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Abstract: Earthworms are important ecosystem engineers, and assessment of the risk 

of plant protection products towards them is part of the European environmental risk 

assessment (ERA). In the current ERA scheme, exposure and effects are represented 

simplistically and are not well integrated, resulting in uncertainty when applying the 

results to ecosystems. Modeling offers a powerful tool to integrate the effects 

observed in lower tier laboratory studies with the environmental conditions under 

which exposure is expected in the field. This paper provides a summary of the 
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FORESEE Workshop ((In)Field Organism Risk modEling by coupling Soil Exposure 

and Effect) held January 28-30, 2020 in Düsseldorf, Germany. This workshop 

focussed on toxicokinetic-toxicodynamic (TKTD) and population modeling of 

earthworms in the context of environmental risk assessment. The goal was to bring 

together scientists from different stakeholder groups to discuss the current state of soil 

invertebrate modeling, explore how earthworm modeling could be applied to risk 

assessments, and in particular how the different model outputs can be used in the 

tiered ERA approach. In support of these goals, the workshop aimed at addressing the 

requirements and concerns of the different stakeholder groups to support further 

model development. The modeling approach included four submodules to cover the 

most relevant processes for earthworm risk assessment: Environment, Behavior 

(feeding, vertical movement), TKTD, and Population. Four workgroups examined 

different aspects of the model with relevance for: Risk assessment, earthworm 

ecology, uptake routes, and cross-species extrapolation and model testing. Here, we 

present the perspectives of each workgroup and highlight how the collaborative effort 

of participants from multidisciplinary backgrounds helped to establish common 

ground. In addition, we provide a list of recommendations for how earthworm TKTD 

modeling could address some of the uncertainties in current risk assessments for plant 

protection products. 

Key Words: cross-species extrapolation; plant protection products; population 

modeling; soil organisms; uptake routes 

Background 

 Earthworms are important ecosystem engineers that increase soil fertility and 

provide a wide range of ecosystem services (Blouin et al. 2013). They are included in 
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the safety assessment of pesticides in the European Union (EU), which is prescribed 

by European legislation (Regulation (EC) No. 1107/2009 and guidance document 

SANCO/10329/2002). In the EU, pesticides can only be authorized if no unacceptable 

effects on non-target organisms, biodiversity, or the ecosystem will occur. In the risk 

assessment procedures, testing representative species of earthworms and assessing the 

risks to this group is deemed to cover soil-inhabiting Oligochaeta, belonging to the 

families Lumbricidae (earthworms) and Enchytraeidae (potworms). Species from both 

groups are used in standard ecotoxicological tests, but only tests with lumbricid 

earthworms need to be submitted according to EU data requirements for pesticides 

(283/2013 and 284/213). The Annex to the data requirement mentions as relevant 

OECD guidelines for testing the genus Eisenia (e.g., E. fetida, E. andrei). 

 In 2017, the European Food Safety Authority (EFSA) requested an opinion 

from the Panel on Plant Protection Products and their Residues (PPR) on the science 

behind the risk assessment of plant protection products for in-soil organisms in 

preparation for a guidance update (EFSA PPR 2017). In this opinion, a review was 

presented on the current risk assessment scheme, and proposals were made for further 

progress. The use of mechanistic effect models was suggested in this opinion, for 

example, models clarifying the relationships between internal concentrations and 

toxicological effects over time for endogeic earthworms. However, gaps in the 

currently available models were identified as well as a need for research on their 

applicability domains in soil risk assessment. Therefore, a workshop was organized to 

clarify these issues. This synthesis provides a summary of the workshop findings and 

recommendations.  

The current soil risk assessment follows a tiered approach starting with simple 

assumptions with effects characterized in standardized laboratory studies. In addition, 
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whereas the exposure assessment can take into account spatiotemporal variability of 

pesticides in soil, abiotic parameters (such as soil temperature and moisture), and soil 

composition, the effect assessment for earthworms is based on the outcome of a 

reproduction test that does not take such factors into account. In the first tier, a chronic 

earthworm study (GD 222, OECD 2017) is required, which has the aim of assessing 

the intrinsic toxicity of the tested substance. Exposure is assumed to vary in time, 

since the pesticides interact with the soil and degrade, and hence a constant exposure 

cannot necessarily be maintained. In this type of study, adult E. fetida are exposed to a 

series of pesticide concentrations, and the relevant endpoints are assessed only once 

during the study period, i.e., after 28 days for survival and growth, and after 56 days 

for the number of juveniles. Therefore, only a limited mechanistic understanding of 

the underlying effect is provided. The results of this test, expressed in terms of a No 

Observed Effect Concentration (NOEC) for mortality, reproduction, and growth or a 

ten percent Effect Concentration (LC10/EC10) for mortality and reproduction is then 

related to a worst-case Predicted Environmental Concentration (PEC) for soil to 

obtain a Tier 1 estimate of risk. Should the ratio of toxicity to exposure (TER) be 

below a defined trigger value (currently 5 for chronic risk assessment in the EU; 

Regulation (EU) 546/2011, 2011), a risk is indicated, and a higher tier assessment 

(intended to include more realism in exposure and/or effects; Solomon et al. 2008), 

such as a field study with earthworms (ISO 11268-3) can be performed to refine the 

risk.  

The limited conceptual integration of exposure and effect assessments in Tier 1 

soil risk assessments leads to uncertainty when extrapolating the results to different 

ecosystems. Furthermore, there is a large gap between a simple Tier 1 laboratory 

study and a full field study, which suggests the need for intermediate tiers between 
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these options. Key uncertainties that could be reduced through the use of intermediate 

tier assessments include addressing actual exposure profiles arising from earthworm 

vertical movement and spatiotemporal variability in pesticide concentration, and 

extrapolation of the results from field studies to other environmental and/or 

agricultural situations beyond actual conditions in the field study. A critical source of 

uncertainty is the possible difference in sensitivity between species tested in the 

laboratory and species found in the field. The low field relevance of Eisenia species 

has been recognized, and suggestions to use Aporrectodea caliginosa as an additional 

test species are underway (e.g., Bart et al. 2018). Decreasing the uncertainties in the 

risk assessment requires a better understanding of the risks of pesticides to different 

species of earthworms, including whether there is any relationship between 

quantifiable traits and toxicological sensitivity.  

Mechanistic effect modeling offers a potentially powerful tool to integrate 

pesticide exposure and effects and extrapolate results observed in lower-tier 

laboratory studies to exposure scenarios that are expected in the field (EFSA PPR 

2017). In particular, individual-based models (IBMs) are of interest, as they allow for 

a high degree of realism, can help to quantify uncertainties, and can integrate 

processes that occur across multiple scales (DeAngelis and Grimm, 2014). 

Populations are represented as consisting of discrete individuals, and population-level 

behavior and effects emerge from interactions of the individuals with each other and 

with their environment (DeAngelis and Grimm, 2014). Johnston et al. (2014a, 2014b, 

2015, 2018) developed several earthworm IBMs that incorporate realistic earthworm 

behavior, address spatiotemporal variability in pesticide exposure, and integrate 

exposure and effects using an energy budget approach. Given the growing recognition 

of the power of mechanistic effect models for use in environmental risk assessment 
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(ERA) (Hommen et al., 2016) and recent regulatory guidance on their development, 

testing, and documentation (EFSA PPR 2014, 2017), there are clear opportunities to 

address specific issues identified in ERA approaches by developing dedicated models 

aiding at appropriate tiers of the ERA process. With that said, it is clearly impractical 

to develop and apply unique effect models and related behavior and exposure 

scenarios for every single species. Instead, an approach in which selected earthworm 

species can represent broader ecological groups of earthworms is needed. In addition, 

acceptance of models and exposure scenarios for ERA will be facilitated through 

consistent and transparent procedures for the development and use of effect models, 

species behavior, and exposure scenarios. The acceptance can be further promoted by 

evaluation and documentation and through broad stakeholder buy-in (Forbes et al. 

2019).  

Objective and Rationale 

The FORESEE ((In)Field Organism Risk modEling by coupling Soil Exposure 

and Effect) Workshop was held January 28 – 30, 2020, in Düsseldorf, Germany. The 

overall focus of the workshop was to bring together scientists from different 

stakeholder groups (i.e., regulatory authorities, industry, and contract research 

organizations (CROs)) and academic scientists to discuss the current state of 

earthworm modeling. The workshop aimed to identify research gaps and explore how 

mechanistic effect modeling of earthworms could be applied to soil organism risk 

assessments. In particular, we considered how the different model outputs could be 

used in the regulatory framework and in the tiered approach prescribed by the recent 

EFSA Scientific Opinion addressing the state of the science on risk assessment of 

plant protection products for in-soil organisms (EFSA PPR 2017). In support of these 

goals, the workshop aimed to discuss a common modeling framework for earthworms 
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and address the requirements and concerns of the involved stakeholder groups at an 

early stage of model development. 

Johnston et al. (2014a, 2014b, 2015, 2018) developed and validated a suite of 

earthworm models that integrate exposure, effects, energy budgets, behavior 

(movement), and life cycles. Based on these models, Roeben et al. (2020) initiated the 

development of a modular framework for earthworm modeling (FORESEE) that aims 

to cover most of the relevant earthworm ecological categories (i.e., ecotypes). 

FORESEE is mechanistic and aims to provide spatiotemporal realism in earthworm 

behavior, as well as exposure and effects of pesticides. The workshop was based on 

the FORESEE modeling approach containing four submodules to cover relevant 

aspects of earthworm modeling: Environment, Behavior (Feeding and Movement), 

Toxicokinetics/Toxicodynamics (TKTD), and Population Dynamics. In practical 

terms, the Environment module is linked to an IBM containing movement, TKTD, 

and population submodels from which earthworm population dynamics emerge. The 

Environment module utilizes outputs from pesticide exposure models (e.g., PEARL, 

PELMO, HYDRUS), providing spatially and temporally explicit information on soil 

moisture, temperature, organic matter content, bulk density, and total and porewater 

pesticide concentrations. The behavior module simulates the feeding and vertical 

movement of different species representing four major ecological categories of 

earthworms using a trait-based approach. The TKTD module covers the toxicity of 

pesticides to earthworms using the General Unified Threshold model of Survival 

(GUTS, Jager et al. 2011; Jager and Ashauer 2018) for lethal effects and Dynamic 

Energy Budget ((DEB)-TKTD, Jager et al. 2006; Jager 2019) models for sublethal 

effects. The population module incorporates existing population models of different 

species (e.g., Johnston et al. 2014a, 2014b, 2015, 2018). Before use in regulatory risk 
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assessments, all modules should be evaluated independently and be designed to allow 

for updating when additional knowledge becomes available (EFSA 2014). Preferably, 

the evaluation, release, and version control of the effect model versions could take 

place within the already existing framework for the version control of pesticide fate 

models, i.e., the EFSA Chaired FOCUS Version Control Group. 

During the workshop, participants from academia, regulatory authorities, 

CROs, and industry were divided into four workgroups. These workgroups examined 

different parts of FORESEE and addressed various questions relevant to earthworm 

mechanistic effect modeling: risk assessment, earthworm ecology, uptake routes, 

extrapolation and testing against experimental datasets, and ecotoxicological study 

needs and data gaps.  

Workgroup 1 focused on how model outputs could fit into future risk 

assessment procedures for earthworms. Participants discussed how the ecotoxicity 

assessment and fate inputs fit into the modeling approach. Furthermore, they explored 

how FORESEE outputs could be used to refine the risk assessment of earthworms in 

different ways and how the modeling approach fits into the tiered ERA employed 

under EU regulatory requirements.  

Workgroup 2 focused on earthworm ecology. The group discussed the main 

factors governing the behavior of important ecological groups of earthworms in arable 

soils and whether their movement could be described by a set of behavioral traits. 

Furthermore, the workgroup looked at other traits, such as reproduction, vertical 

distribution, and feeding type, and how such traits likely influence the movement of 

earthworms. The modelers confronted model assumptions with knowledge on 

earthworm ecology provided by the rest of the group, and in this way, tested whether 
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the model is sufficiently realistic while being generally applicable to different 

earthworm species.  

Workgroup 3 focused on exposure of earthworms, uptake routes, and TKTD 

modeling. Participants discussed relevant pesticide exposure routes (dermal vs. oral) 

and concentrations (porewater vs. total soil or litter concentrations) of pesticides for 

earthworms. Their discussions included the influence on exposure of different soil 

properties (e.g., organic matter), model calibration with laboratory toxicity tests, and 

multiple pesticide applications.  

Workgroup 4 focused on species extrapolation and testing to increase the 

validation status of the model. The species typically used in laboratory experiments to 

evaluate pesticide risks often differ from those characteristic of relevant field habitats. 

Therefore, species extrapolation and model testing to increase the validation status 

were considered within the same workgroup. The workgroup discussed models to 

extrapolate ecotoxicological sensitivity across species and how to address data gaps. 

In addition, issues related to data availability and requirements for model evaluation 

were discussed. 

In this workshop synthesis, we present the perspectives of each workgroup and 

highlight how the collaborative effort involving multiple stakeholders and 

representing a diversity of scientific expertise was able to reach consensus on a suite 

of recommendations and priorities for future work to develop FORESEE into an 

implementable tool for pesticide risk assessment in the EU.  
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Key Findings 

Risk Assessment (WG 1) 

The current risk assessment scheme (SANCO/10329/2002) has a gap between 

the risk assessment tiers. There are currently only a few intermediate refinements of 

risk (e.g., laboratory tests using natural soils or additional test species) between the 

Tier 1 risk assessment using the chronic laboratory study and the higher tier 

assessment based on a field study. We identified several levels of the risk assessment 

in which modeling tools can be used. In the lower tier risk assessment, a model could 

be used to understand the impact of soil properties and bioavailability on the toxicity 

to soil organisms. Likewise, a model combining the realistic movement of earthworms 

(e.g., in relation to soil moisture or food availability) with a spatiotemporal exposure 

profile could help to generate refined exposure endpoints. Those endpoints could be 

used to calculate a refined TER, based on the simulated movement and resulting 

exposure. At the next tier, a potential advance would be to combine this 

spatiotemporal exposure pattern with TKTD modeling following the principles 

outlined in EFSA’s scientific Opinion on TKTD modeling (EFSA 2018) to predict 

risk at the level of individuals. Another use of the models could be to compare the 

Tier 1 assessment with the field study to check on the degree of conservatism of the 

Tier 1 assessment. However, the current standard chronic earthworm laboratory study 

(OECD 2017) is mainly suitable for setting NOECs and/or EC10s but is not adequate 

for parameterizing effect models. The standard study does not provide information on 

the time course of effects and cannot differentiate between reproductive effects and 

mortality of newly hatched juveniles. An option could be a modified test to allow 

counting of cocoons and assessment of hatching rate, in addition to the direct 

measurement of juvenile production. Moreover, the results of the Tier 1 laboratory 
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chronic test are based on nominal pesticide concentrations, as there is no requirement 

to measure soil or tissue concentrations. So for modeling to be used to refine risk 

assessments, new study designs that increase the number of recorded parameters are 

needed. 

Furthermore, environmental conditions and farming practices vary across 

regions and crops. Modeling could facilitate the extrapolation of the findings from the 

conditions under which the field studies were conducted to other conditions. As for 

Tier 1 data, measuring the exposure profile in the field is necessary. Following 

successful validation, the model could then be used to extrapolate to the relevant 

untested conditions such as other regions, crops, good agricultural practices (GAPs), 

or across multiple years. Modeling could also be used to inform the revision of the 

risk assessment scheme. For instance, it could be used in conjunction with field 

studies to calibrate the lower tiers of the risk assessment or assess the relevant soil 

depth at which to apply the PEC to be used in standard risk assessments. Finally, 

modeling could be used for interpretation of field study results and exploration of 

mitigation and compensation options.  

If exposure models are used to provide input for the modeling, the resolution 

of data has to be considered. Some current EU regulatory pesticide fate models 

include sufficient temporal and spatial resolution (e.g., FOCUS, PEARL) but are only 

suitable for simulating uniform application scenarios, such as spray applications to the 

crop or soil surface, or applications by injection and incorporation into the soil (Van 

den Berg et al. 2016). If the application is not homogenous (e.g., drip application, tree 

row application, or precision farming), the fate models will need a higher spatial 

resolution to produce outputs useful for higher-tier ERAs. Although high-resolution 



 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

two-dimensional fate models exist, such as HYDRUS (Šimůnek et al. 2012) or 

2DROPS (Agatz and Brown 2017), they are not yet open access.  

As is the case for all models used for ERA, it is critical that FORESEE is 

evaluated and documented thoroughly following the principles of Good Modeling 

Practice as recommended by EFSA (2014). Evaluation options include testing against 

additional laboratory and field studies, sensitivity and robustness analysis (i.e., 

pushing the limits of the model and testing its domain of applicability), evaluation of 

submodels in fit-for-purpose studies, and using results of control and toxic standard 

treatments from field studies. In addition, an uncertainty analysis of assessments based 

on the model, model assumptions, and parameterizations would need to be included – 

also in comparison to standard assessment procedures (EFSA 2018; 2019). 

Scenarios need to be clearly defined to represent relevant environmental 

conditions, and the fate models must provide the necessary inputs for temperature and 

soil moisture. However, scenarios that have been chosen to be worst-case from a 

pesticide fate perspective may not be worst-case from an ecological perspective (e.g., 

if dry conditions during the exposure window keep the earthworms in deeper soil 

layers). Thus, the fate scenarios need to be evaluated to ascertain whether they are 

sufficiently worst-case from an ecological perspective to determine whether new 

scenarios are needed. Models are acknowledged as a useful tool for understanding 

processes or simulating effects that cannot be tested in the laboratory, such as effects 

of repeated exposure over multiple years or extrapolation to other GAPs. Furthermore, 

they can help to calibrate the risk assessment, e.g., from Tier 1 to reference tier (field), 

as well as for refining the risk estimates and addressing uncertainties associated with 

realistic conditions when Tier 1 ERA identifies a non-acceptable risk. 
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Earthworm Ecology and Behavior (WG 2) 

Earthworm vertical movement plays an important role in population-level 

exposure to pesticides in the field. Understanding how different earthworm species 

move in response to environmental changes is crucial for effective risk assessments of 

pesticides in soils. In general, earthworm movement is determined by the ecological 

category to which they belong and various abiotic and biotic factors (Roeben et al. 

2020).  

Earthworms are often categorized into three ecotypes: epigeic, endogeic, and 

anecic (Bouché 1977; Bottinelli et al. 2020). Epigeic (surface-living) and anecic 

(vertical burrowing) earthworms rely on leaf litter at the soil surface for habitat 

(epigeic only) and food, whereas geophagous endogeic earthworms live in temporary 

horizontal burrows in the mineral soil (Jégou et al. 1998; Capowiez et al. 2014). 

Distinct patterns of movement and surface activity across earthworm ecological 

groups, together with the environmental fate of different pesticide applications, can 

strongly influence pesticide exposure through the soil profile. Accurate assessments of 

pesticide effects on earthworm populations necessitate the consideration of each 

ecological group (Tomlin 1992). Ecotypes might not always explain the behavior 

observed in the field, but are currently the most accepted concept and therefore chosen 

as model categories. Differences in reaction to changes in environmental parameters 

might also be observed not only between species – but also between juvenile and adult 

worms of one species, leading to different movement ranges and distribution patterns 

over time. 

Eisenia fetida, Aporrectodea caliginosa, and Lumbricus terrestris are often 

mentioned as representative species of epigeics, endogeics, and anecics, respectively 
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(Lee 1985). However, the position of L. terrestris within these ecological categories, 

as defined by Bouché (1977), has been questioned. Many authors refer to L. terrestris 

as epi-anecic rather than anecic (e.g., Hoeffner et al. 2019) due to differences in diet 

and behavior. Epi-anecic species first build a burrow or shelter and subsequently use it 

to forage at the soil surface, whereas anecic species (also referred to as “true anecic”) 

burrow more continuously in the soil and thus ingest more soil (Ferrière 1980; 

Bastardie et al. 2005). To fully represent earthworm ecotypes (and thus communities) 

currently found in agricultural lands, the workgroup decided that for a model to be 

applied in soil risk assessment, four main ecotypes are needed: epigeic, endogeic, epi-

anecic, and anecic. Different species can be used to represent these ecotypes, and 

good examples are: Lumbricus castaneus for epigeics, A. caliginosa for endogeics, L. 

terrestris for epi-anecics, and Aporrectodea nocturna or Aporrectodea longa for 

anecics. E. fetida is also used to represent epigeics, primarily because so much data 

are available for this species. 

The reliability of population models fundamentally depends on the availability 

of data, and the suitability of different earthworm species for population models 

depends on the ecotypes most at risk. Individual-based models, for instance, require 

detailed information on the biology and behavior of the modeled species at the 

individual- and population levels, both for model development and model validation. 

Across earthworm ecotypes, abiotic factors play an important role in driving 

movement behavior, and thus also the possible exposure to a pesticide. Four 

environmental variables have been identified as critical and feasible to be used for 

simulating the behavior and vertical movement of earthworms: soil water potential 

(Gerard 1967; Holmstrup 2001), soil organic matter content (Le Couteulx et al. 2015; 

Frazao et al. 2019), temperature (Eriksen-Hamel and Whalen 2006), and bulk density 
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of the soil (Kretzschmar 1991). For anecic and epi-anecic species, light is an 

additional factor to be considered (Nuutinen et al. 2014). Roeben et al. (2020) provide 

a detailed review of the effects of biotic and abiotic factors on the vertical movement 

of earthworms.  

IBMs have the advantage of allowing interaction between an individual and its 

virtual environment. The identified environmental variables that influence the 

movement of earthworms are stored in the modeling environment, which is 

represented through patches in a spatially-explicit setting. One approach to 

incorporate the simultaneous influence of these four environmental variables on 

earthworm movement in an IBM is a patch quality index. This index is also part of the 

modeling environment and determines the movement decisions of individuals in the 

movement module. The index scales the attractiveness of each soil patch according to 

the four variables from 1 (attractive) to 0 (not attractive). In this way, the quality index 

can account for the combined effects of temperature, soil water potential, organic 

matter content, and bulk density on earthworm movement. To be able to represent the 

different ecotypes and their preferences realistically, the workgroup suggested a 

dynamic trade-off between the following factors: 

• If temperature and water potential are within a defined performance range, 

organic matter content should be most important.  

• If temperature and water potential are outside this range, organic matter 

content has no importance.  

• The last factor is the bulk density, which inhibits the movement of earthworms 

with increasing density. 
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The performance ranges, slopes, and threshold values depend on the ecotype/species 

modeled and should be fitted to laboratory and field data individually. Thereby, the 

patch quality index can cover the different importance of factors for different 

ecotypes.  

Besides the abiotic factors listed above, other factors, including exposure to 

pesticides, food availability, avoidance behavior, inter-species interactions, spatial 

competition, and intra-species interactions, can also affect the movement of 

earthworms and, therefore the risk of exposure (Uvarov 2017; Capowiez and 

Belzunces 2001). The workgroup discussed the possible extent of the different 

influences. Most of the workshop participants concluded that these features do not 

necessarily need to be included in the model, depending on the level of realism 

required to address the specific question at hand and considering trade-offs between 

generality and realism. However, some participants recommended that the relevance 

of these features ought to be analyzed in a sensitivity analysis prior to considering 

trade-offs between simplification and realism. If identified as important, they should 

be considered for inclusion in the model to increase reliability of model outputs. 

In some cases, there may be a lack of available data, which has to be 

acknowledged when choosing a modeling approach. For the epigeic and endogeic 

ecotypes, it is assumed that mating takes place when earthworms meet another 

individual randomly within the soil. For epi-anecic species, foraging is the primary 

driver for movement on the soil surface, and if two adult individuals meet, the 

earthworms may mate and reproduce, depending on the season.  

The workgroup concluded that the development of a trait-based approach for 

the movement of earthworms is possible but data-intensive. A list of necessary data 
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and existing knowledge gaps for representative earthworms from the given ecological 

categories can be found in Table 1. Ideally, an energy-budget model is available for 

the representative species of each ecotype. Furthermore, data on mortality and 

longevity of the species are needed and how these traits are influenced by abundance. 

Moreover, information about preferences towards the four environmental factors 

determining movement is essential. Finally, information on behavioral aspects is 

necessary, such as the percentage of time spent on different activities. This includes 

the time spent foraging at the surface, burrowing, moving in existing burrows, and 

being inactive. It is crucial to be aware that these traits and preferences can change 

with developmental stage and exposure, and juveniles will likely have different traits 

than adults. For the four ecotypes, knowledge gaps that have to be filled for a trait-

based movement model to be implemented have been identified. For some categories, 

the data gaps are greater than others (Table 1), but population models are available for 

three of the four groups, whereas a model for “true” anecics still needs to be 

developed (Johnston et al. 2014a, 2014b, 2015, 2018). 

Uptake Routes (WG 3) 

Extrapolation of effects from standardized laboratory toxicity tests to effects in 

the environment is challenging because it requires several extrapolation steps. Using a 

TKTD framework, in combination with soil fate modeling, allows the use of 

mechanistic modeling to facilitate the required extrapolations. At first, the exposure to 

a substance with specific physicochemical characteristics in the artificial soil used in 

the laboratory toxicity tests has to be translated to different real soil types in the 

environment. In comparison to current methods, this translation can be made more 

accurate by explicitly modeling the fraction of active ingredient in porewater and 
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sorbed to particles in both systems (i.e., in the laboratory toxicity test and in the 

environment) (Li et al. 2020). 

Relevant chemical properties include the partitioning coefficient KD (or the 

organic-carbon normalized variant KOC), which describes the partitioning of a 

chemical between the water and soil phase and, therefore its availability for transport, 

uptake, and subsequent effects. This partitioning is influenced by soil composition, for 

example, the amount of organic carbon, but also by the actual soil water content. For 

ionizable chemicals, also the pH and speciation information, such as pKa values, are 

informative. Ultimately, biodegradation rate constants need to be considered as they 

capture the decline of chemicals. 

The second extrapolation requires accounting for different uptake routes (e.g., 

via skin, via gut), which are of different relative importance for different earthworm 

species (e.g., different movement patterns, different food sources including litter). 

Currently, this is not explicitly accounted for in the risk assessment, though some 

would argue that differentiating between uptake routes in the standard ERA may not 

be needed if it is sufficiently conservative. This limitation could be overcome by using 

the internal pesticide concentrations in the earthworm. The extrapolation can be made 

more accurate by a two-step TKTD approach (Ashauer and Escher 2010). In the first 

step, the different uptake routes are simulated to calculate the time-variable internal 

exposure (approximated as whole body residues). This is proposed to be done when 

analyzing the laboratory toxicity study, and when simulating effects in the 

environment. In a second step, the effects (toxicodynamics) are simulated using the 

internal pesticide concentration as the forcing variable. This can be done when 

analyzing the laboratory toxicity study to calibrate the TKTD model and when 

predicting effects in the environment.  
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For the endpoint survival, this approach is termed full-GUTS (Jager et al. 

2011; Ashauer et al. 2016), and the same principle can be applied to DEB-TKTD to 

account for sublethal effects. GUTS is considered ready to be used in risk assessment 

in the EFSA scientific opinion on TKTD for aquatic organisms, and although the 

DEB-TKTD modeling approach is currently limited to research applications, its 

potential for future use in ERA for pesticides is recognized (EFSA 2018). Key aspects 

of TKTD modeling can be transferred from the aquatic to the terrestrial risk 

assessment, in particular the calculation of exposure multiplication factors (Ashauer et 

al. 2013, EFSA 2018) as well as many recommendations for model calibration. This 

same document (EFSA 2018) recommends strict requirements for the validation of 

models.  

For uptake of pesticides into soil organisms, it is essential to consider 

bioavailability as there are multiple compartments of the soil in which the pesticide 

can be present (in porewater and sorbed to soil organic matter and soil mineral 

particles) and bioavailable to different extents. Pesticide properties, such as 

partitioning coefficients or biodegradation rate constants, and soil properties, 

including water content, pH values, and organic carbon content, can influence 

partitioning of the pesticide in soil. These properties can result in different 

concentrations in porewater, sorbed to soil organic and soil mineral particles, and in 

the soil pore airspace and, therefore, in differences in bioavailability. Thus, pesticide 

exposure depends on local conditions, pesticide properties, and earthworm ecology 

(e.g., movement, food sources). The pesticide distribution in the soil can be modeled 

using fate models, but these need to be extended to include the additional effects of 

soil properties that influence bioavailability if internal concentrations are to be 

predicted. Modeling uptake from porewater and soil particles via skin and uptake from 
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particles via the gut accounts for bioavailability (relative contributions of the different 

compartments) in pesticide uptake and effects. 

The model by Jager et al. (2003) is a good starting point for accounting for 

general uptake via dermal exposure versus feeding. We are not aware of any 

alternative, however additional experimental work will be required to underpin the 

tentative relationship between log Kow and uptake rate constants established by Jager 

et al. (2003) with a larger database and to account for confounding factors related to 

bioavailability. This is important because the rate constants acquired from 

experiments as described by Jager at al. (2003) may depend on environmental 

variables, e.g., soil properties, soil water content or temperature. Thus, new 

experimental and data analysis protocols are needed to disentangle the influence of 

environmental variables and substance properties on rate constants. The approach of 

acquiring uptake and elimination rate constants for both exposure routes (dermal and 

oral) via the partition coefficient, log Kow, is based on only three example compounds 

with a rather high log Kow and is subject to the limitations described above 

(dependency on experimental variables). Until this relationship is made more robust 

with more data covering a wider range of log Kow values, and disentangled from 

experimental variables, it is better to measure the actual uptake rates via gut and skin 

for each compound under investigation and in each soil type of interest. The 

limitations described here can be overcome by modeling the fate and distribution of 

test substances in the soil of the laboratory experiment in combination with TKTD 

modeling. Such data analysis may be able to disentangle the influence of 

environmental variables, and bioavailability, on TK rate constants from their 

relationship with substance properties. 
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Specifically, there is a need for toxicity tests for more and specifically low 

sorbing compounds to evaluate the usefulness of the whole approach, i.e., the 

combination of soil fate modeling with two-step TKTD modeling. Validation 

experiments can include laboratory toxicity tests with different soils and compounds 

(to evaluate if bioavailability is properly accounted for) as well as experiments with 

different exposure patterns and field studies (see also next section). 

Understanding the bioavailability and actual exposure in the toxicity test used 

for model calibration is essential because it enables better extrapolation to different 

soils in the environment. Including measurements and/or model simulations of 

pesticide fate in the chronic earthworm study (OECD 2017) would be a step towards 

providing a more relevant exposure estimate within current testing schemes.  

Cross-Species Extrapolation and Model Testing (WG 4) 

For earthworms, as for most taxa, a major issue hampering between-species 

extrapolation is that the relevant field species are not tested in the laboratory on a 

routine basis, and species may differ in their sensitivity and traits. As a consequence, 

the evaluation of TKTD models and population models based on laboratory data, by 

comparing them with field studies, is associated with additional challenges. The 

suitability of models developed for a laboratory test species, such as E. fetida, for field 

species remains uncertain and may be inaccurate if species vary in inherent sensitivity 

and traits. 

From previous studies, it has been shown that earthworms can have different 

inherent sensitivities to chemicals, including pesticides (Ma and Bodt 1993; de Lima e 

Silva et al. 2017; Römbke et al. 2017). In a meta-analysis of species sensitivity, Pelosi 

et al. (2014) found that reported LC50 values for more widespread and ecologically 
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relevant earthworm taxa were, on average, significantly lower than for E. fetida. This 

finding is indicative of a systematic lower sensitivity of this widely tested species that 

needs to be considered in any modeling framework. Whereas this difference in 

sensitivity has been observed for lethal effects, little is known regarding which traits 

explain the differences in inherent sensitivity, and sublethal endpoints for non-

standard test species are difficult to determine. 

Explicitly addressing differences in species sensitivity in mechanistic effect 

models ideally involves the identification of potential underlying causes for cross-

species differences. Several characteristics of a species related to a) phylogeny, b) 

physiology, morphology, ecology, and c) gene and protein expression, are likely to 

provide mechanistic explanations for sensitivity differences among species. Species 

sensitivity can be represented by summary statistics, like LC50 or NOEC, but 

approaches for predicting TKTD model parameters are more likely to succeed as the 

model parameters are biologically meaningful (Ashauer and Jager 2018; Gergs et al. 

2019). Van den Berg et al. (2020) hypothesize that models related to physiology, 

morphology, and ecology exhibit the highest prediction power for TK parameters, 

whereas gene and protein expression models may exhibit the highest prediction power 

for TD parameters. 

As for TK parameters, a wide range of physical and ecological traits can 

potentially affect exposure and uptake. These include skin and gut wall morphology 

and structure; the role of the gut microbiome, which varies between species; body size 

in relation to passive diffusion (also applicable for life stage sensitivity); gut residence 

times; lipid content and metabolic capacity (Phase I, II, and III enzyme activities) of 

species. Some of these trait data are simple to measure and can be collected fairly 

easily for widespread earthworm species, whereas others will be difficult to fully 
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characterize. In the latter cases, it may be more efficient to categorize traits relating to 

TK by assessment of rates based on screening metabolism of different model 

compounds, rather than through detailed mechanistic prediction that attempts to cover 

all substances. 

TD traits that determine sensitivity include the presence, structure, and 

functional motif of potential molecular targets for the chemical, the extent of damage 

resulting from a given level of exposure, as well as repair mechanisms. Gene and 

protein expression-based approaches are available for the assessment of these 

characteristics and can identify the presence of putative target orthologues, such as 

with the ECOdrug tool (Verbruggen et al. 2018). For a more detailed target-specific 

sequence analysis, the SEQUAPASS tool supports orthologue identification, as well 

as motif and specific residue level analyses (LaLone et al. 2016). The underlying 

assumption inherent in these tools is that the presence of an orthologue in a species is 

likely to be associated with higher sensitivity. In addition, species that possess 

orthologues containing conserved ligand binding motifs and key residues associated 

with strong ligand interactions will be more sensitive than species that lack strong 

ligand binding domains or residues. These assumptions have been tested in a number 

of selected case studies (Gunnarsson et al. 2008; LaLone et al. 2017). However, the 

complexities of genome evolution, including gene family expansion and reduction as 

well as gene and even whole genome duplications, mean that these tools are still far 

from being at a stage in which they fully capture all TD processes that may influence 

sensitivity.  

If sufficiently reliable models for the extrapolation of species sensitivity 

towards different chemicals are available, or in cases for which laboratory toxicity 

data are available for the parameterization of effect models for relevant field species, 
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confidence in population models can be increased based on field toxicity trials. An 

example of population-level testing is reported in Johnston et al. (2018). The use of 

effect data for testing TKTD models derived from field studies is limited, but field 

data could be used to partially (e.g., initial decline in abundance) validate predictions 

from TKTD models such as GUTS. It is recognized that both the range and ranking of 

species sensitivities may vary considerably among compounds, and pragmatic 

approaches for dealing with this are needed.  

Any move to apply mechanistic models for modeling pesticide impacts in 

earthworms will require a change in current testing procedures. The current chronic 

earthworm test involves the assessment of survival on day 28 only and measurement 

of reproduction at test termination (day 56). Development of process-based 

approaches such as TKTD models, however, requires data at a higher temporal 

resolution. Designs that include measurement of survival at regular times for 

parameterization of TKTD models, such as GUTS, are potentially easy to conduct by 

extending exposure time and increasing observations of mortality to at least four time 

points. A challenge for such studies with earthworms is simply that soil, unlike water, 

is not transparent. Consequently, each measurement involves disturbing the test 

system (e.g., by hand sorting), raising the issue of stress and potential mechanical 

damage. Alternatively, a destructive sampling design could be used, though this 

would require additional replicates. For DEB model application, the slow rate of 

earthworm development and the extended timescale of reproduction mean that life-

cycle tests measuring juvenile and adult traits over time are unlikely to be feasible, 

and if conducted, would need to take compound fate into consideration. It should also 

be noted that for many field-relevant species, following individuals from birth through 

adulthood and reproduction is not practical. Approaches that separately measure 
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juvenile growth and adult reproduction have been proposed and could form the basis 

of a suitable method for time series data collection (Van Gestel et al. 1991; Spurgeon 

et al. 2003). Given the intricacies of TKTD model development and parameterization 

for a long-lived soil-dwelling species, a further challenge is how to validate model 

predictions for those species. One approach is to use mechanistic measurements, such 

as internal concentrations or measurements of tissue “damage” (although difficult to 

define) for the testing of model components. However, the targeted nature of such 

measurements means that they may only validate one parameter, rather than the output 

of the model as a whole. Therefore, validation of TKTD model predictions on the 

level of survival or reproduction based on laboratory validation tests is recommended. 

Ideally, the conditions for experiments for validation purposes should be 

different from those in the calibration experiment and reflect the (regulatory) question 

to be addressed by the model. Examples include variation of exposure duration, 

spatial variation of exposure, variation in time scale (temporal extrapolation), or 

variation in environmental conditions such as soil properties affecting chemical fate 

and exposure, and earthworm movement and population structure. 

Priorities for Future Work 

We conclude that a mechanistic modeling approach, linking appropriate 

environmental variables, reflecting defined scenarios, TKTD processes, and 

movement behavior, can provide realistic individual- and population-level predictions. 

This approach offers promise for improving scientific understanding and informing 

pesticide risk assessment for earthworms in the EU regulatory framework. With that 

said, we have identified several areas in which more work is needed to allow 

FORESEE to reach its full potential. Moreover, we provide several recommendations 
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for moving this initiative forward. Filling the remaining data gaps identified by 

workshop participants would enable FORESEE to achieve its full potential as a tool 

for refining risk and to address uncertainties in the present risk assessment for 

earthworms exposed to pesticides. These are shown in Table 2. 

Recommendations 

We recommend: 

• Further developing FORESEE as a mechanistic effect model that could be 

applied for pesticide risk assessment and parameterized for relevant earthworm 

ecotypes represented in European agricultural systems. 

• Additional assessment of the differences in species sensitivity between 

standard test species and more ecologically relevant earthworm species for 

different compounds, as species sensitivity can vary between chemicals. 

• Further investigation of the relevance of impacts of abiotic and biotic factors 

on the movement of earthworms. 

• Employing a data-informed, trait-based approach to simulate a set of 

representative earthworm species using a framework considering four 

ecotypes, which we believe to be sufficient for capturing earthworm 

behavioral traits regarding movement patterns in the soil. Traits to include 

describe moving and burrowing behavior and niche characteristics (i.e., 

tolerance to drought, temperature, soil bulk density, and food conditions). 

• Modeling and/or measuring internal concentrations (body residues) as a step to 

account for different routes of uptake (e.g., dermal, gut) as a refined option in 

the tiered risk assessment scheme. 
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• Measurements of organism size, mortality, and reproductive output at 

intermediate time points in laboratory toxicity studies to facilitate 

parameterization of TKTD modeling (GUTS and DEB-TKTD). This will 

require a reassessment of the standardized approach currently used for 

earthworm toxicity testing, especially for the measurement of reproduction for 

intermediate time points. In addition, substantial additional effort will be 

involved as either soil will need to be changed at each sampling, or additional 

replicates will be needed to allow destructive sampling. 

• Further developments of FORESEE for possible use in EU pesticide risk 

assessment following EFSA’s guidance for good modeling practice, including 

detailed and transparent model documentation. This includes the consideration 

of model uncertainty. 

• Version control of effect models in order for them to be used in the EU 

registration procedure. Version control can be done within the existing EFSA-

Chaired Version Control Workgroup for pesticide fate models. 

• Organization of a follow-up working group or targeted workshop to establish 

detailed experimental designs for robust model calibration and evaluation. 

• Broad stakeholder engagement to achieve agreement on the data sets that 

FORESEE should be tested against, validation of study designs, and other 

criteria for model evaluation to increase the validation status of the effect 

models.  

• Broad scientific discussion to gain consensus on appropriate ecological 

scenarios in which to assess risk using FORESEE given that scenarios used to 
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derive worst-case pesticide fate estimates may not be appropriate for modeling 

earthworm risk.  

• EFSA to critically consider the key findings and recommendations from this 

workshop together with other relevant reports or published scientific 

information during the revision of their guidance for risk assessment of soil 

organisms to improve the linkage of exposure and effects and address other 

knowledge gaps in current ERA practice.  

• Establishing a formal and transparent mechanism to ensure that models for 

pesticide risk assessment in the EU can be effectively and efficiently 

evaluated. 

We acknowledge that current approaches to pesticide risk assessment include 

uncertainties with regard to spatiotemporal variation in pedological, climatic, and 

biological conditions, agronomical practices, and complexities occurring at the 

landscape scale (Topping et al. 2020). However, we conclude that mechanistic effect 

modeling of the kind described here can help to quantify and reduce uncertainties in 

ERA by providing improved integration of exposure and effects and by incorporating 

different pesticide application scenarios and greater ecological realism.  
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Table 1. Data availability, identified by work group 2, for the development of realistic 
population modules for different earthworm species representative of four earthworm 
ecotypes. Ticks represent available data, (lit.) indicates that the data are available from 
the scientific literature, - indicates not available, and question marks require a 
literature review to identify whether the data are available.  

 

 Lumbricus 
terrestris 

Aporrectodea 
longa 

Aporrectodea 
caliginosa 

Eisenia fetida / 
Lumbricus castaneus 

 epi-anecic anecics endogeics epigeics 

Energy budget √ √ √ √ - 

Mortality rate ? ? ? ? ? 

Temperature preference √ (lit.) ? √ (lit.) √ (lit.) ? 

Soil water potential 
preference 

√ (lit.) √ (lit.) √ (lit.) √ (lit.) ? 

Soil organic matter 
preference 

- ? √ - - 

Bulk density preference √ ? √ - - 

Mating as surface √ - - √ √ 

% time at surface √ ? √ √ √ 

% time burrowing √ ? (lit.) √ √ √ 

% time displacing √ ? (lit.) √ √ √ 
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% time inactive √ ? (lit.) ? (lit.) ? ? 

 

Table 2. Main data gaps for earthworms in the context of this workshop on soil 
organism pesticide risk assessments and how filling them would improve ERA. 

 

Data Gap Needed for 

Definition of realistic worst-case 
environmental scenarios for modeling (spatial 
and temporal scales, number of spatial 
dimensions, soil and climate variables) and 
establishing link to existing exposure models 

Relevant data for FORESEE’s environment 
module 

Intermediate measurements of survival, 
growth, and reproduction in chronic 
earthworm study 

Time course data to parameterize GUTS or 
DEB-TKTD 

Toxicity test results for different soils and 
chemicals with a range of Log Kow values 

Proof of concept with a short term benefit to 
the existing risk assessment as it could be used 
to replace the arbitrary correction factor of 2 
when log Kow > 2 

Measured dermal and oral uptake rate 
constants for a wide range of Log Kow values 
disentangled from experimental variables (e.g. 
soil type, water content) 

Establishing the relationship between uptake 
rate constants and substance properties (e.g. 
log Kow) whilst accounting for bioavailability  

A few comprehensive studies with 
measurements of several state variables (e.g., 
concentrations in bulk soil, porewater and 
earthworms & toxicity, over time)  

Better system understanding and evaluation if 
model complexity is appropriate 

Ecological studies Data on movement differences among 
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earthworm ecological categories 

Tests of inherent toxicity in multiple worm 
species 

Data needed for cross-species extrapolation 
and to distinguish sensitivity differences from 
exposure differences 

 

 




