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COVID-19 and the epistemology of epidemiological models at the dawn of AI 

George TH Ellison 

Centre for Data Innovation, Faculty of Science & Technology, University of Central Lancashire, Preston, UK; 

gellison@uclan.ac.uk; ORCID: 0000-0001-8914-6812 

Summary 

The models used to estimate disease transmission, susceptibility and severity determine what epidemiology 

can (and cannot tell) us about COVID-19. These include: ‘model organisms’ chosen for their 

phylogenetic/aetiological similarities; multivariable statistical models to estimate the strength/direction of 

(potentially causal) relationships between variables (through ‘causal inference’), and the (past/future) value of 

unmeasured variables (through ‘classification/prediction’); and a range of modelling techniques to predict 

beyond the available data (through ‘extrapolation’), compare different hypothetical scenarios (through 

‘simulation’), and estimate key features of dynamic processes (through ‘projection’). Each of these models: 

address different questions using different techniques; involve assumptions that require careful assessment; 

and are vulnerable to generic and specific biases that can undermine the validity and interpretation of their 

findings. It is therefore necessary that the models used: can actually address the questions posed; and have 

been competently applied. In this regard, it is important to stress that extrapolation, simulation and 

projection cannot offer accurate predictions of future events when the underlying mechanisms (and the 

contexts involved) are poorly understood and subject to change. Given the importance of understanding such 

mechanisms/contexts, and the limited opportunity for experimentation during outbreaks of novel diseases, 

the use of multivariable statistical models to estimate the strength/direction of potentially causal 

relationships between two variables (and the biases incurred through their misapplication/misinterpretation) 

warrant particular attention. Such models must be carefully designed to address: ‘selection-collider bias’, 

‘unadjusted confounding bias’ and ‘inferential mediator adjustment bias’ – all of which can introduce effects 

capable of enhancing, masking or reversing the estimated (true) causal relationship between the two 

variables examined.1 Selection-collider bias occurs when these two variables independently cause a third (the 

‘collider’), and when this collider determines/reflects the basis for selection in the analysis. It is likely to affect 

all incompletely representative samples, although its effects will be most pronounced wherever selection is 

constrained (e.g. analyses focusing on infected/hospitalised individuals). Unadjusted confounding bias 

disrupts the estimated (true) causal relationship between two variables when: these share one (or more) 

common cause(s); and when the effects of these causes have not been adjusted for in the analyses (e.g. 

whenever confounders are unknown/unmeasured). Inferentially similar biases can occur when: one (or more) 

variable(s) (or ‘mediators’) fall on the causal path between the two variables examined (i.e. when such 

mediators are caused by one of the variables and are causes of the other); and when these mediators are 

adjusted for in the analysis. Such adjustment is commonplace when: mediators are mistaken for confounders; 

prediction models are mistakenly repurposed for causal inference; or mediator adjustment is used to estimate 

direct and indirect causal relationships (in a mistaken attempt at ‘mediation analysis’). These three biases are 

central to ongoing and unresolved epistemological tensions within epidemiology. All have substantive 

implications for our understanding of COVID-19, and the future application of artificial intelligence to ‘data-

driven’ modelling of similar phenomena. Nonetheless, competently applied and carefully interpreted, 

multivariable statistical models may yet provide sufficient insight into mechanisms and contexts to permit 

more accurate projections of future disease outbreaks. 

                                                           
1 These biases, and the terminology involved, may be challenging to readers who are unfamiliar with the use of causal path diagrams 
(such as Directed Acyclic Graphs; DAGs) which have been instrumental in identifying the different roles that variables can play in 
causal processes (whether as ‘exposures’, ‘outcomes’, ‘confounders’, ‘mediators’, ‘colliders’, ‘competing exposures’ or ‘consequences 
of the outcome’) and revealing hitherto under-acknowledged sources of bias in analyses designed to support causal inference. For 
what we hoped might offer accessible introductions to DAGs (and how [not] to use these) please see: Ellison (2020); and Tennant et al. 
(2019). For more technical detail on ‘collider bias’, ‘unadjusted confounding bias’ and ‘inferential mediator adjustment bias’ (and its 
related concern, the ‘Table 2 fallacy’), please refer to: Cook and Ranstam 2017; Munafò et al. (2018); Tennant et al. (2017); 
VanderWeele and Arah (2011); and Westreich and Greenland (2013). 

mailto:gellison@uclan.ac.uk
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“Since all models are wrong the scientist must be alert to what is importantly wrong. 

It is inappropriate to be concerned about mice when there are tigers abroad.”  

George Box (1976) 

 

Introduction 

The dynamic nature of infectious disease poses particular challenges for epidemiological models, and none 

more so than when the disease concerned is caused by a newly emerging pathogen about which little (if 

anything) is known (Lloyd-Smith 2015). Rapidly identifying and characterising the pathogen responsible, and 

estimating the parameters that determine and reflect its transmission and severity, are all the more critical 

when its potential impact is global, significant and uncertain. Yet the natural history of any infectious 

pathogen rarely survives sustained contact with its human hosts (Jackson 2002), and the resulting changes in 

behaviour (both individual and social; Funk et al. 2009) further complicate efforts to understand the 

progression of the disease. As we draw towards the end of the world’s initial encounter with COVID-19 – and 

with the benefit of a little hindsight – this Commentary aims to: examine the epistemological role(s) that 

epidemiological models have played during the course of the pandemic thus far; and reflect on George Box’s 

(1976) aphorism regarding ‘imperfect but useful models’ at the dawn of ‘Big data’ modelling and artificial 

intelligence (AI).  

Conceptualisation: ‘model’ organisms 

Although not strictly ‘models’ in the (statistical) sense that George Box intended, the use of ‘model 

organisms’2 as theoretical constructs to characterise and predict the likely nature and progression of novel 

diseases has a long history in epidemiology (Fuller 2020a; Rettner 2020). In the case of SARS-CoV-2 – the virus 

responsible for COVID-19 – a number of model organisms with established pandemic potential appeared 

apposite, including: two recently emerging human coronaviruses (SARS-CoV-1 and MERS-CoV, which are 

phylogenetically related to SARS-CoV-2); and the family of human respiratory viruses responsible for seasonal 

influenza and the 2009-10 swine flu pandemic (Callaway et al. 2020; Petersen et al. 2020; Yee et al. 2020; see 

Supplementary Table S1). Parameter estimates from previous research on these model organisms helped to 

generate projections (e.g. Ioannidis et al. 2020) and simulate the ‘reasonable best/worst-case scenarios’ (e.g. 

SAGE 2020) on which rapid epidemiological and public health responses could be prepared and deployed; 

while the transmissibility of influenza (Dorigatti et al. 2020; Ferguson et al. 2020) coupled with the severity of 

SARS and MERS (Park et al. 2020) lent these efforts an added sense of urgency (Ioannidis 2020; Paules et al. 

2020). However, as COVID-19 spread, and clinical data rapidly accumulated, the balance between ‘imperfect’ 

and ‘useful’ shifted amid growing realisation of the inherent (pathogen- and disease-specific; Whiting 2020; 

Paules et al. 2020) and extrinsic (outbreak- and context-specific; Burn-Murdoch and Giles 2020; Goldstein and 

Atherwood 2020) challenges facing the measurement of key parameters critical to the characterisation of this 

(or any novel) infectious disease (Lloyd-Smith 2015). While these challenges have inevitable consequences for 

the accuracy and precision of any such data, they also have a tendency to conflate ‘uncertainty’ (due to 

inaccuracy or imprecision in sampling and measurement) with ‘variability’ (due to inherent biological 

instability or variation) in the reported estimates of key disease characteristics (Fuller 2020b; Richardson and 

Speigelhalter 2020; see Supplementary Table S1).  

Description, ‘prediction’ and causal inference: analytical statistical models 

Epidemiologists are very familiar with the constraints that uncertainty and variability pose (Blower and 

Dowlatabadi 1994), though many adopt the view that – provided the risks of error and imprecision do not 

vary dramatically (or systematically); and provided there are enough data to moderate the risk of chance 

fluctuation – even suboptimal information can help provide insight, and can be used to generate foresight 

(Ashofteh and Bravo 2020; Ritchie et al. 2020; Woolf et al. 2020). It is on this basis that epidemiologists, 

statisticians and data analysts have – from the earliest stages of the COVID-19 pandemic – held their noses 

                                                           
2 ‘Model organisms’ are also those selected or developed for investigation/experimentation under controlled (often laboratory-based) 
conditions. 
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and set to work on whatever data have been available to: visualise patterns and summarise variation in the 

data (e.g. Lescure et al. 2020; Simeone 2020); draw comparisons between different datasets (Ritchie et al. 

2020); investigate associations between different characteristics and parameters (e.g. Korber et al. 2020); 

generate ‘predictions’3 (e.g. Qin et al. 2020); and infer causal mechanisms (e.g. Williamson et al. 2020). 

However, this is also the basis on which some data scientists are often content to use very large quantities of 

deeply flawed data (so-called ‘Big data’; Mondal et al. 2020; Wang et al. 2020) – with little concern for error 

(and little regard for bias; Ayyoubzadeh et al. 2020; Qin et al. 2020; Sun et al. 2020) – to identify patterns and 

relationships that risk being artefacts of whatever extraneous (and intrinsic) factors determine the coverage, 

availability and information-value of the data available (Arnold et al. 2020). 

Unlike the more obvious problems of measurement (which primarily affect the reliability, validity and 

consistency of the ‘raw’ data; Keogh et al. 2020; Raleigh 2020), the errors and biases that can arise from 

collating, summarising and analysing such data (Lash et al. 2014; Goldstein and Atherwood 2020; Shaw et al. 

2020) – particularly when analysis extends beyond description to comparison, ‘prediction’ and causal 

inference – are often hidden to all but the most expert eye (and even then may prove illusive, difficult or 

impossible to spot; e.g. Richiardi et al. 2013; Beggs et al. 2020).4 While collating data and summarising these 

to describe their distribution within any given population (or sample) also depends in no small part on the 

denominator concerned (which itself may be poorly specified, misunderstood or simply overlooked; Reyna 

and Brainerd 2008); the principal analytical and inferential biases facing comparative, ‘predictive’ and causal 

analyses stem not only from flaws in the sampling frame(s) used (Lash et al. 2009), but also from weaknesses 

in: the variables available and selected for consideration in the analyses; the parameterisation of the variables 

selected; the design of the statistical models used; and the interpretation of outputs therefrom (Arnold et al. 

2020). These biases can compound errors and inconsistencies in measurement, making even the most 

straightforward comparative analyses (such as those implicit within Supplementary Table S1) fraught with 

potential bias (Richardson and Speigelhalter 2020) – not least as a result of differences in the populations or 

contexts compared (Lourenço et al. 2020), and differences in the phase of any outbreak(s) therein (Sun et al. 

2020).  

For so-called ‘predictive’ analyses – which rely on the individual and joint information available from optimally 

parameterised variables (covariates or ‘predictors’) to accurately estimate/classify a disease characteristic or 

variable of interest – the availability of sufficient data from carefully selected covariates (each offering 

tangible contributions to the model) is key (Arnold et al. 2020). In these models, sampling variation (and 

associated selection bias; Ellenberg 1994) is much less of a concern, except in as much as this might affect the 

external validity of the model’s estimates/classifications (Fuller 2019). However, a critical weakness of these 

models is that they cannot be used for robust causal inference (i.e. to assess which of the included covariates 

                                                           
3 Such ‘predictions’ include the estimation (or classification) of unknown, unmeasured or poorly measured/specified variables either 
retrospectively (or, at best, in near real time) or prospectively (in the future) based on the information available from other 
known/measured covariates (so-called ‘predictors’). Both use statistical models (or ‘algorithms’) that have been ‘trained’ on datasets 
in which the ‘predicted’ variables have been (accurately) measured/specified. While the former better reflects ‘interpolative 
estimation/classification’ than ‘prediction’ in the literal sense, the latter generates ‘literal predictions/extrapolations’ that are 
nonetheless very different to the ‘predictive projections’ generated through modelling of the underlying processes theorised (or 
known) to be involved. In these, robust causal knowledge (both theoretical and empirical) is critical to the accuracy and precision their 
projections achieve. Widespread misunderstanding of the distinctions between these three forms of ‘prediction’ (‘interpolative 
estimation/classification’, ‘literal prediction/extrapolation’ and ‘predictive projection’; see Figure S1) underpin their misapplication 
and misinterpretation, and fuel much of the bias – and many of the errors – that pervade contemporary epidemiology and may yet 
undermine the application of machine learning and AI therein (Arnold et al. 2020).4,5  

4 This is why epidemiological best practice should not rely on ‘spotting’ errors and biases, and should instead assume such problems 

are possible (if not likely), and diligently search for, root out and address these in the same way that parametricians routinely evaluate 
whether their data are normally distributed and homoscedastic (and thereby comply with two key assumptions of many parametric 
statistical models). Indeed, contemporary best practice extends the optimisation of parameterisation further by evaluating whether 
categorisation, transformation or interaction terms are required to maximise the (individual and joint) information that covariates 
provide to ‘predictive’ models; with the resulting models then subjected to repeated testing and evaluation. Similar diligence is 
required when selecting which variables to include (and which to exclude) from the ‘covariate adjustment sets’ required to minimise 
the risk of confounding while avoiding ‘inferential mediator adjustment bias’ in models that support robust causal inference. All such 
models benefit from careful parameterisation, as well as from a fuller understanding of the questions they can address (and those 
they cannot).  
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might act as genuine or important causes of, and candidates for intervention on, the characteristic/parameter 

predicted; Greenland 1996). Nevertheless, they are commonly used as if they can and thereby invoke a form 

of inferential bias known as the “Table 2 fallacy”5 (Westreich and Greenland 2013) which can lead to 

fundamental misinterpretation of the causal relationships involved, with potentially dangerous implications 

for the focus and design of subsequent interventions (Eberhardt and Scheines 2007; Rehkopf et al. 2016).   

Indeed, robust causal inference requires very different statistical models since, unlike those designed to 

optimise ‘prediction’, analyses capable of supporting causal inference can be extremely vulnerable to 

‘selection-collider bias’ (or ‘collider stratification bias’; Cole et al. 2010), which can invalidate the causal 

interpretation of statistical relationships observed within discrete subsets of any population (Munafò et al. 

2018). They are also sensitive to inadequate/under-adjustment for potential confounders (VanderWeele and 

Arah 2007) and inappropriate/over-adjustment for mediators (‘inferential mediator adjustment bias’ or 

simply ‘over-adjustment bias’; Schisterman et al. 2009; Richiardi et al. 2013) – both of which can strengthen, 

attenuate or even reverse the association observed between a speculative cause (or ‘exposure’) and its 

potential consequence (or ‘outcome’; Cook and Ranstam 2017).6  

Given such analytical and inferential biases remain commonplace amongst contemporary analyses of 

observational (i.e. non-experimental) clinical data (von Elm and Egger 2004; Blair et al. 2007; Detweiler et al. 

2016; Pocock et al. 2004), it is not very surprising that they have also undermined so many preliminary 

analyses of COVID-19 data (see: Nussbaumer-Streit et al. 2020; Wynants et al. 2020). Indeed, this may be 

inevitable given that, at the start of the pandemic, when resources for diagnostic testing were in short supply, 

it made good sense to target those contexts where the identification of infected (and infectious) individuals 

was likely to provide the most benefit (Cheng et al. 2020; Pettit et al. 2020). But this then meant that the most 

accurate information has only been available for very specific subgroups within the population (such as health 

and social care practitioners, symptomatic individuals, and those with severe disease); and analyses on such 

subgroups run a significant risk of selection-collider bias – a bias that can be very difficult to detect, and can 

remain hidden, without subsequent analyses of more inclusive samples (Munafò et al. 2018).  

While the ‘Table 2 fallacy’ and ‘inferential mediator adjustment bias’ are arguably easier to spot, both are 

more or less routine within clinical studies involving multivariable statistical analysis (hence Cook and 

Ramstam 2017).7 They also affect a substantial proportion of more nuanced epidemiological analyses (Davey 

Smith and Ebrahim 2001); and whilst it is not the intention of this Commentary to highlight examples of poor 

practice, it is worth pointing out that these issues have undermined some of the most important (and 

potentially valuable/influential) studies undertaken during the COVID-19 pandemic thus far. These include: 

the OpenSAFELY Collaborative’s study examining sociodemographic, behavioural and clinical correlates of 

COVID-19 mortality using health service data for almost 17.5 million adults in England (which nonetheless fell 

foul of the ‘Table 2 fallacy’; Williamson et al. 2020); and a transatlantic consortium combining international 

sequencing data and local health service records to compare the severity of disease amongst patients infected 

                                                           
5 This results from (mis)interpreting the coefficients of individual covariates within outputs from a single (one step) multivariable 
model (which are commonly those reported in a second Table, hence the fallacy’s name) as evidence of their (independent) causal 
relationship with the predicted variable of interest. Instead these coefficients represent only the residual contribution each covariate 
makes to the model after adjustment for both the individual and joint information available from all other included/adjusted 
covariates – a residual contribution that can deviate in both size and direction from any true causal effect. 

6 ‘Inferential mediator adjustment bias’, which results from the inappropriate adjustment for mediators (variables falling on the causal 
pathway between the speculative cause/exposure and its potential consequence/outcome) in analyses intended to support causal 
inference, is the bias responsible for the ‘Table 2 fallacy’ (albeit, under those circumstances where the model in ‘Table 2’ was designed 
for ‘prediction’ and subsequently repurposed/misinterpreted as a suitable basis for causal inference).  

7 Indeed, none of the empirical clinical studies (and only a handful of the epidemiological analyses) examined when preparing this 
Commentary appeared to recognise the important distinction between ‘prediction’ and causal inference (and the different 
methodological considerations that each require). 
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with two emerging strains of SARS-CoV-2 (Korber et al. 2020; which nonetheless involved ‘inferential 

mediator adjustment bias’).8  

Without access to the data involved in all such cases, it is not possible to establish the extent to which the 

biased coefficients (mis)represent the true causal relationships involved – or, if you prefer, whether George 

Box would classify these biases as ‘mice’ or ‘tigers’. In some instances the likely consequences of some biases 

might be too trivial to require pressing attention (such as the implication that smoking is modestly protective 

against COVID-19 mortality – as the biased inference from Williamson et al.’s 2020 analyses suggest). But in 

others the severity of the risks involved (such as the possibility that mediator adjustment masked a genuine 

relationship between viral strain and disease severity in Korber et al.’s 2020 analyses) warrants urgent re-

evaluation.  

Simulation, extrapolation and projection: compartmental and agent-based modelling  

Balancing the risks of error and bias against the conceptual and empirical insights available from model 

organisms and descriptive statistics, and from analytical comparisons, ‘predictions’ and causal inference, 

becomes all the more challenging when these insights inform/underpin the simulations, extrapolations and 

projections used to forecast the future course of the COVID-19 pandemic. Indeed, the curves and waves these 

techniques generate (e.g. Kissler et al. 2020; Simeone 2020) have become both emblematic of, and 

instrumental in, the way we conceptualise disease progression; our expectations of what lies ahead; and the 

assumptions that both entail (Jones and Helmreich 2020). Yet such modelling takes a variety of different 

forms (Jewell et al. 2020) – including those based entirely on theory; those determined solely (and strictly) by 

the data; and those that fall someway in between – and it is worth examining each of these in detail to 

establish what questions they can (and can’t) address (Holmdahl and Buckee 2020; Ioannidis et al. 2020; 

Siegenfeld and Bar-Yam 2020).  

In practice, no modelling can be entirely theory-based since any such theory (and any parameterisation its 

application requires) relies at least in part on knowledge derived from real-world (empirical) studies of disease 

biology, transmission and progression (e.g. Supplementary Table S1). When such knowledge is shaky (as it has 

been during the early stages of the COVID-19 pandemic; Raleigh 2020; Weinberger et al. 2020) such modelling 

can generate projections that deviate markedly from the observed (or expected) numbers of infections, cases 

and deaths (Groen et al. 2020; Lourenço et al. 2020). And when the underlying theory is itself flawed, the 

projections may continue to diverge from reality even when the observed data to which these are compared 

have been collected and summarised competently, consistently and accurately (Luo 2020). Nonetheless, 

(predominantly) theory-based models do have considerable potential utility for simulating the likely impact of 

variation or changes in disease transmission and severity; and for evaluating hypothetical alternative 

interventions (such as those invoked to ‘flatten’ the curve during the COVID-19 pandemic; Adam 2020; Jewell 

et al. 2020; see Supplementary Figure S2a).  

At the other extreme, exclusively data-driven modelling – which involves fitting curvilinear functions that best 

represent any apparent trend amongst the available data (IMHE and Murray 2020; Richardson and 

Speigelhalter 2020; Yang et al. 2020) – is also rarely used in the strictest (‘data-driven’) sense; even though 

recent advances in computational power and the availability of ‘Big data’ have made data-driven modelling 

techniques very popular in ‘predictive analytics’. As described earlier,3 these make use of the ‘joint 

information’ provided in any given (‘training’) dataset to generate algorithms capable of estimating/classifying 

unknown, unmeasured or poorly measured/specified parameters/variables (Zhang et al. 2020) – algorithms 

that can then be refined through application in further (‘testing’) datasets (Li et al. 2020; Mondal et al. 2020). 

Although these techniques can struggle to generate accurate ‘far-literal predictions’ (by extrapolating the 

likely value of parameters/variables ‘beyond, and far from’, the available data; Luo 2020), they can work well 

for ‘near-literal predictions’ (involving extrapolation ‘beyond, but nearby’, the available data; Yadav 2020; 

Jewell et al. 2020); and work better still for ‘predictive interpolation/classification’ (and thereby improve the 

                                                           
8 The authors of both these studies were well aware of these biases in advance of publication, and it is not clear why these biases were 
neither acknowledged nor competently addressed in the final versions they subsequently published.  
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estimation, specification or classification of parameters/variables within the available data; Mondal et al. 

2020; Ellison et al. 2020; see Supplementary Figure S2b).  

However, these advances in analytical technique are challenging to apply in data-driven forecasting of disease 

outbreaks, where the volume of available data (particularly at the outset) can be small and therefore 

vulnerable to chance variation, error and a small number of extreme values (Crozier 2020); and where – 

particularly for newly emerging diseases, like COVID-19 – the joint information from which such algorithms 

are generated only accumulates gradually over time, so that there is often limited scope for algorithmic 

training and testing on multiple, large (and complete) datasets (Adam 2020; Fuller 2020a; Sperrin et al. 2020). 

Indeed, at the beginning of a disease outbreak, where the numbers of cases and deaths are small in 

comparison to the at-risk population (of susceptible individuals), even a modest amount of variation, or a 

small degree of error, can have dramatic effects on key disease parameters and extrapolation based thereon 

(Crozier 2020; see Supplementary Figure S2b). These issues become less troublesome as the outbreak 

progresses and data accumulate, because curve-fitting functions can then reduce the influence of random 

variation and error in a similar fashion to that achieved using traditional ‘smoothing’ techniques (such as the 

3-day rolling averages favoured by Richardson and Speigelhalter 2020). Nonetheless, any modelling that relies 

on measured values of key parameters/variables will be vulnerable to any changes in ‘ascertainment’ (the 

sampling, definition and identification of cases and deaths; Weinberger et al. 2020) which commonly 

accompany improvements in the accuracy, capacity and coverage of measurement – just as we have seen 

during the COVID-19 pandemic with successive improvements in the accuracy of diagnostic tests, and the 

extension of testing beyond high-risk groups and symptomatic individuals once testing capacity increased 

(Cheng et al. 2020; Pettit et al. 2020).  

While changes in ascertainment can affect all modelling procedures, data-driven modelling is particularly 

susceptible to its effects because this approach relies entirely on the data to characterise the underlying ‘data 

generating mechanism’ on which insight into disease transmission and progression then relies (Tennant et al. 

2017; Henley et al. 2020). When data are sampled and measured consistently over time, curve-fitting can be 

used to identify any signals offering evidence of disease transmission and progression dynamics that might be 

specific to the pathogen and the host population involved, or to the context in which pathogen-host 

interactions occur (Jewell et al. 2020). However, when changes in data sampling and/or measurement 

coincide with changes to the pathogen, host or host-pathogen relationship (such as the changes in exposure 

and transmission elicited through travel restrictions, social distancing, contact tracing and case-isolation), 

data-driven modelling can find it impossible to differentiate between these (e.g. IMHE and Murray 2020; 

Raleigh 2020). Under such circumstances, even data-driven modelling using AI’s advanced curve-fitting 

algorithms offers little more than descriptive visualisations of the measurements available (Jones and 

Helmreich 2020), with scant insight into critical causal processes or likely future outcomes. Such modelling 

therefore retains only a residual degree of utility for estimating missing (or uncertainly/inexpertly ascertained) 

measurements through ‘predictive interpolation/classification’ (Ellison et al., 2020). 

In practice, the vast majority of disease modelling techniques that epidemiologists and mathematical 

biologists use fall somewhere between those that are (strictly) theory-based and those that are (strictly) data-

driven – what we might call ‘theory-plus-data’-based modelling (which include ‘compartmental’ models as 

well as ‘point process modelling’ and ‘agent-based modelling’; Bertozzi et al. 2020; Richardson and 

Speigelhalter 2020). Perhaps the best known of these involve theoretical/conceptual frameworks based on 

ostensibly plausible pathways of transmission between susceptible, (exposed,) infected and 

removed/recovered individuals (or discrete subsections of the population) – the so-called ‘SIR’ and ‘SEIR’ 

models which date back to the 1920s (e.g. Kermack and McKendrick 1927). These frameworks then use the 

best available empirical estimates of key disease parameters (such as the basic reproduction number, R0; the 

serial interval; and the infection-fatality rate, IFR; SAGE 2020) to generate projections that can either: be 

simply compared to the empirical data (thereby identifying insightful discrepancies between the expected and 

observed numbers of cases and deaths); or fitted to match the empirical data by altering (or ‘tuning’; 

Anastassopoulou et al. 2020; Simeone 2020; see Supplementary Figure S2c) one or more of the modelling 

parameters (thereby identifying, as before, insightful discrepancies between the best available estimates of 
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these parameters and those that best match the data). Such models share many of the modest advantages, 

but also many of the substantial disadvantages, of (mostly) theory- and (strictly) data-based modelling 

(Bertozzi et al. 2020). However, they arguably have greater utility for: highlighting critical discrepancies 

between the best available estimates of key disease parameters and the values of these required for the 

model to fit the data; and estimating critical parameters that vary over time and place, or are challenging to 

measure directly (such as the effective reproduction number, Re; though see also: Petermann and Wyler 

2020).  

Conclusion 

Clearly, epidemiologists have deployed an extensive range of models and modelling techniques to rapidly 

characterise many of the key parameters relevant to the transmission, severity and potential mitigation of 

COVID-19 (Supplementary Figure S1). Each of these techniques are based upon very different sets of 

assumptions; each are best suited to answer very different questions; and each require substantial thought 

(and technical expertise) to avoid analytical and inferential bias (Nussbaumer-Streit et al. 2020; Wynants et al. 

2020). While all of these models are bound to be ‘wrong’, some will be ‘useful’ (Box 1976); and, together, the 

best of them offer complementary insights into the nature of the disease, and substantial foresight into what 

the past might mean (Probert et al. 2018) and the future might hold (Kissler et al. 2020; see Supplementary 

Figures S2a-c).  

At present, the ability of models involving simulation, extrapolation and projection to deliver accurate 

projections (or ‘far-literal predictions’) of future events is severely constrained by: the (in)stability of the 

contexts in which they are applied; and how well the models actually reflect the underlying mechanisms and 

processes involved. In future, insight from analytical models best suited to strengthen 

estimation/classification (through ‘predictive interpolation’) and functional understanding (through ‘causal 

inference’) can play a pivotal role in: better characterising such contexts; and strengthening modelling of the 

underlying ‘data generating mechanisms’ on which accurate and reproducible projections (and perhaps even 

‘far-literal predictions’) might then rely.9 

In the meantime (and into the future), the epistemological value of all such models – for learning about, and 

understanding the nature of, any novel disease – will continue to rely on the thoughtfulness, diligence and 

competencies of those involved in their application, interpretation and dissemination (Sperrin et al. 2020). 

Substantial weaknesses in all three areas pose a significant and enduring challenge for epidemiology; and for 

the ‘theory-free’ application of new data-centric techniques (such as the algorithms developed using 

unsupervised machine learning and AI; Desai et al. 2019) where the potential for bias, misinterpretation, 

misunderstanding and misrepresentation remains but may be even harder to root out. 
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