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Case Study

Residential retrofit in the UK:
The optimum retrofit measures
necessary for effective heat
pump use

Joseph Lingard

Abstract

The Department for Business, Energy & Industrial Strategy and the Committee on Climate Change place

high dependency on the electrification of heat and use of heat pump systems to achieve net zero emissions by

2050. Energy efficient buildings are essential for effective heat pump operation. However, the UK’s housing

stock is amongst the least energy efficient in Europe. Household electricity demand will increase with heat

pump use, meaning reinforcement to infrastructure and generation capacity. This study uses dynamic sim-

ulation modelling to determine the optimum energy efficient retrofit required to minimise energy use and

electrical demand for an average semi-detached dwelling using a heat pump. Solid wall insulation is found to

be critical in energy abatement, although the heat pump operates at a high demand compared with low

voltage network design. A whole house retrofit in-line with current Building Regulations reduces the heating

demand and emissions by 65%, and lowers the input electrical demand for the heat pump to under 1 kW.

Solid wall insulation and low U-value glazing are the cost-optimal solution, achieving similar abatement.

Measures that exceed building regulations are shown to lower heat demand and carbon emissions by

almost 80%, highlighting scope for improvement in retrofit standards.

Practical application: At present, UK policy makers have a preferred alternative to high carbon fossil fuels

that is a system heavily reliant on heat pumps powered by low carbon electricity. Heat pump systems require

energy efficient buildings to operate effectively. A key factor when improving building efficiency is fabric stand-

ards, which can dramatically impact the heat transfer coefficient. Retrofit of energy efficiency measures is key to

future net zero success and will have large implications to consumers and supply chains alike.

Keywords

Residential, retrofit, heat pump, low carbon, insulation, energy efficiency, sustainability, dynamic thermal

modelling

Introduction

The Government’s Clean Growth Strategy rec-

ognises the decarbonisation of heat in the

domestic sector as the UK’s toughest policy
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challenge in meeting the 2050 emissions reduc-

tion target.1 The Committee on Climate

Changes (CCC) core scenario for net zero emis-

sions includes improvements in energy efficiency

and an increased uptake of low-carbon heating.

It maintains the need for large-scale deployment

of low-carbon heating before 2030 for the UK

to be successful in its ambitions.2

Space heating and hot water demand make

up 40% of energy use and 20% of greenhouse

gas emissions in UK households. Almost all

homes will need to be low-carbon by 2050, how-

ever, at present less than 2% of buildings are

heated with low-carbon sources3 and energy

efficiency in the housing stock is amongst the

worst when compared with other European

countries.
For UK policy makers, a preferred alterna-

tive to high carbon fossil fuels is a system heavi-

ly reliant on heat pumps powered by low carbon

electricity.4 This presents a barrier to the

efficient operation and uptake of heat pump

systems in the existing housing stock, as

system performance is significantly impacted

by the heat transfer coefficient of a building.
Moreover, the housing stock is made up of an

estimated 24 million dwellings and studies have

revealed around 50% have an Energy

Performance Certificate (EPC) rating of D,

with a further 21% rated E or worse.5

The majority of these properties are gas

heated and will need to transition to heat

pump systems in the future. However, much

of the low voltage (LV) electrical infrastructure

used to supply these properties is not

designed to operate with the sustained

loads brought about by heat pump use.

With heat demand peaking in winter and heat

pump efficiencies reduced in lower tempera-

tures, the need for more energy efficient homes

is evident.
This paper analyses a range of retrofit meas-

ures using dynamic simulation modelling

(DSM) for an average dwelling to establish the

primary energy use, space heating energy use

and heat pump power input over a year.

Literature

Energy efficiency and the existing
housing stock

It is estimated that 80% of today’s buildings will
be in operation by 2050. Additionally the UK’s
housing stock is amongst the least energy effi-
cient in Europe, ranking 11 out of 15 countries.
Some significant improvements have been made
with the retrofitting of loft and cavity wall insu-
lation, however, more action is needed.

Eyre and Baruah highlight that low cost, rel-
atively easy to implement energy efficient
improvements are not available to most, and
effective policy framework has been reduced.4

Gupta and Gregg note policies such as the
Carbon Emission Reduction Target, the Green
Deal, the Green Deal Home Improvement Fund
and Zero Carbon Homes either changed or were
withdrawn in 2012. As a result, fewer emission
reducing technologies have been installed in
buildings.6,7

Research conducted by Rosenow et al.
(see Table 1) shows that large fuel savings
are possible with improvements to the thermal
performance of the building fabric and enhance-
ments to glazing and doors.8

Table 1. Estimated number of remaining energy effi-
cient measures and fuel savings for the UK housing
stock.8

Measure

Number of

measures

Fuel

savings

(TWh)

Cavity wall insulation 5.2m 9.7

Loft insulation 7.1m 2.2

Solid wall insulation 7.6m 21.4

Floor insulation 19.5m 12.8

Enhanced double glazing

(most is replacement

of pre – 2002

double glazing)

17.9m 20.3

Other fabric measures

(draft proofing,

insulated doors etc.)

39.7m 17.1

2 Journal of Building Services Engineering Research and Technology 0(0)



Electrification of heat

Low-carbon electricity. Emissions from the power

sector fell by 46% from 2013 to 2016. The key

drivers being reduced demand, milder winters

and natural gas increasing its share of genera-

tion up to 60%.9 Renewable sources such as

wind, solar and biomass provided 119TWh in

2019, an increase of 8.5% on 2018, accounting

for 36.9% of electricity generated.10

The continued decarbonisation of the power

sector is emphasised in the fourth and fifth

carbon budgets, meaning the trend of falling

emissions is likely to continue. By increasing

the share of renewables, stable low-carbon

power can account for up to 95% of UK elec-

tricity by 2050 (7).

The role of heat pumps. It is projected that elec-

tricity will provide at least 30% of heat for

buildings, with some scenarios as high as 75%

by 2050 (7) It is expected this will be delivered

primarily by heat pump systems, where there is

strong retrofit potential across the existing hous-

ing stock. The BEIS pathway shows heat pumps

sharing 34% of space and water heating demand

for residential buildings up to 2030. The CCC

pathway goes further, with heat pumps account-

ing for 92% of building heat demand by

2050 (11).
When installed in poorly insulated buildings,

heat pump size and electrical demand increases.

This can lead to barriers in the uptake of heat

pumps or require upgrades to electrical infra-

structure, sometimes from single to three-phase

supplies. This is recognised by many as costly

with the potential for large scale disruption.11

Improving a building’s envelope will decrease

fabric losses and increase efficiency.
A fundamental step to maximise heat pump

efficiency is the reduction in the temperature

differential between the heat sink and the heat

source. The type of heat emitter used and hot

water generation and storage also impact effi-

ciency and power consumption, however, these

fall outside the scope of this paper.

Heat pump electrical load profile. The issues with
heat pump deployment at a national scale are
peak demand and ramp rate increases, although
the latter is found to be marginally affected by
large scale heat pump use.12 Peak demand
effects the transmission network and the gener-
ation plant, meaning increases will likely lead to
investment in both. At a local scale, the connec-
tion of large numbers of heat pumps leads to
excessive voltage drop and thermal constraints
on cables and transformers.

Imperial College London found the installa-
tion of an 8.5kWth heat pump (suitable for a
typical household), increased electrical demand
by 3 kW.13 Electrical network design for a typ-
ical 3-bedroom household with gas central heat-
ing uses an After Diversity Maximum Demand
(ADMD) of 1.5 kW.

Research by the Customer Led Networks
Revolution (CLNR) project found for 100 cus-
tomers, ADMD per heat pump was around
1.3 kW; the ADMD of the dwelling without
heat pump was 1.2 kW, and the ADMD of the
combined dwelling-heat pump was around
2 kW.12 This indicates that the daily peak in
heat pump use does not coincide with the daily
peak of the rest of the dwelling. With control
strategies and measures to reduce demand there
is scope to mitigate or limit infrastructure
upgrades.

Using a larger data set, Love et al. find heat
pump ADMD to be 1.8 kW for 100 systems, and
around 1.7 kW for 275 systems. They note that
local level substations generally have around
120 connections. Further research is required
to determine the impact that ADMD will have
at a local level.

Insulating the existing housing stock

In the UK, 22 million households (�85%) are
connected to the gas grid and will likely require
retrofitting with a heat pump. Of that figure; 4.8
million are detached, 6 million are semi-
detached and 6.8 million are terraced, with the
remaining 3.4 million made up of flats.
Retrofitting insulation may be difficult to

Lingard 3



achieve in a number of dwellings due to factors

such as solid walls and hard to treat cavity walls

and lofts.
The English Housing Survey (EHS) carried

out analysis on the current housing stock

regarding the type of insulation installed in

different dwellings, the results are shown in

Table 2.
Considering the above figures, approximately

9.7 million dwellings will require some form of

intervention regarding thermal insulation. Solid

and cavity wall insulation are fundamental

energy efficiency measures in the UK’s net

zero target, with both representing around a

third of projected energy savings from residen-

tial building envelopes to 2035 (3)
As highlighted in Table 1, solid wall insula-

tion (SWI) has the largest fuel saving potential

and highest number of measures yet to be real-

ised when compared with cavity wall and loft

insulation. The study will focus on the 1.5 mil-

lion semi-detached non-cavity wall dwellings, as

this type of property is well suited to heat pump

retrofit, due to spatial concerns. Furthermore,

the semi-detached dwelling category has a high

share of average EPC band D properties.

Methodology

Typical dwelling

A single dwelling type was developed for a typ-

ical semi-detached property. This was based on

data of the existing UK housing stock found in

the EHS 2017 dwelling sample. The EPC regis-

ter was also used to cross reference dwelling

characteristics to the average EPC band (band

D), allowing a fabric specification to be devel-
oped and used as a baseline.

The geometry has been taken for a semi-
detached dwelling based on the average floor
area found in the EHS. The dwelling consisted
of lounge, dining area, kitchen, 3 bedrooms and
a bathroom. The floor area was 91m2. Figures 1
and 2 show the semi-detached digital model and
floor plan used in the study.

The U-values for the different building ele-
ments were calculated using approved SAP soft-
ware. The ground floor U-values were based on
figures taken from CIBSE Guide A, with glaz-
ing based on SAP tables. The infiltration rate
was determined using RdSAP software.

Table 3 shows the fabric specification, design
criteria and calculated U-values used in the
study.

The baseline dwelling achieves an EPC rating
of D based on the above geometry and fabric
specification using the RdSAP methodology.

Retrofit measures

A range of retrofit measures aimed at improving
the thermal performance of the building fabric
were added to the baseline model. Two sets of
U-values were used in the analysis:

A. those found in the building regulations
Part L1B

B. those that exceeded the minimum standards
set by the regulations.

The retrofit measures adopted were:

• Wall insulation (50mm and 100mm SWI)
• Glazing (double and triple)

Table 2. UK dwelling insulation levels.

Dwelling type

Cavity wall

with

insulation

Post 1995 cavity

wall with assumed

as built insulation

Cavity

uninsulated

Non-cavity

wall

Detached 1.8m 500,000 1.7m 800,000

Semi-detached 2.9m 300,000 1.3m 1.5m

Terraced 1.8m 600,000 1.2m 3.2m

4 Journal of Building Services Engineering Research and Technology 0(0)



Figure 1. Semi-detached IES model used in simulations.

Figure 2. Semi-detached floor plan.
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• Floor/roof insulation (rigid insulation for
floors and mineral wool for roof)

• Solar PV

Solar PV was included to explore the energy
abatement and energy off-setting potential.
Table 4 shows the U-values for option A and
B, together with the solar PV criteria used in the
simulations.

The measures were adopted individually for
the SWI category, followed by groups of meas-
ures and then as combined whole-house retrofit
options. This allowed the results to be analysed
to establish the optimum combination.

The measures and combinations for options
A and B were:

1. Wall
2. Glazing
3. Floor/roof insulation
4. Wall and glazing
5. Wall and floor/roof insulation
6. Glazing and floor/roof insulation
7. Part L1B retrofit (wall, glazing, floor and

roof insulation combined)

The infiltration rate for the whole-house sce-
narios were updated in-line with RdSAP

Table 3. Fabric specification, design criteria and calculated U-values.

Construction type/design criteria

U-value

(W/m2k)

External wall Brickwork outer leaf 102mm k - 0.84

Brickwork inner leaf 102mm k - 0.56

Plaster 10mm k - 0.18

1.95

Ground floora Uninsulated suspended floor

Clay/silt k -1.5

Pf/Af - 0.44

0.69

Roof & loft insulation Concrete tile roof 20mm k - 1.5

Mineral wool quilt 150mm k - 0.042

Plasterboard 12.5mm k - 0.21

0.25

Windows/doorsb 100% of windows double glazed

6mm air gap

U-PVC frame

3.1

Heating systemc Electric ASHP

SPF - 2.5

Wet central heating system with radiators

Room thermostat, programmer and TRVs

n/a

Hot water system From main heating system

120 litre cylinder, 25mm insulation

n/a

Ventilation Natural ventilation

Night-time cooling

Fully openable windows

n/a

Weather data Greater Manchester (CIBSE TRY) n/a

Site Rotation 10o angle of north n/a

Air change rated (ACH) 0.86 n/a

k: thermal conductivity (W/m2K).
aU-value taken from CIBSE Guide A, 2015, Table 3.20.
bWindow/door U-value taken from SAP tables.
cASHP used in baseline to represent future low carbon scenarios.
dAir change rate taken from RdSAP worksheet calculation for the dwelling.
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worksheets. For the purpose of the study, this is
assumed to be approximately 10m3/(h.m2) at 50
Pascals (Pa), comparable with the limiting
parameter set in the current building regulations
Part L1A.

Dynamic Simulation modelling software

The DSM software used to carry out simula-
tions was Integrated Environmental Solutions -
Virtual Environment (IES-VE). The software
allows thermal simulations and is accredited to
be used for UK Building Regulations Part L
compliance.

The software is recognised by CIBSE as a
dynamic model and provides a detailed assess-
ment of the buildings heating system, together
with the total energy demand subject to pre-
determined occupancy profiles.

Simulations were carried out for the different
combinations of retrofit measures listed in
Section 3.2.

Limitations of the analysis/modelling
assumptions

1. Domestic hot water (DHW) generation is not
included within the analysis.

2. It is assumed the UK National Calculation
Methodology (NCM) database and profiles
are adequate for dwelling occupancy and
usage patterns for all zones within the
dwelling.

3. CIBSE weather files (TRY) are deemed to be

realistic and acceptable for the study.
4. The air permeability rate has been based on

RdSAP worksheets for the modelled dwelling.
5. An Air Source Heat Pump (ASHP) with sea-

sonal efficiency of 2.5 has been used based on

SAP data/tables.
6. Grid supplied electricity CO2 emission factors

used in energy calculations¼ 0.2536kg/kWh.10

7. A wet central heating system with radiators is

used in modelling; however, emitter sizing is

not considered in the analysis.
8. The heating system was modelled with ther-

mostat, programmer and thermostatic radia-

tor valves for all outputs, as this was deemed

an acceptable and cost-effective efficiency

measure.

Results analysis

Heating demand

The analysis considers 3 dwelling functions

impacted by the retrofit measures:

1. Space heating energy demand
2. Space heating electrical power input greater

than 1kW, given as a percentage over the year

(DHW generation is not included)
3. Total regulated energy demand (space heat-

ing, DHW, lighting, auxiliary)

Table 4. Retrofit measures and their resultant U-values and criteria.

Retrofit Measure

L1B U-value

(W/m2.K)

(A)

Improved

U-value (W/m2.K)

(B)

Solid wall insulation (SWI) 0.30 0.16

Glazing/doors 1.6/1.8 1.0/1.8

Floor insulation 0.25 0.11

Roof insulation 0.16 0.11

No. panelsa Panel rating/type

Solar PV 7 350W monocrystalline

aBased on available roof space in IES model.
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To minimise electrical consumption, a load of
1 kW was considered an acceptable maximum
threshold for the heat pump system.

Table 5 and Figure 3 display the results of the
simulations.

The baseline results highlight fabric ineffi-
ciencies and show excessive peak plant usage.
This will contribute to larger system sizes, mean-
ing installation restraints and issues with electri-
cal supply capacity. The baseline peak system
power consumption is approximately 4.5 kW.

The smallest reductions are seen with the
glazing and floor/roof insulation measures,
between 5%–11%. The SWI gives a heating
demand reduction of between 50%–54%, with
the minimum and improved Part L measures
yielding 65%–80% respectively. Input power
demand above 1 kW is reduced by between
60% for 50mm SWI and 97% for the improved
Part L. The solar PV abatement is approximate-
ly 10% of the total energy demand when com-
pared with the baseline.

The results demonstrate that installing
improved SWI and glazing can successfully

achieve energy abatement and lower heat

pump energy consumption compared with the

minimum L1B whole-house retrofit.
However, the total energy demand is high

when compared with low-carbon design guid-

ance from UK Green Building Council

(UKGBC) framework and the London Energy

Transformation Initiative (LETI), which is

around 35 kWh/m2/yr for new build properties.
Solar PV is shown to reduce energy demand

and export energy to the grid. However, the syn-

chronicity of energy generation and heat

demand at a building and system scale has

issues. Electricity exported to the grid is of

reduced value if there is insufficient demand,

unless energy can be stored for use when

demand is higher. Figure 4 shows the peak heat-

ing demand and peak solar PV generation pro-

file for a day in winter.

Cost-benefit and carbon analysis

The capital expenditure, payback period and

energy saving per year for each measure are

Table 5. Modelled energy demand for all retrofit measures.

Measure

Total energy

demand

(kWh/m2/yr)

Annual heating

demand

(kWh/m2/yr)

Heat pump

input power

>1kW (%/yr)

Baseline 139.2 94.4 40

Option A 50mm SWI and PV 79 47.4 16.1

Glazing and PV 117.4 86.1

Floor/roof insulation and PV 120.7 89.4 38.2

50mm SWI, glazing and PV 69.4 38.1 11.1

50mm SWI, floor

/roof insulation and PV

74.1 42.7 12.9

Glazing, floor/roof insulation and PV 112.5 81.2 34.6

L1B retrofit and PV 64.2 32.9 7.7

Option B 100mm SWI and PV 74.6 43.3 13.7

Improved glazing and PV 115.1 83.7

Improved floor / roof insulation and PV 116.3 84.9 36.3

100mm SWI, improved glazing and PV 62.3 31.0 7.1

100mm SWI, improved floor

/roof insulation and PV

64.0 32.7 7.2

Improved glazing, floor

/roof insulation and PV

105.0 73.6 31.1

Improved L1B retrofit and PV 50.4 19.0 1.3

8 Journal of Building Services Engineering Research and Technology 0(0)
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shown in Table 6. Costs are based on the 2017

Cambridge Architectural Research report ‘What

Does it Cost to Retrofit Homes’.14

The payback periods are high for all meas-

ures and the glazing and roof and floor insula-

tion can take 40 years or more to become cost

neutral. This may be longer than occupants

expect to stay in the property.
Figure 5 highlights the heating demand and

cost comparison, with Figure 6 showing the

combined heating and total energy demand

and additional cost with PV included.
The figures demonstrate that investment in

thicker SWI and better glazing is also more eco-

nomical when compared to the whole house ret-

rofit using the minimum Part L standards, with

solar PV providing additional energy abate-

ment. The results show the most energy efficient

improvements are also the costliest, which is in

consonance with the findings of other studies.15

Discussion

The existing housing stock

The baseline result illustrates poor thermal per-

formance and shows large system plant load and

energy demand. It is common for the size of the

heating system plant to be based on the peak

sensible heating load.16 This will lead to issues

when retrofitting heat pumps in existing dwell-
ings, as capital cost increases with system size
and spatial restraints become prominent. If not
addressed, this will lead to barriers in the uptake
of heat pump systems in future and possibly
stall emission abatement.

The input power of 4.5 kW assessed individ-
ually does not cause significant problems for a
single dwelling. However, when taken collective-
ly across the whole stock comparable with the
ADMD figure of 1.5 kW used in LV network
design, the overloading of supply cabling and
transformers becomes more likely. More
research is needed to determine the effects of
increased heat pump ADMD at a local level.

Retrofit measures

Solid wall insulation abatement potential and

uncertainty. Significant improvements are seen
with the addition of SWI, with heating
demand and system input power to 1 kW
reduced by 50–54% and 60–66% respectively.
The resultant space heating demand is approxi-
mately 45 kWh/m2/yr for Option B SWI. This is
marginally higher than permitted by the nearly
zero energy building (nZEB) standard (44 kWh/
m2/yr), and that used in other low carbon
frameworks (see Currie and Brown final report
for the CCC, and LETI net zero operational
carbon - each state 15–35kWh/m2/yr).17,18

Table 6. Capital cost, payback period and energy saving per year.

Measure Cost (£)

Payback

period (Year)a
Energy

saving (kWh/year)

CO2 saving

(kgCO2/year)

SWI 50mmc 9,552 16 4,261 1,081

SWI 100mmc 10,149 16 4,632 1,175

Glazingb 6,500 40 1,164 295

Floor & roof insulationd 6,000 46 934 237

PV arrayf 3,750 22 1,223 310

aSimple payback based on kWh saving per year at a rate of £0.14/kWh.
bTriple glazing cost based on £500 per window (double glazing £300 per window).
cSWI cost based on external wall area and insulation board at 50mm¼ £80/m2, 100mm¼ £85/m2.
dLoft insulation cost based on mineral wool insulation at £25/m2.
eFloor insulation cost based on insulation board at £95/m2.
fPV cost based on £1500/kW.
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The energy reductions found are higher than

those of previous studies3 and used in future

modelling scenarios,7 highlighting potential inac-

curacies in modelled data. This may be due to the

NCM profiles used in modelling, which may

overestimate the energy used in baseline cases,

meaning energy reductions appear higher.

Further work is required to establish the perfor-

mance gaps in design and modelling scenarios,

with policy developed that seeks to reduce the

uncertainty related with energy savings.
The CIBSE and LETI have recommend the

mandatory disclosure of energy performance in

their steps to net zero carbon buildings. It is a

straightforward step for new build, however, the

refurbishment sector will face challenges. The

recommendation will enable better operation

and allow government to track policy imple-

mentation and gradually improve energy bench-

marks to inform future targets.

Optimum retrofit measures for reduced heat pump

electrical profiles. Although there are some uncer-

tainties, the research shows that SWI is a major

factor in reducing heating demand and input

power in the modelled dwelling. However, the

systems input power is greater than 1 kW for

approximately 15% of the year (1,300 hours).
The higher fabric standards can reduce peak

demand, with battery or thermal storage and

advanced control technologies offering potential

in the future. However, the use of electric

vehicles and home charging stations will further

add to peak demand. It can be expected that as

technologies evolve and new innovation is real-

ised, smart systems will enable better use and

control of the electricity grid.
This paper sees heat pump power consump-

tion reduced substantially with the measures

adopted, although it remains to be seen if this

would reduce ADMD to an acceptable level.

Further work is required to determine the

upper level of power consumption allowable

on local grid connections in the form of

ADMD figures.
Another important factor to consider when

attempting to maximise system performance is

the selection of heating emitters for use with
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low-temperature heat pumps. Underfloor

heating may cause significant hassle to home-

owners. Therefore, larger radiators are required

to provide adequate heat with the low flow and

return temperatures of 35–40�C used in stan-

dard heat pump design. High temperature heat

pumps reduce the need for radiator upgrades;

however, these will increase power demand

and emissions.

Alternative measures for abatement. Further abate-

ment is possible by improving the glazing

beyond current building regulations. This can

be relatively straightforward with minimal dis-

ruption and remedial works. The capital costs

and payback periods are similar when compared

with the improved floor and roof insulation

measures. However, floor insulation can require

extensive remedial works and present likely

disruption to households, where it is likely to

only occur in a whole house retrofit. In addition,

the abatement level is marginally less for these

measures.
It is noted that some households will not

upgrade glazing for efficiency purposes alone,

and this may be due to aesthetics, security,

noise or other reasons. Glazing upgrades will

deliver a range of benefits beyond energy and

carbon savings, including improved comfort

and health benefits.
The Part L measures used in combination

achieve significant reductions, however, abate-

ment is increased by approximately 13% when

a higher specification of U-value is targeted.

This illustrates some opportunity for improve-

ment in current building regulations, as greater

energy savings are possible with minor improve-

ment to specification.
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Figure 6. Total energy, heating demand and element cost including PV.
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It must be noted that the domestic heating
reform will not be achieved with a simple one-
stop-solution for all UK dwellings. There are
many factors and combinations of building
type, size, fabric and usage that impact the
design of whole building systems.

Wider issues

Heat pump performance. The average efficiency of
a heat pump over the heating season is known as
the Seasonal Performance Factor (SPF). For an
ASHP the SPF is affected by the external air
temperature. Imperial College London show
SPF to be as low as 1.6 in winter months,
when demand peaks.13 Furthermore, the type
of heating emitter used and DHW generation
can weaken performance due to the need for
higher temperatures. These issues may be man-
aged through control strategies or technological
innovation, however, at present more research is
needed to better inform policy and design
practice.

Effect on the national system. The additional load
on electrical generation for solid walled semi-
detached properties is approximately 13TWh
when the baseline results are multiplied at a
national level. Upgrading all solid walled
homes to the minimum Part L standards
would save an additional 8.75TWh. The
improved Part L measures further reduce
demand, saving a total of 10TWh.

In the context of low-carbon supply, solar PV
accounted for 12.7TWh of electrical generation
in the UK in 2019. Moreover, to meet the addi-
tional load of heat pump systems through zero
carbon generation, almost 3,000 wind turbines
at an estimated cost of approximately £5.9bn
would be required. If the improved Part L meas-
ures presented within are adopted across the
semi-detached solid walled demographic alone,
there is potential for a reduction of around
2,400 wind turbines. This could save £4.7bn
for the UK economy.

Whilst writing, the UK government has
recently unveiled plans to power all UK homes

with wind by 2030, along with £3bn for insulat-
ing homes. Although welcomed, more could be
done to ensure the UK’s climate change pledge
is realised. To provide some context to the scale
of the retrofitting problem faced by government
and consumers; upgrading the solid walled semi-
detached dwelling group in line with the costs
used in this study would require around £15bn
when multiplied at a national level.

Conclusion

The switch from fossil fuels to low carbon heat
pump systems gives need for energy efficient
dwellings. This paper found that the use of
SWI is shown to be critical for a solid walled
semi-detached property. However, this is not
enough in isolation and other measures must
be supplemented alongside to ensure electrical
consumption is minimised.

The cost-optimal solution is a mix of
improved SWI and high specification glazing,
which achieves similar reductions to a whole-
house retrofit using Part L1B standards, with
approximately 20% less expenditure.

Adopting a higher specification U-value for
all measures is shown to reduce energy demand
by almost 80%. This highlights possible scope for
improvement in current building regulations.

The use of solar PV would further benefit
dwellings with heat pumps; however, smart
grid technology is needed to manage the syn-
chronicity of supply and demand. Battery stor-
age in the form of demand side response or
electric vehicles could hold the answer, but
more investment in policy and study is needed
to manage peak demand.

The results show it is difficult and costly to
retrofit homes to the required future low energy
building standard. At present, homeowners
are required to improve efficiency measures at
specific times, such as during the refurbishment
of dated elements. It is unlikely consumers will
initiate intrusive retrofit work, such as SWI
or floor insulation, without policy incentives
and direction from government. The recently
established Green Homes Grant and the
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Energy Company Obligation (ECO) offer some
support.

However, the ECO has been recognised to
poorly predict energy savings for specific cir-
cumstances.3 Furthermore, control and moni-
toring of installed measures is not always
undertaken, and opportunities may be missed
in future leading to a shortfall in the UK’s net
carbon goal. Here, a policy based on a ‘pay for
performance’ model may encourage the uptake
of better energy efficient measures.
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