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Abstract 31 

Purpose. Muscular dystrophy (MD) is an umbrella term for muscle wasting conditions, for 32 

which longitudinal changes in function and body composition are well established in children 33 

with Duchenne (DMD), however changes in adults with DMD and Beckers (BMD), 34 

respectively, remain poorly reported. This study aims to assess 12-month changes in lower-35 

limb strength, muscle size, body composition and physical activity in adults with Muscular 36 

Dystrophy (MD).  37 

Methods. Adult males with Duchenne MD (DMD; N = 15) and Beckers MD (BMD; N = 12) 38 

were assessed at baseline and 12-months for body composition (Body fat and lean body mass 39 

(LBM)), Isometric maximal voluntary contraction (Knee-Extension (KEMVC) and Plantar-40 

Flexion (PFMVC)) and physical activity (tri-axial accelerometry).  41 

Results. 12-month change in strength was found as -19% (PFMVC) and -14% (KEMVC) in 42 

DMD. 12-month change in strength in BMD, although non-significant, was explained by 43 

physical activity (R2=.532-.585). Changes in LBM (DMD) and body fat (BMD) were both 44 

masked by non-significant changes in body mass.  45 

Discussion. 12-month changes in adults with DMD appear consistent with paediatric 46 

populations. Physical activity appears important for muscle function maintenance. Specific 47 

monitoring of body composition, and potential co-morbidities, within adults with MD is 48 

highlighted. 49 

Keywords: Beckers; Duchenne; Dystrophy; Natural History; Physical Activity; Strength. 50 
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Main Text: 64 

Introduction 65 

Duchenne (DMD) and Beckers (BMD) Muscular Dystrophy (MD) are two genetic conditions 66 

resulting in progressive muscle weakness and declining muscle mass [1]. Unlike many other 67 

forms of MD, which affect a variety of different proteins associated with the sarcolemma [2], 68 

DMD and BMD are unique in that they are both affected by impairment of the same protein, 69 

named Dystrophin [3, 4]. DMD results from an absent or non-functioning dystrophin protein, 70 

therefore is more progressive, with loss of ambulation by the age of 12 [5, 6]. BMD in 71 

comparison is caused by a partially functioning dystrophin protein, therefore a slower and more 72 

variable form of MD, with the loss of ambulation in adulthood [5, 6]. Despite the well 73 

acknowledged genetic understanding of these conditions [3, 4, 7-9], and a breadth of research 74 

assessing health and function in children with DMD [10-17], basic understanding of the 75 

progression of these conditions and impact on function and health measures remains minimal 76 

in adult populations [18]. 77 

Lower limb muscle strength has historically been a key outcome measure reported in MD [19-78 

25], with assessment using direct measures (either objectively using dynamometers or through 79 

subjective assessments such as manual muscle testing (MMT)) or indirect measures, such as 80 
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sit-to-stand or 10m walk time [19, 22, 26-29]. Longitudinal strength change in BMD has only 81 

been described through MMT assessment of knee extension strength (KEMVC) however, 82 

showing annual declines of 1.2% [28]. More recently, the current authors demonstrated that in 83 

adults with MD, variance in KEMVC and functional measures could be explained by 84 

accelerometer determined physical activity (PA)[19]. It is therefore important to understand 85 

the rate of strength decline in adults with BMD, but also to assess the impact of PA on strength.  86 

Cross-sectional and natural history studies by comparison are more common within children 87 

with DMD [20, 21, 23, 30, 31]. Indeed, muscle weakness is typically identified during 88 

childhood in DMD, with impaired gait an early indicator of DMD [32, 33]. Subjective methods 89 

of MMT or Medical research council scales (MRC%) have reported annual declines of 90 

KEMVC as 4-5% and 1.2-2% in ambulant (5-13 years) and non-ambulant (13-24 years) 91 

children with DMD, respectively [27, 34, 35]. Objective measures such as dynamometers 92 

however have identified, annual declines of KEMVC as 15% in children with DMD (8-12 93 

years) [36]. Despite lower limb muscle strength having limited clinical relevance in adults with 94 

DMD, it remains essential that a comprehensive understanding of the progression of DMD in 95 

this older, unreported age group is developed, in order to develop a life-long understanding of 96 

condition progression, provide comparative norms using relevant and accessible methods, as 97 

well as to provide comparisons for future longitudinal assessments of steroid or gene therapy 98 

studies which may be relevant to this group [18, 37]. 99 

Strength and function have been associated with Lean Body Mass (LBM) in children with 100 

DMD [38, 39]. While pseudohypertrophy (increased muscle size without relative increase in 101 

strength) of the calves is well documented in children and adolescents with DMD [31, 40, 41], 102 

recent research suggests it may not persist in adults with DMD however [19, 42]. Furthermore, 103 

the pre-disposition of impaired muscular, respiratory and cardiac systems to ill health can be 104 

placed under further pressure by increased sedentary behaviour [19], resulting in greater fat 105 
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mass, which has previously been cited as a common co-morbidity in adults with MD [43, 44], 106 

and reported as higher in non-ambulant than ambulant adults with BMD [45]. Continual 107 

assessment, and understanding, of body composition changes of both lean and fat mass is 108 

essential, for not only their implications on function, but also the much broader impacts on 109 

health and wellbeing [13, 46]. 110 

This study aims to: 1) Quantify changes, from a one year follow up, in body composition, 111 

muscle strength, muscle size and physical activity levels in adults with DMD and BMD; and 112 

2) Identify the impact of changes in physical activity on body composition and muscle strength. 113 

The authors hypothesise that declines will be greater in DMD than BMD, although still evident 114 

in both conditions, for lower limb strength, muscle size and LBM. In addition, PA may account 115 

for some of the variance in lower limb strength change in BMD, but not DMD. 116 

Materials and Methods 117 

This study comprised of adult male volunteers with DMD (n= 15) and BMD (n= 12). All 118 

participants were recruited from, and tested at, The Neuromuscular Centre (Winsford, UK). No 119 

participants were habitually taking part in a structured training programme, however all were 120 

receiving weekly, bi-weekly or monthly physiotherapy treatment, consisting of passive 121 

stretching, along with access to low intensity cardiovascular exercise equipment (monthly 122 

frequency of physiotherapy for DMD = 4 (1-4), BMD = 2 (1-2) expressed as Median (range). 123 

Ethical approval was obtained through the Manchester Metropolitan University Ethics 124 

Committee, and all participants signed informed consent forms prior to participation. All 125 

procedures complied with the latest edition of the World Medical Association Declaration of 126 

Helsinki [47]. 127 

All method protocols, data presentation and reliability, have been reported previously [19], 128 

where they can be read in full. A brief overview of each method has been presented below. 129 
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Procedures 130 

All participants undertook Baseline and 12 ±1 month follow up testing. Testing involved 131 

functional and morphological tests, which was followed by a 7-day PA assessment, using wrist-132 

worn three-dimensional accelerometers, worn 24 hours a day. The same equipment was used 133 

for all participants and due to the high level of contractures present in some participants; all 134 

participants were assessed in a seated position to ensure consistency.  135 

Sample Size 136 

In order to determine the sample size required to provide a representative sample for 12 month 137 

changes in adult populations of DMD, statistical a Priori power calculations were performed 138 

using G*Power 3.1.9.2 software (Franz Faul, Universitat Kiel, Germany). For this calculation, 139 

alpha was set a 0.05 and beta at 0.80. The DMD sample size was calculated to show a 10% 140 

change in muscle strength score consistent with the natural history group previously reported 141 

by Mendell et al. [34]. This method calculated an adequate adult DMD sample size of n = 15. 142 

For BMD, due to the lack of extant data for a Priori calculation to be performed, it was deemed 143 

that the power calculation for BMD participants in clinical trials (n = 15) by Bello et al. [7] 144 

was appropriate.  145 

Anthropometry 146 

All participants were weighed in a digital seated scales system (6875, Detecto, Webb City, Mo, 147 

USA). Slings, shoes, splints etc. were weighed separately and subtracted from the gross weight. 148 

All participants’ height was calculated as point-to-point of arm span (index finger, elbow, 149 

shoulder and across midline) to replicate the method used on non-ambulatory participants [45, 150 

48].  151 

Body Composition 152 

Body composition measures of body fat and LBM were measured using Bioelectrical 153 

Impedance (BIA) in a fasted state following a 12 hour fast, with adhesive electrodes placed on 154 
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the right hand and foot. BIA has been promoted as a measure for change in fat and LBM over 155 

time in a dystrophic population [16]. 156 

Lean Body Mass was determined by the following equation: 157 

𝐿𝐵𝑀 (𝐾𝑔) = 𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 (𝐾𝑔) − 𝐹𝑎𝑡 𝑀𝑎𝑠𝑠 (𝐾𝑔) 158 

Body Mass Index (BMI) was calculated using the following equation [49]: 159 

𝐵𝑀𝐼 (
𝐾𝑔

𝑚2
) = 𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 (𝐾𝑔) ÷ 𝐻𝑒𝑖𝑔ℎ𝑡2(𝑚2) 160 

Muscle Strength 161 

Due to the high levels of contractures present in adults with DMD, strength testing protocols 162 

were designed to be completed on the most mechanically limited participants, and replicated 163 

on all others. Therefore, isometric plantar flexion maximal voluntary contraction (PFMVC) 164 

and KEMVC force was recorded using a load cell, with all participants in a seated position 165 

replicative of quantitative muscle testing [31].  The load cell was calibrated using a known load 166 

of 500g-5kg, in 500g increments, prior to every strength testing session. MVC measures all 167 

took place with the participant seated, with hip and knee angles maintained at 90°, for which 168 

non-ambulant participants remained in their manual/power wheelchair. For KEMVC, a strap 169 

was tightly fastened around the participant’s ankle, and attached perpendicularly to the load 170 

cell, which was fastened to a weighted support bar. For PFMVC the participants foot was 171 

attached to a footplate, with the load cell attached underneath. PFMVC measures were taken 172 

from 0° (neutral position), or as close to neutral as possible due to equinus deformity evident 173 

in DMD [50]. For PFMVC the practitioner provided the resistive force to ensure an isometric 174 

contraction, and all measures of force were normalised for gravity. Three trials were performed 175 

for PFMVC and KEMVC respectively, with extended breaks of 1 minute between trials due to 176 

the increased fatigue associated with MD [51]. Force (N) was converted to torque (N·m) by 177 
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multiplying the force measurement by the moment arm from the axis of rotation (knee or ankle) 178 

to the point of force measurement (the strap height on the shin, or ball of the foot). PFMVC 179 

and KEMVC measures have been presented as torque (N.m).  180 

This method has been shown to be highly reliable for both PFMVC and KEMVC in adults with 181 

DMD (Within Day ICC: 0.98 and 0.99; Between Day ICC: 0.98 and 0.99) and BMD (Within 182 

Day ICC: 0.91 and 0.99; Between Day ICC: 0.83 and 0.99) [19]. 183 

Muscle Size Assessment 184 

Gastrocnemius Medialis (GM) anatomical cross sectional area (ACSA) was measured using 185 

transverse ultrasound scans (7.5-MHz linear array probe) at 50% of muscle length, consistent 186 

with the muscle length at which the largest ACSA occurs [52]. Echoabsorptive tape (Transpore, 187 

3M, USA) was used to project shadows on the ultrasound image during recording to provide a 188 

positional reference. From which still images were captured then recreated into a single image 189 

offline (Graphic Image Manipulation Program, GIMP Development) using the shadows from 190 

echoabsorptive tape, muscle markers and aponeurosis of the muscle. The ACSA was then 191 

measured using digitising software (ImageJ 1.45, National Institute of Health, USA). Further 192 

details can be found in our previous reports of GM ACSA in MD [42, 45]. This method of 193 

ACSA assessment has been reported previously as reliable (0.998) and valid (0.999) in 194 

comparison to Magnetic Resonance Imaging (MRI) [53].   195 

It is important to note that this method measures the area within the fascia of the muscle 196 

boundaries only, it cannot differentiate muscle or fibrous tissue (more commonly recognised 197 

as fat fraction) as seen in MRI [31, 54-56]. Therefore, GM ACSA is a method of assessing 198 

psuedohypertrophy only, and not muscle quality or contractile capacity. 199 
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10m Walk Time 200 

Nine ambulant BMD participants performed a 10m walk test, one participant however lost 201 

ambulation during the one year follow up period, therefore data is presented of the 8 202 

participants that completed both the Baseline and 12 months testing. The 10m walk was 203 

performed on an even surface, and is a common measure of function within neuromuscular 204 

conditions [36, 57]. All participants started in a standing position and were instructed to walk 205 

as quickly and safely as they could, with the time recorded from the verbal instruction of “Go” 206 

from the practitioner, to the point of crossing the finish line. Walking aids were permitted if 207 

required. Participants 10m walk time were recorded as early in the day as possible to limit the 208 

effect of fatigue, with the 12-month measure taking place at the same time. 209 

Physical Activity 210 

Daily PA was monitored over a consecutive 7-day period using a wrist-worn tri-axial 211 

accelerometer (GENEActiv, Kimbolton, Cambs, United Kingdom). Monitors were initiated to 212 

collect data at 100 Hz, worn for 24 hours a day on the preferred wrist of participants and worn 213 

continuously for 7 days [58]. Upon completion of 7-day monitoring, data is downloaded into 214 

.bin files, converted to 60s epoch .csv files using the GENEActiv PC Software (Version 2.1). 215 

60s epoch data files were then entered into an open source Excel macro (v2, Activinsights Ltd.) 216 

[59]. GENEActiv monitors have shown high validity for the measurement of both PA and SB 217 

(Pearon’s r = 0.79-0.98) [59, 60]. PA is presented as a percentage of time spent sedentary 218 

(SB%) or total time spent physically active (TPAmins)[19].  219 

Functional Status 220 

All participants functional status was assessed by an experienced neuromuscular 221 

physiotherapist using the Swinyard Severity Classification scale [61]. The Swinyard Severity 222 

Classification grades function and ability to carry out activities of daily living from Stage 1 223 

“mild abnormalities in gait, able to climb stairs without assistance”, to Stage 8 “Unable to sit 224 
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without considerable support, requires maximal assistance for activities of daily living”. The 225 

Swinyard Severity Scale has been used extensively in MD research [62-64], and shown to be 226 

highly correlated with fraction of lower limb muscle mass in DMD [54]. 227 

Statistical Analyses 228 

All analyses were performed using IBM SPSS Statistics v21 software with a critical level of 229 

statistical significance set at 5% and all data presented as mean (SD), except for Functional 230 

Status which is presented as Median (Range). We have previously published between group 231 

differences for baseline measures [19], with the present study interested in differences from 232 

baseline-12 months, therefore statistical analysis has been performed on baseline to 12 month 233 

changes only (within group), with baseline values presented for clarity. Test for parametricity 234 

were performed upon all variables, for repeated measures in DMD, body mass, height, BMI, 235 

Lean Mass and PFMVC were parametric, and all other variables were non-parametric. For 236 

BMD height, body fat, Lean Mass, GM ACSA, PFMVC, SB% and TPAmins were parametric, 237 

all other variables were non-parametric. Respiratory, Gastrostomy and Ambulatory statuses are 238 

presented as a characteristic and no statistical analysis was performed on it.  239 

For repeated measures, Paired T-tests and Wilcoxon signed rank tests, for parametric and non-240 

parametric respectively, were used to identify changes, with a Bonferroni correction. Where 241 

relevant, comparisons are presented with P values, the relative change (%) from baseline and 242 

95% Confidence Intervals. 243 

Stepwise Multiple Linear Regression was used to identify the best predictors of PFMVC 244 

change from GM ACSA Change, LBM Change and Baseline PFMVC. Linear, Quadratic and 245 

Cubic regressions are used to best model changes in body composition and muscle strength in 246 

relation to age and changes in TPAmins, with the best fit model presented. 247 
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Results 248 

12 Month Changes  249 

DMD 250 

Compared to baseline, 12 month PFMVC and KEMVC decreased in DMD by 19% (P=0.002) 251 

and 14% (P=0.003), respectively. Compared to baseline, 12 month LBM and GM ACSA 252 

decreased by 5% (P=0.002) and 8% (P=0.012) respectively, in DMD. No other differences 253 

were identified between baseline and 12 months for measures of anthropometrics, body 254 

composition or muscle size for DMD (table 1, P>0.05).  255 

[Table 1 Here] 256 

BMD 257 

There was no difference in KEMVC or PFMVC compared to baseline in BMD (P>0.05). 258 

Compared to baseline 10m walk time increased in ambulant BMD by 13% (P=0.005). No other 259 

differences were identified between baseline and 12 months for any other measures (table 1). 260 

Compared to baseline there was no significant change in GM ACSA or LBM in BMD (P>0.05). 261 

In BMD, compared to baseline, Body Fat increased by 4% (P=0.009) after 12 months. One 262 

BMD participant lost ambulation between baseline and 12 months. No other differences were 263 

identified between baseline and 12 months for measures of anthropometric, body composition 264 

or muscle size for BMD (table 2, P>0.05). 265 

 [Table 2 Here] 266 

Regressions 267 

Stepwise Multiple Linear Regression identified a model containing Baseline PFMVC, GM 268 

ACSA change and LBM Change best predicted PFMVC Change in DMD (R2=0.582, 269 

P=0.019). 270 

No relationship was identified for DMD using any regression model for age or TPAmins change 271 

with change in PFMVC, KEMVC, LBM or body fat (P>0.05). No relationships were identified 272 
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for either DMD or BMD using any regression model for age with change in PFMVC, KEMVC, 273 

LBM or body fat, or TPAmins change with change in LBM or body fat (P>0.05). 274 

In BMD quadratic polynomial regressions best identified relationships for TPAmins change with 275 

PFMVC change (R2=.585, P=0.019, figure 1A) and KEMVC change (R2=0.532, P=0.033, 276 

figure 1B). No relationships were identified in DMD using any regression model for TPAmins 277 

PFMVC change or KEMVC change (P>0.05). 278 

[Figure 1 Here] 279 

Discussion 280 

The present study reports 12 month changes in lower limb muscle strength, muscle size and 281 

body composition in adults with BMD and DMD. 12-month changes in lower limb function 282 

have been identified using objective measures of muscle strength in adults with DMD and 283 

BMD. After 12 months, LBM, GM ACSA, PFMVC and KEMVC decreased in DMD, whereas 284 

in BMD there was no change in any measure, other than body fat which increased. Although 285 

there was no significant decrease in strength within BMD, the variance in the 12-month change 286 

of PFMVC and KEMVC was partially attributable to the variance in physical activity change 287 

over the same period.  288 

The 14% decline in KEMVC in adults with DMD in the present study is consistent with the 289 

15% decline previously reported over a similar timeframe in children with DMD [36]. These 290 

declines in KEMVC are in contrast to the 2% and 1.2% declines reported in non-ambulant 291 

children and adolescents with DMD, respectively [35, 36]. This discrepancy can be attributed 292 

to the greater sensitivity of the methods used in the present study to quantify changes in 293 

KEMVC, rather than subjective measures of MMT or MRC% [65, 66]. In adults with BMD 294 

we observed no significant change in KEMVC or PFMVC, likely due to greater variance 295 
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associated with the condition, however the quantified declines of 14% KEMVC and 7% 296 

PFMVC remain noteworthy. 297 

The increase in body fat in BMD (+4%) in the present study appears consistent with our 298 

previous research in which excess weight gain was identified as an issue in BMD, especially 299 

in non-ambulant individuals [45]. The relative increase in body fat in BMD compared to DMD 300 

may be due to the fact that BMD maintain a greater level of function and physical independence 301 

[67], compared to DMD [48] who require assistance in the preparation and consumption of 302 

food. Monitoring and management of food intake may be easier and more structured in DMD 303 

[68], particularly given 4/15 participants in the current study consumed via PEG. The stable 304 

body mass in both DMD and BMD did however mask changes in body composition, with 305 

decreased LBM in DMD and increased body fat in BMD. Therefore reaffirming the need for 306 

body composition monitoring in these conditions [16]. 307 

Adults with BMD that maintained or increased PA levels showed a relative increase or 308 

maintenance of muscle strength compared to those that decreased PA levels. Increased PA has 309 

previously been attributed to decelerating fatty infiltration of muscles in FSHD [69]. Based on 310 

the present relationship between PA and declines in muscle strength, it seems reasonable to 311 

suggest interventions that increase PA in adults with BMD may benefit muscle strength, while 312 

potentially also alleviating some concerns around changes in fat mass identified in the present 313 

study. Future work needs to investigate the benefits of increasing PA, and to further identify 314 

psycho-somatic and/or social barriers and facilitators of PA and patterns of SB in this 315 

population [70]. 316 

Study Limitations 317 

The present study has two main limitations, the first being the sample size. Whilst the sample 318 

size recruited is aligned with those identified during the a Priori power calculations (See 319 

Methods [7, 34]), they are comparably small to some previous longitudinal studies [17, 71]. 320 
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The present study however does report on longitudinal changes in function and health in a 321 

previously unreported sample, adults with DMD [37], and utilises outcome measures that are 322 

more sensitive to previous methods. Differences were identified within the present DMD 323 

sample size of n = 15, while a Post Hoc calculation for adults with BMD using data from the 324 

present study identifies n = 15 required for future studies monitoring lower limb muscle 325 

strength. Whilst the recruited BMD sample size in the present study is slightly under-powered, 326 

it is considerably larger than that reported previously in natural history studies on adults with 327 

BMD [28], and contributes significantly to the currently limited longitudinal data in adults with 328 

BMD. 329 

Secondly, the present study is limited to 12 months monitoring only, which is comparably 330 

shorter than some previous studies [28, 35], however consistent with many previous 331 

longitudinal studies in children with DMD [25, 72-74]. The 12 month sample period was long 332 

enough however to identify specific changes in LBM (DMD), body fat (BMD), GM ACSA 333 

(DMD), PFMVC (DMD), KEMVC (DMD) and 10m walk time (BMD). Regardless, this 334 

identification of differences in function and health within a 12 month time period is an 335 

important finding itself, and further emphasises the need for continuous health and function 336 

monitoring and management in these conditions. 337 

All DMD participants will have received some form of steroid treatment through childhood 338 

and adolescence. Whereby steroid treatment typically stops upon full-time wheelchair use. 339 

Given the data collection from a non-NHS organisation, it is beyond the scope of the present 340 

investigation to gain historical steroid treatment and dosage information. Therefore, all data 341 

has been presented with the caveat that DMD participants will have historically received steroid 342 

treatment, however it should be noted that none were currently receiving steroid treatment. 343 
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Future Research 344 

Whilst it is important to further understand the progression of these conditions in what has been 345 

previously described as an “unforeseen population” [37], further mechanistic insight is 346 

required. Primarily, the reductions in strength in the current study are likely attributed to 347 

progressive fat fraction within the muscle, synonymous with the condition [20]. Future research 348 

should assess the progression of tissue changes in adults with DMD, however the reduction in 349 

GM ACSA in the current study appears consistent with previous hypothesis’ that muscle size 350 

becomes more representative of contractile tissue quantity in adulthood [42], with the end of 351 

the inflammatory induced appearance of psuedohypertrophy. In addition, further understanding 352 

of physical behaviours in adults with BMD is required, especially those who retain some form 353 

of ambulation, given the present findings on body composition, and previous work 354 

demonstrated positive effects of increased step count on contractile tissue in adults with 355 

Fascioscapulohumeral MD [75]. More broadly, evidence based nutritional guidelines, with 356 

specifics guidance for differing classifications and functional status are required to best manage 357 

energy balance and reduce additional strains on health.   358 

Conclusion 359 

In conclusion, the present data describes natural history changes in body composition, strength 360 

and physical activity in adults with DMD and BMD. Changes in DMD appear consistent with 361 

the understanding of the condition, with 14-19% weaker PFMVC and KEMVC, consistent with 362 

paediatric populations [16, 36, 42]. Change in DMD PFMVC was best explained by changes 363 

in LBM, GM ACSA and Baseline PFMVC. Within BMD, 12 month changes in PFMVC and 364 

KEMVC although not significant, were explained by change in minutes of physical activity. 365 

Changes in LBM in DMD and body fat in BMD were both masked by non-significant changes 366 

in body mass, furthering the need for specific monitoring of body composition to reduce the 367 

development of potential co-morbidities. 368 
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 Table 1. 12 Month changes in body composition, muscle size, lower limb strength and 557 

physical activity in Adults with DMD. 558 

 DMD  

 Baseline 12-Months %Change  95% CI 

N 15 

Functional Status 8 (8-8) 8 (8-8) - - 

Ambulatory Status  
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No Walking 

Support 
- - - - 

Walking Support - - - - 

Manual Wheelchair - - - - 

Electric Wheelchair 8/8 8/8 - - 

Respiratory 

Support  
15/15 15/15 - - 

Night-time only (%) 13/15 13/15 - - 

24/7 (%) 2/15 2/15 - - 

PEG (%) 4/15 4/15 - - 

Age (years) 24.2 ±6.1 25.2 ±6.1 - - 

Stature (cm) 172.0 ±4.3 172.0 ±4.3 - - 

Body Mass (Kg) 73.1 ±14.6 71.4 ±14.5 -2% -3.8; 2.8 

BMI (Kg/m2) 25.5 ±4.1 24.5 ±7.5 -4% -1.6; -0.2 

Body Fat (Kg) 24.3 ±9.5 23.7 ±10.8 -3% -7.3; 0.39 

LBM (Kg) 47.6 ±7.7 45.0 ±6.4 -5%* -3.99; -1.14 

GM ACSA (cm2) 23.3 ±16.5 21.4 ±16.3 -8%* -3.43; -0.49 

PFMVC (N.m) 16.7 ±6.8 13.6 ±6.3 -19%* -4.79; -1.49 

KEMVC (N.m) 12.6 ±8.8 10.8 ±7.0 -14%* -3.16; -0.31 

SB% 96.4 ±4.5 98.5 ±0.02 2%  -0.32; 4.54 

TPAmins 13.5 ±16.1 7.17 ±8.9 -47%  -14; 1.7 
Table 1. One year changes in MD strength, physical activity and function. All data presented and Mean±SD, except for 559 
Functional status which is presented as Median (Range), Respiratory Support, Ambulatory Status and PEG are presented as 560 
absolute. DMD = Duchenne Muscular Dystrophy; 95% CI = 95% Confidence Intervals PEG = Percutaneous endoscopic 561 
gastrostomy; PFMVC = Plantar-Flexion Maximum Voluntary Contraction; KEMVC = Knee Extension maximum Voluntary 562 
Contraction; SB% = Sedentary Behaviour %; TPAmins = Minutes of Total Physical Activity; m = metres; s = seconds; † 563 
Ambulant BMD only (n=8); *denotes significant changes from baseline. 564 

Table 2. 12 Month changes in body composition, muscle size, lower limb strength and physical 565 

activity in Adults with BMD. 566 

BMD 

 Baseline 12 Months % Change 95% CI 

N 12 

Functional Status 3.5 (1-7) 3.5 (1-7) - - 

Ambulatory Status  

No Walking Support 6 6 - - 

Walking Support 3 2 - - 

Manual Wheelchair 1 2 - - 

Electric Wheelchair 2 2 - - 

Respiratory 

Support 
0/12 0/12 - - 

Night-time only - - - - 

24/7 - - - - 

PEG 0/12 0/12 - - 

Age (years) 44.1 ±12.6 45.1 ±12.6 - - 

Stature (cm) 178.9 ±6.2 178.9 ±6.2 - - 

Body Mass (Kg) 84.4 ±15.1 85.1 ±16.4 0% -1.22; 2.64 

BMI (Kg/m2) 26.4 ±4.9 26.6 ±5.4 0% -0.38; 0.84 

Body Fat (Kg) 25.1 ±8.8 26.3 ±8.9 4%* 0.20; 2.19 
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LBM (Kg) 59.3 ±7.8 58.8 ±8.1 -1% -2.05; 1.08 

Ambulatory 9/12 8/12 - - 

GM ACSA (cm2) 29.7 ±18.4 26.6 ±14.4 -10% -6.0; -0.11 

PFMVC (N.m) 35.7 ±11.3 33.2 ±12.2 -7% -6.01; 1.08 

KEMVC (N.m) 97.7 ±64.3 83.9 ±56.2 14% -24.8; -2.6 

SB% 83.4 ±7.2 83.9 ±6.3 0% -4; 5 

TPAmins 123.1 ±57.6 120.4 ±50.7 -2% -17.2; 70.5 

10m Walk (s)† 11.0 ±2.9 12.7 ±3.9 15%* 1.4; 3.4 
Table 2. One year changes in MD strength, physical activity and function. All data presented and Mean±SD, except for 567 
Functional status which is presented as Median (Range), Respiratory Support, Ambulatory Status and PEG which are presented 568 
as absolute. BMD = Beckers Muscular Dystrophy; 95% CI = 95% Confidence Intervals; PEG = Percutaneous endoscopic 569 
gastrostomy; PFMVC = Plantar-Flexion Maximum Voluntary Contraction; KEMVC = Knee Extension maximum Voluntary 570 
Contraction; SB% = Sedentary Behaviour %; TPAmins = Minutes of Total Physical Activity; m = metres; s = seconds; † 571 
Ambulant BMD only (n=8); *denotes significant changes from baseline. 572 
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Figure 1. BMD strength change and physical activity change relationships A. PFMVC change and TPAmins change in BMD B. 602 
KEMVC change and TPAmins change in BMD. PFMVC = Plantar Flexion Maximal Voluntary Contraction, N.m = Newton 603 
Metres, TPA = Total Physical Activity, KEMVC = Knee Extension Maximal Voluntary Contraction. 604 
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