-drug treated control, 5-8 contained samples treated with 

Roscovitine, and 9-12 contained samples pre-treated with KT5720. Since, major interest 
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in this study is the stimulation evoked SP release in the presence of Roscovitine, only non-

drug applied control vs Roscovitine conditions were subjected to analysis.   

Phosphorylation in all Western blots were determined by chemi-luminescence that 

detected phospho-specific sites on Syn I with densitometric analysis as mentioned in 

Chapter 2, and the range (for the blots that were tested at least twice) to measure the 

average changes in phosphorylation compared to the respective L0 condition, based on the 

number of experiments conducted. It is important to remember that 4AP5C stimulation 

evokes release of the RRP only even in the presence of Roscovitine, whilst HK5C and 

ION5C with Roscovitine treatment have been shown to release the RRP, the RP and the 

SP. The mechanism of ION5C evoking the release is distinct from HK5C as this ionophore 

by-passes Ca2+ channels and increase the Ca2+ level throughout the terminal whereas 

HK5C depolarises terminals and allow Ca2+ entry via the opening of voltage dependent 

Ca2+ channels.  

Previous studies have demonstrated that the phosphorylation of specific sites on Syn I are 

due to the action of distinct kinases. Ser-9 site is known to be phosphorylated by cAMP 

dependent kinases (PKA) (Yamagata and Neirn, 2015), Ser-553 by cyclic dependent 

kinases (Cdk) 1/5 (Cesca et al, 2010; Verstegen et al, 2014), and Ser-603 site by CaMK II 

(Sakurada et al, 2002).  

3.8.2 Phosphorylation of Syn I Ser-553 in vivo 

Syn I-Ser-553 site is phosphorylated by Cdk5, a kinase that is inhibited by Roscovitine 

treatment (Verstegen et al, 2014). Careful observation of the phospho-Ser-553 probed 

blots revealed that at 15 sec, there is a reduction in phosphorylation in Roscovitine treated 

conditions (lane 5-8) compared to non-drug treated controls (lane 1-4) (Fig 3.46 A-B).  
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Figure 3.46. The effect of 100 M Roscovitine treatment upon the phosphorylation Syn I on 

the Ser-553. A) 15 sec stimulation B) Reprobing of this blot for 15 sec with Pan-Syn I C) 30 

sec stimulation D) Reprobing of this blot for 30 sec with Pan-Syn I E) 120 sec stimulation F) 

Reprobing of this blot for 120 sec with Pan-Syn I. This is a representative blot (All blots N=2)  

Following a 30 sec stimulation, Roscovitine treated nerve terminal are appear to contain 

less phosphorylated Ser-553 Syn I compared to no drug treated sample (Fig 3.46 C). This 

was also evident after 120 sec stimulation, where a reduction in the specific 

phosphorylation site in the presence of Roscovitine treatment appears to be definite (Fig 

3.46 E). Note that in 30 sec (Fig 3.46 D) and 120 sec stimulated samples (Fig 3.46 F) re-

probed with pan Syn I demonstrates that total protein was greater in the Roscovitine treated 

conditions for some reason but this suggests that the reduction in phosphorylation could 

potentially be more significant following the application of Roscovitine. 

The results are not clear cut looking at the blots but one can normalise the Ser-553 

phosphorylation relative to the Pan-Syn I signal and then one compares all result to the 

basal condition. This will reveal only stimulus evoked change in the phosphorylated serine 

and will take in to account the change in total protein. Bar charts in Figure 3.47 A-C are 

showing semi-quantitative analysis of phospho-Ser-553 probed blots presented in Figure 

3.46. At early time points representing combined values of 2 sec and 15 sec, 
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phosphorylation following Roscovitine treatment was found to be reduced for 4AP5C 

stimulation, and for HK5C compared to non-drug treated samples. Such a decrease in Ser-

553 phosphorylation of Syn I following Roscovitine treatment compared to non-drug 

treated control appear to be enhanced at 30 sec and 120 sec as both time points show 

visibly lower phosphorylation in Roscovitine treated conditions compared to drug free 

control in all stimuli employed. Clearly, the phosphorylation of phospho-Ser-553 site on 

Syn I is reduced in the presence of Roscovitine compared to its absence and the following 

result may suggest that the well characterised action of this drug on Cdk5 activity is shown 

to be connected to inhibition of phosphorylation of Ser-553 on Syn I. This is a preliminary 

set of experiments and needs to be repeated more times in order to determine statistical 

significance (Fig 3.47 A-C).  
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Figure 3.47. The effect of 100 M Roscovitine upon Syn I Ser-553 phosphorylation following 

various stimulation for a) early time points (2 sec+15 sec) b) 30 sec c) 120 sec; N=4 A; N=2 in 

B and C. All results are normalised to the L0 control value. a) shows a reduction of 

phosphorylation following Roscovitine treatment under 4AP5C stimulation relative to non-

drug treated control, and HK5C with Roscovitine also shows some reduction compared to 

condition without Roscovitine treatment but these values were not significantly different. 

These differences become greater for longer stimulation periods and at b) 30 sec and c) 120 

sec there appears to be clear differences between Roscovitine treated and non-treated 

conditions.  



109 
 

3.8.3 Phosphorylation of Syn I Ser-9 in synaptosomes 

Roscovitine has been established to inhibit Cdk5 activity, although, it is possible that the 

drug induced increase of releasable SVs from the SV pools may also involve the 

phosphorylation of Syn I by other kinases, such as PKA or CaMK II. Therefore we have 

investigated phosphorylation profiles of Syn I at the sites other than Cdk5 site in stimulated 

terminals following Roscovitine treatment. PKA phosphorylates Syn I at Ser-9 site and 

with the careful observation of the blot probed with Phospho-Syn I Ser-9, the Roscovitine 

samples appear to contain more phosphorylated Ser-9 than the non-drug treated samples 

following a 2 sec stimulation (Fig 3.48 A), However, this may have actually been due to 

relatively more total protein contents in Roscovitine treated samples as the corresponding 

pan-Syn I blot appear darker (Fig 3.48 B). This finding cannot be explained since all 

samples were adjusted to the same protein concentration.  

At 15 sec stimulation, HK5C + Roscovitine and ION5C + Roscovitine conditions appear 

to be less phosphorylated compared to basal and 4AP5C stimulation with Roscovitine, and 

to their corresponding drug free control conditions (Fig 3.48 C). However, re-probing blots 

for pan-Syn-I revealed that the level of Syn-I protein contained in these two lanes were 

much less compared to other samples (Fig 3.48 D). Thus only by normalising the data to 

the pan-Syn I content can one make any interpretation.    

At 30 sec stimulation, there is little detectable increase of phosphorylation in Ser-9 

identified in the samples treated with Roscovitine relative to drug free control (Fig 3.49 

A-B). Following 120 sec stimulation there may be some Roscovitine induced increase in 

phosphorylation of Ser-9 for 4AP5C and ION5C stimulation compared to drug free 

samples. HK5C appear to induce lower Ser-9 phosphorylation in the Roscovitine treated 

samples, however this can be explained because pan-Syn-I blot indicates a lower amount 

of protein in this sample (Fig 3.49 C-D).   
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Figure 3.48. The effect of 100 M Roscovitine treatment upon the phosphorylation of Ser-9 

in Syn I. A) 2 sec stimulation B) Pan-Syn I blot reprobed for the 2 sec stimulation C) 15 sec 

stimulation D) Pan-Syn I blot reprobed for the 15 sec stimulation. This is a representative 

blot (All blots are N=2).  

 

Figure 3.49. The effect of Roscovitine treatment upon phosphorylation of Ser-9 for Syn I. A) 

30 sec stimulation B) Pan-Syn I blot reprobed for the 30 sec stimulation C) 120 sec stimulation 

D) Pan-Syn I blot reprobed for the 120 sec stimulation condition. This is a representative blot 

(A is N=2; B is N=1).  



111 
 

Semi-quantitative analysis is presented as a bar charts in figure 3.50. There appears to be 

a stimulus dependent increase in phosphorylation of Ser-9 with the different stimuli 

releasing a maximum effect at different times. ION5C induces maximum early whilst 

4AP5C takes longer. At early time points, there appeared to be higher phosphorylation for 

the Roscovitine treated terminals compared to non-drug treated controls for 4AP5C and 

HK5C (Fig 3.50 A). At 30 sec (Fig 3.50 B), it may be that the difference between 4AP5C 

plus Roscovitine and HK5C plus Roscovitine conditions and non-drug treated control may 

still be larger and this is apparent still with same stimuli employed for 120 sec stimulation 

(Fig 3.50 C). However, it would appear that Roscovitine has no real effect on ION5C 

evoked changes in phospho-Ser-9 of Syn I. Again, this experiment has to be repeated 

multiple times in order to obtain data that can be statistically tested.  
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Figure 3.50. The effect of 100 M Roscovitine treatment upon Syn I Ser-9 phosphorylation 

following various stimulation for a) early time points (2 sec+15 sec) b) 30 sec c) 120 sec; N=4 

for A and N=2 for B and C. All results are normalised to the L0 control value. a) The combined 

early time points show that phosphorylation was higher in the presence of Roscovitine relative 

to control for 4AP5C and HK5C stimulation. Such increase is time dependent as b) 30 sec 

with 4AP5C and HK5C in the presence of Roscovitine was higher compared to non-drug 

treated control and the values reach maximum at c) 120 sec 
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3.8.4. Phosphorylation of Syn I Ser-603 in nerve terminals 

The SP release can be stimulated following Roscovitine treatment and this may involve 

the activity of not only Cdk5 but other kinases that can phosphorylate Syn I, including 

CaMKII. CaMKII phosphorylates Syn I at Ser-603 site, and we can study the 

phosphorylation of this site following Roscovitine treatment. Roscovitine treatment 

appears to increase the phosphorylation of Syn I- Ser-603 site relative to non-drug treated 

control at (Fig 3.51 A), but as there is a difference in the pan-Syn I content (Fig 3.51 B), 

this probably can account for the difference (See Fig 3.51 A).  

At 15 sec, Roscovitine treatment has reduced the HK5C and ION5C evoked 

phosphorylation compared to non-drug treated control (Fig 3.51 C), however again this 

was due to the difference in the pan-Syn-I blot densities, such that total Syn-I protein 

contents in HK5C plus Roscovitine and ION5C plus Roscovitine found to be visibly lower 

compared to non-drug treated control samples with same stimulations applied (Fig 3.51 

D), 

However, 30 sec HK5C stimulation in Roscovitine treated samples does induce more 

phosphorylation of Ser-603 of Syn I than in the drug-free control (Fig 3.52 A-B). Such 

increase was also evident at 120 sec stimulation in Roscovitine treated samples compared 

to control samples, especially if you take into account the pan-Syn-I blot (Fig 3.52 C-D). 
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Figure 3.51. The effect of 100 M Roscovitine treatment upon phosphorylation of Ser 603 of 

Syn I. A) 2 sec stimulation B) Pan-Syn I blot reprobed for the 2 sec stimulation C) 15 sec 

stimulation D) Pan-Syn I blot reprobed for the 15 sec stimulation. This is a representative 

blot (A and B are N=2; C and D are N=1)  

 

Figure 3.52. The effect of 100 M Roscovitine treatment upon the phosphorylation of Ser-603 

in Syn I. A) 30 sec stimulation B) Pan-Syn I blot reprobed for the 30 sec stimulation C) 120 

sec D) Pan-Syn I blot reprobed for the 120 sec stimulation. This is a representative blot (All 

blots N=2)  
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Bar charts presented in figure 3.53 show the semi-quantitative analysis performed on the 

blots representative ones which are shown in figure 3.51 and 3.52. There appears to be 

some time dependent increase in phosphorylation of Ser-603 of Syn I in control terminals 

stimulation with 4AP5C and ION5C, although maximum for HK5C is achieved early on. 

According to these charts, at early time points (2 sec+15 sec), HK5C evoked and ION5C 

evoked phosphorylation in the presence of Roscovitine maybe slightly higher compared 

to drug free control condition and these stimuli produced phosphorylation that was higher 

compared to 4AP5C evoked phosphorylation in the presence of Roscovitine (Fig 3.53A). 

At 30 sec, 4AP5C plus Roscovitine and ION5C plus Roscovitine were similar to non-drug 

treated control with same stimuli employed. Although, HK5C evoked phosphorylation in 

the presence of Roscovitine was increased compared to when Roscovitine was absent (Fig 

3.53 B). At 120 sec (Fig 3.53 C), there were clear increases in Roscovitine treated 

conditions throughout all stimuli employed, and these were visibly higher than the non-

drug treated control conditions. All the data collected so far does seems to suggest that 

CaMK II is activated upon stimulation as Ca2+ enters the terminal activates CaMK II 

(represented by HK5C and ION5C showing higher phosphorylation than 4AP5C in the 

presence of Roscovitine) which then phosphorylates Syn I on Ser-603 site. It would appear 

that there is a gradual increase in the phosphorylation of Ser603 with time and 120 sec has 

the maximum. 
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Figure 3.53. The effect of Roscovitine upon the phosphorylation of Syn I Ser-603 following 

various stimulation for a) Early stimulation time points (2 + 15 sec) b) 30 sec stimulation c) 

120 sec stimulation; A is N=3; B and C are N=2. A) Phosphorylation induced by HK5C or 

ION5C in Roscovitine treated terminal was relatively higher than non-drug treated controls 

at combined early time points. Note both these cause higher [Ca2+]i entry than 4AP5C and 

at 2s stimulation, 4AP5C shows little increase of phospho-Ser 603 with or without Roscovitine 

pre-treatment. B) HK5C stimulation in Roscovitine treated synaptosomes evoked greater 

phosphorylation than drug free control at 30 sec stimulation whilst Roscovitine had negligible 

effect on changes in phosphorylation of Ser 603 induced by 4AP5C or ION5C. C) There was 

substantial increase in phospho-Ser 603 of Syn I in Roscovitine treated samples for all stimuli 

employed relative to non-drug treated control after 120 sec stimulation. 
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# Figure 

# 

Assay 

(s) 

Stimulus  Drugs 

employed 

(conc.) 

Key findings 

1 3.1-3.2 GLU HK5C Roscovitine 

(10 M,  

33 M,  

100 M, 

 200 M) 

Roscovitine treatment allowed HK5C 

to evoke further GLU release compared 

to control which is assumed to be from 

the SP.100 M Roscovitine treatment 

provided maximum SP release from the 

synaptosomes. 

2 3.3 GLU ION5C Roscovitine 

(100 M) 

100 M Roscovitine also allowed 

ION5C to evoke the SP release 

3 3.4-3.5 Fura-2 HK5C, 

ION5C 

Roscovitine 

(100 M) 

No change in [Ca2+]i identified for 

HK5C and ION5C stimulated terminals 

in the presence of 100 M Roscovitine 

4 3.6-3.7 GLU HK5C Roscovitine 

(100 M), 

Dynasore  

(160 M), 

Pitstop2TM  

(15 M), 

Blebbistatin 

(50 M) 

Extra GLU release observed in 

Roscovitine treated terminals are not a 

result of the RRP and RP recycling, 

and it does not involve Myosin II 

5 3.8-

3.11 

GLU, 

Fura-2 

HK5C, 

HK10C, 

HK20C 

Roscovitine 

(100 M) 

Higher [Ca2+]e perturbed extra release 

in Roscovitine treated terminal and it 

was due to the reduction in [Ca2+]i 

6 3.9-

3.16 

GLU, 

Fura-2 

HK5C, 

ION5C 

Roscovitine 

(100 M), 

PMA  

(1 M), 

Go6983  

(1 M) 

PMA only perturbed ION5C, not 

HK5C, evoked SP release in 

Roscovitine treated terminal and this 

might be due to reduced [Ca2+]i level.  

7 3.17-

3.23 

GLU, 

Fura-2 

HK5C Roscovitine 

(100 M), 

CONO  

(1 M), 

AGA 

 (50 nM), 

NIF  

(1 M) 

Ca2+ channel blockade perturbed 

HK5C evoked SP release in 

Roscovitine treated terminal. Although, 

there was no specificity in Ca2+ channel 

type identified. 

8 3.24-

3.25 

GLU HK5C Roscovitine 

(100 M), 

JASP  

(2.5 M) 

Roscovitine allowed HK5C to evoke an 

extra release when actin is stabilised 

9 3.26-

3.27 

GLU, 

Fura-2 

HK5C Roscovitine 

(100 M),  

Cys A  

(1 M) 

Inhibition of PP2B and Cdk5 inhibited 

the SP exocytosis and this might be due 

to reduced [Ca2+]i 

10 3.28-

3.45 

Bioener

-gectics 

 All drugs 

employed in 

this chapter 

No significant changes in bioenergetics 

of synaptosomes identified 

11 3.46-

3.55 

Wester

n 

blotting 

4AP5CH

K5C, 

ION5C 

Roscovitine 

(100 M) 

Although it is still a preliminary result, 

Ser-553 (Cdk5 site) phosphorylation 

appears to be decreased in Roscovitine 

treated terminals whilst Ser-9 (PKA 

site) and Ser 603 (CaMKII site) 

phosphorylation appears to be 

increased. 

Figure 3.54. Summary of the findings in chapter 3.  
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3.9 Discussion 

3.9.1 Roscovitine effect on the SP release 

The silent pool (SP) has been an enigma mainly due to the fact that it is not released under 

the normal physiological conditions which makes it difficult to study. Roscovitine, a Cdk5 

inhibitor, can be employed to allow further evoked release after the RRP and the RP have 

been fully exocytosed and this represents the SP (Kim and Ryan, 2010; Kim and Ryan, 

2013). Herein this study has used Roscovitine under different conditions and attempted to 

elucidate properties of the SP. Note that Kim and Ryan (2010) measured release by the 

electrophysiological recording of the postsynaptic response to GLU release from 

hippocampal cultured cells. We have reproduced their findings in cortical synaptosomes 

measuring directly the release of the GLU. 

The current study first showed that Roscovitine dose dependently induced extra release 

from the nerve terminal with the maximum effect being induced by 100 M while 200 M 

was unable to induce any further release. It has previously been established that HK and 

ION with 5 mM [Ca2+]e maximally release GLU from synaptosomes (see appendix A. 

1.1.1) which is considered to be representing the total release of the RRP and RP. However, 

Roscovitine treatment allowed HK5C to evoke significantly higher GLU release compared 

to non-drug treated control, which indicates that SV pools other than the RRP and RP is 

releasing. Therefore, this extra release was assumed to be from the SP. This study further 

tested ION5C as well and found it could also release the SP in the presence of Roscovitine. 

ION5C is an ionophore that bypasses any Ca2+ channel requirement, and this useful 

information suggests that the level of Ca2+ influx through channels might not play a pivotal 

role in the release of the SP (See below). Please note that Ashton and colleagues have 

shown that the RRP and RP have distinct biochemical properties that can help identify 

them (see Bhuva, 2015; Singh, 2017; Rostron, 2019) and it was hoped that difference 

between these and the SP could be determined. 
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The study further investigated the actual intracellular Ca2+ levels evoked in Roscovitine 

treated terminal by employing a Fura-2 assay. However whilst 100 M Roscovitine 

induces the SP to release, it does not affect HK5C evoked changes in [Ca2+]i. 

Even though this study obtained extra GLU release with Roscovitine and employing 

ION5C or HK5C as the stimulus, it was still debatable whether this release was actually 

from the SP as there was still a chance that the inhibition of Cdk5 might actually promote 

the recycling of the RRP and the RP and their re-release during the stimulus period. This 

could mean that the study was observing a recycling of these two pools rather than release 

of the SP. However, this was found not to be the case since even after the inhibition of 

recycling through perturbation of Dyn and clathrin, the SP release was observed.  

This study also tested if additional extracellular Ca2+ could induce further HK5C evoked 

release in the presence of Roscovitine. However, this was not the case as HK10C and 

HK20C in Roscovitine pre-treated terminal failed to release the SP. Thus higher 

extracellular Ca2+ levels do not support the release of the SP. Further investigation revealed 

that for both HK10C and HK20C, the evoked [Ca2+]i was found to be reduced compared 

to HK5C in the Roscovitine treated terminals. This is interesting because although higher 

extracellular calcium concentrations were present, the result indicates that the quantity of 

calcium going into the terminal (as measured by [Ca2+]i) was reduced which indicates 

that there is a certain concentration of calcium required to induce the SP release.  

An intriguing result of this study was that supra-maximally induced PKC could actually 

block the SP release evoked by ION5C in Roscovitine treated terminals. 1 M PMA - that 

supra-maximally induce PKC activation - was used and it was found that the SP release 

was perturbed for ION5C evoked GLU release in Roscovitine treated synaptosomes. It is 

noteworthy that, although previous investigations on SP release are relatively lacking, 

there are few studies demonstrated a link between PKC activation with regulation of the 

RRP and RP. Stevens and Sullivan (1998) showed that PMA activation of PKC elevates 
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the rate of the RRP refilling. Another study has reported that Platelet activating factor 

(PAF) increased the size of the RRP and the exocytosis rate of the RP through elevation 

of calcium within the terminal and PKC activation (Hammond et al, 2016). However, it is 

difficult to make a direct comparison due to the fact that the models employed were 

different, and the stimulation protocol varied between these two studies and the study 

outlined here.  

A similar experiment was also conducted using the PKC inhibitor, Go6983, instead of 

PMA but the SP was still released by HK5C in Roscovitine treated synaptosomes. This, 

in combination with the previous result where additional amounts of Ca2+ have perturbed 

the SP release, represents novel result whose precise mechanism awaits to be elucidated. 

The results using HK10C and HK20C under Roscovitine pre-treatment also were further 

investigated by employing Go6983. It was demonstrated that in the presence of Go6983, 

HK10C and HK20C was still unable to evoke the SP release in Roscovitine treated 

terminals whereas with HK5C, Go6983 did not prevent SP release in synaptosomes treated 

with Roscovitine. As in the Roscovitine treated terminal, HK10C and HK20C failed to 

support the SP release but Go6983 did not perturb the SP release, it would appear that the 

changes in [Ca2+]e does not act to perturb the SP by activating PKCs because otherwise 

Go6983 by blocking activation of such PKC should have allowed HK10C and HK20C to 

release the SP. 

Previously, Ashton’s group have found that N-type Ca2+ channel blockade with 1 M 

CONO fails to inhibit the HK5C evoked release of the RRP and the RP. In the repeat 

experiment performed herein it is re-shown that it does not perturb the RRP and the RP 

release, but it does stop the release of the SP when both Roscovitine and CONO are 

employed. This clearly demonstrated that the SP requires a certain amount of Ca2+ influx 

through the channel for it to be released but in this study, because the N-type Ca2+ channel 

has been blocked by CONO, the SP was not able to be exposed to sufficient Ca2+ and, 

thereby the SP release has been perturbed. Equivalent experiments were done for P/Q- and 
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L-type calcium channels. For P/Q-type channel, AGA was used whilst for L-type channel 

NIF was employed. In both conditions the result was similar to what was revealed in N-

type Ca2+ channel blockade experiment where the RRP and the RP were released as 

normally whilst the SP release was not supported. These data demonstrate that the presence 

of calcium channels is essential for normal SP release, however, this is not operated 

through particular type of channel.  

Actin stabilisation with JASP was found not to reduce the release of the RRP and RP (see 

chapter 6). Further, JASP pre-treatment did not prevent HK5C evoked SP in Roscovitine 

treated terminals. Thus, stabilisation of actin microfilaments does not appear to inhibit the 

release of the RRP, RP, or SP. 

It is clear from all the data obtained measuring the bioenergetics of synaptosomes that 

none of the drugs tested in the current research perturbed the energy producing capacity 

of the nerve terminals. Since there are no detrimental effects identified, it is concluded that 

the changes each drug may induce on synaptosomal exocytosis are not due to non-specific 

effects. This is an important point since perturbation of ATP levels will change the amount 

of Ca2+ - dependent exocytosis, [Ca2+]i and any evoked changes [Ca2+]i levels and it may 

possibly induce Ca2+ independent non-vesicular GLU release (Sobieski et al, 2017).  

3.9.2 Phosphorylation of Syn I following Roscovitine treatment 

We have presented the preliminary data of phosphorylation profiles of various sites in 

Phospho-Syn-I, including Ser-553 (Cdk 5 site), Ser-9 (PKA site), and Ser-603 (CaMKII 

site), in response to Roscovitine pre-treatment. As this drug allows HK5C and ION5C to 

evoke the SP of SVs from the nerve terminal, such phosphorylation results allow one to 

investigate a changes of Syn I phosphorylation when the SP is undergoing exocytosis. This 

should aid in elucidation of the mechanism of Roscovitine allowing evoked release of the 

SP. 
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Syn-I-Ser-553 site is known to be phosphorylated by Cdk5. Semi-quantitative analysis 

demonstrated that Cdk5 inhibition with Roscovitine has led to time-dependent decrease in 

phosphorylation at Ser-553 site compared to non-drug treated control. Benfenati’s group 

has demonstrated that the phosphorylation of Syn I with Cdk5 at Ser-551 (homologous 

site with Ser 553) site promoted its interaction with actin microfilament and they suggested 

that this leads to an elevation of SV interaction with F-actin, moves recycling SVs to the 

SP, and leads to reduction in releasable SVs in the recycling pool (Verstegen et al, 2014). 

In this study, Roscovitine treatment also led to the reduction in the phosphorylation of Syn 

I at Ser-553 site and this seems to have allowed the SP SVs being able to exocytose. 

Therefore, these results may suggest that inhibition of Cdk5 by Roscovitine led to a 

reduction in Cdk5 phosphorylation of Syn I, which allows the previously immobilised SVs 

now available for exocytosis, such that these previously immobilised SP SVs can now 

release their content. It is noteworthy that this result is from preliminary study and require 

a further investigation. 

However, we investigated whether there were other Syn I phosphorylation sites that could 

play a role in the release of the SP. A semi-quantitative analysis on blots probing for the 

phosphorylation of Ser-9 – a PKA site - demonstrated that such phosphorylation was found 

to be elevated following Roscovitine treatment relative to non-drug treated control for 

4AP5C and HK5C but not ION5C. Although these are still preliminary results, it is 

possible to suggest that these two former stimuli, by activating Ca2+ channels at the AZ, 

can activate PKA in some way (perhaps via calmodulin dependent adenylate cyclase). 

Indeed, PKA phosphorylation on Syn I has been highlighted in several studies to promote 

exocytosis by regulating the dissociation of the protein from the SV membrane and 

enhance the recycling of the SVs (Hosaka et al, 1999; Bonanomi et al, 2005). Indeed, a 

mutation of Ser-9 so this site could not be phosphorylated, resulted in an absence of this 

enhancement of release (Flumara et al, 2004). Menegon et al (2006) also reported that 

phosphorylation of Syn I by PKA promotes dissociation of Syn I from SVs, and facilitates 
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the rate of SV exocytosis under sustained stimulation. These authors suggested PKA 

mediated SV exocytosis is primarily caused by calmodulin (CaM)-dependent activation of 

cAMP pathways activated by increased [Ca2+]i rather than the direct activation of CaM 

kinases by Ca2+. Therefore, there clearly can be causes talk between cAMP- and CaM-

dependent cascades which can regulate Syn via its PKA site to modulate SV exocytosis 

(Menegon et al, 2006). 

Syn I is also a substrate of CaMKII at the Ser-603 site. Previous studies have indicated 

that some of Syn I effects were abolished by CaMKII mediated phosphorylation. Syn I 

reversibly anchors the SVs to the actin cytoskeleton of the nerve terminal, promoting 

polymerisation and bundling of actin filaments and forming ternary complex, but CaMKII 

phosphorylation of Syn I abolishes the formation of this network (Llinas et al, 1985, 1991; 

Petrucci and Morrow, 1987; Valtorta et al, 1991; Ceccaldi et al, 1995; Wang et al, 2008). 

Herein, stimulus evoked increase in the phosphorylation of Ser-603 which is increased by 

Roscovitine and these changes are most distinct after 120 sec of stimulation. Interestingly, 

the CaMKII site appears to show the best Ca2+ dependent stimulation evoked 

phosphorylation increase. At 2s 4AP5C induced less of an increase in phospho-Ser-603 

than either HK5C or ION5C and although there appears to be greater amounts of this 

phosphorylation, after 120 sec stimulus, 4AP5C is still less than HK5C or ION5C at 

inducing Syn I Ser-603 phosphorylation. This fits in with the known greater induced 

increase in [Ca2+]i with the latter two stimuli. Overall, it is possible that a further increase 

in phosphorylation of the Ser-603 site in Syn I may be associated with Roscovitine 

treatment and so this may also be related to the support for evoked release of the SP. 

Although, it is not clear whether decrease in Cdk5 expression and increase in CaMKII 

phosphorylation at Syn I are correlative. Again, these are preliminary data and further 

research is required. 

It is important to remember that 4AP5C is incapable of inducing the release of the SP in 

Roscovitine treated terminals so it is likely that any changes seen with 4AP5C may not be 
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related to release of the SP. For the phosphorylation of Ser-553, 4AP induces slightly less 

than HK5C which is slightly less than ION5C. However, Roscovitine reduces this 

phosphorylation to a level not too dissimilar for all these stimuli. Thus, perhaps it is the 

larger decrease of phosphorylation induced by HK5C or ION5C in Roscovitine treated 

terminals which can free the SP SVs and allow them to be released. However, 4AP5C may 

allow such SP SVs to be released from their attachments but there is insufficient increase 

in [Ca2+]i to actually cause these to exocytose. 

Intriguingly, by 120 sec all 3 stimuli have increased 2-fold the phosphorylation of Ser-9 

on Syn I but, whereas Roscovitine can increase this to 3-fold for both 4AP5C and HK5C, 

there is no change for ION5C. As mentioned earlier, this could be related to the activation 

of voltage dependent Ca2+ channels by 4AP5C and HK5C (ION5C does not act via such 

channels) and subsequent activation of calmodulin dependent adenylate cyclase, increase 

in cAMP locally and specific activation of PKA. However, as HK5C and ION5C induced 

SP release in Roscovitine treated terminals, then this phosphorylation site may not 

contribute to the SP release, similar are what can be made for the phosphorylation of Ser-

603. HK5C and ION5C induced a larger increase in phosphorylation at this site in 

Roscovitine treated terminals. Thus the larger increase may be important for SP SVs to 

undergo exocytosis. 

3.10 Future research 

This study requires further research on several areas in order to elucidate various properties 

of the SP. Future experiments include investigating the reversibility of Roscovitine, any 

PKA involvement in Roscovitine induced SP exocytosis, and additional repeat of western 

blot experiment for Syn I.  
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3.10.1 Reversibility of Roscovitine 

In this thesis, we have been able to induce the SP of SVs following Roscovitine treatment 

but we have not studied the exocytosis of the SP utilising FM dyes. In order to conduct 

FM 2-10 Styryl dye release assay on the SP, all SV from the nerve terminal have to be pre-

released, labelled with the dye and then such SVs must then recycle into the terminal. 

Subsequently, evoked release is induced and fluorescence changes as measured (See 

chapter 2.4 of method section). However, this experiment is probably only viable if 

Roscovitine effect can be reversed after the pre-treatment and pre-stimulation. This is 

because Cdk5 inhibition may perturb the recycling of the labelled SVs or the subsequent 

mode of exocytosis. However, as the reversibility of Roscovitine is not yet been 

established, the mode of the SP exocytosis is unable to be investigated. This would be 

interesting data because it would reveal the mode of the exocytosis that SP SV undergo 

which would then partially reveal some of the proteins that are involved in SP regulation 

and may indicate further distinct properties of the SP compared to the other two pools.  

3.10.2 PKA Dependency of SP release 

It has been found that PKC activity was able to regulate the SP release. Another essential 

kinase is PKA which is known to contribute heavily to the regulation of neurotransmission 

(see some results in chapter 5). PKA is present at nerve terminals, and it is known to 

phosphorylate serine and threonine residues. It can be activated by increasing cAMP levels 

(Seino and Shibasaki, 2005; Park et al, 2014). It is capable of regulating exocytosis of SVs 

via the regulation of the phosphorylated state of various protein, including Syn I (Fiumara 

et al, 2004; Menegon et al, 2006) and as Syn I may regulate the SP release (see 

phosphorylation results) (Orenbuch et al, 2012; Verstegen et al, 2014), PKA is a potential 

regulator of the SP exocytosis. 
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3.10.3 Repeat western blot experiment with same drug treatments 

Due to the lack of time available for further experiments, the current study is reporting 

results from two independent experiments. A minimum of three independent experiments 

are required to produce statistically significant results, and so we are unable to prove the 

significance of the changes reported. Additional experiments with an equivalent drug 

treatment will need to be conducted and the resulting values need to be combined with 

those herein to clarify the results. It is for this reason that these results are not included as 

a separate chapter. However, it was felt that it was important to demonstrate the strategy 

being employed to determine the molecular mechanism of Roscovitine.  

3.11 Conclusion 

This chapter has shown Roscovitine, a Cdk5 inhibitor, can allow the SP to be released 

following HK5C or ION5C stimulation and utilising this fact an investigation has been 

performed on how the properties of SP changes dependent on various other drug 

treatments. However, higher [Ca2+]e with the HK stimulus (HK10C or HK20C) blocked 

the SP release from Roscovitine-treated terminals but a reduction in evoked [Ca2+]i data 

in Roscovitine treated terminals also blocked the release of the SP. This demonstrates that 

the SP requires a specific level of [Ca2+]i for it to be released.  

Activation of PKC, but not inhibition, was found to perturb the ION5C evoked SP release 

in Roscovitine-treated terminals. Likewise, the N-type Ca2+ channel blocker CONO 

prevented the HK5C-evoked SP release in Roscovitine-treated synaptosomes. However, 

similar results were also found when P/Q-type channels were blocked with AGA or when 

L-type channels were blocked with NIF. Thus, all these channels may have an important 

role in the SP regulation. Actin stabilisation with JASP did not perturb release of the SP, 

indicating that stabilisation of microfilaments does not prevent release of any pool. 
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It is, therefore, concluded that the SP of GLU containing SVs was induced to release GLU 

following treatment with Roscovitine, but such release was controlled by levels of [Ca2+]i, 

by entry of Ca2+ through three types of Ca2+ channels and by PKC activation.   

Additionally, the preliminary data of western blotting experiments has shown that Cdk5 

inhibition with Roscovitine might have led to decrease in phosphorylation at Ser-553 site 

(Cdk5 site) whilst increase of phosphorylation was observed at Ser-9 (PKA site) and Ser-

603 (CaMK II site). Accordingly, it would appear that Roscovitine supported release of 

the SP may involve phospho-Syn I activity which include inhibition of the Cdk5 

phosphorylation site and enhancement of the PKA and CaMK II phosphorylation sites. 

Although, it is not clear whether these two phenomena of positive and negative effect of 

Roscovitine on phosphorylated profiles of Syn-I are correlative. Additionally, it is also 

noteworthy that PKA phosphorylation was discovered by several researches to contribute 

to the dispersion of Syn I from SVs whilst CaMKII phosphorylation was implicated in the 

dissociation of actin microfilament and Syn I, thus inhibition of Cdk5 action with 

Roscovitine might have promoted phosphorylation at both ends of the actin-synapsin-

synaptic vesicles network leading to increasing availability of SVs to exocytose. Clearly, 

these experiment are worthy to be repeated several more times as it could potentially lead 

to a key findings.  
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Chapter 4:  

Fluoxetine and the Silent Pool 
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4.1 Introduction 

Chapter 3 demonstrated that Roscovitine – through Cdk5 inhibition – enabled HK5C or 

ION5C to evoke the SP of SVs to release. Considering the complexities of release of SVs 

from all the pools, it is likely that other pathways besides the Cdk5 pathway may evoke 

the release of the SP. Herein, Fluoxetine has been investigated to see whether it could 

trigger the extra release from the SP in synaptosomes. 

Fluoxetine was designed as a selective serotonin reuptake inhibitor (SSRI) and it is one of 

the most prevalently prescribed drugs for the treatment of depression (Prozac). The exact 

pathology of depression is yet to be fully elucidated, but the disruption in the serotonergic 

pathway has been widely acknowledged as a potential candidate. This is because the SSRI 

drugs, including Fluoxetine, that were assumed to target on the serotonergic pathway were 

found to relieve some of the major symptoms of depression (Rahn et al, 2015; Hamilton 

et al, 2016; Clevenger et al, 2018). SSRIs operate through blocking the uptake of serotonin 

following its release, and this consequently increases the level of the monoamine in the 

brain in drug treated patients (Dale et al, 2015). However, the association between synaptic 

transmission and the pathology of depression requires further investigation. Recently, 

studies have suggested that ketamine, an NMDA antagonist, produces rapid antidepressant 

responses in patients who were resistant to typical antidepressant treatments. Ketamine 

rapidly stimulates synaptogenesis and reverses the synaptic deficits caused by chronic 

stress, and such a result suggests that there are associations between synaptic transmission 

and the pathology of major depressive disorder (MDD), this led to the synaptogenic 

hypothesis of depression (Duman and Aghajanian, 2012). 

If it is the case that manipulation of synaptic transmission has a contribution on depression 

phenotype, it could also imply that a regulation of the exocytosis of the pools including 

the SP may potentially be associated with the development of depression. Jung et al (2014) 

studied the action of 1 M of Fluoxetine on exocytosis from hippocampal cultured cell. 
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This treatment led to an increase in the size of the recycling pool of SVs by apparently 

allowing some SP SVs to contribute to release. This finding is significant because it has 

suggested that the pharmacological mechanism of this antidepressant could potentially 

involve an elevation of the SV release of non-monoamine transmitters, and importantly, 

such release involves mobilisation and release of the SP. In this chapter, the aim was to 

test whether Fluoxetine could release the SP of GLU containing SVs in the synaptosomal 

model used herein. It is noteworthy that the experimental model used in this study is 

cerebral cortical terminals, and these are 80% glutamatergic.  

4.2 Establish optimum condition for Fluoxetine to allow HK5C 

evoked SP release.  

4.2.1 5 min incubation with various doses of Fluoxetine 

In Chapter 3, Roscovitine induced extra release from the SP was investigated and 

maximum SP release was established by treating synaptosomes for 5 min at 37oC with 

various concentrations of the drug (10 M, 33 M, 100 M, 200 M). In this chapter, the 

study aimed to elucidate whether Fluoxetine could release - same as Roscovitine – the SP 

and what conditions were needed to allow maximum SP release. 

Synaptosomes were pre-treated with different concentrations (1 M, 200 nM, 100 nM, 50 

nM) of Fluoxetine for 5 min incubation time and the GLU release evoked by HK5C was 

measured. For 1 M Fluoxetine treatment, the HK5C evoked release appeared to be 

reduced compared to non-drug treated control and, therefore this concentration has not 

only failed to induce the SP of SVs to exocytose, but may have also perturbed some release 

from the RRP and RP (Fig 4.1).  
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Figure 4.1. 1 M Fluoxetine treatment for 5 min in 37oC failed to allow HK5C evoked SP 

release. HK5C evoked GLU release in terminals treated with 1 M Fluoxetine compared to 

non-drug treated controls. Data are mean ± SEM, N=5 independent experiments; Although 

the drug may actually reduce the release, this was not statistically significant (P >0.05).  

As 1 M Fluoxetine did not allow HK5C evoked release of the SP, the concentration of 

the drug was lowered to 200 nM and the HK5C evoked GLU release measured. However, 

this failed to allow extra release and the release was quite similar to control condition (Fig 

4.2). Note in some of these preliminary studies only one experiment was performed for 

each drug concentration. It was argued that any concentration that induced the SP would 

be obvious and that much more repeats could then be performed on such concentration. 
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Figure 4.2. 200 nM Fluoxetine treatment for 5 min in 37oC failed to allow HK5C evoked SP 

release. HK5C evoked GLU release in terminals treated with 200 nM Fluoxetine compared 

to non-drug treated terminals. Data are mean ± SEM, Note as there was no obvious difference 

we did not repeat this experiment.  

100 nM (Fig 4.3) and 50 nM (Fig 4.4) Fluoxetine were also tested in preliminary 

experiments, but both conditions produced similar amount of HK5C evoked release of the 

RRP and RP compared to non-drug treated condition and no SP release was apparent. Thus, 

in these preliminary experiments, 5 min treatment with Fluoxetine failed to trigger any 

extra release from synaptosomes. 
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Figure 4.3. 100 nM Fluoxetine treatment for 5 min in 37oC failed to allow HK5C evoked SP 

release. HK5C evoked GLU release in 100 nM Fluoxetine pre-treated terminals compared to 

non-drug treated terminals. Data are mean ± SEM, N=1 independent experiment.  

 

Figure 4.4. 50 nM Fluoxetine treatment for 5 min in 37oC failed to allow HK5C evoked SP 

release. HK5C evoked GLU release in terminals treated with or without 50 nM Fluoxetine. 

Data are mean ± SEM, N=1 independent experiment.  
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4.2.2 20 min incubation with various doses of Fluoxetine 

In the previous sets of experiment, the samples were treated with Fluoxetine for 5 min but 

with all concentrations employed HK5C failed to evoke any significant release of the SP. 

Thus, this drug may take longer to exhibit its action and we noted that Jung et al (2014) 

incubated for 20 min with the drug instead of 5 min. Thus, the Fluoxetine incubation time 

was extended from 5 min to 20 min.  

Again samples were pre-treated with range of Fluoxetine concentrations (1 M, 200 nM, 

60 nM, 40 nM, 20 nM, 5 nM) for 20 min and subsequently the release evoked by HK5C 

was measured using the GLU assay.  

There was no significant increase in the release identified at majority of the concentrations, 

instead, at 1 M, the control was higher compared to drug-treated condition (Fig 4.5). 

Figure 4.5. 1 M Fluoxetine treatment for 20 min in 37oC reduced the HK5C evoked GLU 

release HK5C evoked GLU release following an extended 20 min incubation at 37oC with 1 

M Fluoxetine compared to non-drug treated control. Data are mean ± SEM, N=3 

independent experiments; P<0.05.  
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Performing a single experiment for 200 nM (Fig 4.6) and 100 nM (Fig 4.7), still suggested 

that in the control conditions HK5C evoked more release than drug-treatment conditions 

although the difference appeared to be smaller compared to 1 M Fluoxetine (Fig 4.5). 

Clearly, it would appear that 1 M, 200 nM, and 100 nM is perturbing some HK5C evoked 

release from the recycling pool and definitely not allowing any SP release.  

 

Figure 4.6. 200 nM Fluoxetine treatment for 20 min in 37oC perturb some HK5C evoked 

release from the recycling pool and not allowing any SP release. HK5C evoked GLU release 

following a 200 nM Fluoxetine incubation for 20 min at 37oC. Data are mean ± SEM, N=1 

independent experiment. 
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Figure 4.7. 100 nM Fluoxetine treatment for 20 min in 37oC perturb some HK5C evoked 

release from the recycling pool and not allowing any SP release. HK5C evoked GLU release 

following 100 nM Fluoxetine pre-treatment for 20 min at 37oC. Data are mean ± SEM, N=1 

independent experiment. 

A lower concentration of Fluoxetine, 60 nM, did not perturb the HK5C evoked release 

since it was similar to that for non-drug treated control (Fig 4.8) so RRP and RP SVs were 

not being prevented from release but neither was the SP being allowed. As this was near 

to the concentration of 40 nM (see below) which did cause extra release we repeated this 

experiments 3 times to makes sure that the result was consistent. 
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Figure 4.8. 60 nM Fluoxetine did not perturb the HK5C evoked RRP and RP release but 

neither was the SP being allowed. HK5C evoked GLU release in terminals treated 60 nM 

Fluoxetine pre-treatment with extended incubation for 20 min at 37oC compared to non-drug 

treated control. Data are mean ± SEM, N=3 independent experiments; P >0.05. 

With 40 nM Fluoxetine, the HK5C evoked release was found to be significantly higher 

than the control (Fig 4.9). This was also the case for 20 nM (Fig 4.10), although, the release 

appeared to be slightly lower compared to 40 nM (Fig 4.11) (did not show a difference 

statistically but chose to use 40 nM Fluoxetine from data in Fig 4.9). However, at 5 nM, 

Fluoxetine treatment did not induce any more HK5C evoked release compare to the non-

drug treated condition (Fig 4.12). We have repeated this to ensure that truly 5 nM was not 

effective, 20-40 nM were, but by 60 nM, one could not get an extra release. 
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Figure 4.9. 40 nM Fluoxetine treatment for 20 min at 37 oC show significantly higher HK5C 

evoked release compared to the control. HK5C evoked GLU release following an incubation 

with 40 nM Fluoxetine for 20 min at 37oC compared to non-drug treated control. Data are 

mean ± SEM, N=11 independent experiments. Note drug treated condition was significantly 

higher than control (P<0.05). 

 

Figure 4.10. 20 nM Fluoxetine treatment for 20 min at 37 oC show significantly higher HK5C 

evoked release compared to the control HK5C evoked GLU release following 20 nM 

Fluoxetine incubation of 20 min at 37oC. Data are mean ± SEM, N=7 independent 

experiments. Note drug treated condition was significantly higher than control (P<0.05). 
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Figure 4.11. 40 nM Fluoxetine treated terminal show slightly higher HK5C evoked release 

compared to 20 nM Fluoxetine terminal, HK5C evoked GLU release following 20 nM 

Fluoxetine and 40 nM Fluoxetine incubation for 20 min at 37oC. Data are mean ± SEM, N=7-

11 independent experiments; P >0.05. 

 

Figure 4.12. 5 nM Fluoxetine did not perturb the HK5C evoked RRP and RP release but 

neither was the SP being allowed HK5C evoked GLU release with 5 nM Fluoxetine pre-

treatment following incubation for 20 min at 37oC. Data are mean ± SEM, N=4 independent 

experiments; P >0.05 
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It is evident from the results that Fluoxetine has a biphasic effect on HK5C evoked release 

with 100 nM or more inhibiting some of the release whilst 40 nM induces greater 

additional release due to evoking the SP. Therefore, the 40 nM Fluoxetine was employed 

in later studies. These results demonstrate that one has to determine precisely the 

Fluoxetine concentration in the synaptosomal model to allow one to study the SP, it should 

be noted that in hippocampal culture cells 1 M was required whilst herein we only needed 

40 nM. However, Jung et al (2014) also found a biphasic action of Fluoxetine on that 8 

M was also shown to inhibit evoked release (Jung et al, 2014). 

The effect of 40 nM Fluoxetine with extended incubation time (20 min) was compared to 

5 min treatment of 100 M Roscovitine on HK5C evoked release (Fig 4.12). The two 

drugs were found to induce an equivalent amount of release. Considering 100 M 

Roscovitine has been previously found to induce the maximum SP release in the previous 

chapter (See Ch 3), the result clearly showcased that 40 nM Fluoxetine with 20 min 

incubation time has successfully evoked the SP exocytosis. 

Figure 4.13. 40 nM Fluoxetine with 20 min incubation time show similar release to 100 mM 

Roscovitine with 5 min incubation. HK5C evoked GLU release following 5 min pretreated 

terminals with 100 M Roscovitine or 40 nM Fluoxetine treatment for 20 min at 37oC. Data 

are mean ± SEM, N=3 independent experiments; P >0.05. 
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4.2.3 Dual treatment of Fluoxetine with Roscovitine produced 

equivalent amount of SP release 

We have established that 20 min incubation with 40 nM Fluoxetine allows HK5C to trigger 

SP exocytosis to an apparent maximum amount. However, we investigated whether HK5C 

could evoke even more release from the SP. In these experiments, synaptosomes were 

incubated for 20 min at 37oC with no-drug (control), Roscovitine (for last 5 min of the 20 

min incubation or Fluoxetine for 20 min with Roscovitine added for the last 5 min). By 

including synaptosomes with both 40 nM Fluoxetine and 100 M Roscovitine, 

Roscovitine on its own  allowed HK5C to evoke SP release as previously identified (Fig 

4.14a) and when it was dual treated with Fluoxetine, there was still extra release evoked 

by HK5C compared to control (Fig 4.14b). Importantly, the amount of this extra release 

was equivalent to that induced by HK5C with only Roscovitine was treated (Fig 4.14c). 

Thus there was no further extra release evoked by HK5C following the double drug 

treatment. This could mean that 40 nM Fluoxetine treatment induces the maximum release 

of the SP release or it could imply that Roscovitine and Fluoxetine share a similar pathway 

that both work on the SP but such a pathway is maximally stimulated by either drug alone.  
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4.3 The effect of Fluoxetine on HK5C evoked [Ca2+]i 

Previously in this chapter, 20 min of incubation with 40 nM and 20 nM Fluoxetine was 

found to enable HK5C to induce the SP release. However, it was also identified that 1 M 

Fluoxetine treatment led to a reduction in HK5C evoked release by not only not allowing 

the SP release but also inhibited some release from the recycling pool consisting of the 

RRP and the RP. An investigation was, therefore, performed to see whether such effects 

were due to changes in evoked  [Ca2+]i using the Fura-2 assay. The sample was pre-

treated with 1 M Fluoxetine and HK5C evoked [Ca2+]i was measured.1 M Fluoxetine 

treatment appeared to reduce the HK5C evoked  [Ca2+]i compared to the control (Fig 

4.15). Therefore, it would be appeared that 1 M Fluoxetine is reducing the release through 

blocking the entry of calcium into the nerve terminal following application of HK5C (see 

discussion). 

 

Figure 4.15. 1 M Fluoxetine treatment reduced the HK5C evoked [Ca2+]i. The change in 

[Ca2+]i induce by HK5C comparing control and 1 M Fluoxetine. Data are mean ± SEM, N=3 

independent experiments; more experiments would be needed to prove this statistically. 
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4.4 Fluoxetine did not induce recycling and re-release of the RRP 

and RP 

Research from Ashton’s group has indicated that neither HK5C nor ION5C can 

induce more than one round of release of the RRP and RP, this mean that there are 

no recycling, reloading, and re-release of the SVs from their pool in the presence 

of these stimuli. Nevertheless, there was still a possibility that Fluoxetine, through 

unknown pathway, could enable the recycling, reloading, and re-release (see 

similar arguments for Roscovitine action in chapter 3). This is important because 

it could mean that the release we have observed may be derived from the recycled 

RRP and RP instead of the SP. In order to ascertain this is not the case, we 

pharmacologically disabled recycling machineries; 160 M Dynasore for Dyn-

dependent pathway and 15 M Pitstop2TM for clathrin-dependent pathway. 

Comparing non-drug treated control condition vs Fluoxetine plus Dynasore (Fig 

4.16 a) clearly revealed that 40 nM Fluoxetine was still allowing HK5C evoked 

release of SP when Dyn-dependent recycling pathways have been blocked. 

Pitstop2TM treated synaptosomes also still allow 40 nM Fluoxetine to support 

HK5C evoked SP release (Fig 4.16 b). Overall this confirms that the extra HK5C 

evoked release identified with 40 nM Fluoxetine treatment is actually from the SP.  
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4.5 ION5C evoked SP release  

4.5.1 40 nM Fluoxetine supports ION5C evoked SP release 

The results so far employing Fluoxetine involved studying HK5C evoked release of the 

SP. Another type of stimulus that we often employ in our study to trigger exocytosis of 

SVs is ION. In contrast to HK5C, ION is an ionophore which bypasses calcium channels 

and increased the Ca2+ level throughout the nerve terminal, therefore it works through a 

different pathway from HK5C. Thus, it was important to ascertain that Fluoxetine can also 

release the SP employing ION5C stimulation. ION5C evoked exocytosis following 40 nM 

Fluoxetine treatment (20 min at 37oC) was also able to induce the release of the SP (Fig 

4.17).  

 

Figure 4.17. 40 nM Fluxoetine supports ION5C evoked SP release. ION5C evoked GLU 

release in 40 nM Fluoxetine pre-treated terminals compared to non-drug treated control. 

Data are mean ± SEM, N=6 for control and N=4 for Fluoxetine independent experiments. 

Note Fluoxetine treated condition induces significantly higher ION5C evoked release than 

control (P>0.05). 
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4.5.2 Fluoxetine did not induce recycling and re-release of the RRP 

and RP under ION5C stimulation 

As for HK5C evoked extra release following 40 nM Fluoxetine treatment, we also tested 

that Fluoxetine’s effect on ION5C evoked release was not due to recycling, reloading, and 

re-release of the RRP and RP by pharmacologically blocking SV recycling with Dynasore 

and Pitstop2TM. ION5C evoked release in control vs 160 M Dynasore plus 40 nM 

Fluoxetine (Fig 4.18a) or in control vs 15 M Pitstop2TM plus 40 nM Fluoxetine (Fig 4.19a) 

were measured. It was evident from the results that under both the Dynasore treated 

conditions and Pitstop2TM treated conditions, Fluoxetine was still able to support the 

release of the SP evoked by ION5C stimulation. Clearly, this extra release is not due to 

recycled RRP and RP SVs. These results are more apparent when Fluoxetine treated 

condition was compared to either Fluoxetine plus Dynasore (Fig 4.18b) or Fluoxetine plus 

Pitstop2TM (Fig 4.19b) as in both conditions, the release were virtually unchanged.   
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4.6 Bioenergetics results 

4.6.1 5 min incubation with Fluoxetine concentrations 

Bioenergetics of the 1 M Fluoxetine treated samples were measured with Seahorse XFp 

flux analyser. The purpose of this experiment was to clarify the drug does not have an off-

target effect which perturbs the bioenergetics of nerve terminals. Specifically, Fluoxetine 

induced effect on the release is not derived from disruption in bioenergetics of the 

synaptosomes. In fact, as1 M Fluoxetine was found to block some of the release from the 

RRP and RP, there is a chance that this effect may be derived from disturbance of 

bioenergetics in the terminals whereby there is less energy to support SV exocytosis. 

The sample was pre-treated with 1 M Fluoxetine for 5 min at 37oC and then its oxygen 

consumption rate was measured during serial injections of oligomycin, FCCP, and 

rotenone/antimycin. This procedure has allowed various parameters to be measured; basal 

respiration, ATP production, spare capacity, maximum respiration, proton leakage, and 

non-mitochondrial respiration. Note this method was already outlined in more detail in 

Chapter 3. However, the acute treatment with 1 M Fluoxetine for 5 min has failed to 

significantly disturb any of the bioenergetics parameters (Fig 4.20, Fig 4.21 A-E).  
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Figure 4.20. The reduction identified in HK5C evoked GLU release of nerve terminal treated 

with 1 M Fluoxetine for 5 min was not a result of disturbance in bioenergetics. The effect of 

1 M Fluoxetine treatment on the bioenergetics of synaptosomes compared to non-drug 

treated control. The experiment was done three times and the mean values represent an 

average of 8 independent measurements and error bars represent the SD; P>0.05. 
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Figure 4.21. The reduction identified in HK5C evoked GLU release of nerve terminal treated 

with 1 M Fluoxetine for 5 min was not a result of disturbance in mitochondrial functions. 

The effect of 5 min 1 M Fluoxetine incubation at 37oC on various parameters measured on 

synaptosomes; (A) basal respiration, (B) ATP production, (C) spare capacity, (D) maximal 

respiration, (E) Proton leakage, and (F) Non-mitochondrial respiration. The histobars 

represent the mean and the error bar shows the SEM. There is no signifcnant difference (NS) 

between control and Fluoxetine treatment. 
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4.6.2 The effect of 20 min Fluoxetine incubation on synaptosomal 

bioenergetics 

Synaptosomes were initially pre-treated with range of Fluoxetine concentrations for 5 min 

but have failed to evoke any SP exocytosis (see ch 4.2.1). Therefore, the incubation time 

with the drug has extended to 20 minutes. Consequently, a 20 min pre-treatment of the 

drug also had to be tested to see whether it has an impact on bioenergetics of the sample. 

The acute treatment of the sample with 1 M Fluoxetine for 20 min, which did inhibit 

some of the release of the RRP and RP, failed to produce any significant difference on any 

of the bioenergetic parameters (Fig 4.22, Fig 4.23 A-E). We argue that as 1 M Fluoxetine 

failed to perturb the bioenergetics parameters, then clearly a lower concentration (40 nM) 

would not as this drug concentration is even less likely to have secondary effect. 

 

Figure 4.22. The reduction identified in HK5C evoked GLU release of nerve terminal treated 

with 1 M Fluoxetine for 20 min was not a result of disturbance in bioenergetics. The effect 

of extended incubation of 1 M Fluoxetine (20 min at 37oC) on the bioenergetics of 

synaptosomes. The experiment was done two times and the mean values represent an average 

of 6 independent measurements and error bars represent the SD; P>0.05. 
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Figure 4.23. The reduction identified in HK5C evoked GLU release of nerve terminal treated 

with 1 M Fluoxetine for 20 min was not a result of disturbance in mitochondrial functions. 

The effect of 20 min 1 M Fluoxetine pre-incubation time on synaptosomes bioenergetics 

parameters; (A) basal respiration, (B) ATP production, (C) spare capacity, (D) maximal 

respiration, (E) Proton leakage, and (F) Non-mitochondrial respiration. The histobars 

represent the mean and the error bar shows the SEM. Note although only 2 independent 

synaptosomes preparations were used, the sample in individual wells were treated as 

independent. Using this one can show that there was no significant difference (P>0.05) 

between control and drug treated terminals. 
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# Figure 

# 

Assays Stimul

us 

Drugs 

employed 

(conc.) 

Key findings 

1 4.1-4.4 GLU HK5C Fluoxetine 

(1 M, 200 

nM, 100 nM, 

50 nM) 

5 min incubation of synaptosomes in 

37oC with Fluoxetine failed to allow 

HK5C to evoke SP release. Instead, 1 

M appears to perturb some RRP and RP 

release. 

2 4.5-

4.13 

GLU HK5C Fluoxetine 

(1 M, 200 

nM, 100 nM, 

60 nM, 40 

nM, 20 nM, 

5 nM) 

20 min incubation with 1 M, 200 nM, 

100 nM, appears to reduce the HK5C 

evoked GLU release compared to 

control. However, 40 nM and 20 nM 

Fluoxetine allowed an extra release with 

40 nM providing the maximal release.  

3 4.14 GLU HK5C Fluoxetine 

(40 nM), 

Roscovitine 

(100 M) 

Treatment of the terminal with 

Roscovitine combined with Fluoxetine 

allowed HK5C to evoke an extra release. 

Importantly, Roscovitine alone and 

Roscovitine plus Fluoxetine conditions 

showed a similar amount of GLU 

release, shows that Fluoxetine is 

allowing maximum evoked SP release, 

and it also suggest that Fluoxetine and 

Roscovitine might operate in similar 

pathway to allow an extra SVs to be 

available. 

4 4.15 Fura-2 HK5C Fluoxetine 

(1 M) 

20 min treatment of synaptosomes with 1 

M Fluoxetine was found to perturb 

some release from the RRP and RP 

potentially due to reduction in [Ca2+]i 

following Fluoxetine treatment.  

5 4.16 GLU HK5C 

 

Fluoxetine 

(40M), 

Dynasore 

(160 M), 

Pitstop 2TM 

(15M) 

An extra HK5C evoked release observed 

in 40 nM Fluoxetine treated terminal is 

not a result of recycling of the RRP and 

RP. 

6 4.17 GLU ION5C Fluoxetine 

(40 nM) 

40 nM Fluoxetine with 20 min 

incubation also allows ION5C to evoke 

an extra release. 

7 4.18-

4.19 

GLU ION5C Fluoxetine 

(40 nM), 

Dynasore 

(160 M), 

Pitstop 2TM 

(15M) 

An extra ION5C evoked release 

following 40 nM Fluoxetine treatment is 

not a result of recycling of the RRP and 

RP. 

8 4.20- 

4.23 

Bio  Fluoxetine 

(1 M) 

1 M Fluoxetine treatment for both 5 

min and 20 min incubation in 37oC failed 

to perturb any of the bioenergetics 

parameters. This may suggest that some 

perturbations of the RRP and RP release 

observed in both incubation times are not 

due to the disturbance of bioenergetics of 

synaptosomes. 

Figure 4.24. Summary of the findings in chapter 4.  
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4.7 Discussion 

Selective serotonin reuptake inhibitors (SSRIs) are the most prevalently used 

antidepressants. They are suggested to work through blocking the uptake of exocytosed 

serotonin into the presynaptic terminal, which consequently increase the serotonin levels 

in the brain of the patient with depression. Fluoxetine is an SSRI and it has been found 

from the study of Jung et al (2014) that under the therapeutic dosage (1 M), it is capable 

of mobilising the GLU containing SVs from the SP in hippocampal cultured cell. In the 

research model used herein (i.e synaptosomes for cerebral cortical cell), 80% of terminals 

utilised GLU as their neurotransmitter and we, therefore, investigated whether Fluoxetine 

could also evoke the release of the SP in this model. 

4.7.1 GLU Assay 

Synaptosomes were pre-treated with various concentrations of Fluoxetine for 5 min at 

37oC and HK5C evoked GLU release was subsequently measured. Whilst 1 M Fluoxetine, 

may reduce the release compared to the control condition, overall, none of the Fluoxetine 

concentrations employed were able to successfully allow HK5C to evoke the SP to 

exocytose. Therefore, the Fluoxetine incubation time was extended to 20 min and the 

synaptosomes were, again, pre-treated with different concentrations of Fluoxetine and its 

HK5C evoked GLU release was subsequently induced and measured. 1 M Fluoxetine 

treatment for 20 min at 37oC significantly reduced HK5C evoked release compared to the 

control, indicating that this concentration of the drug reduced normal release rather than 

increasing it. Both 200 nM and 100 nM Fluoxetine also reduced the exocytosis of GLU 

containing SVs although the reduction was not as great as with 1 M. With 60 nM 

Fluoxetine there was neither an inhibition or stimulation effect on HK5C evoked release 

so this release was to an equivalent level with the control, representing the normal release 

of the RRP and the RP. However, remarkably at 40 nM Fluoxetine, a significantly increase 

in HK5C evoked SV release was found. The amount of release was clearly above the non-
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drug treated condition and, therefore, such treatment appears to have induced a release of 

SVs derived from a pool distinct from the RRP and the RP; this release can be assumed to 

be from the SP. The SP was also evoked by HK5C following 20 nM Fluoxetine treatment, 

but the level of extra release seems to be slightly lower compared to 40 nM. A 5 nM drug 

treatment release appeared to be equivalent to the control so there was no extra release; 

this concentration of drug probably had no effect on any pathway. This would suggest that 

60 nM Fluoxetine may have both inhibiting action and a stimulatory action that cancel 

each other out. Overall, maximum release of the SP was observed by 40 nM Fluoxetine 

incubation for 20 min incubation prior to stimulation.  

Even though a 20 min 40 nM Fluoxetine treatment at 37oC appeared to allow the SP to be 

release, there was still a potential that the drug, by an unknown mechanism, may have 

promoted recycling, reloading, and re-releasing of the RRP and RP pool. This possibility 

was investigated through pharmacologically inhibiting the recycling, with Dynasore and 

Pitstop2TM. The results clearly demonstrated that the extra release observed was from the 

SP of SVs as both conditions prevented recycling pathways of the RRP and the RP but 

Fluoxetine was still able to allow HK5C to induce extra release. 

Having established that 40 nM Fluoxetine incubation for 20 min at 37oC appeared to make 

available the SP following stimulation, it was found that this treatment also allowed 

ION5C to evoke the SP and this was also not a result of recycling, reloading, and releasing 

as the stimulus was still able to induce an extra release under Dynasore and Pitstop2TM 

treatment. As these stimuli work by distinct means future experiments must help to 

ascertain the commonalities of their action on the SP. 

4.7.2 FURA-2 Assay 

It was apparent that the HK5C evoked [Ca2+]i has been reduced following the treatment 

with 1 M Fluoxetine compared to non-drug treated condition. Thus, it would be appear 

that 1 M Fluoxetine is reducing the level of calcium entering the nerve terminal and this 
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may consequently lead to a reduction, this could also possibly explain the reduced release 

in terminals treated with 100 nM and 200 nM ([Ca2+]i was not measured for this). Indeed, 

our observation could explain why Fluoxetine was dose-dependently reduced the level of 

release in the study by Jung et al (2014). This study used range of concentrations (0.9, 4.5, 

9, 18 M) of Fluoxetine and found out that the drug above the therapeutic dose (1 M) 

were dose-dependently inhibiting the neurotransmission (Jung et al, 2014) (see earlier 

comments about differences in the dose required between synaptosomes and hippocampal 

cultured cells). Intriguingly, in some other cases Fluoxetine has been found to increase the 

Ca2+ entry. For instance, Charles et al (2017) reported that Fluoxetine induces an elevation 

in the cytosolic Ca2+ concentration and eventually results in necrosis of the cancer cell. 

They have claimed that this showcases the potential of Fluoxetine to be used in the cancer 

therapy (Charles et al, 2017). However, the study used 100 M Fluoxetine which is much 

higher than used herein or used by Jung et al (2014). Nevertheless, results from other 

studies and the data obtained in current study demonstrate that Fluoxetine may require 

changes in [Ca2+]i levels under certain circumstance and this could be investigated further 

in the future.  

4.7.3 Bioenergetics  

It is clear from the bioenergetic results that neither 5 min incubation nor a 20 min 

incubation with 1 M Fluoxetine, disturbed the bioenergetics of the nerve terminals. These 

results confirm that the observed Fluoxetine induced effect on synaptic neurotransmission 

are not due to disturbance of synaptosomal bioenergetics. Furthermore, it also ensures that 

reduction in release of the recycling pool (RRP or RP) induced through 1 M Fluoxetine 

treatment is not a consequence of the off-target effect of the drug on energetic integrity of 

the terminals.    
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4.8 Future Studies 

4.8.1 Mechanism of Fluoxetine induced SP release 

This chapter has successfully established that 20 min incubation with 40 nM Fluoxetine is 

capable of allowing the SP to be released from synaptosomes following stimulation. There 

are several future studies that are required, including elucidating the exact mechanism of 

Fluoxetine that allows the evoked triggering of the SP release. SSRI drugs are believed to 

work through blocking serotonin uptake to into terminals, thereby, increasing the 

monoamine level in the synaptic cleft. However, the result from current study could 

suggest that the antidepressant effect of Fluoxetine may also involve glutamatergic 

neurotransmission, and furthermore, that SP exocytosis may contribute such 

antidepressant activity. The exact cause of depression is yet not fully understood but a 

widely accepted view is a lack of serotonin levels within the brain since the SSRI drugs, 

such as Fluoxetine, have managed to improve the symptoms of the patients. However, in 

this current study, Fluoxetine can allow extra exocytosis of GLU containing SVs from 

glutamatergic nerve terminals. Thus, it is possible that part of the antidepressant effect of 

drug may be derived from increasing the number of NT vesicles that can be stimulated to 

release and these effects would not be restricted to serotonergic terminals.  

Indeed, it has been reported theoretically that the antidepressant effect of Fluoxetine may 

not be restricted to causing serotonin uptake inhibition. For instance, Bymaster et al (2002) 

has demonstrated that Fluoxetine induced an elevation in the extracellular level of 

dopamine and on norepinephrine in the hypothalamus, cortex and prefrontal cortex 

(Bymaster et al, 2002). Previously it was reported that Fluoxetine inhibited 4AP evoked 

GLU release from the cerebral cortical synaptosomes mainly through attenuation of P/Q 

type calcium channels (Wang et al, 2003).  This result differs from herein as we use higher 

[Ca2+]e and stimuli that release both the RRP and the RP. Fluoxetine was also found to be 

able to regulate neuroplasticity even under the condition where 5HT transporters were 
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absent (Levy et al, 2019). Clearly, further investigations on the precise mechanism of 

Fluoxetine allowing evoked SP exocytosis in synaptosomes may help elucidate the 

complete pharmacology of Fluoxetine and this may help in the further understanding the 

pathology of the depression. Such advances may help accelerate the development on future 

treatment options for a patients suffering from depression. As to whether serotonergic 

pathways have contributed to the extra GLU release that can be induced need to be studied, 

one could investigate whether other SSRIs could support release on SP or investigate 

whether activation of presynaptic serotonin receptor could do this. Currently, this seems 

unlikely as compared to glutamatergic terminals there are very few serotonergic terminals 

to release enough serotonin to act on all glutamatergic terminals and this assumes that 

these all contain presynaptic serotonin receptors. 

4.8.2 Ca2+ dependency of Fluoxetine induced SP release 

This chapter has shown that 1 M Fluoxetine treatment (in both 5 and 20 min incubation) 

failed to support HK5C evoked SP release but it perturbed some release from the other 

recycling pools. Such treatment reduced the HK5C evoked [Ca2+]i. Thus, it is likely that 

1 M Fluoxetine treatment prevents some of the SVs from the recycling pools (RRP and 

RP) from releasing due to the attenuation of calcium entry into the nerve terminal.  In 

chapter 3 the Roscovitine action to support the evoked SP release, it has been shown that 

SP exocytosis involved the regulation of calcium entry. Further, treatment of the samples 

with PMA, a PKC activator, perturbed the Roscovitine induced ION5C evoked SP release, 

as did increasing the extracellular calcium level ([Ca2+]e)by using HK10C and HK20C. 

Thus, future experiments should include studying Fluoxetine with PKC regulating drugs, 

including PMA (PKC activator) and Go6983 (PKC inhibitor), and also employing higher 

[Ca2+]e. 

In the Roscovitine chapter, we have shown that inhibition of three distinct types of calcium 

channel blocks the Roscovitine action on HK5C evoked SP release but there was no 
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specificity observed as specific inhibition of each types of channel with toxins showed a 

similar result in that there was perturbation of the SP release. For Fluoxetine, some studies 

have implicated P/Q type calcium channels is in its action (Wang et al, 2003) whilst others 

have shown that Fluoxetine inhibits both L-type and N-type calcium channels (Deak et al, 

2000). On the other hand, it has been reported that major depression disorders involve L-

type calcium channel (Bhat et al, 2012) and others suggest that SSRI modulate synaptic 

plasticity through inhibition of L-type calcium channel and that this action was actually 

independent of 5-HT transporters (Norman et al, 2018; Alboghobeish et al, 2019). 

Therefore, it will be interesting to investigate whether Fluoxetine action on regulating the 

availability of the SP might involve the presence of various calcium channels, and 

importantly, if such action occurred through specific Ca2+ channels.  

4.8.3 Reversibility of Fluoxetine 

The use of FM 2-10 dye to study SP exocytosis has not been performed herein. This is 

because in order to load up the SP SVs with dye, one would have to pre-treat the terminals 

with either Fluoxetine or Roscovitine so that the SP is released and so could be labelled 

with the Fluorescence dye and following recycling, one would have labelled such SP SVs. 

However, Fluoxetine or Roscovitine would be needed to allow HK5C or ION5C to evoke 

the release of FM dye from the exocytosing SP of SVs. This may be complicated if such 

drugs can effect parts of the SV recycling cycle such that one may not be able to label SP 

SVs by this method. Possibly if drug actions are reversible then one could allow SP to be 

labelled and recycled and then re-load the drug; one could use one drug for pre-stimulation 

and the other drug for stimulation. 

The mode of the Fluoxetine triggered SP exocytosis has yet to be established. Two modes 

of release, KR and FF, operate through distinctive machineries, and thus exploration into 

the mode of SP release may also help with elucidating the exact properties of exocytosis 

from such vesicles. It is noteworthy that Ashton’s group has previously observed that 
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under non-drug treated conditions, stimulation with 4AP5C released only the RRP of SVs, 

with roughly half being via a KR mechanism and half being through FF during controls 

(see appendix Fig A5). ION5C and HK5C on the other hand, releases RRP exclusively by 

KR, and the RP exclusively by FF (see appendix 1). Further, Tsien’s group has reported 

that the mode of the release is dependent on position of the SVs with long-dwelling 

vesicles more likely to undergo the KR mode of the release (Park et al, 2012). Therefore, 

in the future study, one may be able to utilise FM 2-10 release assay and Fluoxetine to 

discover the mode of SP exocytosis. 

4.8.4 Phosphorylation 

The preliminary phosphorylation experiments on specific phosphorylation sites on Syn I 

has tried to correlate specific sites with release of the SP (see chapter 3). Clearly, an 

analogous study should be performed in which the SP is able to be released following 40 

nM Fluoxetine treatment. 

4.9 Conclusion 

In conclusion, a 20 min incubation at 37oC with 40 nM Fluoxetine provided the best 

condition for future studies for both HK5C and ION5C evoked SP release. 1 M 

Fluoxetine treatment resulted in a decrease of the release. This may due to this reducing 

the HK5C evoked [Ca2+]i.    
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5.1 Introduction 

There are finite numbers of SV in the nerve terminal, thus after exocytosis, vesicles must 

be recycled and prepared for the subsequent round of release. Therefore, vesicle recycling 

is vital to refill the pre-synaptic SV pools, sustaining transmitter release during continuous 

stimulation, and maintaining presynaptic morphological and structural integrity. In 

response to the dynamics of vesicle reutilisation, it has been argued that exocytosis can 

occur by at least two different mechanisms; full-collapse fusion (FF), and Kiss-and-run 

(KR) fusion. In FF, the FP quickly dilates/expands, which leads to complete flattening of 

the vesicle into the planar surface of the target membrane and which may lead to the lipid 

and protein contents of the vesicle mixing with that of the PM. In KR, the vesicle release 

its neurotransmitters through a narrow fusion pore, whilst maintaining its morphological 

shape (Alabi and Tsien, 2013) and subsequently the pore recloses and vesicle regains its 

integrity. 

These two fusion modes are distinctive to each other, especially in the way transmitter is 

exocytosed and the details of subsequent retrieval and reuse. Heuser and Reese have 

established a role for FF and clathrin-mediated endocytosis (CME) in vesicle cycling. In 

small terminals of CNS neurons, FF leaves vesicle components on the plasma membrane 

for ~15 sec on average before the membrane and protein are retrieved by CME at 

perisynaptic zone (Heuser and Reese, 1973, 1989).  

The biggest distinction of KR from FF is a rapid endocytic kinetics and the small size of 

the fusion pore formed during exocytosis. The recycling process after FF requires proteins 

such as clathrin and Dyn. Clathrin is a triskelion shaped scaffold protein, which through 

collaboration with adaptor proteins, invaginates the membrane containing vesicular 

components into clathrin-coated pits. These coated pits present on the PM for short 

duration, 1-2 sec, forming a narrow neck made out of lipids and/or proteins. This neck 

subsequently has to be detached from the membrane and the following role is performed 
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by Dyn (Rizzoli and Jahn, 2007). Dyn is a 100-KDa lipid-binding GTPase. It helps to 

pinch off the coated pit from the PM by oligomerising around the neck of clathrin pits in 

spirals. Dyn is a mechanoenzyme and during guanosine triphosphate (GTP) hydrolysis, its 

structural conformation changes, and this produces tension on the vesicle neck, 

consequently, destabilise the structure and this eventually leads to scission of the neck and 

consequently release of the coated vesicles (Hinshaw and Schmid, 1995; Sweitzer and 

Hinshaw, 1998; Hinshaw, 2000; Anantharam et al, 2011). If the coated vesicles has been 

formed from the SV content then as this vesicles moves away from the PM, clathrin and 

other scaffold proteins dissociate and the vesicle re-acidifies so it can subsequently refilled 

with NT. Clearly, Dyn has an important role in exocytosis and the regulation of the FP. 

However, it has been suggested that under specific stimulation conditions the regulation 

of the FP during KR can also be regulated through Dyn (Graham et al, 2002).  

Along with Dyn, several other proteins are suggested to play a role in the regulation of the 

exocytotic mode including NM-II (Chan et al, 2010; Papadopulos, 2017). Myosin is a 

motor protein that has been reported to be involved in controlling the availability of 

secretory granules. In the chromaffin cells, Myosin V and several members of NM-II gene 

family are expressed. Myosin V is known to be involved in the mobilisation of chromaffin 

granules from interior space of the cell to the periphery site, and following the arrival of a 

stimulus, it dissociates from the granules. NM-II motor function can be regulated by the 

phosphorylation of the regulatory light chain subunits. With the Ca2+ entry, MLCK is 

activated and this kinase phosphorylate NM-II to regulate its motor function, this is 

therefore a calcium dependent function (Chan et al, 2010). In the study on chromaffin cells 

from Neco et al (2002), Myosin was found to actively transport chromaffin granules into 

the sub-plasmalemmal area in the early stage of the exocytosis. It was established in this 

study that NM-II is pre-dominantly abundant in the cell periphery and, it was therefore, 

concluded that such a subtype may be contribute to the early events of exocytosis (Neco 

et al, 2002). In a subsequent study, this group further reported that NM-II may also be 
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involved in a later phase of exocytosis by regulating the kinetics of exocytotic pore 

expansion (Neco et al, 2004). Later, they suggested that NM-II works as a molecular motor 

on the FP expansion whose dilation is hindered when phosphorylation sites on NM-II are 

perturbed (Neco et al, 2008).  

Doreian et al (2008) have claimed that under low stimulation conditions, actin regulates 

the KR mode of release, and that following an increase in stimulation, the actin cortex gets 

disrupted and this leads to a switch of the mode to FF. Importantly, they discovered that 

NM-II activation is involved in the cytoskeleton-dependent regulation of the fusion mode 

as perturbation of NM-II led to continuous KR mode even under elevated stimulation 

(Doreian et al, 2008). Pharmacological disruption of the F-actin- NM-II network with 

Blebbistatin (inhibits NM-II ATPase activity) and JASP (stabilises actin microfilaments) 

has led to a slower single vesicle fusion kinetics and increased the distance between 

vesicles and the fusion site. This suggest that such interaction may have a key role in 

localisation of the SVs at AZ in nerve terminals and also may regulate the speed of the 

fusion events occurring (Vilanueva et al, 2012). 

We have discussed these proteins in some detail because the experiments in this chapter 

investigate the contribution of some of these molecules in the regulation of the mode of 

exocytosis. 

5.2 The effect of the Dyn inhibitor MITMAB on the mode of release 

Dyn is known to regulate the KR mode of SV exocytosis. Dynasore is a drug used to block 

GTPase activity of Dyn and pharmacologically inhibits its action. It has been previously 

found that Dynasore treatment has led to the switch of mode from KR to FF for the RRP 

of SVs under certain stimulation conditions (Bhuva, 2015, Singh, 2017; see appendix 1 

Fig A7). This clearly tells us that Dyn does indeed have a role in one type of KR release. 

However, it is unknown whether Dyns that are already present on membranes regulate the 

KR mode of exocytosis or whether Dyn has to translocate to the membrane during 
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exocytosis and only then regulate the exocytotic mode. This can be tested by using the 

drug MITMAB. MITMAB prevents Dyn translocating from the cytosol to membranes, i.e. 

it stops Dyn binding to membrane (i.e. Quan et al, 2007; Linares-Clemente et al, 2015). 

This drug prevents Dyn binding to phospholipids in membranes because it perturbs the 

pleckstrin homology (PH) domain present in Dyn. The use of MITMAB should reveal 

whether Dyn has to be translocated to membranes to regulate the mode or whether Dyn 

already on membrane can do this. 

5.2.1 MITMAB does not change the HK5C, ION5C, 4AP5C evoked 

GLU release 

Synaptosomes were pre-treated with 30 M MITMAB (5 min at 37oC) and subsequently 

GLU release evoked by three different stimuli (4AP5C, HK5C, ION5C) was measured. It 

is apparent from the results obtained that MITMAB treatment did not affect the release 

induced by 4AP5C (Fig 5.1a), HK5C (Fig 5.1b) or ION5C (Fig 5.1c). Note that 4AP5C 

only evokes release from RRP whilst HK5C and ION5C can trigger the release from both 

the RRP and RP, thus, these results prove that MITMAB does not change the amount of 

release from either the RRP or RP. 
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Figure 5.1. MITMAB does change the amount of release from either the RRP or RP. Evoked 

GLU release induced by a) 4AP5C b) HK5C c) ION5C in control and 30 M MITMAB 

treated terminals. Data are mean ± SEM, N=3 independent experiments. Note that there were 

no significant difference (P>0.05) in release amounts between drug treated and non-drug 

treated terminals for any of the stimuli employed. 
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5.2.2 MITMAB does not interfere with Dyn dependent KR 

pathway 

MITMAB has been found not to affect the GLU release induced by the three stimuli 

employed. Therefore, we tested if it has any impact on the mode of the release by using 

the FM dye release assay. Synaptosomes were loaded with FM 2-10 dye, treated with 

MITMAB and FM dye release was evoked by HK5C and ION5C. Clearly, MITMAB does 

not affect the amount of FM dye release evoked by either HK5C (Fig 5.2a) or ION5C (Fig 

5.2b) and, therefore, there is no mode switching to FF as there is no extra dye release. This 

implies that inhibition of Dyn translocation to membranes by MITMAB did not affect the 

Dyn dependent KR pathway normally activated by ION5C (appendix 1 Fig A5), which 

means that Dyn already present on membrane must regulate the KR mechanism. As HK5C 

works on the NM-II dependent KR pathway (appendix 1 Fig A5, A8, A9) one might have 

expected MITMAB not to have an affect but it was an important control experiment to 

perform. 
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Figure 5.2. No mode switching to FF has been found following MITMAB treatment in either 

stimuli employed. FM 2-10 dye release evoked by a) HK5C b) ION5C in the presence or 

absence of 30 M MITMAB. Data are mean ± SEM, N=4 independent experiments. Note that 

there were no significant difference (P>0.05) between control and MITMAB treated condition 

for both HK5C and ION5C evoked release. 

5.2.3 MITMAB does not perturb calcium entry evoked by HK5C 

or ION5C 

Changes in intracellular calcium level ([Ca2+]i) were measured to make sure calcium entry 

induced by the stimuli has not been changed by the drug treatment. Synaptosomes were 

pre-treated with MITMAB and stimulated with HK5C (Fig 5.3) and ION5C (Fig 5.4) 

evoked [Ca2+]i measured. Clearly, calcium entry induced by either stimuli was not 

24 
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affected by the drug treatment, as the [Ca2+]i was similar in control and drug treated 

terminals. From such results we can conclude that MITMAB does not stop the Dyn 

dependent KR release, and does not interfere with the Dyn mediated KR mode. 

 

Figure 5.3. HK5C evoked [Ca2+]i was not changed with MITMAB treatment. [Ca2+]i induce 

by HK5C in control and 30 M MITMAB treated terminals. Data are mean ± SEM, N=3 

independent experiments; There is no significant difference (P>0.05) for the data points for 

the 2 conditions.  

 

Figure 5.4. ION5C evoked [Ca2+]i was not changed with MITMAB treatment.[Ca2+]i 

induced by ION5C in control and 30 M MITMAB treated terminals. Data are mean ± SEM, 

N=3 independent experiments; There is no significant difference (P>0.05) between drug-free 

and drug-treated terminals. 
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5.3 Inhibition of endogenous PKA perturbs the Dyn dependent KR 

mechanism for the RRP SVs but not the NM-II dependent KR 

pathway 

Dyn I has a key role in regulation of a KR mode of exocytosis. However, an exact 

mechanism of this regulation is not understood. SV endocytosis can be regulated by a set 

of proteins that collectively are termed dephosphins. The dephosphins are phosphorylated 

in nerve terminals, whilst they are dephosphorylated during endocytosis, and their 

subsequent rephosphorylation after endocytosis is vital for regulation of SV recycling and 

thus synaptic transmission. Dyn I is one of these dephosphins and during endocytosis, it is 

dephosphorylated by calcineurin and subsequently gets re-phosphorylated at certain serine 

residues (Robinson, 1991; Robinson et al, 1994; Simillie and Cousin, 2005; Graham et al, 

2007). Thus, it is important to investigate the role of phosphorylation of Dyn in regards to 

the contribution of this protein to the KR mode of release.  

Originally, PKC was shown to be a major kinase phosphorylating Dyn (Robinson, 1991, 

1992, Powell et al, 2000) and Ashton’s group has recently highlighted some evidence for 

PKC dependent Dyn I phosphorylation regulating the mode of release, although, such data 

also indicated other kinases maybe involved (Bhuva, 2015; Singh, 2017). Protein kinase 

A (PKA) could be one such kinase that could regulate the Dyn activity. PKA is activated 

following rise of cytosolic cyclic-AMP (cAMP) levels, it is present in nerve terminals, and 

it phosphorylates serine and threonine residues of target proteins. Thus, it could potentially 

regulate the mode of exocytosis by the phosphorylation of Dyn I at specific sites (Nguyen 

and Woo, 2003; Seino and Shibasaki, 2005; Park et al, 2014). Herein, we investigated the 

PKA dependency of the KR mode.  
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5.3.1 PKA inhibition with KT5720 does not affect GLU release 

evoked by 4AP5C, HK5C or ION5C. 

Before studying the mode of exocytosis, one needed to establish whether PKA inhibition 

could affect the GLU release itself. Synaptosomes were treated with the PKA inhibitor, 

KT5720 (Murray, 2008), and GLU released with various stimuli (4AP5C, HK5C, and 

ION5C) was subsequently measured. 2 M KT5720 failed to modify the amount of GLU 

release evoked by 4AP5C (Fig 5.5a), HK5C (Fig 5.5b) or ION5C (Fig 5.5c).  
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Figure 5.5. PKA inhibition does not affect GLU release evoked by either stimuli employed. 

GLU release evoked by a) 4AP5C b) HK5C c) ION5C in control and 2 M KT5720 treated 

terminals. Data are mean ± SEM, N=3 independent experiments. However, there was no 

significant difference (P>0.05) between the control and drug treated terminals for any stimuli 

employed. 
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5.3.2 KT5720 treatment switches 4AP5C and ION5C induced 

release to FF but HK5C induced mode of the release remains 

unchanged 

FM dye release experiments were performed for all three stimuli following PKA inhibition 

with KT5720. Intriguingly, for 4AP5C (Fig 5.6a) and ION5C (Fig 5.6b) there is an 

increase in FM dye release and this indicates that the RRP SVs have been fully switched 

to a FF mode. However, for HK5C (Fig 5.6c) stimulation, there was no extra release and 

the FM dye release was similar to the non-drug treated control, indicating that the drug 

treatment has not switched the RRP mode. From previous work, it is known that 4AP5C 

and ION5C evoke KR release through a Dyn-dependent pathway, whilst HK5C acts 

through a NM-II dependent pathway (Bhuva, 2015; Singh, 2017; see appendix 1). 

Therefore, these results might suggest that PKA inhibition with KT5720 switches the Dyn 

dependent KR mode to FF but it does not affect the NM-II dependent KR mode. 
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Figure 5.6. PKA inhibition switches 4AP5C and ION5C induced release to FF but HK5C 

induced mode of release was unchanged. FM dye release evoked by a) 4AP5C b) ION5C c) 

HK5C in the presence or absence of 2 M KT5720. Data are mean ± SEM, N=4 (a, c) and 5 

(b) independent experiments. There was a significant difference (P<0.05) between control and 

KT5720 treated conditions for 4AP5C and ION5C evoked release but there was no significant 

difference (P>0.05) for HK5C evoked release (Note that significance measured for 

representative time points throughout time course i.e. every 10 sec). 
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In fact, similar results were previously obtained after synaptosomes were treated with 

Dynasore, which inhibits the GTPase activity of Dyn. In this case, the Dyn dependent KR 

was switched to a FF mode (such results are shown in Fig 5.7 so one can compare to Fig 

5.5 and Fig 5.6). Whilst, Dynasore treatment did not affect the GLU release for all stimuli 

(Fig 5.7 a-c), it was apparent that 4AP5C (Fig 5.7 d) and ION5C (Fig 5.7 e) evoked FM 

dye amount increased due to a release were switch to FF of the RRP whilst HK5C (Fig 5.7 

f) evoked dye release remain unchanged. Results from KT5720 experiments, in 

combination with these Dynasore results, demonstrate that the PKA inhibition perturbs the 

distinct KR mode depending on which stimulus has been employed. One can hypothesise 

that the inhibition of endogenous PKA leads to a switch of the Dyn dependent KR to FF, 

but this has no effect on the NM-II dependent KR mode induced by HK5C. 
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Figure 5.7. GLU and FM dye results when Dyn is inhibited produce similar result to when 

PKA is inhibited. GLU release evoked by a) HK5C b) ION5C c) 4AP5C and FM dye release 

evoked by d) HK5C e) ION5C f) 4AP5C evoked FM dye release in the control or 160 M 

Dynasore treated terminals. Data are mean ± SEM of numerous experiments. Note for GLU 

release there was no significant difference (P>0.05) between control and Dynasore treated 

conditions on for any stimulus. For FM-dye assay, HK5C evoked release was unchanged but 

ION5C and 4AP5C evoked release were significantly changed compared to controls. Note this 

figure was supplied by A.Ashton and was included so one can compare to the previous 2 

figures. It is actually the same figure as A7 that in appendix 1. However, it was included here 

for easier comparison. 
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5.4 Conditions under which HK5C evokes Dyn dependent KR of 

the RRP depends upon active endogenous PKA 

The hypothesis is that the inhibition of endogenous PKA leads to a switch of the Dyn 

dependent KR to FF, thus, HK5C action on NM-II KR is not perturbed. This can be further 

verified if HK5C is switched so that it acts on the Dyn dependent pathway instead of the 

NM-II dependent pathway. Fortunately, we can switch the action of HK5C as it was 

previously observed that PKC inhibition with Go6983 changed the pathway HK5C work 

through to induce a release, such that HK5C is now working through Dyn dependent 

pathway instead of NM-II dependent pathway (Bhuva, 2015; Singh, 2017; see appendix 1 

Fig A 11 and A12).  

5.4.1 KT5720 had no effect on HK5C evoked GLU release in 

Go6983 treated synaptosomes 

Synaptosomes were pre-treated with Go6983 and KT5720 and subsequently HK5C 

evoked GLU release was measured. The GLU release was not perturbed under this dual 

drug treatment as the levels of release were virtually the same as for the non-drug treated 

condition (Fig 5.8). 
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Figure 5.8. KT5720 had no effect on HK5C evoked GLU release in Go6983 treated 

synaptosomes. HK5C evoked GLU release from control and 1 M Go6983 plus 2 M KT5720 

treated terminals. Data are mean ± SEM, N=4 independent experiments; P <0.05 is used as a 

sign of significant difference. However, there was no significant difference of release between 

control and Go6983 plus KT5720 treated terminals. 

 

5.4.2 HK5C evoked FM dye release switch to FF in terminals co-

treated with Go 6983 and KT5720 

It was previously hypothesised that HK5C evoked KR release is unchanged because PKA 

inhibition only affects Dyn dependent pathway. Go6983 treatment causes HK5C 

stimulation to stop operating through NM-II dependent pathway and switch to Dyn 

dependent pathway for the KR of the RRP. Indeed, it was found that pre-treatment with 

Go6983 and KT5720 has led to an increase in HK5C evoked FM dye release 

demonstrating a change of the RRP SVs releasing mode from KR to FF (Fig 5.9). Such 

results confirm the suggestion that PKA only affects the Dyn dependent KR pathway since 

HK5C working through the Dyn dependent pathway is also switched to FF just like for 
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ION5C and 4AP5C; this also indicates that FM results were not limited to a particular 

action of a specific stimulus.  

 

Figure 5.9. Dual treatment of synaptosomes with Go6983 and KT5720 switches HK5C evoked 

FM dye release to FF. HK5C evoked FM dye release in the presence of 1 M Go6983 plus 2 

M KT5720 compared to non-drug treated control. Data are mean ± SEM, N=4 independent 

experiments; Note that there were significant difference of release between control and double 

drug treated conditions (P<0.05). 

 

5.5 The effect of Calcium channel blockers on NM-II and Dyn 

dependent regulation of RRP SV mode 

Specific calcium channel dependencies of the release mode is an important area to address. 

A.Ashton’s group has previously observed that at least one KR mode of exocytosis is 

dependent on L-type calcium channel. Various voltage dependent calcium channels were 

blocked by pre-incubating synaptosomes; 1 M NIF blocked L-type channels; 1 M 

CONO blocked N-type channels; 50 nM AGA blocked P/Q-type channels. In these 

preliminary observations it was found that HK5C evoked [Ca2+]i decreased after blocking 
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all of these types of calcium channel (AGA, CONO, NIF) (Fig 5.10 a-c). However, no 

calcium channel inhibitors have actually perturbed HK5C evoked GLU release (Fig 5.10 

d-f); this indicates that despite a reduction in HK5C evoked [Ca2+]i there was still 

sufficient Ca2+ entering to enable the RRP and RP SVs to exocytose. However, for HK5C 

evoked FM 2-10 dye release there was only extra FM dye release – because the KR mode 

of the RRP has switched to FF - for L-type calcium channel blockade (Fig 5.10 i), whilst 

P/Q-type (Fig 5.10 g) and N-type (Fig. 5.10 h) channel inhibition did not perturb the KR 

mode evoked by HK5C. Overall, it was initially concluded that the KR of the RRP is pre-

dominantly regulated through L-type calcium channels. However, it has now been realised 

that this result actually applies to the NM-II dependent KR pathway as it utilises HK5C 

which works through this pathway. ION5C acts through the Dyn dependent pathway, but 

as ION5C is an ionophore that bypasses the calcium channel requirement, one could not 

utilise this stimulus to investigate the Dyn dependent pathway. However, it is possible to 

investigate Dyn dependent pathway using HK5C under conditions in which it works via 

this pathway by inhibiting PKC (see above). PKC inhibition with Go6983 changes the 

HK5C evoked KR from the NM-II dependent KR pathway to the Dyn dependent KR 

pathway. 
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Figure 5.10. L-type Ca2+ channel regulates NM-II dependent KR pathway. HK5C evoked 

changes in a-c) [Ca2+]i d-f) GLU, and g-i) FM dye in the absence or presence of 50 nM AGA, 

1 M CONO, and 1 M NIF. Data are mean ± SEM; P>0.05 for a, b, c, i and P<0.05 for d, e, 

f, g, h. Note that there was a significant difference between NIF treated condition and control 

for FM dye release representing the switch of releasing mode from KR to FF following L-type 

calcium channel inhibition. Note this data was produced by A.Ashton and is included here for 

comparison with HK5C stimulation in the presence of Go6983. It could have been included 

in the appendix but it was felt that it was easier to compare this with Fig 5.11, 5.12 and 5.13 

if shown in this location. 
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5.5.1 HK5C evoked [Ca2+]i is reduced by specific calcium channel 

blockers in Go6983 treated terminals 

Inhibition of P/Q-type (Fig 5.11 a), N-type (Fig 5.11 b), or L-type (Fig 5.11 c) calcium 

channels in Go6983 treated terminals resulted in the reduction of HK5C evoked [Ca2+]i 

compared to terminals just treated only with Go6983. These data are similar to results 

shown above (Fig 5.10 a-c), and this suggests that the presence of Go6983 does not change 

the calcium channel blocker action.  
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5.5.2 Calcium channel inhibition did not affect the HK5C evoked 

GLU release in Go6983 treated terminals 

P/Q-type calcium channel inhibition with AGA (Fig 5.12 a) in the presence of Go6983 did 

not perturb the HK5C evoked GLU release as the release amount was similar to that in 

terminals only treated with Go6983. This was also found when N-type calcium channels 

were blocked with CONO (Fig 5.12 b) or when L-type calcium channels were blocked 

with NIF (Fig 5.12 c). These data are similar to that previous found in terminals not treated 

with Go6983 (Fig 5.10 d-f). Thus the PKC inhibition does not produce variation on the 

action of blockade of these Ca2+ channels on HK5C evoked GLU release. 
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5.5.3 P/Q type calcium channel inhibition changed Dyn dependent 

HK5C evoked release from KR mode to FF 

HK5C evoked FM dye release was measured in synaptosomes treated with Go6983 and 

each type of calcium channel blocker. In the presence of AGA with Go6983 (Fig 5.13 a), 

HK5C evoked FM dye release was significantly increased, whilst inclusion of CONO (Fig 

5.13 b) or NIF (Fig 5.13 c) produced virtually the same amounts of release relative to 

treatment with Go6983 alone (control). These data demonstrate that under Go6983 

treatment, when HK5C is now regulating Dyn dependent KR mode, only P/Q-type calcium 

channel inhibition has led to the changing of the releasing mode from KR to FF. Thus, it 

would appear that the Dyn dependent KR mode is regulated by P/Q-type calcium channels. 

Taken together, these results in combination with the data obtained from condition in the 

absence of Go6983, wherein HK5C is regulating NM-II dependent KR mode, allows one 

to propose that NM-II dependent KR is regulated through L-type calcium channel whilst 

P/Q-type calcium channel is mediating Dyn dependent KR mode. This is extremely 

important as these two distinction between these 2 KR modes may indicate that they are 

separate KR modes and that Dyn and NM-II are not working to regulate the same pathway. 
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5.5.4 Go6983 treatment does not interfere with switching of the 

RRP mode 

HK5C evoked FM dye release was discovered to only increase when L-type calcium 

channels is inhibited, whilst in the presence of Go6983 only perturbation of P/Q-type 

calcium channels have produced similar phenomenon. These results can be interpreted as 

that when HK5C is regulating KR through NM-II dependent pathway, L-type calcium 

channel is required, but when HK5C is regulating through Dyn dependent pathway, P/Q-

type calcium channel is needed. Nevertheless, there is still a possibility that PKC inhibition 

might interfere with switching of the RRP mode, meaning the result might not represent 

the calcium channel dependent regulation of the releasing modes. 

Luckily, this can be checked using Okadaic acid (OA), a phosphatase inhibitor that has 

been found to increase the SV mobility in the terminal (i.e. Betz and Henkel, 1994). It was 

also shown to switch all RRP SVs exocytosis from a KR to a FF mode (Bhuva, 2015; 

Singh, 2017; see also appendix 1 Fig A5, A6). OA inclusion in Go6983 treated 

synaptosomes vs Go6983 alone control have revealed that there was an increase in the FM 

dye release in the presence of OA (Fig 5.14), reflecting that treatment with OA has 

changed the RRP SV mode to undergo FF. Clearly, Go6983 does not interfere with OA 

induced FF mode. Furthermore, OA treatment still allows FF of the RRP in Go6983 treated 

terminals treated with CONO (Fig 5.15), and NIF (Fig 5.16). Lastly, comparison between 

Go6983 plus OA versus Go6983 plus OA plus AGA (Fig 5.17) shows that OA and AGA 

work on the same RRP SVs as both treatments induced maximum release of the FM dye, 

confirming there is no additivity of effect when both treatments are applied and indicating 

that they work on the same pool. 
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Figure 5.14. OA treatment switches FM dye release mode to FF. HK5C evoked FM dye release 

in terminals treated with 1 M Go6983 (control) or 1 M Go6983 plus 0.8 M OA. Data are 

mean ± SEM, N=3 independent experiments; P<0.05. 

Figure 5.15. The RRP SVs can be switched to FF when OA is included in Go6983 plus 

CONO treated termianls. HK5C evoked FM dye release in the presence of 1 M Go6983 

(control) or 1 M Go6983 plus 0.8 M OA plus 1 M CONO. Data are mean ± SEM, N=1 

independent experiments; This is a representative experiment.  
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Figure 5.16. The RRP SVs can be switched to FF when OA is included in Go6983 plus NIF 

treated termianls. HK5C evoked FM dye release in the presence of 1 M Go6983 (control) or 

1 M Go6983 plus 0.8 M OA plus 1 M NIF. Data are mean ± SEM, N=1 independent 

experiments; This is a representative experiment. 

 

Figure 5.17. Synaptosomes treated with Go6983 plus AGA were already releasing in FF mode. 

HK5C evoked FM dye release in the presence of 1 M Go6983 plus 0.8 M OA or 1 M 

Go6983 plus 50 nM AGA. Data are mean ± SEM, N=2 independent experiments. Note that 

there is not much difference in the release between OA plus Go6983 condition and Go6983 

plus AGA. 
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5.6 Bioenergetics 

Several drugs have been employed in this chapter whilst investigating the properties of the 

exocytotic mode; MITMAB, KT5720; Go6983; AGA; CONO; NIF; OA. It is important 

to ascertain that these drugs do not have non-specific off-target effects that may disturb 

the bioenergetics of the nerve terminals. We carried out an XF Cell Mito stress test using 

the Seahorse XFp machine on each drug treated condition. Through comparison with non-

drug treated condition, such protocols can reveal whether a drug treatment had any impact 

on the bioenergetics of synaptosomes. 
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5.6.1 MITMAB 

The acute treatment with 30 M MITMAB for 5 min failed to significantly disturb any of 

the parameters except from a small effect on non-mitochondrial respiration (Fig 5.18, Fig 

5.19 a-f) which has nothing to do with the normal mitochondrial respiratory capacity. 

 

 

Figure 5.18. Synaptosomal bioenergetics were unaffected by 30 M MITMAB treatment. 

The effect of 30 M MITMAB on the bioenergetics of synaptosomes. The experiment was 

done three times and the mean values represent an average of 9 independent measurements 

and error bars represent the SD; P>0.05.  
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Figure 5.19. 30 M MITMAB treatment did not perturb most of bioenergetics parameters 

measured as it looks similar to those for the controls. The effect of a 5 min pre-incubation 

with 30 M MITMAB on (A) basal respiration, (B) ATP production, (C) spare capacity, (D) 

maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial respiration in 

synaptosomes. The histobars represent the mean and the error bar shows the SEM. 
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5.6.2 KT5720 

Treatment with KT5720 had a small effect on basal respiration, however, all other 

parameters remained at similar level with the non-drug treated condition (Fig 5.20, Fig 

5.21 a-f) and as such this drug does not really perturb the nerve terminals. 

 

Figure 5.20. Synaptosomal bioenergetics were unaffected by 2 M KT5720 treatment. The 

effect of 2 M KT5720 on the bioenergetics of synaptosomes performed at 37oC. The 

experiment was done three times and the mean values represent an average of 9 

independent measurements and error bars represent the SD; P>0.05.  
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Figure 5.21. 2 M KT5720 treatment did not perturb most of bioenergetics parameters 

measured as it looks similar to those for the controls.The effect of 2 M KT5720 on (A) 

basal respiration, (B) ATP production, (C) spare capacity, (D) maximal respiration, (E) 

Proton leakage, and (F) Non-mitochondrial respiration in synaptosomes. The histobars 

represent the mean and the error bar shows the SEM. 
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5.6.3 Go6983 plus KT5720 

Treatment with Go6983 alone has been shown in chapter 3 to have no effect on the 

bioenergetics (see Fig 3.38 and 3.39). The dual treatment of 1 M Go6983 with 2 M 

KT5720 did not disturb any of the bioenergetics parameters of the synaptosomes (Fig 5.22, 

Fig 5.23 a-f). 

 

Figure 5.22. Synaptosomal bioenergetics were unaffected by dual treatment of 1 M Go6983 

and 2 M KT5720. The effect of 1M Go6983 plus 2 M KT5720 on the bioenergetics of 

synaptosomes. The experiment was done three times and the mean values represent an 

average of 7-8 independent measurements and error bars represent the SD; P>0.05. 
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Figure 5.23. 1 M Go6983 and 2 M KT5720 dual treatment did not perturb any 

bioenergetics parameters measured as it looks similar to those for the controls. The effect of 

1M Go6983 plus 2 M KT5720 on (A) basal respiration, (B) ATP production, (C) spare 

capacity, (D) maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial 

respiration in nerve terminals. The histobars represent the mean and the error bar shows 

the SEM. 
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5.6.4 Go6983 plus AGA 

Treatment of synaptosomes with both 1 M Go6983 and 50 nM AGA failed to 

significantly change any of the parameters (Fig 5.24, Fig 5.25 a-f). 

 

Figure 5.24. Synaptosomal bioenergetics were unaffected by 1 M Go6983 and 50 nM AGA 

dual treatment. The effect of 1M Go6983 plus 50 nM AGA on the bioenergetics of 

synaptosomes. The experiment was done three times and the mean values represent an 

average of 8 independent measurements and error bars represent the SD; P>0.05. 
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Figure 5.25. 1 M Go6983 and 50 nM AGA dual treatment did not perturb any 

bioenergetics parameters measured as it looks similar to those for the controls. The effect of 

1M Go6983 plus 50 nM AGA on (A) basal respiration, (B) ATP production, (C) spare 

capacity, (D) maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial 

respiration on synaptosomes. The histobars represent the mean and the error bar shows the 

SEM. 
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5.6.5 Go6983 plus NIF 

Bioenergetics of synaptosomes are unaffected by the double treatment of 1 M Go6983 

and 1 M NIF as none of the parameters measured were significantly changed compared 

to control following the drug treatment (Fig 5.26, Fig 5.27 a-f).  

 

Figure 5.26. Synaptosomal bioenergetics were unaffected by 1 M Go6983 and 1 M NIF dual 

treatment. The effect of 1M Go6983 plus 1M NIF on the bioenergetics of synaptosomes. 

The experiment was done three times and the mean values represent an average of 9 

independent measurements and error bars represent the SD; P>0.05. 
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Figure 5.27. 1 M Go6983 and 1 M NIF dual treatment did not perturb any bioenergetics 

parameters measured as it looks similar to those for the controls. The effect of 1M Go6983 

plus 1M NIF on (A) basal respiration, (B) ATP production, (C) spare capacity, (D) 

maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial respiration in 

synaptosomes. The histobars represent the mean and the error bar shows the SEM. 
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5.6.6 OA 

The acute treatment with OA slightly affected basal respiration of the synaptosomes, 

however all the other parameters were remained at the similar level with control condition 

(Fig 5.28, Fig 5.29 a-f) and overall the synaptosomes were very similar in the drug treated 

and non-treated terminals. 

 

Figure 5.28. Synaptosomal bioenergetics were unaffected by 0.8 M OA treatment. The 

effect of 0.8 M OA on the bioenergetics of synaptosomes. The experiment was done three 

times and the mean values represent an average of 6 independent measurements and error 

bars represent the SD; P>0.05. 
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Fig 5.29. 0.8 M OA treatment did not perturb most of bioenergetics parameters measured 

as it looks similar to those for the controls. The effect of 0.8 M OA on (A) basal respiration, 

(B) ATP production, (C) spare capacity, (D) maximal respiration, (E) Proton leakage, and 

(F) Non-mitochondrial respiration in synaptosomes. The histobars represent the mean and 

the error bar shows the SEM. 
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5.6.7 Go6983 plus OA 

The acute treatment of synaptosomes with 1 M Go6983 plus 0.8 M OA failed to disturb 

any of the bioenergetics parameters (Fig 5.30, Fig 5.31 a-f). 

 

Figure 5.30. Synaptosomal bioenergetics were unaffected by 1 M Go6983 and 0.8 M OA 

dual treatment. The effect of 1M Go6983 plus 0.8M OA on the bioenergetics of 

synaptosomes. The experiment was done two times and the mean values represent an 

average of 5 independent measurements and error bars represent the SD; P>0.05. 
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Figure 5.31. 1 M Go6983 and 0.8 M OA dual treatment did not perturb any bioenergetics 

parameters measured as it looks similar to those for the controls. The effect of 1M Go6983 

plus 0.8M OA on (A) basal respiration, (B) ATP production, (C) spare capacity, (D) 

maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial respiration in 

synaptosomes. The histobars represent the mean and the error bar shows the SEM. 
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# Figure 

# 

Assays Stimulus Drugs 

employed 

(conc.) 

Key findings 

1 5.1-5.4 GLU, 

FM, 

Fura-2 

HK5C, 

ION5C 

MITMAB (30 

M) 

Inhibition of Dyn translocation with 

MITMAB treatment produced no 

difference in all assays employed. 

This means, Dyn, already present on 

membrane, regulates the KR 

mechanism of exocytosis. 

2 5.5-5.7 GLU, 

FM, 

Fura-2 

4AP5C, 

HK5C, 

ION5C 

KT5720 (2 

M) 

Dynasore (160 

M) 

Inhibition of endogenous PKA with 

KT5720 perturbs the Dyn dependent 

KR (stimulated with ION5C) 

mechanism for the RRP SVs but not 

the NM-II dependent KR pathway 

(stimulated with HK5C). Similar 

results were previously found when 

Dyn was inhibited with Dynasore 

and stimulated with various stimulus. 

Thus, the hypothesis was made 

predicting that the inhibition of 

endogenous PKA leads to a switch of 

the Dyn dependent KR to FF, which 

explains why HK5C action on NM-II 

KR is not perturbed. 

3 5.8-5.9 GLU, 

FM, 

Fura-2 

HK5C KT5720 (2 

M), Go6983 

(1 M) 

Go6983 was used to switch HK5C to 

work through Dyn dependent KR 

pathway instead of NM-II dependent 

KR pathway. It was found that pre-

treatment with Go6983 and KT5720 

changed the mode of release to FF, 

confirming the suggestion that PKA 

only affect the Dyn dependent KR 

pathway. It also indicates that FM 

results were not limited to a 

particular action of a specific 

stimulus. 

4 5.10-

5.17 

GLU, 

FM, 

Fura-2 

HK5C CONO (1 M), 

AGA (50 nM), 

NIF (1 M), 

Go6983 (1 

M), OA (0.8 

M) 

HK5C evoked FM dye release was 

discovered to only increase when L-

type calcium channels is inhibited, 

whilst in the presence of Go6983, 

only perturbation of P/Q-type 

calcium channels have produced 

similar phenomenon. These results 

may imply that L-type is required for 

NM-II dependent KR pathway whilst 

P/Q-type is needed for Dyn 

dependent KR pathway. This was 

also ascertained using OA. 

5 5.18-

5.31 

Bio  All drugs tested 

in this chapter 

Under any drug treatment, the 

bioenergetics parameters were 

virtually at the similar level to that of 

the control, meaning no disturbance 

of bioenergetics from the drugs 

employed were identified.  

Figure 5.32. Summary of the findings in chapter 5. 
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5.7 Discussion 

The mode of release is dependent on various protein activities. For instance, when a SV is 

releasing in a KR mode, fission of the FP should be performed so that the vesicle does not 

fully flatten into the membrane. This fission maybe involve Dyn activity. Dyn may aid in 

the scissoring of the FP formed between SV and PM by oligomerising into a spiral around 

the FP as it does for forming clathrin pits in CME following FF. However Dyn’s precise 

role in KR has not been elucidated. Several lines of evidence have found that in the absence 

of Dyn, the KR mode of exocytosis is attenuated. In this chapter, investigation into several 

properties of the mode of release of the RRP have been described. We have employed 

several drugs, such as as MITMAB, KT5720, Go6983, AGA, CONO, NIF, and OA to 

explore how activity of various proteins could affect the regulation of the mode.  

5.7.1 MITMAB 

Dyn is important in regulating one type of KR mode for SV exocytosis. For investigation 

of the role of this protein, Dynasore, which blocks GTPase activity of Dyn and thereby 

pharmacologically inhibit its action, can be used. It has been previously found by Ashton’s 

group that Dynasore treatment has led to switch of Dyn dependent mode from KR to FF, 

demonstrating pivotal role of Dyn in controlling the KR mode of the release. However, it 

was unclear whether Dyn had to translocate to a membrane compartment (either the PM 

or the vesicle membrane) prior to the fusion or whether Dyn already present on the 

membrane could regulate the mode. MITMAB is a drug that stops Dyn translocating from 

cytosol to membranes by stopping Dyn binding to the phospholipid in membranes (Quan 

et al, 2007). Therefore this drug was employed to test whether it would interfere with the 

Dyn dependent KR mode of exocytosis. MITMAB treatment was found not to affect the 

GLU release stimulated using HK5C, ION5C, and 4AP5C. Further, it was clear that the 

drug does not interfere with Dyn dependent KR pathway when FM dye release was 

measured. In addition, MITMAB treatment had negligible effects on evoked [Ca2+]i. 
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These finding suggest that Dyns are not required to translocate to a membrane 

compartment from the cytosol prior to SV exocytosis of the RRP via KR. These results do 

not indicate where exactly Dyn is localised to mediate the FP closure – during Dyn 

dependent KR - but some of the potential locations include the membrane of the SVs 

themselves or at the PM in the AZ. In unpublished observations, A.Ashton has shown that 

MITMAB does prevent the recycling of those SV that undergo FF indicating that the drug 

is active (as was shown by Quan et al, 2007). 

5.7.2 PKA 

Clearly, Dyn can play a role in the regulation of a KR mode of the RRP of SVs as inhibiting 

its GTPase activity induces Dyn dependent KR to switch to FF. Thus it is important to 

investigate processes that allowed Dyn to regulate the mode of release. Dyn is a substrate 

of numerous kinases, and one approach that could be undertaken would be the 

investigation of which kinases may cause switch in the Dyn dependent KR mode. Apart 

from PKC (see thesis by Bhuva, 2015; Singh, 2017) PKA could potentially regulate Dyn 

I activity as regards KR. Towards this, we employed KT5720, an inhibitor of endogenous 

PKA, to investigate the mode of release. 4AP5C and ION5C evoked FM dye releases were 

significantly increased in the presence of KT5720, reflecting the changes of mode from 

KR to FF. However, HK5C evoked release remained unchanged. These data demonstrate 

that PKA inhibition does not affect HK5C evoked FM dye release. This is intriguing 

because it is known that ION5C regulates KR through a Dyn dependent pathway whilst 

HK5C works via a NM-II dependent pathway. Thus, it would appear that endogenous PKA 

activity only affects the Dyn dependent KR pathway and not the NM-II dependent KR 

mode. This interpretation is due to the fact that HK5C evoked FM dye release is not 

affected when Dyn is inhibited with Dynasore, whilst 4AP5C and ION5C evoked release 

is switched to FF. This idea was further tested by measuring HK5C evoked FM dye release 

in the presence of Go6983 as when PKC is inhibited, HK5C now regulate the KR mode 

of the RRP SVs through the Dyn dependent pathway. Treatment of synaptosomes with 
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Go6833 plus KT5720 did not affect the HK5C evoked GLU release but such conditions 

increased the FM dye release relative to control, meaning the RRP SVs mode of release 

had switched from KR to FF. Thus, this proves that whilst KT5720 does not regulate the 

NM-II mode of exocytosis when HK5C regulates the KR mode via the Dyn dependent 

pathway PKA inhibition can regulate this latter mode. Clearly, PKA activity only affects 

Dyn dependent KR mode but not the NM-II dependent KR mode.  

5.7.3 Calcium channel dependency of KR 

Extracellular and intracellular calcium levels have been long considered as one of the 

major mediators for the KR mode of exocytosis (Neher and Sakaba, 2008). Thus it was 

obvious to consider the link between changes in calcium levels and the releasing mode. 

Calcium enters the nerve terminal through voltage-gated calcium channels (VGCC), and 

subsequently initiates neurotransmission. VGCC, therefore, have an important role in 

neurotransmission via regulation of intracellular calcium levels (Catterall, 2011). 

Preliminary research from A.Ashton’s group had shown that inhibition of each type of 

calcium channels with specific toxin (AGA for P/Q-type, CONO for N-type, NIF for L-

type) has determined that whilst inhibition of N-type and P/Q-type calcium channels does 

not affect the HK5C evoked FM dye release, disabling L-type channel function has led to 

dramatic increase in the HK5C evoked FM dye release. Thus, it was concluded that L-type 

calcium channel regulate the KR mode of release of the RRP. However, this result applies 

only to NM-II dependent KR mode since HK5C usually works through this pathway. 

Hence, there was a possibility that when KR is regulated through Dyn dependent pathway, 

another type of channel might be involved. Although, ION5C acts through the Dyn 

dependent KR mode, this ionophore bypasses the role of calcium channels and so cannot 

be employed for such investigation. However, a PKC inhibitor, Go6983, induces HK5C 

to operate through the Dyn dependent pathway, so we can measure HK5C evoked FM dye 

release in Go6983 treated terminals in the presence of the various calcium channel 

blockers. Intriguingly, whilst the treatment with any of the specific Ca2+ channel blockers 
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does not affect the HK5C evoked GLU release in Go6983 treated terminals, only AGA 

treatment led to an increase in the HK5C evoked FM dye release in such terminals. This 

data indicates that when HK5C evoked RRP SV release has changed to the Dyn dependent 

pathway, only P/Q type calcium channel inhibition can switch the mode. Overall, such 

results suggest that the NM-II dependent KR mode is regulated through L-type calcium 

channel whilst Dyn dependent release is regulated by P/Q type calcium channel. OA 

treatment, a drug that is known to switch the RRP SVs to FF for either mode of release, 

confirmed that Go6983 treatment does not prevent switching of the RRP mode. Thus, the 

difference in Ca2+ channel requirement for Dyn and NM-II dependent KR may indicate 

that these operates as two distinct KR processes rather than one that can be acted upon by 

these two proteins.  

5.7.4 Bioenergetics 

Bioenergetics experiments were done on drugs employed in this chapter using Seahorse 

XF analyser, and it was established that under any drug treatment, the bioenergetics 

parameters were virtually at the similar level to that of the control. These results imply that 

there were no disturbances of bioenergetics for such drug treatments used in this chapter, 

proving that the data we have obtained in this chapter are not due to non-specific effects 

of the drug on bioenergetics integrity. This is an important aspect of the study because it 

indicates that any drug induced actions are purely due to their effect on the release and it 

is not on disturbance of bioenergetics within the terminal. 

5.8 Conclusion 

In conclusion, various properties of the mode of the RRP of SVs have been studied in this 

chapter. Inhibition of translocation of Dyn from cytosol to membranes with MITMAB 

was found not to interfere with Dyn dependent KR mode. Thus, this demonstrates that 

Dyns are already present on membranes (either on SV or the PM) prior to exocytosis of 

vesicles at the AZ fusion site. Furthermore, inhibition of endogenous PKA activity only 
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affected Dyn dependent KR mode, revealing that PKA only regulate the KR mode of 

release through Dyn dependent pathway but not NM-II dependent pathway. Lastly, Dyn 

dependent KR mode was found to be regulated through P/Q-type calcium channel, and 

this in combination with previous results showing NM-II dependent pathway is regulating 

KR through L-type calcium channels, represents a calcium channel specificities in KR 

mode depending on whether Dyn or NM-II is regulating the FP. 
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Chapter 6: 

 

The Effect of Actin Cytoskeleton 

Disassembly and Stabilisation on the 

Mode of SV Release  
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6.1 Introduction 

The actin cytoskeleton may contribute to the regulation of the mode of exocytosis and to 

the release of the distinct pools of SVs. The cytoskeleton is involved in virtually every cell 

biological process in eukaryotes, ranging from cell division and motility to vesicle 

trafficking. The cytoskeleton is mainly composed of three types of protein filaments; actin, 

microtubules, and intermediates filaments (Dillon and Goda, 2005). The actin cytoskeleton 

is a main structural component of both pre- and postsynaptic components of the synapse. 

However, the precise role of the actin cytoskeleton in neurotransmission is yet to be fully 

elucidated. In regulated exocytosis, it was proposed to work either positively or negatively 

and this depended upon the secretory system under examination (Porat-Shliom et al, 2012). 

At the centre of the bouton terminal where SVs are distal from the AZ region of the PM, 

actin appears to interact with short filaments of Syn I, forming an actin-Syn I-SV 

meshwork. It has been suggested that it is this meshwork that sequesters the SVs that are 

distal to the AZ. Following elevated neuronal activity, phosphorylation of Syn I at specific 

sites may cause the disattachment and freeing of the SV and these mobilised SVs can 

replenish the RRP. At the AZ, actin is suggested to have dual functions. It might direct the 

arriving SVs and allow them to dock at the AZ, thereby positively controlling the size of 

the RRP. It could also form a physical and molecular barrier for priming reactions required 

for SNARE mediated exocytosis, and this may prevent facile fusion of vesicles (Cingolani 

and Goda, 2008).  

The actin cytoskeleton is also proposed to interact with Dyn and myosin in the regulation 

of neurotransmission (Papadopulos, 2017). In the case of Dyn, Gu et al (2010) reported 

that short actin filaments promoted Dyn self-assembly in vitro through direct Dyn -actin 

interaction. Such assembled Dyn was able to displace the capping protein (CP) gelsolin 

(Gsn) from barbed ends of actin filaments, and this resulted in the elongation of such 

filaments (Gu et al, 2010). Kessels et al (2001) reported that in vitro the mammalian F-

actin binding protein (Abp1) links the actin cytoskeleton to Dyn through its SH3 domain. 
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Excitingly, the actin cytoskeletal scaffold, in association with Dyn, contributes to the 

closing dynamics of exocytotic fusion pores measured in PC12 cells (Kessels et al, 2001). 

Others have suggested that actin can regulate the vesicular fraction released in an extended 

KR mode (Trouillon and Ewing, 2014).  

Regarding vesicle release, actin is proposed to form an actomyosin complex with NM-II 

to provide the force to drive exocytosis to completion (Nightingale et al, 2012; Porat-

Shliom et al, 2013). Further, it was found that a F-actin cell cortex plays a key role in 

stabilising the KR fusion under lower stimulation frequency, and under higher stimulation 

frequency, the actin cortex dependent FF mode of release was disrupted. These authors 

have indicated that, an absence of NM-II or MLCK under increased stimulation frequency 

inhibited the FP dilation and sustained the granule in KR mode of exocytosis (Doreian et 

al, 2008).  

In the previous chapter of this thesis, we have reported that KR modes of SV exocytosis 

can be associated with Dyn and NM-II activities. As both these can associate with the actin 

cytoskeleton as highlighted above, this justifies the exploration of the actin cytoskeleton 

action on the exocytotic mode and its regulation. 
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6.2 The effect of disassembly of actin cytoskeleton on the evoked 

release and mode of exocytosis 

6.2.1 LAT inhibits the release of the RP but not the RRP 

To establish an effect of actin disassembly on neurotransmission, we have pre-treated the 

synaptosomes with Latrunculin (LAT), and measured HK5C, ION5C, and 4AP5C evoked 

GLU releases. LAT disrupts the organisation of microfilament by binding to the actin 

monomer and preventing them from polymerising (i.e. Coue et al, 1987; Richard et al, 

2004). HK5C evoked release was significantly lower compared to control, meaning actin 

disassembly caused some reduction in the release (Fig 6.1a), LAT also caused a reduction 

of ION5C evoked release (Fig 6.1 b). Intriguingly, 4AP5C evoked release was unchanged 

following actin disassembly (Fig 6.1 c). As 4AP5C is a stimulus that work exclusively on 

the RRP, it would appear that LAT induced actin disassembly only affects the RP release. 
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6.2.2 LAT does not inhibit the FM dye release relative to control 

LAT did not perturb the total FM dye content compared to control (appendix 3) proving 

that both the RRP and RP were still labelled with dye following microfilament disassembly. 

Furthermore, HK5C and ION5C (Fig 6.2) evoked FM dye release appears similar in LAT 

and non-drug treated terminals. However, it was shown above that the RP is not released 

in the presence of LAT and yet this is the pool that normally releases the FM dye because 

it undergoes FF. Normally the RRP does not release FM dye since it undergoes KR. Thus 

we have the situation that RRP SVs are being exocytosed and yet FM dye is also being 

released. This leads to the conclusion that disassembling actin microfilaments with LAT 

switches the RRP SVs to a FF mode of exocytosis. Okadaic acid (OA) (i.e. Bialojan and 

Takai, 1988) can switch the RRP SVs to FF (see earlier chapter and appendix 1) but 

application of OA to LAT treated terminals did not induce any further dye release clearly 

demonstrating that the RRP is already undergoing the FF mode of release (Fig 6.3).  
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Figure 6.3. Actin disassembly allowed RRP to release in FF mode. HK5C evoked FM dye 

release in control or 15 M LAT plus 0.8 M OA treated synaptosomes. Data are mean ± 

SEM, N=7 independent experiments; P <0.05 for significance. However, there was no 

significant difference of release between control and LAT plus OA treated terminals. 

 

6.2.3 The action of LAT on evoked [Ca2+]i 

Disassembly of actin with LAT inhibits RP release and leads to the RRP SVs switching to 

a FF mode of exocytosis for both HK5C and ION5C stimulation. One reason this could 

occur is that disassembly of the actin cytoskeleton may reduce the evoked [Ca2+]i.There 

was a significant drop in HK5C evoked [Ca2+]i in LAT treated relative to control 

terminals (Fig 6.4). In contrast, ION5C evoked [Ca2+]i was similar in drug free and drug 

treated terminals (Fig 6.5). Thus the action of LAT on ION5C evoked GLU containing SV 

RP release and its action on ION5C evoked FM dye release from the RRP SVs are not 

related to any changing in evoked [Ca2+]i. However, the action of LAT on HK5C evoked 

GLU and FM release could be explained by changing in [Ca2+]i levels. Since, HK5C acts 

through NM-II dependent KR pathway for the RRP whilst ION5C operates via the Dyn 

dependent KR pathway for such vesicles, this could suggest that whilst intact actin 
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microfilaments could have a direct effect on the Dyn dependent KR mode (via regulation 

of the closure of the FP) this cytoskeletal component may not have direct effect on the 

NM-II dependent KR mode.  

Figure 6.4. Actin disassembly reduce HK5C evoked [Ca2+]i. Change in [Ca2+]i induced by 

HK5C in control and 15 M LAT treated terminals. Data are mean ± SEM, N=3 independent 

experiments; Note that LAT significantly reduced the calcium entry compared to control 

(P<0.05). 

 

 

 

 

 

 

Figure 6.5. ION5C evoked [Ca2+]i is unaffected by actin disassembly. Change in [Ca2+]i 

induced by ION5C in control and 15 M LAT treated terminals. Data are mean ± SEM, N=4 

independent experiments. Note that there was no significant difference (P>0.05) between 

control and LAT treated terminals. 
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6.2.4 Higher [Ca2+]e did not rescue the LAT induced inhibition of 

evoked RP exocytosis 

It was evident in the above section that changes in HK5C evoked [Ca2+]i maybe involved 

in the LAT induced inhibition of the RP evoked by this stimulation. An obvious question 

was whether using higher [Ca2+]e, one could prevent the effect of LAT. Therefore, HK20C 

evoked GLU release from synaptosomes was determined in the presence of LAT, but this 

stimulus failed to overcome the LAT block of the RP (Fig 6.6).  

It is possible that our results demonstrate two separate actions of LAT, one involving 

inhibiting action of the drug on the release of the RP SVs, and another action that can 

regulate the mode of release. Therefore, future experiments would measure HK20C 

evoked FM dye release in the LAT treated synaptosomes.  

 

Figure 6.6. Higher [Ca2+]e did not rescue the LAT induced inhibition of evoked RP exocytosis. 

HK20C evoked GLU release in control and 15 M LAT treated terminals. Data are mean ± 

SEM, N=6 independent experiments, P <0.05 was considered as a significant difference. LAT 

treatment has led to significant reduction in the release compared to control. 
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6.2.5 PKC inhibition reversed LAT effect on HK5C evoked release 

It is clear that LAT treatment produced varying results depending on the stimulus 

employed. This might suggest that the effect of the actin cytoskeleton could depend upon 

on whether Dyn or NM-II are regulating the FP during KR of the RRP SVs. HK5C 

normally acts on the NM-II dependent KR but inhibiting PKCs with Go6983 allows this 

stimulus to act on the Dyn dependent pathway instead (as discussed in earlier chapters). 

Thus, HK5C evoked release in Go6983 treated terminals in the presence or absence of 

LAT was measured.  

PKC inhibition with Go6983 actually prevented the LAT induced reduction in the release 

as Go6983 (which behaves same as non-drug treated samples) and Go6983 plus LAT 

revealed no significant difference in HK5C evoked GLU release (Fig 6.7). It was also 

found that HK5C evoked FM dye release (Fig 6.8) and HK5C evoked [Ca2+]i (Fig 6.9) 

that were previously changed by pre-treatment with LAT were no longer affected 

following PKC inhibition with Go6983. If LAT regulated the FP of RRP SV KR similarly 

for both HK5C and ION5C, then one might have expected that HK5C would work on the 

Dyn dependent pore in response to PKC attenuation with Go6983, whereas this does not 

appear to be the case even though ION5C acting on the Dyn dependent pore is sensitive 

to disassembly of microfilament. One possible interpretation is that the action of LAT on 

HK5C evoked release involves in some way the activation of PKCs since when these are 

blocked, the drug did not induce any effect.  



225 
 

 

Figure 6.7. PKC inhibition reversed LAT effect on HK5C evoked GLU release. HK5C evoked 

GLU release in 1 M Go6983 or 1 M Go6983 plus 15 M LAT treated terminals. Data are 

mean ± SEM, N=5 independent experiments. Note Go6983 plus LAT condition showed no 

significant difference (P>0.05) to Go6983 alone. Note that Go6983 treatment has been 

previously shown by Ashton’s group not to effect HK5C evoked GLU release compared to 

non-drug treated samples.  

 

Figure 6.8. PKC inhibition reversed LAT effect on HK5C evoked FM dye release. HK5C 

evoked FM dye release from 1 M Go6983 or 1 M Go6983 plus 15 M LAT treated terminals. 

Data are mean ± SEM, N=3 independent experiments. Note that there was no significant 

difference (P>0.05) in release between Go6983 and Go6983 plus LAT treated terminals. Note 

that Ashton and colleagues have previously shown that there is no difference in FM dye 

release between control and Go6983 treated terminals. 
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Figure 6.9. PKC inhibition reversed LAT effect on HK5C evoked [Ca2+]i. Change in [Ca2+]i 

induced by HK5C in 1 M Go6983 and 1 M Go6983 plus 15 M LAT treated terminals. 

Data are mean ± SEM, N=4 independent experiments; Note that these is no significant 

difference (P>0.05) in the change in [Ca2+]i between Go6983 and Go6983 plus LAT treated 

terminals. Also note that previously Ashton and colleagues showed that Go6983 did not 

perturb HK5C evoked [Ca2+]i  relative to non-drug treated control. 

An important control for these experiments is to test whether LAT induces its effects when 

ION5C is the stimuli and Go6983 treatment is also used, if this is the case, then it is clear 

that the LAT effect is different for the two distinct stimuli. Indeed, ION5C evoked GLU 

release in the synaptosomes treated with LAT plus Go6983 compared to Go6983 treatment 

alone clearly demonstrated that when PKCs are inhibited, LAT perturbed the ION5C 

evoked release of the RP of GLU containing SVs (Fig 6.10). Recently, Ashton and his 

colleagues have checked whether LAT could switch the ION5C evoked Dyn dependent 

RRP KR to FF when PKCs were blocked. Disassembly of the microfilaments did switch 

the mode even in the presence of Go6983. This highlights a big difference in the action of 

the 2 stimuli (A.Ashton, unpublished manuscript). 
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Figure 6.10. PKC inhibition failed to reverse LAT effect on ION5C evoked GLU release. 

ION5C evoked GLU release in 1 M Go6983 and 1 M Go6983 plus 15 M LAT treated 

terminals. Data are mean ± SEM, N=4 independent experiments. Note that there was 

significant difference in release (P<0.05) between Go6983 plus LAT condition and Go6983 

alone.  

 

6.3 Stabilisation of Actin 

Disassembly of the actin cytoskeleton with LAT was shown to have effects on SV 

exocytosis and on release of distinct pools. However, it is possible that stabilisation of 

actin microfilament may also have an effect. Jasplakinolide (JASP) can be applied to 

promote actin stabilisation. It stimulates actin filament nucleation, thereby promoting actin 

polymerisation (i.e. Bubb et al, 1994, 2000). Thus, by performing the equivalent 

experiment to LAT, we can investigate how stabilisation of actin would impact on the 

releasing mode of the SVs.  
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6.3.1 Actin stabilisation does not affect evoked GLU and FM dye 

release, nor evoked [Ca2+]i 

Synaptosomes were pre-treated with JASP and HK5C evoked GLU release, FM 2-10 dye 

and [Ca2+]i were measured. GLU release was found not to be affected in response to actin 

stabilisation (Fig 6.11). Thus, whilst actin disassembly prevents the release of the RP, actin 

stabilisation with JASP does not affect the release of this pool. There was no difference in 

HK5C evoked FM 2-10 dye release between control and JASP treated condition (Fig 6.12) 

and since the RP of SVs are undergoing exocytosis this would suggest that stabilisation of 

actin microfilaments does not prevent RRP SVs from undergoing KR. When HK5C 

evoked [Ca2+]i was measured it was found that JASP treatment actually increased the 

[Ca2+]i induced by the stimulus (Fig 6.13). 

 

Figure 6.11. Actin stabilisation does not affect HK5C evoked GLU release. HK5C evoked 

GLU release in control and 2.5 M JASP treated terminals. Data are mean ± SEM, N=4 

independent experiments; P >0.05. Note that JASP treatment does not affect the HK5C 

evoked release. 
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Figure 6.12. Actin stabilisation does not affect HK5C evoked FM dye release. HK5C evoked 

FM dye release in control and 2.5 M JASP treated terminals. Data are mean ± SEM, N=7 

independent experiments. Note that there was no apparent significant difference (P>0.05) in 

the release between control and JASP treated synaptosomes. 

 

Figure 6.13. Actin stabilisation increase HK5C evoked [Ca2+]i. HK5C evoked [Ca2+]i in 

control and 2.5 M JASP treated terminals. Data are mean ± SEM, N=6 independent 

experiments; Note that the JASP application has actually led to significant increase (P<0.05) 

in the [Ca2+]i. 
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ION5C evoked GLU and FM2-10 release and [Ca2+]i were also measured in the presence 

of JASP. JASP did not perturb the ION5C evoked release of the RRP and RP of GLU 

containing SVs (Fig 6.14) nor did it affect the release of FM2-10 dye (Fig 6.15). Finally, 

stabilisation of actin microfilaments did not perturb the ION5C evoked [Ca2+]i (Fig 6.16). 

This indicates that the Dyn dependent KR mode of the RRP SVs can still occur when actin 

microfilaments are stabilised such that you neither get disassembly nor assembly of such 

filament.  

 

Figure 6.14. Actin stabilisation does not affect ION5C evoked GLU release. ION5C evoked 

GLU release in control and 2.5 M JASP treated terminals. Data are mean ± SEM, N=3 

independent experiments. P>0.05. Note that JASP treatment does not affect the ION5C 

evoked release. 
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Figure 6.15. Actin stabilisation does not affect ION5C evoked FM dye release. ION5C evoked 

FM dye release in control and 2.5 M JASP tested terminals. Data are mean ÷ SEM, N=3 

independent experiments. Note that there was no significant difference (P>0.05) in the release 

between control and JASP treated synaptosomes. 

 

Figure 6.16. Actin stabilisation does not affect ION5C evoked [Ca2+]i. ION5C evoked 

[Ca2+]i in control and 2.5 M JASP treated terminals. Data are mean ± SEM, N=6 

independent experiments; P>0.05; Note that there was no significant difference in the release 

between control and JASP treated terminals. 
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6.3.2 JASP treatment reverse LAT’s action 

As synaptosomes were found to be releasing normally after JASP treatment, this enabled 

one to check whether any LAT action is truly due to disassembly of actin microfilaments. 

This is because prior stabilisation of microfilaments with JASP prevents subsequent 

disassembly of such filament by LAT. Synaptosomes were pre-treated with JASP prior to 

LAT addition and then GLU release was evoked by HK5C or ION5C. HK5C (Fig 6.17) 

and ION5C (Fig 6.18) evoked GLU release consisted of the exocytosis of the RRP and RP 

of SVs after the stabilisation of the actin cytoskeleton indicating that LAT no longer could 

disassemble such microfilaments. This proves that the previous effects of LAT were due 

to disassembly of such filaments and were not due to a non-specific secondary effect of 

this drug. 

 

Figure 6.17. Actin stabilisation reverses LAT effect on HK5C evoked GLU release. HK5C 

evoked GLU release in control and 2.5 M JASP plus 15 M LAT treated terminals. Data are 

mean ± SEM, N=3 independent experiments; P<0.05 for significance. Note that JASP plus 

LAT treatment does not significantly perturb the release of the RRP and the RP. 
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Figure 6.18. Actin stabilisation reverses LAT effect on ION5C evoked GLU release ION5C 

evoked GLU release in control and 2.5 M JASP plus 15 M LAT treated terminals. Data are 

mean ± SEM, N=4 independent experiments. There is no significant difference (P>0.05) 

between control and JASP plus LAT treated terminals indicating that stabilisation of 

microfilaments prevents their disassembly by LAT. 

6.3.3 LAT does not perturb the HK5C evoked calcium entry in the 

presence of JASP 

Next, we wanted to see how evoked [Ca2+]i is affected when LAT is applied to the nerve 

terminal following JASP pre-treatment. A comparison between LAT alone vs JASP plus 

LAT condition shown that in the latter condition HK5C produced a significantly higher 

[Ca2+]i, implying that truly actin disassembly does reduce the HK5C evoked changes in 

calcium level but this is prevented by JASP treatment (Fig 6.19b). Indeed, as we saw with 

JASP alone, there is a slight increase in the HK5C evoked [Ca2+]i in the presence of both 

drugs (Fig 6.19a).  

Note, as LAT had no effect on ION5C evoked [Ca2+]i, there was no reason to do the 

equvalent experiment. 
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6.3.4 JASP treatment prevents LAT action on evoked FM dye 

release 

The action of LAT in inducing a switch in the RRP SVs from KR to FF for both HK5C 

and ION5C may not have been due to disassemble of the actin microfilament. However, 

this was checked by preventing LAT’s action by pre-treatment with JASP. As such 

treatment allowed the RP SVs to be released, we measured the FM dye release under such 

condition. JASP treatment appeared to prevent LAT action on HK5C evoked FM dye 

release (Fig 6.20) or ION5C evoked dye release (Fig 6.21). 

 

Figure 6.20. Actin stabilisation prevents LAT action on HK5C evoked FM dye release. HK5C 

evoked FM dye release in control and 2.5 M JASP plus 15 M LAT treated terminals. Data 

are mean ± SEM, N=7 independent experiments; P <0.05 for significant difference. Note that 

there was no significant difference in the release between control and JASP plus LAT treated 

synaptosomes. 
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Figure. 6.21 Actin stabilisation prevents LAT action on ION5C evoked FM dye release. 

ION5C evoked FM dye release in control and 2.5 M JASP plus 15 M LAT treated terminals. 

Data are mean ± SEM N=3 independent experiments. Note that there was no significant 

difference (P>0.05) in the release between control and JASP plus LAT treated synaptosomes. 

  



237 
 

However, whilst the FM dye release looks similar to the control release in these conditions 

(Fig 6.20, Fig 6.21), one could argue that this is also the case for LAT alone and so we 

needed to show that following JASP plus LAT, the RP is releasing via FF and the RRP is 

releasing via KR whereas for LAT alone, the RP is not releasing and the RRP is releasing 

via FF. Fortunately, it is possible to test whether the RRP is releasing by KR or FF by also 

treating the synaptosomes with OA since this drug will switch the RRP undergoing KR to 

FF (as discussed earlier) whereas it will have no effect on dye release if the RRP is already 

releasing by FF. 

Indeed, JASP plus LAT plus OA was found to allow HK5C (Fig 6.22a) or ION5C (Fig 

6.23a) to evoke more FM dye release compared to control, similarly, this further exhibited 

more HK5C evoked (Fig 6.22b) or ION5C evoked (Fig 6.23 b) FM dye in terminal treated 

with LAT plus JASP. Finally, the triple treated terminals exhibited more FM dye release 

evoked by HK5C (Fig 6.22c) or ION5C (Fig 6.23 c) then in LAT plus OA treated 

synaptosomes. 

These results are convincing because it indicates that JASP prevents the LAT from 

removing the RP of SVs and that these undergo normal FF, whilst RRP of the SVs now 

undergo KR. This is demonstrated by a comparison between JASP plus LAT and JASP 

plus LAT plus OA treated terminals, in which more release was measured in the latter 

treatment condition. Likewise, it is clear that LAT does remove the RP from releasing and 

switches the RRP to FF since LAT plus OA produces no extra release evoked by either 

stimuli. Very recently, it was shown by A.Ashton’s group that this inclusion of OA with 

any of these other treatments did not change the amount of HK5C or ION5C evoked GLU 

release. This was assumed to be the case in the studies repeated herein but this has now 

been verified. 
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6.4 Bioenergetics 

 

6.4.1 LAT 

The Synaptosomes were treated with 15 M LAT for 5-10 min at 37oC in order to allow 

actin microfilament disassembly. However, such treatment failed to disturb any of the 

bioenergetics parameters measured, confirming that the drug does not have non-specific 

effect on the bioenergetics (Figure 6.24, Figure 6.25a-f). 

 

Figure 6.24. Synaptosomal bioenergetics were unaffected by 15 M LAT treatment.The 

effect of 15 M LAT on the bioenergetics of synaptosomes. The experiment was conducted 

twice and the mean values represent an average of 6 independent measurements and error 

bars represent the SD.   
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Figure 6.25. 15 M LAT treatment did not perturb any bioenergetics parameters measured 

as it looks similar to those for the controls. The effect of 15 M LAT on (A) basal 

respiration, (B) ATP production, (C) spare capacity, (D) maximal respiration, (E) Proton 

leakage, and (F) Non-mitochondrial respiration in synaptosomes. The histobars represent 

the mean and the error bar shows the SEM. 
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6.4.2 Go6983 plus LAT 

The double drug treatment of synaptosomes with Go6983 and LAT failed to perturb in any 

of the bioenergetics parameters measured (Figure 6.26, Figure 6.27 a-f). 

 

Figure 6.26. Synaptosomal bioenergetics were unaffected by dual treatment of 1 M Go6983 

and 15 M LAT treatment. The effect of 1 M Go6983 plus 15 M LAT treatment on the 

bioenergetics of synaptosomes compared to nondrug treated control. The experiment was 

conducted three times and the mean values represent an average of 8 independent 

measurements and error bars represent the SD; P>0.05.   
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Figure 6.27. 1 M Go6983 and 15 M LAT double treatment did not perturb any 

bioenergetics parameters measured as it looks similar to those for the controls. The effect of 

1 M Go6983 plus 15 M LAT on (A) basal respiration, (B) ATP production, (C) spare 

capacity, (D) maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial 

respiration of synaptosomes compared to non-drug treated terminal. The histobars 

represent the mean and the error bar shows the SEM. 
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6.4.3 JASP 

Treatment of synaptosomes with 2.5 M JASP for 10-20 min at 37oC was found to produce 

a slight difference in non-mitochondrial respiration compared to control. However, the 

change was minor and it failed to disturb any of the other bioenergetics parameters (Figure 

6.28, Figure 6.29 a-f). 

 

Figure 6.28. Synaptosomal bioenergetics were unaffected by 2.5 M JASP treatment. The 

effect of 2.5 M JASP on the bioenergetics of synaptosomes. The experiment was conducted 

three times and the mean values represent an average of 6-7 independent measurements and 

error bars represent the SD; P>0.05.   
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Figure 6.29. 2.5 M JASP treatment did not perturb most of bioenergetics parameters 

measured as it looks similar to those for the controls. The effect of 2.5 M JASP on (A) 

basal respiration, (B) ATP production, (C) spare capacity, (D) maximal respiration, (E) 

Proton leakage, and (F) Non-mitochondrial respiration in synaptosomes compared to non-

drug treated control. The histobars represent the mean and the error bar shows the SEM. 
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6.4.4 JASP plus LAT 

Synaptosomes were pre-treated with 2.5 M JASP for 20 min at 37oC and LAT (for the 

last 10 min of this incubation). Such conditions failed to disturb any of the bioenergetics 

parameters measured (Figure 6.30, Figure 6.31 a-f) 

 

Figure 6. 30. Synaptosomal bioenergetics were unaffected by 2.5 M JASP and 15 M LAT 

double treatment. The effect of 2.5 M JASP plus 15 M LAT treatment on the 

bioenergetics of synaptosomes. The experiment was conducted three times and the mean 

values represent an average of 8 independent measurements and error bars represent the 

SD; P>0.05.   
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Figure 6.31. 2.5 M JASP and 15 M LAT double treatment did not perturb any 

bioenergetics parameters measured as it looks similar to those for the controls. The effect of 

2.5 M JASP plus 15 M LAT treatment on (A) basal respiration, (B) ATP production, (C) 

spare capacity, (D) maximal respiration, (E) Proton leakage, and (F) Non-mitochondrial 

respiration in synaptosomes compared to non-drug treated control. The histobars represent 

the mean and the error bar shows the SEM. 
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6.4.5 LAT plus JASP plus OA 

The Triple drug treatment of synaptosomes with 2.5 M JASP for 10 min at 37oC followed 

by a further 10 min at 37oC with 15 M LAT and 0.8 M OA failed to produce any changes 

in the bioenergetics parameters of the treated terminals. Note that last 3 points were not 

present for one of the experiment and so these values could not be averaged. Consequently, 

protein leakage and non-mitochondrial respiration values are missing (Figure 6.32, Figure 

6.33). 

 

Figure 6.32. Synaptosomal bioenergetics were unaffected by 15 M LAT, 2.5 M JASP and 

0.8 M OA triple treatment. The effect of 15 M LAT plus 2.5 M JASP plus 0.8 M OA on 

the bioenergetics of synaptosomes. The experiment was conducted twice and the mean 

values represent an average of 6 independent measurements and error bars represent the 

SD. Note that last three points were not present in one of the experiments, and thus these 

values were not averaged.  
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Figure 6.33. 2.5 M JASP, 15 M LAT and 0.8 M OA triple drug treatment did not 

perturb any bioenergetics parameters measured as it looks similar to those for the controls. 

The effect of triple drug treatment of 2.5 M JASP plus 15 M LAT plus 0.8 M OA on (A) 

basal respiration, (B) ATP production, (C) spare capacity, (D) maximal respiration in 

synaptosomes compared to non-drug treated control. The histobars represent the mean and 

the error bar shows the SEM. 
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# Figur

e # 

Assa

ys 

Stimulus Drugs 

employe

d (conc.) 

Key findings 

1 6.1 GLU 4AP5C 

HK5C, 

ION5C 

LAT (15 

M) 

The RP release is perturbed when actin is 

disassembled. 

2 6.2-

6.3 

FM HK5C, 

ION5C 

LAT (15 

M), OA 

(0.8 M) 

The mode of RRP release has changed to FF 

and this was confirmed by including OA. 

3 6.4- 

6.5 

Fura-

2 

HK5C, 

ION5C 

LAT (15 

M) 

LAT treatment reduced the HK5C evoked 

[Ca2+]i but not ION5C evoked [Ca2+]i . Thus 

the action of LAT on ION5C evoked GLU 

containing SV RP release and its action on 

ION5C evoked FM dye release from the RRP 

SVs are not related to any changing in evoked 

[Ca2+]i. Although, the action of LAT on HK5C 

evoked GLU and FM release could be explained 

by changing in [Ca2+]i. 

4 6.6 GLU HK20C LAT (15 

M) 

Higher [Ca2+]e did not rescue the LAT effect on 

the RP release. 

5 6.7-

6.10 

GLU, 

FM, 

Fura-

2 

HK5C, 

ION5C 

LAT (15 

M), 

Go6983 

(1 M) 

PKC inhibition prevented the LAT induced 

effect in all release parameters for HK5C but 

not ION5C. One possible interpretation is that 

the action of LAT on HK5C evoked release 

involve in some way the activation of PKCs, 

since when these are blocked, the drug did not 

induce any effect.  

6 6.11-

6.16 

GLU, 

FM, 

Fura-

2 

HK5C, 

ION5C 

JASP 

(2.5 M)  

Actin stabilisation does not affect evoked GLU, 

FM dye release, nor evoked [Ca2+]i 

7 6.17-

6.19 

GLU, 

Fura-

2 

HK5C, 

ION5C 

JASP 

(2.5 M) 

LAT (15 

M) 

JASP treatment reverse LAT’s action on evoked 

GLU release and evoked [Ca2+]i. This proves 

that the previous effects of LAT were due to 

disassembly of such filaments and were not due 

to non-specific secondary effect of this drug.   

8 6.20-

6.23 

FM HK5C, 

ION5C 

JASP 

(2.5 

M), 

LAT (15 

M), OA 

(0.8 M) 

- JASP treatment prevented LAT action on 

HK5C evoked FM dye release or ION5C 

evoked dye release.  

- OA was used to test whether RRP is 

releasing by KR or FF. Indeed, OA 

inclusion to JASP plus LAT condition was 

found to evoke more FM dye release 

compared to control and in terminal treated 

with LAT plus JASP. 

- Also, the triple treated terminals exhibited 

more evoked FM dye release compared to 

LAT plus OA treated synaptosomes. These 

results indicate that JASP prevents the LAT 

from removing the RP of SVs and that 

these undergo normal FF, whilst RRP of the 

SVs now undergo KR.  

- Likewise, it is clear that LAT does remove 

the RP from releasing and switches the 

RRP to FF  

9 6.24-

6.33 

BIO  All drugs 

tested  

Majority of bioenergetics parameters in drug 

treated synaptosomes were unaltered compared 

to control.  

Figure 6.33. Summary of the findings in chapter 6. 
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6.5 Discussion 

In this chapter, we have investigated the role of the actin cytoskeleton on regulating both 

the release of the SV content and SV mode of exocytosis. We have investigated this using 

ION5C (a stimuli known to induce Dyn dependent KR) and HK5C (a stimuli known to 

induce NM-II dependent KR) to stimulate on terminals in which LAT treatment has 

induced actin disassembly or in terminal in which microfilament have been stabilised by 

JASP pre-treatment.  

6.5.1 Effect of actin disassembly on the release of SV pools and on 

the exocytotic mode 

Disassembly of actin with LAT was found to inhibit some HK5C and ION5C evoked GLU 

release. As GLU released by 4AP5C stimulation was not perturbed, it would appear that 

LAT perturbs the RP release but not the RRP release. However, such drug treatment would 

appear not to inhibit any FM dye release (note the RRP and RP are labelled normally with 

the dye). This result is misleading because we know that the RP, that normally releases 

FM2-10 dye because it undergoes FF, is not being released. Therefore, the dye release 

measured must be from RRP undergoing FF, whereas under control conditions the RRP 

does not release the dye since it undergoes KR. The conclusion must be that following the 

disassembly of actin microfilament with LAT, RRP SVs evoked to release by HK5C or 

ION5C are switched to FF. Proof for this was provided by the fact that OA added to LAT 

treated terminals did not allow any HK5C or ION5C evoked the further FM dye release 

indicating that the RRP was already releasing through the FF mode of exocytosis. 

[Ca2+]i evoked by HK5C stimulation, but not that evoked by ION5C, was reduced in 

LAT treated synaptosomes. This indicates that the action of LAT in blocking ION5C 

evoked RP release and on switching the ION5C release of the RRP to FF are not related 

to the change in ION5C evoked [Ca2+]i whilst the results for HK5C may be explained by 
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a reduction in the HK5C evoked  [Ca2+]i. This leads to the idea that whilst actin 

microfilaments could have a direct effect on the Dyn dependent KR mode (induced by 

ION5C stimulation) by regulating the closure of the FP, this cytoskeleton might not have 

a direct effect on the NM-II dependent KR mode (triggered by HK5C stimulation) and the 

results could be simply due to a reduction in evoked [Ca2+]i. However, the use of a higher 

[Ca2+]e level (20 mM) by employing a HK20C stimulus failed to reverse the action of LAT 

on the block of the RP. Note Ashton and colleagues have demonstrated that the RRP SV 

undergoing KR depends on the [Ca2+]i (A.Ashton et al, unpublished) and, indeed, this 

explains why 4AP5C only induces some KR since it does not induce a high enough 

[Ca2+]i (see appendix 1 Fig A5 and A6). Furthermore, too low of [Ca2+]i is unable to 

release the RP of SVs as determined with 4AP5C (appendix 1 Fig A1, A5, and A6) 

We tried to establish whether it could be that the actin cytoskeleton effects seen depend 

on whether Dyn or NM-II are regulating the FP because Go6983 causes HK5C to act on 

the Dyn dependent pathway. We measured HK5C evoked release in Go6983 treated 

terminals in the presence or absence of LAT. If LAT exerted its effects on the FP similarly 

for both HK5C and ION5C stimuli then one might expect that HK5C would work on the 

Dyn dependent pathway following PKC blocking with Go6983 in a similar manner to 

ION5C. However, this was not the case and it would appear that the effect of LAT on 

HK5C evoked release involves in some way the activation of PKCs, because following 

blockade of these enzymes, LAT failed to affect the release of the RP and the mode of 

exocytosis of the RRP. However, for the ION5C stimulation LAT still induced the changes 

expected in terminals also treated with Go6983 treatment. Therefore, it would appear that 

the effect of LAT action differs for the two stimuli. 
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6.5.2 The effect of stabilisation of the actin cytoskeleton on the 

release of the pools of SVs and on their release mode 

We employed JASP, a drug that promotes the stabilisation of actin microfilaments, to test 

how it would affect the pools of SVs and their mode of release. JASP was found not to 

perturb HK5C or ION5C evoked GLU release or FM dye release. Intriguingly, JASP pre-

treatment led to a slight increases in HK5C evoked [Ca2+]i. We also checked whether 

stabilisation of actin microfilaments (by pre-treatment with JASP) could prevent the 

actions of LAT. This test demonstrates whether any LAT action is truly due to 

microfilament disassembly. After the actin cytoskeleton is stabilised by JASP, LAT no 

longer exert any action as both HK5C and ION5C evoked GLU release of both the RRP 

and the RP of SVs. Thus, the action of LAT in blocking the evoked release of RP was truly 

due to the disassembly of actin microfilaments. Furthermore, it was apparent that actin 

disassembly did reduce the HK5C evoked [Ca2+]i because JASP reversed this action of 

LAT. In fact, there was a slight elevation in the HK5C evoked [Ca2+]i in the presence of 

both drugs to a similar extent to that seen with JASP alone. Although, FM dye release 

evoked by HK5C or ION5C appeared to be similar to control release in JASP plus LAT 

treated terminals but unlike LAT treatment alone, it was assumed that this was due to the 

RP being released by FF whilst the RRP is releasing KR. We treated synaptosomes with 

OA to prove this, as if the RRP was undergoing KR it should now switch to FF and so 

more dye would be released. By comparing synaptosomes treated with JASP plus LAT 

with or without OA, the results clearly demonstrated that JASP stops the LAT removing 

the RP of SVs and that these undergo normal FF, whilst RRP of SVs now undergo KR but 

OA switches this. Likewise, it was apparent that LAT treatment does remove the RP from 

releasing and switches the RRP to FF since the pre-treatment with LAT followed by OA 

does not allow any further FM dye release. Whilst we can suggest that actin microfilaments 

may play a role in the Dyn mediated closure of the KR FP, we actually cannot make a 

conclusion about the role of this cytoskeletal component for NM-II mediated KR because 
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LAT actually perturbs the HK5C stimulus. One possible future experiment would be to 

switch ION5C action to the NM-II pathway by including 40 nM PMA in the experiment 

(previously shown by Asthon’s group e.g. Bhuva, 2015; Singh, 2017; see appendix 1 Fig 

A14 and A15). Then one could measure the effect of LAT on this stimulus. This maybe 

complicated because of the suggestion that PKCs themselves maybe affected by LAT. 

6.5.3 Bioenergetics 

The Drug treatments employed in this chapter include LAT, Go6983, JASP, LAT plus 

JASP, LAT plus JASP plus OA. Although, the results obtained from performing such drug 

treatments appeared to be specific and could be explained by action on the pools and 

modes of SVs, it was important to ascertain that none of these drug treatment induced non-

specific effects. One possible non-specific action could be to perturb the bioenergetics of 

the terminals as this would clearly Affect SV release. We tested this using Seahorse XFp 

analyser and the mito stress test. By carrying out such measurements, we found that the 

majority of bioenergetics parameters in drug treated synaptosomes were unaltered 

compared to non-drug treated terminals. Any changes seen were very minor and unlikely 

to affect the SV exocytosis. Overall, such data confirm that the effects of all drug 

treatments identified in this chapter were not from detrimental effects of the drugs on the 

bioenergetics of the synaptosomes. 

6.6 Conclusion 

In conclusion, the role of the actin cytoskeleton in regulating both the release of SV pools 

and the exocytotic mode of such vesicles has been investigated in this chapter. 

Disassembly of actin microfilament with LAT was discovered to inhibit the HK5C and 

ION5C evoked RP release, and it was also shown to change the mode of RRP release from 

KR to FF. However, whilst LAT treatment led to a significant reduction in HK5C [Ca2+]i 

this did not perturb ION5C stimulation of [Ca2+]i. This could mean that whilst the actin 

microfilaments could have a direct effect on the Dyn dependent KR mode (induced by 
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ION5C stimulation) regarding to the closure of the FP, actin microfilament might not have 

a direct effect on the NM-II dependent KR mode (triggered by HK5C stimulation). A 

difference in the action of LAT with these 2 stimuli was further shown by dual treatment 

with LAT and Go6983 (that inhibits PKCs) because whilst this did not prevent the action 

of microfilament disassembly on ION5C evoked events it totally reversed any action of 

LAT on HK5C evoked GLU release, FM dye release, and [Ca2+]i. This suggests that the 

actual mechanism whereby HK5C induces SV exocytosis may be perturbed by disrupting 

actin microfilaments.  

Actin stabilisation with JASP was also tested. In contrast to disassembly, stabilisation of 

actin was found not to reduce HK5C or ION5C evoked GLU release or disturb the mode 

of SV exocytosis as measured by FM dye release. JASP treatment was also found to 

antagonise LAT effect, proving the actions of LAT measured were truly due to 

disassembly of microfilaments. This result with JASP is interesting as it means that neither 

the release of the pools or the modes of exocytosis require changes in actin assembly at 

the point of SV fusion. This is because, by stabilising microfilament, no new microfilament 

was allowed to assemble. 
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7.1 Results 

Synaptic transmission is the basis of neuronal networking and disturbances of this process 

are associated with the pathophysiology of numerous neuronal and psychiatric disorders. 

Therefore, it is important to elucidate the molecular mechanism of synaptic vesicle (SV) 

exocytosis. SVs are small, electron-lucent vesicles that are clustered at presynaptic 

terminal. They store neurotransmitters and release them by calcium triggered exocytosis 

(Takamori, 2009). In the nerve terminal, they are organised in three distinct pools; readily 

releasable pool (RRP), reserve pool (RP), and silent pool (SP) (Tsien and Alabi, 2012). 

Despite the importance of these pools, understanding about their properties are far from 

fully understood. Herein we have investigated various properties of SV pools in synaptic 

transmission, including the SP exocytosis following Roscovitine (Cdk5 inhibitor) (Chapter 

3) or Fluoxetine (SSRI drug) (Chapter 4) treatment, and also the effect of PKA and 

Calcium channels (Chapter 5), and the actin cytoskeleton (Chapter 6) on properties of the 

SV exocytotic modes. 

7.1.1 Roscovitine 

The SP is known to contain the majority of the SVs in certain type of experimental models, 

such as rodent hippocampal cultured cells. Interestingly, despite this characteristic, the SP 

rarely contributes to neurotransmission under normal physiological conditions (Sudhof, 

2004). The reason why such a large number of SVs, that could theoretically take part in 

the synaptic transmission, are reluctant to release has been a major question.  

Recently, Kim and Ryan (2010) used the Cdk5 inhibitor, Roscovitine, to successfully 

induce an extra release of SVs from mammalian hippocampal cell cultures and such 

release is from the SP. These authors have reported that treatment with Roscovitine 

allowed a 100-AP stimulation to trigger release of virtually all of the SVs in the terminal. 

They concluded that Cdk5 inhibition has increased the size of the available SV pool by 

allowing SP SVs to now become releasable (Kim and Ryan, 2010, 2013). We have now 
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employed Roscovitine to investigate the properties of the SP rat cerebral cortical 

synaptosomes. 

Roscovitine treatment dose dependently increased the evoked GLU release from the nerve 

terminals with the maximum effect being identified at 100 M. Under the stimulation 

conditions employed (HK5C or ION5C) the synaptosomes only undergo one round of SV 

release. However, under conditions where the SV recycling machineries were 

pharmacologically blocked with Dynasore and Pitstop2TM, Roscovitine still triggered extra 

release with the stimuli. This means that the release observed has occurred from SVs from 

a different pool other than the RRP and the RP, and this must be the SP. ION5C stimulation 

could also release the SP in the presence of Roscovitine, and as ION5C is an ionophore 

that bypasses any Ca2+ channel requirement, such result suggests that the level of Ca2+ 

influx through specific channels might not play an important role in the release of the SP 

providing there is a sufficient increase in [Ca2+]i. Indeed, whilst 100 M Roscovitine 

allows the HK5C to evoke the SP release, it does not affect the evoked [Ca2+]i. 

Although it was clear that [Ca2+]i was unchanged with the treatment of Roscovitine, it was 

possible that additional [Ca2+]e could induce further release in the presence of Roscovitine 

i.e. the condition being used did not maximally release the SP. This was found not to be 

the case as following Roscovitine pre-treatment HK10C and HK20C was actually unable 

to release the SP, indicating that higher [Ca2+]e actually does not support the release of the 

SP. Intriguingly, the evoked [Ca2+]i was reduced with HK10C or HK20C stimulation 

following Roscovitine treatment compared to that induced by HK5C, clearly there are 

some very precise requirements involving changes in [Ca2+]i that are involved in the 

regulation of the SP release. There was also some specific PKC requirements as 

determined by using PMA and Go6983. Supramaximal activation of PKC with 1 M PMA 

actually blocks the SP release evoked in Roscovitine treated terminals. However, 

inhibition of PKCs by Go6983 did not prevent the SP being released by HK5C in 

Roscovitine treated synaptosomes. However, HK10C and HK20C evoked release in the 
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presence of both Roscovitine and Go6983 failed to release the SP indicating that the higher 

[Ca2+]e was not activating PKCs to the same extent as 1 M PMA since otherwise, as PKCs 

are blocked, one might have expected the SP to be released. All the experiments outlined 

in this paragraph are novel and the precise mechanisms involved will need to be elucidated 

in the future.  

We next investigated whether SP release is dictated by specific types of voltage dependent 

Ca2+ channel. For this, toxins targeting and blocking specific types of Ca2+ channels were 

employed (CONO for N-type Ca2+ channels, AGA for P/Q type Ca2+ channels, NIF for L-

type Ca2+ channels). It was apparent from the results that SP release requires a certain 

amount of Ca2+ influx through Ca2+ channels and SP exocytosis was perturbed by blocking 

any of these three types of Ca2+ channel. Thus, in rat cortical synaptosomes the SP 

regulated by entry of Ca2+ through voltage dependent Ca2+ channels but there is no one 

specific channel linked to this release. This may have been predicted as ION5C bypasses 

these channels but allows the SP to release in Roscovitine treated terminals. 

The actin cytoskeleton has been suggested to play a role in regulation of synaptic 

transmission via scaffolding the SVs (Cingolani and Goda, 2008; Porat-Shliom et al, 2012). 

The actin cytoskeleton must restrain the mobility of SVs, so that they remain distal from 

the AZ; a feature that overlaps with the reluctant release of the SP (Dillon and Goda, 2005). 

Therefore, the actin cytoskeleton might contribute to the SP regulation. Actin 

microfilaments were stabilised with JASP in Roscovitine treated terminals and HK5C still 

evoked release of the SP. Therefore, actin stabilisation with JASP was found not to affect 

the SP exocytosis. This is intriguing since it is clear that the actin microfilaments cannot 

act as barrier to unattached SP SVs, Roscovitine could still physically disattach the SVs 

from this cytoskeleton and such vesicles maybe now available for release. 

Roscovitine treatment has been established in this study to allow HK5C and ION5C to 

evoke the SP exocytosis and this presumably involves Cdk5 inhibition. However, a precise 

mechanism of how inhibition of Cdk5 has led to the SP release is unknown. Cdk5 is a 
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kinase that has numerous substrates in the nerve terminal, such as Syn I. Benfenati’s group 

has previously reported that Cdk5 phosphorylation of Syn I at Ser-551 site restrains the 

mobility of the SVs through association with actin cytoskeleton (Verstegen et al, 2014). 

Therefore, it is possible that Syn I phosphorylation might have been modified following 

Cdk5 inhibition with Roscovitine, and this allows previously immobilised SVs to 

exocytose. To investigate this, the specific phosphorylation of certain sites on Syn I were 

explored using western blotting experiments. 

Semi-quantitative analysis of Syn I phospho-Ser-553 probed blots indicated that 

Roscovitine may have reduced the phosphorylation of this site. Additionally, phospho-

Ser-9 and Ser-603 probed blots have shown increased phosphorylation following 

Roscovitine application relative to drug free control. Thus, it would be appear that 

Roscovitine treatment leads to decreased phosphorylation of Syn I at Ser-553 site, whereas 

Ser-9 and Ser-603 site phosphorylation increases, and these changes may allow the stimuli 

to evoke the SP exocytosis. Importantly, in the previous literature it was shown that Cdk5 

phosphorylation restricts the mobility of SVs by anchoring it with actin cytoskeleton 

(Verstegen et al, 2014), whereas PKA and CaMK II phosphorylation dissociates Syn I 

with SVs, thereby facilitate the SV exocytosis (Llinas et al, 1985, 1991; Petrucci and 

Morrow, 1987; Valtorta et al, 1991; Ceccaldi et al, 1995; Menegon et al, 2006; Wang et 

al, 2008). Therefore, results from current study match with findings from previous 

research. However, careful comparison between 4AP5C induced changes and HK5C and 

ION5C induced changes may highlight that the PKA site Ser-9 might not be involved (as 

ION5C does not change this phosphorylation in Roscovitine treated terminals) and that 

large changes in phosphorylation of Ser-553 and Ser-603 are required because 4AP5C can 

induce some change. As this is still preliminary data, many more repeasts of these 

experiments are required to ascertain the validity of these statements. 
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7.1.2 Fluoxetine 

Roscovitine treatment and subsequent stimulation with HK5C and ION5C have 

successfully induced the SP release. Nevertheless, considering the complexity of 

neurotransmission, it is unlikely that Cdk5 inhibition is the only approach that would allow 

one to study this pool of SVs. Hence, we attempted to find an alternative method that could 

allow the SP of SVs to be released extra release. One of the possible candidate was 

Fluoxetine, a commonly prescribed antidepressant drug. Recently, Jung et al (2014) 

reported that 1 M Fluoxetine increased the size of the recycling pools at the expense of 

the SP, in hippocampal cultured cells. Thus, we have tested whether Fluoxetine could also 

support the release of glutamatergic SVs from the SP. 

Synaptosomes were treated with various concentrations (1 M, 200 nM, 100 nM, and 50 

nM) of Fluoxetine for 5 min and its GLU release was evoked by HK5C. None of the 

concentrations applied were found to allow HK5C to evoke an extra release, and in fact 1 

M Fluoxetine actually inhibited some release. This was analogous to the finding that 8 

M Fluoxetine inhibited release in the study by Jung et al (2014). Synaptosomes were 

then treated with different concentrations (1 M, 200 nM, 100, nM, 50 nM, 40 nM, 20, 

nM, and 5 nM) of Fluoxetine for an extended period of incubation (20 min) to determine 

if this provided better conditions. The release was still reduced with 1 M Fluoxetine as it 

was with 200 nM and 100 nM Fluoxetine, indicating that these dosages of the drug perturb 

release. Remarkably, 40 nM Fluoxetine induced extra evoked release of GLU as did 20 

nM, although this was a smaller effect. However, 5 nM failed to effect evoked release. 

Therefore, it would appear that maximum release of the SP was produced following 40 

nM Fluoxetine treatment for 20 min at 37oC prior to stimulation. A comparison with 100 

M Roscovitine treatment demonstrated that 40 nM Fluoxetine treatment allowed HK5C 

to evoke a similar amount of SP release. Further, dual treatment of Roscovitine and 

Fluoxetine was found not to induce any further increase in release, confirming that the 
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maximum release of the SP has been achieved. 40 nM Fluoxetine can also allow ION5C 

to evoke the SP release so again this suggests that the action of Fluoxetine is independent 

of any specific voltage dependent Ca2+ channels. 

Even though this study obtained extra evoked GLU release with Fluoxetine using ION5C 

or HK5C stimuli, there was still a possibility that the drug, through unknown mechanism, 

might actually promote a recycling of the RRP and RP and the re-release during the 

stimulus period. So that this study was observing a recycling of these two pools rather than 

release of the SP. However, this was found not to be the case since even after the inhibition 

of the recycling machineries involving Dyn and clathrin, Fluoxetine was still able to allow 

ION5C and HK5C to evoke the SP release. 

40 nM Fluoxetine with 20 min incubation was found to be an ideal condition to allow 

evoked release of the SP release. However, there was a noticeable decrease in the evoked 

release when 1 M Fluoxetine was applied, indicating that this concentration of the drug 

is perturbing some release from the RRP and RP. One of the possible explanations for 

perturbation of release following 1 M Fluoxetine treatment may be due to a reduction in 

evoked [Ca2+]i. Indeed, 1 M Fluoxetine application did reduce evoked [Ca2+]i 

compared to non-drug treated control, suggesting that an inhibition effect derived from 1 

M Fluoxetine treatment may be from a reduction in the evoked [Ca2+]i level. 

7.1.3 Effect of PKA and Calcium channel on regulation of SV 

releasing modes 

From previous research in Ashton’s group, it was established that regulation of releasing 

modes is dependent on various protein activities (Bhuva, 2015; Singh, 2017). Herein we 

are discussing the regulation of releasing modes dependent on activities of various proteins; 

Dyn, PKA, and Ca2+ channels.  
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Dyn plays an important role in the regulation of some type of KR mode of exocytosis as 

inhibition of its GTPase activity with Dynasore has shown to change the mode to FF. 

However, it was unknown whether Dyn has to be translocated to a membrane compartment 

prior to SV fusion or whether Dyn already present on such membranes regulates the KR 

mode of exocytosis. This was investigated using MITMAB, a drug that inhibits the 

translocation of Dyn from the cytosol to membranes as it prevents membrane binding. 

Evoked GLU and FM dye release and [Ca2+]i were found to be unchanged following 

MITMAB treatment compared to non-drug treated control, indicating that his drug does 

not interfere with the Dyn dependent KR pathway. These results suggests that Dyn that is 

already present on membranes can regulate the mode of release. In recent experiment 

(Ashton et al, unpublished), it was shown that MITMAB can prevent the recycling of those 

SVs undergoing FF. Thus, as previously characterised, this CDE does require Dyn to bind 

to membrane. Further, it also proves that MITMAB is active. 

Dyn is a substrate of PKC but, although it is speculated that PKC mediated Dyn I 

phosphorylation regulates the KR mode, it was hard to block changes in site specific 

phosphorylation in Dyn using PKC inhibitors. Thus, other kinases may also play a role 

(Singh, 2017). Dyn I is also proposed to be phosphorylated by other kinases, including 

PKA. Thus, we tested whether absence of endogenous PKA activities induced by its 

inhibition by KT5720 would affect the releasing mode. 4AP5C and ION5C evoked FM 

dye releases were found to be increased following KT5720 treatment, demonstrating that 

the mode of release has changed from KR to FF. Intriguingly, KT5720 treatment did not 

perturb the KR mode of the RRP evoked by HK5C. Such results are identical to what 

occurs when Dynasore inhibits the Dyn dependent KR mode. Thus, it would appear that 

endogenous PKA inhibition is only affecting the Dyn dependent KR mode, whereas HK5C 

evoked release operating through NM-II dependent pathway is not affected by the 

treatment with KT5720. Excitingly one can change HK5C to act on the Dyn dependent 

KR by inhibiting PKCs with Go6983. Under such circumstance, KT5720 can now switch 
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the HK5C evoked RRP SVs from KR to FF. Clearly, the Dyn dependent but not NM-II 

dependent KR has a requirement for endogenous PKA activity. 

In a preliminary study from A.Ashton’s group, it was discovered that HK5C evoked FM 

dye release from the RRP was induced following L-type Ca2+ channel inhibition, 

suggesting that the KR mode is regulated through L-type Ca2+ channels. However, this 

data only applies to the NM-II dependent KR pathway since HK5C works through this 

pathway. ION5C is the stimulus that acts on the Dyn dependent KR mode but as this 

stimulus bypasses Ca2+ channel requirements, one cannot use this stimuli to investigate 

possible specific Ca2+ channel requirement. Since Go6983 can change the HK5C to work 

through Dyn dependent KR, we measured HK5C evoked FM dye release in the presence 

of Go6983 with different Ca2+ channel inhibitors. Intriguingly, only the P/Q type 

Ca2+channel inhibitor, AGA, changed the releasing mode of the RRP SVs from KR to FF, 

whereas, CONO (N-type Ca2+ channel inhibitor) and NIF (L-type Ca2+ channel inhibitor) 

failed to induce any changes in mode of release. Importantly, these results demonstrate 

that the NM-II dependent KR is regulated by L-type Ca2+ channels whilst the Dyn 

dependent KR mode is mediated through P/Q-type Ca2+ channels. This result has now led 

us to the idea that rather than us studying one KR mode that can be regulated by either 

Dyn or NM-II (dependent on the stimulation conditions) we are studying two independent 

KR modes: one regulated by Dyn and P/Q type channels and one regulated by NM-II and 

L-type channels. As these channels may be localised to distinct regions on the AZ, it could 

be that these two modes occur at distinct regions herein. This may also now explain 

difference in certain properties e.g. PKA’s maybe localised near to the Dyn dependent KR 

SVs and regulated this but not near the NM-II dependent KR SVs.  

7.1.4 Effect of Actin cytoskeleton on the releasing mode 

At the AZ, the actin cytoskeleton is suggested to have a dual function. It might direct the 

arriving SVs to dock at the AZ, thereby positively controlling the size of the RRP. It could 
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also form a physical and molecular barrier for priming reaction, and thereby prevent facile 

fusion of vesicles (Cingolani and Goda, 2008; Porat-Shliom et al, 2012). The actin 

cytoskeleton can interact with Dyn and NM-II (Papadopulos, 2017) suggesting the 

possibility of its role as a regulator of Dyn and NM-II dependent KR mode. Herein, we 

have investigated the properties of KR mode depending on the actin cytoskeleton activity. 

Actin microfilament disassembly due to LAT treatment prevented the release of RP GLU 

containing SV. If LAT does not perturb the modes of release, then one should expect the 

HK5C or ION5C should induce little FM dye because RRP normally undergoes KR so it 

does not release the dye and the RP SVs are blocked. However, HK5C and ION5C released 

FM dye and this was comparable to that found in non-drug treated controls. A possible 

explanation is that actin disassembly switches the RRP SVs to a FF mode. This idea was 

found to be correct because OA – which normally switches the RRP SVs to FF failed to 

produce any further FM dye release in LAT treated terminals, indicating that the RRP had 

been switched to the FF mode of exocytosis by disassembling actin microfilaments. 

These results would initially suggest that both the Dyn dependent FP closure for KR and 

the NM-II dependent FP closure for KR may also require intact microfilaments. These 

may help to close the FP. However, we have found some difference between HK5C and 

ION5C that means that both KR modes FP may not both be directly affected by 

microfilament. HK5C evoked [Ca2+]i levels were found to be reduced following 

disassembly of actin cytoskeleton, suggesting that a reduction in [Ca2+]i level by 

microfilament of this cytoskeleton component may explain the switch of the RRP KR to 

FF and further, this could also explain why there is no release from the RP. However, actin 

disassembly action on ION5C evoked RP release and on ION5C RRP SVs mode of release 

were not connected to changes in ION5C evoked [Ca2+]i. One possibility is that actin 

microfilaments have an indirect involvement on the NM-II dependent KR mode 

(represented with HK5C stimulation), potentially through the regulation of calcium level, 
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but this cytoskeleton may directly mediate the Dyn dependent pathway (represented with 

ION5C stimulation).  

We have also found that higher [Ca2+]e using HK20C did not prevent the LAT induced 

perturbation of the RP GLU containing SV release. However, this has to be tested on the 

FM dye release assay to see whether HK20C can switch the RRP mode of release back to 

KR. If the results appears that higher [Ca2+]i could reverse the change in the mode induced 

by actin disassembly, it will prove that we are actually looking at the two distinctive effects 

of LAT application. 

We have used ION5C to work on the Dyn dependent KR pathway and HK5C to work on 

the NM-II dependent KR pathway. However, as we have found that these stimuli may also 

be perturbed by actin disassembly, we sought to check the specificity of our findings for 

the KR mode independent of the stimulus employed. We treated terminals with Go6983 

to change the HK5C to a Dyn dependent KR mode and then disassembled microfilament 

with LAT. However, surprisingly the Go6983 treatment led to recovery of RP containing 

GLU SV release evoked by HK5C. Likewise, the LAT action on HK5C evoked [Ca2+]i 

level has also found to be reversed in the presence of Go6983. Previously, it was proposed 

that LAT action on RP inhibition for HK5C is derived from the reduction in evoked 

[Ca2+]i level and the results with Go6983 suggest that this is correct because this allows 

normal HK5C evoked [Ca2+]i level, and normal release of the RP. These results may 

indicate that active PKCs are important for the effect of actin disassembly on release. To 

check this one will have to conduct similar experiments using the ION5C stimulation. 

However, initial results suggest that the release of RP of GLU containing SVs is still 

blocked using ION5C stimulation following treatment with LAT and Go6983. This 

suggests that PKCs may not play a role for the regulation of SV release by ION5C in LAT 

treated terminals. 
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The properties of the actin cytoskeleton can be further investigated by stabilising 

microfilament with JASP. JASP treatment does not perturb the HK5C or ION5C evoked 

GLU release and FM dye release, although it induces a slight increase in the HK5C evoked 

[Ca2+]i.  

As JASP treatment does not perturb release, we can use it to show that the LAT actions is 

related to actin disassembly as JASP prevents this action of LAT. Indeed, JASP pre-

treatment followed by LAT prevents the effect of LAT so the latter does work by actin 

disassembly. FM dye release in the presence of both drugs were found to produce similar 

result to when LAT was treated alone but this can be shown to be due to the RP now 

releasing by FF and the RRP releasing by KR. OA treatment of the JASP plus LAT treated 

terminals allowed more FM dye release proving that the RRP was originally undergoing 

KR but is now undergoing FF.  

7.2 Future Studies 

Finding from this thesis contributes to the understanding of the properties of distinct pool 

and their release. In particular, it has been discussed herein that the Roscovitine and 

Fluoxetine can allow stimulus to induce SP release. Additionally, effect of different 

protein activities including Dyn, PKA, Ca2+ channels, and actin cytoskeleton, on the mode 

of release were demonstrated. Nevertheless, there are still areas that are required to be 

studied in the future research in order to achieve the full understanding of the field. 

Likewise, some of the experiments proposed in this section may aid current knowledge 

and expand the understanding surrounding SV exocytosis in neurons. 

- Reversibility of Roscovitine and Fluoxetine - Roscovitine and Fluoxetine have 

been established to allow HK5C or ION5C to induce the SP release. The use of 

FM2-10 dye to study the releasing mode of SP exocytosis has not been performed 

in this study. This is due to the fact that in order to load up the SP SVs with dye, 

one has to pre-treat the terminals with either Fluoxetine or Roscovitine so that the 
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SP is released and so it can be labelled with the Fluorescence dye, so that following 

its recycling, one would have labelled SP SVs. Subsequently in Fluoxetine or 

Roscovitine treated terminals, one can then allow HK5C or ION5C to evoke the 

release of FM dye from the exocytosing SP of SVs. However, one problem is that 

these drugs may perturb the SV recycling cycle, such that one may not be able to 

label SP SVs by this method e.g. Cdk5 phosphorylates Dyn following CDE, but 

blocking this may perturb parts of the SV recycling pathway. If drug actions are 

reversibe, then one could allow the SP to be stimulated and labelled with dye and 

then the drug could be removed, if its action is really reversible, this may allow 

for fully functional recycling. Subsequently, fully labelled SP SVs could be 

induced to release by treating with one of these drugs. In the ideal world, one could 

test Roscovitine for pre-stimulation, its removed, and then Fluoxetine for 

stimulation or vice versa. 

- PKA dependency of Roscovitine – In the current study, SP release in Roscovitine 

treated terminals has been discovered to be strongly dependent upon PKC as 1 M 

PMA prevents this, however, other kinases that are known to have important role 

in neurotransmission, such as PKA, were not investigated herein. Thus one could 

investigate whether PKA is a potential regulator of the SP exocytosis. We could 

study this by pharmacologically promoting PKA activity with c-BIMPs, or 

attenuating its activity with KT5720. This is analogous to the PKC studies where 

we supramaximally activated PKCs with 1 M PMA or inhibited PKCs with 

Go6983. 

- More experiments with ION5C – Some of the experiments presented in this thesis 

only employed HK5C and there is a need to test these using ION5C as the stimulus. 

For example, whilst ION5C evoked GLU release is already performed for 

treatment with Go6983 plus LAT, one needs to study ION5C evoked FM dye 

release in the presence of LAT and Go6983. Thus, it is important to investigate 
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the conditions under ION5C stimulation. Additionally, ION5C evoked GLU 

release under Dynasore, Pitstop2TM, JASP, Blebbistatin, and Cys A treatment in 

the presence of Roscovitine need to be checked as was done for HK5C (see chapter 

3). Also, the action for 40 nM Fluoxetine (chapter 4) with 20 min incubation on 

ION5C evoked GLU release also needs to be investigated. 

- Fluoxetine with Serotonergic receptor agonists and antagonists – Fluoxetine has 

been discovered herein to allow HK5C and ION5C to evoke the release of the SP. 

This is intriguing result because Fluoxetine is known as SSRI, but it can also allow 

extra exocytosis of GLU containing SVs from glutamatergic nerve terminals. 

Therefore, it is possible that part of the antidepressant effect of drug may be 

derived from elevating the number of NT vesicles that can be stimulated to release 

and these effects would not be restricted to serotonergic terminals. There is a 

minimal number of serotonergic terminals in the cerebrocortial synaptosomes 

preparation which is over 80% glutamatergic. Thus it can be argued that 

Fluoxetine blocking reuptake of serotonin could not possibly act on all these 

glutamatergic terminals. There would not be enough present to do this and further, 

not all glutamatergic synaptosomes would have serotonin presynaptic receptors to 

produce this substantial increase in GLU release. However, for completion, one 

should add well characterised serotonin receptor agonists and antagonists and see 

what possible effect these could have on evoked GLU release alone. More 

importantly, these could be used in conjunction with Fluoxetine to show that the 

Fluoxetine affect is not due to serotonin levels. 

- Calcium dependency of Fluoxetine action - It is necessary to investigate the 

changes in evoked [Ca2+]i in the condition where Fluoxetine has successfully 

allowed HK5C and ION5C to induce SP release (40 nM for 20 min incubation at 

37oC). This result, in combination with SP release observed at Roscovitine treated 

terminals, will represent the Calcium dependency of the SP regulation. As was 
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done for Roscovitine, it will be important to see whether Fluoxetine action 

depends on one of the three voltage dependent Ca2+ channels that we have tested. 

- Western blotting – Western blotting results presented in Chapter 3 attempted to 

demonstrate that changes in the specific phosphorylation sites in Syn I following 

Roscovitine treatment, are related to the release of the SP. However, this was, by 

necessity, only a preliminary finding and more repeats need to be performed. 

Furthermore, the exact analogous experiment needs to be performed using 

Fluoxetine treated terminals. This may allow us to find some commonalities and 

differences and ascertain those phosphorylations that are truly required for release 

of the SP.  

- FM experiments for HK20C in the presence of LAT – In chapter 6, disassembly 

of actin cytoskeleton with LAT has led to inhibition of HK5C evoked RP release 

and following effect appear to be directly associated with the reduction of [Ca2+]i, 

showcasing an importance of [Ca2+]i in LAT activity on RP release. Hence, it will 

be important to investigate if higher [Ca2+]e with HK20C would overcome the 

LAT effect. The GLU release experiment has revealed that it failed to reverse the 

effect but this also have to be tested under FM dye assay to see if there is any 

difference in the releasing mode.  

- Specificity of calcium channel for LAT induced effect – HK5C evoked GLU 

release in the presence of LAT and Go6983 was found to recover the RP release. 

Furthermore, calcium level was found to be at the equal level with the control 

condition where LAT alone was applied, thus it would be appear that recovery of 

the RP release is linked to recovery of Calcium level. This finding highlights the 

importance of calcium level in LAT action on HK5C evoked release. This could 

be further tested by using various toxins that inhibit specific calcium channel. 

Following experiment will reveal any specificity of calcium channel involved in 

LAT induced effect. 
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- Does OA induced the FF of the RRP SVs following HK5C evoked dye release in 

LAT and Go6983 treated terminals? – The level of FM dye release was discovered 

to be equal to control in LAT and Go6983 treated terminals. However, it is not yet 

certain whether this means RP is releasing in KR and RRP has returned back to 

FF. This could be tested by including the OA in the drug treatment. OA will induce 

FF, thus if any extra release is observed in the following experiment, this will 

confirm that LAT effect has been reversed with the treatment of Go6983. 

 

  



272 
 

 

 

 

 

 

Chapter 8: 

 

Reference and Appendix 
  



273 
 

Reference 

Afuwape, O. A., Wasser, C. R., Schikorski, T. and Kavalali, E. T. (2017). Synaptic vesicle pool-

specific modification of neurotransmitter release by intravesicular free radical generation. The 

Journal of Physiology, 595(4), 1223-1238. 

Akbergenova, Y. and Bykhovaskaia, M. (2007). Synapsin maintains the reserve vesicle pool and 

spatial segregation of the recycling pool in Drosophila presynaptic boutons. Brain Research, 1178, 

52-64. 

Akbergenova, Y., Bykhovskaia, M. (2010). Synapsin regulates vesicle organisation and activity 

dependent recycling at Drosophila motor boutons. Neuroscience, 170(2), 441-452. 

Alabi, A. R. A. and Tsien, R. W. (2012). Synaptic vesicle pools and dynamics. Cold Spring Harbor 

Perspective in Biology, 4, 1-18. 

Alabi, A. R. A. and Tsien, R. W. (2013). Perspective on Kiss-and-Run: role in exocytosis, 

endocytosis, and neurotransmission. The Annual Review of Physiology, 75, 393-422. 

Alboghobeish, S., Naghizadeh, B., Kheirollah, A., Ghorbanzadeh, B., Mansouri, M. T. (2019), 

Fluoxetine increases analgesic effects of morphine, prevents development of morphine tolerance 

and dependence through the modulation of L-type calcium channels expression in mice. 

Behavioural Brain Research, 361, 86-94.  

Ales, E., Tabares, L., Poyato, J. M., Valero, V., Lindau, M. and de Toledo, G. A. (1999) High 

calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nature Cell 

Biology, 1. 

Anantharam, A., Bittner, M. A., Aikman, R. L., Stuenkel, E. L., Schmid, S. L., Axelrod, D., Holz, 

R. W. (2011). A new role for the dynamin GTPase in the regulation of fusion ore expansion. 

Molecular Biology of the Cell, 22, 1907-1918. 

Aravanis, A. M., Pyle, J. L., Harata, N. C. and Tsien, R. W. (2003). Imaging single synaptic vesicles 

undergoing repeated fusion events: kissing, running, and kissing again. Neuropharmacology, 45, 

797-813. 

Armbruster, M., Messa, M., Ferguson, S.M., De Camilli, P. and Ryan, T.A. (2013). Dynamin 

phosphorylation controls optimization of endocytosis for brief action potential bursts. eLife 

2013,2:e00845. 

Ashton, A.C. and Ushkaryov, Y.A. (2005). Properties of synaptic vesicle pools in mature central 

nerve terminals.Journal of Biological Chemistry, 280, 37278-37288. 

Ashton, A.C., Babar, P.M. and Sihra, T.S. (2009). Changes in protein phosphorylation and calcium 

regulate switching between distinct modes of synaptic vesicle exocytosis. Annual Society of 

Neuroscience Conference. 



274 
 

Ashton, A.C., Patel, M.H., Bhuva, D.A. and Sihra T.S. (2011). Regulation of modes of synaptic 

vesicle release in control and diabetic nerve terminals. Annual Society of Neuroscience Conference. 

445.17/D42. 

Ashton, A.C., Bhuva, D.A., Singh, D.S. and Sihra, T.S. (2013). The role of dynamin and myosin 2 

in regulating the mode of synaptic vesicle exocytosis. Annual society of Neuroscience Conference. 

424.14/G51. 

Bahring, R. and Covarrubias, M. (2011). Mechanisms of closed-state inactivation in voltage-gated 

ion channels. Journal of Physiology, 589, 461-479. 

Baldwin, M. L. Rostas, J. A. P. and Sim, A. T. R. (2003). Two modes of exocytosis from 

synaptosomes are differentially regulated by protein phosphatase types 2A and 2B. Journal of 

Neurochemistry, 85, 1190-1199. 

Beach, J.R., Licate, L.S., Crish, J.F. and Egelhoff, T.T. (2011). Analysis of the role of 

Ser1/Ser2/Thr9 phosphorylation on myosin II assembly and function in live cells. BMC cell biology, 

12, 52. 

Becherer, U. and Rettig, J. (2006). Vesicle pools, docking, priming, and release, Cell and Tissue 

Research, 326, 393-407. 

Bellani, S., Sousa, V. L., Ronzitti, G., Valtorta, F., Meldolesi, J., Chieregatti, E. (2010). The 

regulation of synaptic function by -synuclein. Communicative and Integrative Biology, 3(2), 106-

109. 

Benfenati, F., Neyroz, P., Bahler, M., Masotti, L. and Greengard, P. (1990). Time-resolved 

fluorescence study of the neuron-specific phosphorprotein synapsin I. Evidence for 

phosphorylation-dependent conformational changes. The Journal of Biological Chemistry, 265(21), 

12584-12595. 

Berberian, K., Torres, A. J., Fang, Q, H., Kisler, K. and Lindau, M. (2009). F-actin and Myosin II 

accelerate catecholamine release from chromaffin granules. The Journal of Neuroscience, 29(3), 

863-870. 

Betz, W. J. and Henkel, A. W. (1994). Okadaic acid disrupts clusters of synaptic vesicles in frog 

motor nerve terminals. The Journal of Cell Biology, 124(5), 843-854. 

Bhat, P. and Thorn, P. (2009). Myosin 2 maintains an open exocytic fusion pore in secretory 

epithelial cells. Molecular Biology of the Cell, 20, 1795-1803. 

Bhat, S., Dao, D. T., Terrillion, C. E., Arad, M. Smith, R. J., Soldatov, N. M., Gould, T. D. (2012), 

CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Progress in Neurobiology, 99, 

1-14. 



275 
 

Bhuva, D. (2015). Dynamins and myosin-II regulate the distinct modes of synaptic vesicle 

exocytosis in mature cerebrocortical nerve terminals and this involves calcium dependent 

phosphorylations. Doctoral thesis, UCLan, Preston. 

Bialojan, C. and Takai, A. (1988). Inhibitory effect of a marine-sponge toxin, Okadaic acid, on 

protein phosphatases. Specific and kinetic. Biochemical Journal, 256, 283-290. 

Bloom, O., Evergren, E., Tomilion, N., Kjaerulff, O., Low, P., Brodin, L., Pieribone, V.A., 

Greengard, P., Shupliakov, O. (2003). Colocalisation of synapsin and actin during synaptic vesicle 

recycling. The Journal of Cell Biology, 161, 737-747. 

Bonanomi, D., Menegon, A., Miccio, A., Ferrari, G., Corradi, A., Kao, H. T., Benfenati, F., Valtorta, 

F. (2005) Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic 

vesicle dynamics in developing neurons. The Journal of Neuroscience, 25(32), 7299-7308. 

Brodin, L., Low, P. and Shupliakov, O. (2000). Sequential steps in clathrin-mediated synaptic 

vesicle endocytosis. Current opinion in Neurobiology, 10(3), 312-320.  

Bubb, M. R., Senderowicz, A. M. J., Sausville, E. A., Duncan, K. L. K., Korn, E. D. (1994). 

Jasplakinolide, a cytotoxic natural product, induces actin polymerisation and competitively inhibits 

the binding of phalloidin to F-actin. The Journal of Biological Chemistry, 269 (21), 14869-14871. 

Bubb, M. R., Spector, I., Beyer, B. B., Fosen, K. M. (2000). Effects of Jasplakinolide on the kinetics 

of actin polymerisation. An explanation of certain in vivo observations. The Jounral of Biological 

Chemistry, 275 (7), 5163-5170. 

Bykhovskaia, M. (2011) Synapsin regulation of vesicle organization and functional pools. Seminars 

in Cell and Developmental Biology, 22, 387-392. 

Bymaster, F. P., Zhang, W., Carter, P. A., Shaw, J., Chernet, E., Phebus, L., Wong, D. T., Perry, K. 

W. (2002), Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine 

and dopamine extracellular levels in prefrontal cortex. Psychopharmacology, 160, 353-361. 

Cabin, D.E., Shimazu, K., Murphy, D., Cole, N.B., Gottschalk, W., Mcllwain, K.L., Orrison, B., 

Chen, A., Ellis, C.E., Paylor, R., Lu, B. and Nussbaum, R.L. (2002). Synaptic vesicle depletion 

correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking 

alpha-synuclein. Journal of Neuroscience, 22. 8797-8807. 

Cardenas, A. M. and Marengo, F. D. (2016). How the stimulus defines the dynamics of vesicle pool 

recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. Journal of Neurochemistry, 

137, 867-879. 

Catterall, W. A., Leal, K., Nanou, E. (2013). Calcium channels and short term synaptic plasticity. 

The Journal of Biological Chemistry, 288(15), 10742-10749. 



276 
 

Cazares, V. A., Njus, M. M., Manly, A., Saldate, J. J., Subramani, A., Ben-Simon, Y., Sutton, M. 

A., Ashery, U. and Stuenkel, E. L. (2016). Dynamic partitioning of synaptic vesicle pools by the 

SNARE-binding protein Tomosyn. The Journal of Neuroscience, 36(44), 11208-11222.  

Ceccaldi, P. E., Grohovaz, F., Benfenati, F., Chieregatti, E., Greengard, P., Valtorta, F. (1995). 

Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by 

videomicroscopy. The Journal of Cell Biology, 128, 905-912. 

Ceccarelli, B., Hurlbut, W. P. and Mauro, A. (1973). Turnover of transmitter and synaptic vesicles 

at the frog neuromuscular junction. Journal of Cell Biology, 57, 499-524. 

Cesca, F., Baldelli, P., F. Valtorta, F. and Benfenati, F. (2010). The synapsins: Key actors of 

synapse function and plasticity. Progress in Neurobiology, 91, 313–348. 

Chamberland, S. and Toth, K. (2016). Functionally heterogeneous synaptic vesicle pools support 

diverse synaptic signalling. Journal of Physiology, 594(4), 825-835. 

Chan, S. A., Doreian, B., Smith, C. (2010). Dynamin and Myosin regulate differential exocytosis 

from mouse adrenal chromaffin cells. Cellular and Molecular Neurobiology,30(8), 1351-1357. 

Charles, E., Hammadi, M., Kischel, P., Delcroix, V., Demaurex, N., Castelbou, C., Vacher, A. M., 

Devin, A., Ducret, T., Nunes, P., Vacher, P. (2017), The antidepressant fluoxetine induces necrosis 

by energy depletion and mitochondrial calcium overload. Oncotarget, 8(2), 3181-3196. 

Cheung, G., Jupp, O. J. and Cousin, M. A. (2010). Activity-dependent bulk endocytosis and 

clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve 

terminals. Journal of Neuroscience, 30, 8151-8161. 

Cingolani, L. A. and Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton 

and synaptic efficacy. Nature Reviews, 9, 344-356 

Clayton, D.F. and George, J.M. (1999). Synucleins in synaptic plasticity and neurodegenerative 

disorders. Journal of Neuroscience Research, 58, 120-129. 

Clayton, E. L. and Cousin, M. A. (2008). Differential labelling of bulk endocytosis in nerve 

terminals by FM dyes. Neurochemistry International, 53, 51-55. 

Clayton, E.L. and Cousin, M.A. (2009). The molecular physiology of activity-dependent bulk 

endocytosis of synaptic vesicles. Journal of Neurochemistry, 111, 901–914. 

Clayton, E.L., Sue, N., Smillie, K.J., O'Leary, T., Bache, N., Cheung, G., Cole, A.R., Wyllie, D.J., 

Sutherlan, C. and Robinson, P.J. (2010). Dynamin I phosphorylation by GSK3 controls activity-

dependent bulk endocytosis of synaptic vesicles. Nature Neuroscience, 13, 845-851. 

Clevenger, S. S., Malhortra, D., Dang, J., Vanle, B., IsHak, W. W. (2018), The role of selective 

serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Therapeutic 

Advances in Psychopharmacology, 8(1), 49-58. 



277 
 

Cole, J. C., Villa, B. R. S., Wilkinson, R. S. (2000). Disruption of actin impedes transmitter release 

in snake motor terminals. The Journal of Physiology, 525(3), 579-586. 

Cotter, K., Stransky, L., McGuire, C. and Forgac, M. (2015). Recent insights into the structure, 

regulation and function of the V-ATPases. Trends in Biochemical Sciences, 40, 611-622. 

Coue, M., Brenner, S. L., Spector, I., Korn, E. D. (1987). Inhibition of actin polymerisation by 

Latrunculin A. FEB Letters, 213 (2), 316-318. 

Crawford, D.C. and Kavalali, E.T. (2015). Molecular Underpinnings of Synaptic Vesicle Pool 

Heterogeneity. Traffic, 16, 338–364. 

Dale, E., Andersen, B. B., Sanchez, C. (2015), Emerging mechanisms and treatments for depression 

beyond SSRIs and SNRIs. Biochemical Pharmacology, 95, 81-97. 

De Camilli, P., Takei, K. and McPherson, P. (1995). The function of dynamin in endocytosis. 

Current Opinion in Neurobiology, 5, 559-565.  

Deak, F., Lasztoczi, B., Pacher, P., Petheo, G. L., Kecskemeti, V. and Spat, A. (2000). Inhibition 

of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. 

Neuropharmacology, 39, 1029-1036. 

Denker, A. and Rizzoli, S. O. (2010). Synaptic vesicle pools: an update. Frontiers in Synaptic 

Neuroscience, 2(135), 1-12. 

Denker, A., Bethani, I., Krohnert, K., Korber, C., Horstmann, H., Wilhelm, B. G., Barysch, S. V., 

Kuner, T., Neher, E. and Rizzoli, S. O. (2011). A small pool of vesicles maintains synaptic activity 

in vivo. PNAS, 108(41), 17177-17182. 

Denker, A., Krohnert, K., Buckers, J., Neher, E., and Rizzoli, S.O. (2011). The reserve pool of 

synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling. PNAS, 108, 

17183-17188. 

Di Maio, V. (2008). Regulation of information passing by synaptic transmission: a short review. 

Brain Research, 1225, 26-38. 

Dillon, C. and Goda, Y. (2005). The actin cytoskeleton: integrating form and function at the synapse. 

Annual Review of Neuroscience, 28, 25-55. 

Ding, J. J., Zou, R. X., He, H. M., Lou, Z. Y., Xu, Y., Wang, H. L. (2018) Pb inhibits hippocampal 

synaptic transmission via cyclin-dependent kinase 5 dependent synapsin I phosphorylation. 

Toxicology Letter, 296, 125-131. 

Doreian, B. W., Fulop, T. G., Smith, C. B. (2008). Myosin II activation and actin re-organisation 

regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. Journal of Neuroscience, 

28(17), 4470-4478. 



278 
 

Doreian, B.W., Fulop, T.G., Meklemburg, R.L., and Smith, C.B. (2009). Cortical F-actin, the 

exocytic mode, and neuropeptide release in mouse chromaffin cells is regulated by myristoylated 

alanine-rich C-kinase substrate and myosin II. Molecular Biology of the Cell, 20, 3142-3154. 

Duman, R. S. and Aghajanian, G. K., (2012), Synaptic dysfunction in depression: potential 

therapeutic targets. Science, 338(6103), 68-72. 

Dutta, D., Williamson, C. D., Cole, N. B. and Donaldson, J. G. (2012). Pitstop 2 is a potent 

inhibitor of Clathrin-independent endocytosis. PLos ONE, 7(9). 

Elhamdani, A., Palfrey, C. and Artalejo, C. R. (2001). Quantal size is dependent on stimulation 

frequency and calcium entry in calf chromaffin cells. Neurons, 31, 819-830. 

Evans, G.J. and Cousin, M.A. (2007). Activity-dependent control of slow synaptic vesicle 

endocytosis by cyclin-dependent kinase 5. The Journal of Neuroscience, 27, 401-411. 

Ferguson, S.M., Brasnjo, G., Hayashi, M., Wolfel, M., Collesi, C., Giovedi, S., Raimondi, A., Gong, 

L.W., Ariel, P. and Paradise, S. (2007). A selective activity-dependent requirement for dynamin 1 

in synaptic vesicle endocytosis. Science, 316, 570-574. 

Fernandez-alfonso, T. and Ryan, T. A. (2008). A heterogenous resting pool of synaptic vesicles 

that is dynamically interchanged across boutons in mammalian CNS synapses. Brain Cell Biology, 

36(1-4), 87-100. 

Fiumara, F., Giovedi, S., Menegon, A., Milanese, C., Merlo, D., Montarolo, P. G., Valtorta, F., 

Benfenati, F., Ghirardi, M. (2004). Phosphorylation by cAMP-dependent protein kinase is essential 

for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons. Journal of 

Cell Science, 117(21), 5145-5154. 

Fornasiero, E.F., Raimondi, A., Guarnieri, F.C., Orlando, M. Fesce,, R. Benfenati,, F. and Valtorta, 

F. (2012). Synapsin contribute to the dynamic spatial organisation of synaptic vesicles in an 

activity-dependent manner. The Journal of Neuroscience, 32(35), 12214-12227. 

Fowler, M.W. and Staras, K. (2015). Synaptic vesicle pools: Principles, properties and limitations. 

Experimental Cell Reseach, 335, 150-156. 

Fulop, T., Radabaugh, S. and Smith, C. (2005). Activity-dependent differential transmitter release 

in mouse adrenal chromaffin cell. Journal of Neuroscience, 25(32), 7324-32. 

Gaydukov, A. E., Tarasova, E. O. and Balezina, O. P. (2013). Calcium-dependent phosphatase 

calciuneurin downregulates evoked neurotransmitter release in neuromuscular junctions of mice. 

Journal of Neurochemistry, 7 (29), 29-33. 

Gedalya, B.T., Loeb, V., Israeli, E., Altschuler, Y., Selkoe, D.J. and Sharon, R. (2009). Alpha-

synuclein and polyunsaturated fatty acid promote clathrin mediated endocytosis and synaptic 

vesicle recycling. Traffic, 10, 218-234. 



279 
 

Graham, M. E., O’ Callaghan, D. W., McMahon, H. T. and Burgoyne, R. D. (2002) Dynamin-

dependent and Dynamin-independent processes contribute to the regulation of single vesicle release 

kinetics and quantal size. PNAS, 99(10), 7124-7129. 

Graham, M. E., Anggono, V., Bache, N., Larsen, M. R., Craft, G. E. and Robinson, P. J. (2007). 

The in vivo phosphorylation sites of rat brain dynamin I. The Journal of Biological Chemistry, 

282(20), 14695-14707. 

Granseth, B., Odermatt, B., Royle, S. J. and Lagnado, L. (2007). Clathrin-mediated endocytosis: 

the physiological mechanism of vesicle retrieval at hippocampal synapses. The Journal of 

Physiology, 585, 681-686.  

Granseth, B., Odermatt, B., Royle, S. J. and Lagnado, L. (2006). Clathrin-mediated endocytosis is 

the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron, 51, 773-786.  

Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985). A new generation of Ca2+ indicators with greatly 

improved fluorescence properties. Journal of Biological Chemistry, 260(6), 3440-3450. 

Gschwendt, M., Dieterich, S., Rennecke, J., Kittstein, W., Mueller, H. J. and Johannes, F. J. 

(1996). Inhibition of protein kinase C  by various inhibitor: Differentiation from protein kinase c 

isoenzymes. FEBS Letter, 392, 77-80.  

Gu, C. K., Yaddanapudi, S., Weins, A., Osborn, T., Reiser, J., Pollak, M., Hartwig, J., Sever, S. 

(2010). Direct dynamin-actin interactions regulate the actin cytoskeleton. The EMBO Journal, 29, 

3593-3606. 

Guarnieri, F. C. (2017). How do synaptic vesicles know which pool they belong to. The Journal of 

Neuroscience, 37(9), 2276-2278. 

Hamilton, T. J., Kwan, G. T., Gallup, J., Tresguerres, M. (2016), Acute fluoxetine exposure alters 

crab anxiety-like behaviour, but not aggressiveness. Scientific Reports, 6, 1-6. 

Hammond, J. W., Lu, S. M. and Gelbard, H. A. (2016). Platelet activating factor enhances synaptic 

vesicle exocytosis via PKC, elevated intracellular calcium, and modulation of synapsin 1 dynamics 

and phosphorylation. Frontiers in Cellular Neuroscience, 9(505), 1-13. 

Harata, N. C., Choi, S. W., Pyle, J. L., Aranvanis, A. M. and Tsien, R. W. (2006) Frequency-

dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with 

novel quenching methods. Neuron, 49, 243-256. 

Harata, N. C., Aravanis, A. M. and Tsien, R. W. (2006) Kiss-and-run and full-collapse fusion as 

modes of exo-endocytosis in neurosecretion. Journal of Neurochemistry, 97, 1546-1570. 

Haviv, L., Gillo, D., Backouche, F., and Bernheim-Groswasser, A. (2008). A cytoskeletal 

demolition worker: myosin II acts as an actin depolymerization agent. Journal of Molecular Biology, 

375, 325-330. 



280 
 

He, L., Wu, X. S., Mohan, R. and Wu, L. G. (2006). Two modes of fusion pore opening revealed 

by cell-attached recordings at a synapse. Nature, 444, 102-105. 

Heuser, J. E. and Reece, T. S (1973). Evidences for recycling of synaptic vesicle membrane during 

transmitter release at the frog neuromuscular junction. The Journal of Cell Biology, 57, 315-344. 

Heuser, J. E. (1989). Review of electron microscopic evidence favouring vesicle exocytosis as the 

structural basis for quantal release during synaptic transmission. Quality Journal of Experimental 

Physiology, 74, 1051-1069. 

Hilfiker, S., Schwizer, F. E., Kao, H. T., Czernik, A. J., Greengard, P., Augustine, G. J. (1998). 

Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature 

neuroscience, 1(1), 29-35. 

Hilfiker, S., Benfenati, F., Doussau, F., Nairn, A. C., Czernik, A. J., Augustine, G. J., Greengard, 

P. (2005). Structural domains involved in the regulation of transmitter release by synapsins. The 

Journal of Neuroscience, 25(10), 2658-2669. 

Hinshaw, J. E. and Schmid, S. L. (1995). Dynamin self assembles into rings suggesting a 

mechanism for coated vesicle budding. Nature, 374, 190-192. 

Hinshaw, J. E. (2000). Dynamin and its role in membrane fission. Annual Review of Cell and 

Developmental Biology, 16, 483-519. 

Hosaka, M., Hammer, R. E., Sudhof, T. S. (1999). A phosphor-switch controls the dynamic 

association of synapsins with synaptic vesicles. Neuron, 24, 377-387. 

Ikeda, K. and Bekkers, J. M. (2009). Counting the number of releasable synaptic vesicles in a 

presynaptic terminal. PNAS, 106, 2945-2950. 

Johri A. and Beal M.F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal 

of Pharmacology and Experimental Therapeutics, 342(3), 619-630. 

Jung, J., Loy, K., Schilling, E. M., Rother, M., Brauner, J. M., Huth, T., Schlotzer-Schrenhardt, U., 

Alzheimer, C., Kornhuber, J., Welzel, O., Groemer, T. W. (2014), The antidepressant Fluoxetine 

mobilise vesicles to the recycling pool of rat hippocampal synapses during high activity. Molecular 

Neurobiology, 49, 916-930.  

Katz, B. and Mildei, R. (1967). Ionic requirements of synaptic transmitter release. Nature, 215. 651. 

Katz, B. and Miledi, R. (1968). The role of calcium in neuromuscular facilitation. The Journal of 

Physiology, 195, 481-492. 

Kessels, M. M., Engqvist-Goldstein, A. E. Y., Drubin, D. G., Qalmann, B. (2001). Mammalian 

Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via 

the GTPase dynamin. The Journal of Cell Biology, 153(2), 351-366. 



281 
 

Kim, S.H. and Ryan, T.A. (2010). CDK5 Serves as a Major Control Point in Neurotransmitter 

Release. Neuron, 67, 797–809. 

Kim, S.H. and Ryan, T.A. (2013). Balance of calcineurin Aa and Cdk5 activities set release 

probability at nerve terminals. Journal of Neuroscience, 33(21), 1-22. 

Kim, J. H., Kim, H. J., Yu, D. H., Kweon, H. S., Huh, Y. H., Kim, H. R. (2017). Changes in numbers 

and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-

electromagnetic field. PLos ONE, 12(10), 1-12. 

Knononenko, N. L. and Haucke, V. (2015). Molecular mechanisms of presynaptic membrane 

retrieval and synaptic vesicle reformation. Neurons, 85, 484-496. 

Kokotos, A. C., Peltier, J., Davenport, E. C., Trost, M. and Cousin, M. A. (2018). Activity-

dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase 

Rab 11. PNAS, 115 (43), 10177-10186.  

Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A., and Sellers, J.R. (2004). Mechanism of 

blebbistatin inhibition of myosin II. The Journal of Biological Chemistry. 279. 35557-35563. 

Kuromi, H. and Kidokoro, K. (1998). Two Distinct Pools of Synaptic Vesicles in Single Presynaptic 

Boutons in a Temperature-Sensitive Drosophila Mutant, shibire. Neuron, 20, 917–925. 

Kuromi, H. and Kidokoro, K. (2005). Exocytosis and Endocytosis of Synaptic Vesicles and 

Functional Roles of Vesicle Pools: Lessons from the Drosophila Neuromuscular Junction. 

Neuroscientist, 11, 138-147. 

Lavoie, N., Jeyaraju, D. V., Peralta III, M. R., Seress, L., Pellegrini, L. and Toth, K. (2011). 

Vesicular zinc regulates the Ca2+ sensitivity of a subpopulation of presynaptic vesicles at 

hippocampal mossy fiber terminals. The Journal of Neuroscience, 31(50), 18251-18265. 

Lee, S. J., Kim, H. W., Na, J. E., Kim, D. S., Kim, D. H., Ryu, J. R., Sun, W., Rhyu, I. J. (2018). 

Role of actin filament on synaptic vesicle pooling in cultured hippocampal neurons. Applied 

Microscopy, 48(3), 55-61. 

Levy, M. J. F., Boulle, F., Emerit, M. B., Poilbout, C., Steinbusch, H. W. M., Van den Hove, D. L. 

A., Kenis, G., Lanfumey, L. (2019), 5-HTT independent effects of fluoxetine on neuroplasticity. 

Scientific Report, 9, 1-11. 

Li, L., Chin, L. S., Shupliakov, O., Brodin, L., Sihra, T. S., Hvalby, O., Jensen, V., Zheng, D., 

McNamara, J. O., Greengard, P., Andersen, P. (1995b) Proceeding of the National Academy of 

Sciences of the United States of America, 92, 9235-9239. 

Linares-Clemente, P., Rozas, J. L., Mircheski, J., Garcia-Junco-Clemente, P., Martinez-Lopez, J. 

A., Nieto-Gonzalez, J. L., Vazquez, M. E., Pintado, C. O. and Fernandez-Chacon, R. (2015). 

Different dynamin blockers interfere with distinct phase of synaptic endocytosis during stimulation 

in motoneurons. Journal of Physiology, 13, 2867-2888. 



282 
 

Llinas, R., McGuinness, T. L., Leonard, C. S. Sugimori, M. Greengard, P. (1985). Intraterminal 

injection of synapsin I or calcium calmodulin dependent kinase II alters neurotransmitter release at 

the squid giant synapse. Proceeding of the National Academy of Sciences of the United States of 

America, 82, 3035-3039. 

Llinas, R., Gruner, J. A., Sugimori, M., McGuinness, T. L., Greengard, P. (1991). Regulation by 

synapsin I and Ca2+-Calmodulin-dependent protein kinase II of transmitter release in squid giant 

synapse. Journal of Physiology, 436, 257-282. 

Ludowyke, R.I., Elgundi, Z., Kranenburg, T., Stehn, J.R., Schmitz-Peiffer, C., Hughes, W.E. and 

Biden, T.J. (2006). Phosphorylation of non muscle myosin heavy chain IIA on Ser1917 is mediated 

by protein kinase C beta II and coincides with the onset of stimulated degranulation of RBL-2H3 

mast cells. Journal of Immunology, 177, 1492-1499. 

Luo, F., Dittrich, M., Cho, S. Y., Stiles, J. R., Meriney, S. D. (2015). Transmitter release is evoked 

with low probability predominately by calcium through single channel openings at the frog 

neuromuscular junction. Journal of Neurophysiology, 113, 2480-2489. 

Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., and Kirchhausen, T. (2006). Dynasore, 

a cell-permeable inhibitor of dynamin. Developmental Cell, 10, 839-850. 

Marra, V., Burden, J.J., Thorpe, J.R., Smith, I.T., Smith, S.L., Hausser, M., Branco, T. and Staras, 

K. (2012). A preferentially segregated recycling vesicle pool of limited size supports 

neurotransmission in native central synapses. Neuron, 76, 579-589. 

Martiensen, A., Schakman, O., Yerna, X., Dessy, C. and Morel, N. (2014). Myosin light chain kinae 

controls voltage dependent calcium channels in vascular smooth muscle. Pflugers Archiv, 466(7), 

1377-1389. 

Meder, W., Fink, K. and Gothert, M. (1997). Involvement of different calcium channels in K+ - 

and ventridine-induced increases of cytosolic calcium concentration in rat cerebral cortical 

synaptosomes. Nauyn-Schmiedeberg’s Arch Pharmacol, 356, 797-805. 

Menegon, A., Bonanomi, D., Albertinazzi, C., Lotti, F., Ferrari, G., Kao, H. T., Benfenati, F., 

Beldelli, P., Baltorta, F. (2006). Protein Kinase A-mediated synapsin I phosphorylation is a central 

modulator of Ca2+-dependent synaptic activity. The Journal of Neuroscience, 26(45), 11670-11681. 

Mellander, L. J., Trouillon, R., Svensson, M. I. and Ewing, A. G. (2012). Amperometric post spike 

feet reveal most exocytosis is via extended kiss-and-run fusion. Scientific Report, 2, 

10.1038/srep00907. 

Morales, M., Colicos, M. A., Goda, Y. (2000). Actin-dependent regulation of neurotransmitter 

release at central synapses. Neuron, 27, 539-550. 



283 
 

Morton, A., Marland, J. R. and Cousin, M. A. (2005). Synaptic vesicle exocytosis and increased 

cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis. 

Journal of Neurochemistry, 134, 405-415. 

Murray, A. J. (2008). Pharmacological PKA inhibition. All may not be what it seems. Science 

Signalling, 1(22), 1-6. 

Neco, P., Gil, A., Frances, M. M., Viniegra, S., Gutierrez, L. M. (2002). The role of myosin in 

vesicle transport during bovine chromaffin cell secretion. Biochemical Journal, 368, 405-413.  

Neco, P., Giner, D., Viniegra, S., Borges, R., Villarroel, A., Gutierrez, L. M. (2004). New role of 

myosin II during vesicle transport and fusion in chromaffin cells. The Journal of Biological 

Chemistry, 279(26), 27450-27457. 

Neco, P., Fernandez-Peruchena, C., Navas, S., Gutierrez, L. M., de Toledo, G. A., Ales, E. (2008). 

Myosin II contribute to fusion pore expansion during exocytosis. The Journal of Biological 

Chemistry, 283 (16), 10949-10957. 

Neher, E. and Sakaba, T. (2008). Multiple roles of calcium ions in the regulation of neurotransmitter 

release. Neuron, 59, 861-872. 

Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M.K., Chaudhry, F.A., Nicoll, R. 

A. and Edwards, R. H. (2010). Increased expression of -synculein reduces neurotransmitter 

release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 65, 66-79. 

Nestler, E.J. and Greengard, P. (1982) Distribution of protein I and regulation of its state of 

phosphorylation in the rabbit superior cervical ganglion. The Journal of Neuroscience, 2(8), 1011-

1023.  

Neuland, K., Sharma, N. and Frick, M. (2014). Synaptotagmin-7 links fusion-activated Ca2+ entry 

and fusion pore dilation. Journal of Cell science, 127, 5218-5227. 

Nguyen, P.V. and Wo, N. H. (2003). Regulation of hippocampal synaptic plasticity by cyclic AMP-

dependent protein kinases. Progress in Neurobiology, 71, 401-437. 

Nicholls, D.G., Sihra, T.S., Sanchez-Prieto, J. (1987). Calcium-dependent and independent release 

of glutamate from synaptosomes monitored by continuous fluorimetry. Journal of Neurochemistry, 

47, 50-57. 

Nichols, R. A., Chilcote, T. J., Czernik, A. J., Greengard, P. (1992). Synapsin I regulates glutamate 

release from rat brain synaptosomes. Journal of Neurochemistry, 58(2), 783-785. 

Nicholdson-fash, J. C., Kokotos, A. C., Gillingwater, T. H., Smillie, K. J. and Cousin, M. A. (2015). 

VAMP4 is an essential cargo molecule for activity dependent bulk endocytosis. Neuron, 88, 973-

984. 



284 
 

Nightingale, T. D., Cutler, D. F., Cramer, L. P. (2012). Actin coats and rings promote regulated 

exocytosis. Trends in Cell Biology, 22(6), 329-337 

Normann, C., Frase S., Haug, V., von Wolff, G., Clark, K., Munzer, P., Dorner, A., Scholliers, J., 

Horn, M., Van, T. V., Seifert, G., Serchov, T., Biber, K., Nissen, C., Klugbauer, N., Bischofberger, 

J. (2018), Antidepressants rescue stress-induced disruption of synaptic plasticity via serotonin 

transporter-independent inhibition of L-type calcium channels. Biological Psychiatry, 84, 55-64. 

Orenbuch, A., Shalev, L., Marra, V., Sinai, I., Lavy, Y., Kahn, J., Burden, J.J., Staras, K., Gitler, D. 

(2012). Synapsin selectively controls the mobility of resting pool vesicles at hippocampal terminals. 

The Journal of Neuroscience, 32(12), 3969-3980. 

Papadopulos, A. (2017). Membrane shaping by actin and myosin during regulated exocytosis. 

Molecular and Cellular Neuroscience, 28, 93-99. 

Park, A. J., Havekes, R., Choi, J. H. K., Luczak, V., Nie, T., Huang, T. and Abel, T. (2014). A 

presynaptic role for PKA in synaptic tagging and memory. Neurobiology of Learning and Memory, 

114, 101-112. 

Park, H. K., Li, Y. L., Tsien, R. W. (2012), Influence of synaptic vesicle position on release 

probability and exocytosis fusion mode. Science, 335, 1362-1366. 

Park, R. J., Shen, H., Liu, L., Liu, X., Ferguson, S.M., De Camilli, P. (2013). Dynamin triple 

knockouts reveal off target effects of commonly used dynamin inhibitors. Journal of Cell Science, 

126, 5305-5312. 

Petrucci, T. C. and Morrow, J. S. (1987). Synapsin I: an actin-bundling protein under 

phosphorylation control. The Journal of Cell Biology, 105, 1355-1363. 

Porat-Shlion, N., Milberg, O., Masedunskas, A., Weigert, R. (2013). Multiple roles for the actin 

cytoskeleton during regulated exocytosis. Cellular and Molecular Life Science, 70, 2099-2121. 

Pollard, T. D. (2016). Actin and Actin-binding proteins. Cold Spring Harbor Perspectives in 

Biology, 8, 1-17.  

Polymeropoulos, M.S., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., 

Rubenstein, J., Boyer, R., Senroos, E.S., Chandrasekharappa, S., Athanassiadou, A., 

Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di lorio, G., Golbe, L.I. and 

Nussbaum, R.L.(1997). Mutation in the alpha-synuclein gene identified in families with 

Parkinson’s disease. Science, 276 (5321), 2045-2047.  

Powell, K. A., Valova, V. A., Malladi, C. S., Jensen, O. N., Larsen, M. R. and Robinson, P, J, 

(2000). Phosphorylation of dynamin I on Ser-795 by protein kinase C blocks its association with 

phospholipids. Journal of Biological Chemistry, 275, 11610-11617. 

Quan, A., McGeachie, A. B., Keating, D. J., van Dam, E. M., Rusak, J., Chau, N., Malladi, C. S., 

Chen, C., McCluskey, A., Cousin, M. A., Robinson, P. J. (2007). Myristyl trimethyl ammonium 



285 
 

bromide and octadecyl trimethyl ammonium bromide are surface active small molecule dynamin 

inhibitors that blocks endocytosis mediated by dynamin I or dynamin II. Molecular Pharmacology, 

72(6), 1425-1439. 

Rahn K. A., Cao, Y. J., Hendrix, C. W., Kaplin, A. (2015). The role of 5-HT1A receptors in 

mediating acute negative effects of antidepressants: implications in pediatric depression. 

Translational Psychiatry, 5, 1-8. 

Raimondi, A., Ferguson, S.M., Lou, X., Armbruster, M., Paradise, S., Giovedi, S., Mess, M., Kono, 

N., Takasaki, J. and Cappello, V. (2011). Overlapping role of dynamin isoforms in synaptic vesicle 

endocytosis. Neuron, 70, 1100-1114. 

Ramachandran, R. (2011). Vesicle Scission: Dynamin. Seminars in Cell & Developmental Biology, 

22, 10-17.  

Ratnayaka, A., Marra, V., Bush, D., Burden, J.J., Branco, T. and Staras, K. (2012). Recruitment of 

resting vesicles into recycling pools supports NMDA receptor-dependent synaptic potentiation in 

cultured hippocampal neurons. The Journal of Physiology, 590, 1585-1597. 

Richards, D.A. (2009). Vesicular release mode shapes the postsynaptic response at hippocampal 

synapses. The Journal of Physiology, 587, 5073-5080. 

Richards, D.A. (2010). Regulation of exocytic mode in hippocampal neurons by intra-bouton 

calcium concentration. The Journal of  Physiology, 588, 4927-4936. 

Richards, D. A., Rizzoli, S. O. and Betz, W. J. (2004). Effects of wortmannin and latrunculin A on 

slow endocytosis at the frog neuromuscular junction. The Journal of Physiology, 557(1), 77-91. 

Rizzoli, S. O. and Betz, W. J. (2004). The structural organisation of the readily releasable pool of 

synaptic vesicles. Science, 303, 2037-2039. 

Rizzoli, S. O. and Betz, W. J. (2005). Synaptic vesicle pools. Nature Reviews Neuroscience, 6, 57-

69. 

Rizzoli, S. O. and Jahn, R. (2007). Kiss-and-run, collapse and ‘readily retrievable’ vesicles. Traffic, 

8, 1137-1144. 

Rizzoli, S. O. (2014). Synaptic vesicle recycling: steps and principles. The EMBO Journal, 33(8). 

788-822. 

Robinson, P. J. (1991). Dephosphin, a 96,000 Da substrate of protein kinase C in synaptosomal 

cytosol, is phosphorylated in intact synaptosomes. FEBS Lett, 282, 388-392. 

Robinson, P. J. (1992). Differential stimulation of protein kinase C activity by Phorbol Ester on 

calcium/phosphatidylserine in vitro and in intact synaptosomes. Journal of Biological Chemistry, 

267, 21637-21644. 



286 
 

Robinson, P. J., Liu, K. A., Powell, K. A., Fyske, E. M. and Sudhof, T. C. (1994). Phosphorylation 

of dynamin and synaptic-vesicle recycling. Trends in Neuroscieicne, 17, 348-353. 

Rostron, A. (2019). The role of dynamins in the fusion of synaptic vesicles and their subsequent 

recycling. Doctoral thesis, UCLan, Preston. 

Ryan, T.A. (1999). Inhibitors of Myosin Light Chain Kinase Block Synaptic Vesicle Pool 

Mobilization during Action Potential Firing. The Journal of Neuroscience, 19, 1317–1323. 

Sakurada K., Kato H., Nagumo H., Hiraoka H., Furuya K., Ikuhara T., Yamakita Y., Fukunaga K., 

Miyamoto E., Matsumura F., Matsuo Y.I., Naito Y., Sasaki Y. (2002). Synapsin I is phosphorylated 

at Ser603 by p21-activated kinases (PAKs) in Vitro and in PC12 cells stimulated with Bradykinin. 

The Journal of Biological Chemistry, 277(47), 45473-45479. 

Samasilp, P., Chan, S. A., Smith, C. (2012) Activity-dependent fusion pore expansion regulated by 

a calciuneurin0dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells. The 

Journal of Neuroscience, 32(30), 10438-10447. 

Samigullin, D. Bill, C. A., Coleman, W. L., Bykhovskia, M. (2004) Regulation of transmitter 

release by synapsin II in mouse motor terminals. The Journal of Physiology, 561.1, 149-158. 

 

Sanborn, K.B., Mace, E.M., Rak, G.D., Difeo, A., Martignetti, J.A., Pecci, A., Bussel, J.B., Favier, 

R. and Orange, J.S. (2011). Phosphorylation of the myosin IIA tailpiece regulates single myosin 

IIA molecule association with lytic granules to promote NK-cell cytotoxicity. Blood, 118, 5862-

5871. 

Schiebler, W., Jahn, R., Doucet, J. P., Rothlein, J. and Greengard, P. (1986). Characterisation of 

synapsin I binding to small synaptic vesicles. The Journal of Biological Chemistry, 261(18), 8383-

8390. 

Scott, D. and Roy, S. (2012). -synuclein inhibits intersynaptic vesicle mobility and maintains 

recycling-pool homeostasis. The Journal of Neuroscience, 32(30), 10129-10135. 

Seahorse Bioscience. (n.d). XF Cell Mito Stress Test Kit: User Guide. Seahorse Bioscience 

Segovia, M., Ales, E., Montes, M. A., Bonifas, I., Jemal, I., Lindau, M., Maximov, A., Sudhof, T. 

C. and de Toledo, G. A. (2010). Push-and-pull regulation of the fusion pore by synaptotagmin-7. 

PNAS, 107(44), 19032-19037.  

Seino, S. and Shibasaki, T. (2005). PKA-dependent and PKA-independent pathways for cAMP-

regulated exocytosis. Physiological Review, 85, 1303-1342. 

Shu, S., Liu, X., Korn, E.D. (2005). Blebbistatin and blebbistatin-inactivated myosin II inhibit 

myosin II-independent processes in Dictyostelium. Proceedings of the National Academy of 

Sciences of the United States of America, 102, 1472-1477. 



287 
 

Shupliakov, O., Haucke, V., Pechstein, A. (2011) How synapsin I may cluster synaptic vesicles. 

Seminars in Cell and Developmental Biology, 22, 393-399. 

Siksou, L., Rostaing, P., Lechaire, J. P., Boudier, T., Ohtsuka, T., Fejtova, A., Kao, H. T., Greengard, 

P., Gundelfinger, E. D., Triller, A., Marty, S. (2007) Three-dimensional architecture of presynaptic 

terminal cytomatrix. The Journal of Neuroscience, 27(26), 6868-6877. 

Sim, A.T., Herd, L., Proctor, D.T., Baldwin, M.L., Meunier, F.A., and Rostas, J.A. (2006). High 

throughput analysis of endogenous glutamate release using a fluorescence plate reader. Journal of 

Neuroscience Method. 153, 43-47. 

Simille, K. J. and Cousin. M. A. (2005). Dynamin I phosphorylation and the control of synaptic 

vesicle endocytosis. Biochemical Society Symposia, 72, 87-97. 

Singh, D. (2017). Phosphorylation sites on specific neuronal protein can control the mode of 

synaptic vesicle exocytosis and thereby regulate synaptic transmission. Doctoral thesis, UCLan, 

Preston. 

Smith, S. M., Renden, R. and von Gersdorff, H. (2008). Synaptic vesicle endocytosis: fast and slow 

modes of membrane retrieval. Trends in Neuroscience, 31(11), 559-568. 

Sobieski, C., Fitzpatrick, M. J. and Mennerick, S. J. (2017). Differential presynaptic ATP supply 

for basal and high-demeand transmission. The Journal of Neuroscience, 37(7). 1888-1899. 

Soykan, T., Maritzen, T. and Haucke, V. (2016). Modes and mechanisms of synaptic vesicle 

recycling. Current Opinion in Neurobiology, 39, 17-23.  

Spinelli, K.J., Taylor, J.K., Osterberg, V.R., Churchill, M.J., Pollock, E., Moore, C., Meshul, C.K. 

and Unni, V.K. (2014). Presynaptic -synculein aggregation in a mouse mode of Parkinson’s 

Disease. The Journal of Neuroscience, 34(6), 2037-2050. 

Srinivasan, G., Kim, J.H. and von Gersdorff, H. (2008). The Pool of Fast Releasing Vesicles Is 

Augmented by Myosin Light Chain Kinase Inhibition at the Calyx of Held Synapse. Journal of 

Neurophysiology, 99, 1810–1824. 

Stevens, C. F. and Sullivan, J. M. (1998). Regulation of the readily releasable vesicle pool by 

protein kinase C. Neuron, 21, 885-893. 

Stevens, C. F. and Williams, J. H. (2000). Kiss and run exocytosis at hippocampal synapses. PNAS, 

97(23), 12828-12833.   

Sudhof, T. C. (2004). The synaptic vesicle cycle. Annual Review Neuroscience, 27, 509-547. 

Sudhof, T. C. (2012). Calcium control of neurotransmitter release. Cold Spring Harbor 

Perspectives in Biology, 4, 1-15. 

Sumi M., Kiuchi K., Ishikawa T., Ishii A., Hagiwara M., Nagatsu T., and Hidaka H. (1991). The 

newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces 



288 
 

dopamine contents in PC12h cells. Biochemical and Biophysical Research Communications, 181, 

968-975. 

Sweitzer, S. M. and Hinshaw, J. E. (1998). Dynamin undergoes a GTP-dependent conformational 

change causing vesiculation. Cell, 93, 1021-1029. 

Takamori, S., Holt, M., Stenius, K., Lemke, E. A., Gronborg, M., Riedel, D., Urlaub, H., Schenck, 

S., Brugger, B., Ringler, P., Muller, S. A., Rammer, B., Grater, F., Hub, J. S., De Groot, B. L., 

Mieskes, G., Moriyama, Y., Klingauf, J., Grubmuller, H., Heuser, J., Wieland, F. and Jahn, R. 

(2006). Molecular anatomy of a trafficking organelle. Cell, 127, 831-846.  

Thomas, M. M., Puligandla, P. S. and Dunn, S. M. J. (1994). Effects of calcium channel blockers 

on the kinetics of voltage-dependent changes in synaptosomal calcium concentration. Brain 

Research, 635, 9-17. 

Tokuoka, H. and Goda, Y. (2006). Myosin light chain kinase is not a regulator of synaptic vesicle 

trafficking during repetitive exocytosis in cultured hippocampal neurons. Journal of Neuroscience, 

26, 11606-11614. 

Tomizawa, K., Ohta, J., Matsushita, M., Moriwaki, A., Li, S. T., Takei, K., Matsui, H. (2002). 

Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-

type voltage-dependent calcium channel activity. Journal of Neuroscience, 22(7), 2590-2597. 

Trouillon, R. and Ewing, A. G. (2014). Actin controls the vesicular fraction of dopamine released 

during extended kiss and run exocytosis. ACS Chemical Biology, 9, 812-820. 

Tsou, K. and Greengard, P. (1982) Regulation of phosphorylation of proteins I, IIIa, and IIIb in rat 

neurohypophysis in vitro by electrical stimulation and by neuroactive agents. Proceeding of the 

National Academy of Sciences of the United States of America, 79, 6075-6079.  

Vargas, K.J., Makani, S., Davis, T., Westphal, C.H., Catillo, P.E. and Chandra, S.S. (2014). 

Synuclein regulate the kinetics of synaptic vesicle endocytosis. The Journal of Neuroscience, 

34(28), 9364-9376.  

Valtorta, F., Greengard, P., Fesce, R., Chieregatti, E. and Benfenati, F. (1992). Effects of the 

neuronal phosphoprotein synapsin I on actin polymerisation. The Journal of Biological Chemistry, 

267(16), 11281-11288. 

Verstegen, A.M.J., Tagliatti, E., Lignani, G., Marte, A., Stolero, T., Atias, M., Corradi, A., Valtorta, 

F., Gitler, D., Onofri, F., Fassio, A. and Benfenati, F. (2014). Phosphorylation of Synapsin I by 

Cyclin-Dependent Kinase-5 Sets the Ratio between the Resting and Recycling Pools of Synaptic 

Vesicles at Hippocampal Synapses.The Journal of Neuroscience, 34, 7266 –7280. 

Villanueva, J., Torres, V., Torregrosa-Hetland, C. J., Garcia-Martinez, V., Lopez-Font, I., Viniegra, 

S., Gutierrez, L. M. (2012). F-actin-Myosin II inhibitors affect chromaffin granule plasma 



289 
 

membrane distance and fusion kinetics by retraction of the cytoskeletal cortex. Journal of 

Molecular Neuroscience, 48, 328-338. 

Virmani, T., Ertunc, M., Sara, Y., Mozhayeva, M., Kavalali, E.T. (2005). Phorbol esters target the 

activity-dependent recycling pool and spare spontaneous vesicle recycling. The Journal of 

Neuroscience, 25, 10922-10929. 

Wang, S. J., Su, C. F., Kuo, Y. H. (2003), Fluoxetine depresses glutamate exocytosis in the rat 

cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse, 

48(4), 170-177. 

Wang, L., Das, U., Scott, D.A., Tang, Y., McLean, P.J. and Roy, S.(2014). -synculein multimers 

cluster synaptic vesicles and attenuate recycling. Current Biology, 24, 2319-2326. 

Wang, Z. W. (2008) Regulation of synaptic transmission by presynaptic CaMKII and BK channels. 

Molecular Neurobiology, 38(2), 153-166. 

Warnock, D. E. and Schmid, S. L. (1996). Dynamin GTPase, a force-generating molecular switch. 

BioEssays, 18(11), 885-893. 

Watanabe, S., Rost, B. R., Camacho-Perez, M., Davis, M. W., Sohl-Kielczynski, B., Rosenmund, 

C., Jorgensen, E. M. (2013). Ultrafast endocytosis at mouse hippocampal synapses. Nature, 

504(7479), 242-247. 

Watanabe, S., Trimbuch, T., Camacho-Perez, M., Rost, B. R., Brokowski, B., Sohl-Kielczynski, B., 

Felies, A., Davis, M. W., Rosenmund, C. and Jorgensen, E. M. (2014). Clathrin regenerates synaptic 

vesicle from endosomes. Nature, 515(7526), 228-233. 

Watanabe, S. and Boucrot, E. (2017). Fast and ultrafast endocytosis. Current opinion in Cell 

Biology. 47, 64-71. 

Wu, W. and Wu, L. G. (2007). Rapid bulk endocytosis and its kinetics of fission pore closure at a 

central syanspe. PNAS, 104, 10234-10239. 

Wu, Q. H., Zhang, Q. F., Liu, B., Li, Y. L., Wu, X., Kuo, S., Zheng, L. H., Wang, C. H., Zhu, F. P. 

and Zhou, Z. (2019). Dynamin I retrains vesicular release to a subquantal mode in mammalian 

adrenal chromaffin cell. The Journal of Neuroscience, 39(2), 199-211. 

Xie, Z. L., Long, J. G., Liu, J. K., Chai, Z. Y., Kang, X. J., Wang, C. H. (2017). Molecular 

mechanisms for the coupling of endocytosis to exocytosis in neurons. Frontier in Molecular 

Neuroscience, 10(47), 1-8.  

Yamagata Y. and Nairn A.C. (2015). Contrasting features of ERK1/2 activity and synapsin I 

phosphorylation at the ERK1/2-dependent site in the rat brain in status epilepticus induced by kainic 

acid in vivo. Brain Research. 1625, 314-323. 



290 
 

Zaltieri, M., Grigoletto, J., Longhena, F., Navarria, L., Favero, G., Castrezzati, S., Colivicchi, M.A., 

Corte, L.D., Rezzani, R., Pizzi, M., Benfenati, F., Spillantini, M.G., Missale, C., Spano, P.F. and 

Bellucci, A.(2015). -synuclein and synapsin III cooperatively regulate synaptic function in 

dopamine neurons. Journal of Cell Science, 128, 2231-2243. 

Zhang, Q., Cao, Y. Q. and Tsien, R. W. (2007). Quantum dots provide an optical signal specific to 

full collapse fusion of synaptic vesicles. PNAS, 104(45), 17843-17848. 

Zhang, Q., Li, Y. and Tsien, R.W. (2009). The dynamic control of kiss-and-run and vesicular reuse 

probed with single nanoparticles. Science, 323, 1448-1453. 

  



291 
 

Appendix 1 

A. 1.1 Review of Previous Research 

Results in this section reflect previous research carried out by the Ashton group. These 

results were created whilst establishing optimal experimental conditions for use with the 

synaptosomes model, and are displayed here to aid understanding of new and original data 

presented and discussed later in this thesis. 

 

A. 1.1.1 Maximal GLU Release 

For a direct comparison between FM 2-10 dye and GLU release assays it was necessary 

that the stimuli employed in this thesis produced a maximal level of GLU release. In order 

to determine this, synaptosomes were treated with the three stimuli (HK, ION and 4AP) – 

see material and methods for further details – in the presence of a range of extracellular 

Ca2+ concentrations ([Ca2+]e) (Fig A1). It can be observed that 5 mM [Ca2+]e produced 

maximal GLU release for all stimuli, and a further increase in [Ca2+]e to 10 mM had no 

effect on HK evoked GLU release (Fig A1 A), and possibly decreased GLU release with 

ION and 4AP (Fig A1 B-C). For all experiments in this study a concentration of 5 mM 

[Ca2+]e was therefore used with each of the three stimuli to maximally release GLU from 

synaptosomes. 
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Figure A1: Effect of a Range of [Ca2+]e upon Evoked GLU Release 

Stimulation in the presence of 5 mM [Ca2+]e induces maximal GLU release for HK (A), ION 

(B) and 4AP (C). Values represented are the mean plus S.E.M. from 4 independent 

experiments. 
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Stimulation with 4AP5C produced a lower maximal GLU release (4.5 moles/mg of protein) 

(Fig A1 C) compared to HK5C (10.8 moles/mg of protein) (p<0.05) (Fig A1 A) or ION5C 

(11 moles/mg of protein) (p<0.05) (Figure A1 B) with 5 mM [Ca2+]e. An explanation for 

this can be found when looking at the different changes in [Ca2+]i produced by each stimuli 

(Fig A2). 4AP5C produces a lower, more gradual change in [Ca2+]i (180±20 nM Ca2+) than 

either HK5C or ION5C (370 ±25 nM Ca2+) (p<0.05), which is interpreted as 4AP5C only 

being able to release the RRP of SVs whilst HK5C and ION5C can release both the RRP 

and the RP of SVs. 

Though HK5C and ION5C achieved an equivalent level of [Ca2+]i, in this figure, this is 

mediated by different kinetics (Fig A2). HK5C produced much of the [Ca2+]i increase upon 

the application of stimulation, plateauing rapidly (<10 sec), potentially due to VGCC 

desensitisation (Bähring & Covarrubias, 2011); whilst ION5C produced a more gradual 

increase in [Ca2+]i which plateaus later (~40 sec) (Figure A2). This speed of achieving 

maximum increase in [Ca2+]i applies in every experiment that has been performed in this 

thesis and over 10 years of research. However, it would appear that distinct batches of 

ionomycin may achieve higher maximum [Ca2+]i than HK5C although maximum release 

is not altered (see throughout body of text). 
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Figure A2: Effect of Stimuli upon Cytosolic free Calcium [Ca2+]i 

All three stimuli employed in this study produce a change in [Ca2+]i via different kinetics. 

4AP5C evokes a significantly lower [Ca2+]i change than HK5C or ION5C (p<0.05). No 

significant difference was observed between HK5C and ION5C (p>0.05) in this set of 

experiments. Values represented are the mean plus S.E.M. from 3 independent experiments. 

Note in the other experiment reported in the main body of the thesis, ION5C can induce a 

2+]i than HK5C 
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A. 1.2 A Single Round of Exocytosis 

Due to the kinetics of the FM 2-10 dye and GLU release assays, synaptosomes in this study 

are subject to long stimulation periods (between 60-300 sec). Due to this long duration of 

stimulation there is a possibility that SVs could undergo multiple rounds of recycling, 

refilling with and re-release GLU, leading to an erroneous interpretation of GLU release. 

Further, it is possible that a SV releasing via KR could retain its FM 2-10 dye label while 

undergoing several round of KR recycling, or SV could lose its FM 2-10 dye and release 

additional GLU without a link to dye fluorescence. In order to accurately compare GLU 

and FM 2-10 dye release, it is essential to establish that SVs are only undergoing one round 

of release during the stimulation and measurement period. 

 

In order to ensure recycling was not occurring during stimulation and measurement, 

synaptosomes were acutely treated with 1 µM of the selective vacuolar H+ ATPase (V-

ATPase) inhibitor Bafilomycin A1. The V-ATPase pump is a complex found on SVs that 

is responsible for re-acidification of the vesicular lumen after endocytosis, which is vital 

in order for SVs to be re-filled with GLU (Cotter et al, 2015). Such acute bafilomycin A1 

treatment has no effect upon the GLU content of non-exocytosed SVs, and does not 

impede their release upon stimulation (Ikeda and Bekkers, 2008). An acute treatment of 1 

µM Bafilomycin A1 did not significantly affect GLU release compared with untreated 

controls, regardless of stimulation (Fig A3) (p>0.05). If SVs were undergoing multiple 

rounds of recycling, the level of GLU release would be expected to decrease with the 

Bafilomycin A1 treatment. 
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Figure A3: Effect of 1 µM Bafilomycin A1 upon Evoked GLU release 

Treatment with 1 µM Bafilomycin A1 does not significantly affect GLU release when 

stimulated with HK5C (A), ION5C (B) or 4AP5C (C) compared to untreated controls (p>0.05 

for all). Values represented are the mean plus S.E.M. from 4 independent experiments. 
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A. 1.3 Maximal Labelling of SVs with FM 2-10 Dye 

Styryl dyes, such as FM 2-10, have been used extensively to label lipid membranes and in 

particular vesicular trafficking and recycling. In all experiments a concentration of 100 

μM FM 2-10 dye was utilised, as many researchers have employed the same concentration 

(Baldwin et al, 2003; Cheung et al, 2010). Clayton and Cousin (2008) however, have 

previously suggested that the labelling of SVs, especially via bulk endocytosis, is 

dependent upon the concentration of FM 2-10 dye, and 1 mM but not 100 μM will fully 

label all SVs (Clayton and Cousin, 2008).  

 

In order to ensure that all SVs are fully labelled with FM 2-10 dye, synaptosomes were 

incubated with 1 mM or 100 μM and evoke to release during a drug treatment (160 µM 

Dynasore) which has been observed to increase exocytosis via FF (Fig A4). In this model 

system there was no significant difference in FM 2-10 dye release seen between 

synaptosomes loaded with 1 mM or 100 μM (p>0.05), and drug treatment had no 

significant impact upon labelling or release of SVs (p>0.05). If 100 μM FM 2-10 dye had 

been failing to label all releasable SVs, then a reduced amount of dye would be released. 
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Figure A4: Difference between SVs Loaded with 1 mM or 100 µM FM 2-10 Dye 

SVs loaded with 1 mM (Blue) or 100 µM (Red) release equivalent levels of FM 2-10 dye 

following stimulation (p>0.05). Drug treatment, 160 µM Dynasore, increases FM 2-10 dye 

release by a corresponding amount, regardless of amount of FM 2-10 dye loaded, following 

stimulation (Green vs Yellow) (p>0.05). Values represented are the mean minus S.E.M from 

4 independent experiments. 

 

A. 1.4 The Mode of Exocytosis is Stimulation Dependent 

Each of the stimuli used in this thesis have been shown to evoke release through distinct 

[Ca2+]i kinetics (Fig A2), and changes in [Ca2+]i have been linked to regulating the mode 

of exocytosis of distinct pools (Alés et al, 1999), therefore each stimuli could evoke release 

of SVs pools via unique modes. As the RRP is suggested to be released within 2 sec of 

stimulation (Rizzoli and Betz, 2005), this time period was studied during FM 2-10 dye 

release for all stimuli (Fig A5 A). 

 

Interestingly HK5C and ION5C did not cause any significantly release of FM 2-10 dye in 

this period (p>0.05), unlike 4AP5C (Fig A5 A) (p<0.05). It could be argued that this 

indicates no SVs are being release during this time period, however when the experiment 

was repeated with a pre-treatment of 0.8 µM OA (Fig A5 B), an inhibitor of protein 

phosphatase 1 and 2A which is known to convert all RRP SVs to FF (Ashton et al, 2011), 
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an increase in FM 2-10 dye release was noted for all stimuli, that was not significantly 

different between stimuli at 2 sec (p>0.05). Comparison of these results are interpreted as 

HK5C and ION5C releasing the RRP via KR under control conditions, while 4AP5C 

releases roughly half the RRP via KR and half by FF. All three stimuli release an 

equivalent amount of FM 2-10 dye with OA during this period (2 sec), suggesting it is the 

RRP being released. 

 

In order to determine the exocytotic mode of the RRP and RP, the fluorescence value of 

FM 2-10 dye release during control conditions was subtracted from the fluorescence value 

achieved during OA treatment (Fig A6). HK5C stimulation caused all RRP SVs to undergo 

KR in the first 2 sec (Fig A6 A), and all RP SVs to release via FF (after 2 sec; Fig A6 B). 

Stimulation with 4AP5C releases all RRP SVs some via KR and some by FF, with 

fluorescence subtraction demonstrating that both modes contribute equally (Fig A6 C). RP 

SVs do not release when synaptosomes are stimulated with 4AP5C, as this stimuli induced 

a lower average [Ca2+]i compared to HK5C and ION5C, and this is unable to drive RP 

fusion (see Fig A1 C and Fig A2).  
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Figure A5: Mode of RRP Release during Control and 0.8 µM OA Treatment 

(A) Measurement of control levels of FM 2-10 dye release after stimulation during first 2 sec. 

Only 4AP5C releases a significant amount of dye (p<0.05). (B) Treatment with OA induces 

equivalent release of FM 2-10 dye regardless of stimulation over first 2 sec (p>0.05). Values 

represented are the mean plus S.E.M. from 3 independent experiments. 
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Figure A6: Mode of RRP and RP Release during Control and 0.8 µM OA Treatment 

When FM 2-10 dye fluorescence of control was subtracted from OA conditions, it was found 

that all SVs release via KR during initial 2 sec of HK5C stimulation (A), and remaining SVs 

are released via FF after 2 sec (B). During 4AP5C stimulation (C), all SVs are released by a 

combination of KR and FF for initial 2 sec. Values are average of 3 experiments plus S.E.M, 

taken from (Bhuva, 2015, p. 62) with permission. 
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A. 1.5 Presynaptic Proteins Regulating Exocytosis 

Dyn I could have a role in modulating the mode of exocytosis at the FP. Previous research 

undertaken by Ashton group has demonstrated that inhibition of Dyn I GTPase activity 

with 160 µM Dynasore did not perturb GLU release with any stimuli (Fig A7 A-C) 

(p>0.05), but significantly increased FM 2-10 dye release with ION5C and 4AP5C (Fig 

A7 E-F) (p<0.05). These results were interpreted as ION5C and 4AP5C having a Dyn I 

dependence to release the RRP via KR, while HK5C was able to release the RRP 

independent of Dyn I (Fig A7 D). 

 

 

Figure A7: Effect of 160 µM Dynasore vs Control upon Evoked GLU and FM 2-10 Dye 

Release  

Treatment with 160 µM Dynasore does not perturb GLU release evoked by HK5C (A), 

ION5C (B) or 4AP5C (C) (p>0.05). 160 µM Dynasore had no significant effect of HK5C 

evoked FM dye release (D) (p=0.508), but increased ION5C (E) (p=0.014) and 4AP5C evoked 

FM dye release (F) (p=0.034). Values are mean plus SEM from 4 experiments. Figure taken 

with permission from a manuscript prepared by A. Ashton. 
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NM-II has also been implicated in regulating the mode of exocytosis at the FP (Chan et al, 

2010; Berberian et al, 2009; Neco et al, 2008). Since no change in FM 2-10 dye release 

was observed when Dyn I was inhibited with Dynasore during HK5C stimulation (Fig A7 

D), it was theorised NM-II could be responsible for regulating the FP during this mode of 

exocytosis. Thus NM-II was blocked with 50 µM Blebbistatin, a selective, high affinity 

small molecule which blocks NM-II by inhibiting ATPase activity (Shu et al, 2005; 

Kovacs et al, 2004). A treatment of 50 µM Blebbistatin did not perturb GLU release with 

any stimuli (p>0.05) (Fig A8), but did significantly increase FM 2-10 dye release with 

HK5C stimulation only (p<0.05) (Fig A9 A). These data may suggest that NM-II is able 

to close the FP during HK5C stimulation, when the [Ca2+]i level at the AZ is high (Fig A2), 

as Ca2+ is required to regulate NM-II phosphorylation and activation (Martinsen et al, 

2014). These data may also suggest that the [Ca2+]i level achieved at the AZ during ION5C 

and 4AP5C stimulation may not be high enough to activate NM-II (Fig A9 B-C), but 

satisfactory to activate Dyn I to regulate the exocytosing FP (Fig A7 E-F). 
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Figure A8: Effect of 50 µM Blebbistatin upon Evoked GLU Release 

Treatment with 50 µM Blebbistatin did not significantly affect GLU release when stimulated 

with HK5C (A), ION5C (B) or 4AP5C (C) (p>0.05). Values represented are the mean plus 

S.E.M. from 4 independent experiments. 
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Figure A9: Effect of 50 µM Blebbistatin upon Evoked FM 2-10 Dye Release 

Treatment with 50 µM Blebbistatin significantly increased FM 2-10 dye release when 

stimulated with HK5C (A) (p<0.05), but had no effect when stimulated with ION5C (B) 

(p=0.716) or 4AP5C (C) (p=0.642). Values represented are the mean plus S.E.M. from 3 

independent experiments. 
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The Ca2+-dependent phosphatase calcineurin may also have a role in regulating proteins 

which participate in exocytosis, as calcineurin rapidly dephosphorylates many presynaptic 

proteins upon terminal depolarisation (Robinson et al, 1994). Inhibition of calcineurin with 

1 µM Cyclosporine A (Cys A) did not significantly affect GLU release (Fig A10 A-C) 

(p>0.05), but significantly decreased FM 2-10 dye release when stimulated with HK5C 

and ION5C (Fig A10 D-E, respectively) (p<0.05). This differs with some studies that have 

shown Cys A treatment increases GLU release (Gaydukov et al, 2013), but in the context 

of this model this further indicates maximal GLU release is being observed under these 

conditions already (i.e. with 5 mM [Ca2+]e Fig A1). When the effects of calcineurin 

inhibition with 1 µM Cys A were investigated upon [Ca2+]i levels, a significant increase 

was noted with all three stimuli (Fig A10 G-I) (p<0.05). These data are interpreted as the 

inhibition of calcineurin causing more SVs to release via a KR mode of exocytosis, which 

could be due to the increased [Ca2+]i level attained during Cys A treatment (Fig A10 G-I). 

The lack of effect upon 4AP5C evoked GLU and FM 2-10 dye, even during an increase in 

[Ca2+]i could suggest calcineurin inhibition only affects the RP, since 4AP5C does not 

release the RP (Fig A1 C, and Fig A2), and the RRP is already releasing via KR with both 

HK5C and ION5C stimuli (Fig A5 A). 
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Figure A10: Effect of 1 µM Cys A upon Evoked GLU and FM 2-10 Dye Release 

1 µM Cys A did not perturb Glu release evoked by HK5C (A), ION5C (B) or 4AP5C (C) 

(p>0.05 for all). 1 µM Cys A significantly decreased HK5C (D) (p<0.025) and ION5C (E) 

(p<0.023) evoked FM 2-10 dye release, but had no effect upon 4AP5C (F) (p=0.985) evoked 

FM 2-10 dye release. 1 µM Cys A significantly increased [Ca2+]i levels with HK5C (G) 

(p<0.001), ION5C (H) (p<0.044) and 4AP5C (I) (p<0.049) stimulation, compared to controls. 

Values represented are the mean plus S.E.M. from 4 experiments. Figure taken from a 

manuscript prepared by A. Ashton. 
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A.1.1.5.1 Switching of HK5C evoked SV exocytosis from NM-II 

dependent KR to Dyn dependent KR 

Ashton and colleagues have deciphered that HK5C activates PKCs that inactivate Dyn 1 

but that activate NM-II. Thus, one can make HK5C action switch from the NM-II pathway 

to the Dyn dependent pathway by inhibiting PKCs with Go 6983. Neither pre-treatment 

with Go 6983 followed by the addition of Blebbistatin (Fig A11A) or Dynasore (Fig A11B) 

perturbed the HK5C evoked GLU release indicating that these conditions did not perturb 

SV from exocytosing and releasing their NT. 

 

Figure A11. HK5C evoked GLU release in a) non-drug treated control or Go 6983 plus 

Blebbistatin treatment b) non-drug treated control or Go 6983 plus Dynasore treatment.  

The experiment was done N=4 independent times. There is no significant difference between 

the control and the drug treated samples.  
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However, following pre-treatment with Go 6983, Blebbistatin no longer switched the 

HK5C evoked RRP SVs to a FF mode as there was not an increase in FM dye release 

compared to the control (Fig A12 A). Remarkably, such Go 6983 treatment now allowed 

Dynasore to act on the HK5C evoked RRP SVs and these did switch to a FF mode (Fig 

A12 B). 

 

 

Figure A12.  HK5C evoked FM2-10 dye release in a) non-drug treated control or Go 6983 

plus Blebbistatin treatment b) non-drug treated control or Go 6983 plus dynasore treatment.  

The experiment was done N=3 independent times. There is no significant difference between 

the control and Go 6983 plus Blebbistatin but there is a significant difference between control 

and Go 6983 plus Dynasore. 
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A.1.1.5.2 Switching of ION5C evoked SV exocytosis from dynamin 

dependent KR to NM-II dependent KR 

Not only can one switch the HK5C stimulus to act on the Dyn dependent KR but one can 

also switched the ION5C stimulus to act through the NM-II dependent pathways. This is 

achieved by using a low concentration of 40 nM PMA (an active phorbol esters) that can 

activate certain PKCs within the synaptosomes. Note that this concentration does not 

switch the RRP SV KR mode to FF alone although a higher concentration (1 M PMA) 

does. However, neither 40 nM PMA plus Blebbistatin (Fig A13 A) treatment nor 40 nM 

plus Dynasore (Fig A 13B) treatment perturbs the ION5C evoked GLU release. This 

indicates that the RRP and RP SVs are still undergoing exocytoses and releasing their 

transmitter content. 
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Figure A13: ION5C evoked GLU release in a) non-drug treated control or Go 6983 plus 

Blebbistatin treatment b) non-drug treated control or Go 6983 plus Dynasore treatment.  

The experiment was done N=3 independent times. There is no significant difference between 

the control and the drug treated samples.  

 

However, following pre-treatment with 40 nM PMA, Blebbistatin was able to switch the 

ION5C evoked RRP SVs to a FF mode as there was now an increase in FM dye release 

compared to the control (Fig A14 A). Remarkably, such 40 nM PMA treatment now 

prevented Dynasore acting on the ION5C evoked RRP SVs and these remained 

undergoing a KR mode such that there was no extra FM dye release (Fig A14 B). 
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Figure A14: ION5C evoked FM2-10 dye release in a) non-drug treated control or 40 nM PMA 

plus Blebbistatin treatment b) non-drug treated control or 40 nM plus Dynasore treatment.  

The experiment was done N=4 independent times. There is a significant difference between 

the control and Go 6983 plus Blebbistatin but there is no significant difference between 

control and Go 6983 plus Dynasore. 

 

 

 

 

 

 

 

 



313 
 

Appendix 2 
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Fig A15. Detection of total Syn I (A), phospho-Ser553 in Syn I (B), phospho-Ser-9 in Syn 1 

(C), or phospho-Ser-603 in Syn I (D) using specific antibodies. These bound antibodies were 

detected using a specific secondary antibody conjugated to HRP. This enzyme reacts with 

chemiluminescence substrate and light is produced. Such western blots were exposed for 

different exposure times and the intensity of the detected band determined. These graphs 

enable one to choose exposure times that are in the linear range of the detection system. 
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Appendix 3 

 

Total FM2-10 Dye Content at the beginning of Measurements 

In order for key interpretations drawn in this thesis to be accurate, it is important to 

ascertain if any of the drug treatment employed perturbs the amount of FM 2-10 dye being 

loaded into the nerve terminals. Without this information, comparisons between the FM 

2-10 dye release and GLU assays would lead to incorrect assumptions. The fluorescence 

of the FM 2-10 dye was measured prior to stimulation (time 0) and compared with the 

control utilised in each assay. MITMAB incubated for 5 min had minor significant 

difference but this was unlikely to have affected the result. All the other drugs employed 

herein have had no significant (N.S) impact upon the total FM 2-10 dye uptake (p>0.05). 

Bar charts presented below represents the average nerve terminal fluorescence before 

stimulation began, error bars are plus S.E.M.   



316 
 

Appendix 3 (Continued) 
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Appendix 3 (Continued) 

 

 

 

 

 

 

 

 


