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A growing number of studies are using co-registration of eye movement (EM) and 
fixation-related potential (FRP) measures to investigate reading. However, the number of 
co-registration experiments remains small when compared to the number of studies in 
the literature conducted with EMs and event-related potentials (ERPs) alone. One reason 
for this is the complexity of the experimental design and data analyses. The present paper 
is designed to support researchers who might have expertise in conducting reading 
experiments with EM or ERP techniques and are wishing to take their first steps towards 
co-registration research. The objective of this paper is threefold. First, to provide an 
overview of the issues that such researchers would face. Second, to provide a critical 
overview of the methodological approaches available to date to deal with these issues. 
Third, to offer an example pipeline and a full set of scripts for data preprocessing that 
may be adopted and adapted for one’s own needs. The data preprocessing steps are based 
on EM data parsing via Data Viewer (SR Research), and the provided scripts are written in 
Matlab and R. Ultimately, with this paper we hope to encourage other researchers to run 
co-registration experiments to study reading and human cognition more generally. 

Over the last 15 years, the interest in experiments that 
combine eye movement (EM) and event-related potential 
(ERP) measures, which for simplicity we will henceforth 
term ‘co-registration’ experiments, has grown. The possi-
bility of observing continuous brain activity over time un-
der natural reading conditions (i.e., where text is presented 
normally, available in both foveal and parafoveal vision, and 
participants make EMs as they process the text naturally in 
the absence of any secondary task) would be very useful to 
researchers wishing to explore the fine grain time-course of 
language processing and enhance understanding of visual 
word recognition (Sereno & Rayner, 2000, 2003). 

Despite there being clear value in the use of co-registra-
tion as a methodological approach, it remains the case that 
there are only a small number of laboratories that are ac-
tively utilising this technique. Probably as a consequence of 
this, there is only a very limited number of published pa-
pers using this approach to study reading (see Degno et al., 
2019b for a review). In our view, one of the main reasons 
why research in this area remains limited is because there 
are several significant challenges that researchers face in 
relation to experimental design and data analysis when us-
ing this approach. 

In the present paper, we will discuss the major issues re-
searchers encounter in co-registration reading experiments 
and provide an overview of what might be considered and 
how these issues may be dealt with. In addition, we will pre-
sent a pipeline, and our implementation of the preprocess-
ing steps of the pipeline in two scripts, one written in R and 

the other written in Matlab (https://osf.io/62bqx/?view_on-
ly=d28689a07d7a43bc9f8060bdf2a506a6). Whilst, to date, 
there exist online resources for specific sub-components of 
the preprocessing steps of the pipeline (e.g., see EEGLAB at 
https://sccn.ucsd.edu/wiki/EEGLAB#The_EEGLAB_Tutori-
al_Outline; Delorme & Makeig, 2004; ERPLAB at https://er-
pinfo.org/resources; Lopez-Calderon & Luck, 2014) and in-
formation is available in relation to specific aspects of co-
registration experimentation (Dimigen, 2020; e.g., Dimigen 
et al., 2011; Ehinger & Dimigen, 2019; Nikolaev et al., 
2016), there is no published guidance, nor implementation, 
of the co-registration experimental procedure as a whole. 

As can be seen in Figure 1, the pipeline we present in-
cludes issues related to experimental design and data col-
lection, separate preprocessing of EM and EEG data, match-
ing of the two data streams, estimation of FRP measures, 
as well as statistical analyses of co-registered data. By dis-
cussing each step of the pipeline and providing a full set 
of scripts for data preprocessing, we consider that other 
researchers might ponder the decisions to take and adapt 
the associated parts of the scripts for their own needs. The 
order of the analysis steps within the pipeline may differ 
from laboratory to laboratory, and we fully acknowledge 
that there may be alternative solutions and scripts avail-
able, and we expect that alternative routines and software 
will be developed in the future. However, we are confident 
that the series of decisions as a whole will be faced by any 
researcher wishing to engage in co-registration reading ex-
perimentation. To this extent, we anticipate that the cur-
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Figure 1. Example pipeline that may be adopted in order to effectively acquire and analyse data from co-registration Figure 1. Example pipeline that may be adopted in order to effectively acquire and analyse data from co-registration 
reading experiments. In the implementation of the pipeline, EM data are assumed to be collected with an SR Research reading experiments. In the implementation of the pipeline, EM data are assumed to be collected with an SR Research 
EyeLink eye tracker that allows for automatic EM parsing (e.g., detection of fixations and saccades, computation of EyeLink eye tracker that allows for automatic EM parsing (e.g., detection of fixations and saccades, computation of 
interest area and fixation durations, etc.), whilst EEG data are assumed to be collected with Neuroscan Compumedics, interest area and fixation durations, etc.), whilst EEG data are assumed to be collected with Neuroscan Compumedics, 
or any other EEG software package that allows for the extraction of event latencies. The steps highlighted in yellow or any other EEG software package that allows for the extraction of event latencies. The steps highlighted in yellow 
have been implemented in the R environment. The steps highlighted in blue have been implemented in Matlab. ET: have been implemented in the R environment. The steps highlighted in blue have been implemented in Matlab. ET: 
eye tracking. ¬: If consecutive words are analysed (e.g., pretarget and target words). ^: If using a gaze-contingent eye tracking. ¬: If consecutive words are analysed (e.g., pretarget and target words). ^: If using a gaze-contingent 
change paradigm. *: Optional step. change paradigm. *: Optional step. 

rent contribution may be helpful. 
The present paper is targeted at those researchers who 

might have an expertise in EM or EEG/ERP methods but are 
new to co-registration research. On one side, EM experts 
might find discussion of issues related to EMs relatively ba-
sic, while they might find useful the discussion of issues and 
procedures used in EEG/ERP research. On the other side, 
EEG/ERP experts might find discussion of EEG/ERP issues 
and procedures quite basic, as they involve standard issues 
that researchers face when conducting EEG/ERP research, 
but they might find more useful the discussion of issues that 
researchers face when recording and analysing EM data. Re-
gardless of experimental background though, anyone who 
is interested in conducting co-registration research in read-
ing might find the present paper useful, as parts of the pa-

per and pipeline are specific to co-registration research, and 
therefore new for both audiences. 

We also note that the issues and pipeline we present in 
this paper are developed to answer research questions that 
relate to both foveal and parafoveal processing during read-
ing, using gaze-contingent display change paradigms (see 
Rayner, 1975). Gaze-contingent display change paradigms 
(e.g., invisible boundary paradigm, moving window para-
digm; see Rayner, 1998 for a review) allow the experimenter 
to make rapid changes to the visual stimulus (e.g., a sen-
tence) a participant is looking at based on their eye po-
sition. In turn, this allows researchers to understand the 
extent and type of information that readers process in 
parafoveal and peripheral vision during reading. Depending 
on the researchers’ theoretical questions, all or only some 
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of the issues we cover will need to be considered. For ex-
ample, if only foveal processing is to be investigated, some 
decisions related to parafoveal processing and gaze-contin-
gent display change paradigms might not be necessary (e.g., 
early and late display changes in the EM data preprocess-
ing). We will point out whether each issue should be consid-
ered in relation to foveal and/or parafoveal processing and/
or different paradigms in each instance. 

1. Experimental Design 1. Experimental Design 
1.1 Experimental Approaches 1.1 Experimental Approaches 

The main advantage of conducting co-registration ex-
periments to investigate reading is that it allows re-
searchers to examine the neural correlates of written lan-
guage comprehension as it occurs naturally. Approxima-
tions of natural reading (as distinct from natural reading it-
self) are conditions in which (1) participants are presented 
with sequences of words, such that the visual and linguistic 
content is processed in foveal and, to some extent, 
parafoveal vision on any particular fixation, and (2) partic-
ipants make saccadic EMs to sample the words in the way 
they do when reading text outside the laboratory. In the 
published literature to date, two experimental approaches 
have been adopted that fall within this definition: saccadic 
word-list reading and sentence reading. We will consider 
pros and cons of each approach below. 

1.1.1. Saccadic Word-List Reading 1.1.1. Saccadic Word-List Reading 

In a saccadic word-list reading task, a list of unrelated 
words (usually about 5 or so) is presented horizontally on 
the screen and participants are required to move their eyes 
from left to right, in order to silently read each word and 
then either judge their semantic category (e.g., Dimigen et 
al., 2012; Kornrumpf et al., 2016; Niefind & Dimigen, 2016) 
or perform a recognition task (e.g., Hutzler et al., 2007, 
2013). It may be argued that there are advantages to this 
paradigm: it allows for each word in the list to be manip-
ulated experimentally; it removes the necessity for the in-
clusion of short function words in the list (thereby reduc-
ing potentially problematic word skipping behavior); it (ar-
guably) requires the participant to fixate each word at least 
once in order to perform the task; it avoids confounds such 
as predictability effects from sentential context. However, 
despite these positive characteristics, in our view, this ap-
proach is significantly limited in its delivery of insight in-
to natural written language comprehension. Readers cannot 
form any meaningful interpretation beyond the lexical or 
perhaps syntactic representation of each individual word. 
Critically therefore, this approach does not allow the par-
ticipant to read naturally in the absence of a secondary task 
(e.g., a memory task or a semantic category decision task) 
and might lead to unnatural linguistic processing (e.g., dif-
ferent influences of word frequency were observed in sac-
cadic word-list reading, Niefind & Dimigen, 2016 and in 
sentence reading, Degno et al., 2019a; Kretzschmar et al., 
2015). 

1.1.2. Sentence Reading 1.1.2. Sentence Reading 

In sentence reading tasks, typically, a one-line sentence 
(Degno et al., 2019a, 2019b; Dimigen et al., 2011; Kret-
zschmar et al., 2009, 2015; Loberg et al., 2018, 2019; Metzn-
er et al., 2015, 2017; Mirault et al., 2020; Weiss et al., 2016), 
or longer passages of text (Henderson et al., 2013), is pre-
sented on the screen, and participants are required to read 

each sentence to then answer comprehension questions. By 
presenting grammatical text (minimally a single sentence, 
and potentially longer texts), readers can form a meaning-
ful interpretation of the text beyond isolated word meaning, 
and all aspects of EM behaviour during reading (e.g., skip-
ping), as well as the participant’s task (i.e., reading for com-
prehension without a secondary task) are natural. Certain-
ly, when adopting this approach, the experimental design 
and analyses become a little more complex. First, the stim-
uli need to be carefully designed to avoid an influence of ex-
traneous linguistic variables (e.g., predictability and plausi-
bility, as well as the length of pre-target, target and post-
target words). Unless these variables are themselves to be 
manipulated, they are generally controlled to prevent the 
effect of interest becoming contaminated by their influence. 
Second, it is likely that by using sentences or passages of 
text a larger loss of data may occur (e.g., readers are likely 
to skip some of the words, especially function words), com-
pared to word-list reading. Nevertheless, and for this very 
reason, the sentence reading approach reflects the cognitive 
processes that underpin natural reading, and therefore, we 
consider it the desirable approach to use if the goal is to in-
vestigate natural reading. 

1.2. Stimuli Construction 1.2. Stimuli Construction 

The appropriate number of trials per conditions depends 
on both the number of participants and the size of the effect 
being investigated (e.g., Boudewyn et al., 2017). However, it 
is fundamental to consider a number of points beyond this 
when constructing the stimuli and developing the experi-
ment. 

First, it is important to note that in co-registration ex-
periments data loss is higher than the data loss observed 
when only EMs or EEG/ERPs are recorded. Indeed, as can be 
seen in Figure 1, co-registered data are cleaned according 
to both EM and EEG criteria, and only those data that pass 
both cleaning procedures are matched and used for final 
FRP analyses. Second, it is important to take into account 
that although increasing the number of trials per condition 
usually improves the statistical power of the study, to opti-
mise the signal-to-noise ratio, a balance between quality of 
the recorded data (i.e., recording data from subjects that are 
not fatigued) and time spent testing participants should al-
so be achieved (see Boudewyn et al., 2017 for a discussion). 
It is straightforward to create large numbers of stimuli in 
a saccadic word-list reading task, as each word in the list 
can be manipulated and analysed, each being independent 
from the others in the list. This significantly increases the 
potential number of observations per trial. However, con-
structing a large number of stimuli for a natural sentence 
reading experiment is more difficult. Typically, in sentence 
reading studies a single target word is experimentally ma-
nipulated in each sentence. In these circumstances, a large 
number of sentences needs to be created because the num-
ber of target words per stimulus is reduced, and therefore, 
it is more likely that readers might skip the target in a trial. 
Also, it is more likely that observations on the target word 
might be lost during the cleaning procedures. In our ex-
perience, to minimise such difficulties, whenever possible, 
more than one target word should be included in each ex-
perimental sentence, thereby increasing the number of ob-
servations obtainable from each trial (though of course, the 
greater the number of target words in a sentence, the hard-
er it is to construct text that is natural, and to some extent, 
meaningful). 

With respect to the design of the stimuli themselves, en-
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suring that the targets words, and for sentence reading ex-
periments also pre-target and post-target words, are at least 
4 characters long will reduce the skipping rate on those in-
terest areas (Rayner, 1979), and thus, reduce data loss. In 
addition, as mentioned above, extraneous variables such as 
cloze probability and plausibility of sentence should be con-
trolled (unless these effects themselves are to be investigat-
ed). 

1.3. Experimental Procedures 1.3. Experimental Procedures 

A number of good practices can be adopted to minimise 
the disruption to the EEG signal caused by simultaneous 
recording of EMs, and at the same time to take advantage 
of the simultaneous use of both methods. First, procedures 
can be adopted to reduce the number of oculomotor arti-
facts that lead to increased data loss. In particular, it is im-
portant to reduce the number of blinks that participants 
make while reading, as otherwise there is great possibility 
that a blink might occur on an interest area, and thus, the 
associated observations would be lost. To achieve this, it 
can be helpful to present participants with a ‘blink screen’ 
after each trial (i.e., a screen presentation with the word 
“BLINK” presented centrally to which participants are in-
structed they must blink). This procedure substantially re-
duces the frequency with which participants blink during 
experimental trials, which in turn reduces the probability of 
participants blinking on the critical interest areas. 

Second, as is standard in EM research, it is good to use a 
chin rest and head restraint to minimise head movements. 
However, to reduce any pressure that might impact EEG 
recordings at frontal sites, it may be helpful to modify the 
head restraint making it padded to cushion the forehead, or 
to remove the forehead rest and rely only on the chinrest. 

Finally, in our experiments, we have found it to be bene-
ficial to ask participants to fixate a cross on the right hand 
side of the screen when they have finished reading the text, 
rather than to press a button on a response box, to termi-
nate the current trial and trigger the following one. The fix-
ation on the box is recorded via the eye tracking (ET) sys-
tem, and the following trial is thereby triggered automati-
cally. By using this procedure, it is possible to prevent the 
EEG signal becoming contaminated with any activity relat-
ed to motoric preparations associated with the manual re-
sponse required in the use of a response box (e.g., Van der 
Lubbe et al., 2000). 

2. Data Collection 2. Data Collection 
2.1. Connection 2.1. Connection 

A physical electronic connection that delivers a tempo-
rally fast and accurate signal between the ET and EEG 
recording devices is essential to obtain meaningful co-reg-
istration data. The most common stimuli presentation soft-
ware (e.g., Experiment Builder, E-Prime, Presentation, etc.), 
ET systems (e.g., SR Research EyeLink, Tobii Pro eye track-
ers, etc.) and EEG systems (e.g., Neuroscan Compumedics, 
Brain Vision, EGI, etc.) support such connections between 
different devices, although they might differ in the way in 
which connection is achieved (Dimigen et al., 2011). The 
stimulus display computer might send a TTL (Transistor-
Transistor Logic) signal to both EEG and ET devices via a 
splitter or Y-shape cable connected to a parallel port. In 
such a situation, this signal will appear both in the EEG sig-
nal and EM data as an event marker. Alternatively, a mes-
sage might be sent to the ET system from the stimulus dis-
play computer via an ethernet link, and a TTL signal sent to 

the EEG system via a parallel port from the stimulus display 
computer or from the ET computer. Using this type of con-
nection, the TTL signal will be displayed as an event marker 
in the EEG signal, and the message will be recorded in the 
EM data as a string of text. Another option is to add an ana-
log card to the ET computer to convert the digital data in-
to analog voltages and make a connection between the ET 
computer and the EEG amplifiers (with the ET analog out-
puts inserted as channels in the EEG headbox). The analog 
voltages will then need to be converted back into digital da-
ta by the EEG recording software. Using this type of con-
nection, the eye positions (e.g., horizontal and vertical po-
sition, pupil size) will be directly lined up with the EEG sig-
nal and displayed as separate ET channels. Although this 
method allows for online synchronisation, it brings a series 
of significant disadvantages (e.g., added noise during the 
digital/analog signal conversion, employment of EEG chan-
nels as ET channels; see Dimigen et al., 2011 for a discus-
sion), which undermine its usability in co-registration ex-
periments. Other types of connections, specific to the sys-
tems in use in one’s laboratory, might also be needed (e.g., 
a combination of ethernet links and fibre optic links for EGI 
systems). Thus, the specific type of connection that is re-
quired will depend on the stimuli presentation software, 
ET and EEG systems, and physical connections that may be 
available. 

2.2. Synchronization 2.2. Synchronization 

Another important aspect of co-registration is ensuring 
that ET and EEG systems are temporally well synchronised 
with each other. To achieve this, it is critical to make sure 
that a sufficient number of event markers are sent simulta-
neously to both the ET and EEG systems, with the appropri-
ate code and at the correct timepoint in each trial. 

An event marker indicates a point in time during the 
recording when a specific event occurs. We suggest that the 
minimum number of markers in the experiment would be 
one marker at the beginning and one at the end of each 
trial. By having two markers in each trial, it is possible 
to compare the timing between trials and the duration of 
each trial in both the ET and EEG recordings (of course, 
these should be very similar if the experiment is set up ade-
quately). In addition, two markers are required by the EYE-
EEG extension (Dimigen et al., 2011) of EEGLAB in Mat-
lab. This tool allows for a check that the EEG events are 
aligned with the ET events in the two data streams, and it 
calculates any synchronisation error (for details see the on-
line tutorial at http://www2.hu-berlin.de/eyetracking-eeg/
tutorial.html, in particular the sections “Basics: Connecting 
eye tracker & EEG”, “Basics: Synchronization signals”, and 
“Step 5: Check synchronization accuracy (via cross-corre-
lation)”). In our experience, using this tool to examine the 
timing accuracy prior and during the testing period, as well 
as during the offline data preprocessing can be very helpful. 

Different event markers can be sent during data acquisi-
tion (with the exact values depending on the number of bits 
available, e.g., values between 0-255 with 8-bits). It is pos-
sible to send event markers with codes that are unique to 
each trial and/or condition (e.g., 3 for the onset and 103 for 
the offset of a trial in the experimental condition 3), and/or 
to send the same repeated markers in correspondence with 
particular events (e.g., 31 for all trial onsets and 32 for all 
trial offsets). The EYE-EEG extension requires the same re-
peated code for trial onsets (e.g., 31) and offsets (e.g., 32) 
to conduct synchronisation checks. However, if only unique 
event markers are sent during the experiment it is possible 

Co-Registration of Eye Movements and Fixation—Related Potentials in Natural Reading: Practical Issues of Experimental...

Collabra: Psychology 4

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/7/1/18032/448059/collabra_2021_7_1_18032.pdf by guest on 25 January 2021

http://www2.hu-berlin.de/eyetracking-eeg/tutorial.html
http://www2.hu-berlin.de/eyetracking-eeg/tutorial.html


to recode them to meet the EYE-EEG requirements. Similar-
ly, if only repeated event markers are sent during data ac-
quisition, it is possible to retrieve trial and condition infor-
mation offline. Ideally, researchers might want to send both 
types of event markers for easier synchronisation and trial 
identification. In this case, researchers might send an event 
marker at trial onset and one at trial offset, as well as an 
event marker (e.g., trial and/or condition identifier) within 
the period of time between these two triggers. 

Finally here, we note that although it is possible to send 
a marker in correspondence with interest areas (e.g., onset 
of a fixation on a target word) during data acquisition, in 
this type of experiment, it is not ideal to do this. It takes 
a variable amount of time (e.g., on average 35 ms with the 
EyeLink tracker; see SR Research Experiment Builder User 
Manual v2.2.245, page 184) for an ET system to detect a fix-
ation in real-time. A similar, variable delay will then be ob-
served when sending the marker to the recordings, making 
it difficult to remove with precision the delay, and carrying 
the risk that the data are not perfectly aligned to the veridi-
cal fixation onset. Thus, to calculate the onset of an event 
associated with an interest area (e.g., onset of a fixation on 
a target word), a better alternative is to calculate this tim-
ing offline. For example, by calculating the latency between 
trial onset and fixation onset, it is possible to determine the 
timing of the first fixation onset on a target word within the 
trial. We consider this offline procedure to be more accu-
rate, as the marker is immediately sent in conjunction with 
the onset of the trial, without any delay. This will ensure 
that the timing of coincident events is precise. 

2.3. Recording Parameters 2.3. Recording Parameters 

We consider online sampling rate and filtering to be im-
portant aspects of co-registration research that need care-
ful consideration during data acquisition. 

Sampling rate is the number of samples that are recorded 
per second. The online rate of sampling should be high 
enough to capture the known cortical activity of interest, 
that is related to cognitive processing and measured with 
EEG (roughly up to 110 Hz; e.g., Muthukumaraswamy, 2013 
for overview of high frequency phenomena), and account 
for the Nyquist frequency (i.e., the highest known frequency 
content that can be reconstructed without aliasing), which 
corresponds to half the sampling rate (e.g., 500 Hz when 
recording with 1000 Hz sampling rate). 

When choosing the online sampling rate, it is important 
to remember that if both EM and EEG data are recorded 
with the same sampling rate, this will ensure a perfect sam-
ple correspondence and will make matching of the two data 
streams easier. If the sampling rate of the two instruments 
is not the same, precision of the co-registered data will be 
determined by the least accurate device, with the number of 
(real, not estimated) samples for the combined and match-
ing co-registered data to correspond to the lowest sampling 
rate of the two devices. Thus, researchers might choose to 
record both EM and EEG data with a high sampling rate 
(e.g., 1000 Hz), which can be downsampled offline, if com-
putation of data processing becomes unfeasible and reduc-
tion of the resolution of the data is needed. Alternatively, 
researchers might favour smaller, more manageable data 
sets, recording data online with a lower sampling rate (e.g., 
500 Hz or 256 Hz). In all cases, the limits set by the frequen-
cy of the brain activity of interest and the Nyquist frequency 
need to be taken into account. In addition, it is important 
to remember that although upsampling is mathematically 
possible, the added data points will be an estimation of the 

activity that should have occurred during those time points, 
not a true observation. 

Regarding online filtering, when choosing the parame-
ters, it is important to remember that once data are filtered, 
they cannot be unfiltered. Thus, it is better to use more 
stringent filters during the offline EEG/ERP data prepro-
cessing rather than during the online data acquisition. This 
said, however, it is necessary to use online anti-aliasing fil-
ters to suppress frequencies at or above the Nyquist fre-
quency, to avoid introducing artifactual frequencies in the 
EEG signal (see chapter 7 of Luck, 2014 for detailed recom-
mendations). Therefore, similarly to the sampling rate, the 
online filters need to be chosen considering the known cor-
tical activity of interest and the Nyquist frequency. 

3. Preprocessing of Data 3. Preprocessing of Data 

The analysis steps of the pipeline we present here are 
not intended to be prescriptive with respect to either the 
parameters to adopt for each of the issues that are consid-
ered, or the order in which to make these decisions. Indeed, 
many of the decisions to be taken in relation to EEG/ERP/
FRP preprocessing are open to debate. Thus, we refer the 
reader to the literature for a more exhaustive discussion of 
each of these issues. Here we limit ourselves to providing an 
overview of the issues to consider and discussing available 
approaches to deal with these issues when engaging in co-
registration reading research. We also note that given the 
numerous decisions researchers need to make for the da-
ta preprocessing, specifying in advance one’s own analysis 
plan, or at least some of the decisions a priori, for example 
with preregistration, could be beneficial. 

The pipeline covers issues that relate to co-registration 
experimentation when both foveal and parafoveal process-
ing during reading are to be investigated (see Rayner, 1998, 
2009 for reviews). Thus, both pre-target and target words 
are considered regions of interest in the present pipeline. 
However, researchers might select only pre-target or only 
target words as regions of interest, if for example only 
parafoveal-on-foveal effects are examined (e.g., pre-target 
word only, Mirault et al., 2020), or only foveal processing is 
to be studied (e.g., target words only, Hutzler et al., 2007). 
In addition, which observations need to be retained or dis-
carded will also vary depending on the research question at 
hand. In some circumstances, fixations after regressive EMs 
may be discarded (e.g., Degno et al., 2019a), whilst under 
other circumstances, these could be the focus of the exper-
imental investigation (e.g., Metzner et al., 2017). Thus, in 
general, depending on the theoretical questions that are be-
ing investigated, and in turn, the analysis one is conduct-
ing, selection of interest areas and observations will vary. 

3.1. PreProcessing of EM Data 3.1. PreProcessing of EM Data 

3.1.1. Eye Movement Parsing 3.1.1. Eye Movement Parsing 

Eye-movement detection (e.g., parsing of saccades, fix-
ations, and blinks), interest area assignment (e.g., pre-tar-
get and target words), as well as calculation of EM measures 
(e.g., first fixation durations) is the basis for preprocessing 
and analysis of EM and FRP data. It can be conducted with 
widely available automatized commercial software (e.g., SR 
Research EyeLink). Alternatively, it is possible to parse the 
EM data with specific algorithms (e.g., Ralf Engbert & 
Kliegl, 2003, R. Engbert & Mergenthaler, 2006 as imple-
mented in EYE-EEG extension of EEGLAB, http://www2.hu-
berlin.de/eyetracking-eeg, Dimigen et al., 2011), and then 
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assign interest areas and compute EM measures with cus-
tom scripts. 

Both approaches have been used in the co-registration 
reading literature (SR Research automatic parsing, Degno 
et al., 2019a, 2019b; Henderson et al., 2013; Hutzler et al., 
2013; López-Peréz et al., 2016; Mirault et al., 2020; detec-
tion with Engbert et al.'s algorithm, Dimigen et al., 2011; 
Dimigen et al., 2012; Kornrumpf et al., 2016; Loberg et al., 
2018, Loberg et al., 2019; Metzner et al., 2015; Metzner et 
al., 2017; Niefind & Dimigen, 2016; detection with Stampe’s 
(1993) algorithm, Baccino & Manunta, 2005; detection with 
Smeets & Hooge’s (2003) algorithm, Simola et al., 2009; 
detection with Nyström & Holmqvist’s (2010) algorithm, 
Weiss et al., 2016). Researchers might choose one approach 
over the other depending on the software they have avail-
able and on the flexibility that they need for EM parsing 
(e.g., if detection of very small saccades or computation of 
global velocity is needed). However, automatic and custom 
scripts should produce highly similar EM parsing results. 

3.1.2. Consecutive Fixations 3.1.2. Consecutive Fixations 

A typical pattern of EMs in reading includes (1) fixations, 
which are the periods of time (on average, approximately 
250 ms) when the eyes remain relatively still to extract use-
ful information from the text, (2) forward saccades, which 
are the movements the eyes make to bring new information 
into foveal vision (with an average saccade length of about 
7-9 letter spaces for alphabetic languages like English), and 
(3) regressions, which are backward saccades typically oc-
curring because of text or comprehension difficulties after 
approximately 10-15% of fixations (Rayner, 2009). 

Thus, during natural reading, readers might make only 
one fixation on both pre-target and target words, or multi-
ple fixations on the pre-target word to then fixate once or 
multiple times the target word. In all these cases, the read-
er makes consecutive fixations in first-pass reading on the 
pre-target and then the target word, as there is at least one 
fixation on the pre-target word, followed by at least one fix-
ation on the target word. These trials truly reflect foveal and 
parafoveal processing associated with the regions of inter-
est and are therefore important in relation to the theoret-
ical investigation. In contrast, there are some instances of 
fixation patterns in which the pre-target and target words 
are fixated non-consecutively. For example, readers could 
make a fixation on the pre-target word, followed by a fixa-
tion on a previous interest area, or they might make a fixa-
tion on the pre-target word but then skip the target word to 
fixate a later interest area, or else, they might fixate the tar-
get word before making a fixation on the pre-target word. In 
all these cases, there are not consecutive fixations on pre-
target and target words during first pass-reading. 

There is evidence showing that whether readers make a 
progressive saccade forward or a regressive saccade back-
wards, this might be indicative of a correction of oculomo-
tor error and differences in the nature of cognitive process-
es under each circumstance (Schotter & Rayner, 2015). In 
turn, these differences might produce differences in the 
neural correlates associated with these effects (e.g., Metzn-
er et al., 2017). Thus, when running a co-registration read-
ing experiment to investigate both foveal and parafoveal 
processing, it would be ideal to include in the analyses only 
those observations where there are consecutive fixations on 
the words of interest during first pass-reading. That is, only 
those observations in which readers first make a fixation on 
the pre-target word, immediately followed by at least one 
fixation on the target word, and possibly followed by at least 

one fixation on the post-target word (although consecutive 
fixations from target to post-target word might be less of an 
issue if parafoveal processing or very early foveal process-
ing of the target word is investigated) (Degno et al., 2019a, 
2019b; see also Henderson et al., 2013 for inclusion of fixa-
tions preceded by a rightward saccade only, and Metzner et 
al., 2015 for inclusions of words that received a progressive 
fixation only). 

3.1.3. Blinks 3.1.3. Blinks 

Blinks or vertical EMs (that cause the eyelid to move over 
the eyeball to some extent) reflect the upward, or down-
ward, and the nasalward movement of the upper eyelid over 
the eyeball (Collewijn et al., 1985). Under normal viewing 
conditions, eye blinks occur every few seconds (e.g., Nakano 
et al., 2013) and are accompanied by suppression of visual 
input despite the subjective feeling of continuity of vision 
(Volkmann et al., 1980). Blinks represent a source of noise 
in the co-registration data. First, during blinks the eyelid 
occludes the pupil of the eyes, and therefore the visual in-
put is suppressed during such events and readers do not 
obtain any new information. Second, if a blink is detected 
around the fixation on the target word, the preceding and/
or following fixations might be corrupted (e.g., see SR Re-
search EyeLink 1000 User Manual v1.5.0, page 110). A single 
fixation on the target word might be interrupted by a blink, 
and therefore, being split into two separate fixations (i.e., 
the fixation preceding the blink, and the fixation following 
the blink). Under these circumstances, we cannot be sure 
that the first fixation on the target word reflects the same 
cognitive processing as when no blinks occur. Indeed, if a 
second fixation occurs following a blink, it might be likely 
that further processing is necessary to process the target 
word. Third, the EEG signal associated with blinks is much 
larger in magnitude than electrical potentials generated by 
the brain (e.g., see Table 1 of Keren et al., 2010), producing 
oculomotor distortion into the EEG signal. 

As mentioned earlier, presenting participants with a 
‘blink screen’ after each trial (e.g., Degno et al., 2019a, Deg-
no et al., 2019b; Hutzler et al., 2007; Hutzler et al., 2013) 
considerably reduces the amount of blinking during read-
ing. If a blink does occur during a trial, it is possible to 
identify it during fixations on the critical interest areas and 
remove the associated observations (Baccino & Manunta, 
2005; Degno et al., 2019a, Degno et al., 2019b; Dimigen et 
al., 2011; Dimigen et al., 2012; Henderson et al., 2013; Hut-
zler et al., 2007; Hutzler et al., 2013; Kornrumpf et al., 2016; 
Kretzschmar et al., 2015; Loberg et al., 2019; Mirault et al., 
2020; Niefind & Dimigen, 2016; Simola et al., 2009; Weiss 
et al., 2016). The observations associated with blinks can be 
identified and removed from the EM dataset, in order to en-
sure that they will not be used inadvertently as time-locking 
events for the FRP data, and/or from the EEG dataset (e.g., 
detecting EEG intervals where the ET data are out of range, 
such as when a blink occurs, during the procedure for in-
dependent component analysis of the ET-guided EEG data 
preprocessing). 

Whichever option is chosen, and regardless of the para-
digm adopted and parafoveal or foveal processing being in-
vestigated, it is important to remove the noise caused by eye 
blinks to obtain meaningful data that represent the ongo-
ing cognitive processes underlying reading rather than ocu-
lomotor actions. 
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3.1.4. Word Skipping 3.1.4. Word Skipping 

On average skilled readers skip 15% of content words and 
65% of function words (Rayner, 2009). There is consensus 
that when a word is skipped it is processed, to some extent, 
on the fixations prior and after the skip (e.g., Drieghe et al., 
2005; Pollatsek et al., 1986; Rayner et al., 2003, 2004; Re-
ichle et al., 1998). Thus, skipping any of the interest areas 
during first-pass reading implies that (i) the fixation prior 
to the skip might include processing of the skipped word to 
a different extent than when the upcoming word is fixat-
ed, (ii) the fixation made after the skip might include some 
spillover processing, again to a greater extent than would 
occur when there is no skip, (iii) if the words of interest are 
fixated for the first time during second-pass fixations (i.e., 
a word is skipped and then later fixated after a regression 
from a word downstream in the sentence), the processing 
that occurs during such fixations is likely to reflect quite 
different cognitive processes to those that occur during first 
pass fixations on the word. For these reasons, skipping is 
considered another source of noise for co-registration data, 
which needs consideration. 

The easiest method to reduce skipping of critical words 
embedded in a list or sentence is to use words (ideally pre-
target, target and post-target words) that are at least four 
characters long (Rayner, 1979). Alternatively, or in addition, 
researchers might consider removing those observations 
where a skip occurred on the preceding, current, or follow-
ing area of interest. As for consideration of consecutive fix-
ations, skipping the post-target word might be less prob-
lematic if parafoveal processing of the target word or early 
foveal processing of the target word are the aspects of pro-
cessing that are under investigation. 

It is important to consider the skipping issue for investi-
gations of both foveal and parafoveal processing in co-reg-
istration reading research, regardless of the paradigm being 
used (Degno et al., 2019a, 2019b; Dimigen et al., 2012; Met-
zner et al., 2015; Mirault et al., 2020). However, obviously, 
when skipping behavior is itself the issue of investigation, 
then such observations must be retained and examined in 
detail (e.g., Kretzschmar et al., 2015). 

3.1.5. Early and Late Gaze-Contingent Display 3.1.5. Early and Late Gaze-Contingent Display 
Changes Changes 

Gaze-contingent display change paradigms (see Rayner, 
1998 for a review) allow the experimenter to make rapid 
changes to the visual display a participant is looking at con-
tingent on their eye position. This allows us to understand 
the extent and type of information that readers process in 
parafoveal and peripheral vision during reading (or other 
tasks). 

For these paradigms to work, it is necessary that the dis-
play change occurs very rapidly during a saccade, when vi-
sual input is suppressed (so-called saccadic suppression; 
Matin, 1974), and not during the preceding or subsequent 
fixation (e.g., Angele et al., 2016; Richlan et al., 2013; Slat-
tery et al., 2011). 

Early display changes might occur for several reasons, 
including a blink or the readers’ gaze being very close to 
the boundary, microsaccades, sampling errors, and hooks. 
Hooks are usually small post-saccadic EMs that occur when 
the eye does not land at exactly the intended location at the 
end of a saccade but slightly overshoots that location and 
returns to it in the opposite direction (dynamic overshoot; 
Bahill et al., 1975a, 1975b; Bahill & Stark, 1975; Kapoula et 
al., 1986). Taking hooks as an example, if this rapid “wob-

ble” like eyeball movement (Nyström & Holmqvist, 2010) is 
sufficient for the gaze to temporarily transgress the bound-
ary, this will trigger the change, and the display will be 
updated earlier than expected while the fixation remains 
slightly to the left of the boundary on the pre-boundary 
word. If the display change is triggered in this way, it will 
occur too early and the parafoveal manipulation will not be 
effective. 

Likewise, if the display change occurs too late, foveal 
processing of the target word will be affected. Late display 
changes occur when the parafoveal manipulation (e.g., a 
mask) is still present when the eyes fixate on that word (e.g., 
when fixating the post-boundary word in a boundary para-
digm experiment). Late changes are mainly caused by tem-
poral errors in the presentation screen refresh rate. When 
the display update is too slow, the participant will experi-
ence the early portion of the fixation in the target region 
directly fixating the preview, that is, processing a stimulus 
they were not intended to fixate directly and this will then 
change to the target during the fixation. Such a situation 
means that the participant will be more likely to be aware 
of the stimulus change and that the stimulus presentation 
experience of the participant will not be that which was in-
tended. Thus, early and late changes are considered a po-
tential source of noise in the data and need to be taken into 
account. 

To avoid early and late display changes, the ET system 
needs to rapidly and accurately calculate the location of the 
point of fixation over time and then swiftly use this infor-
mation to update the display before the end of the saccade. 
Thus, sampling frequency should be high enough to ensure 
that a rapid display change is achieved. The higher the sam-
pling rate, the faster the system will receive information re-
garding the location of the point of fixation, and therefore, 
the more rapidly this information can be used to update the 
display. In addition, it is desirable to use stimuli displays 
with a rapid refresh rate to ensure fast implementation of 
the display update (e.g., Richlan et al., 2013). Furthermore, 
it is important that the experiment is the only task being 
run on the computer during testing (Krantz, 2000) to ensure 
that the computer is as temporally responsive as possible, 
thereby minimising the possibility of delayed update. Final-
ly, it is useful to check the actual latency of the display up-
date using photosensors (e.g., Richlan et al., 2013), and of-
fline, after data acquisition, the delay in the data (which 
might vary somewhat between trials), and exclude observa-
tions where updates occurred early or were slow (e.g., Wang 
& Inhoff, 2013). 

It is important to consider this issue when any gaze-
contingent display change paradigm is used and parafoveal 
processing is investigated in co-registration reading re-
search (Degno et al., 2019a, 2019b; Dimigen et al., 2012; 
Kornrumpf et al., 2016; Niefind & Dimigen, 2016). However, 
when no gaze-contingent display change paradigm is 
adopted, this issue will not pose a problem and will not sub-
sist. 

3.1.6. Selection of Interesting Fixations 3.1.6. Selection of Interesting Fixations 

Once problematic fixations are identified as per the cri-
teria above, these need to be removed from the EM dataset. 
The remaining fixations will become the time-locking 
events in the FRP data and will then be pre-processed ac-
cording to the ET-guided EEG data and FRP data processing 
criteria. 
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3.2. PreProcessing of ET-Guided EEG Data 3.2. PreProcessing of ET-Guided EEG Data 

In the following, we present issues for consideration in 
respect of preprocessing of ET-guided EEG data regardless 
of experimental paradigm used and the type of processing 
(i.e., foveal or parafoveal) under investigation. 

3.2.1 Data Synchronisation 3.2.1 Data Synchronisation 

In order to synchronise EM and EEG data and proceed 
with further data processing, the events that indicate trial 
onsets and trial offsets need to be coded with the same 
event markers both in the EM and EEG datasets (e.g., 31 for 
all TTLon/onset and 32 for all TTLoff/offset). If necessary, 
recoding may be required. 

When both EM and EEG recordings include consistent 
event markers indicating the onset and offset of each trial, 
it is possible to synchronise the data. Synchronisation can 
be achieved via the EYE-EEG extension of EEGLAB (Dimi-
gen et al., 2011), which also allows researchers to import 
the events present in the EM data (i.e., fixations, saccades, 
and blinks) as detected online by the ET system (at this 
point provided by SR Research EyeLink systems only) and 
add them to the EEG event structure. As we will discuss be-
low, the imported EM events will be used to optimise the 
ICA procedure (i.e., for spike potential overweighting), to 
match the original timestamps of these events with the tim-
ing of the interesting fixation onsets, and to allow for the 
adoption of the deconvolution approach. It is important to 
note though that these EM events do not yet contain the 
features and selections identified at the end of the EM pre-
processing procedures. That is, at this point all fixations, 
saccades, and blinks will be imported in the EEG data, re-
gardless of whether they reflect interesting EM events as-
sociated with the experimental sentences, nor whether they 
are associated with the critical areas of interest in each ex-
perimental sentence. 

Once EM and EEG data are synchronised, it is essential to 
verify that the two datasets perfectly match with each other. 
Perfect alignment is observed when the latency difference 
between the corresponding events of the two datasets has 
a mode of zero. Again, the EYE-EEG extension of EEGLAB 
(Dimigen et al., 2011) allows for checking and estimation of 
the synchronisation quality of the two recordings. In our ex-
periments, we examine the synchronisation quality and er-
ror for each participant’s dataset to ensure tight alignment. 

Regardless of the paradigm used and of the type of pro-
cessing investigated, synchronisation is crucial in co-regis-
tration research (see Baccino & Manunta, 2005; Degno et 
al., 2019a, 2019b; Dimigen et al., 2011; Kornrumpf et al., 
2016; Kretzschmar et al., 2015; Loberg et al., 2018, 2019; 
López-Peréz et al., 2016; Metzner et al., 2015; Mirault et al., 
2020; Niefind & Dimigen, 2016; Weiss et al., 2016 for details 
on data synchronisation). 

3.2.2. Detection and Removal of Bad EEG Channels 3.2.2. Detection and Removal of Bad EEG Channels 

During data acquisition, the signal quality for each chan-
nel should be maximised, and where possible, adjustments 
made to ensure high quality (e.g., by asking participants 
to adopt a comfortable position, thereby reducing move-
ments, and in turn, muscle artifacts in the signal). However, 
when recording the EEG signal from multiple electrodes 
on the scalp surface or from special populations, it might 
happen that one or more channels may contain artefacts 
(detectable in the form of extreme values, e.g., a flat or a 
noisy channel), due, for example, to poor contact between 

the channel and the scalp. Such circumstances prevent the 
recording of a good signal from that channel, and this in 
turn affects the signal-to-noise ratio across the whole scalp. 
If a bad channel is present in the dataset, it is possible to 
remove it and at a later time, perform a (linear or spheri-
cal) interpolation, whereby the missing signal is estimated 
on the basis of the signals of the other (good) neighbouring 
electrodes (e.g., Perrin et al., 1989). 

The detection of bad EEG channels can be performed in 
different ways, and in a manual or an automatized manner 
(e.g., autoreject, Jas et al., 2017; FASTER, Nolan et al., 2010; 
PREP, Bigdely-Shamlo et al., 2015). Commonly, EEG chan-
nels are considered bad when their values are particular-
ly extreme and exceed a certain threshold (e.g., Junghöfer 
et al., 2000), or when the difference between minimum and 
maximum voltages at a particular electrode exceeds a cer-
tain threshold (i.e., peak-to-peak signal amplitude differ-
ences, e.g., Jas et al., 2017) (although see for example SNS, 
de Cheveigné & Simon, 2008, for a different method). The 
basic difference between the two being that the first ap-
proach estimates whether the values of each channel are 
within certain limits, while the second approach measures 
whether there is strong change for a particular electrode 
within each timeframe (e.g., epoch, sliding window, etc.), 
regardless of the overall voltage limits within the entire pe-
riod of measurement. These two methods can be imple-
mented in terms of absolute values (e.g., Junghöfer et al., 
2000), or in terms of z scores (e.g., deviation and noisiness 
criteria, Bigdely-Shamlo et al., 2015; FASTER, Nolan et al., 
2010). In addition, it is possible to detect bad EEG channels 
using a single ‘global’ threshold for all sensors and/or sub-
jects, or to estimate multiple ‘local’ thresholds for each 
electrode and/or subject separately (see Jas et al., 2017 for a 
discussion). 

We refrain from committing to a particular strategy to 
detect bad EEG channels, nor do we recommend particular 
threshold values as these might vary significantly between 
datasets, depending on the nature of the data at hand. How-
ever, it should be emphasised that if a global threshold is 
adopted, it is possible that one particular value might not 
be suitable to detect bad channels in all subjects. Thus, it 
may be necessary to spend time estimating the threshold 
that is optimal for the detection of bad EEG channels across 
all of the experimental datasets (assuming that most sub-
jects’ data will not contain bad sensors). Implementation 
of these methods can be found in popular software (e.g., 
EEGLAB, Delorme & Makeig, 2004; MNE-Python, Gramfort 
et al., 2013) and can be applied regardless of the experimen-
tal paradigm and type of processing under investigation in 
co-registration reading experiments (Degno et al., 2019a, 
2019b; Loberg et al., 2018, 2019). 

3.2.3. Initial Filtering 3.2.3. Initial Filtering 

Filtering is used to improve the signal-to-noise ratio and 
increase statistical power for detection of true effects in the 
EEG data (e.g., Kappenman & Luck, 2010; see Luck, 2014 for 
a discussion of filters in relation to aliasing artefacts). By 
using filters, researchers can suppress signals in frequen-
cy ranges that are likely to be of no interest or may con-
tain artifacts. For example, noise due to electrical power 
lines comprises a frequency of about 50 Hz for Europe and 
most of Asia, and a frequency of about 60 Hz for North 
America. Additionally, muscle contraction produces activity 
with frequencies predominantly above 100 Hz (although, 
depending on the type of muscle, the electromyogram spec-
trum can be much broader and include frequencies between 
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20-300 Hz; e.g., Muthukumaraswamy, 2013), and skin po-
tentials (due, for example, to sweating) produce activity 
that consists mainly of frequencies lower than 0.1 Hz (e.g., 
Luck, 2014). Applying a filter to the EEG data can help to 
attenuate those frequencies with a non-neural origin, and 
therefore, noise. 

There is an ongoing discussion in the literature about 
the use of filters (e.g., Acunzo et al., 2012; Rousselet, 2012; 
VanRullen, 2011; Widmann & Schröger, 2012). Therefore, 
it is far from our intention to give strict recommendations 
for filtering, on the assumption that filter parameters need 
to be carefully assessed according to the specifics of the ex-
perimental data and research question (see Widmann et al., 
2015, for a discussion of filter design). Indeed, different co-
registration reading studies have used different filter para-
meters (high-pass filter of 0.1 Hz Baccino & Manunta, 2005; 
Degno et al., 2019a; Degno et al., 2019b; Hutzler et al., 
2007; Hutzler et al., 2013; López-Peréz et al., 2016; Mirault 
et al., 2020; Niefind & Dimigen, 2016; 0.2 Hz Dimigen et al., 
2012; Kornrumpf et al., 2016; 0.25 Hz Dimigen et al., 2011; 
0.3 Hz Kretzschmar et al., 2015; Metzner et al., 2015; Met-
zner et al., 2017; Simola et al., 2009; 0.5 Hz Henderson et 
al., 2013; Loberg et al., 2018, 2019; Weiss et al., 2016; low-
pass filters of 20 Hz Kretzschmar et al., 2015; Loberg et al., 
2018; 30 Hz Degno et al., 2019a, 2019b; Hutzler et al., 2013; 
López-Peréz et al., 2016; Loberg et al., 2019; 40 Hz Baccino 
& Manunta, 2005; Mirault et al., 2020; Niefind & Dimigen, 
2016; Dimigen et al., 2012; Kornrumpf et al., 2016; Simola 
et al., 2009; 45 Hz Henderson et al., 2013; 70 Hz Dimigen 
et al., 2011; Hutzler et al., 2007; Metzner et al., 2017; Weiss 
et al., 2016; 100 Hz Metzner et al., 2015; and in some cases 
with a 50 Hz notch filter, Hutzler et al., 2007; Metzner et al., 
2015; Metzner et al., 2017; Weiss et al., 2016). 

However, we note that for typical cognitive experiments, 
a high-pass filter of 0.1 Hz is considered optimal in terms of 
the trade-off between benefits (i.e., signal-to-noise and sta-
tistical power improvement) and costs (i.e., attenuation of 
the signal and introduction of artefactual effects in the EEG 
waveform) (Kappenman & Luck, 2010; Kulke & Kulke, 2020; 
Tanner et al., 2015). If the recorded data is of sub-optimal 
quality (i.e., noisier data), a more stringent high-pass filter-
ing level might need to be used (e.g., Maess et al., 2016). 

In terms of low-pass filtering, at this point in the prepro-
cessing pipeline, researchers might decide to apply a com-
mon 30 Hz low-pass filter to suppress frequencies typically 
associated with power line noise and muscle activity. How-
ever, as we will discuss below, to optimise ICA decomposi-
tion, keeping higher frequencies in the data (with a filter of 
at least 100 Hz) has proven to be effective (Dimigen, 2020). 
Should researchers wish to examine for example spectral 
phenomena, or should their data require different parame-
ters, these filter levels should be optimized for the task at 
hand. 

Finally, it is important to remind the reader that filtering 
creates edge artefacts at the beginning and end of the sig-
nal. To avoid edge artefacts occurring at the start and end of 
each epoch or average, filters can be applied to continuous 
EEG data (e.g., Widmann et al., 2015). 

Researchers wishing to engage in co-registration reading 
experiments might be advised to consider this issue regard-
less of the paradigm and the nature of psychological pro-
cessing that is investigated. Implementation of different 
types of filters is found in common EEG software (e.g., 
EEGLAB, Delorme & Makeig, 2004; Fieldtrip, Oostenveld et 
al., 2011; MNE-Python, Gramfort et al., 2013). For discus-
sion of the different types of filters (e.g., finite vs. infinite 
impulse response, causal vs. non-causal filters) and their 

shortcomings, we refer the reader to Luck (2014) and Rous-
selet (2012). 

3.2.4. Independent Component Analysis (ICA) 3.2.4. Independent Component Analysis (ICA) 

EEG recordings during natural reading are contaminated 
by ocular artifacts (e.g., corneo-retinal dipole changes, sac-
cadic spike potentials, eye lid artifacts, Plöchl et al., 2012). 
Yet, EMs are an integral part of co-registration reading ex-
periments (indeed, in our view, eye movements are a cen-
tral, integral, largely visually and cognitively determined, 
behavioural aspect of natural reading). Thus, distortion in 
the EEG signal due to EMs cannot all be discarded and must 
be corrected. 

Several artefact correction methods have been proposed, 
including regression-based procedures (e.g., Croft & Barry, 
2000a, 2000b; Elbert et al., 1985; Gratton et al., 1983), di-
pole modeling (e.g., Berg & Scherg, 1991; Lins et al., 1993), 
and blind source separation procedures (Iriarte et al., 2003; 
Joyce et al., 2004; ICA, Jung, Makeig, Humphries, et al., 
2000; Kierkels et al., 2007; e.g., PCA, Lins et al., 1993). 
Of these techniques, ICA has become the most commonly 
used to correct for ocular artifacts in co-registration reading 
studies (e.g., Degno et al., 2019a; Degno et al., 2019b; Hen-
derson et al., 2013; Hutzler et al., 2007; Hutzler et al., 2013; 
Loberg et al., 2018, 2019; Metzner et al., 2015; Metzner et 
al., 2017; Mirault et al., 2020; Weiss et al., 2016). 

Independent component analysis (ICA) is a blind source 
separation method, which linearly decomposes the multi-
channel time series data into maximally temporally inde-
pendent signal components (e.g., Bell & Sejnowski, 1995). 
Each of these temporally independent components (ICs) 
acts as a spatial filter, such that it keeps the contribution of 
one physical source of the EEG signals, while filtering out 
the contributions of all the other sources (Makeig & Onton, 
2009). The decomposition is data-driven, as this method 
does not require any a priori knowledge of the spatial and 
temporal properties of the ICs (Bell & Sejnowski, 1995). ICA 
is commonly used for removal of artefact signals, although 
it can be used to separate the brain sources that contribute 
to the scalp data as well (Jung, Makeig, Humphries, et al., 
2000; Jung, Makeig, Westerfield, et al., 2000; Makeig et al., 
1996; Onton & Makeig, 2006). 

For a successful ICA decomposition, an adequate amount 
of data, both in terms of the number of samples and quality, 
needs to be computed. Below we discuss a series of factors 
that can affect ICA decomposition, and which might be con-
sidered in order to improve identification and isolation of 
EEG artifacts from neural activity patterns. 

3.2.4.1. Detection of Bad EEG Intervals 

Occasionally, EEG recordings might contain non-stereo-
typical voltage fluctuations, due, for example, to large body 
or cable movements. Inclusion of these bad intervals would 
inflate the dimensionality of the EEG data (jeopardising 
the ICA assumptions) and reduce the quality of the ICA 
output (e.g., Debener et al., 2010). In a manner similar to 
the detection of bad EEG channels, it is possible to detect 
bad EEG intervals using manual or automatized techniques 
that require absolute, or peak-to-peak, amplitude differ-
ence thresholds (e.g., autoreject, Jas et al., 2017; FASTER, 
Nolan et al., 2010; PREP, Bigdely-Shamlo et al., 2015). At 
this point in the preprocessing procedures, it is advisable 
to set up thresholds with high values to detect and remove 
these rare artifacts with unknown origin (Commonly 
Recorded Artifact Potentials, CRAP; Luck, 2014). In addi-
tion, intervals of continuous EEG data might correspond to 
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periods during which a blink occurred, or gaze was locat-
ed at a point in space well beyond the spatial range of the 
presentation screen. As we explained in the EM preprocess-
ing section, blinks are a source of noise which should be 
removed from the data. Likewise, when gaze is oriented to 
extreme positions, it is difficult to interpret such data in 
respect of the experimental task and cognitive processing. 
The EYE-EEG extension (Dimigen et al., 2011) can be used 
to detect these EEG intervals on the basis of the ET signal. 

Finally, once bad EEG intervals are identified and marked 
down, it is possible to check the synchronisation lag be-
tween the ET and EEG systems with the cross-correlation 
procedure included in the EYE-EEG extension. This proce-
dure makes use of the raw EEG and ET signal and computes 
the correlation between the raw horizontal ET channel and 
the horizontal EOG electrodes. The peak value of the cross-
correlation is assumed to be the estimation of direction and 
amount of lag between the two systems. Thus, for an accu-
rate synchronisation, the highest cross-correlation should 
be observed at a lag of zero samples. 

3.2.4.2. Optimised ICA training data 

It has been argued that the use of optimised training data 
helps with ICA decomposition (e.g., Debener et al., 2010; 
Dimigen, 2020). Training data are typically a copy of the 
original data on which different (stricter) parameters are 
applied. The ICA is then computed on the training data and 
the resulting component weights later applied to the orig-
inal data (e.g., Meyberg et al., 2017). Dimigen (2020) has 
suggested that at least three parameters be considered for 
FRP training datasets: high-pass and low-pass filtering, as 
well as spike potential overweighting. 

First, the contribution of low frequencies negatively af-
fects ICA decomposition (Debener et al., 2010). These fre-
quencies are associated with non-stationary signals that 
vary spatially over time, which compromises the ICA as-
sumptions (for discussion about ICA assumptions see 
Makeig & Onton, 2009; Onton et al., 2006). Therefore, to 
optimise the ICA decomposition, a higher filter for EEG 
training data should be applied. Dimigen (2020) has evalu-
ated different filter parameters and showed that in reading 
tasks, best results are obtained with the high-pass filters 
that are between passband edge of 2.5 Hz (width of transi-
tion band: 2 Hz, low cutoff (-6dB): 1.5 Hz) and 4 Hz (width 
of transition band: 2 Hz, low cutoff (-6dB): 3 Hz). In partic-
ular, best correction of the corneoretinal dipole artifact is 
obtained with a passband edge of 3-4 Hz, whilst best correc-
tion of the saccadic spike potential artifact is obtained when 
high-pass filter is about or less than 3 Hz (width of transi-
tion band: 2 Hz, low cutoff (-6dB): 2 Hz). 

With respect to the low-pass filter, Dimigen (2020) has 
shown that when high frequencies (i.e., 100 Hz) are kept 
in the training data, the quality of ICA decomposition im-
proves. The author suggested that the saccadic spike po-
tential spectrum might therefore include high frequencies 
(> 40 Hz), and thus be better modelled when such frequen-
cies are included in the training data (if source estimation 
analyses are not to be conducted). 

Furthermore, it has been suggested that a factor that 
favourably affects ICA quality is the use of peri-saccadic 
samples overweighting (Keren et al., 2010). By appending 
segments of data extracted around saccade onset to the 
training data, the ICA can train on a larger amount of con-
taminated data, and, in turn, better separate between com-
ponents of non-neural and neural origin. Dimigen (2020, 
see supplementary Figure S6) showed that in reading tasks 
cutting and mean-centering short 30 ms epochs (-20 to +10 

ms from saccade onset), with the appended data length be-
tween 30-100% of the original training data length, almost 
fully removed the residual saccadic spike potential artefact 
from the data (see Dimigen, 2020 for details on the inter-
active effect of high-pass filtering and spike potential over-
weighting). The more training data that is used (and there-
fore the length of the appended data), the better the ICA de-
composition. However, a decision is required regarding the 
percentage of data to use in order to balance computational 
power with better decomposition. When the number of da-
ta samples is not adequate, an alternative would be to com-
pute first Principal Component Analysis (PCA) to reduce di-
mensions of the data (e.g., Kambhatla & Leen, 1997), and 
then perform the ICA decomposition, thereby obtaining a 
smaller number of ICs. However, recently, arguments have 
been put forward suggesting that using PCA for dimension 
reduction prior to ICA should be undertaken with caution 
and only after careful evaluation of whether it is necessary 
(Artoni et al., 2018). 

The latest version of the EYE-EEG extension of EEGLAB 
(v0.85) includes functions to construct training data opti-
mised for ICA decomposition. 

3.2.4.3. ICA on Training Data 

Running ICA requires a considerable amount of time. 
To speed up the process researchers might consider down-
sampling the training data. When downsampling the data 
though, consideration of the frequency content of the arte-
facts that are going to be modelled needs to be given. In 
other words, extreme downsampling, where the frequencies 
of the artefacts are no longer well represented (as defined 
through Nyquist frequency), should be avoided. 

In addition, we remind the reader that the extended In-
fomax ICA algorithm (Bell & Sejnowski, 1995; Lee et al., 
1999; Makeig et al., 1996) is the default ICA algorithm used 
in EEGLAB (Delorme & Makeig, 2004). However, there are 
multiple options available for ICA decomposition (e.g., Fas-
tICA, Hyvärinen, 1999; JADE, Cardoso & Souloumiac, 
1993). We refer the reader to the original papers for details 
of the different algorithms. 

3.2.4.4. Detection of Ocular ICs on Training Data 

The identification of ICs associated with ocular artefacts 
has been a matter of long debate, and without the use of the 
computational techniques we will describe below, it can be 
considered quite a subjective practice. 

The EYE-EEG extension (Dimigen et al., 2011) that has 
been implemented in EEGLAB (Delorme & Makeig, 2004) 
allows researchers to identify the ICs in a more objective 
way. This approach implements the variance-ratio criterion 
proposed by Plöchl et al. (2012), such that ICs likely to re-
flect ocular artefacts show a higher temporal variance-ratio 
during a saccade than during a fixation. Dimigen (2020) has 
tested different variance ratio thresholds (between 0.6 and 
1.5) and showed that a threshold no lower than 1.1 should 
be adopted to adequately remove ocular ICs without remov-
ing neural activity relevant to the cognitive task at hand 
(i.e., overcorrection). 

3.2.4.5. ICA Weights Transfer 

Once the ICA weights are computed and ocular ICs are 
identified in the optimised training dataset, the weight ma-
trix is applied to the original EEG data. This procedure al-
lows the researcher to strike a balance between the require-
ments of an effective ICA decomposition (i.e., with strict 
high-pass filtering) and the requirements of observing the 
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non-artifactual brain activity in the low frequencies of the 
data (i.e., with lax high-pass filtering). 

3.2.5. Pruning of ocular ICs 3.2.5. Pruning of ocular ICs 

Once the original EEG data contain the ICA weights and 
the identified ocular ICs, it is straightforward to remove the 
ocular ICs, and plot the data with and without those ICs 
(see the EYE-EEG tutorial “Step 8: Remove ocular artifacts 
with eye tracker-guided, optimized ICA” at http://www2.hu-
berlin.de/eyetracking-eeg/tutorial.html#tutorial6). 

3.2.6. Low-Pass Filtering 3.2.6. Low-Pass Filtering 

Low-pass filtering is used to attenuate higher frequen-
cies, for example associated with line noise (i.e., 50 Hz for 
Europe and most of Asia, and 60 Hz for North America) 
and muscle artifacts (typically >100 Hz). After identification 
and pruning of ocular ICs, which required higher frequen-
cies to remain in the data, researchers might want to apply 
a stricter low-pass filter. A low-pass filter of 30 Hz is com-
monly used in typical cognitive experiments (e.g., see Fig-
ure A5 of Rousselet, 2012, for frequencies of filter cutoffs) 
to increase the signal-to-noise ratio and filter out high fre-
quencies associated with muscle artifacts, as well as the 50 
Hz (or 60 Hz) power line noise, so that no separate notch fil-
ter for electric noise needs to be implemented. 

However, as for most of the decisions presented in the 
pipeline, the parameters to be adopted will vary depending 
on the research questions to be investigated (e.g., examina-
tion of component onset latencies). 

3.2.7. Interpolation of Removed Bad EEG Channels 3.2.7. Interpolation of Removed Bad EEG Channels 

We discussed at the beginning of the present pipeline 
that at times it is necessary to remove a few bad EEG chan-
nels in some subjects, as otherwise the noisy data in these 
channels might negatively affect further steps in the data 
preprocessing (e.g., ICA, re-referencing, etc.). It is likely 
that the bad channels that have been removed will be dif-
ferent for different subjects. Thus, unless a single sensor is 
to be analysed, and for none of the subjects that sensor is 
a bad channel, it is necessary to restore data dimensionali-
ty across subjects. To achieve this, it is possible to estimate 
the missing data of the bad EEG channels using either a lin-
ear or spherical interpolation (Perrin et al., 1987, 1989). 

Interpolation can be performed in all the popular soft-
ware for EEG analysis (e.g., EEGLAB, Delorme & Makeig, 
2004; Fieldtrip, Oostenveld et al., 2011; MNE-Python, 
Gramfort et al., 2013). 

3.2.8. Detection of Bad EEG Intervals 3.2.8. Detection of Bad EEG Intervals 

Intervals that still contain extreme values after the pre-
vious preprocessing steps are identified at this point in the 
pipeline through the adoption of stricter criteria. As for the 
initial detection of bad EEG intervals, extreme values could 
be detected in absolute value or as a difference between a 
minimum and maximum voltage at each electrode, using 
the same threshold for all subjects, or different thresholds 
for each subject. 

3.2.9. Re-Referencing 3.2.9. Re-Referencing 

The voltage that we record at each scalp electrode is 
measured with respect to a reference site (i.e., [Active elec-
trode – Ground electrode] – [Reference electrode – Ground 

electrode]), which is assumed to be electrically neutral (i.e., 
unaffected by the sources of interest and noise). However, 
none of the sites typically used as a reference site (e.g., 
vertex, tip of the nose, earlobes or mastoids) is completely 
neutral. All of them are still affected by some artefacts and/
or brain signal to some degree. Thus, offline re-referencing 
procedures are generally used to minimise the impact of the 
activity at the reference site upon the EEG signal recorded 
at different scalp electrodes. 

The choice of which reference to use is an issue of discus-
sion in the EEG literature (e.g., Kayser & Tenke, 2010), and 
it depends on one’s experimental procedures and research 
questions. The most commonly used offline procedures for 
co-registration reading experiment data analysis are linked 
mastoid (Kretzschmar et al., 2009; Kretzschmar et al., 2015; 
López-Peréz et al., 2016; Metzner et al., 2017; Simola et 
al., 2009) and average (Degno et al., 2019a, 2019b; Dimigen 
et al., 2011; Dimigen et al., 2012; Kornrumpf et al., 2016; 
Loberg et al., 2018, 2019; Metzner et al., 2015; Niefind & 
Dimigen, 2016) re-referencing procedures. 

The linked mastoid re-referencing procedure is comput-
ed as the average between the left and right mastoids (e.g., 
Mahajan et al., 2017). It is commonly adopted in the ERP/
FRP community as it is independent of electrode montages 
(i.e., facilitating comparison between different laboratory 
set ups), and because the location of the mastoids is con-
sidered to be sufficiently distant from the neural sources of 
the EEG signal. However, Li et al. (2015) showed that when 
cortical sources generating an effect are located in the in-
ferior occipito-temporal regions (i.e., the cortical sources 
of the preview positivity effect as estimated by Dimigen et 
al., 2012), the use of linked mastoids as offline re-referenc-
ing procedure can attenuate the investigated effect. Under 
these circumstances, an average re-referencing procedure is 
a better option. 

The average re-referencing procedure (Bertrand et al., 
1985) is computed as the average of the activity across all 
the scalp electrodes. This approach is considered good if 
enough electrodes are used on most of the accessible parts 
of the head (e.g., at least 60 sites across the entire scalp; Di-
en, 1998, Picton et al., 2000; although see also Desmedt et 
al., 1990 for a related discussion of pitfalls of average refer-
encing). 

Offline re-referencing is a straightforward procedure, 
and its implementation can be found in all the popular soft-
ware (e.g., EEGLAB, Delorme & Makeig, 2004; Fieldtrip, 
Oostenveld et al., 2011; MNE-Python, Gramfort et al., 
2013). 

3.3. Processing of FRP Data 3.3. Processing of FRP Data 

3.3.1. Matching the EM and EEG Data 3.3.1. Matching the EM and EEG Data 

In the present pipeline, at this point we identify in the 
EEG data the same interesting fixations that were selected 
at the end of the EM data preprocessing. This is a critical 
step as it allows for the use of these interesting fixations 
as time-locking events for the FRP data. Similarly, if re-
searchers are interested in saccadic-related potentials 
(SRPs) rather than FRPs, and the critical saccades have been 
identified in the EM data preprocessing, it will be possible 
at this point to select the saccade onsets of interest to time-
lock the SRP data. 

3.3.2 Fixation-Related Potential Estimation 3.3.2 Fixation-Related Potential Estimation 

In natural reading experiments, words are fixated in 
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rapid succession, with very short intervals between one fix-
ation and the following one, and participants are free to 
move their eyes in any direction and location. Under these 
circumstances, the FRP waveform elicited by the processing 
of each word will temporally overlap with the FRP wave-
forms associated with the processing of previous and fol-
lowing words. In addition, different fixation durations and 
saccade sizes will be present. When overlapping potentials 
and oculomotor behavior systematically differ between 
conditions, these differences can sometimes result in spu-
rious effects in the FRP data, particularly in respect of later 
components where EM behaviour may differ quite markedly 
contingent on the experimental condition within which it 
was acquired (e.g., Dimigen & Ehinger, 2020). It is very dif-
ficult, if not impossible, to avoid the overlapping issue and 
control for oculomotor confounds during data acquisition in 
natural reading tasks. However, some techniques have been 
proposed to deal with these two issues during offline data 
preprocessing. 

Nikolaev and colleagues (2016) proposed to match the 
EM characteristics between experimental conditions based 
on the Mahalanobis distance (i.e., a metric of the distance 
between a data point and the mean of the multivariate dis-
tribution with a covariate matrix; Mahalanobis, 1936) or 
ranked-based Mahalanobis distance when the data have a 
highly skewed distribution (i.e., the distance between two 
data points with an adjusted covariate distribution; Rosen-
baum, 2005) in order to counterbalance these oculomotor 
differences. That is, first, to set minimum EM criteria (e.g., 
minimum fixation duration of 250 ms), and then identify 
a subset of the data and use only those observations in 
which EM characteristics (e.g., fixation duration, saccade 
amplitude and saccade direction) are not significantly dif-
ferent across conditions, as interesting time-locking events 
(i.e., interesting fixations or saccades) for the FRPs. In the 
event that a different number of observations might survive 
across different conditions, observations might be random-
ly selected from the condition with the highest number of 
observations, such that the data set(s) match the condition 
with the lowest amount of trials. 

Although the proposed solution may attenuate the ocu-
lomotor behaviour variability issue, it has the obvious 
weakness of requiring that a population of short fixations 
that could reflect meaningful cognitive processes will be ex-
cluded from the analyses. Also, by including exclusively ob-
servations with first fixation durations longer than a mini-
mum time window (e.g., 250 ms), the variability issue would 
still hold true for late FRP components, wherein different 
fixation durations, regressions and refixations may lead to 
differently overlapping potentials. An alternative action of 
selecting observations exclusively for very long fixation du-
rations whilst taking into account overlapping late FRP 
components, would limit the analysis to a very small, and 
likely non-representative, sample of the data (given that on 
average an eye fixation is approximately 250 ms). Further-
more, and very importantly, differences in fixation duration 
or saccade size may be fundamentally associated with the 
different experimental conditions (e.g., processing in one 
condition might be more difficult than in another resulting 
in longer fixation durations). Finally, until we have a clear 
and detailed understanding of the relationship between EM 

and FRP effects, some ambiguity will remain with respect to 
the consequences that EM matching procedures might have 
on the FRP data. Thus, reducing the data to those observa-
tions that have a similar fixation duration or saccade size 
across conditions may actually bias the results attenuating 
and/or shifting the onset of any real FRP difference1. 

Regression-based approaches have also been recom-
mended to deconvolve overlapping ERP/FRP signals and, at 
the same time, to model influences of variables that cannot 
be fully controlled experimentally (e.g., Cornelissen et al., 
2019; Kristensen et al., 2017; Smith & Kutas, 2015a, 2015b; 
c.f. Frey et al., 2013 for adjacent response estimation algo-
rithm, ADJAR; Woldorff 1993, to estimate FRPs). Recently, 
a Matlab toolbox has also been developed to perform such 
analyses (Unfold; Ehinger & Dimigen, 2019; although see 
also the existing mTRF, Crosse et al., 2016, and MNE, Gram-
fort et al., 2013). 

The Unfold toolbox (Ehinger & Dimigen, 2019) is written 
in Matlab and combines general linear models to estimate 
ERP/FRP response and deconvolve overlapping signals, and 
generalised additive models to model non-linear predictors. 
We refer the reader to the original paper for an extensive 
description of assumptions, mathematical details, and fea-
tures available in the toolbox. Here we limit ourselves to 
note two major implications for data preprocessing that re-
searchers need to know when deciding whether to use this 
toolbox. 

First, deconvolution is implemented in the Unfold tool-
box such that it requires FRP data to be continuous. This 
implies that researchers will need to use methods able to 
deal with artefact correction in continuous rather than 
epoched data. For example, when trials include intervals 
with bad EEG data, those intervals (or trials) will need to be 
identified and marked down, but not removed from the con-
tinuous dataset. Removal of the bad EEG intervals (or trials) 
from the dataset would lead to a less reliable model fit of the 
overlapping potentials, as the associated events would also 
be removed, and therefore not accounted for. Instead, if bad 
data are present in the dataset, they will be kept but marked 
down by setting the parameters of the equation (or time ex-
panded matrix) explaining those samples to zero (i.e., so 
that those samples cannot contribute to FRP estimation). 

Second, when using regression-based approaches such 
as in Unfold, variables of interest and covariates do not 
need to be categorical, as in the traditional average ERP/
FRP studies. Predictors can be either continuous or cate-
gorical, making experimental design more flexible (Smith & 
Kutas, 2015a). 

To date, a very limited number of co-registration reading 
studies have been published using regression-based ap-
proaches to deal with overlapping signals and differences 
in stimuli characteristics (i.e., word length, Loberg et al., 
2019) or oculomotor behaviour (i.e., saccade amplitude and 
fixation duration, Weiss et al., 2016) and to show how real 
and spurious effects can be detangled (Dimigen & Ehinger, 
2020). Thus, systematic investigation is required in the fu-
ture to clarify potential impact that differences between 
conditions in oculomotor behaviour and signal overlap have 
on our interpretations and conclusions about the investi-
gated cognitive processing. 

To illustrate the steps that may be followed in the 

We note, however, that when separate analyses were carried out to investigate whether same or different effects were observed in the ear-
ly FRP components associated with observations longer than a minimum duration (i.e., 240 ms), or with all the observations regardless of 
first fixation duration, the same effects were found (Dimigen et al., 2012). 

1 
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pipeline when adopting, or not adopting, the deconvolution 
approach, we have provided two separate workflows (see 
Figure 1). The construction of the pipeline allows the de-
cision between the traditional averaging approach and the 
deconvolution approach to be left as late as possible. 

We note that the Unfold toolbox provides the option of 
running the same model with and without correction for 
overlapping signals. Without overlap correction the pro-
cedure is the standard rERP estimation procedure as de-
scribed in Smith and Kutas (2015a), allowing for control 
of confounding variables but not for signal overlap. Thus, 
comparing FRPs with and without overlap correction can 
be a useful means of examining the consequences of over-
lap. Below we will discuss early considerations that may be 
useful when adopting deconvolution approaches, and then 
the steps to consider when adopting the more traditional 
ERP/FRP procedures. Baseline correction applies similarly 
to both approaches, for this reason we will discuss this issue 
and step in the same section. 

3.3.3. Deconvolved Fixation-Related Potential 3.3.3. Deconvolved Fixation-Related Potential 
Estimates Estimates 

To estimate the subject-level FRP waveforms (betas), it 
is necessary to define the model that will best account for 
overlapping responses and best describe the effects of inter-
est in the data. Dealing first with the overlapping issue, the 
deconvolution approach permits a regression equation with 
a time expanded matrix for each sample of the dataset to 
be built. The matrix is defined by the events and their tim-
ing in the data (e.g., interesting and non-interesting fixa-
tions) and is expanded to include a window of time locked 
to each interesting and non-interesting event where over-
lapping signal is estimated to occur (and to include the la-
tency of the FRP effect to be investigated). By including a 
time window long enough to include neighbouring events, 
the model can reconstruct the responses that generated the 
whole dataset while accounting for the overlap. 

Second, researchers will need to define a model that in-
cludes all the variables of interest and potentially con-
founding covariates, specifying whether these predictors 
are categorical/factorial or continuous variables, and if con-
tinuous, whether there is a linear or non-linear relationship 
between each predictor and the FRP response. In addition, 
the model will need to include the type of effects to be in-
vestigated (i.e., main effects, interactions, or both). 

Once the model is defined and solved, a beta, that is a 
regression coefficient, for each parameter and timepoint of 
the defined time window will be returned. With the Unfold 
toolbox (Ehinger & Dimigen, 2019) the models are defined 
with the Wilkinson notation, spline regressions are used 
to define non-linear predictors, and betas can be exported 
in different formats (e.g., plain text, Matlab file, Fieldtrip 
structure) to be plotted and used in further statistical analy-
ses. These features make Unfold an accessible tool for re-
searchers to run these types of analyses. 

3.3.4. Baseline Correction (with and without 3.3.4. Baseline Correction (with and without 
Deconvolution) Deconvolution) 

Baseline correction involves subtracting the average EEG 
activity recorded in the baseline time period from each 
channel and time point of the entire epoch (e.g., Urbach & 
Kutas, 2006). The purpose of the baseline correction is to 
reduce offsets and drifts and measure real changes in the 
EEG activity following the event of interest (e.g., word on-
set or fixation onset). Thus, for the baseline correction to 

be effective, the assumption is that activation during the 
baseline period is unaffected by the experimental manipu-
lation and does not differ between conditions in any way 
(e.g., in terms of external environment). Indeed, any pre-
event difference that might exist would lead to a false dif-
ference between conditions during the post-event interval, 
which could lead to the misinterpretation of changes in EEG 
activity as causal consequences of the event of interest. 

According to Luck (2014) a good baseline period should 
be at least 20% of the overall epoch duration and a multiple 
of 100 ms in order to counteract the EEG oscillations due to 
alpha-frequency (~10 Hz). Nonetheless, different common 
practices are used. In ERP experiments, it is common to 
consider as baseline the time-window immediately preced-
ing the stimulus presentation, usually the preceding 100 ms 
(e.g. Dambacher et al., 2006; Laszlo & Federmeier, 2009). 
This ‘individual baseline’ (Nikolaev et al., 2016) might rep-
resent a good choice for ERP experiments, as in these stud-
ies the inter-stimulus onset is typically quite long, and thus 
we can assume that the activity pre-stimulus is very similar 
across conditions. 

For co-registration experiments, the choice of baseline 
is a little more complicated. To date many co-registration 
reading studies have used the same baseline period as that 
used in traditional ERP studies (e.g. Baccino & Manunta, 
2005; Degno et al., 2019b; Dimigen et al., 2011, 2012; Simo-
la et al., 2009). However, assuming preprocessing of the 
word to the right of the fixation (i.e., parafoveal processing 
of a target word; see Rayner, 1998, 2009 for reviews), the 
cognitive processing that occurs in the time window prior to 
the fixation onset on the target word would (potentially) be 
different across conditions due to the experimental manip-
ulation of the target word. The extent to which this occurs 
would depend on the type of information that was available 
and extracted from the parafovea. In addition, systematic 
differences between conditions due to the overlapping issue 
discussed above would still apply. 

With the regression-based approaches that include de-
convolution, the choice of baseline might be less problem-
atic. The deconvolution should remove the systematic vari-
ations between conditions due to overlap in the baseline in-
terval, making it possible to use the interval preceding the 
fixation onset on the target word. Nonetheless, it is impor-
tant to consider how baseline selection might be optimised 
with respect to the specific characteristics of a particular 
experimental paradigm to be employed to investigate spe-
cific research questions. When investigating parafoveal pro-
cessing for example, it might be sensible to select a differ-
ent baseline period to avoid any difference due to the pro-
cessing of the target word which may have already com-
menced. Such a period might be the time window preceding 
the fixation onset on the pre-target word. That is, the fixa-
tion before the word that appeared prior to the target in the 
sentence, as up until this point the content of the sentence 
across conditions was almost always identical (Degno et al., 
2019a; see also Coco et al., 2020 for a similar approach in vi-
sual search). Alternatively, for deconvolved FRPs, one could 
use a period of time preceding the fixation on the target 
word prior to it being processed (e.g., from -700 to -500 
ms from fixation onset on the target word; Loberg et al., 
2019). This approach, also known as ‘local baseline’ (Niko-
laev et al., 2016), is ideal when the investigation focuses 
on processing of one or two specific target words within a 
sentence. However, often paradigms are employed in which 
every word within a trial (e.g., a list of words or a sentence) 
is manipulated in some way. Although current practice in 
these situations is to adopt a baseline of 100 ms from the 
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fixation onset of each word, this approach can be argued to 
be susceptible to the shortcomings discussed above. It re-
mains an issue for future research to establish the best form 
of baseline (and the possible implications of current prac-
tice) in relation to future co-registration studies of reading. 

A non-standard procedure of computing an ‘individual 
baseline’ involves taking a time interval immediately fol-
lowing stimulus presentation or fixation onset, generally 
the first 20 or 100 ms (e.g., Hutzler et al., 2007; Rämä & 
Baccino, 2010) as the baseline period. However, this ap-
proach is only valid when it is known that the effect of in-
terest does not occur during that baseline period. Other-
wise, this approach too would be susceptible to the short-
comings identified and might only be advisable when sys-
tematic differences between conditions and signal overlap-
ping are accounted for. An alternative perspective is that 
baseline correction is not always necessary and, if per-
formed, it should be included as a covariate in the statistical 
analysis to determine the strength of the correction (Alday, 
2019). 

To conclude, the choice of an appropriate baseline re-
quires very careful consideration in relation to the exper-
imental design that is employed, and with respect to 
whether the effect of interest might be expected to persist 
over several fixations. Baseline correction is implemented 
in all the commercially available and open source software 
for EEG data preprocessing (e.g., EEGLAB, Delorme & 
Makeig, 2004; Fieldtrip, Oostenveld et al., 2011; MNE-
Python, Gramfort et al., 2013), although with varying flexi-
bility. 

3.3.5. Epochs (without Deconvolution) 3.3.5. Epochs (without Deconvolution) 

Epoching involves extracting time windows that are 
time-locked to the event of interest (e.g., first fixation onset 
on the target words). Each epoch has a fixed length that in-
cludes a period of time before and after the event occurs. 
When extracting the epochs, one needs to consider which 
baseline will be used, and which FRP components will be in-
vestigated, as these latency periods will need to be included 
in the epoch length. It is also important to remember that at 
this point in the preprocessing, it can be helpful to extract 
longer epochs that extend beyond the end of the period to 
be examined, as these may be shortened at a later time. 

At this point in the pipeline, researchers should ensure 
that the signal does not contain any bad intervals. If ex-
treme values are present, additional adjustments should be 
made (e.g., rejection of intervals with extreme values as 
discussed above). Furthermore, if baseline correction is ap-
plied, this is typically done after epoching the data. 

3.3.6. Averages (without Deconvolution) 3.3.6. Averages (without Deconvolution) 

Once the data have been time-locked to the events of in-
terest (e.g., first fixation onset) and epoched, it is possible 
and straightforward to average the signal. Averaging means 
summing together the single-trial EEG waveforms at each 
timeframe and dividing by the number of epochs (e.g., Luck, 
2014). Different types of averaging can be performed (e.g., 
averaging the EEG waveforms of all epochs belonging to one 
condition across time points within a time window, across 
electrode sites located on a scalp region of interest, etc.). 
Each condition will then be entered in the statistical analy-
sis as a level of the predictor. 

4. Statistical Analysis 4. Statistical Analysis 

In order to conduct statistical analyses on the final EM 
and FRP data, it is necessary to separate the two data sets 
and treat them independently. This will allow researchers 
to examine the investigated effects in both the EM and FRP 
data. We note that with deconvolution the number of inter-
esting fixations that are extracted might be higher than the 
number of interesting fixations that are extracted with the 
non-deconvolution approach. If bad intervals of FRP data 
are present, the deconvolution model would simply ignore 
that bad segment for FRP estimation but still use the re-
maining intervals to model the effects of interest and the 
overlap. Thus, unless the fixation onset event overlaps with 
the bad data interval, that event will survive and enter the 
EM statistical analyses. In these instances, however, EM da-
ta should not be distorted, as the EM information (e.g., first 
fixation duration, gaze duration, etc.) will remain unmodi-
fied. In contrast, when adopting the non-deconvolution ap-
proach, if bad FRP data are present, the entire FRP epoch is 
removed from the FRP dataset, and therefore, the interest-
ing fixation associated with that epoch will not survive and 
will not contribute to the EM statistical analyses. 

In this section we discuss two statistical methods that re-
searchers might consider using when dealing with co-reg-
istration data, that is cluster-based permutation tests for 
the FRP data, and linear-mixed effects models for both EM 
and FRP data. We acknowledge that the analysis of variance 
(ANOVA) is probably the most common statistical method 
used in psychological sciences, with respect to both the 
early studies recording EM measures (e.g., Rayner, 1977), 
and the early and more recent experiments recording ERP/
FRP measures (e.g., Baccino & Manunta, 2005; Kretzschmar 
et al., 2015; Kutas & Hillyard, 1980). However, in recent 
years, researchers in both EM and ERP fields are adopting 
alternative statistical approaches (e.g., Baayen et al., 2008; 
Ehinger & Dimigen, 2019; Kliegl et al., 2011; Smith & Ku-
tas, 2015a, 2015b). Therefore, quite deliberately, we will not 
cover ANOVA in this paper. Instead, we will focus on the 
statistical approaches that we have been guided towards via 
the review process with respect to work we have published. 
We will deal with specific issues associated with these ap-
proaches below. Depending on the type of statistical test 
one is planning to conduct, the structure of the data to 
be extracted will differ. We will discuss this aspect of data 
preparation according to each statistical approach. We note 
that these two statistical methods do not address the prob-
lem of overlapping potentials. However, they can both be 
combined with deconvolution models (although less easily 
for linear-mixed effects models; Ehinger & Dimigen, 2019; 
Ehinger, 2019). 

4.1. Cluster-Based Permutation Statistics 4.1. Cluster-Based Permutation Statistics 

This approach is a form of non-parametric mass univari-
ate method in which a t-test is performed between differ-
ent conditions at each sample, that is, at each electrode site 
and at each time point, whilst controlling for multiple com-
parisons (Groppe et al., 2011; Maris & Oostenveld, 2007). 
In this approach the basic ideas are that (1) if observations 
from different conditions are drawn from the same proba-
bility distribution, then the different observations are in-
terchangeable, (2) if the EEG signal differs between experi-
mental conditions at one electrode and at one point in time, 
it is very likely that adjacent electrodes and time points will 
also exhibit a similar effect. With respect to the first as-
sumption, as in all non-parametric permutation tests, per-
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muting the data involves assigning the actual observations 
randomly to conditions, after which the test statistic is cal-
culated on this random data set. This process is performed a 
large number of times (typically between 1,000 and 10,000 
times), in order to obtain an accurate null distribution of 
the permuted data (i.e., the permutation distribution). The 
observed test statistic is then compared with the random 
test statistics drawn from the permutation distribution, and 
if the observed test statistic is larger than the random test 
statistics, the experimental hypothesis is accepted. Regard-
ing the second assumption, that is, similar effects will occur 
over adjacent time-electrode samples, spatio-temporal 
clusters are identified. Thus, t-values are computed for each 
(electrode-time) sample, and those samples with t-values 
larger than a threshold (e.g., values associated with p < .05) 
which exhibit a similar effect (e.g., with the same negative 
or positive sign) are clustered according to their temporal 
and spatial adjacency. The sum of the t-values within each 
cluster forms each of the cluster-level statistics. The largest 
absolute value amongst all of the cluster-level statistics is 
then evaluated against the values within the permutation 
distribution, to establish where within that distribution it 
falls. Again, if the observed cluster-level statistic is greater 
than a threshold (e.g., the 95% point) in the cluster-level 
permuted distribution, then the experimental hypothesis is 
accepted. 

The advantages of this approach are that, first, it can 
handle non-normal data, in fact no assumption is made on 
the parameter estimates. On the contrary, it uses the prop-
erties of the actual observed data for the evaluation of sta-
tistical significance. Second, it is data-driven, as all elec-
trode sites and time points can be entered into the analysis, 
and it is not necessary to pre-select specific scalp locations 
and time windows. Thus, researchers might consider adopt-
ing this approach when a study is sufficiently novel or ex-
ploratory in that there are no a priori predictions concern-
ing the expected latency of effects (i.e., the temporal win-
dows for analyses) and expected locations at which the ef-
fects should occur (i.e., electrode sites). Note, though, that 
beyond this, the technique may be employed in more stan-
dard experimental situations, where researchers could lim-
it their analyses to specific time windows and small num-
bers of electrode sites on the basis of prior expectations (al-
though see for example Maris & Oostenveld, 2007; Sassen-
hagen & Draschkow, 2019 for a discussion of inferential 
output misinterpretation). This will reduce the number of 
statistical tests (and thereby, the number of corrections for 
multiple comparisons), and increase, in turn, the sensitivity 
of the test. In this situation, the time windows and elec-
trodes to be included in the analyses should be made in the 
absence of knowledge regarding the data, and a clear, a pri-
ori justification of the choice should be provided (e.g., Luck 
& Gaspelin, 2017). Third, cluster-based permutation tests 
provide a strong degree of certainty in detecting the pres-
ence of an effect (i.e., by controlling Type I error rate; Per-
net et al., 2015). Arguably however, a disadvantage of this 
approach is that, given the large number of comparisons, 
then the corrections that are applied mean that the test 
is quite conservative, and some small or short-lived effects 
may be missed. 

Given the nature of this statistical analysis, the approach 
works well with high density EEG caps (i.e., recording from 
>60 electrodes). If recording with less channels, one could 
still perform cluster-based permutation statistics, but it 
may be better to cluster over time only, rather than over 
both space and time (or with a different cluster neighbour-
hood construction). 

Software with relatively straightforward implementation 
and well-documented tutorials to conduct cluster-based 
permutation tests is Fieldtrip (Oostenveld et al., 2011; al-
though see for example also MNE-Python, Gramfort et al., 
2013). To extract FRP data to be entered in Fieldtrip and 
run this type of analysis, it is sufficient to calculate condi-
tion averages for each subject (i.e., to be used for statisti-
cal tests) and then condition grand averages across subjects 
(i.e., to be used for plotting the data). The data can be con-
verted back and forth from EEGLAB to Fieldtrip readily with 
specific functions (e.g., fieldtrip2eeglab and eeglab2field-
trip). 

4.2. Linear Mixed Effects Models 4.2. Linear Mixed Effects Models 

This approach is a multilevel regression model in which 
both fixed (e.g., the independent variables) and multiple 
random (e.g., participants and items) factors are incorpo-
rated (Hox, 2010; Pinherio & Bates, 2004). The main ad-
vantages of this method are that (i) it can handle unbal-
anced designs, as it weights the contribution of each par-
ticipant, (ii) it incorporates multiple random factors in one 
single model, (iii) it can easily include and deal with multi-
ple covariates, and (iv) the independent variables can be ei-
ther categorical or continuous factors. 

Linear mixed effects models are currently the most com-
mon type of statistical analysis used in EM research. In fact, 
data loss is a situation that commonly arises in EM data, 
due for example to a different number of blinks, skips, or 
bad trials between conditions. Typically, separate models 
are computed to analyse different EM measures (e.g., first 
fixation duration, gaze duration, etc.; although see von der 
Malsburg & Angele, 2017 for an alternative perspective on 
the practice of testing multiple dependent EM measures). 
This is ordinarily done with a quite specific purpose in 
mind, namely, to examine the time course of experimental 
effects across EMs as they are made through the sentence 
and over time. To this extent, multiple EM measures are 
very valuable to researchers (and together different mea-
sures can inform theoretical understanding to a greater ex-
tent than when each is considered in isolation). 

This approach has great potential to also become a com-
mon statistical tool to analyse electrophysiological data 
(e.g., Baayen et al., 2008; Bagiella et al., 2000). However, to 
date, few studies have analysed ERP or FRP measures using 
this approach (e.g., see Amsel, 2011; Dimigen et al., 2011; 
Kornrumpf et al., 2016 for visual word recognition studies 
with ERP/FRP; see Fröber et al., 2017; Frömer et al., 2016a, 
2016b for studies recording ERPs in other domains). Lin-
ear mixed effects models are not run on a table of means, 
but each trial for each participant is entered into the analy-
sis as a single data point (i.e., single-trial ERP analyses). 
Given that EEG data take the form of a stream of voltages 
over time and at multiple channels, potentially, the amount 
of ERP/FRP data to be entered into a linear mixed model 
can be substantive, and this in turn could make this form 
of analysis impractical. The impracticalities would arise be-
cause of the volume of data and the necessary computation-
al power to handle it, as well as the possibility that Type I 
(false positives) errors would arise. 

An alternative approach would be to average the ERP/
FRP signals across time windows and/or electrode clusters 
that are defined a priori (e.g., with registered reports; 
Chambers, 2013), to reduce the complexity of the results 
(e.g., Niefind & Dimigen, 2016). However, the drawback 
here would be that researchers would need to be quite con-
fident about the measurement parameters (i.e., electrode 
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sites and latency windows) (Kriegeskorte et al., 2009). Fur-
thermore, since data in this type of analysis are necessarily 
averaged, the level of detail of the spatial and temporal di-
mensions of the effects would be reduced. A third scenario 
would be to run separate linear mixed effects models for a 
few specific electrode sites and/or time windows (e.g., Ko-
rnrumpf et al., 2016). This approach would avoid the need 
to run a large number of separate models, and at the same 
time would provide a degree of detail regarding the tem-
poral and spatial dimensions of the effects. However, once 
again, with this approach the measurement parameters 
need to be known in advance, and the ERP/FRP measures 
may not provide a comprehensive picture of effects, as a sig-
nificant proportion of the temporal window and electrodes 
would not be considered in the analyses. Therefore, perhaps 
this approach may be considered most appropriate when 
there are several existing studies that are quite similar in 
nature in the literature that provide a point of reference for 
measurement parameters. 

A recent suggestion has been to combine cluster-based 
permutation tests with linear mixed effects models (Frömer 
et al., 2018). The idea is to use the results from the cluster-
based permutation analysis as a guideline for the choice of 
the electrode sites and time windows that should be entered 
into the ERP/FRP analyses with linear mixed effects mod-
els. This approach could overcome some of the current lim-
itations of each of these statistical tools alone. However, as 
pointed out by Kriegeskorte et al. (2009), this itself could in-
troduce the issue of circular analysis and ‘double dipping’, 
in addition to the ‘inapplicable’ use of the cluster-based 
permutation tests to infer a very precise spatio-temporal 
extent of the effects (e.g., Sassenhagen & Draschkow, 
2019). At this stage, more research needs to be conducted in 
order to establish whether, and how, Frömer at al.'s sugges-
tion offers a viable possibility into the future, and to identi-
fy alternative tools for analyses of these complex co-regis-
tration data sets. 

A variety of software packages to perform mixed effects 
models is now widely available, and among these the open 
source statistical programming environment R (Baayen et 
al., 2008; Ihaka & Gentleman, 1996) is popular, being very 
flexible and for which good documentation is available. To 
extract EM and FRP data for analysis with linear mixed 
models in R, it is necessary to export all the variables which 
will be used for statistical analysis. For the FRP data in par-
ticular, this implies that it is essential to decide whether 
mean amplitudes or peaks, or both, will be analysed. Sec-
ond, it is important to decide whether clusters of electrodes 
or single electrodes, and time windows or single time points 
are to be considered for analyses. For example, researchers 
could identify clusters of electrodes and time windows 
where the effects are expected, and average across elec-
trodes and time windows (Niefind & Dimigen, 2016). Alter-
natively, researchers could extract the FRP data from single 
electrodes and average across time windows (Kornrumpf et 
al., 2016), or else data from single electrodes and specific 
time points could be extracted. The choice of the type of da-
ta to be extracted will depend on the research question and 
whether there are existing experimental findings on which 
to generate a priori predictions for specific types of effects 
at specific scalp locations and points in time. 

5. Implementation 5. Implementation 

One of the aims of the present paper was to provide 
researchers who are wishing to engage in co-registration 
reading research with some scripts they could use as the ba-

sis for data analysis. Thus, after discussing the steps of the 
pipeline that require consideration, as an example, here we 
present the decision steps that we took in relation to a sam-
ple dataset from one of our own studies, and we present 
how we have implemented each of these decisions. Again, 
these decisions were made in relation to our specific data, 
and may not be appropriate choices for all datasets, para-
digms and research questions. Parameters should be mod-
ified to reflect particular data sets and research questions. 
By giving details of our decisions and scripts, and by allow-
ing the reader to check the lines of code corresponding to 
our decisions, we hope that this will act as an example and a 
guide through the complexity of co-registration data analy-
ses. 

5.1 Sample Datasets 5.1 Sample Datasets 

We provide six co-registration datasets (i.e., EM and EEG 
data) from a sentence reading experiment by Degno et al. 
(2019a). The datasets should allow the reader to test each 
step of the pipeline. We note however that the pipeline we 
present here is slightly different to that used in Degno et al. 
(2019a), and this deviation reflects continued improvement 
in our approach in line with up-to-date procedures and dis-
cussion within the scientific community. 

The data were recorded in a sentence reading experi-
ment. Single-line sentences were presented on a computer 
display and participants were required to silently read each 
sentence for comprehension. Two target words in each sen-
tence were manipulated using the boundary paradigm 
(Rayner, 1975), whereby parafoveal preview of each of the 
target words was experimentally controlled. Prior to direct 
fixation, the preview of each target word was a string of Xs, 
a string of random letters, or an identity preview that was 
identical to the target word. Upon direct fixation, the tar-
get words could be high or low frequency words. The exper-
iment aimed to investigate parafoveal and foveal effects of 
target preview mask and target word frequency. 

Connection between the ET and EEG systems was made 
through a parallel port connecting the stimulus presenta-
tion computer running Experiment Builder (SR Research) 
and the EEG amplifier (Neuroscan Compumedics). Synchro-
nisation of the two data streams was achieved by presenting 
a TTL pulse sent from the stimuli display computer running 
Experiment Builder (SR Research) at both the beginning 
and at the end of each trial. The TTL pulse was recorded as 
a message in the EM data (e.g., ‘TTLon112’ and ‘TTLoff112’ 
for the onset and offset of trial index 112, in the column 
“CURRENT_MSG_TEXT” of the SR Research DataViewer 
message report) and as trigger in the EEG data (e.g., 3 for 
the onset and 103 for the offset of a trial in the experimental 
condition 3 in the EEG event file). 

Monocular EM data were recorded with an Eyelink 1000 
tracker (SR Research) with a sampling rate of 1000 Hz. The 
EEG data were recorded with Scan 4.5 (Neuroscan Com-
pumedics) from 64 scalp electrodes and 4 bipolar EOG 
channels located according to the 10-20 SI, with SynAmp-
sRT amplifiers (Compumedics Neuroscan) in a DC mode at 
1000 Hz and low pass filtered online at 100 Hz, and with 
the tip of the nose as online reference. The display comput-
er was a 19-in. CRT screen, with a resolution of 1,024 x 768 
and a refresh rate of 140 Hz. 

5.2 Scripts 5.2 Scripts 

The script we provide for the preprocessing of the EM da-
ta was created and run in R. The input files include fixation, 
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saccade and message reports (extracted from Data Viewer, 
SR Research), and the EEG event files (extracted from Neu-
roscan). The EM parsing was automatically performed by 
the Eyelink 1000 tracker (SR Research). 

The script we provide for the preprocessing of the ET-
guided EEG data preprocessing and FRP data preprocessing 
was created and run in Matlab (versions 2018a update 6 and 
2018b), and assumes the presence of the EEGLAB toolbox 
(version v14.1.2; Delorme & Makeig, 2004), the EYE-EEG 
extension (version 0.85, http://www2.hu-berlin.de/eye-
tracking-eeg; Dimigen et al., 2011), the Unfold toolbox (ver-
sion 1.1, Ehinger & Dimigen, 2019), and the Fieldtrip tool-
box (Oostenveld et al., 2011) in the Matlab path. The input 
files include the raw EM data in ASCII format (extracted 
from Data Viewer, SR Research), the raw EEG data (extract-
ed from Scan 4.5, Neuroscan Compumedics), and a channel 
location file. In the FRP data preprocessing, the averages 
computed without the deconvolution approach, and the 
baseline correction conducted with the deconvolution ap-
proach were run in Matlab using Fieldtrip toolbox. 

5.3. Data PreProcessing Decisions and Parameters 5.3. Data PreProcessing Decisions and Parameters 

The aim of this section is to help the reader understand 
the scripts we have provided and, if they wish, to adapt 
them for their own purposes. Thus, while we describe the 
preprocessing decisions taken for our own sample datasets, 
and the parameters used, alternative decisions may be more 
appropriate in respect of other data sets. We also note that 
although in the following sub-sections we only describe the 
most general decisions taken (in light of space limits), the 
scripts are supported by extensive comments for each line 
or part of the code. 

5.3.1 EM Data PreProcessing 5.3.1 EM Data PreProcessing 

The EM data that are used in the R script were previously 
cleaned with SR Research DataViewer such that fixations 
shorter than 50 ms and longer than 800 ms were excluded 
from the datasets, and therefore, from the fixation, interest 
area, saccade, and message reports. In addition, throughout 
the script (i.e., for each EM report used) we ensure that only 
experimental trials are included in the dataset for prepro-
cessing. 

The cleaned EM datasets are then checked for consecu-
tive fixations, such that observations where there were non-
consecutive fixations from the pretarget word to the target 
word are marked down. Similarly, we mark down any obser-
vation where a blink and skip on the pre-target or target 
words is detected during first-pass reading. Next, we check 
when the display change occurred and mark down the ob-
servations associated with early or late display changes. We 
define as early the changes that occurred while a fixation 
was detected on the pre-target word. We classify as late the 
changes that occurred more than 10 ms ([1second/140 Hz 
refresh rate] + 3ms) after a fixation was detected on the tar-
get word. We use a separate procedure to detect hooks, as 
they occur during a saccade rather than during a fixation. 
In this case, we check whether a display update occurred 
during a saccade that ended on the pre-target word. Final-
ly, we remove from the data all those observations that were 
marked down as having issues. 

In addition, at the end of the R script, we generate a vari-
able to be used later in the analysis to identify the onsets 
of the interesting fixations in the FRP data, and therefore to 
distinguish and select the interesting fixation onsets from 
all the fixation onsets recorded in the EEG data. To create 

this variable, we compute the time between the first fixation 
onset on the word of interest in the sentence (i.e., the pre-
target and target words) and the time of the trial onset as 
recorded in the EM data (i.e., TimeLockFixOnset = FixOnset 
- TTLon). We then add this value to the trial onset as orig-
inally recorded in the EEG data (i.e., ‘urPresentation’). In-
deed, the timings are not zeroed at the beginning of a trial 
onset in the EEG data. Thus, computing this time is critical 
to identify the interesting fixation onsets in the EEG data, 
which will need to be retained for further analyses. 

5.3.2. ET-Guided EEG Data PreProcessing 5.3.2. ET-Guided EEG Data PreProcessing 

We use the raw EEG data and the event files to run the 
Matlab code with functions from EEGLAB, EYE-EEG, Unfold 
and Fieldtrip. 

Trial onsets and offsets were recorded as a string of text 
and represented the number of the trial being displayed in 
our EM data (e.g., ‘TTLon112’ and ‘TTLoff112’ for the on-
set and offset of trial index 112), while they were recorded 
as integers and represented the experimental condition of 
the trial being displayed in the EEG data (e.g., 3 for the on-
set and 103 for the offset of a trial in the experimental con-
dition 3). Thus, the first step of our Matlab script is to re-
code these events in order to have the same values for all 
TTLon/trial onsets (i.e., 601) and all the TTLoff/trial offsets 
(i.e., 602) of both the EM and EEG recordings in the EEG 
event structure, regardless of trial index and experimental 
condition. At this point, we also remove practice and filler 
trials, and convert the EM raw data (.asc) into Matlab format 
(.mat) and the EEG raw data (.cnt) into Matlab EEGLAB for-
mat (.set files containing meta-information of the data, and 
.fdt files containing the raw data. Note that .fdt files will be 
automatically created when saving .set files). 

Once the EM and EEG data contain the same value for all 
trial onsets and the same value for all trial offsets, the da-
ta can be synchronised. We use the EYE-EEG extension of 
EEGLAB for synchronisation, as it allows for importation of 
the ET data as additional ET data channels in the EEG, syn-
chronisation of EM and EEG data based on common events 
present in both recordings (i.e., 601 and 602), and esti-
mation of the quality of synchronization between the two 
recordings. 

Following this, we check whether there is any EEG chan-
nel with a high percentage of intervals containing ‘bad’ da-
ta. We first use the CRAP algorithm to identify intervals of 
data where peak-to-peak signal amplitude differences ex-
ceed 250 μV within a default time window of 2000 ms. We 
then calculate the percentage of ‘bad’ data for each chan-
nel, standard score the percentages and examine whether 
any channel has standard score (z) that is greater than 3. If a 
channel has z score higher than 3, then that channel is con-
sidered ‘bad’ and data associated with that bad channel are 
removed from the dataset. 

Next, we use the EYE-EEG extension of EEGLAB to apply 
the filters to the EEG and EOG channels only, excluding the 
ET channels. We adopt the new basic FIR filter with pass-
band edge of 0.1 Hz, and the default transition band width 
of 0.1 Hz and cutoff frequency of 0.05 Hz (-6dB) as high-
pass filter. Our data were already low-pass filtered at 100 
Hz, so we do not apply any low-pass filter here. However, it 
is possible for other researchers to apply a low-pass filter at 
this point in the pipeline if they have recorded with higher 
online low-pass filter parameters. The important point here 
is to include high frequencies that might help optimisation 
of the ICA decomposition. 

Once the EEG data have been synchronised with the ET 
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data, bad channels detected and the data filtered, we then 
commence the ICA procedure. First, we detect bad EEG in-
tervals. We use the EYE-EEG extension to identify those 
EEG intervals of continuous data where the ET channels 
show extreme values, outside the possible range of the dis-
play screen resolution. We then use the CRAP algorithm to 
identify intervals of data where peak-to-peak signal ampli-
tude differences exceed 250 μV within a default time win-
dow of 2000 ms. Here we also check the synchronisation lag 
between the ET and EEG systems with the cross-correlation 
procedure included in the EYE-EEG extension. However, the 
EYE-EEG implementation of the cross-correlation function 
assumes monopolar EOG recordings, whereas our example 
dataset used bipolar EOG electrodes. Thus, in the script we 
use a pair of EEG electrodes from locations that are sensi-
tive for noise from horizontal EMs to approximate the sig-
nal content of monopolar horizontal EOGs. 

Second, we create optimised ICA training data. Following 
the OPTICAT procedure (Dimigen, 2020), we filter the data 
with a high-pass filter of 3 Hz (i.e., to ensure improved ICA 
modelling performance of corneoretinal dipole and saccadic 
spike potential) and include frequencies up to approximate-
ly 100 Hz (to better model the saccadic spike potential). We 
then cut the training data into 2s epochs (from trial on-
set). Next, we cut and mean-center 30 ms epochs (-20 to 
+10 ms from saccade onset) and append them to the train-
ing data. We use 30% of the training data length as length 
of the appended epochs extracted around saccade onset. Al-
though 100% peri-saccadic sample overweighting allows for 
increased data on which to run the computations, and thus, 
better identifies ocular artifacts, we opted for 30% to reduce 
computational time and resources (see Figure S6, Dimigen, 
2020). We next run the extended Infomax ICA algorithm on 
training data downsampled to 500 Hz to speed up the ICA 
computations, and then use a threshold of 1.1 in the EYE-
EEG extension of EEGLAB to detect the ocular ICs on train-
ing data and we plot the results to check them. Finally, we 
transfer the ICA weights and the identified ocular ICs from 
the training data to the original filtered (0.1-100 Hz) data. 

Based on the previous ICA computation and ocular IC 
detection, we remove the ocular ICs with the EYE-EEG ex-
tension and then low-pass filter the original data at 30 Hz. 
At this point, if any of the channels was removed from the 
dataset, we use spherical interpolation to estimate the sig-
nal of each ‘bad’ channel from the neighbouring channels. 
Following, we use the CRAP algorithm but with stricter val-
ues compared to the initial detection of bad EEG intervals 
within the ICA procedure. That is, we identify intervals of 
data where amplitude differences exceed 150 μV. Finally, 
we apply average re-referencing (i.e., all scalp electrodes, 
no EOG and ET channels) before estimating the FRP data. 

5.3.3. FRP Data PreProcessing 5.3.3. FRP Data PreProcessing 

At the end of the EM preprocessing procedure, a file was 
created which included all the necessary information to lat-
er conduct statistical analyses on the EM data, as well as 
a variable called ‘TimeLockFixOnset’ with the onset time 
of all the interesting fixations. At this point in the pre-
processing of the EEG data, we import this file in the EEG 
event structure, to select which fixation is to be used as the 
time-locking event in the EEG data. This is accomplished by 
matching the EM '‘TimeLockFixOnset’ values to the unique 
EEG’starttime’ values of the fixations. Therefore, by the end 
of this procedure, we identify the same number of interest-
ing fixations in both the EM and EEG data. 

If FRPs are estimated using the deconvolution approach, 

we use the Unfold toolbox to build a model. In the Matlab 
script, we have built a model that includes both type of pre-
view and target frequency as categorical predictors to in-
vestigate both their main effects and interaction. In addi-
tion, we define the overlap window to be -700 ms to 800 ms 
around fixations, which we believe provides windows long 
enough to estimate the activity prior to fixation as well as 
activity after the fixation. Once the model is solved, we ex-
port the betas in the Fieldtrip structure format to be used in 
Fieldtrip for statistical analysis with cluster-based permuta-
tion tests. Finally, we use Fieldtrip functions to baseline the 
betas with the period of time preceding fixation onset (i.e., 
-700 to -500 ms for the target word, and -200 to 0 ms for the 
pretarget word). 

If FRPs are estimated without deconvolution, we cut the 
FRP data into epochs of 1000 ms around each fixation onset 
(-200 ms to +800 ms), we remove the epochs containing bad 
data, we baseline the epochs with the period of time (i.e., 
200 ms) preceding the fixation onset on the pre-target word 
for both pre-target and target words, and then compute the 
average of each condition with Fieldtrip functions to statis-
tically analyse the FRP data with cluster-based permutation 
tests in Fieldtrip. 

Regardless of the FRP estimation approach, we then ex-
tract the EM data. 

6. Conclusions 6. Conclusions 

In the present paper we have discussed a series of issues 
and decisions that researchers wishing to start co-registra-
tion reading research will need to engage with. Discussion 
followed the steps of a pipeline we shared, which might 
be one of the several possible pipelines that may be used 
when conducting co-registration reading experiments, and 
in principle, other areas of human cognitive psychology ex-
perimentation. Our pipeline was not meant to be prescrip-
tive. On the contrary, each step was designed to be max-
imally adaptable to the particular experimental situations 
and data sets that different researchers may encounter or 
anticipate as they engage in (or consider engaging in) co-
registration reading experimentation. The final aim in this 
paper was to provide some example computational scripts 
that researchers might find a useful basis for processing 
co-registration data should they be considering engaging 
in this kind of research. To provide further guidance, we 
provided example datasets from a sentence reading exper-
iment, presented the decisions made and parameters used 
with these datasets, and we provided two scripts (one in R 
and one in Matlab) that researchers may choose to adapt for 
their own needs. More generally, our aim in this regard is to 
encourage and expand the community of researchers using 
this methodology, which we hope will further current theo-
retical understanding of the neural and cognitive processes 
underlying reading, and more general human psychological 
function. 
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