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Abstract  

The thesis looks at approaches to segmentation of polyps in colonoscopy images. The aim was to 

investigate and develop methods that are robust, accurate and computationally efficient and which 

can compete with the current state-of-the-art in polyp segmentation.  

Colorectal cancer is one of the leading cause of cancer deaths worldwide. To decrease mortality, 

an assessment of polyp malignancy is performed during colonoscopy examination so polyps can 

be removed at an early stage. In current routine clinical practice, polyps are detected and 

delineated manually in colonoscopy images by highly trained clinicians. To automate these 

processes, machine learning and computer vision techniques have been utilised. They have been 

shown to improve polyp detectability and segmentation objectivity. However, polyp segmentation 

is a very challenging task due to inherent variability of polyp morphology and colonoscopy image 

appearance.  

This research considers a range of approaches to polyp segmentation – seeking out those that 

offer a best compromise between accuracy and computational complexity. Based on analysis of 

existing machine learning and polyp image segmentation techniques, a novel hybrid deep learning 

segmentation method is proposed to alleviate the impact of the above stated challenges on polyp 

segmentation. The method consists of two fully convolutional networks. The first proposed 

network is based on a compact architecture with large receptive fields and multiple classification 

paths. The method performs well on most images, accurately segmenting polyps of diverse 

morphology and appearance. However, this network is prone to misdetection of very small polyps. 

To solve this problem, a second network is proposed, which primarily aims to improve sensitivity 

to small polyp details by emphasising low-level image features.  

In order to fully utilise information contained in the available training dataset, comprehensive 

data augmentation techniques are adopted. To further improve the performance of the proposed 

segmentation methods, test-time data augmentation is also implemented. 

A comprehensive multi-criterion analysis of the proposed methods is provided. The result 

demonstrates that the new methodology has better accuracy and robustness than the current 

state-of-the-art, as proven by the outstanding performance at the 2017 and 2018 GIANA polyp 

segmentation challenges.  
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Chapter 1. Introduction 

1.1 Aim and motivation 

The aim of this thesis is to investigate deep learning segmentation algorithms and 

design novel more accurate and computationally efficient polyp segmentation 

methods for colorectal endoscopy images. Typically, in the current routine clinical 

practice, polyps are detected and segmented manually. With an increase in the 

number of colorectal examination procedures, this approach has become ineffective 

and costly. To solve this problem, automated segmentation methods utilising machine 

learning and computer vision algorithms are being investigated.  

However, polyp segmentation using computer-assisted methods is a very 

challenging task. The size, shape and appearance of a polyp are different at different 

stages. In an early stage, colorectal polyps are typically small, may not have a distinct 

appearance, and could be easily confused with other intestinal structures. In the later 

stages, the polyp morphology changes and the size begin to increase. Some polyps 

become so large that they take up most of the image space. Illumination in colon 

screening is also variable, producing local overexposure highlights and specular 
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reflections. Some polyps may look very differently from different camera positions, 

have no obvious boundary between the polyp and its surroundings tissue, be affected 

by intestinal content and luminal regions, inevitably leading to segmentation errors.  

So far, a number of polyp segmentation methods have been proposed mainly using 

active shape or texture-based algorithms. These methods can be used to segment 

polyps that have specific contours and/or similar appearance, but these conditions are 

often difficult to satisfy in practice. Since overall processing pipelines for these 

methods are composed of many processing stages, their structures and hyper-

parameters often need to be re-set when the experimental settings are changed. 

Therefore, one of their main limitations is that they typically could perform well only 

when used to segment a specific polyp type in a predefined clinical setup.  

The research reported in this thesis has been motivated by the limitations of 

previously proposed methods. It attempts to construct a new method that integrates 

feature descriptors and classification methods with parameters selection optimized via 

an integrated deep learning. The performance objectives for the new polyp 

segmentation methods are as follows: 

 

Accuracy: The segmentation results of the proposed methods should be more 

accurate than those of the most current polyp segmentation approaches. To make this 

comparison more reliable, their performances should be evaluated by different 

complementary metrics. In addition, since it is not realistic to re-implement all 

previous methods, the most representative methods will be chosen for comparison 

purposes.  

  

Robustness: Robustness indicates whether a method has sufficient generalization 

ability. The proposed segmentation methods should have a certain degree of 

robustness to cope with the variability in polyp images, including: varying polyp 

morphology, tissue deformations, displacement, specular reflections, size and varying 

polyp appearances.  
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Figure 1. 1 Five-year survival rates of the colorectal cancer for each stage.1: (a) Localized, i.e. confined to the 

primary site; (b)Regional, i.e. spread to regional lymph nodes; (c) Distant, i.e. cancer has metastasized; (c)Unknown, 

i.e. un-staged. 

 

Computational efficiency: Deep learning methods usually require high performance 

GPU units with large internal memories, and therefore their implementation could be 

expensive. The developed methods should achieve a balance between performance 

and the size of deep model. Moreover, they should be computationally efficient, i.e. 

should enable a real-time processing.  

1.2 Colon cancer and colonoscopy  

Colorectal cancer is one of the major causes of cancer incidence and death worldwide. 

The latest survey shows that there were 1,096,601 new cases and 551,269 deaths in 

2018 [1], and each account respectively for 6.1% and 5.8% of the total number of 

cancer related cases and deaths. Based on the current trend, it is estimated that the 

new cases and deaths will increase respectively to 2.2 million and 1.1 million by 2030. 

Colorectal cancer arises from benign polyps, however, with time some of them 

become malignant adenoma.   

                                                   
1 https://seer.cancer.gov/statfacts/html/colorect.html [Accessed 20 Oct. 2019] 
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Figure 1. 2 Explanation of colonoscopy procedure2. 

 

Figure 1.1 demonstrates five-year survival rates for the colon cancer. It can be seen 

that the earlier colorectal cancer is detected, the better the chances of surviving five 

years after being diagnosed. Therefore, the mortality due to colon cancer can be 

reduced through colon screening. Figure 1.2 illustrates the colonoscopy procedure: a 

colonoscope, a flexible instrument typically using an optical fibre or electronic camera, 

is inserted through the anus to visually examine the colon for abnormal tissue. Usually, 

patients need to take laxatives in advance of the procedure to remove waste material 

from the colon and sometimes carbon dioxide is injected to enable better access to 

different parts of the colon. During the examination, the colonoscope is controlled by 

a clinician (gastroenterologist) who navigates through the large intestine in search of 

abnormalities such as polyps. Figure 1.3 shows a typical colonoscopy image. 

                                                   
2 https://pixabay.com/en/offal-marking-medical-intestine-1463369/ [Accessed Oct. 2019] 

https://pixabay.com/en/offal-marking-medical-intestine-1463369/
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Figure 1. 3 A typical colonoscopy image showing a polyp3, with a brief explanation of the visible structures. 

 

There are also non-invasive approaches available for the colon screening, including 

computed tomography (CT colonoscopy) and colour Doppler ultrasound. The CT 

colonoscopy, also called virtual colonoscopy, produces reconstructed 2d or 3d images 

of the colon. Since these are non-invasive medical procedures, it is impossible to 

perform a resection or biopsy of the polyp during such examinations. If a lesion is 

found, a colonoscopy is required anyway to perform the resection or biopsy. Therefore, 

colonoscopy is the most common approach to colon screening as biopsy, and often the 

resection, are possible during the same screening procedure. 

The Wireless Capsule Endoscopy (WCE), in the near feature, replace the current 

colon scanning method. The capsule is swallowed by the patient and images of the 

esophagus, stomach, small intestine and colon are internally recorded or wirelessly 

transmitted to an external recording device. However, for this technique to be fully 

accepted in clinical practice an accurate and robust automatic lesion detection system 

has to be developed as the WCE generates a very large number of images making it 

very difficult for clinicians to use it in practice. 

Usually, polyps need to be directly examined by clinicians during colonoscopy. 

However, with the increased number of colonoscopy procedures, such an approach 

becomes ineffective and costly. To address this problem, machine learning, and 

computer vision algorithms have become investigated with the view to automate 

analysis of colonoscopy images. Typical analysis of colonoscopy images includes: polyp  

                                                   
3 https://giana.grand-challenge.org/ [Accessed 20 Oct. 2019] 
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Figure 1. 4 Polyp detection and localisation (left) and segmentation (right). 

 

classification, localisation, detection and segmentation. 

There have been a number of different definitions used in literature for 

classification, detection, localisation, and segmentation. In this thesis the description 

of these tasks is aligned with the definitions used by the Gastrointestinal Image 

Analysis (GIANA) challenge4.  

The objective of polyp detection is to identify the presence or absence of polyps in 

images and, in case of polyp(s) being identified as present finding, the location of 

polyp(s) in the image, typically using a bounding box to indicate relevant image regions, 

i.e. solving the localisation problem. Polyp segmentation is somewhat similar to 

detection, but the objective here is to find a contour accurately delineating the polyp 

rather than estimating position and size of a bounding box, see Figure 1.4. Polyp 

classification task is sometimes used to identify additional polyp characteristics, e.g. 

as hyperplastic, adenomas or deep submucosal invasive.  

1.3 Image segmentation 

Commonly, computer vision is tasked with detection, analysis and general processing 

of specific objects present in images. Frequently, to ensure the accuracy and stability 

of the processing, unnecessary contents need to be removed/ignored. A manual 

approach to this operation may guarantee an accurate result, but efficiency is low 

                                                   
4 https://giana.grand-challenge.org/Tasks/ [Accessed 20 Oct. 2019] 
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when the number of images is even moderately large. Therefore, a technique that can 

automatically extract the objects of interest is required.  

Image segmentation is an image processing methodology that could be used to 

meet such requirements. It is one of the most important constituents for many 

computer vision and digital image processing tools. Typically, the selected objects are 

called the foreground, and the other unimportant content is called the background. 

The foreground and background may have different appearances, with unique colour, 

texture or shape - with the foreground often represented by homogeneous regions. 

These properties are an important foundation for traditional image segmentation 

methods. Commonly used traditional methods include: thresholding, edge detection, 

region growing, clustering, and active contours. Sometimes, these properties are not 

easily defined and need to be further reinforced via specific pre-processing. 

Despite the significant progress made, image segmentation remains a challenging 

problem. Traditional segmentation methods often are designed to work on a specific 

image type only, and their performances still are far from what is expected. This lack 

of performance is caused by the fact, that in such settings, algorithms cannot fully 

mimic humans’ perception of images. 

Traditional segmentation methods cannot fully “understand” the meaning of 

objects present in an image because the properties of the foreground and background 

are defined by a set of simple descriptors. Therefore, if the objects of interest are 

complex, with multiple nonhomogeneous sub-regions appearing in various 

configurations, the traditional segmentation methods do not work. This challenge is 

illustrated in Figure 1.5, where the objective is to segment sofas. For image (A), there 

is an obvious colour difference between the foreground (sofas) and background, 

therefore it is a manageable task for the traditional methods. However, for images (B) 

and (C), the sofa cannot be defined by colour, shape, size, or position alone. To 

overcome this problem, the task of image segmentation is further extended into so 

called semantic and instance segmentation. 
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A                             B                             C 

Figure 1. 5 Images with low (A) and high complexities (B and C)5. 

 

Semantic segmentation: This task can be understood as a combined object recognition 

and image segmentation preformed as a single operation. The segmented foreground 

objects should correspond to their pre-set classes. Their differences are often reflected 

by the distinctive “meaning” of objects shown in an image and not just their local 

appearances. Therefore, semantic segmentation not only segments the foreground 

but also categorizes it to different classes. The key ingredients in the semantic 

segmentation are feature representation and machine learning. Moreover, with the 

development of deep learning, these two operations are merged into an end-to-end 

trained structure resulting in the superior performances when compared with other 

methods.  

  

Instance segmentation:   

Instance segmentation can be regarded as the extension of the semantic segmentation. 

This task requires that all segmented foreground objects representing the same object 

category are independently delineated. Figure 1.6 explains the difference between 

semantic and instance segmentations. The semantic segmentation cannot 

differentiate between different instances of the same object; therefore, all the “chairs” 

have assigned the same object label. However, the instance segmentation not only 

correctly recognise different object classes but also is able to differentiate between 

different object instances from the same class, i.e. all the “chairs” are individually 

delineated. The key technical difficulty is to deal with overlapping objects from the 

same class (e.g. chairs on the right side of the table). 

                                                   
5 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ [Accessed 20 Oct. 2019] 
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Figure 1. 6 Examples of semantic segmentation and instance segmentation6. Left: original image. Middle: results of 

semantic segmentation (red: chair; brown: table). Right: results of instance segmentation. 

 

 

1.4 Machine learning 

Machine learning is a subject in computer science that aims to optimize the 

performance of tasks based on learning from observation or experience [2]. It aims to 

estimate properties of objects or events by analysing the data representative of these 

objects or events.  

There is a large number of techniques developed to solve various problems in 

machine learning, most of which can be regarded as, linear or non-linear, mapping 

functions. The learning process can be explained as mechanism for modifying 

parameters and/or architectures of these mapping functions, which can describe 

patterns extracted from the available data. This can be used to replace humans in 

making decisions for often repetitive tasks.  

In machine learning, objects (e.g., events, experiences, and observations) that need 

to be processed are called data samples. A descriptor explaining a sample is called a 

feature. Features are extracted from original data and can be used to describe the data 

more efficiently. Data sample can be described by a single feature or multiple features. 

The values of features can be continuous or discrete. Normally, a database used for 

learning purposes has large collections of samples, with all samples described by the 

same features. 

                                                   
6 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ [Accessed 20 Oct. 2019] 

                      

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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Unsupervised and supervised learning  

Based on the available data, machine learning methods can be divided into 

unsupervised and supervised learning methods. For supervised learning, the data 

samples used for learning have associated additional specific properties called labels 

and the objective of the learning process is to estimates stable mapping relations 

between the samples and the labels. The unsupervised learning aims to find the 

mapping patterns from unlabelled samples. In both of these cases, the final objective 

is to use the learned mapping for previously unseen data samples to obtain the 

predicted labels for these samples.  

 

Classification and regression  

The typical tasks in machine learning are classification and regression. The difference 

is that the output of the classification task is discrete (or categorical), and the output 

of a regression is continuous. For example, answering the question ‘is it raining?’ is an 

example of a classification problem, and response to question ‘what is the 

temperature?’ is an example of a regression problem. Many machine learning 

methods can be used for both classification and regression.  

  

Feature extraction  

Feature extraction is an important branch of machine learning and is tasked with 

efficient representation of the raw data.   

Images are a fundamental source of information for this research. Image content can 

be encoded by high- and/or low- level features. High-level features can be understood 

as semantic objects in images, e.g. representing meaningful objects such as humans, 

cars or airplanes. Low-level features are the components that explain more 

fundamental image properties, such as colours, edges, corners, and gradients. Typically, 

low-level features are used to represent local image information and are commonly 

branded as low-level visual information. These features, when design based on human 

image interpretation, are often called handcrafted features. The machine learning 
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algorithms use image features for completion of recognition, segmentation and 

detection tasks. The performance of machine learning algorithms strongly depends on 

the descriptive properties of the features used. Selection of suitable features is one of 

the key ingredients in successful deployment of machine learning algorithms. 

1.5 Deep learning 

Deep learning is one of the branches of machine learning that was developed based 

on artificial neural networks (ANNs). In deep learning feature selection and feature 

classification is integrated through use of multiple non-linear hidden layers. This 

architecture aims to learn the patterns present in the training data, encoding them as 

features residing within the network (deep features) and, at the same time, perform 

pattern classification based on these deep features. Deep learning methods 

circumvent the selection of handcrafted features by discovering image dependencies 

which are hard to see by a human. In machine learning, this operation is called 

representation learning. The term ‘deep’ means that the number of hidden layers is 

far larger than those previously used in ANN methods (e.g. multilayer perceptron). 

Convolutional neural networks (CNNs) are representative algorithms of deep 

learning in image processing. This method was inspired by research on the visual 

cortical cells [3]. The first successful prototype, called LeNet-5 [4], was used to perform 

hand-written digit recognition. However, the hardware at that time could not support 

processing of high-resolution images or construction of very deep networks.  

In 2012, Krizhevsky et al. [5] developed CNN model which won first prize for the 

Large-Scale Visual Recognition Challenge (commonly this is considered as a birthday 

of the “deep learning revolution”). They reduced the influence of so-called vanishing 

gradients (previously preventing constructions of deep networks) and trained the 

network using a GPU (GPUs make the implementation of a large CNN computationally 

feasible). The error rate for that method was 15.3% lower than 26% error rate of the 

second-best method. After that, deep learning methods gradually became 

mainstream in computer vision and started to be a dominant approach for recognition, 
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segmentation and detection problems. 

1.6  Novel contributions 

This thesis presents a number of new approaches to complete polyp segmentation 

tasks in colonoscopy images based on the investigation of deep learning methods. The 

primary novel contributions of the research are two new segmentation convolutional 

neural network architectures. These are the Dilated ResFCN and the SE-Unet. The 

former performs well overall, while the latter is particularly effective at segmentation 

of small polyps, which could be missed by the former. The proposed optimal hybrid 

method combines these two CNNs to improve robustness, which allows for polyps of 

various types to be effectively segmented. In addition, these networks can be 

efficiently deployed on a standard desktop computer, allowing for real-time image 

segmentation.  

The performances of the proposed and other reference polyp segmentation methods 

have been extensively evaluated. The performed comparison demonstrates that the 

proposed hybrid approach outperforms other methods. Therefore, the developed 

methods and the reported results can be used as a reference for the future research. 

Furthermore, a number of evaluation metrics have been used to validate the reported 

segmentation methods. Some of these metrics have not been used before in the context 

of polyp segmentation. The reliability of the performed evaluations has been validated 

using statistical significance tests. It has been demonstrated that the proposed method 

achieves statistically significantly better results than those of existing methods. The 

significance of different data augmentation methods has been evaluated using 

comparative ablation tests. It has been demonstrated that rotation, local deformation and 

colour jitter are the most important augmentation techniques.  
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1.7 Thesis organization 

Chapter 2 introduces the polyp segmentation task and reviews previously proposed 

polyp segmentation methods. Chapter 3 provides an overview of current machine 

learning and deep learning methods, with the main focus on CNN’s key building blocks. 

Chapter 4 summarizes the current image segmentation methods. It starts with 

descriptions of traditional methods, followed by descriptions of deep learning 

methods. The main focus is on the structure of semantic segmentation algorithms. 

Chapter 5 describes the polyp database and novel methods proposed in this thesis. 

Evaluation of the described methods is provided in chapter 6. Finally, Chapter 7 

provides a summary of the work and hypothesizes about possible future work.  
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Chapter 2. Polyp segmentation problem 

2.1 Introduction  

Polyp segmentation in colonoscopy images is the central problem being investigated 

in this thesis. The key approach adopted in this work, to achieve a robust and accurate 

polyp segmentation, is based on the deep learning methodology and more specifically 

deep convolutional neural networks. Whereas Chapters three and four provide the 

necessary information about segmentation and the deep learning techniques, Chapter 

five describes the newly proposed methods, this chapter is focused on description of 

the problem itself and identifies the key challenges. Besides, the chapter provides a 

brief review of previously proposed polyp segmentation methods.  
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Table 2. 1 Paris classification of polyp morphology [6]. 

Types Sub-groups 

Type 0-I, 

polypoid 

0-Ip, pedunculated 

0-Is, sessile 

Type 0-II, 

non-polypoid and nonexcavated 

0-IIa, slightly elevated 

0-IIb, completely flat 

0-IIc, slightly depressed without ulcer 

Type 0-III, 

non-polypoid with a frank ulcer 
- 

2.2 Polyp morphology 

Accurate segmentation of polyps in colonoscopy images is a challenging task. This is 

due to a number of factors such as illumination conditions, variable camera positions, 

different characteristics of the surrounding tissue or presence of intestinal content. 

However, more fundamentally the polyp segmentation is difficult because of the 

inherent variability of polyp morphology. Since the appearance of polyps and 

surrounding tissues is complex and variable, the distribution of pixel values cannot be 

quantified by homogeneous patterns. 

A frequently used categorisation of different polyp morphology types is the so-

called Paris classification of endoscopic polyps [6] introduced in Table 2.1. Paris 

classification was proposed in 2005 for the classification of superficial lesions in the 

esophagus, stomach, and colon. The method divides superficial lesions into three main 

classes, 0-I, 0-II and 0-III and corresponding sub-classes (see Table 2.1). 

The Paris classification had been subsequently further supplemented by additional 

morphological subclasses graphically represented in Figure 2.1 [7]. This include two 

new polyp morphology types:  0-Isp and 0-IIa+s. Depending on the height of the 

polyposis, the lesion morphology can be divided into protruded, flat elevated and flat. 
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Figure 2. 1 The schematic representation of the supplemented Paris classification [7]. (M represents mucosa, MM 

Muscularis mucosa and SM represent sub- mucosa). 

 

The main difference between flat elevated and flat polyps is whether lesion is raised 

from mucosa. It should be noted that since the 0-Is and 0-IIa types of lesions are very 

similar, the Paris classification selects a height of 2.5 mm as a threshold to differentiate 

between them. 

The different types of polyps can significantly differ in terms of size, shape, colour, 

and texture. Even the same polyp may look significantly different depending on the 

colonoscopy camera position and/or used colon illumination, leading to changing 

pattern of shadows and highlights (Figure 2.1). Colon itself can deform, with the colon 

folds resembling polyps and polyps often “hiding” behind folds or indeed being 

masked within colon’s luminal region. The complexity of the problem can be judged 

based on image samples from the Figure 2.2 showing presence of specular highlights, 

overexposed regions, intestinal material, obscured (partially visible) polyps and so on. 

It should be also noted that the colonoscopy image is challenging as not only images 

have a low resolution but some of them are also of low quality, e.g. contain large areas 

of specular reflections as well as a motion blur or/and double exposure effect. 
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Figure 2. 2 Typical polyps in the GIANA SD training dataset [9], [10], [11] and [12]. (a) Small size; (b) Blur; (c) Intestinal 

content; (d) Specular highlights /defocused; (e) Occlusion; (f) Large size; (g) Overexposed areas; (h) Luminal region. 

 

Another set of problems can be caused by poorly defined polyp edges as some of 

the flat and flat elevated types of polyps can be masked by mucosa, making it difficult 

to determine the boundary between polyps and other tissues, which leads to under 

segmentation or over-segmentation. This problem also affects the assessment of the 

methods, as human observers are faced with the same challenges when delineating 

polyps. 

In order to solve above problems, the segmentation method may require multiple 

features to describe polyp properties. However, the multiple features increase the 

complexity of the input data. The uncertainty about feature types and method’s 

hyperparameters can also make the method design more difficult, ultimately leading 

to increase in segmentation errors. For instance, if hyperparameters are too “tightly 

fitted” to the available data it may reduce the robustness of the developed 

segmentation method, resulting in the segmentation method detecting only specific 

types of polyps. 
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2.2 Review of polyp segmentation methods  

This section provides a summary of the representative polyp segmentation methods 

that have been proposed in the recent years. The development of polyp segmentation 

algorithms is strongly affected by the progress in image processing, computer vision 

and machine learning. To date, most polyp segmentation methods can be 

characterised in terms of shape, texture, and applied machine learning (more recently 

deep machine learning) methodology.   

2.2.1 Polyp segmentation based on shape  

As most polyps have a well-defined edge, their shape becomes an important feature 

that can be used to distinguish between polyps and the background. Shape 

segmentation aims to reinforce polyp edges and detect the shape of a polyp with the 

corresponding enclosed area representing segmentation results.  

Due to the fact that in many cases, polyps have well-defined shapes some of the 

early approaches attempted to fit predefined polyp shape models. Hwang et al. [12] 

divided the image into many small pieces using the watershed algorithm and 

subsequently fitted ellipses to all possible regions. Then, an optimal ellipse was 

selected based on curvature, edge distance and intensity values. Gross et al. [13] used 

the Canny edge detector with the image processed by using Non-Linear Diffusion 

Filtering (NLDF). The NLDF effectively removes the edges representing small blood 

vessels, leading to a better definition of the polyp edges. Subsequently, the detected 

edges are compared with the specific template, and only the most suitable edges are 

retained.  

The above two methods are not suitable for polyps that do not have a well-defined 

shape. To solve this problem, Breier et al. [14], [15] investigated applications of active 

contour, active rays, and the Chan–Vese methods for polyp segmentation. For typical 

polyps, these methods are able to correctly fit polyp contours, however the Chan–Vese 

[16] method is easily affected by an uneven illumination, shadows and specular 
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reflections. In addition, these methods are not fully automatic as the initial contour 

position needs to be set manually before segmentation is performed.  

The successful segmentation using active contour methods relies on the 

assumption that closed, complete and uniform polyp contours are visible in the image. 

To improve the robustness, further studies have focused on development of edge 

detectors. Ganz et al. [17] applied global Pb-Oriented Watershed Transform-

Ultrametric Contour Map (gPbOWT-UCM) [18] in polyp segmentation and presented 

the Shape-UCM method. The idea is to use ellipses in the multi-level segmentation 

results of gPb-OWT-UCM selecting the shape that is closest to an ellipse. This method 

also removes the border of the image and inpaints specular reflections to improve 

polyp edge representation accuracy.   

Bernal et al. [9] presented the ‘depth of valley’ approach to detect more general 

polyp shapes and segment the polyp by evaluating the relationship between pixels and 

the detected contour. To improve their segmentation results, the authors [10] 

decreased the influence of blood, highlights, and border and proposed a new method 

called Window Median Depth of Valleys Accumulation (WM-DOVA) maps to integrate 

“valley” information [11]. Tajbakhsh et al. [19] proposed a number of polyp 

segmentation methods based on edge classification. The initial method used a random 

forest to classify the features extracted by a Haar descriptor. In their follow-up work 

[20], [21], authors attempted to refine the background of an image and complete 

recognition via several sub-classifiers.   

2.2.2 Polyp segmentation based on texture appearance  

Given that some large polyps are frequently perfused with blood, their appearance is 

“redder” than the surrounding tissue and sometimes include bloodstains. This feature 

is typical and can be used to differentiate polyps from the other tissue in the colon. 

More generally, texture features can be used as an input for a machine learning 

algorithm to preform segmentation. For instance, Karkanis et al. [22] proposed colour 

wavelet covariance (CWC), which combines the Grey-Level Co-occurrence Matrix 
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(GLCM) with the 2-D discrete wavelet transform. The statistical measures of the GLCM 

[23] are obtained from a wavelet-transformed image. In the reported experiments, this 

method obtains the highest Area Under the Curve (AUC) value when compared to 

other texturebased methods. Using the same database and classifier, Lakovidis et al. 

[24] proposed a method that provided the best results in terms of the AUC metric. 

Furthermore, Alexandre et al. [25] and Ameling et al. [26] tested a colour-based 

method, the Local Binary Pattern and the original GLCMs; however, because of the use 

of different databases and design parameters they are difficult to compare directly.  

2.2.3 Polyp segmentation based on deep learning  

More recently, with the adoption of the deep learning methodology, the more 

traditional (based on the handcrafted features) segmentation methods are gradually 

being replaced by approaches based on convolutional neural networks (CNN). The 

deep polyp segmentation unifies the feature extraction and classification into one 

combined algorithm, significantly improving the accuracy of segmentation.  

Deep learning methods can be divided into several categories. The first category 

uses patch based (sliding window) classification approach. In that case the CNN is only 

using a local image information. Park et al. [27] formulated a pyramid CNN to learn 

polyps’ scale invariant features. The features are extracted from the same patch with 

three different scales through three CNN paths. To save computational load, the sliding 

window strides every 4 pixels, and then the classified pixels are up-sampled to the 

same size as the input image.  

Ribeiro et al. [28] evaluated a CNN, comparing it against other state-of-the-art 

features for polyp classification. The authors found that the CNN has a superior 

performance when compared with methods based on handcrafted features (the CNN 

is used not only for classification but also for feature extraction). Zhang et al. [29] 

designed a transfer learning scheme, in which the low-level features are extracted 

from a pre-trained CNN and then classified using the support vector machine (SVM) 
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algorithm [30]. This transfer learning scheme illustrates that CNNs are able to robustly 

learn low-level image features.  

The second category is developed based on the end-to-end CNN training model , 

and effectively has become the most popular (and successful) approach for generic 

image segmentation problems. Some studies [8], [31], [32] tested the performance of 

FCN8s [33] on different polyp databases. From their results, it can be concluded that 

end-to-end feature learning is in general a feasible approach for polyp segmentation, 

however several false positives appear in their segmentation results. To address this 

issue, Zhang et al. [31] added a random forest to recognize these wrongly detected 

structures.  

Li et al. [34] chose the Unet as the segmentation method. The authors refine the 

structure of Unet [35] such that the smallest resolution of internal feature map is 1×1. 

Zhou et al. [36] retain the original parameters setting of U-net, but redefine the loss 

using cross entropy combined with the Dice metric. This approach preforms well for 

unbalanced data, with a small target (i.e. polyps).  

Mohammed et al. [37] presented a two-path Unet architecture that obtains the 

deep features from two corresponding encoders. In that method, one encoder was 

trained on natural images and not re-trained on the polyp data, while another encoder 

was only trained on the polyp database with the decoder being trained on the 

combined outputs from the two encoders. It was observed that semantics are changed 

for different images, but some low-level features are similar. This observation can be 

used to reinforce the feature learning. Fan et al. [38] proposed an auto encoder to 

mitigate problems which could occur due to presence of specular reflection in 

colonoscopy images.  

Table 2.2 is the summary of above polyp segmentation methods. Table 2.3 lists the 

advantage and disadvantages of shape-based, texture-based and deep learning-based 

polyp segmentation methods. 
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Table 2. 2 The summary of polyp segmentation methods. 

Types Methods References 

Shape-based methods 

Watershed algorithm, Ellipse fitting 
Hwang et al., [12] 

Gross et al., [13] 

Active contour, active rays, Chan–Vese 
Breier et al., [14] 

Breier et al., [15] 

global Pb-Oriented Watershed Transform-

Ultrametric Contour Map (gPb-OWT-UCM) 
Ganz et al., [17] 

Depth of valley Bernal et al., [9] 

Haar feature, random forest Tajbakhsh et al., [19] 

Texture appearance-based 

methods 

Colour wavelet covariance (CWC) 
Karkanis et al., [22] 

Lakovidis et al., [24] 

Colour-based, Local Binary Pattern (LBP), 

Grey-Level Co-occurrence Matrix (GLCM) 

Alexandre et al., [25] 

Ameling et al., [26] 

Deep learning 

Classification CNN 

Park et al., [27] 

Ribeiro et al., [28] 

Zhang et al., [29] 

End-to-End trained CNN 

Vázquez et al., [8] 

Akbari et al., [32] 

Zhang et al., [31] 

Zhou et al., [36] 
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Table 2. 3 Summary of polyp’s segmentation approaches advantages and disadvantages. 

 Advantages Disadvantages 

Shape-based methods 

 Do not require a large 

training dataset 

 

 Results and processing 

models could be easily 

interpreted in terms of 

image properties 

 Require complex data 

modelling process (e.g. PDE 

models in case is active 

contour) 

 

 Strongly depend on values of 

design parameters, which 

are difficult to select using 

analytical methods 

 

 The results are not robust 

and very strongly depending 

on possible image artefacts 

 

 May require manual 

initialization 

Texture appearance-based 

methods 

 Require only moderately  

sized dataset  

 

 Relatively simple to 

implement  

 

 Results and processing 

models could be easily 

interpreted in terms of 

image properties 

 It has low computational 

efficiency and typically not 

suitable for real-time 

segmentation applications. 

  

 The results are not very 

robust moderately 

depending on possible 

image artefacts 

Deep learning methods 

 Currently the best 

preforming methods in 

terms of accuracy and 

robustness  

 

 Could implemented for real-

time applications  

 For best computational 

performance, requires high-

performance hardware 

 

 For best segmentation 

accuracy, requires very large 

training datasets  

 

 The results and models are 

difficult to interpret 
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2.4 Summary  

As demonstrated in this chapter, polyp segmentation is a very challenging problem 

due to numerous reasons, including: variability of the polyp and colon morphology, 

acquisition conditions and methods, as well as different image representations. There 

have been variety of methods proposed in literature addressing these problems. All 

reported techniques could be approximately grouped into two main categories, the 

categories based on the handcrafted features and those based on the deep features. 

The handcrafted methods could be further subdivided into contour and texture based, 

whereas the deep methods in general could be subdivided into patch based and the 

end-to-end trained approaches. Although all these methods have their specific 

advantages and disadvantages, the deep methods currently provide the best 

compromised between segmentation accuracy and computational efficiency.  

The novel polyp segmentation methods developed as part of the reported research 

belong to the deep convolutional neural network. They have been described in detail 

in Chapter 5.  
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Chapter 3. Artificial neural network and 

convolutional neural network  

3.1 Introduction 

In chapter 2, it can be seen the convolutional neural network (CNN) obtain the best 

results in polyp segmentation. This chapter introduces some important components 

of CNN. The whole chapter can be divided into four sub-sections: The first section 

explains the multilayer perceptron and backpropagation algorithm. The second 

section introduces the main components of convolutional neural network (CNN). A 

typical CNN architecture is also shown in this section.  Next, some optimization 

methods that developed gradient descent algorithms are summarized. Finally, this 

chapter describes the representative CNNs architecture, some of them are used in this 

thesis.  
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3.2 Multilayer perceptron  

Artificial neural network (ANN) is a kind of machine learning algorithm designed to 

simulate neurons in a biological brain. Some ANN methods have been available for a 

long time, but they have some shortcomings in performance and thus are not widely 

applied. In recent years, with the development of machine learning, this category of 

methods has been constantly improved and has gradually become an important topic 

of research in machine learning.  

3.2.1 Feedforward structure  

The structure of the multilayer perceptron can be divided into three sub-structures 

(Figure 3.2): the input layer, hidden layers, and output layer. The input layer receives 

data, and each unit of data represents one feature of the data samples. The hidden 

layer is used to learn these features, it can convert linearly non-separable data samples 

to linearly separable. A multilayer perceptron can have single or multiply hidden layers. 

Normally, linearly non-separable data sample requires more hidden layers. The output 

layer is used to receive the results generated by the last hidden layer, then transfer 

them to the prediction result.  

 

 

Figure 3. 1 The structure of a single neuron. 
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Figure 3. 2 The structure of a multilayer perceptron. 

 

The hidden and output layers are mainly composed of units called neurons. Figure 3.1 

shows the structure of a single neuron. Equations 3.1 shows the processing inside the 

neuron is weight summation. The variable 𝑤𝑖 and 𝑏 represents the weights and bias, 

𝑛 denotes the number of input data samples. Next, the output of Equation 3.1 is 

inputted into the activation function to do non-linear mapping (Equation 3.2).  

 

𝑧 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

3.1 

 

𝑦 = 𝜑 (𝑧)  3.2 

 

The output of a multilayer perceptron is obtained by fusing the output of different 

neurons. The computing is same to the Equation 3.1. Each neuron needs to receive 

all the outputs from the previous layer and generates an output value. For a hidden 

or output layer, Equation 3.1 can be extended into:  
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𝑧𝑖
𝑙 = ∑ ∑ 𝑤𝑖𝑗

𝑙𝑦𝑗
𝑙−1 + 𝑏𝑖

𝑙

𝑛𝑙−1

𝑗=1

𝑛𝑙

𝑖=1

3.3 

 

Where 𝑤𝑖𝑗
𝑙 denotes the 𝑗𝑡ℎ weight of 𝑖𝑡ℎ neurons in 𝑙𝑡ℎ hidden layer (or output layer). 

The variable 𝑏𝑖
𝑙 is the bias of 𝑖𝑡ℎ neurons in in 𝑙𝑡ℎ hidden layer. The input vectors 𝑦𝑗

𝑙−1 

represents the output from last layer and activated by Equation 3.2. If Equation 3.3 is 

the first hidden layer, 𝑦𝑗
𝑙−1 represents the input data samples.  

In the training stage, a loss function is used to evaluate the error (residual). The 

error can be regarded as the similarity between the predication and observation (label). 

Here, mean square error loss function (MSE) is used as an example to explain this 

processing. Supposing Equation 3.3 represents the output layer, if a single data sample 

is inputted into a multilayer perceptron, the error can be expressed:  

 

𝑀𝑆𝐸 = 𝜁 =
1

2
∑(𝑦𝑖

′ − 𝑦𝑖
𝑙)2

𝑛𝑙

𝑖=1

3.4 

 

Where 𝑦𝑖
′ is the observation, 𝑛𝑙denotes the number of input data samples. In the 

training stage, the weights and biases of multilayer perceptron are optimized by 

minimizing the error between the observation and predication.  

3.2.2 Backpropagation  

Backpropagation [39], [40] is used to correct the trainable parameters of multilayer 

perceptron. This technique is developed based on gradient descent and chain rule. As 

for the reverse step, errors are given to the output of the network in back-to-front 

sequence in order to update parameters using the gradient method.  
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Gradient descent  

Gradient descent algorithm is an iterative optimization method. Because the direction 

of the gradient is the direction along which the function increases at the highest rate 

at a given point, the opposite direction is similarly the direction in which the function 

decreases the fastest. On this basis, a minimum of the function can be determined. It 

can be defined as follows:  

 

𝜃(𝑡 + 1) ⇐ 𝜃(𝑡) − 𝜂
𝜕𝐽(𝜃 )

𝜕𝜃
⃒𝜃=𝜃(𝑡) 

3.5 

 

where 𝐽(𝜃 ) represents a loss function, 𝜃  denotes a trainable parameter in the model, 

and 𝑡 represents a particular iteration, while the 𝜃(𝑡 + 1) represents the corrected 𝜃 . 

In addition, 𝜂 is a hyper-parameter called the step size or learning rate; it controls how 

much gradients that used to update the parameters.   

  

  

Backpropagation in multilayer perceptron  

The structure of a multi-layer perception can be regarded as a function composition. 

For the variable in a function composition, the gradient (or derivative) is computed by 

chain rule (Equation 3.6). Supposing 𝑦 = 𝑓(𝑢), 𝑢 = 𝑔(𝑥), the derivative of 
𝜕𝑦

𝜕𝑥
 is: 

 

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑢

𝜕𝑢

𝜕𝑥
3.6  

 

Supposing Equation 3.3 is the output layer, the gradient of 𝑤𝑖
𝑙(𝑡) can be written: 

 

𝜕𝜁(𝑡)

𝜕𝑤𝑖
𝑙(𝑡)

=
𝜕𝜁(𝑡)

𝜕𝑦𝑖
𝑙(𝑡)

 
𝑦𝑖

𝑙(𝑡)

𝜕𝑧𝑖
𝑙(𝑡)

 
𝜕𝑧𝑖

𝑙(𝑡)

𝜕𝑤𝑖
𝑙(𝑡)

3.7 

Where  
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𝜕𝜁(𝑡)

𝜕𝑦𝑖
𝑙(𝑡)

= −(𝑦𝑖
′(𝑡) − 𝑦𝑖

𝑙(𝑡)) 3.8 

 

𝑦𝑖
𝑙(𝑡)

𝜕𝑧𝑖
𝑙(𝑡)

= 𝜑′(𝑧𝑖
𝑙(𝑡)) 3.9 

 

𝜕𝑧𝑖
𝑙(𝑡)

𝜕𝑤𝑖
𝑙(𝑡)

= 𝑦𝑗
𝑙−1(𝑡) 3.10 

 

𝜑′ represents the derivate of 𝜑. Hence, the use of Equation 3.8, 3.9 and 3.10 in 3.7 

yields 

 

𝜕𝜁(𝑡)

𝜕𝑤𝑖
𝑙(𝑡)

= −(𝑦𝑖
′(𝑡) − 𝑦𝑖

𝑙(𝑡))𝜑′(𝑧𝑖
𝑙(𝑡))𝑦𝑗

𝑙−1(𝑡) 3.11 

 

The gradient of 𝑤𝑖
𝑙(𝑡)  is obtained, then put Equation 3.11 into 3.5 to update the 

𝑤𝑖
𝑙(𝑡).  

 

𝑤𝑖
𝑙(𝑡 + 1) = 𝑤𝑖

𝑙(𝑡) − 𝜂
𝜕𝜁(𝑡)

𝜕𝑤𝑖
𝑙(𝑡)

3.12 

 

It can be seen the most important thing is to obtain the 
𝜕𝜁(𝑡)

𝜕𝑧𝑖
𝑙(𝑡)

 . Normally, this 

component called the local gradient, it is defined by: 

 

𝛿𝑖
𝑙(𝑡) =

𝜕𝜁(𝑡)

𝜕𝑦𝑖
𝑙(𝑡)

 
𝑦𝑖

𝑙(𝑡)

𝜕𝑧𝑖
𝑙(𝑡)

3.13 
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In order to update 𝑤𝑖
𝑙−1(𝑡), the local gradient of 𝑙𝑡ℎ layer needs to be propagated 

to the 𝑙 − 1𝑡ℎ layer. Based on the chain rules, the processing is:  

 

𝜕𝜁(𝑡)

𝜕𝑤𝑗
𝑙−1(𝑡)

=
𝜕𝜁(𝑡)

𝜕𝑦𝑖
𝑙(𝑡)

 
𝜕𝑦𝑖

𝑙(𝑡)

𝜕𝑧𝑖
𝑙(𝑡)

 
𝜕𝑧𝑖

𝑙(𝑡)

𝜕𝑦𝑗
𝑙−1(𝑡)

𝜕𝑦𝑗
𝑙−1(𝑡)

𝜕𝑧𝑗
𝑙−1(𝑡)

𝜕𝑧𝑗
𝑙−1(𝑡)

𝜕𝑤𝑗
𝑙−1(𝑡)

3.14 

 

𝜕𝜁(𝑡)

𝜕𝑤𝑖(𝑡)
= 𝛿𝑖

𝑙(𝑡) 3.15 

 

𝜕𝑧𝑖
𝑙(𝑡)

𝜕𝑦𝑗
𝑙−1(𝑡)

=  𝑤𝑖
𝑙(𝑡) 3.16 

 

𝜕𝑦𝑗
𝑙−1(𝑡)

𝜕𝑧𝑗
𝑙−1(𝑡)

= 𝜑′ (𝑧𝑗
𝑙−1(𝑡)) 3.17 

 

𝜕𝑧𝑗
𝑙−1(𝑡)

𝜕𝑤𝑗
𝑙−1(𝑡)

= 𝑦𝑘
𝑙−2(𝑡) 3.18 

 

Hence, 
𝜕𝜁(𝑡)

𝜕𝑤𝑗
𝑙−1(𝑡)

  is equal to the product of equation 3.15-2.18. Then put the 

product into 3.5 to update the weights in 𝑙 − 1𝑡ℎ layer. For the updating of 𝑙 − 2𝑡ℎ 

or other layers, repeat the above computing method. 

3.2.3 Activation function  

In multilayer perceptron, an activation function aims to improve the performance in 

order to learn more complex data. This technique is inspired by the activation and 

inhibition of biological neurons. When the intensity of the received signal is greater 

than a certain threshold, the neuron is activated and produces an output. In contrast,  
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Figure 3. 3 Shapes of the sigmoid and tanh activation function. 

 

when the signal intensity is relatively small, the neuron is inhibited. The biological 

neuron can be modelled as a threshold function that outputs a step signal. The 

activation function must a non-linear function. In addition, because the operation of 

an ANN is very complex, the computing of activation function should be simple, 

whether in the feed forward or backward. At present, the most commonly used 

activation functions are the sigmoid, tanh, and ReLU functions.  

  

Sigmoid & Tanh  

These two activation functions are widely used in multilayer perceptron. The sigmoid 

function is an ‘S'-shaped function (Figure 3.3) in the range of [0,1]. The tanh function 

is also an ‘S’shaped function but with a range of [-1,1]; it is defined as  

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
3.19 

 

𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
3.20 
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Figure 3. 4 Shapes of the derivatives of the sigmoid and tanh activation functions. 

 

Their derivatives are as follow, the corresponding curves are shown in Figure 3.4. 

 

𝜕𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)

𝜕𝑥
= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) ∗ (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) 3.21 

 

𝜕 tanh(𝑥)

𝜕𝑥
= 1 − 𝑡𝑎𝑛ℎ2(𝑥) 3.22 

 

The ReLU function [41], [42] is a piecewise function that outputs 0 when the input 

is less than or equal to 0 and outputs the original value otherwise. It is defined as 

follows:  

 

𝑅𝑒𝑙𝑢(𝑎) = 𝑚𝑎𝑥(𝑥, 0) 3.23 

 

In the backward, the processing of Relu is as follows: 

 

𝑅𝑒𝑙𝑢(𝑥)′ = {
1    𝑥 > 0
0    𝑥 ≤ 0

3.24 

 

ReLU is very simple to calculate in both the forward and reverse directions, which 

helps to improve the training speed for deep networks. Leaky ReLU [43] and ELU [44] 
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are developed based on ReLU. These two activation functions aim to obtain more 

information when the gradient less than zero.    

3.2.4 Vanishing and exploding gradients 

In theory, the backpropagation algorithm can train a neural network with an arbitrary 

number of hidden layers. However, in practice, too many hidden layers are likely to 

cause vanishing and/or exploding [45] gradient problems, which makes the network 

unable to learn. This is an inherent flaw of the backpropagation algorithm. 

Vanishing gradient means that during backpropagation weights’ update, at some 

network layers, gradients’ values get very close to zero, which means that the 

corresponding weights are unable to be effectively updated. Taking Equation 3.14 as 

an example, the backpropagation of the gradient involves a chain of multiplications. If 

the magnitude of the derivative for each component is smaller than one, the 

multiplication value of all items will become very small. It can be seen from this, that 

when the number of hidden layers is too large, the deeper layers cannot obtain 

sufficient update of their weights. Similarly, exploding gradients means that the 

derivative of each term is larger than one, and the final gradient value could become 

very large. Both of these effects will cause the parameters to be updated incorrectly. 

Currently, ReLU [41], [42] is one of the popular approaches to decrease the impact 

of vanishing gradients. Equation 3.24 shows that the derivative of ReLU, for positive 

input values, is always equal one, and therefore it does not affect the propagation of 

the gradient so strongly.  

Weights regularization [46] is used to prevent the exploding gradients from 

happening. For example, the L2 regularization ‖w‖2
2   is included in loss function, 

preventing weights become too large. 
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3.2.5 Multi-class and softmax  

Since sigmoid function only maps the output to the range of 0 to 1, it cannot be applied 

in multi-class classification tasks. To solve this problem, the sample labels are 

represented in the form of sequences of 0 and 1. Consider an example with three 

classes:  

 

                         The first class: ss   1, 0, 0 

                         The second class:  0, 1, 0 

                         The third class:    0, 0, 1 

  

The position of the 1 in each sequence corresponds to the label number. Then, the 

number of neurons in the output layer is set equal to the sequence length. For example, 

if the number of classes is 3, then there are three neurons in the output layer. Each 

neuron in the output layer is connected to the outputs of the last hidden layer.  

It should be noted that since the sigmoid function renders the output of multiple 

neurons close to 1, the neurons in the output layer have no activation function, which 

means that their range is R. Then, these outputs are normalized such that their range 

is from 0 to 1 and their sum is 1. That is, the output of each neuron is the probability 

that the current sample belongs to the corresponding class. The normalization 

function used is the softmax function.  

Supposing Equation 3.3 is the output layer, then softmax is defined as follows:  

  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖
𝑙) =

𝑒𝑧𝑖
𝑙

∑ 𝑒𝑧𝑖
𝑙𝑛𝑙

𝑖=1

      𝑖 = 1,2,3, … , 𝑛𝑙 3.25 

 

Where 𝑛𝑙 is equal to the number of classes, so 𝑖 represents as a specific class. In this 

way, multi-class samples can be classified. When the probability output by a neuron 
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is greater than other neurons, the sample is considered to belong to the class 

corresponding to that neuron.  

3.2.6 Loss function  

The choice of loss function is depending on the type of task and data samples. 

Normally, there are two popular loss functions, they are mean square error (MSE) and 

cross entropy. MSE can be used in both regression and classification, but it performs 

better at regression tasks. Cross entropy only can used to classification, and it is more 

popular than MSE. Section 3.2.1 has been introduced MSE. Here, if there are multi 

data samples, Equation 3.4 can be rewritten:  

 

𝑀𝑆𝐸 =
1

2𝑀
∑ ∑(𝑦𝑚𝑖

′ − 𝑦𝑚𝑖
𝑙)2

𝑛𝑙

𝑖=1

 
𝑀

𝑚=1

3.26 

 

Where M represents the number of samples.  

For a binary classification task, cross entropy can be written: 

 

𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑦𝑖
′log (𝑦𝑖

𝑙) + (1 − 𝑦𝑖
′)𝑙𝑜𝑔(1 − 𝑦𝑖

𝑙)

𝑛𝑙

𝑖=1

3.27 

 

For multi input data samples, the error is obtained by Equation 3.29. 

 

𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑀
∑ ∑ 𝑦𝑚𝑖

′log (𝑦𝑚𝑖
𝑙) + (1 − 𝑦𝑚𝑖

′)𝑙𝑜𝑔(1 − 𝑦𝑚𝑖
𝑙)

𝑛𝑙

𝑖=1

𝑀

𝑚=1

3.28 

 

The negative sign is used to take the minimal value, because logarithm is incremental. 

Then, both weights and bias are corrected by solving for the minimal value. Based on 

cross entropy, the parameter 𝑤𝑖
𝑙  in Equation 3.3 can be updated by 
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𝑤𝑖
𝑙+1 = 𝑤𝑖

𝑙 − 𝜂
1

𝑀
∑ ∑  

𝑛𝑙

𝑖

(𝑦𝑚𝑖
𝑙 − 𝑦𝑚𝑖

′)

𝑀

𝑚=1

𝑧𝑖
𝑙 3.29 

 

For a multi-class classification task, the combination of softmax (Equation 3.25) and 

cross entropy can be modified to: 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑤𝑖𝑡ℎ 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑀
∑  

𝑀

𝑚=1

∑ 𝑦𝑚𝑖
′ log(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑚𝑖

𝑙))

𝑛𝑙

𝑙=1

3.30 

 

If 𝑀 equal to1,  𝑦𝑖
′ represents a class in the form of a sequence. Since only one 

element in the sequence is 1 and the others are 0, the above equation can be further 

simplified as follows: 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑤𝑖𝑡ℎ 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑀
∑ 𝑦𝑚

′ log (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑚
𝑙
 
))

𝑀

𝑚=1

3.31 

3.3 Convolutional neural network  

Convolutional neural networks (CNN) are a representative deep learning method used 

in image processing. The main feature of a convolutional neural network is that it uses 

convolutions, instead of the operators used in traditional feature extraction, and the 

whole network is built by stacking multiple convolutional layers. During training, the 

weights of the convolutional layers are adjusted through backpropagation, enabling 

these layers to search for valuable image information for classification. In addition, the 

shallow hidden layers of a convolutional neural network produce low-level features, 

but after processing through several hidden layers, these low-level features can be 

fused into high-level features, giving the CNN strong robustness.  
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3.3.1 Convolutional layer  

Convolution is a fundamental operation in digital signal and image processing. It is 

used to modify a function by taking its weighted sum with another function. The 

mathematical definition for a 1-D function is as follows:  

  

∫ 𝑓(𝑢)𝑔(𝑥 − 𝑢)𝑑𝑢 3.32 

In discrete form,  

 

(𝑓 × 𝑔)[𝑛] = ∑ 𝑓[𝑚][𝑛 − 𝑚]

∞

𝑚=−∞

3.33 

 

An image is a 2-D discrete signal; in this case, the 2-D convolution operation can be 

defined as follows:  

 

𝑠[𝑖, 𝑗] = (𝐼 × 𝐾)[𝑖, 𝑗] = ∑ ∑  

𝑚

𝐼[𝑚, 𝑛]𝐾[𝑖 − 𝑚, 𝑗 − 𝑛]

 

𝑛

3.34 

 

The operator function for convolution is called the kernel; it is actually a square 

matrix built by weights. By adopting different sets of weights, convolution can be 

applied for image smoothing, edge detection, sharpening and other purposes (Figure 

3.5).  
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Figure 3. 5 Different types of image processing7 via different convolutions. 

 

In a CNN, a hidden layer is created by several kernels, which are used to learn 

different features from an image. The output of convolutional layer called feature 

maps. Convolution can be regarded as a filter, such that useful information can be 

reinforced, and useless information can be suppressed. The difference between 

kernels and neurons is: In an MLP, two adjacent layers are fully connected; each neuron 

must assign weights for all of the input data (or the outputs from last layer). In a CNN, 

the connections between two layers are local, and the number of connections depends 

on certain manual settings, such as the size of the kernel. These manual settings mean 

that a kernel uses the same weights to process the whole image (Figure 3.6). The 

benefit of convolution is that the local connection approach reduces the number of 

necessary calculations and saves resources. 

The weights of a CNN are also corrected by backpropagation. Since each kernel is 

locally connected to the input, the weights must be updated by means of the 

corresponding gradients. Here, the 2-D kernel is reshaped into a 1-D kernel to make it 

easier to illustrate the relationships and the full and local connections. First, for the 

feed forward stage, the convolution processing can be represented as shown below:  

                                                   
7 https://uk.mathworks.com/help/images/ [Assessed 21 Oct. 2019] 

https://uk.mathworks.com/help/images/
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Figure 3. 6 Representation of a convolutional layer. 

  

The w, letter and coloured squares represent weights, input and position, 

respectively. The different coloured lines represent the connections between the 

weights and pixels in different position. For the whole image, only pixels a, b, d and e 

are ever connected to weight 𝑤1  in all operations; thus, the gradient for 𝑤1 

generated by the product of these pixels. Figure 3.7 shown the operation that used to 

assign the gradient to each weight, this operation is the extension of equation 3.11.  

D represents the gradient generated by the pixels in different positions, and the 

coloured lines represent the corresponding connections of the weights in the forward 

step. The black square represents the convolution steps, and each step corresponds to 

a set of coloured connections. For simplicity, these connections can be transferred to 

the convolution operation [47].  

After correcting the current weights, the CNN still needs to propagate the local 

gradient to the previous layer. First, it needs to check the correction between the input 

and output and then assign the correct weighted gradient to each input. Figure 3.9 

shows the whole operation; this operation is the extension of equation 3.15.  
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Figure 3. 7 Illustration of how gradients are being transfer to weights. 

 

 

 

Figure 3. 8 Illustration of transposed convolution. 

 

For pixel e, since this pixel is used in all calculations, it corresponds to 𝐷1, 𝐷2, 𝐷3 

and 𝐷4 . It should be noted that the pixel with the most corrections does not 

necessarily make the greatest contribution. Figure 3.8 shows how the gradients are 

transferred in the normal implementation. First, the kernel is rotated, and then the 

rotated kernel is used to perform the convolutional operation on a padded gradient 

map. The padding rate is half the kernel size (if the kernel size is odd, the rate is 2N-1). 

It can be seen that the result of each convolution step is the same as the connections 

shown in Figure 3.9.  
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Figure 3. 9 Transferring gradients to different layers. 
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Figure 3. 10 The different pooling methods in the feed forward step. 

3.3.2 Sub-sampling  

A sub-sampling layer is used to further extract features after a convolutional operation. 

The operation performed in a sub-sampling layer is pooling; the slight displacement of 

each target in the image has little effect on the pooling operation, which helps to 

improve the resistance of a CNN to image deformation. In the pooling operation, the 

feature map is divided into overlapping or nonoverlapping blocks, and the maximum 

or mean value is then obtained from each block. Pooling is similar to convolution. It 

also uses a kernel to scan the image and obtain the results, but there are no weights 

in the kernel.  

Normally, a sub-sampling layer is defined by four hyperparameters. The first three 

parameters are the kernel size, stride and padding, which are the same as in a 

convolutional layer; they control how the pooling kernel scans the input data (or 

feature maps). The last parameter is the type of pooling performed, i.e., max pooling 

or average pooling. Generally, max pooling is more popular than average pooling 

because average pooling degrades the purity of the learned features and reduces the 

difference between high and low responses.  

Figure 3.10 shows a typical example of pooling. The convolutional kernel generates 

a feature map. The highest response is equal to 5, but less important responses are  
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     Max pooling                      Ave pooling  

 

Figure 3. 11 The different pooling methods in backward step. 

 

also generated. Either max or average pooling further extracts a higher value from the 

feature map. A comparison of these two operations reveals that the result of max 

pooling is more reasonable than average pooling, because the latter reduces the high 

response. In addition, these two pooling methods are both translationally invariant. 

Even if the positions of the values in ‘T’ are changed, the extracted feature value 

remains the same.  

Because there are no trainable weights in a pooling layer, it is only necessary to 

propagate the gradient during the backward step. For max pooling, the gradient is 

assigned to the position of the feature that remains. The other values are set equal to 

zero, meaning that their corresponding inputs do not contribute. For average pooling, 

the gradients are evenly assigned to all elements of each block. Figure 3.11 illustrates 

the whole operation.  

3.3.3 CNN structure  

LeNet-5 is a famous classification network in the early stage of CNN developments [4]. 

This concept was validated on the MNIST dataset of handwritten numerals. The 

number of convolutional, sub-sampling and fully connected layers is 2 (Figure 3.12). 

The first convolutional layer has 6 kernels and the second convolutional layer has 12 

kernels. The number of neurons in the first fully connected layer is 84. 
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Figure 3. 12 The structure and learnt features of LeNet-5. 

  

The left side represents 6 kernels in LeNet-5, while the right side shows the 

corresponding feature maps for different input data. Red in the feature maps 

represents the high value response, while the blue part represents low value response. 

It is shown that different kernels are found for different features, and network learnt 

them without any handcrafted features.    

3.3.4 Dropout  

With dropout [48], in each epoch, a certain number of randomly selected nodes are 

ignored in the BP update to address the over-fitting problem. This operation is 

implemented by means of the element-wise multiplication of the features by a mask 

of the same size. The elements of the mask take values of 0 and 1, and the quantities 

of these two values are controlled by the dropout rate. This rate represents the 

proportion of dropped neurons. Dropout can also be added to convolutional layers. In 

Figure 3.13, the black blocks represent zeroes, and the white blocks represent ones 

[49]. Through the element-wise multiplication of the features and the dropout mask, 

some features are replaced with zeroes; these features correspond to dropped nodes.  
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Figure 3. 13 Dropout in a fully connected layer and a convolutional layer. 

  

The reason for applying dropout is that the updating of the weights in the network 

no longer depends on the combined action of hidden nodes with fixed relations, and 

each node is relatively independent of each other node. The principle of dropout is 

quite similar to that of bagging. The intent of both is to establish various sub-classifiers 

based on different subsets of the training data to prevent a situation in which certain 

features dominate the training process.  

3.3.5 Normalization  

Normalization refers to adjusting the location and scale of a data distribution to make 

the data fall into a specified region without changing the sample distribution so as to 

facilitate subsequent processing via machine learning algorithms. There are several 

different normalization methods. Among them, z-scores are commonly used. The 

processing is defined as shown in the equation below, where 𝑥 ̅ and 𝜎 represent the 

mean and standard deviation of input data samples, respectively. This equation adjusts 

the original distribution of x to a distribution with its central point at the origin and the 

variance is equal to 1.  

  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑥 =
 𝑥 − �̅�

σ
3.35 
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Figure 3. 14 The results of gradient descent without normalization (left) and with normalization (right). 

 

For gradient descent, the use of non-normalized samples can lead to drastic 

changes in errors, meaning that only a low learning rate can be used to slowly search 

for the minimum. Normalized sample features vary more gradually, thus permitting a 

higher learning rate; consequently, optimization can be achieved in fewer iterations. 

In Figure 3.14, logistic regression is applied to both the original data and the 

normalized data. The learning rates were 0.04 and 0.5, respectively. Their initial 

weights are same. The update progress in both cases after 10 iterations is visualized 

below.  

First, it can be seen that even though the learning rate in the former case is much 

lower than that in the latter, the direction changes dramatically during the initial stages 

of iteration, which is unfavourable when searching for the minimum. In the latter case, 

the direction remains stable. Second, the errors in the 10th iteration are 0.09 and 0.02, 

respectively, and the overall optimization trend in the latter case is much faster than 

that in the former, thus demonstrating that normalization helps to speed up the 

updating of the parameters.  

Image data also need to be normalized before being used to train a CNN. The 

normalization method for image data is to subtract the average value among all 

training images from each input image. Scaling is unnecessary because the values of 

the pixels always distribute in the range of 0 to 255.  
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3.5 Typical CNN architecture  

This section focuses on the current popular CNN structures, which are mainly used in 

image classification and regression.  

3.5.1 AlexNet & ZFNet  

AlexNet is the first deep convolutional neural network that has attracted the attention 

of researchers. In 2012, a team using a CNN model for the Large Scale Visual 

Recognition Challenge (LSVRC) won the first prize. They used seven improved CNNs 

designed to classify 1,000 objects [5]. The top-5 error rate for that method was 15.3%, 

which was far below the 26% error rate of the second-best method.  

The whole network has eight trainable layers, consisting of 5 convolutional layers 

and three fully connected layers (Figure 3.15). This method contributed much to the 

development of CNNs. First, it extended the ReLU and dropout techniques to reduce 

gradient vanishing and over-fitting, thus making the training of deep CNNs feasible. 

Second, to save time, this network was trained with a GPU. This approach has also 

become standard for subsequently developed CNNs.  

ZFNet [50] was developed based on AlexNet. Its contribution is the proposal of the 

deconvnet [51] technique, which aims to visualize selected internal features of a CNN. 

This technique can be regarded as a further application of backpropagation. The 

selected feature map is preserved, and the other feature maps are set to 0. Thus, the 

gradient of the input image corresponds only to the selected feature map, and the 

highest responses represent the most valuable contents of the image.  
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Figure 3. 15 The structure of AlexNet [5]. 

 

The structure of ZFNet is the same as that of AlexNet, but the kernel size and stride 

of the first layer are 7 and 2, respectively, rather than 11 and 4. This modification is 

based on observations of the visualized feature maps. These corrected parameter 

values allow the first and second convolutional layers to learn more features. It is a 

small development, but this idea has been applied in most subsequent CNNs. ZFNet 

participated in LSVRC 2013 and took first place, with a top-5 accuracy of 13.51%.  

3.5.2 All convolutional network  

All convolutional nets [52] are constructed entirely of convolutional layers and can 

achieve state-of-the-art results. The sub-sampling layers are replaced with 

convolutional layers with a larger stride (Figure 3.16). A fully connected layer or a 

specific convolutional layer is used to obtain 1×1 features; this is similar to the C5 layer 

in LeNet-5.  

3.5.3 VGG16 network 

VGG16 [53] can be regarded as an enlarged AlexNet. It was proposed in 2014. This 

architecture is based on a building block consisting of a pooling layer and several 

convolutional layers; the network is created by stacking  
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Figure 3. 16 NIN structure [54]. 

 

several such blocks. The whole network consists of fifteen convolutional layers and five 

pooling layers, divided into 5 blocks. In LSRVC 2014, this network earned second place 

for image classification, with a top-5 error rate of 6.7%.  

3.5.4 Network in network  

Network in Network (NIN) structure [54] is not a specific CNN but a design concept. 

First, to learn complex features, a cross-channel parametric pooling layer is added 

between two convolutional layers. This layer enables the creation of denser 

connections. In addition, this layer is equivalent to a 1x1 kernel, and it fuses and learns 

pixels from different channels in the same position.  

Another contribution is that a global average pooling layer is used in place of a fully 

connected layer. The final 1x1 kernel fuses the current feature maps to make the 

quantity of feature maps correspond to the number of classes. Then, the global 

average value of each fused map is taken as the classification probability. The reason 

is that to feed the outputs of a convolutional layer into a fully connected layer, many 

weights must be assigned to connect all the elements, which can easily lead to over-

fitting.  

2.5.5 Inception   

Inception, also called GoogLeNet [55], is the winner of LSRVC 2014. In its design, not 

only the depth but also the breadth of the network is considered.  
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Figure 3. 17 The structure of inception. 

 

Similar to VGG16, it performs feature learning through the re-use of a specific 

building block. In this block, different kernel or pooling settings can be adopted to 

extract different features (Figure 3.17). To avoid gradient vanishing, three loss 

functions are adopted at different depths. During testing, only the deepest outputs are 

retained as the results. 

Inception represents the further development of a 1×1 kernel. Here, a 1x1 kernel is 

applied to reduce the dimensions of the feature maps, causing the subsequent larger 

kernel to contain fewer weights. Inception has more layers than VGG16 does, but the 

overall network size is smaller. Moreover, the 1×1 kernel can be regarded as an efficient 

way to increase the depth.  

In subsequent work, several new methods have been developed based on Inception. 

The fundamental idea of these methods is inherited from the original Inception, but 

the original structure has been adjusted. In Inception V2 [56], a new module called 

batch normalization [57] was added to speed up training. In addition, in this network, 

the one large convolution kernel of the original is split into two smaller convolution 

kernels. In Inception V3, the overall convolution operation is replaced with a module 

consisting of row convolution and column convolution, and the original Inception 

structure is adjusted. In Inception V4 [58], Inception and ResNet are combined to build 

a deeper network. Xception [59] has also been developed based on Inception V3; in 

this network a depthwise separable convolution operation is used in place of the 

regular convolution operation in the Inception module.  
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Figure 3. 18 The structure of a ResNet block. Left: regular convolutional block. Middle: ResNet block (<50 layers). 

Right: ResNet block (> 50 layers).  

3.5.6 Deep residual network  

The ResNet architecture [60] was presented in 2015 and represents an important 

turning point in the recent development of CNNs. The ResNet architecture was 

developed based on a new type of building block with fused inputs and outputs. The 

most popular implementations based on this technique are Res50, Res101 and Res152. 

The digits in these notations represent the number of convolutional layers in each 

network. These presented ResNets are created by stacking many building blocks. For 

a network with fewer than 50 layers, each block contains two convolutional layers, and 

the sizes of their feature maps are the same, as shown in Figure 3.18.  

For a network with more than 50 layers, each block consists of two 1x1 

convolutional layers and a 3x3 convolutional layer. As in Inception, the first 1x1 kernel 

is used to reduce the number of dimensions to save memory. The final 1x1 kernel aims 

to increase the complexity of the features learned by the 3x3 kernel. In 2015, ResNet-

based ensemble methods earned first place in LSRCV, with a global top-5 error rate of 

3.57%.  
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Figure 3. 19 The structure of SE module. 

3.5.7 Squeeze and excitation networks  

A squeeze-and-excitation network (SE-Net) was the champion of the last LSRVC (2017). 

This architecture [61] was proposed based on a module that aims to limit useless 

features as much as possible. It can be regarded as an upgrade to the cross-channel 

parametric pooling layer of the NIN architecture in which the fusion process focuses 

on the global feature map rather than single pixels.  

An SE module can be added to any number of hidden layers. It consists of four layers 

(Figure 3.19): a global average pooling layer, a squeeze layer, an excitation layer and a 

scale layer. The squeeze layer is a convolutional layer with a 1x1xr kernel and the ReLU 

activation function; r must be smaller than the number of input maps, which is why 

this layer is called the “squeeze” layer. There are two motivations for its use: First, it is 

used to add more nonlinear descriptors to fit the pattern between different channels. 

Second, similar to inception, it can reduce the number of feature dimensions to save 

resources. The excitation layer is also a convolutional layer with a 1x1 kernel, but it has 

a sigmoid activation function, and the number of outputs is equal to that of the 

previous layer (the number of inputs to the SE module). An output value nearer to 1 

indicates that the corresponding feature from the previous layer is more valuable. 

Subsequently, these outputs are used to weight the features from the previous layer.   
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3.6 Summary  

This section reviews the development of multilayer perceptron, backpropagation and 

convolutional neural network. It can be seen that there is essentially no difference 

between the multilayer perceptron and CNN. Both algorithms are composed of two 

parts, namely, the model and the optimization method. The CNN and its related 

methods merely further develop these two parts. For the former, the development of 

the CNN involves combining feature learning and ANN, so that feature extraction of 

images is not dependent on manual design. The follow-up approach focuses on how 

to complete feature learning more accurately or efficiently. For the latter, the CNN 

mitigates gradient dispersion primarily through ReLU and ResNet, allowing deeper 

structured networks to work. In addition, in order to optimize deeper and deeper 

models, new optimization methods are being continuously proposed.  
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Chapter 4. Review of image segmentation methods  

4.1 Introduction  

Image segmentation methods can be coarsely divided into methods using handcrafted 

feature spaces in which data aggregation/segmentation is taking place (these methods 

are sometimes called classical or traditional methods) and more modern methods 

utilising the so-called deep learning methodology. The former are based on techniques 

and methods mostly originate from digital image processing, whereas the latter are 

rooted in machine learning with the deep learning based on convolutional neural 

networks (CNNs). Since the recent introduction of end-to-end trained networks, deep 

learning methods are gradually replacing the more traditional methods, especially for 

semantic segmentation and instance segmentation.  

This section introduces a selection of representative image segmentation methods. 

For the CNN base methods, the focus is placed on the two most successful deep 

segmentation networks, FCNs and U-Nets, and the methods developed based on these 

two network types. This survey serves as the basis for development of the methods 

proposed in this thesis.  
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4.2 Traditional image segmentation methods   

This section is to introduce the representative traditional methods for segmentation. 

These methods are designed based on the typical image properties.   

4.2.1 Thresholding  

Thresholding is a simple image segmentation method that is especially suitable for 

images with large differences in colour (or greyscale values) between different 

foreground and background objects. For a binary segmentation, thresholding 

algorithm searches for a threshold T such that pixels with values smaller than T are 

assigned to one class and the rest to another class. Many thresholding methods exist, 

the most common of which is the histogram-based method and Otsu methods [62].  

In the histogram-based method, it is assumed that the grey levels of the object and 

the background are different and that the image intensity distribution has to 

distinctive modes, with the value of between the modes selected to as the threshold. 

The threshold is usually selected by the user through manual selection from the image 

histogram. In the improved version of this operation, first, a threshold 𝑇0 is selected, 

and the image is divided into 𝑟1 and 𝑟2 regions based on 𝑇0. Then, the average 

intensities 𝜇1 and 𝜇2 of 𝑟1 and 𝑟2 are calculated to obtain a new threshold 𝑇1 = (𝜇1 + 

𝜇2)/2, and the process is repeated until 𝜇1 and 𝜇2 no longer change.  

Otsu is a fully automatic threshold method for image segmentation. The 

percentages of foreground and background in the image are denoted by 𝜔1 and 𝜔2, 

respectively, and the average pixel values within these two regions are denoted by 𝜇1 

and 𝜇2, respectively; then, the mean value for the image can be calculated as  

  

 �̅� = 𝜔1 × 𝜇1 + 𝜔2 × 𝜇2 4.1  
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Figure 4. 1 Histogram-based method image segmentation method. 

 

Where  

 𝜔1 + 𝜔2 = 1 4.2  

  

The inter-class variance is:  

  

 𝜎2 = 𝜔1 × (𝜇1 − �̅�)2 + 𝜔2 × (𝜇2 − �̅�)2 4.3  

  

The optimized value of the threshold is searched exhaustively so inter-class variance is 

maximised.  

4.2.2 Clustering  

Clustering was originally proposed to enable unsupervised learning. This type of 

learning method does not require ground truth. Instead, it analyses the distribution of 

the samples in the feature space and divides them based on some similarly principles 

to achieve classification. Based on this idea, each pixel can be regarded as sample, and 

pixels with similar colours can be assigned to the same class using a clustering method, 

thereby completing the image segmentation task.  

K-means [63] and mean shift [64], [65] are common image clustering methods, both 

of which require the specification of hyperparameters. The K-means method requires 

the number of clusters, that is, the number of regions that the samples should be 

divided into, to be specified. The mean shift algorithm requires more hyperparameters, 

including the type of kernel function, the number of iterations, and the bandwidth. 
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The mean shift algorithm is more flexible and can determine if the image regions are 

“independent” or should to be merged into a single region, the performance of the 

mean shift is highly dependent on the selected hyperparameters. Although the K-

mean method also relies on hyperparameters, the adjustment of the hyperparameters 

is very simple.  

In general, clustering-based segmentation methods can only be used on images 

whose background and foregrounds differ significantly, i.e. the regions can be 

considered to be homogeneous with respect to a specific characteristic e.g. intensity, 

colour or texture.  

4.2.3 Region growing  

Region growing is an iterative image segmentation method. It has three components: 

the initial point (seed) positions, growth criteria, and stopping conditions. First, it starts 

from a given seed points and incorporates similar corresponding regions into the same 

region in accordance with the growth criteria. Then, the identified neighbourhood 

regions are used as new seed points for continued growth until the stopping conditions 

are satisfied, for example, no more pixels are available that satisfy the growth criteria.  

The performance of region growing depends primarily on the suitability of the 

growth criteria. The growth criteria have no fixed form. For example, multiple growth 

criteria can be designed based on thresholding. First, a threshold can be used to 

determine whether a pixel belongs to a specified distribution. Second, if the difference 

between two pixels is used to represent their similarity, a threshold can be used to 

determine the magnitude of similarity. Alternatively, when the average value in the 

neighbourhood of a certain point is used as a feature, a threshold value can be used 

to determine the approximate distribution of the pixel values. Growth criteria can also 

have more complex forms, such as probability values output by a classification method. 

The same is true for the stopping conditions.  

The disadvantage of region growing is that it has a high computational load. In 

addition, simple growth criteria are sensitive to noise, such as shadows or illumination 
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variations, which can easily cause under-segmentation or over-segmentation. To avoid 

this problem, multiple growth criteria are sometimes used to control regions 

expansion.  

4.2.4 Machine learning and image segmentation  

In machine learning methods, image segmentation is usually performed via pixel-wise 

classification, where each pixel is treated as a data point to be classified. This approach 

consists of three components: sliding window, feature extraction and a machine 

learning algorithm. First, a window with a side length of size n is created and used to 

extract the neighborhoods centered on each pixel. Then, each extracted patch is 

described by means of a feature vector, and finally, these feature vectors are input into 

the machine learning algorithm. The class of each patch corresponds to the class of its 

center pixel. During training, a certain number of patches can be randomly extracted 

from the foreground and background of training images, as indicated by the ground 

truth. The class of each sample is determined by the class index of the corresponding 

position in the ground truth.  

The size of the sliding window is a key hyperparameter. The larger the window, the 

more information it contains, and it becomes more complex to represent that 

information. The information in a small window spatially well defined, but its relation 

to the overall foreground characteristics is low. This relationship may result in missing 

data and poor segmentation performance. Therefore, to mitigate the problems, 

feature vectors extracted with several windows of different sizes can be concatenated 

before processing with the machine learning method.  

The performance of this kind of segmentation method depends accurate features. 

The current feature extraction methods are often designed based on image 

characteristics, the representative algorithms are Histogram of Oriented Gradient [66], 

Local Binary Pattern [67], and histogram. However, the main drawbacks of these 

methods are:  
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1. Feature extraction and machine learning algorithm are completely independent. 

The selection of image features is often based on people's ideas. Machine 

learning methods actually learn features that people deem effective; 

consequently, features that are difficult for humans to observe but probably 

more effective will be ignored.  

2. The features described by the method are relatively simple, and the objects 

described are often the lower-level features in the image. More complex 

semantic features can only be described by combining various kinds of feature 

vectors. However, this stacking method can hardly integrate features effectively 

and will undoubtedly increase the amount of computation.  

4.3 Image segmentation with fully convolutional networks  

The fully convolutional network (FCN) architecture was the first type of end-to-end 

network to be successfully used for semantic image segmentation based on deep 

learning [33]. FCN can process images of any size and obtain a full-size segmentation 

result without the need for additional step of pre-processing. The structure of an FCN 

can be divided into two parts, an encoder and a decoder. The former is used to extract 

low resolution, high-level features from the input image. The latter fuses these 

features and converts them into low-resolution segmentation results, then restores 

their size by means of up-sampling and cropping layers. The loss in the backward 

direction is determined by processing the full-scale segmentation result and ground 

truth. Then, the errors are propagated to each hidden layer that needs to be trained. 

This method not only simplifies the steps of image segmentation but also is more 

accurate than the traditional methods. For the PASCAL semantic segmentation 

challenge, FCN methods (and those related) occupy almost the entire leaderboard and 

continue to yield the best results.  
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Encoder  

The encoder can be any CNN whose fully connected layer has been removed. It can be 

one of the existing CNN architectures or a custom built one. When designing an FCN, 

the choice of the encoder is usually determined by the complexity of the images and 

the performance of the hardware, with the goal of avoiding unnecessary calculations. 

It should be noted that when using FCN model, the final feature map is required to be 

of a certain size, otherwise, some smaller segmentation objects could be missed. 

Therefore, the rate of down-sampling should not be too large. For some composite 

tasks, FCNs have been developed that contain multiple encoders working in parallel; 

the outputs of these encoders are processed and then input into the decoder [37].  

 

Decoder  

The decoder consists of a pixel classifier, an up-sampling layer and a cropping layer. 

The pixel classifier is used to classify the pixels in the feature maps one by one. It is a 

convolutional layer rather than a fully connected layer. This definition is because the 

number of outputs of a fully connected layer is fixed, making it impossible to process 

images of different sizes. For general pixel classifiers, a 1×1 convolution kernel is used 

to fuse the feature maps and generate low-resolution segmentation result. Of course, 

larger convolution kernels can also be used, but additional padding is needed to ensure 

that the size of the feature maps is not further reduced.  

In addition, to reduce the loss of segmentation details caused by down-sampling, 

feature maps of different resolutions can be extracted from convolution layers at 

different depths in the encoder, and corresponding pixel classifiers can then be 

designed separately. After that, the results can be fused through up-sampling. In an 

FCN, this structure is called skip structure (Long et al. 2015). Direct addition could be 

used as the fusion method. In some subsequently developed methods, such structures 

can be stacked, and the dimensions can then be reduced by using a 1×1 convolution 

kernel.  

The up-sampling layer is a critical hidden layer in an FCN, and it serves as the basis 

for end-to-end training. The up-sampling layer is essentially a special convolutional 
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layer controlled by three parameters, namely, the size of the convolution kernel, the 

stride and the type of the initial weighted values. Among them, the stride size 

corresponds to the number and scale of previous down-sampling operations. Suppose 

that an image size is reduced by a factor of two in each pooling layer (under the 

premise that a convolution layer causes no change in the image size) and that this 

process is repeated five times in total (Figure 4.2). Then, the stride size of the up-

sampling layer will be 25. The size of the convolution kernel will be double the step size. 

The initial weighted values of the convolution kernel are bilinear interpolation, and 

they can be either trained or not. Finally, the up-sampled results are cropped to match 

the size of the ground truth. The output of each layer in the decoder is illustrated below.  

For multi-category semantic segmentation, an FCN needs to generate multiple 

binary segmentation results corresponding to each class. Suppose that the entire 

database contains C types of foreground objects. First, the ground truth is converted 

into C binary images, where each binary image corresponds to only one category. Then, 

C segmentation results are generated, which are normalized via the softmax function, 

and then the loss is calculated using the cross-entropy loss function. This operation is 

similar to multi-category classification.  

The original FCN architecture inducted three sub-architectures, namely, FCN32s, 

FCN16s and FCN8s (Figure 4.2). In all three, VGG16 was used as an encoder. The 

difference in the sub-architecture is that the sizes of the skip structures are different. 

FCN-8s performs classification after FC7, pool4 and pool3 and generates a 

corresponding segmentation result for each case. VGG16 contains a total of 5 down- 

sampling layers, and each output is reduced by a factor of 2. Therefore, the results of 

the last two down-sampling layers are required to be up-sampled and then merged 

with the result of the pool3 classifier to obtain the final segmentation result. Since the 

output of pool3 is only 1/8th the size of the original image, the fusion result needs to 

be enlarged a factor of 8; this is the meaning of the notation 8s in FCN-8s. In FCN-16s 

classifiers are included only after pool4 and FC7, and their outputs are fused. The 

output of pool4 is 1/16th the size of the original image, so the segmentation result  
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Figure 4. 2 The structure of FCN8s, FCN16s and FCN32s. 

  

needs to be enlarged by a factor of 16. FCN-32s uses only the output of FC7 as the 

segmentation result. 
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Figure 4. 3 The structure of Unet [35]. 

 

4.4 Unet  

Unet [35] is an end-to-end trained semantic image segmentation network based on an 

FCN. In this network, the encoder and decoder have similar architecture, with a 

difference that the down-sampling layer in the encoder is replaced by an up-sampling 

layer in the decoder (Figure 4.3). In addition, the pixel classifier is shifted to the last 

layer for pixel-by-pixel categorization of the full-size feature maps.   

The reason for adopting this structure in the U-Net is to preserve as much detail as 

possible in the segmentation results. First, the skip structure in an FCN8s can extract 

some additional details, but the fusion of different resolution segmentation results 

also add noise. For example, the edges of the foreground may become blurred, or the 

gaps between multiple foreground regions may be lost, causing them to merge rather 

than maintaining their respective shapes. Classifying the full-size feature maps will 

undoubtedly allow these details to be identified more accurately. Second, the up-

sampled low-level feature maps and high-level feature maps are fused by convolution 
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operation. This fusion enables the extraction of more detail. Because of these 

advantages, U-Nets are often used for tasks requiring high levels of detail and shape 

accuracy, such as the segmentation of cells and neural structures.  

4.5 Deep segmentation networks architecture  

Since the introductions of FCNs and U-Nets, many new end-to-end trained 

architectures have been proposed. In this section, the most important FCN 

architectures are described.  

4.5.1 DeepLab  

DeepLab is a segmentation method that focuses on the atrous convolution. To date, 

four versions of DeepLab have been released. Among them, DeepLab V1 and DeepLab 

V2 presented in the same reference [68], they were developed based on FCN-8s. The 

authors chose to set the stride of the last two down-sampling layers to 1 to retain more 

detail in the encoder. In this way, the encoder can ultimately output a larger feature 

map.  

One of the important concepts is design of CNN is the receptive field, which refers 

to the size of the area in the input image to which each unit in the output layer 

corresponds. A larger receptive field allows the output to contain more global features, 

what helps to improve the accuracy of the segmentation results. However, reducing 

the stride for down-sampling will make the receptive field smaller. In the example 

shown in Figure 4.4, when the pooling stride is 2 (Figure 4.4 (a)), the receptive field is 

6 (a single output unit is connected to 6 input units). When the pooling stride becomes 

1 (Figure 4.4 (b)), the output size is increased to 7, but only 4 input units are connected 

to a single output unit. In this case, there is no doubt that the output size is improved, 

but the amount information contained in each output unit is reduced.  
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Figure 4. 4 Regular convolution (a), (b), (c) and atrous convolution (d). (a) Regular convolution, with pooling stride 

2 and 1×3 kernel. (b) Regular convolution, with pooling stride 1 and 1×3 kernel. (c) Regular convolution, with 

pooling stride 1 and 1×5 kernel. (d) Atrous convolution, with pooling stride 1, 1×5 kernel and dilation 2; kernel 

size is 5 but only 3 weights are trainable.  

 

 

 
 

Figure 4. 5 Representation of 2d convolution layer, with regular convolution (a), (b), (c) and atrous convolution (d). 

Annotation follows the one introduced in Figure 4.4. 
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Using a larger convolution kernel can solve this problem, but it will increase the 

amount of computational cost and the number of parameters to be estimated, as 

shown in Figure 4.4 (c). To solve this problem more efficiently, DeepLab adds a 

convolutional layer built based on atrous convolution. Atrous convolution is also 

known as dilated convolution [69]. The underlying idea is to increase the size of the 

convolution kernel by adding 0s between the weights without changing the number 

of weights, as shown in Figure 4.4 (d). The definition of the atrous convolution is given 

as: 

 

𝑦[𝑖] = ∑ 𝑥[𝑖 + 𝑟 × 𝑘]𝑤[𝑘]

𝐾

𝑘=1

4.4 

 

where 𝑦[𝑖] is the output, 𝑥[𝑖] is an 1-D input signal, 𝑤[𝑘] represents the weight in 

a kernel. The parameter r is called dilation and it controls the stride between between 

each weight in an atrous kernel. Figure 4.5 shows the processing of atrous kernel for 

2D input. 

DeepLab V2 [68] was developed based on the DeepLab V1. It includes an atrous 

spatial pyramid pooling (ASPP) module, which was proposed to extract features from 

different receptive fields (Figure 4.6). This module consists of four parallel paths, each 

of which consists of an atrous convolutional layer and two 1×1 convolutional layers, 

where the last 1×1 convolutional layer is a pixel classifier. The dilation rates of the 

atrous convolutional layer on the four paths are 6, 12, 18, and 24. The ASPP module 

sums the outputs of all pixel classifiers to obtain an initial segmentation result. Finally, 

this initial result is post-processed using the conditional random field approach, and 

the output is the final segmentation result. DeepLab's authors compared DeepLab V1 

and V2, and their evaluation showed that the latter's performance was significantly 

higher than that of the former.  
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Figure 4. 6 The structure of ASPP module. 

 

In DeepLab V3 [70], VGG16 (as used in the previous versions) is replaced with a 

ResNet structure. Both parallel structures in this network based on the atrous 

convolution and ResNet block have been investigated. The focus of the former 

investigation was to determine how to improve the depth of the network while 

retaining image details. The latter concerned the further development of the ASPP 

module. The new ASPP module has a total of five paths. It consists of three atrous 

convolutional layers, a 1×1 convolutional layer and a pooling layer, followed by another 

1×1 convolutional layer to fuse the outputs.  

DeepLab v3+ [71] is currently ranked number one on the PASCAL leaderboard (in 

cases where new training data are allowed). Based on DeepLab v3, this architecture 

includes an additional skip structure to fuse the segmentation results generated from 

the low-level features and the ASPP module. In addition, DeepLab v3+ learns features 

using a modified Xception block instead of a ResNet block. The test results show that 

this new structure demonstrates higher performance.  
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4.5.2 SegNet  

The overall SegNet [72] structure is very similar to the Unet structure. The difference 

is that the SegNet architecture uses up-pooling layers instead of the up-sampling layers. 

Each up-pooling layer corresponds to a down-sampling layer in the encoder. Up-

pooling is the same as down-sampling in backpropagation (Figure 3.11). If the down-

sampling layer is a max pooling layer, then the corresponding up-pooling operation 

retains only the elements of the former that are non-zero in the reverse direction.   

4.5.3 Global convolutional network  

The authors [73] of this method found that a larger receptive field helps to improve 

the accuracy of image segmentation. Considering this, they designed a larger 

convolution kernel than that of atrous convolution and used it as the basis of their 

proposed global convolutional network (GCN). This convolution kernel has a 

composite structure with two paths, each of which consists of a single-column 

convolution and a single-row convolution, as shown in Figure 4.7. This approach has 

an advantage of increasing the receptive field without significant increase the number 

of kernel parameters.  

Finally, the output results of the two paths are summed as the outputs of the 

module. ResNet-based feature learning [60] is adopted in this method. A skip structure 

is used in the decoder to fuse the features and output the results. There are 4 paths in 

the decoder, and global convolution is used as the pixel classifier on each path. By 

testing GCNs of different sizes, the authors concluded that a larger size could 

contribute to achieving more accurate segmentation results. However, the 

disadvantage of this method is that it still requires considerable memory. 
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Figure 4. 7 The operation of global convolution. 

 

4.5.4 Pyramid scene parsing network  

The authors of the pyramid scene parsing network architecture [74] proposed a 

pyramid pooling module for learning multi-level features. This module was added 

after a feature-learning CNN. The module has N paths, each consisting of one down-

sampling layer and M/N 1×1 convolution kernel. Here, M represents the number of 

original inputs to the module. These down-sampling layers can extract features from 

different receptive fields. Then, a 1×1 convolution kernel is applied for 

dimensionality reduction, and the features after dimensionality reduction are up-

sampled to make their size uniform. Finally, these features are stacked with the 

original input to the module and then processed by the pixel classifier. This module 

is very similar to the ASPP module.  

The authors tested the segmentation effects of pyramid pooling modules created 

based on max and average pooling. Their test results show that the latter is slightly 

better than the former. In addition, the test showed that dimensionality reduction also 

improves segmentation.  
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Figrue 4. 8 The structure of RefineNet. 

4.5.5 RefineNet  

The overall structure of the RefineNet [75] is very similar to the GCN structure, but its 

skip structure is very complicated. Each path consists of a module called a RefineNet. 

Each module consists of three sub-modules connected in a sequence. The RCU is a 

conventional ResNet block with two sequential convolutional layers. The multi-

resolution fusion module can be viewed as an extension of the fusion layer of an FCN 

to fuse features of two different resolutions. The chained residual pooling module is 

similar to a ResNet block but consists of pooling and convolutional layers. The structure 

of each path is shown below:  

4.5.6 Deep contour-aware networks  

To solve the problem of regions of the same foreground type merging together, a deep 

contour-aware network (DCAN) uses two decoders to segment the foreground and the 

contours of the foreground individually [76]. Then, it fuses the two sets of results to 

separate different foreground regions. Post-processing is required to remove some 

holes and small areas in the results. The ground truth of the contours can be obtained 

by inflating the foreground in the original ground truth. This method earned first place 

in the 2015 gland segmentation challenge [77]. 
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4.5.7 Discriminative feature network  

Discriminative Feature Network (DFN) proposed inter-class indistinction and intra-

class inconsistency [78], the former means that the class of each pixel in the same 

segmented foreground should be same, and there should be no holes or pixels 

erroneously identified as other classes. The latter refers to the difference between the 

different class foreground should be increased. The above two ideas can be 

interpreted as how to reduce false positives and false negatives. DFN is designed as a 

composite structure consisting of three sub-networks: ResNet targeting at learning 

features, the smooth network for reducing false positives, and the border network 

aiming at increasing inter-class variation on the basis of contour segmentation. The 

overall structure of latter two is similar to skip structure, but the structure of their path 

is different.  

The output of ResNet is input to the smooth network after global pooling. Smooth 

network consists of channel attention block (CAB) and Refinement residual block (RRB). 

CAB is used to fuse two feature maps with different resolution. Its structure is similar 

to the squeeze and excitation module, which is first to perform global pooling, and 

then use sigmoid to set a weight of 0 to 1 for each channel to suppress low-value 

features. RRB is a regular ResNet block. The Border Network consists only of RRBs and 

also receives features for each different resolution, but the way to fuse the features is 

addition. In addition, the smooth network uses the original ground truth, the loss 

function is cross-entropy, and the border network is the contour ground truth, which 

uses the focal loss [79].  

In this method, Intersection over Union (IoU) is adopted to evaluate the 

segmentation results. The evaluation results and segmented images show the smooth 

network indeed reduces false positives in the segmented foreground and raises the 

averaged IOU 6.54%. However, the result is only 0.13% higher with border network, 

what hardly verifies that the module is essential. The idea of DFN and DCAN is similar, 

but the purpose is different. DFN is to reduce false negative, DCAN is to split the 

touched foreground.   
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It is possible that DFN is more suitable for use in tasks handled by DCAN. First, both 

can detect contour. Secondly, the result of DCAN mentioned above could return holes 

and small noisy objects, and the smooth network in DFN is very good at solving these 

two problems.  

4.6 Summary  

This section reviews the main traditional and recent learning image segmentation 

algorithms. It is shown that deep learning algorithms are become very popular in 

recent years, with continuously improving performance. However, this popularity does 

not mean that methods based on handcrafted features have been completely replaced. 

Therefore, the implementation of some deep learning methods is, in fact, inspired by 

handcrafted algorithms. For example, the FCN can be regarded as fusing the sliding 

window into the CNN and the DCAN extended edge detection into image 

segmentation.  

Furthermore, the current research direction of deep learning methods can be 

divided into multi-scale feature extraction and multi-level features fusion. The former 

aims to improve the accuracy and integrity of end-to-end trained segmentation 

network, while the latter focuses on how to restore the details. Both research 

directions are considered in image segmentation within this thesis.   

Additionally, IoU is used as a measure for evaluating segmentation results by many 

deep learning methods. However, there are currently several other evaluation 

methods that can be used to evaluate segmentation results, such as shape similarity 

and missing objects. When more measures are considered, it is difficult to say whether 

the afore-mentioned segmentation methods can guarantee their current performance. 

The DCAN evaluates its results using a variety of measures provided in the gland 

segmentation challenge [77], making it easier for other readers to understand the 

performance of their method. A similar branch-work approach has been adopted in 

this thesis.  
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Chapter 5. Proposed polyp deep segmentation 

methods  

5.1 Introduction  

The types of tasks and data used should always be considered before designing an 

image segmentation method, because the starting point for a natural image and a 

specific type of image are different. The former requires a segmentation method that 

treats different foregrounds equally and that guarantees stable performance across 

different datasets. The latter does not need to be applicable to all classes of data. 

Therefore, the unique properties of the foreground can be considered, and then a 

corresponding method is designed to identify such properties to solve specific 

problems.  

Since polyp image segmentation is a specific task and as the contents of an image is 

relatively well defined, the latter idea has been adopted to design the polyp 

segmentation CNN, specific to segmentation of polyps in colonoscopy images. This 

chapter consists of five main sections. The first section introduces the polyp database. 

The second section examines properties of colonoscopy images. The third section 

describes the method designed for normalization of image borders. Following section  



75 
 

 
Figure 5. 1 An example of typical SD (top) and HD (bottom) training images and their corresponding ground truth.  

 

describes different data augmentation methods adopted to increase the number of 

training images. Finally, the two novel deep network segmentation architectures, 

Dilated ResFCN and SE-Unet, are described together with the implemented test-time 

augmentation approach.  

5.2 Polyp database  

The polyp database, used in the reported research, was obtained from the GIANA 

polyp segmentation challenges8  which were organized as part of the 20th and 21st   

Medical Image Computing and Computer Assisted Intervention (MICCAI) 

conferences 9 .That polyp database consists of Standard Definition (SD) and High 

Definition (HD) endoscopy images (Figure 5.1). The SD database has two datasets: 

CVC-ColonDB (Figure 5.2) and CVC-ClinicDB (Figure 5.3). The first set (CVC-ColonDB) is 

used for training and consists of 300 low resolution, 500-by-574 pixels RGB images, 

which are accompanied by the corresponding ground truth segmented polyp binary 

images. The ground truth is composed of hand annotated/segmented polyps, with the 

annotation approved by trained colorectal endoscopists. 

The second (CVC-ClincDB) set has 612 RGB images each 288-by-384 pixels in size. 

That dataset does not include the corresponding ground truth segmentation and 

therefore is only used for testing. The images in the SD database are extracted from  

 
                                                   
8 https://giana.grand-challenge.org/ [Assessed 20 Oct. 2019] 

9 https://www.miccai2018.org/en/ [Assessed 20 Oct. 2019] 
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Video 1, 38 images 

No. 1~38 

Video 2, 22 images 

No. 39~60 

Video 3, 16 images 

No. 61~76 

Video 4, 21 images 

No. 77~97 

    

Video 5, 51 images 

No. 98~148 

Video 6, 7 images 

No. 149~155 

Video 7, 48 images 

No. 156~203 

Video 8, 5 images 

No. 204~208 

    

Video 9, 16 images 

No. 209~220, 244~247 

Video 10, 5 images 

No. 221~225 

Video 11, 34 images 

No. 226~243, 248~263 

Video 12, 10 images 

No. 264~273∗ 

    

Video 13,27 images 

No. 274~300 
   

 

   

 

Figure 5. 2 A sample of images from the SD training dataset. 
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Video 1,25 images 

No. 1~25 

Video 2, 25 images 

No. 26~50 

Video 3,17 images 

No. 51~67 

Video 4, 25 images 

No. 68~78 

Video 5, 25 images 

No. 79~103 

     

Video 11, 6 images 

No. 104~126 

Video 7, 25 images 

No. 127~151 

Video 8, 21 images 

No. 152~172 

Video 9,5 images 

No.173~177 

Video 10, 22 images 

No. 178~199 

     

Video 11, 5 images 

No. 200~205 

Video 12, 22 images 

No. 206~227 

Video 13, 25 images 

No. 228~252 

Video 14, 25 images 

No. 253~277 

Video 15, 20 images 

No. 278~297 

     

Video 16, 20 images 

No. 298~317 

Video 17, 25 images 

No. 318~342 

Video 18, 21 images 

No. 343~363 

Video 19, 20 images 

No. 364~383 

Video 20, 25 images 

No. 384~408 

     

Video 21, 20 images 

No. 409~428 

Video 22, 19 images 

No. 429~447 

Video 23, 19 images 

No. 448~466 

Video 24, 12 images 

No. 467~478 

Video 25, 25 images 

No. 479~503 

     

Video 26, 25 images 

No. 504~528 

Video 27, 18 images 

No. 529~546 

Video 28, 25 images 

No. 547~571 

Video 29, 20 images 

No. 572~591 

Video 30, 21 images 

No. 592~612 

     

 
Figure 5. 3 A sample from the SD testing database. 
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a small number of colonoscopy videos. This method means that some of the images 

are highly correlated (show the same colon segment) if selected from the same video.  

The HD database is composed of independent high-resolution RGB images of 1080-

by-1920 pixels. The HD database includes 56 training images (with corresponding 

ground truth) and 108 images used for testing. All SD and HD images are framed by a 

black border, with the border being at a fixed position for the SD images extracted 

from the same video. The number of HD images is significantly smaller than that of SD 

images. The same video (in case of the SD images) was not used for selection of the 

training and testing image subsets.  

5.3 Image analysis  

Image analysis involves investigating properties of a polyp image that may affect the 

preformation of the segmentation method. This section covers two types of analysis: 

appearance and size analysis. The former measures image complexity while the latter 

measures the objective size.  

 

Appearance analyses  

In this section, the colour is analysed by K-means clustering to investigate the 

difference between the colour of the polyp and its surroundings or any hidden 

components that may affect segmentation.   

Clustering involves creating a set of similar samples. In polyp segmentation, details 

on the polyp appearance of a polyp are represented by different colours so that colour 

clustering helps illustrate main components of the polyp. Moreover, clustering can also 

reveal similarities between polyp and its surroundings. When there is certain 

relationship between them, then the CNN should learn it by correcting the 

corresponding structure. While clustering can be performed using many methods, this 

section adopts k-means for two reasons. 
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Figure 5. 4 The clustering result of Image No. 251. 

 

1. Easy of use. In this thesis, colour clustering is not used for segmentation, as it is 

sufficient to determine the relationships of within-class or inter-class pixels. K-

means only need to set the number of cluster centres. While other clustering 

methods are superior to K-means, they use more accurate hyper-parameters, 

which are difficult to secure. 

2. Applicability. As the use of more hyper-parameters renders a method more 

sensitive, the method may sometimes only generate good results for specific data. 

The K-means approach is a relatively stable method because it only considers the 

distances of all samples. While the presence of different initial centres can cause 

results to vary, this problem can be avoided by clustering more images and 

identifying their similarities.  

 

In the reported here experiment, the K-means method is used with three clusters. 

Figure 5.4 shows the K-means clustering result for image No. 251 in the RGB colour 

space. The red points in left figure represent all the pixels in the image No.251 before 

they are assigned to clusters. In the right figure, each image pixel has been painted in 

one of the three (red, green or blue) colours, to indicate to which of the three clusters 

it has been assigned by the K-means algorithm. Figure 5.5 and 5.6 shows the 

corresponding segmentation result for a sample of colonoscopy images. Appendix C 

shows the segmentation results obtained for different number of predefined clusters 
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Figure 5. 5 Image No.6, 64 and 251 and their clustered results with three cluster centres in RGB colour space. 

 

 

 
Figure 5. 6 Image No.6, 64 and 251 and their clustered results with four cluster centres in RGB colour space. 
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and pixels represented in different colour spaces. From these results two problems can 

be identified:  

 

1. Intra-class difference: This problem denotes that pixels in the same foreground 

are different, which split the foreground into multiple regions. The colour is not 

fixed for the same polyp due to polyp morphology or uneven illumination. 

Taking No. 251 as an example, as the upper part of the polyp is darker than the 

lower part, this polyp is actually created from two parts. A similar problem is 

illustrated in No. 63. Based on three centres, the foreground of No. 63 has lost 

some contours. However, as the centre expands, the area with specular 

reflection is immediately removed from the foreground. This removal can lead 

to under-segmentation, which can result in hole formation, edge losses or even 

losses of targets.  

2. Inter-class similarity. This problem corresponds to the previous one and occurs 

when pixels in the foreground and background are very similar, rendering it 

impossible to distinguish them by colour alone. All images shown in Figures 5.5 

to 5.6 present severe levels of over-segmentation. Background and foreground 

pixels are even more similar than regions in the foreground. Even when the 

cluster centre is expanded, it can only continue to split the foreground and 

cannot remove the background. 

 

These two issues can be further described as the same problem where each pixel 

presents an incorrect correlation with its neighbourhood. This problem may result 

when a polyp and background are similar in colour or when interference occurs during 

sampling.   

 

Size Analyses 

The size of a polyp is not fixed for each image several reasons. First, the size of a polyp 

changes in different stages. While polyps are initially very small, with time some  
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Figure 5. 7 The cumulative polyp size distribution of SD images for length (in blue) and for width (in red). 

 

become malignant and increase to the point of occupying much of the surrounding 

area. Second, to further observe a polyp, an endoscope moves to positions close to 

the polyp.   

Figure 5.7 shows cumulative histograms for number of SD image polyps as a 

function of their heights or widths. It can be seen that the polyps’ heights and widths 

vary considerably. This large variation is a crucial issue for quality of image 

segmentation for both handcrafted and deep feature-based methods. For example, 

although the FCN can segment multi-size images, the scale invariance is not built into 

the network. Moreover, due to effects of colour and uneven illumination, the 

segmentation of a large polyp could lead to partial segmentation. 

Furthermore, a presence of small polyps is a main cause for unbalanced data, i.e. 

the number of pixels representing polyps is significantly lower than number of pixels 

representing the background. The CNN is more inclined to select the class for which 

more training data is available. As polyps normally include far fewer pixels than the 

corresponding background, this causes CNN to learn features from the background 

rather than from a polyp. 
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Figure 5. 8 Colonoscopy image with marked border. The values of different pixels are marked by different colour. 

5.4 Pre-processing  

CNN can learn relevant features automatically during the training process, however, 

on some occasions the method could learn from a spurious feature. This error may be 

because images can learn information which does not correspond to the problem 

needing to be solved. For example, in the colonoscopy images used in this work, there 

is a variable border region which does not carry any information about preseuse or 

characteristic of polyp (the appearance of polyp is independent of the appearance of 

the border). Nevertheless, the network can extract features corresponds to the border 

regions and try to use this in the polyp segmentation process. 

Section 5.2 shows that all polyp images have a black border. However, pixel values 

on these borders are not all equal to 0 (Figure 5.8). For SD images, pixel values on the 

border are not the same.  

To avoid the CNN learning from noisy regions, it is necessary to normalize the 

border by assigning value 0 to all pixels identified to be belonging to the border. Since 

the borders of images collected from the same video are fixed, standard deviations 

can be used to solve this problem (shown in Figure 5.9). First, all images are converted 

to the grey-scale and are combined into a 4-D tensor. Next, the standard deviation is 

calculated for each pixel location in the image. Since valid content in video images 

often changes (e.g. due to camera motion), its standard deviation will be large. 
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However, the changes for the border pixels are small and therefore the standard 

deviation is small. This standard deviation map can be used to identify the pixels 

belonging to the border. 

In the HD image, all pixels in the border for the given image have the same small 

value. There is similar error in HD images. The border of each image is a fixed value. 

The image to be measured can be converted to a grayscale image, and then the 

histogram is used to determine the threshold to normalize the border (Figure 5.9). 

It should be noted that when normalizing the border of an SD image, some polyps 

near the border can lose small number of pixels. This operation does not affect training, 

but slight under-segmentation can occur when the border of a test image is normalized. 

Therefore, this operation is only implemented for SD images are used for training. As 

the position of the HD image border is estimated very accurately, the training and test 

images will be processed.  

5.5 Data augmentation  

Data augmentation is designed to provide more polyp images for CNN training. 

Although this method cannot generate new types of polyps, it can further highlight 

the properties of polyps based on modelling different image acquisition conditions (e.g. 

illumination, camera position, colon deformations). 

The performance of the CNN-based methods relies heavily on the size of training 

data used. The whole available database includes only 355 images. Clearly, it is very 

limited at least from the perspective of a typical training set used in a context of deep 

learning. Moreover, for some polyp types, there are less than 10 corresponding 

exemplar images in the database. Therefore, it is necessary to enlarge the training set 

via data augmentation. 

Regarding polyp segmentation, this thesis combines SD and HD images as a new 

database to obtain more types of polyps and applies six methods for data 

augmentation, including rescaling, shifting, rotation, colour jittering and contrast 

jittering. These are used individually or together. 
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Re-scaling  

The deep network generates a large number of feature maps in each layer of the 

network. To reduce computation time, the current CNN framework saves the network 

parameters and feature maps into GPU-memory to avoid re-calculation. However, a 

higher-resolution image increases the size of a feature map, and thus, the network 

implementation can easily run out of the GPU-memory. The hardware used to support 

the reported research did not have enough memory to process the full resolution SD 

or HD images, therefor the images had to be reduced in size before they could be used 

on the available GPU hardware.  

Whether an SD or HD image is involved, the image size is so large that CNN training 

requires the use of large memory and long duration for training. When a deeper 

network is necessary for polyp segmentation, it is difficult for regular a GPU-memory 

to support feature learning for a large image. Moreover, batch normalization must 

work for a large batch size, further increasing memory requirements.   

First, HD images are transferred to the SD form by re-scaling and shifting. The whole 

processing method is shown in Figure 5.10. Since the border cannot provide any useful 

information, most of the border is removed before rescaling image. The cropped image 

is re-scaled to five random sizes, the height ranges from 400 to 480, and the width 

ranges from 400 to 554. The resulting image is slightly smaller than the original.    

Subsequently, each single re-scaled image is embedded at random position into an 

all zero image of the same size as the normal SD image (500×574). Thus, the number 

of original HD images increase 5 times. In total, it includes 280 new images. This step 

actually combines re-scaling and shifting to generate a similar number of images 

present in the SD part of database. The corresponding ground truths are also 

processed in the same way. Next, all SD and augmented HD images and corresponding 

ground truths are re-scaled to 250×287. Because the original SD size is still very large, 

this new size decreases the amount of memory required to 75%. This rescaling allows 

the CNN framework to build a deeper network. 
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 It should be noted that training and testing images differ in size, so the structure 

of the testing image changes when it is re-scaled to 250×287. As FCN can segment 

images of different sizes, the SD testing image are only used at their original size. This 

original size is similar to the re-scaled size of the training image.   

 

Colour jitter 

Colour jitter aims to generate more augmented images to train the learning-based 

algorithm. Without changing the content of an image, colour jittering can subtly 

change pixel values. Colour jittering model illuminations variance during acquisition of 

the original images. It also models differences in tissue pigmentation for different 

subjects. 

Figure 5.2 shows polyps of different colours, but these colours are distributed 

within a relatively stable range of yellow, red and pink. The colour of an augmented 

polyp image should fall within the same range, as there are no new colours in the 

testing data. An incorrect colour may cause the CNN to learn the wrong patterns. 

Moreover, colour jittering should focus on the global image rather than on a single 

colour, as otherwise an image can be corrupted by uneven colours. Typical colour 

jittering involves four steps: 

 

1. RGB image is transferred to the HSV colour space, which defines the colour by hue, 

saturation and value.  

2. Determine the required range of these three variables. The colour in this range 

should be similar to the real colour the observed in the real colonoscopy images.  

3. Select the random number between these ranges and then set these as 

parameters in the colour transformation equation. 

 

 

 

4. Transfer the HSV image to the RGB image as the final jittered image 

𝐻𝑛𝑒𝑤 = 𝐻 + 𝑣3 

𝑆𝑛𝑒𝑤 = 𝑆𝑣1 × 𝑣2 + 𝑣3 

𝑉𝑛𝑒𝑤 = 𝑉𝑣1 × 𝑣2 + 𝑣3 



89 
 

 

 

 

 

 

 

Figure 5. 11 Selected examples of colour jittering experimental images. 

 

Based on some experiments, these three ranges are selected as: v1 (0.75-1.75), v2 (1-

1.4) and v3 (0-0.08). Typical augmented images are shown in Figure 5.11. 

An image is jittered in HSV space because this makes it easier to control the Hue 

and Saturation. In RGB, colour is defined by the proportion of red, green and blue 

present. The colour is changed by adding or subtracting value for each pixel in these 

three channels. However, when using this approach colour jittering, the transform of 

each pixel is independent. This transform destroys details and the consistency of an 

image, such as the gradients between neighbouring pixels. For HSV, each pixel is 

transferred along with a change in the hue, chroma and value of the global image. 

These can therefore remain as original details of the image. 

 

Rotation 

In this thesis, the angle of rotation is random to prevent learned features of CNN from 

depending upon a fixed angle or the positions of borders. First, the original image is 

padded to 100 zero pixels for the width and height to maintain the size of the image. 

Second, the image is rotated around its centre, and this processing achieves rotation 

together with shifting. Third, the regions falling outside of the original area are 

removed. The whole operation and a typical example are shown Figure 5.12. 

 

 

 

V1: 0.75 

V3: 0 

V1: 1.25 V1: 1.75 

V2: 1.2 

V2: 1.4 

V3: 0.04 V3: 0.08 

V2: 1 
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Figure 5. 12 The image rotation and corresponding augmented colonoscopy image. 

 

Augmentation Implemented details  

Components of the augmented training database are shown in the Table 5.1. The 

above data augmentation approach generates a total of 92640 new images. In 

particular, the base training data include 579 images (299 SD and 280 re-scaled HD 

images). Each image is rotated 50 times, is colour jittered with rotation 110 times. The 

hyper-parameters of the data augmentation method are random within the 

mentioned before range. 

In validation, this augmented dataset is divided into four groups to perform the 

cross validation. More information on this point is given in Chapter 6 ‘Experiment and 

Results’. Subsequently, the whole dataset is used for segmentation of the test images. 

In addition, this thesis tests the segmentation results based on more different data 

augmentation methods in Chapter 6. 

 

 

 

 

 

 

Padding 
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Table 5. 1 Number of augmented images using different augmentation method. 

Training data Rotation Colour jitter & Rotation 

SD data (299) 14950 32890 

Re-scaled HD data (280) 14000 30800 

5.6 Segmentation methods 

5.6.1 FCN8s  

Deep learning methods have generated many new end-to-end image segmentation 

networks. However, due to differences in data and settings, many such results are 

difficult to reproduce. Therefore, the earliest proposed FCN8s is still the most widely 

used. As mentioned above, FCN8s has been applied to some polyp segmentation tasks, 

and some have been compared with state-of-the-art handcrafted feature-based 

methods, showing that FCN8s segmentation offers performance advantages. 

Therefore, FCN8s can be used as a reference standard to test the performance of our 

proposed methods.  

The original structure of FCN8s are described in section 4.3. The FCN8s version used 

here has some minor changes when compared with architecture described in Section 

4.3. The output of pixel classifiers and up-sampling layers in the decoder are set to 2 

and correspond to the foreground and background, respectively. With the original 

FCN8s, the two segmentation results are normalized by Softmax, and the residual is 

calculated by cross-entropy. 

5.6.2 Proposed ResNet-FCN  

In this section a deeper FCN is proposed and effects of the network depth on the 

quality of polyp segmentation is investigated. The feature extraction module of the 

FCN8s is replaced by a deeper CNN, the so-called ResNet50. In polyp segmentation, 

the ResNet architecture is used to build an FCN, based on three considerations:  
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Figure 5. 13 The structure of the proposed network using ResFCN. Blue: Feature learning module. Brown: Pixel 

classifier. Green: Up-sampling. 

 

1. Better feature learning ability. At present, the results of CNN development show 

that when there is no overfitting or gradient vanishing, the feature learning 

abilities of a deep network are stronger than those of a small network. As the 

appearance of a polyp is difficult to describe, increasing the network depth serves 

as the most straightforward means to improve FCN performance.   

2. A deeper network has larger receptive field. A larger receptive field helps CNN to 

learn more global features as reflected in the discussion on Deeplab (section 4.5.1). 

The large receptive field is necessary for polyp segmentation, as the class of a pixel 

should be determined not only from the properties of its neighborhood but also 

from its surroundings or the context of the whole image. This process is similar to 

the fusion of multiple cells in the HOG feature.  

3. Reasonable computational cost. Although ResNet is not the best performing CNN, 

it is the most widely used. This use is in a large part due to its relatively low 

computational cost effectively (compared to other CNNs). The deeper the network, 

the larger required memory source. When some new structures are added, a 
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network may only be able to run on high-performance hardware. ResFCN achieves 

a reasonable balance between gradient vanishing, performance and required 

resources. 

 

ResNet is deeper than VGG16 and can reduce the effect of a vanishing gradient. 

Regarding hardware used for this thesis, the memory requirements for ResNet-101 

and 152 are so large that they cannot reserve enough memory for other developments, 

rendering ResNet-50 the most suitable choice.   

The architecture of ResNet FCN is shown in Figure 5.13. The last pooling layer of 

ResNet50 is removed, and the other parts can be divided into six sub components: 

Res1 – Res5. Res 0 represents the first convolutional and pooling layers. Res 2 – Res 5 

represent the subnetwork with respectively 9, 12, 18, and 9 convolutional layers with 

256, 512, 1024, and 2048 feature maps.     

Each of these sub-networks operates on gradually spatially reduced feature maps 

downsampled with a stride of 2 when moving from sub-network Resi to sub-network 

Resi+1. The size of a corresponding feature map is 62×72, 31×36, 16×18, 8×9.   

5.6.3 Proposed Dilated-ResFCN   

This method involves developing a more advanced pixel classifier rather than single 

1x1 convolutional kernel. The original idea is inspired by the architecture of DeepLab-

LargeFOV, which aims to further limit effects of the problem discussed in the Image 

Analysis section. This section described one of the most important original 

contribution of this thesis.  

 

Dilation convolution  

Dilation convolution offers two benefits. First, it can provide more global information. 

DeepLab has shown that a large kernel is helpful for learning CNN-based semantic  
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Figure 5. 14 The results of dilated Laplacian operator. 

 

segmentation, as some properties of objectives depend on the surrounding area. A 

larger kernel can include more hidden patterns from the relationship between the 

polyp and background. Via K-means clustering (Figure 5.5 to 5.6) it can be observed 

that a polyp correlates with its surroundings, and this should be considered in CNN 

design.    

Furthermore, it is helpful to generate more complete segmentation results on a 

polyp image. A small kernel is very sensitive to local features, which include significant 

and easy to learn patterns. For a large kernel, since global features change little, the 

responses of large kernel are more stable (Figure 5.14). Taking edge detection as an 

example, the detection of a regular Laplacian operator is not continuous, but that of 

dilated one (dilation rate: 2) is very stable.  

 

Dilation Rate  

First, a dilated convolutional kernel should be smaller than the current image. 

Otherwise, the weights of the kernel are wasted or reduced to a 1×1 kernel. This 

reduction narrows the range of dilation rates. Taking Res5 as an example, the 

resolution of the output is 8×9. Figure 5.15 demonstrates different dilation rates and 

the histogram of polyp size. The table shows the 3×3 kernel different dilation rates. 

Although a 7×7 kernel can cover all polyps, polyps of between 5×5 and 7×7 are not too 

large, and this dilation rate too closely reflects the size of the current input, meaning 

that it cannot retain local details. A regular 3×3 kernel is too small. Therefore, a suitable 

dilation rate of 5×5 a good compromise (red line). 
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Figure 5. 15 Number of polyps fully covered by an increasing kernel size. 

 

Figure 5. 16 The results of a dilated Laplace operator for images of different resolutions. 

 

Since the resolution of internal features changes with depth, it generates varied 

types of features. Based on the properties of a CNN, a low-resolution feature map is 

more focused on high-level features, but it cannot retain enough details. In Figure 5.16, 

Laplace operator detection is altered by an image at a different resolution. It is always 

more heavily focused on the significant region and misses indistinct details. 

To limit the effects of this problem, dilation convolution should be applied before 

all pixel classifiers. While excluding the regular connection of ResNet50-FCN, outputs 

from Res2 to Res5 in the proposed architecture are directed to a parallel classification 

path consisting of a dilation convolutional layer, 1x1 convolutional layer, dropout layer 

and final 1x1 convolutional layer with two outputs corresponding to the polyp and 

background confidence maps. 
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As the region of each processed dilation convolution should be overlapping, dilation 

rates increase with resolution. Therefore, the rates of Res2-Res5 are 2, 4, 8 and 16 and 

corresponding kernel sizes are 5, 9, 17, and 33. The complete architecture of Dilated-

ResFCN is shown Figure 5.17. 

It should be noted that although the atrous spatial pyramid pooling (ASPP) of 

DeepLab V2 (Chen et al., 2018) has been proven to improve segmentation results, the 

memory required for this module cannot be supported. Moreover, the ASPP module 

has four different dilation rates. When this module is added to each sub-network of 

this method, 16 dilation rates must be determined. It is quite difficult to render these 

correct, and incorrect parameters increase the amount of noise in feature maps. 

Therefore, Dilated ResFCN only use single dilation convolution to increase the 

receptive field. 

5.6.4 Proposed SE-Unet 

This section described another key original contribution of the thesis. As indicated in 

the previous section the ResFCN and Dilated ResFCN focus on learning features using 

a larger receptive field. However, smaller polyps may be ignored by networks with a 

large receptive field, this is because smaller polyps may not excite, strongly enough, 

lower resolution feature map. To solve this problem, another novel network has been 

proposed. It has been designed specifically for detection and segmentation of small 

polyps missed by ResFCN and Dilated ResFCN.   

Unet is used because it fuses all feature maps before using a pixel classifier to 

identify elements of a full-sized feature. This allows details of small or flat polyps to be 

preserved in the final feature map. The squeeze-and-excitation module can select the 

valuable features and to restrict unnecessary responses. The whole network can be 

divided into four parts: feature learning, up-sampling, atrous spatial pyramid pooling 

(ASPP) and the SE-module (squeeze-and-excitation). The complete structure of this 

method is shown in Figure 5.19. The roles of each component are discussed below: 
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Dilation rate = 0         Dilation rate = 0           Dilation rate = 2         Dilation rate = 4  

 

Figure 5. 18 Different dilated rates of the ASPP. 

 

Feature learning and up-sampling  

The U-net-based FCN requires more memory than FCN8s because it must save up-

sampled features from the deep layer. To increase its efficiency, the feature learning 

module for this method is developed with VGG16.  

The up-sampling module is a mirrored VGG16, but the pooling layers are replaced 

with deconvolutional layers. Moreover, there is a concatenation layer after each 

deconvolutional layer to combine low-level features and up-sampled features to 

maintain the details of object. As with the original Unet, the loss function involves 

cross-entropy with a sigmoid activation function. 

 

Atrous spatial pyramid pooling   

The ASPP learns multi-size features via the ASPP module. Since the last convolutional 

layer of VGG16 only outputs 256 feature maps, the required memory stores of the 

corresponding ASPP are very limited. Therefore, ASPP can be used for this method. 

The resolution of the last convolutional layer is 16×18 in the encoder. Based on the 

section 3.5.1, the ASPP of this method is shown in Figure 5.18 and it consists of 1×1 

kernel, 3×3 kernel, and two dilation kernels with dilation rates of 2 and 4. These are 

used to detect features from a multi-sized feature.   
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Each component of the ASPP outputs 256 feature maps for a total number of maps 

of 1024. These features are saved in a concatenation layer. Pixels of the same position 

are fused by a 1×1×256 kernel so that the number of final ASPP layers is 256.   

 

Squeeze-and-excitation module  

Shallow layers of the above three networks sometimes learn useless features from the 

polyp image such as the image border. These features do not provide any useful 

information and instead generate incorrect patterns and waste memory. This problem 

does not affect the FCN8s significantly because it can be restricted in deep layers. 

However, when these features are directly combined with the up-sampled features, 

they destroy the learned high-level features. Therefore, the SE-module is extended to 

U-Net, which is designed to mitigate this problem. An SE-module is added behind each 

concatenation layer in the up-sampling module. It assigns a coefficient for each feature 

map in the concatenation layer, and the region ranges between zero and one. The large 

coefficient represents corresponding features that are more valuable.  

5.6.5 Test time segmentation  

Since the CNN is not inherently invariant to image deformations, data augmentation 

aims at proving information that is more representative for various possible image 

changes, e.g. due rotation, so network can learn different image patters created as 

result of e.g. object rotation. In turn, when the data augmentation is employed at the 

test-time (so called test-time augmentation [53]), this may also help the network to 

make correct decisions as some of the augmented images may generate patterns 

which could resemble better image patterns learned during training. Based on this 

observation, for each input image, several rotated versions of the original image are 

generated and passed through the same network. The corresponding network outputs 

are rotated back to the original orientation and fused together.  

Figure 5.20 shows the processing steps involved. As with training data, the rotation 

centre is assigned to the image centre. It is apparent that the segmentation results of  
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Figure 5. 20 Polyp segmentation based rotated test image. 

 

each rotated image are different, meaning that the network applies different 

interpretations to rotated images. Moreover, it can further reduce border effects. It 

should be noted that the final segmentation result is fused using the binary 

segmentation results rather than confidence map 

Similarly, to the rotation, the other test-time data augmentation models can change 

the segmentation results. However, rotation is the most obvious model and is easy to 

control, as the angle can only range between 0 and 360 degrees. For re-scaling, colour 

jittering or other methods, the range of parameters is broader than that of rotation, 

and using a wrong set of augmentation parameters my actually hinder the 

performance of such test-time augmentation. Therefore, for the reported results only 

rotation base test-time augmentation has been implemented.  

5.7 Summary  

This section analyses the polyp image and describes the design of the nearly proposed 

segmentation methods. Intra-class differences and inter-class similarities can occur in 

all image segmentation tasks (e.g., Discriminative feature network (section 4.5.7). 

However, due to interference in image sampling and a high degree of similarity 

between polyps and backgrounds, this problem is particularly evident in cases of the 
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polyp segmentation. This section describes the proposed solutions to these two 

problems, Dilated ResFCN and SEUnet. Although these two problems are not fully 

solved, subsequent tests prove that they can be effectively controlled. 
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Chapter 6.  Experiment design and results  

6.1 Introduction  

This chapter mainly focuses on describing the method used to select design 

parameters for segmentation methods proposed in Chapter 5 in reference to the polyp 

segmentation of the colonoscopy video dataset described in Chapter 4. Moreover, the 

chapter introduces various metrics used to evaluate and compare the performance of 

the proposed methods. Finally, it reports on overall results obtained from polyp video 

colonoscopy test data, including results derived from the 2017 and 2018 

Gastrointestinal Image ANAlysis (GIANA) challenges10.    

This chapter is divided into five sections. The first section provides a brief overview 

of the experimental setup and hardware used for the experiments. The following 

section describes the validation framework based on the training dataset introduced 

in Chapter 4 while defining different training and validation data subsets. The third 

section defines different validation metrics, which are subsequently used for the 

methodological evaluation given in the rest of the chapter. The forth section describes  

                                                   
10 https://endovissub2017-giana.grand-challenge.org/ [Assessed 20 Oct. 2019] 
  

https://endovissub2017-giana.grand-challenge.org/
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Table 6. 1 Computer configurations. 

 Usage CPU GPU Memory Hard Drive 

The first computer Training I7-6900K Quadro P6000, 24G 64G SSD, 1T 

The second computer Training I7-6900K GTX1080Ti, 11G 64G SSD, 1T 

The third Computer Testing I7-3820 GTX 1080, 8G 16G HDD, 2T 

 

Table 6. 2 GPU divider, Cuda and Cudnn versions. 

 Driver Cuda Cudnn 

The first computer 384.130 8.0 6.0.21 

The second computer 390.67 8.0 6.0.21 

The third computer 375.39 8.0 6.0.21 

 

the proposed testing methodology used for the selection of key design parameters. 

Finally, the last section presents the results of the 2017 and 2018 GIANA challenges, 

which were run as part of the Endoscopic Vision Challenge organized as part of the 

Medical Image Computing and Computer Assisted Intervention (MICCAI) conference. 

6.2 Implementation details  

For this work, all CNNs are implemented with Caffe. The Nvidia DIGITS is used to 

monitor training processing. In the testing stage, MATLAB is used as our Caffe interface. 

Two computers are used to train these networks, and another is used to do the testing. 

Their details are shown in Table 6.1 and 6.2. 

For each experiment, all networks are optimized by Adam algorithm. They are 

trained with thirty epochs and an initial learning rate of 0.0001, then decreased by 0.1 

at the tenth, twentieth and thirtieth epochs. It should be noted that these settings are 

only used to test the fundamental performance of the network, and so these settings 

may not be the best choice. The batch size of the training step is set to four. 

There are two training datasets. The first one is used for cross-validation; 

information on this dataset is given in the following section. The second is the  
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Figure 6. 1 Image No. 181 and No. 182 from vide 11. 

 

complete augmented training database, and it is used to train the networks applied in 

the testing stage. 

6.3 Validation data  

The original SD and HD training images are divided into four cross validation folds 

(subsets). In each fold, part of the training data is used as the validation dataset, and 

the remaining images are used to train the networks. Since the HD database is 

integrated with the SD database, the first fold uses all SD augmented images for 

training and the re-scales HD images as the validation dataset. This is to check how 

well networks, trained on images acquired using one type of equipment (i.e. SD 

colonoscopy), can segment images acquired using different equipment (i.e. HD 

colonoscopy). 

The SD subset consists of the images extracted from a few video sequences, with 

images from the same sequence being highly correlated (i.e. showing the same polyp 

with possibly only small appearance variations). For example, image No.181 and 

No.182 (Figure 6.1) are from the same video. These two images show the same polyp 

with similar light, shadow and surrounding tissue patterns, their cosine similarity [80] 

is 0.9982 which demonstrates that there is very little difference between them. If 

image No. 181 were to be used for training and image No.182 for validation, this would 

misrepresent the quality of the validation results as almost the same data would have 

been used for training and testing. 

To ensure the validity and reliability of the methodology, validation data folds are  
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Table 6. 3 The details of four validation subsets. The number of images in the folds training subset is given of the 

augmentation. 

  Fold Training Data Fold Validation Data 

V1 
Image index SD: 1~300 (Videos: 1~13)  HD: 1~56 

The number of images 4784 56 

V2 
Image index 

SD: 1~203 (Videos: 1~7) 

HD: 1~56 
SD: 204~300 (Videos: 1~7) 

The number of images 4832 96 

V3 
Image index 

SD: 98~300 (Videos: 5~13) 

HD: 1~56 
SD: 1~97 (Videos: 1~4) 

The number of images 4821 97 

V4 
Image index 

SD: 1~97, 204~300 (Videos: 1~4, 8~13) 

HD: 1~56 
SD: 98~203 (Videos: 5~7) 

The number of images 4733 106 

 

created based on the random selection of videos (section 5.2) rather than images. 

Frames extracted from the same video are not used for training and validation at same 

time. This approach aims to simulate the situation of real segmentation task. A random 

selection of images into folds’ training and test subsets would lead to similar images 

(images representing the same polyp) present in both subsets. Further information on 

each fold and validation dataset is shown in Table 6.3. 

6.4 Metrics  

For the polyp segmentation challenge, the Dice and Jaccard indexes are designed as 

the standard metric for a single image. They are always used to measure similarities 

between the obtained binary segmentation map and corresponding ground truth. 

 

Dice index  

The Dice index, also called the Sørensen–Dice coefficient [81],, was independently 

proposed by botanists Thorvald Sørensen and Lee Raymond Dice. It is defined as 

follows:  

 

𝐷𝑖𝑐𝑒 =
2|𝑆 ∩ 𝐺|

|𝑆| + |𝐺|
6.1 
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Figure 6. 2 The instance of Dice and Jaccard index. Left: The ground truth and segmentation results. Middle: The 

corresponding Dice and Jaccard metrics. Right: The visualization of these measures. Red: Dice index, Blue: Jaccard 

index. 

 

In this equation, S represents the binary segmentation result. Normally, the 

segmented foreground is represented by 1, and the other parts are represented by 0. 

G represents the ground truth. |𝑆 ∩ 𝐺| represents the overlapping area between S 

and G. The value range of the Dice index is [0 1] where 1 denotes that the result and 

ground truth are exactly the same.  

 

Jaccard index 

The Jaccard index developed by Paul Jaccard is the proportion between the 

intersection and union of two sets. Therefore, it also called the Intersection over Union 

for a specific task (e.g., image detection). As with the Dice index, segmentation results 

and ground truth are denoted as zero and one, and proportions range from zero to 

one. The Jaccard index is defined as follows: 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝑆 ∩ 𝐺|

|𝑆 ∪ 𝐺|
6.2 

 

Figure 6.2 explains how differences affect the evaluation. The ground truth and 

result include two 1×9 vectors of 0 and 1. In different states, the position of 1 is moved 

to simulate correct and incorrect segmentation. The middle figure shows value of the 

Dice and Jaccard indexes for different simulated segmentation results represented by 

S1-S7.  However, when a partial overlap occurs there are obvious differences in 

results. The right figure demonstrates their changes, and the change in the Dice index 

is linear while that of the Jaccard index is non-linear, and the latter is always smaller 
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than the former. The value of Dice and Jaccard are the same for the perfect results 

(equal to 1) and missed object (equal to 0). 

 

Discussion of Dice and Jaccard index  

The Dice and Jaccard can be also expressed in terms of the standard binary 

classification confusion matrix. For binary classification tasks, the results can be 

divided into four situations: 

 

Table 6. 4 Definition of the confusion matrix. 

  True condition 

  Positive (P) Negative (N) 

Predicated 

condition 

Predicted 

Positive 
True Positive (TP) False Positive (FP) 

Predicted 

Negative 
False Negative (FN) True Negative (TN) 

 

 

For image segmentation, the above components are as follows:  

Condition Positive: Foreground of ground truth  

Condition Negative: Background of ground truth  

Predicted Positive: Foreground of segmentation results  

Predicted Negative: Background of segmentation results  

True Positive: Correctly predicted foreground of segmentation results  

True Negative: Correctly predicted background of segmentation results  

False Positive: Incorrectly predicted foreground of segmentation results  

False Negative: Incorrectly predicted background of segmentation results 
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Figure 6. 3 The example of Dice index and its components. 

 

 

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 6.3 

 

Figure 6.3 shows a Dice index only focused on the foreground. This work does not 

differentiate between FP and FN, corresponding to all the over and under 

segmentation. Dice index is equivalent to F1 score, and it can be expressed as functions 

of precision and recall.   

 

F1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
6.4 

 

Where 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 6.5 

 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
6.6 

 

The Jaccard and Dice indexes use a similar equation and only differ in that the 

overlapping area is only counted once in the Jaccard index. 

 

      𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
6.7 
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These two measures can be expressed as function of each other: 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  
𝐷𝑖𝑐𝑒

2 − 𝐷𝑖𝑐𝑒
6.8 

 

𝐷𝑖𝑐𝑒 =
2 × 𝐽𝑎𝑐𝑐𝑎𝑟𝑑

1 + 𝐽𝑎𝑐𝑐𝑎𝑟𝑑
6.9 

 

Suppose D represents the Dice index, J represents the Jaccard index. The 

transformation between J and D can be defined as follow: 

 

2(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
+ 𝐷 =

2𝑇𝑃 + 2𝐹𝑃 + 2𝐹𝑁

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
+

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
= 2 

 

𝐷

𝐽
+ 𝐷 = 2     𝐹𝑜𝑟 𝐽     𝐽 =

𝐷

2 − 𝐷
 

 

                        𝐹𝑜𝑟 𝐷     𝐷 + 𝐽𝐷 = 2𝐽𝐷(1 + 𝐽) = 2𝐽     𝐷 =
2𝐽

1 + 𝐽
 

 

Validation: 

 

𝐽 =
𝐷

2 − 𝐷
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
×

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

2𝑇𝑃 + 2𝐹𝑃 + 2𝐹𝑁
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

𝐷 =
2𝐽

1 + 𝐽
=

2𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
×

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

In this work, the results of Dice index are reported only, as the Jaccard index is 

monotonic with the Dice index as shown above. For the evaluation of results, the mean 

value and standard deviation of the Dice index are used. The mean value is used to 

evaluate the performance of the segmentation method, and the standard deviation is 

used to assess stability. 
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More measures  

Reinke et al. [82] discuss the impact of different measures on the ranking of methods. 

One method may get the best results using one measure, but it may not perform well 

when assessed using a different metric. The other community used metrics are 

described below: 

 

Accuracy  

Accuracy is a common measure used for image classification and is defined as:   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
6.10 

 

It is apparent that TN is in the numerator. During segmentation, when the area of 

the object is very small, TN will be larger than TP. This renders the method highly 

accurate even when is TP close to zero. Therefore, its accuracy is not suitable for 

evaluating segmentation results. 

 

Precision / Positive predictive value  

Precision is a component of the Dice index or F1 score defined in Equation 6.5. During 

image segmentation, this measure can evaluate the ratio between correctly 

recognized pixels and all recognized pixels.  We use it as a single measure to obtain 

final results from final polyp segmentation methods. In the context of segmentation, 

it could be used as indicator of over segmentation. 

 

Recall / Sensitivity/Hit rate / True positive rate  

Recall is another component of the Dice index designed to evaluate the ratio between 

correctly recognized pixels and true pixels. For precision, the measure is also the single 

measure used for polyp segmentation. In the context of segmentation recall could be 

used as indicator of under segmentation. 
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Figure 6. 4 The calculation of Hausdorff distance. 

 

Hausdorff Distance  

In this study, Hausdorff Distance [83] is used to determine the shape of the final 

segmented polyp for cross-validation. Hausdorff Distance is the measure used to 

determine similarities between the boundaries of two objectives. It is defined as:   

 

𝐻(𝐺, 𝑆) = 𝑚𝑎 𝑥{𝑠𝑢𝑝𝑥∊𝐺  𝑖𝑛𝑓𝑦∊𝑆 𝑑(𝑥, 𝑦), 𝑠𝑢𝑝𝑥∊𝑆 𝑖𝑛𝑓𝑦∊𝐺  𝑑(𝑥, 𝑦)} 6.11 

 

where d(x, y) denotes the distance between pixels x ∈ G and y ∈ S. sup and inf 

represent the supremum and infimum, respectively. In this equation, they can be 

regarded as the maximum and minimum. The method involves two steps. First, 

calculate the minimum distance between objective G to S and find the maximum value 

of these distances. Then, use the same approach to calculate and find the maximum 

distance from S to G. Finally, compare these two maximum values and choose the 

greatest value as the output. The best result of this measure is 0, which means that 

the shapes of two objectives are completely overlapping. The value for the missing 

data is ‘Inf’ 

Figure 6.4 presents a simple example to explain Hausdorff Distance. The width and 

height of block is 1. A and B denote the boundaries of two objectives and are denoted 

by white and black points, respectively. The left part of the Figure 6.4 shows the 

calculation, and the result is 2. Figure 6.5 shows the value of Hausdorff distance for 

different segmentation results. 
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7.8120                  8.2426                 102.3181                  53 

         

Figure 6. 5 The Hausdorff Distance of different segmentation results. 

6.5 Experiment Results 

6.5.1 Validation results of FCN8s, ResFCN, Dilated ResFCN and SE-Unet 

This section shows the best results of four segmentation methods. The experiment 

aims to compare their fundamental performance, the results are not processed with 

any post-processing.  

The four methods are trained with the above sub-sets. The pre-trained weights of 

FCN8s are retrieved from fcn.berkeleyvision.org. As ResFCN and Dilated ResFCN are 

new methods proposed in this study, their feature learning module is initialized by 

ResNet-50 which trained on the ImageNet database, and other remaining 

convolutional and up-sampling kernels are initialized by Xavier [84] and bilinear 

interpolation weights. SE-Unet is a special case for which initialization involves two 

steps. In the first step, SE modules are removed from SE-Unet, and then this simplified 

SE-Unet is trained on each sub-set. In the second step, SE modules are added and re-

trained. Otherwise, SE-Unet cannot learn the features.  

In Table 6.5 columns V1 to V4 represent the averaged Dice indexes of each sub-

validation. (i.e. these four sub-sets are defined in Table 6.3) The last two columns list 

the mean values and standard deviations of the four validation results.   

In Table 6.5, the mean value of Dilated ResFCN is ranked the best of the sub-

validations. Figure 6.7 shows a visualization of Table 6.5 and demonstrates that Dilated 

ResFCN is well ahead of the other methods, as its shapes can completely cover those 

of all other methods. SE-Unet and ResFCN generate some similar results, but the  
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Table 6. 5 The overall Dice index of four methods (section 5.6). 

Network V1 V2 V3 V4 Mean Standard Deviation 

FCN8s 0.6938 0.5555 0.5891 0.6901 0.6322 0.0704 

ResFCN 0.6298 0.7307 0.6211 0.8063 0.6970 0.0882 

DilatedResFCN 0.7596 0.7825 0.6909 0.8824 0.7789 0.0792 

SE-Unet 0.6302 0.7497 0.6702 0.7376 0.6969 0.0566 

 

former generates the lowest standard deviation. Therefore, it should be considered 

the second-best method.   

Figure 6.6 shows segmentation results of typical small, median and large polyps. 

The polyp occurrence confidence maps (POCM) show that FCN8s can determine the 

approximate position of a polyp, but it is very easy to generate FP and FN. For each 

POCM, the distribution of high response is diffused, and the shape is irregular. For the 

large polyp, FCN8s generate many strong responses outside of the polyp. These errors 

are difficult to remove because such an operation would generate more false negatives. 

For example, the response of some false positives is similar to the response of the 

polyp centre. The higher threshold would generate a hole within the segmented polyp. 

This problem illustrates that a large polyp is more complex to segment. 

For the Dilated ResFCN, its POCM are more accurate than those of the other 

methods. There is a clear boundary in each POCM. Each response corresponds to a 

specific tissue, and the polyp always generates the highest value. Furthermore, polyp 

responses are more stable and uniform than those observe from the first two methods. 

As the Dilated ResFCN is developed from ResFCN, it also has a checkboard artefact.  

Unfortunately, all the four methods do not cope well with the image border, and all 

of the POCM present relatively stronger responses near the border. Thus, the CNN uses 

the information around borders as a pattern to describe a polyp image. Although the 

latter two methods detected polyps more accurately, this does not mean that they 

fully model the relationship between borders and a polyp.  
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Figure 6. 7 Visualization of the Dice index from Table 6.5. 

 

The POCM generated by SE-Unet are similar to those of the FCN8s, but the former 

generates fewer false positives and smoother boundaries. SE-Unet is also generates 

the fewest responses on the border. These responses are distributed across a colour 

image and not in black regions. Thus, unnecessary features have been suppressed. 

 

Discussion of network size.  

Table 6.6 and 6.7 shows resources required for the evaluated networks, including the 

number of weights, training and test time and network memory requirements. From 

this table it is clear that FCN8s requires more trainable parameters and training time 

than the other methods, but it performs the worst. This indicates that weights have 

not been used properly. Unexpectedly, ResFCN and Dilated ResFCN processing times 

are shorter than expected, showing that the 1×1 kernel are very efficient. However, 

the two networks still require considerable memory resources due to the presence of 

deep structures. Most of the CNN frameworks save internal feature maps in GPU 

memory to improve the processing speed of backpropagation. The more layers a 

network has, the more internal feature maps are saved. For SE-Unet, many up-sampled 

feature maps need to be saved, so this method also involves considerable memory 

requirements. 

0

0.2

0.4

0.6
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Table 6. 6 The training statistics for the tested four networks. 

Networks The number of weights Training time Required Memory 

FCN8s 130 million 
177min on GTX 1080Ti 

201min on Quadro P6000 
5.53 G 

ResFCN 23 million 
70min on GTX 1080Ti 

61min on Quadro P6000 
5.3 G 

Dilated ResFCN 79 million 
115min on GTX 1080Ti 

121min on Quadro P6000 
6.59 G 

SE-Unet 24 million 
135min GTX 1080Ti 

157min on Quadro P6000 
5.24 G 

 

Table 6. 7 Processing mean times of a single image during prediction (testing) compering performance of the CPU 

against GPU. 

Networks I7-3820 (CPU) GTX-1080 (GPU) 

FCN8s 8.0s 0.047s 

ResFCN 0.70s 0.040s 

Dilated ResFCN 1.80s 0.050s 

SE-Unet 1.760s 0.0450s 

 

In addition, this section also investigates whether deeper networks would help to 

improve the segmentation performance. To tests this, the ResNet-50 in ResFCN is 

replaced by ResNet-101 and ResNet-152. Figure 6.8, shows the mean Dice index 

computed on the four validation folds (represented by the asterisk) and the 

corresponding variance (represented by the vertical bar) for three tested network 

configurations. It can be seen ResNet-152 is the worst one, because it has the smallest 

mean Dice index and largest variance. ResNet-101 and ResNet-50 have similar mean 

value, but ResNet-101 has the larger variance. This experiment demonstrates the 

performance gets worse when a deeper network is used. Therefore, the ResNet-50 has 

been selected as the feature extraction subnetwork for further investigation. 

 

Discussion of missed polyps  

Table 6.8 counts objects missed by the four methods. FCN8s detected most polyps, 

missing only six samples. The worst method is ResFCN, which missed thirty-two polyps. 

Dilated ResFCN and SE-Unet are superior to ResFCN but still lag behind the FCN8s.   
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                             ResNet50       ResNet101      ResNet152 

Figure 6. 8 ResNet50, 101 and 152 based FCN. 

 

Table 6. 8 Data missed by each method (see section 5.6). 

Networks V1 V2 V3 V4 Total 

FCN8s 0 0 3 3 6 

ResFCN 3 4 23 2 32 

Dilated ResFCN 2 3 15 0 20 

SE-Unet 0 3 10 2 15 

 

When strictly considering the results shown in Table 6.8, the FCN8s are indeed the 

best methods. However, segmentation methods should be selected based on their 

overall performance. Alternatively, although the FCN8s detected the most polyps, 

their mean value still lags behind those of the other methods. This lag indirectly 

illustrates that the other methods generated much more accurate segmentation 

results for the detected polyp. Table 6.10 and 6.11 list polyps missed by the Dilated 

ResFCN and corresponding segmentation results for FCN8s and SE-Unet. The results 

demonstrated that the missed polyp can be segmented by FCN8S and SE-Unet.  

Figure 6.10 and 6.11 show that their segmentations are not very accurate. Figure 

6.9 shows the polyp missed by FCN8s and SE-Unet. SE-Unet’s segmentation results are 

acceptable because corresponding Dice indexes are greater than 0.5. For the FCN8s, 

most of the segmentation results are not good with only two results exceeding a value 
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Figure 6. 9 The SD polyp missed by Dilated ResFCN as well as by FCN8s and SE-Unet. 

 

Table 6. 9 The mean Dice index mean values of a re-segmented polyp generated by FCN8s and SE-Unet (see sections 

5.6). 

Networks V1 V2 V3 V4 Mean Mean* 

FCN8s 0.1429 0.4066 0.2498 - 0.266 0.2891 

SE-Unet 0.5319 0.6951 0.2424 - 0.4898 0.3684 

 

of 0.5. It can be concluded that these FCN8 segmentation results are not useful. Table 

6.9 lists the mean Dice index of the polyps missed by Dilated ResFCN for each sub-

validation. Since there are no missing polyps in the fourth validation, the values are 

marked as ‘-’. The mean value is calculated as a mean from three validation and the 

mean* is averaged from the Dice index of all missed polyps regardless of the validation 

fold. Either way, SE-Unet is better than the FCN8s. 

This comparison indicates that the SE-Unet can be used as a secondary 

segmentation method to segment polyps missed by the Dilated ResFCN. Table 6.12 

lists the results of the hybrid approaches. In the hybrid approach, if the polyp is missed 

by the Dilated ResFCN, the corresponding images is subsequently processed by the 

FCN8s and SE-Unet. A comparison of these last results shows that the Dice index value 

was significantly improved in terms of single sub-validations and mean values.  
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Table 6. 10 Polyp missed by the Dilated ResFCN and successful segmented by the FCN8s. 

Image Name Sub-Validation FCN8s Dice index SE-Unet Dice index 

33 V1 0.2256 0.1814 

1 V3 0.1038 0 

50 V3 0.2856 0.2856 

51 V3 0.2520 0 

56 V3 0.1919 0 

83 V3 0.2992 0 

88 V3 0.4918 0 

91 V3 0.6065 0.0021 

92 V3 0.0295 0.0096 

 

 

 

Table 6. 11 Polyp missed by the Dilated ResFCN and successful segmented by the FCN8s. 

Image Name Sub-Validation FCN8s Dice index SE-Unet Dice index 

43 V1 0.0601 0.8825 

244 V2 0.3658 0.8953 

278 V2 0.4332 0.6032 

298 V2 0.4208 0.5869 

10 V3 0.5085 0.6048 

12 V3 0.4203 0.7843 

27 V3 0 0.4816 

29 V3 0.028 0.7079 

84 V3 0.4810 0.6061 
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Figure 6. 10 The SD polyp missed by Dilated ResFCN and segmented by FCN8s. 
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Figure 6. 11 The polyp missed by Dilated ResFCN and segmented by SE-Unet. 
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Table 6. 12 Overall results after combining Dilated ResFCN with FCN8s or SE-Unet (see section 5.6). 

Combinations V1 V2 V3 V4 Mean 

Dilated ResFCN +FCN8s 0.7647 0.7952 0.7296 0.8824 0.7930 

Dilated ResFCN +SE-Unet 0.7786 0.8042 0.7269 0.8824 0.7980 

 

 

Table 6. 13 Results generated by the background with each method (see section 5.6). 

Network V1 V2 V3 V4 Mean Standard Deviation 

FCN8s 0.6777 0.5950 0.4965 0.7518 0.6378 0.0966 

ResFCN 0.6764 0.7078 0.6257 0.8242 0.7085 0.0842 

Dilated ResFCN 0.7668 0.7955 0.6979 0.8839 0.7860 0.0771 

Hybrid 0.7668 0.8172 0.7378 0.8839 0.8014 0.0640 

6.5.2 Validation results using background confidence map  

In this section, the results of FCN8s, ResFCN and Dilated ResFCN are generated using 

the background confidence maps. No results for SE-Unet are not given in this section, 

as SEUnet is performed by the sigmoid cross entropy loss function, and its output layer 

only has one channel.  

Table 6.13 shows the results. This table shows that Dice indexes are further 

improved. The standard deviation is also significantly reduced. Hybrid method can also 

be used for this section. The last row shows that the hybrid approach further improves 

performance, increasing the mean value to greater than 0.8 and reducing the standard 

deviation to 0.0640. Moreover, using background also reduces the number of missing 

polyps. Table 6.14 counts all data missing when using the background confidence map. 

For the first sub-validation, the Dilated ResFCN detected all of the polyps. Its averaged 

Dice index is smaller than that generated with the hybrid approach involving the 

Dilated ResFCN and SE-Unet. That reduction means SE-Unet generates more accurate 

segmentation results for these new polyps detected  
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Table 6. 14 Number of missing polyps using the background confidence map (see section 5.6). 

Networks V1 V2 V3 V4 Total 

FCN8s 0 1 7 0 8 

ResFCN 2 3 20 1 26 

Dilated ResFCN 0 3 13 0 16 

 

in the background. However, the background has better global mean value, so the 

Dilated ResFCN in the final hybrid method selects the background as the input. 

 

Discussion of reasonable stopping epoch.   

Regarding training data, it is quite difficult to determine the stopping epoch, as it is 

affected by many factors such as the number and types of training images used, 

initialization methods and learning rates. These issues are discussed in this section. 

The determined stopping epoch used for this work may not be the best one, but it 

presents certain rationalities using by cross validation.  

Figure 6.12 shows the Dice index of each method for different epochs with 

thresholds equal to minus one. Figure 6.13 highlights improvements or setbacks 

occurring during training. A single line includes twenty-nine points, and each point 

represents the difference between two neighbouring epochs. When the value of a 

point is equal to zero, there is no change between two epochs. From these figures, two 

conclusions can be obtained:  

First, the best method could be determined. Although some values continue to 

increase, improvements are so minor that the ranking is not changed. Figure 6.13 

shows that the change in Dice indexes are close to zeros. This further shows that the 

Dilated ResFCN performs better than the other methods, and its success is not 

dependent on the use of specific data or number of training epochs.   

Second, the reasonable learning rates of each method can be determined. As noted 

earlier, the processing method can be divided into three stages. The learning rate 

between the first and ninth epochs is 1e-4, and changes occurring during this training  
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phase are considerable. All of the methods present an obvious increasing trend in this 

stage, but they are not stable. The second stage occurs between the tenth and 

nineteenth epochs. It is evident that the learning gradually become stable.  Figure 

6.12 shows that SE-Unet always generates its best results near the tenth epoch and 

that 1e-5 is last valid learning rate. The learning rate of the twentieth to twenty-ninth 

epochs is 1e-6. For the Dilated ResFCN, results for V2, V3 and V4 first slightly improve, 

and then these results become more stable and the changes in the Dice index less 

significant. That stability means the network has converged in this stage. When 

training continues, network over-fitting results.   

From these two findings, the last learning rate of the Dilated ResFCN is designated 

as 1e-6, and the network weights are selected twenty-fifth epochs in the testing stage. 

Although V1 and V4 generated their best results for the earlier epoch, there is a risk of 

selecting the worse weights. Therefore, while this strategy may not the best one, it is 

the least risky. Similarly, SE-Unet can select a stopping epoch between the fifteenth 

epochs at a learning rate of 1e-5.    

Regarding the best results of the Dilated ResFCN for V1 and V4, that of explanation 

involves transfer learning. The feature extraction network has learned some common 

features from several natural images, and some of the features also appear in the 

polyp (e.g., as similar colours or gradients between different pixels). Recently, some 

proposed methods have employed a pre-trained feature extractor to describe new 

types of data without training.   

  

Discussion of validation results without transfer learning  

For this experiment, methods are trained without the per-trained model to investigate 

the significance of the transfer learning for polyp segmentation. Weights of the 

convolutional kernel are initialized by Xavier [84] and the up-sampling kernels are 

initialized by bilinear interpolation weights. Other settings used are the same as those 

used for the previous experiments. Corresponding results are shown below: 
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Table 6. 15 The results of networks without performance without the transfer learning (see section 5.6). 

Networks V1 V2 V3 V4 Mean Standard Deviation 

FCN8s 0.5202 0.6252 0.3914 0.6173 0.5385 0.1091 

ResFCN 0.6021 0.3404 0.3236 0.4003 0.4166 0.1280 

Dilated ResFCN 0.4903 0.3544 0.2666 0.3412 0.3631 0.0932 

 

It should be noted that SE-Unet does not use transfer learning, so there is no result 

in Table 6.15. This table shows that the FCN8s rank first while the results of the other 

two networks are too low. This finding shows that the pre-trained weight is quite 

important for the Resnet-based FCN. 

6.5.3 Validation results using precision, recall, and Hausdorff distance metrics  

This section presents the results of precision, recall, and Hausdorff distance tests and 

further compares the performance of the four methods (FCN8s, ResFCN, Dilated 

ResFCN, and SE-Unet) based on these results.  

The first metric is precision. As can be observed from Equation 6.5, the higher its 

value, the lower false positives are, the fewer errors there are in the results. Table 6.16 

illustrates the precision score of each method. Hybrid method outperforms the other 

methods and results are achieve the best average performance. Second place goes to 

Dilated ResFCN, as its V1 and V4 are the same as for the Hybrid model, as no polyp is 

missed in these two validations. Third place goes to SE-Unet, which trails by 7% in 

terms of average performance, but which presents the lowest standard deviation. 

Fourth place goes to ResFCN whose average value is very close to that of SE-Unet but 

with less stability. The FCN8s rank last, only surpassing ResFCN for V1. The main 

observation to consider here is the result obtained for V3. Table 6.14 shows that this 

method can detect 90 (a total of 97) polyps in V3 but Table 6.16 shows the detection 

with less precision than the other methods.   
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Table 6. 16 The precision metric for each method (see section 5.6). 

Network V1 V2 V3 V4 Mean Standard Deviation 

FCN8s 0.7528 0.6724 0.5346 0.7471 0.6767 0.1016 

ResFCN 0.7382 0.7560 0.6588 0.8288 0.7454 0.0698 

Dilated ResFCN 0.7865 0.8336 0.7467 0.9035 0.8176 0.0674 

SE-Unet 0.7594 0.7744 0.6813 0.7758 0.7477 0.0449 

Hybrid 0.7865 0.8573 0.7925 0.9035 0.8350 0.0588 

 

Table 6. 17 The recall metric for each method (see section 5.6). 

Network V1 V2 V3 V4 Mean Standard Deviation 

FCN8s 0.7222 0.6132 0.5015 0.7729 0.6524 0.1207 

ResFCN 0.7118 0.7584 0.6368 0.8532 0.7401 0.0906 

Dilated ResFCN 0.8298 0.813 0.6878 0.8927 0.8058 0.0858 

SE-Unet 0.6278 0.7604 0.7124 0.7523 0.7132 0.0607 

Hybrid 0.8298 0.8338 0.7277 0.8927 0.8210 0.0685 

 

The second metric used recall rate (Table 6.17). This metric could be used as indictor 

of under segmentation. Ranked first in this category are Hybrid and the Dilated ResFCN. 

Third place goes to ResFCN, but it is ranked 4, 4, 4, and 3 for the four sub-validation 

results. It is only its stronger results for V4 that improved its ranking. This high level of 

instability is reflected in its standard deviation. The forth place is SE-Unet, which ranks 

second in V3. Although it lost more targets than FCN8s (Table 6.14), it generated far 

more effective results than FCN8s and remained the most stable. 

The above two tables further prove that Hybrid’s method is superior when 

correspond to other tested methods. The tables also show that the use of SE-Unet as 

a secondary segmentation was quite reasonable, as it detected the polyp missed by 

the Dilated ResFCN. The FCN8s' false positive and false negative are very high, resulting 

in very few effective segmentation results. SE-Unet is not only superior to FCN8s for 

these two metrics but also exhibits considerable levels of stability in genera. 
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Table 6. 18 The Hausdorff Distance for each method (see section 5.6). 

Network V1 V2 V3 V4 Mean Standard Deviation  

FCN8s 101.0584 273.6480 164.1729 233.2572 193.0341 76.1774 

ResFCN 148.9207 365.0675 129.5731 161.0291 201.1476 110.0451 

Dilated ResFCN 84.8172 46.5405 52.1660 34.4450 54.2422 21.6548 

SE-Unet 147.6407 83.2507 109.7959 97.1535 109.4602 27.6662 

Hybrid 84.8172 49.2468 73.2521 39.4450 61.6903 20.9620 

 

Table 6.18 shows the Hausdorff distance obtained for each method. If the polyp is 

not detected, the metric returns Inf as a value of the Hausdorff distance, making it 

impossible to calculate the average. Therefore, we could only evaluate the shape of 

the detected polyos. The Dilated ResFCN takes first place with mean values clearly 

superior to those of the other methods. Hybrid takes second place, it finds more 

polyps but with potentially inaccurate contours. In addition, unlike image detection, 

image segmentation can fit the shape of a polyp. From this point of view, the  

advantages of the Dilated ResFCN are undeniable. 

6.5.4 Data augmentation ablation tests 

This section investigates various proposed data augmentations methods on the Dilated 

ResFCN architecture. Table 6.19 shows the mean Dice index obtained on each cross-

validation fold along the overall mean dice index averaged across all the four folds. It 

can be seen the rotation is the most useful data augmentation for Dilated ResFCN. 

Deformation and colour jitter provide similar Dice index which is somewhat smaller 

than the one obtained for rotation. It is also evident that the combination of different 

augmentation methods improves overall performance. 
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Table 6. 19 Mean Dice index obtained on 4-fold validation data using Dilated ResFCN network. 

Network V1 V2 V3 V4 Mean 

Combination 0.7583 0.7420 0.6086 0.8518 0.7402 

Rotation 0.7602 0.7146 0.6145 0.8361 0.7314 

Deformation 0.6772 0.7058 0.5917 0.7483 0.6807 

Color jitter 0.6241 0.6957 0.5696 0.8019 0.6728 

Scale 0.6536 0.6368 0.4742 0.7817 0.6366 

6.5.5 Significance test  

In the experiment reported above, each method is evaluated using different metrics 

by calculating the corresponding means and standard deviation on population of 

validation images. These results may reflect the performance of the methods to some 

extent but are not completely reliable. The dataset used only accounts for part of the 

whole population, and mean values and standard deviations be affected by a random 

selection of the test sample. Therefore, the method ranking based on these 

evaluations involve a certain level of risk.  

The experiment reported here is inspired by [7]. To eliminate related risks, we 

carried out a significance tests of the five segmentation methods based on Friedman 

test [85]. This method is a nonparametric test method that can compare multiple 

methods where the distribution of samples is not required to satisfy the normal 

distribution. However, it requires all test groups submit same number of results. The 

significance of the reported results for metrics are tested.  

The five methods (FCN8, ResFCN, Dilated ResFCN, SE-Unet and Hybrid method) 

were compared. Friedman test results are ranked in descending order (i.e. the smallest 

mean rank is the best one). The original H0 hypothesis is: there is no significant 

difference between the tested methods. The alternative hypothesis H1 is: there is a 

significant difference between the two methods. The significance level is set to 0.05. 

The p-value of each method is shown below:   

 
 

 



132 
 

 

 

 

 

 

Table 6. 20 p-value: Dice. 

 FCN8s ResFCN Dilated ResFCN SE-Unet Hybrid 

FCN8s 1 0.000138 1.19e-7 3.58e-7 1.19e-7 

ResFCN  1 1.19e-7 0.757487 1.19e-7 

Dilated ResFCN   1 1.19e-07 0.941865 

SE-Unet    1 1.19e-7 

Hybrid     1 

 

Table 6. 21 p-value: Precision. 

 FCN8s ResFCN Dilated ResFCN SE-Unet Hybrid 

FCN8s 1 9.92e-09 9.92e-09 9.92e-09 9.92e-09 

ResFCN  1 9.92e-09 0.988121 9.92e-09 

Dilated ResFCN   1 9.92e-09 0.927061 

SE-Unet    1 9.92e-09 

Hybrid     1 

 

Table 6. 22 p-value: Recall. 

 FCN8s ResFCN Dilated ResFCN SE-Unet Hybrid 

FCN8s 1 9.92e-09 9.92e-09 9.92e-09 9.92e-09 

ResFCN  1 9.92e-09 0.898167 9.92e-09 

Dilated ResFCN   1 1.15e-08 0.947832 

SE-Unet    1 9.93e-09 

Hybrid     1 
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These five methods can be divided into three groups. The first group consists of 

Dilated ResFCN and hybrid method. The second group consists of ResFCN and SE-Unet. 

The first group is FCN8s. There is significant different between different groups. Figure 

6.14 shows the mean rank of each method based on different measures.   

Firstly, the hybrid method is the best method, because it obtained lowest mean 

rank. That means it always has higher precision, recall and Dice index than other 

methods.  However, since the segmentation result of hybrid and Dilated ResFCN 

results are same, there is no significant difference between them. Especially for V1 and 

V4, the hybrid and Dilated ResFCN results are completely coincident. This coincidence 

creates a strong correlation between them.  

In the second group, the resulting p value shows no significant difference between 

them. In terms of mean ranking, most intervals of the two methods overlap, and SE-

Unet is slightly better than ResFCN. However, average Dice and Recall values indicate 

that ResFCN is better than SE-Unet (Table 6.23), which is the opposite of what is 

reflected by the mean rank. 

This shows that SE-Unet generates better results than ResFCN in the four cross 

validations. When adopting one of these two networks for polyp segmentation, the 

ranking is more reasonable than the average. After testing, Dice, Precision and recall 

values do not satisfy the normal distribution, and so their average value cannot 

reasonably predict their distribution. Rankings can reflect the difference between a 

method and other methods when processing different images. It is easier to 

understand the type of polyps that a given method is good at segmenting, acting as an 

estimate of the total distribution. For the above reasons, while the two methods do 

not significantly differ, SE-Unet’s performance is slightly better than ResFCN.  

Finally, the tested methods are significantly different from FCN8s (marked in blue), 

and their mean ranking are better than those of FCN8s. This difference shows that the 

improved results of the proposed methods are not attributable to accidental factors. 
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Table 6. 23 The mean value of ResFCN and SE-Unet (The summary of Table 6.13, 6.16, 6.17). 

 Dice Precision Recall 

ResFCN 0.7085 0.7454 0.7401 

SE-Unet 0.6969 0.7477 0.7132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 14 The mean rank of each method, with the blue segment indicating the best result. 

6.6 Results on testing dataset  

This section introduces segmentation results obtained for the test data. The Dilated 

ResFCN and Unet were tested on the GIANA polyp segmentation challenge organized 

as part of the MICCAI’2017 and MICCAI’2018. Although the ground truth images for 

the test data are not published, the evaluation results for that data were obtained 

through the challenge.  
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Table 6. 24 Results obtained on the test data using different architectures and networks outputs. 

 Foreground Background 
With test-time data 

augmentation 

 Mean Std Missing Mean Std Missing Mean Std Missing 

Dilated ResFCN 0.7717 0.2394 17 0.8126 0.2043 9 0.8293 0.1956 9 

SE-Unet 0.8019 0.2240 14 - - - 0.8102 0.2207 13 

Hybrid 0.7825 0.2204 6 0.8169 0.1904 4 0.8343 0.1837 3 

 

Table 6. 25 The definition of different qualitative measures of the segmentation accuracy. 

Level The corresponding range of Dice index 

Very Bad [0, 0.04) 

Bad [0.4, 0.6) 

Normal [0.6, 0.8) 

Good [0.8, 0.9) 

Very good [0.9, 1] 

6.6.1 Test data results  

Table 6.24 shows the standard deviation and missing data for results generated by the 

foreground, background and test time augmentation. The best results, highlighted in 

blue, have been achieved using the hybrid method with averaged Dice index of 0.8343, 

standard deviation of 0.1837 and only three polyps missed.   

Figure 6.15 shows more detailed results. The results are divided into five levels 

(Table 6.25). This figure also shows that the use of background confidence map and 

the rotation testtime augmentation improves the results of the Dilated ResFCN. After 

these two operations, the number of “very bad” was reduced by 50%, with only 23 

segmented polyps in that category. This demonstrates that the use of background 

confidence map and the test-time augmentation is important and necessary to 

improve overall results. 

The example of segmentation results for the hybrid approach are shown in Figure 

6.16 with the blue counter representing obtained segmentation results. From this 

image it can be concluded that for the “very good” segmentation, i.e. for the Dice index 
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value between 0.9 and 1, there is no obvious errors in the segmentation results. The 

position and shape of the contour correctly represents detected polyps. Some polyps 

are so “flat” that they can be easily confused with the adjacent tissue, however the 

Dilated ResFCN still can correctly outline them (e.g., images 271, 434 and 464). 

When considering the “good” results with the Dice index between 0.8 and 0.9 (see 

Figure 6.17), two issues are identified in the segmentation results. The first refers to 

small and separated false positives (e.g., image 157). The second concerns inaccurate 

contours. Some results show that segmentation contours cannot completely fit polyp 

shapes. This misfit results in false positive and false negative detections. However, this 

type of result is still acceptable. The two problems can be solved through the use of 

larger training datasets or through additional post-processing. 

For the “normal” results corresponding to the Dice index range of [0.6, 0.8), the 

results (see Figure 6.18) demonstrate that the segmentation error is visible to the 

naked human eye. Some post-processing may reduce such errors. In practical 

applications, detection a dedicated polyp detection network can be used to replace or 

aid the segmentation network.  When considering the “bad” results corresponding 

to Dice in the region between 0.4 and 0.6, the main issue relates to missing data (see 

Figure 6.19). The Dilated ResFCN has missed some polyps that are though correctly 

detected and segmented by the SE-Unet – this result is marked with ‘*’. The correct 

detection of polyps cannot be guaranteed, as the CNN experiences difficulty in 

distinguishing polyps from the background. While post-processing could to some 

extent improve these values, a significant improvement is unlikely.  

The results corresponding to the Dice index range of [0, 0.4] cannot be improved 

by conventional post-processing (see Figure 6.20). Three polyps were missed by the 

Dilated ResFCN and SE-Unet. The number of false positives and false negatives is 

always greater than the number of true positives. A possible improvement could be 

achieved by adding more polyps having similar characteristic to the training 

database. 
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Figure 6. 16 Example of segmentation results obtained for SD images with the Dice index within the range of [0.9,1]. 
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Figure 6. 17 Example of results obtained for SD images with the Dice index within the range of [0.8, 0.9). 
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Figure 6. 18 Example of results obtained for SD images with the Dice index within the range of [0.6, 0.8). 
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Figure 6. 19 Example of results obtained for SD images with the Dice index within the range of [0.4, 0.6). 
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Figure 6. 20 Example of results obtained for SD images with the Dice index within the range of [0, 0.4). 
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Table 6. 26 Ranking of the SD segmentation task. 

 Jaccard Dice index 

Method Mean Std Mean Std 

CVML 0.72 0.22 0.81 0.21 

Team 2 0.61 0.24 0.72 0.25 

Team 3 0.67 0.25 0.77 0.22 

Team 4 0.27 0.21 0.39 0.25 

Team 5 0.47 0.35 0.54 0.38 

Team 6 0.48 0.29 0.59 0.32 

 

Table 6. 27 Ranking of the HD segmentation task. 

 Jaccard Dice index 

Method Mean Std Mean Std 

CVML 0.74 0.20 0.83 0.18 

Team 2 0.40 0.25 0.52 0.28 

Team 3 0.70 0.24 0.80 0.20 

Team 5 0.64 0.28 0.73 0.28 

Team 6 0.53 0.24 0.39 0.23 

6.6.2 Ranking of submitted results in the second GIANA challenge  

For the 2017 GIANA challenge, the task was to segment SD and HD polyp images. Six 

teams participated in the SD image segmentation task and five teams participated in 

the HD segmentation task. As submitted, the results consisted of binary polyp 

segmentation maps for each test image. The submitted binary maps were used by the 

challenge organisers to calculate the mean values and standard deviations of the Dice 

and Jaccard indexes, so in total eight sub-evaluations were conducted.  

Our results were generated using two stages. First the Dilated ResFCN network was 

employed to generate a probability map for each test images. Subsequently these 

probability maps were segmented using hybrid level set [86], [87]. The ranking for this 
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approach is shown in Table 6.26 and 6.27, with our submission clearly providing the 

best segmentation results. It should be noted that the use of the level set in the 

postprocessing did not have a significant effect on the resulting Dice/Jaccard metrics 

but was nevertheless implemented as it provide a convenient mechanism to control 

smoothness of the estimated polyp contours. 

For the HD image segmentation task, our methods performed the best across all 

sub evaluations. Our methods are thus superior and more stable than the other 

submitted methods.  

6.6.3 Ranking of submitted results for the third GIANA challenge  

For the 2018 GIANA challenge, twelve and eleven teams participated in SD and HD 

segmentation tasks, respectively, using the same test images as those of the previous 

challenge. During that challenge our results were generated using four stages:   

  

1. Application of the Dilated ResFCN with rotation-based test-time augmentation.  

2. Application of the SE-Unet with rotation-based test-time augmentation.  

3. Applying threshold-based segmentation to the obtained probability maps.  

4. In case Dilated ResFCN network did not detect any polyps the SE-Unet was used 

and the resulting segmentation was return as the final result.   

  

Regarding SD tasks, our teams were ranked in second place. 

6.6.4 Comparison of segmentation methods 

The purpose of this section is to provide a quantitative comparison of the methods 

proposed in the thesis with other reported polyp segmentation methods. However, 

such a comparison is a very challenging task. Firstly, some published methods use 

polyp segmentation as a way to perform polyp detection and localization, and the 

quantitative results for this intermediate segmentation stage are not reported. 

Secondly, the implementation details for some of the methods are not provided (e.g. 
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values of the method’s design parameters, a number of used image samples, or the 

training stopping condition), and therefore, it is difficult to reproduce evaluation 

results for these methods. Furthermore, the training and test data used by different 

methods are not always the same. This makes it impossible to compare their 

performance under the same test conditions. Finally, when reporting on the methods’ 

performance, some of authors use test data which have been already used for training, 

therefore such evaluation results do not reflect the real performance of these methods. 

The comparison only includes polyp segmentation methods for which Dice index 

evaluation results have been published (the averaged Dice index is selected as a metric 

for methods comparison). 

Table 6.28 lists the results of the comparison for the selected methods. The rows in 

yellow represent cases where the training and test data do overlap, whereas the blue 

rows represent uncertain cases when it is not clear if the same data was used for 

training and testing. Some of the methods reported in the table provide results for 

different configurations. In these cases, the best performing configuration is indicated 

by the average Dice index in bold, subsequently these configurations are used in a 

direct comparison with the proposed method. The gPb-OWT-UCM and Depth of 

Valleys methods are the only methods which use handcrafted features.  

The two reported handcrafted feature-based method have the worst performance 

as measured by the mean Dice index and therefore are excluded from further 

consideration. The remaining methods use various deep learning approaches. It can 

be seen that the proposed hybrid method has the best performance. The second-best 

method is Multiple Encoder-Decoder network (MEDN), with a comparable 

performance. However, for the reported results the hybrid method used only 355 

images for training, whereas the MEDN method used 612 for training. Furthermore, 

the mean Dice index results reported here used 612 test images, whereas reported 

MEDN results used only 196 test images. This situation illustrates that the hybrid 

method obtained better results under more adverse test conditions and therefore it  
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Table 6. 28 The comparison of existing polyp segmentation methods. 

Methods 
Dice 

indexes 
Training Data Testing Data References 

Proposed Hybrid methods 0.8343 CVC-ColonDB CVC-ClinicDB11  

Proposed Dilated ResFCN 0.8293 CVC-ColonDB CVC-ClinicDB  

FCN8s 

0.810 CVC-ColonDB [32] 

0.516 CVC-ColonDB, CVC-ClinicDB [8] 

ResNet-50 

FCN8s 

 

0.6906 CVC-ClinicDB CVC-ColonDB 

[88] 

0.3230 CVC-ClinicDB ETIS-Larib 

Resized testing image 0.4623 CVC-ClinicDB ETIS-Larib 

 0.5853 CVC-ColonDB CVC-ClinicDB 

Pre-processing 0.6787 CVC-ClinicDB CVC-ColonDB 

Mask-RCNN 

ResNet50 0.716 CVC-ColonDB 

CVC-ClinicDB [89] 

ResNet50 0.804 
CVC-ColonDB 

ETIS-Larib 

ResNet101 0.704 CVC-ColonDB 

ResNet101 0.775 
CVC-ColonDB 

ETIS-Larib 

Multiple Encoder-Decoder network 

0.889 CVC-ClinicDB 

[90] 

0.829 CVC-ClinicDB ETIS-Larib 

gPb-OWT-UCM 

0.52~0.53 St. Marks Hospital and Academic 

Institute, Oxford Radcliffe Hospitals， 

Indiana University 

[17] 

0.44~0.49 

Depth of valleys 0.55 CVC-ColonDB [9] 

 

 

 

 

                                                   
11 CVC-ColonDB and CVC-ClinicDB are described in section 5.2 
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could be expected that if the test condition would be the same for the both methods 

the proposed hybrid methods would outperform the MEDN method by a large margin. 

The Dilated ResFCN, ResNet50 FCN8s and Mask-RCNN are all created based on 

ResNet50 for the deep feature extraction. As with the Multiple Encoder-Decoder 

network, the latter two methods are trained based on the database with more 

colonoscopy images. However, the proposed Dilated ResFCN is still the best method. 

This could be because: (i) the design of Dilated ResFCN is more suitable for polyp 

segmentation, and (ii) the proposed image pre-processing and augmentation methods 

used with the Dilated ResFCN are better than the ones used with the other methods. 

Finally, it can be seen from the results that although the Mask-RCNN: ResNet-101 

has a deeper architecture than ResNet-50, its segmentation performance is worse. This 

is consistent with the experimental results in this thesis (section 6.5.1), and this further 

confirms the rationale behind the selection of the ResNet50 as the base for the feature 

extraction subnetwork for the proposed Dilated ResFCN network. 
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Chapter 7. Summary, contributions and future work  

This section summarizes the research reported in this thesis and lists the key 

contributions made as part of the development of new deep learning networks 

proposed in the thesis to solve the polyp segmentation problem. In addition, possible 

future advances resulting from this work and other deep learning methods for polyp 

segmentation are discussed.  

7.1 Summary   

This thesis provides a set of solutions for implementing polyp segmentation on small 

training data sets. This includes the method for removing the noise in the border of 

polyp images.  The original dataset, with 356 training images, is expanded to 90,000 

images using a number of augmentation techniques, so that the deep learning 

algorithm can obtain enough data to complete training.  

Subsequently, in Chapter 5, the polyp images are examined by the K-means 

clustering method. This analysis finds that the successful completion of the polyp 

segmentation task is dependent on the solution of two problems. The first one is the 
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under-segmentation caused by intra-class differences, such as non-uniform polyp 

appearance caused by varying illumination. The second one is the over-segmentation 

caused by inter-class similarities, such as comparable colour distributions. To solve 

these two problems, two polyp segmentation convolutional neural networks are 

proposed: Dilated ResFCN and SE-Unet, which are based on a fully convolutional 

network model. Regardless of whether these two proposed methods work 

independently or are combined, their accuracy, robustness and effectiveness are 

better than FCN8s. 

Chapter 6 investigates different metrics and evaluates the performance of the 

proposed methods from different perspectives. In order to further reduce the impact 

of accidental factors on assessment of the segmentation results, statistical significance 

tests are carried out to examine the rank of various segmentation methods. It is shown 

that the proposed methods outperform the previously proposed ones. These tests 

confirm the results from the GIANA 2017 and 2018 challenges (held at the Medical 

Image Computing and Computer Assisted Interventions conferences) where Dilated 

ResFCN achieved the best results for the SD and HD polyp segmentation task (at the 

GIANA 2017) and the hybrid method gained the second place for SD polyp 

segmentation (at the GIANA 2018). 

The primary novel contributions reported in this thesis are the two end-to-end 

trained networks for polyp segmentation. The Dilated ResFCN has a larger receptive 

field due to implemented dilated convolutions. The purpose of this approach is to 

alleviate polyp under- and over- segmentation problems identified for the FCN8s. The 

SE-Unet enhances the detection of small flat polyps, through multi-resolution feature 

fusion. This type of polyp could be missed by the Dilated ResFCN network. When these 

two networks are combined more types of polyps can be successfully segmented. 

Furthermore, these networks can be efficiently deployed on a standard desktop 

computer, with an affordable graphics card (e.g. GTX1080) allowing for real-time image 

segmentation.  

The validity of the proposed networks has been justified and tested against other 
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reference polyp segmentation methods. For these tests a number of metrics have 

been used, including: Dice index, precision, recall, polyp detection false negative 

(missed polyps), and Hausdorff distance, with some of these metrics used in the 

context of polyp segmentation for the first time. The performed comparisons have 

demonstrated that the proposed hybrid approach outperforms other methods. To 

decrease the risk in method ranking caused by a small test dataset, the statistical 

Friedman test has been used to further validate significance of the results. The 

significance of different data augmentation methods has been evaluated using 

comparative ablation tests. 

 

The main finding reported in this thesis can be summarized as follows: 

 The ablation tests have demonstrated that rotation, local deformation and colour 

jitter are the most important augmentation techniques. 

 The use of all the augmentation methods significantly improves the performance 

of the method. 

 Dilation kernels can improve performance of polyp segmentation on multiple 

evaluation metrics. The value of Dice index, precision and recall has improved by 

11%, 10% and 9% respectively. The Huausdorff distance has decreased by 73%. 

 Based on the Friedman test, the performance of the proposed method is 

statistically significantly better than other assessed methods, whereas the 

performance of these other methods is statistically comparable with respect to 

each other. 

 The proposed hybrid method (combining the Dilation ResFCN and SE-Unet 

methods) improves overall performance by performing better on the small polyps. 

 The processing time of proposed Dilation ResFCN and SE-Unet are 0.05s and 0.45s 

respectively, therefore they can operate in real-time. 

 The results indicate (Table 6.24, small number of missed polyps) that the 

proposed hybrid segmentation method can be also used for the polyp detection 

task. 
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 Dilated ResFCN matches the shape of the polyp well, with the smallest and most 

consisted value of the Hausdorff distance. 

 The proposed techniques proved their performance by archiving 1st place at the 

2017 GIANA challenge (SD and HD segmentation) and 2nd place at the 2018 

GIANA challenge (SD segmentation). 

7.2 Future work  

Polyp detection and localization 

Polyp segmentation provides a detailed description of polyp shape. However, clinicians 

are often more interested in identifying and locating polyps in images (i.e. outcomes 

of polyp detection and localization). Based on the performed tests, the segmentation 

methods proposed in this thesis certainly have potential to be adopted for polyp 

detection and segmentation. For example, for some of the test images the calculated 

Dice index (between segmentation results and the ground truth) is within 0.3 to 0.6, 

which is considered a poor segmentation result. However, from the detection and 

localisation perspective such values of the Dice index are sufficient to consider this an 

accurate polyp detection/localisation. Therefore, in future work, the proposed 

methods can form the basis for further development to solve polyp detection and 

localization problems. However, this would require network re-training and 

comprehensive testing on images without polyps to assess robustness with respect to 

false positive. 

 

Addition of Temporal Information for Polyp Segmentation 

The polyp images in the GIANA SD dataset are extracted from videos, and the same 

polyp is often visible in multiple consecutive frames. Therefore, it is possible to 

consider the correlation between the neighbouring frames. Such an approach would 

help to reduce the impact of various disturbances on the CNN. For example, the image 

frames at time t-1 and t+1 can be used as supplementary information for polyp 

segmentation in the image frame at time t.  
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This idea can be implemented by using two key approaches. The first one is to design 

a CNN with multiple input layers to receive multiple consecutive input images, and 

then merge their features (e.g. using a so call slow fusion) to segment polyps. The 

second approach is based on the so-called recurrent networks (e.g. LSTM) where the 

temporal information is directly learned.    

 

New Kernel  

The reported research has identified the need for dilated convolution where the 

dilation rate is determined by polyps’ size. It should be noted that a fixed dilation rate 

may not be flexible enough to process images with a larger variability of polyp sizes. 

Therefore, the dilation rate can be considered as a trainable parameter, which is 

adjusted by the CNN based on the available data through the network training. 

Recently, two types of convolution kernels have been proposed which could be 

instrumental in achieving that objective, namely Learning Dilation Factors [91] and 

deformable convolution [92]. The spatial transformer network [93] also can be 

considered.  

  

Developed hybrid method  

The proposed hybrid method is a combination of two independent FCNs, namely: 

Dilated ResFCN and SE-Unet, which undoubtedly take up extra resources and time to 

complete training. Therefore, in the future work, it is worth considering fusing these 

two methods into a single FCN. The current idea is to use ResNet as the encoder. The 

feature maps of different resolutions are learned by dilated convolution or other new 

kernels. The features are then up-sampled and pixel-wise classified by the decoder in 

SE-Unet.  

  

Transfer learning   

The current deep learning framework often requires large GPU memory when training 

big CNNs, but they require relatively little memory in the prediction mode. Therefore, 
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it is possible to extract low-level or middle-level features using CNNs that have been 

trained on another database, and the CNN does not need to be retrained. Next, these 

features could be filtered and fused by a specific CNN structure. These operations can 

greatly reduce CNN's dependence on large available memory and speed up the 

training. The idea is currently immature, and it needs to be further investigated. 
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2018 Gastrointestinal Image ANAlysis polyp segmentation (SD) challenge (2nd place).  
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Appendix A: Histogram of polyp (SD) and 

background.   
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Appendix B: ResNet-50 network  

No.    Layer name  Layer type  Connection  Parameters  Output size  Output size (Seg)  

0    Input  Input  NAN  NAN  224×224×3  250×287×3  

1    Conv1  Conv  0  K:7×7×64, S:2, P:3  112×112×64  125×144×64  

2    Pool1  Pool  1  K:3×3, S:2  56×56×64  62×72×64  

3  

Res2  

  

Res2a branch1  Conv  2  K:1×1×256, S:1, P:0  56×56×256  62×72×256  

4  Res2a branch2a  Conv  2  K: 1×1×64, S:1, P:0  56×56×64  62×72×64  

5  Res2a branch2b  Conv  4  K: 3×3×64, S:1, P:1  56×56×64  62×72×64  

6  Res2a branch2c  Conv  5  K: 1×1×256, S:1, P:0  56×56×256  62×72×256  

7  Res2a  Fusion  3, 6  Sum  56×56×256  62×72×256  

8  Res2b branch2a  Conv  7  K:1×1×64, S:1, P:0  56×56×64  62×72×64  

9  Res2b branch2b  Conv  8  K: 3×3×64, S:1, P:0  56×56×64  62×72×64  

10  Res2b branch2c  Conv  9  K: 1×1×256, S:1, P:0  56×56×256  62×72×256  

11  Res2b  Fusion  7, 10  Sum  56×56×256  62×72×256  

12  Res2c branch2a  Conv  11  K:1×1×64, S:1, P:0  56×56×64  62×72×64  

13  Res2c branch2b  Conv  12  K: 3×3×64, S:1, P:0  56×56×64  62×72×64  

14  Res2c branch2c  Conv  13  K: 1×1×256, S:1, P:0  56×56×256  62×72×256  

15  Res2c  Fusion  11, 14  Sum  56×56×256  62×72×256  

16  

Res3  

Res3a branch1  Conv  15  K:1×1×512, S:2, P:0  28×28×512  31×36×512  

17  Res3a branch2a  Conv  15  K: 1×1×128, S:2, P:0  28×28×128  31×36×128  

18  Res3a branch2b  Conv  16  K: 3×3×128, S:1, P:0  28×28×128  31×36×128  

19  Res3a branch2c  Conv  17  K: 1×1×512, S:1, P:0  28×28×512  31×36×512  

20  Res3a  Fusion  16, 19  Sum  28×28×512  31×36×512  

21  Res3b branch2a  Conv  20  K:1×1×64, S:1, P:0  28×28×128  31×36×128  

22  Res3b branch2b  Conv  21  K: 3×3×64, S:1, P:0  28×28×128  31×36×128  

23  Res3b branch2c  Conv  22  K: 1×1×256, S:1, P:0  28×28×512  31×36×512  

24  Res3b  Fusion  20, 23  Sum  28×28×512  31×36×512  

25  Res3c branch2a  Conv  24  K:1×1×64, S:1, P:0  28×28×128  31×36×128  

26  Res3c branch2b  Conv  25  K: 3×3×64, S:1, P:0  28×28×128  31×36×128  

27  Res3c branch2c  Conv  26  K: 1×1×256, S:1, P:0  28×28×512  31×36×512  

28  Res3c  Fusion  24, 27  Sum  28×28×512  31×36×512  

29  Res3d branch2a  Conv  28  K:1×1×64, S:1, P:0  28×28×128  31×36×128  

30  Res3d branch2b  Conv  29  K: 3×3×64, S:1, P:0  28×28×128  31×36×128  

31  Res3d branch2c  Conv  30  K: 1×1×256, S:1, P:0  28×28×512  31×36×512  

32  Res3d  Fusion  28, 31  Sum  28×28×512  31×36×512  

33  Res3  Res4a branch1  Conv  32  K:1×1×512, S:2, P:0  14×14×1024  16×18×1024  
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34  Res4a branch2a  Conv  32  K: 1×1×128, S:2, P:0  14×14×256  16×18×256  

35  Res4a branch2b  Conv  34  K: 3×3×128, S:1, P:0  14×14×256  16×18×256  

36  Res4a branch2c  Conv  35  K: 1×1×512, S:1, P:0  14×14×1024  16×18×1024  

37  Res4a  Fusion  33, 36  Sum  14×14×1024  16×18×1024  

38  Res4b branch2a  Conv  37  K:1×1×64, S:1, P:0  14×14×256  16×18×256  

39  Res4b branch2b  Conv  38  K: 3×3×64, S:1, P:0  14×14×256  16×18×256  

40  Res4b branch2c  Conv  39  K: 1×1×256, S:1, P:0  14×14×1024  16×18×1024  

41  Res4b  Fusion  37, 40  Sum  14×14×1024  16×18×1024  

42  Res4c branch2a  Conv  41  K:1×1×64, S:1, P:0  14×14×256  16×18×256  

43  Res4c branch2b  Conv  42  K: 3×3×64, S:1, P:0  14×14×256  16×18×256  

44  Res4c branch2c  Conv  43  K: 1×1×256, S:1, P:0  14×14×1024  16×18×1024  

45  Res4c  Fusion  41, 44  Sum  14×14×1024  16×18×1024  

46  Res4d branch2a  Conv  45  K:1×1×64, S:1, P:0  14×14×256  16×18×256  

47  Res4d branch2b  Conv  46  K: 3×3×64, S:1, P:0  14×14×256  16×18×256  

48  Res4d branch2c  Conv  47  K: 1×1×256, S:1, P:0  14×14×1024  16×18×1024  

49  Res4d  Fusion  45, 48  Sum  14×14×1024  16×18×1024  

50  Res4e branch2a  Conv  49  K:1×1×64, S:1, P:0  14×14×256  16×18×256  

51  Res4e branch2b  Conv  50  K: 3×3×64, S:1, P:0  14×14×256  16×18×256  

52  Res4e branch2c  Conv  51  K: 1×1×256, S:1, P:0  14×14×1024  16×18×1024  

53  Res4e  Fusion  49, 52  Sum  14×14×1024  16×18×1024  

54  Res4f branch2a  Conv  53  K:1×1×64, S:1, P:0  14×14×256  16×18×256  

55  Res4f branch2b  Conv  54  K: 3×3×64, S:1, P:0  14×14×256  16×18×256  

56   Res4d branch2c  Conv  55  K: 1×1×256, S:1, P:0  14×14×1024  16×18×1024  

57  Res4f  Fusion  53, 56  Sum  14×14×1024  16×18×1024  

58  

Res4  

Res5a branch1  Conv  57  K:1×1×512, S:2, P:0  7×7×2048  8×9×2048  

59  Res5a branch2a  Conv  57  K: 1×1×128, S:2, P:0  7×7×512  8×9×512  

60  Res5a branch2b  Conv  58  K: 3×3×128, S:1, P:0  7×7×512  8×9×512  

61  Res5a branch2c  Conv  59  K: 1×1×512, S:1, P:0  7×7×2048  8×9×2048  

62  Res5a  Fusion  58, 61  Sum  7×7×2048  8×9×2048  

63  Res5b branch2a  Conv  62  K:1×1×64, S:1, P:0  7×7×512  8×9×512  

64  Res5b branch2b  Conv  63  K: 3×3×64, S:1, P:0  7×7×512  8×9×512  

65  Res5b branch2c  Conv  64  K: 1×1×256, S:1, P:0  7×7×2048  8×9×2048  

66  Res5b  Fusion  62, 65  Sum  7×7×2048  8×9×2048  

67  Res5c branch2a  Conv  66  K:1×1×64, S:1, P:0  7×7×512  8×9×512  

68  Res5c branch2b  Conv  67  K: 3×3×64, S:1, P:0  7×7×512  8×9×512  

69  Res5c branch2c  Conv  68  K: 1×1×256, S:1, P:0  7×7×2048  8×9×2048  

70  Res5c  Fusion  66, 69  Sum  7×7×2048  8×9×2048  

71    Pool5  Pool  70  K:7×7, S:1 P:0  1×1×2048  Removed  

72    FC1000  FC  71  1×1×1000  1×1×1000  Removed  
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Appendix C: K-means clustering based HSV and lab 

colour space 

 

Image No.6, 64 and 251 and their clustered results with three cluster centres in HSV colour space. 

 

 

 

Image No.6, 64 and 251 and their clustered results with four cluster centres in RGB colour space. 
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Image No.6, 64 and 251 and their clustered results with three cluster centres in Lab colour space. 

 

 

 

Image No.6, 64 and 251 and their clustered results with three cluster centres in Lab colour space. 
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Appendix D: Gradient descent algorithms  

In recent years, some new gradient descent algorithms are proposed. Most of them 

aim to search for the minimum more quickly. This section first reviews the classical 

gradient descent, then introduces the representative new algorithms.  

Classical gradient descent 

The method employed above is the classical batch gradient descent (BGD) algorithm. 

In this algorithm, the parameters are updated using the average gradient of all training 

samples in each iteration. Its advantages are that the gradient direction is stable and 

accurate, and the convergence speed is fast. Its disadvantage is that all training 

samples are required for every parameter update; therefore, when the numbers of 

samples and parameters are large, considerable memory is needed to store the 

gradients, and the update efficiency is low. 

Stochastic gradient descent (SGD) [94]refers to the random extraction of samples 

(without replacement) to update the parameters. Once all samples have been 

extracted, the next iteration is performed. It has the advantages of low memory 

requirements and a fast speed for backpropagation. In addition, SGD supports online 

learning, with the only requirement being to add the new samples to the training data. 

The disadvantage is that the direction of the gradient changes frequently during 

updating, so it is difficult to reach convergence at a local minimum. 

Mini-batch gradient descent is a fusion of the two methods discussed above. The 

total samples are divided into several training subsets, each subset called mini-batches. 

Each time, a subset is randomly extracted to calculate the gradient and update the 

parameters. When all training subsets have been used, the next iteration begins.  

Obviously, this method has two advantages. The first is that it offers great flexibility 

in choosing the appropriate batch size in accordance with the performance of the 

equipment being used. The second is that it is more stable than SGD. Therefore, it is a 

commonly used optimization method in deep learning. 
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Momentum 

The momentum approach [95] can be used to stabilize the update direction of SGD by 

accumulating previous weighted gradients, which facilitates the model’s convergence. 

Let the current parameter be 𝜃𝑡−1 and the updated parameter be 𝜃𝑡; then, the steps 

of the update process can be written as follows: 

 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂
𝜕𝐽(𝜃  

)

𝜕𝜃 
 

 

𝜃 = 𝜃𝑡−1 − 𝛾𝑣𝑡  

 

𝛾  is a coefficient, whose value is usually set to 0.9. Therefore, 𝑣𝑡  is actually a 

weighted sum of the previous gradient and the current gradient. This can be seen as 

imposing an inertia on the current gradient so that it does not deviate too much from 

the direction of previous updates, and the more similar it is to the previous direction, 

the faster the model converges; this is where this method gets its name. Next, 𝑣𝑡 can 

be used to update 𝜃𝑡−1, resulting in 𝜃𝑡 . 

Nesterov accelerated gradient 

The Nesterov accelerated gradient (NAG) method [96] was developed based on the 

momentum approach. For updating 𝜃𝑡−1, this method considers not only the previous 

𝛾𝑣𝑡−1  but also a temporary gradient 𝜃�̂�   obtained along the same trend, which is 

derived via the following equation: 

 

𝜃�̂� = 𝜃𝑡−1 − 𝛾𝑣𝑡−1 

 

This method is equivalent to taking a tentative step towards updating the 

parameters, obtaining 𝜃�̂�   and then summing the gradient 𝜃�̂�   and the previous 

gradient 𝛾𝑣𝑡−1  together to serve as the gradient needed for updating 𝜃𝑡−1 . This 
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approach can be expressed as follows: 

 

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂
𝜕𝐽(𝜃�̂�  

)

𝜕𝜃�̂�

 

𝜃 = 𝜃𝑡−1 − 𝛾𝑣𝑡  

 

With this additional update based on 𝛾𝑣𝑡−1 , the NAG method is more strongly 

affected by the previous gradient in the weighted sum than the momentum approach 

is, so the convergence speed for SGD is faster. Of course, this method also requires 

additional computation. 

Adagrad 

As mentioned above, as the number of iterations increases, the learning rate needs to 

be reduced to reduce the error, because too large a step will cross the local minimum. 

However, the update speed is different for each parameter, so the required learning 

rates are also not the same. In some large neural networks, the number of parameters 

often reaches tens of millions, so it is obviously impossible to set the learning rates 

manually. To this end, AdaGrad [97] was proposed to enable adaptive adjustment of 

the learning rate. The AdaGrad update formula is defined as follows: 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√∑ (𝑔𝑖)2 + 𝜖𝑡
𝑖=1

𝑔𝑡  

  

The denominator in this formula is the square root of the sum of the squares of all 

previous gradients. The sum of the squares is calculated to avoid gradient offset. The 

square root is used to prevent the learning rate from decaying too fast due to an 

excessively large denominator. 𝜖  is a constant that is included to ensure that the 

denominator will not be zero. With an increasing number of iterations, the learning 

rate will gradually decrease. However, it should be noted that this reduction is not 

constrained. If the gradient accumulates too fast, it is likely that the model will not be 



163 
 

able to obtain enough gradient information and will never reach convergence or will 

need more iterations. 

Adaptive moment estimation 

Adaptive Moment Estimation (Adam) [98] is a fusion and further improvement of the 

RMSProp and momentum methods. It has two main features. First, it considers both 

the first moment (average) and the second moment (uncentred variance) of the 

previous gradient, with the former acting as a gradient and the latter acting as a 

denominator to cause the decay of the learning rate. As in RMSProp, the previous 

gradient is stored by means of an exponential average, i.e., 

 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡
 

 

The authors recommend that the values of 𝛽1 and 𝛽2 should be set to 0.9 and 

0.999, respectively. The second feature of this method is that the deviations of the first 

and second moment are corrected when updating the parameters. This correction is 

because in the first iteration t, the values of 𝑚𝑡−1 and 𝑣𝑡−1 are 0, and the weight is 

large. This leads to a large deviation of 𝑚𝑡  from 𝑔𝑡  during the initial stage of training. 

Another parameter 𝑣𝑡 has same problem. Therefore, adjustments are needed. 

 

𝑚�̂� =
𝑚𝑡

1 − 𝛽𝑡
 

 

𝑣�̂� =
𝑣𝑡

1 − 𝛽𝑡
 

 

Finally, the gradient and denominator of RMSProp are replaced with 𝑚�̂�  and 𝑣�̂�, 

respectively, resulting in 
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𝜃𝑡 = 𝜃𝑡−1 −
𝜂

√𝑣�̂� + 𝜖
𝑚�̂�  

 

Ruder [99] compared the convergence rate of this method with those of other 

methods. When logistic regression is used to classify MNIST, Adam converges twice as 

fast as AdaGrad. When a multi-layer perceptron is used, Adam is also much faster than 

the other methods mentioned above. Therefore, the method designed in this paper 

will also be optimized using Adam. 
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