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ABSTRACT

This work discusses the design and testing of a new computational spintronics research software. Boris is a comprehensive multi-physics
open-source software, combining micromagnetics modeling capabilities with drift-diffusion spin transport modeling and a heat flow solver
in multi-material structures. A multi-mesh paradigm is employed, allowing modeling of complex multi-layered structures with independent
discretization and arbitrary relative positioning between different computational meshes. Implemented micromagnetics models include not
only ferromagnetic materials modeling, but also two-sublattice models, allowing simulations of antiferromagnetic and ferrimagnetic materi-
als, fully integrated into the multi-mesh and multi-material design approach. High computational performance is an important design con-
sideration in Boris, and all computational routines can be executed on graphical processing units (GPUs), in addition to central processing
units. In particular, a modified 3D convolution algorithm is used to compute the demagnetizing field on the GPU, termed pipelined
convolution, and benchmark comparisons with existing GPU-accelerated software Mumax3 have shown performance improvements up to
twice faster.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024382

I. OVERVIEW

Micromagnetics is a field of study concerned with understand-
ing magnetization processes on the continuum scale and is an
invaluable tool in interpreting experimental results, designing spin-
tronics devices, testing analytical methods, and predicting new
effects. Existing micromagnetics software includes open-source
finite difference packages OOMMF,1 Mumax3,2 and Fidimag.3 A
number of other micromagnetics packages are also available,
including finite element/boundary element methods, both open-
source and commercial, with a review given in Ref. 4.

Boris is a micromagnetics-oriented multi-physics research
software. In contrast to the existing finite difference packages, it is
specifically designed as a multi-mesh and multi-material software.
Arbitrary geometries can be handled, where long-range interactions
such as the magnetostatic interaction and Oersted field are calcu-
lated across all relevant computational meshes, and short-range
interactions between neighboring meshes are treated using

appropriate composite media boundary conditions. An overview is
given in Fig. 1. Magnetization dynamics are computed using the
Landau–Lifshitz–Gilbert (LLG) equation5 or the Landau–Lifshitz–
Bloch (LLB) equation,6 either of which may be augmented by
thermal fluctuations (stochastic versions),7,8 Zhang–Li spin transfer
torques (STTs),9 interfacial STT (ISTT),10,11 spin–orbit torques
(SOTs) due to the spin-Hall effect (SHE),12 Slonczewski spin
torques,13 or spin torques computed self-consistently using a spin
transport solver. The spin transport solver is based on a drift-
diffusion model with circuit theory boundary conditions14–16 and
self-consistently calculates charge currents, spin currents, and spin
accumulations in multi-layer structures.17 In addition to obtaining
spin torques self-consistently, several effects may be computed,
including anisotropic magneto-resistance (AMR), current perpen-
dicular to plane giant magneto-resistance (CPP-GMR),15 SHE and
inverse SHE (ISHE),18 spin pumping,19 charge pumping, and the
topological Hall effect.20,21 A heat solver is also available, allowing
calculation of heat flow in response to ambient conditions as well

Journal of
Applied Physics METHOD scitation.org/journal/jap

J. Appl. Phys. 128, 243902 (2020); doi: 10.1063/5.0024382 128, 243902-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0024382
https://doi.org/10.1063/5.0024382
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0024382
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0024382&domain=pdf&date_stamp=2020-12-28
http://orcid.org/0000-0001-6221-9727
mailto:SLepadatu@uclan.ac.uk
https://doi.org/10.1063/5.0024382
https://aip.scitation.org/journal/jap


as sources and sinks. An important source of heat is due to Joule
heating from a current density calculated using the transport
solver. This allows inclusion of temperature-dependent effects in
the magnetization dynamics, including AMR-generated magnonic
spin-Seebeck effect.22 Another heat source is due to ultrafast laser
pulses, and a two-temperature model (2TM) is included to allow
simulations of ultrafast demagnetization and recovery processes.23

Additionally, a two-sublattice model is implemented, allowing sim-
ulations of antiferromagnetic and ferrimagnetic materials, fully
integrated within the multi-mesh computational paradigm, allow-
ing, for example, simulations with exchange bias. All parameters
appearing in the working equations are available as user-
controllable material parameters and may be assigned a tempera-
ture dependence, spatial variation, and time dependence; several
spatial variation generators are available, including Voronoi tessel-
lations, as well as user-defined dependences through mathematical
equations or data files.

The computational meshes can be sized and discretized inde-
pendently. One of the most difficult interactions to compute across
several independent computational meshes is the magnetostatic
interaction. A newly developed method, termed multi-layered con-
volution,24 allows computation of demagnetizing fields for multiple
meshes with arbitrary thicknesses, arbitrary relative positioning and
spacings, without impacting on the computational performance.
Other long-range interactions include the Oersted field, which is
computed from the current density obtained using the transport

solver, as well as stray field computation from a number of fixed
magnetic dipoles. Individual magnetic mesh modules include
magneto-crystalline anisotropy (MCA), either uniaxial or cubic,
direct exchange interaction, Dzyaloshinsky–Moriya interaction
(DMI),25,26 either bulk or interfacial, surface exchange coupling,27

topographical surface, and edge roughness.28

The software has a modular structure and is open-source,29

facilitating community contributions of new computational
modules. An extensive user manual30 is included, together with
many examples of both scripted simulations, as well as pre-
configured simulation setups. The software is provided with a
graphical user interface for interactive display of simulation data,
with user control enabled through a graphical console allowing
intuitive and interactive control of simulations. The software may
also be controlled using Python scripts, which communicate with
Boris through network sockets, thus allowing either local or remote
user control. The software has been programmed mainly in C++17
and CUDA C, as well as Python. All computational routines can be
executed on central processing units (CPUs), as well as graphical
processing units (GPUs) using the CUDA framework.31 Supported
operating systems include Windows 7, Windows 10, and
Linux-based distributions; in the current version (2.9) Linux com-
pilations of Boris do not include a graphical interface, only provid-
ing a basic text console; however, the software is otherwise fully
functional and may be conveniently controlled using Python
scripts, which is especially useful for controlling multiple

FIG. 1. Overview of computational information flow for Boris. Different computational mesh types may be configured, including ferromagnetic, antiferromagnetic, ferrimag-
netic, normal metal, and insulator meshes. Each mesh has several computational modules available, including the transport and heat solvers. Supermeshes are the small-
est rectangles encompassing all the individual meshes of the same type, with specific computational modules available. The information generated is used by an assigned
magnetization dynamics equation (LLG/LLB) to evolve the magnetization data in the individual magnetic meshes.
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independent instances in a Linux cluster. The code-base size cur-
rently consists of ∼130 k source lines of code (comments and
trivial lines excluded) and is contained in ∼800 source code files,
including a purpose-written object-oriented finite difference vector
calculus library for both CPU and GPU computations. External
dependences include FFTW332 and CUDA.31 Material definitions
are made available through an online database of material parame-
ters.33 The online materials database allows users to contribute new
entries through a set of simple built-in protocols described in the
manual. Material definitions used in this work are given in the
online materials database.33 Moreover, all the simulation scripts
and files used to obtain the results presented here have been
included in the Boris GitHub repository.29

II. BASIC MICROMAGNETICS MODELING

In the continuum approximation, magnetization dynamics
may be computed using the LLG equation,

@m
@t

¼ �γm�Heff þ αm� @m
@t

: (1)

Here, m is the normalized magnetization direction;
γ ¼ μ0greljγej, where γe ¼ �gμB/�h is the electron gyromagnetic
ratio and grel is a relative gyromagnetic factor; α is the Gilbert
damping factor,34 and Heff is an effective field that includes a
number of interactions as additive field contributions. In a basic
micromagnetics formulation, these include an applied field contri-
bution, the magnetostatic or demagnetizing field interaction, and
the direct exchange interaction. Depending on the material simu-
lated, a magneto-crystalline anisotropy contribution may be
included, either uniaxial or cubic, as well as bulk or interfacial
DMI.25,26 Equations for these contributions implemented in Boris
are given in Appendix A. A number of evaluation methods are
available for the magnetization dynamics equations. These are the
fixed step methods Euler (1st order), trapezoidal Euler (2nd order),
and Runge–Kuta (RK4—4th order). Adaptive time step methods
are the adaptive Heun (2nd order), the multi-step Adams–
Bashforth–Moulton (2nd order), Runge–Kutta–Bogacki–Shampine
(RK23—3rd order with embedded 2nd order error estimator),
Runge–Kutta–Fehlberg (RKF45—4th order with embedded 5th
order error estimator), Runge–Kutta-Cash-Karp (RKCK45—4th
order with embedded 5th order error estimator), and Runge–
Kutta–Dormand–Prince (RKDP54—5th order with embedded 4th
order error estimator). For static problems, the steepest descent
solver is available using Barzilai–Borwein stepsize selection
formulas.35,36

A widely used test for the validity and accuracy of LLG solvers
is the μMAG Standard Problem #4.37 Here, the magnetization
response to a magnetic field is computed for a Ni80Fe20 rectangle
with dimensions 500 × 125 × 3 nm3, starting from a relaxed S-state.
This is used as a test for correct implementation of the LLG equa-
tion and associated effective field terms (demagnetizing field,
exchange interaction, and Zeeman term) as any errors result in sig-
nificant deviations of the magnetization time dependence from
accepted solutions. The results for the specified field 1 (μ0Hx

=− 24.6 mT, μ0Hy = 4.3 mT, μ0Hz = 0.0 mT) are shown in Fig. 2,

compared with the results obtained using OOMMF.1 Excellent
agreement throughout the switching process is obtained, with an
overall R2 measure between the two data sets of 0.999. A cellsize of
5 nm was used here, which is consistent with the exchange length
in Ni80Fe20, lex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A/μ0M

2
S

p
≅ 5.7 nm; however, Boris has been

extensively tested using this problem with cellsize values down to
1 nm, thus including both 2D and 3D modes. Similarly, the speci-
fied field 2 (μ0Hx =− 35.5 mT, μ0Hy =− 6.3 mT, μ0Hz = 0.0 mT)
was also tested. The results in Fig. 2 were computed using the RK4
method with a fixed time step of 500 fs; however, all the imple-
mented evaluation methods were successfully tested using this
problem, for both CPU and GPU computations in single and
double floating point precision.

A further test that requires a more advanced external field
stimulus consists in computing the spin wave dispersion as
described in Ref. 38. Here, a Ni80Fe20 magnonic waveguide track
with 1 μm length, 50 nm width, and 1 nm thickness is used, and
spin waves are excited using a field pulse given by H(t) =He sinc
[kC(x− x0)] sinc[kC(y− x0)] sinc[2πfC(t− t0)]. Boris has a provision
for input stimuli specification using mathematical formulas, simul-
taneously allowing spatial and temporal dependences. Here, the
excitation field amplitude was set to He = 400 kA/m, frequency
cutoff fc = 500 GHz, and wave-vector cutoff kC = 2π × 0.1255 rad/
nm, as specified in Ref. 38. Using the Nyquist criterion, a time
sampling interval of 1 ps and a spatial sampling interval of 4 nm
along the 1 μm long track were used. The excitation was applied in
the center of the track for a duration of 2t0, with a temporal sinc
pulse center t0 = 200 ps. Three spin wave geometries are possible,
depending on the direction of the bias field, namely, (i) backward
volume for the bias field along the length, (ii) forward volume for
the bias field along the thickness, and (iii) surface spin waves for
the bias field along the width. The wave-vector direction for this
problem in all cases is along the length of the track, which is deter-
mined by the spatial sampling direction. Results for the backward

FIG. 2. Magnetization response computed for μMAG Standard Problem #4
using Field 1 specification, showing the normalized components of magnetiza-
tion, compared to the magnetization response computed in OOMMF. Overall R2

measure of 0.999 was obtained.

Journal of
Applied Physics METHOD scitation.org/journal/jap

J. Appl. Phys. 128, 243902 (2020); doi: 10.1063/5.0024382 128, 243902-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


volume are shown in Fig. 3 for a damping value α = 0.01, where a
bias field H0 = 804 kA/m was used, with the excitation field pulse
applied along the width. The spin wave dispersion was obtained
using a 2D Fourier transform from the y component of magnetiza-
tion. The discretization cellsize was set to 1 × 2 × 1 nm3, with peri-
odic boundary conditions39 used along the length only, and the
RK4 method was used with a 50 fs time step. This results in excel-
lent agreement between the computed spin wave dispersion and
the analytical dotted lines given by w ¼ wn þ 2γAk2/μ0MS; here,
wn are the resonance frequencies obtained at k = 0 rad/m. Similar
tests were performed for the two remaining spin wave geometries.

The LLG equation may be modified to include STT and, in
particular, Boris implements Zhang–Li STT,9,40 which is given by

@m
@t

¼ �γm�Hþ αm� @m
@t

þ (u � ∇)m� βm� (u � ∇)m: (2)

The spin-drift velocity u is given by

u ¼ J
PgμB
2eMs

1

1þ β2
, (3)

where J is the charge current density, P is the current spin polariza-
tion, and β is the non-adiabaticity parameter. The LLG-STT equa-
tion is widely used for studying the effect of bulk STT on
magnetization textures, including transverse domain walls, Bloch
and Néel domain walls, vortices, and skyrmions. In particular,
domain wall velocity dependence on spin drift velocity may be
computed, including simulation of Walker breakdown phenome-
non. Since this is a very common type of computation Boris imple-
ments a moving domain wall algorithm, which allows efficient
simulation of domain wall movement using a finite track length.
End magnetic charges are removed using the stray field computed
from magnetic dipoles at each end, and spin waves are absorbed by

freezing the magnetization spins at the track ends. The domain wall
is kept centered in the track and any domain wall displacement is
recorded in a dedicated output parameter. This algorithm was
tested previously,41 and it is straightforward to verify the expected
relation v/u = β/α,42 with v being the domain wall velocity far from
Walker breakdown. Here, we show another test of the LLG-STT
equation, based on the μMAG Standard Problem #5.43 A permalloy
rectangle with dimensions 100 × 100 × 10 nm3 is initialized with a
vortex structure—Fig. 4(a)—and a constant current density result-
ing in a spin drift velocity u =− 72.35 m/s is applied for a range of
non-adiabaticity parameter values. Results for β = 0.1 are shown in
Fig. 4(b), using a cubic cellsize of 2.5 nm, plotting the x and y com-
ponents of magnetization as a function of time. Excellent agree-
ment with results computed in OOMMF is obtained, with an
overall R2 measure between the two data sets of 0.999. Similar suc-
cessful tests were performed for the remaining specified values of
β = 0, 0.05, and 0.5.

As a further example, we apply the micromagnetics model to
compute the vertices population in large-scale simulations of
square artificial spin ice (ASI), as studied experimentally in
previous studies.44,45 A part of the simulated ASI array is shown
in Fig. 5(a), where the Ni80Fe20 islands have dimensions

FIG. 4. Vortex dynamics computed for μMAG Standard Problem #5 for β = 0.1.
(a) Relaxed starting vortex state, also showing the fitted spatial dependence of
non-adiabaticity parameter computed using the spin transport drift-diffusion
solver. (b) Vortex dynamics are shown for the LLG-STT solver with constant
non-adiabaticity, compared to results computed in OOMMF. Overall R2 measure
of 0.999 was obtained. Results obtained using the self-consistent bulk spin
torque obtained from the drift-diffusion model, where β is no longer constant but
varies due to in-plane spin diffusion, are also shown for comparison.

FIG. 3. Spin wave dispersion spectrum computed for the problem specified in
Ref. 38, using a damping of 0.01. The dotted lines are obtained from the
formula w ¼ wn þ 2γAk2/μ0MS, with wn being the resonance frequencies
obtained at k = 0 rad/m.
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220 × 80 × 25 nm3, as used in Ref. 44. Due to the strong shape
anisotropy and small island size, the magnetization is mostly in a
single domain state, aligned to the longitudinal direction. Here, we
distinguish four types of vertices, types I–IV, depending on the
magnetization directions at each vertex, defined in Refs. 44 and 45.
Due to magnetic frustration arising from dipolar interactions, the
different vertex types have different energies—in particular, vertex
types I and II have lower dipolar energy compared to vertex types
III and IV, where particularly vertex type IV (all magnetization
directions point in or all out) has a prohibitively large dipolar
energy. Thus, compared to the expected random vertex population
distribution in the absence of dipolar interactions (12.5%, 25%,
50%, and 12.5%, respectively), we expect to obtain an excess vertex
population, dependent on the lattice spacing. Here, we compute
this, by relaxation from a thermally demagnetized state, as a func-
tion of lattice spacing between 300 nm and 900 nm, using both a
2D approximation and a 3D model, shown in Fig. 5(b). These
results are in good agreement with those obtained experimentally,44

where increasing the lattice spacing causes the excess vertex popula-
tions to converge toward zero as the effect of dipolar interactions is
reduced. These simulations have been completed on a GPU, auto-
mated using a single Python script available in the GitHub
repository.29

III. MULTI-MESH MICROMAGNETICS MODELING

Due to progress in experimental magnetism increasingly,
devices are composed of complex multi-layered structures, includ-
ing multi-layered stacks used to study skyrmions46–49 and synthetic
anti-ferromagnetic structures.50–52 Such multi-layered structures,
which cannot be discretized effectively using a single uniform finite
difference mesh, are difficult to study using software packages
which only implement a single computational mesh without intro-
ducing approximations or using unnecessarily small cellsize values.
In Boris, a multi-mesh paradigm has been adopted from the outset,
allowing computations using multiple meshes that can be arbi-
trarily positioned relative to each other and with independent dis-
cretization cellsize values. Thus, while still benefiting from
computationally efficient finite difference discretization, multi-
layered structures commonly found in experimental studies may be
simulated without compromising accuracy or computational speed.
This is accomplished using a new multi-layered convolution algo-
rithm introduced in Boris,24 which is used to compute demagnetiz-
ing fields for a collection of finite difference computational meshes.
For a collection of meshes Vk (k = 1, …, n), the convolution sum
may be written as

H(r0kl) ¼ �
X
i¼1,...,n
rij[Vi

N(r0kl � rij, hk, hi)M(rij),

k ¼ 1, . . . , n; r0kl [ Vk:

(4)

Here, rij is the cell-centered position vector of cell j in mesh i
(i = 1, …, n), and N are inter- and intra-mesh demagnetizing
tensors generalized from the Newell et al. formulas53 in Ref. 24.
With a single computational mesh, the usual approach to efficiently
evaluate the convolution sum is to use the convolution theorem,
which involves computing the forward Fourier transform of the
magnetization, multiplying point-by-point with the Fourier trans-
form of the demagnetizing tensor (kernel) in the transform space,
and finally taking the inverse Fourier transform to obtain the
demagnetizing field. With multiple input meshes, a similar
approach may be taken to evaluate Eq. (4), with summation of
inter-mesh contributions moved to the transform space. Full
details, including validation tests, are given in Ref. 24. Here, we
extend this algorithm to use periodic boundary conditions based
on the multiple images method54 and demonstrate the use of
multi-layered convolution by simulating the hysteresis loop in a
[Co90Fe10 (4.9 nm)/Ru (0.6 nm)/Co90Fe10 (2.9 nm)/Ru (0.6 nm)]10
synthetic ferrimagnetic structure. Here, the layers preferentially
align antiparallel due to RKKY interaction,55–57 as well as due to
the magnetostatic field interaction between the layers. For two mag-
netic layers separated by a metallic spacer, the surface exchange

FIG. 5. Square ASI simulations with 220 × 80 × 25 nm3 Ni80Fe20 elements, com-
puted in both a 2D approximation and a 3D model, with in-plane periodic boun-
dary conditions. For the 2D approximation, a maximum mesh size of
24 μm × 24 μm × 25 nm was used with a 5 nm in-plane cellsize (up to 23M sim-
ulation cells). For the 3D model, a maximum mesh size of 6 μm × 6 μm × 25 nm
was used with a 2.5 × 2.5 × 5 nm3 cellsize (up to 28.8M simulation cells). (a)
Example part of simulated artificial spin ice array, with island direction color
coded as blue: left, red: right, yellow: up, and cyan: down. (b) Calculated excess
vertices for each vertex type as a function of lattice spacing, averaged over two
simulation runs, comparable to results in Ref. 44. Solid symbols are used for
the 2D approximation, and open symbols for the 3D model.
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energy density and effective field are given as

ε ¼ � J1
Δ
mi �mj � J2

Δ
(mi �mj)

2,

Hi ¼ J1
μ0MSΔ

mj þ 2J2
μ0MSΔ

(mi �mj)mj:

(5)

Here, J1 and J2 are the bilinear and biquadratic surface
exchange coupling constants, respectively, with coupled magnetic
moment directions given by mi and mj, and Δ is the thickness of
the ferromagnetic layer for which the Hi effective field contribution
is calculated. The simulated structure is shown in the inset of
Fig. 6, where we have used material parameters determined experi-
mentally in Ref. 50 also available in the materials database33 and, in
particular, J1 =−1 mJ/m2 with no biquadratic contribution. The
simulated stack uses in-plane periodic boundary conditions, both
for the differential operators—exchange field—and for the
FFT-based convolution evaluation of the demagnetizing field. The
simulated area is 300 nm2 with an in-plane cellsize of 3 nm. A poly-
crystalline structure has been generated using in-plane Voronoi tes-
sellation with 20 nm crystallites, where the uniaxial anisotropy easy
axis varies randomly by ±20° around the x axis between the differ-
ent crystallites. Results are shown in Fig. 6 with the field applied
along the x axis direction. With a large external field, the magneti-
zation in all the layers aligns along the field. Reduction of the field
results in gradual rotation of the 10 thinner layers against the field
direction, thus reducing the total energy as both the surface
exchange and magnetostatic interactions result in preferentially
anti-parallel alignment. As the field direction is reversed, all the
thicker Co90Fe10 layers switch at once, with the thinner Co90Fe10
layer switching against the field due to the strong antiferromagnetic
surface exchange interaction; further increasing the field results in
gradual rotation of the 10 thinner layers toward the applied field
direction. It should be noted that such a structure is very difficult
to simulate using a single uniform finite difference computational
mesh without introducing approximations, such as rounding the

layer thicknesses, which become increasingly inaccurate as the
number of repetitions increases. Even with the layer thickness
rounded, for example, to Co90Fe10 (5 nm)/Ru (1 nm)/Co90Fe10
(3 nm), a discretization cellsize of 1 nm is still required along the z
direction. With the multi-layered convolution algorithm in Boris,
each layer can be considered a 2D mesh, rendering such simula-
tions relatively trivial.

Further extensions to the micromagnetics model include topo-
graphical roughness and staircase corrections for the demagnetizing
field, detailed previously28 and tested experimentally,58–60 as well as
magnetoelastic contributions.61,62 Finally, all the material parameters
included in simulations may be assigned spatial and temporal depen-
dences through user-supplied mathematical formulas, input data files,
or built-in generators. This allows simulations using polycrystalline or
granular structures, as well as material defects and impurities.

IV. TRANSPORT SOLVER

Inclusion of spin torques in modern micromagnetics solvers is
an essential requirement, allowing modeling the effect of spin
transfer torques on domain walls and skyrmions, spin-torque
nano-oscillators,63 and magnetic random-access memories.64 In the
simplest case, a uniform current density may be used, with the
LLG equation augmented with appropriate spin torque terms.
More advanced solvers also allow for non-uniform current densi-
ties, thus enabling simulations of structures with non-constant
cross-sectional area. In Boris, the current density may be computed
self-consistently for any given geometry and multi-layered structure
without having to import a computed current density, using the
successive over-relaxation method.65

For charge transport only, this is given by Jc= σE, where σ is
the electrical conductivity and E =−∇V is the electric field
obtained from the electrical potential V. Results in Fig. 4 made use
of the LLG-STT equation with a uniform current density. Here, we
further show computations with non-uniform current densities
and, in particular, we compute the AMR in a Ni80Fe20 ellipse
where a current density is generated by applying a potential drop
across two 5 nm thick metallic contacts, which are included as sep-
arate computational meshes with Ru material and Dirichlet boun-
dary conditions set at the ends. The contacts are placed on top of
the ellipse, with the simulated geometry given in Fig. 7(a) showing
the computed current density. Composite media boundaries
between the ellipse and the contacts are treated using the continuity
of flux (current density) and electrical potential. The AMR effect is
included as σ = σ0/(1 + rd2), where σ0 is the material base conduc-
tivity, r is the AMR ratio taken as 0.02 for Ni80Fe20, and d = JC⋅M/|
JC||M|. The results are shown in Fig. 7(b) where the resistance is
obtained as the potential drop across the entire simulated structure
divided by the total current flowing into the circuit ground. The
AMR loops show the typical behavior expected for longitudinal
and transverse AMR loops, and it is noteworthy the computed
resistance change is significantly lower than the input AMR param-
eter. This is mostly due to the inclusion of constant resistance of
the simulated electrical contacts, but also due to non-uniformity of
the current density. Test simulations with uniform current density
and potential drop applied directly across a single ferromagnetic
mesh reproduce the input AMR ratio accurately.

FIG. 6. Hysteresis loop in a synthetic ferrimagnetic 10-repetition multi-layered
stack of [Co90Fe10 (4.9 nm)/Ru (0.6 nm)/Co90Fe10 (2.9 nm)/Ru (0.6 nm)]10.
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An additional benefit of self-consistently computing current
densities, an Oersted field can then be generated from it. This avoids
having to compute the Oersted field externally and then importing it
into the program, which apart from constant current densities is not
trivial. Moreover, internal computation of the Oersted field allows
simulations with the time-dependent Oersted field, for example, due
to time-dependent current densities. Boris computes the Oersted field
from the current density by evaluating the convolution sum with an
Oersted tensor, using the formulas given in Ref. 66.

Additionally, Boris also allows computation of spin transport
based on the drift-diffusion model,14,15 augmented with circuit
theory boundary conditions.16 The full system of equations imple-
mented is shown below,

JC ¼ σEþ βDDe
e
μB

(∇S)mþ θSHADe
e
μB

∇� SþPσ
�h
2e
Eσ �P

σ2�h
e2n

E�Bσ ,

JS ¼�μB
e
PσE�m�De∇Sþ θSHA

μB
e
εσE

(6)

þ �hμBσ
2e2

X
i

ei� ( _m�@im)þ �hμBσ
2

e3n
(z�E)� (@xm�@ym):

The charge current density now additionally includes contri-
butions due to (i) current perpendicular to plane giant magneto-
resistance (CPP-GMR), where βD is the diffusion spin polariza-
tion, De is the electron diffusion constant, and S is the spin accu-
mulation. (ii) ISHE where θSHA is the intrinsic spin Hall angle,
(iii) charge pumping, and (iv) topological Hall effect, where Eσ

i ¼

( _m� @im) �m and Bσ ¼ z(@xm� @ym) �m. Here, Eσ and Bσ are
the directions of the emergent electric field due to charge pumping
and emergent magnetic field due to the topological Hall effect,
respectively.20,21 The spin current density tensor, where JSij indicates
the flow of the j component of spin polarization in the direction i,
includes contributions due to (i) drift, (ii) diffusion, (iii) SHE,
where ϵ is the rank 3 unit antisymmetric tensor, (iv) charge
pumping, and (v) the topological Hall effect where n is the itinerant
electron density. The spin accumulation obeys the following equa-
tion of motion, where λsf is the spin flip length, λJ is the exchange
rotation length, and λw is the spin dephasing length:

@S
@t

¼ �∇ � JS � De
S

λ2sf
þ S�m

λ2J
þm� (S�m)

λ2f

 !
: (7)

Solving for the spin accumulation allows computation of bulk
spin torques, which may be included as an additional torque term
in the LLG equation, as

TS ¼ �De

λ2J
m� S� De

λ2f
m� (m� S): (8)

It may be shown that under the assumption of negligible
in-plane spin diffusion this expression is equivalent to Zhang–Li
STTs as given in Eq. (2),9,17,67 where the non-adiabaticity parame-
ter is constant and given by β ffi λ2J /λ

2
sf in the limit of long spin

dephasing length and long domain walls. The assumption of negli-
gible in-plane spin diffusion breaks down for rapidly varying mag-
netization textures such as vortices and skyrmions, and this can
lead to spatially varying and enhanced non-adiabaticity. For
example, it is known that vortex domain walls have a significantly
larger non-adiabaticity compared to transverse domain walls,68

arising mainly due to in-plane spin diffusion at large magnetization
gradients, with contributions due to charge pumping and the topo-
logical Hall effect also recognized.69 While it may still be possible
to use the simple LLG-STT formulation of Eq. (2), the correct
value of non-adiabaticity must be used when vortex domain walls
are present, and this may be computed using the drift-diffusion
model. This is shown in Fig. 4(a), where for Ni80Fe20 the relation
β ffi λ2J /λ

2
sf gives β = 0.04 expected for a transverse domain wall

with λsf = 10 nm and λJ = 2 nm. For the vortex domain wall in
Fig. 4(a) however a much higher maximum value of 0.1 results for
λw = 2.1 nm, obtained by fitting the spin torque in Eq. (8) to the
STT in Eq. (2) with β as a spatially varying fitting parameter. Thus,
β is no longer a constant but has a spatial dependence with the
maximum value reached at the vortex core as seen in Fig. 4(a). The
μMAG Standard Problem #5 is repeated again, but this time
the LLG equation is used with the spin torque from Eq. (8), i.e., the
spin accumulation is solved at every time step to self-consistently
compute the spin torque. The results are shown in Fig. 4(b) where
a good agreement is obtained with the LLG-STT equation, despite
the very different methods used to solve the problem.

At non-magnetic (N)/ferromagnetic (F) composite media
boundaries, the following conditions are applied, obtained from
circuit theory using the spin mixing conductance G"# and interface
conductances for majority and minority carriers, G" and G#:

FIG. 7. Anisotropic magneto-resistance (AMR) in a 320× 160 × 10 nm3 Ni80Fe20
ellipse. (a) Simulation geometry showing the computed current density, and (b)
AMR loops computed for different angles to the ellipse long axis.
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JC � njN ¼ JC � njF ¼ �(G" þ G#)ΔV þ (G" � G#)ΔVS �m,

JS � njN � JS � njF ¼ 2μB
e

[Re{G"#}m� (m� ΔVS)þ Im{G"#}m� ΔVS],

JS � njF ¼ μB
e
[�(G" þ G#)(ΔVS �m)mþ (G" � G#)ΔVm]:

(9)

Interfacial spin torques are obtained as (hF is the discretization
cellsize of the F layer in the direction normal to the composite
media boundary)

TS ¼ gμB
ehF

[Re{G"#}m� (m� ΔVS)þ Im{G"#}m� ΔVS]: (10)

Spin pumping may also be included on the N side of Eq. (9) as

J pump
S ¼ μB�h

e2
Re{G"#}m� @m

@t
þ Im{G"#}

@m
@t

� �
: (11)

This results in a damping-like torque in Eq. (10), reproducing
the expected enhancement in effective magnetization damping.17

As shown previously, when a heavy metal (HM)/F bilayer is simu-
lated with the SHE enabled in the HM layer, the expected
damping-like and field-like SOTs are obtained from Eq. (10).17,70

Moreover, when a spin accumulation is generated at magnetization

gradients, such as a skyrmion, the resulting imbalance in spin accu-
mulation either side of the HM/FM interface generates vertical spin
currents, which leads to an additional type of interfacial spin
torque, termed interfacial STT (ISTT).10,11 In many cases, it is suf-
ficient to run simulations with direct expressions for spin torques
(e.g., STT and SOT) augmenting the LLG equation; however, the
drift-diffusion spin transport solver is still useful for calculating the
strength of these spin torques in the first place from spin transport
parameters. Here, we further verify the spin transport solver repro-
duces the expected spin torques in a spin valve structure shown in
Fig. 8(a). In a macrospin approximation, the total spin torque
exerted on the free layer is given by a combination of Slonczewski
and field-like spin torques as71,72

TS ¼ μB
e
J
d
η(θ)[m� (m� p)þ rm� p],

η(θ) ¼ qþ
Aþ Bcos(θ)

þ q�
A� Bcos(θ)

:

(12)

Here, p is the polarization from the fixed layer, set to p ¼ �x̂.
By varying the angle in the uniformly magnetized free layer, the
angular dependence η(θ) in Eq. (12) is obtained by fitting the spin
torque computed self-consistently in Eq. (10). The results are
shown in Fig. 8(b), where we obtain q+ = 4.94, q− =−0.05, A = 5.85,
B = 3.83, and r = 0.19. It should be noted that while a good agree-
ment is obtained between Eqs. (10) and (12) for the angular depen-
dence, the model above is strictly applicable for a macrospin only.
During switching of the free layer, the magnetization is no longer
uniform resulting in non-negligible spin diffusion effects. While
the switching times computed with Eqs. (10) and (12), respectively,
are approximately the same for the geometry in Fig. 8(a), the exact
magnetization dynamics of the free layer differ between them. In
this case, the self-consistent spin torque in Eq. (10) is a more accu-
rate description, capturing the non-local nature of the spin torques.

V. LANDAU–LIFSHITZ–BLOCH EQUATION

Material parameters used in simulations may be assigned tem-
perature dependences, either using a data file or with a user-
supplied mathematical equation. This is particularly useful for
computations where the temperature can change during the simu-
lation. In this case, the (stochastic) Landau–Lifshitz–Bloch (LLB)
equation8 is used, which is given by

@M
@t

¼ � γ

1þ ~α2
?
M�H� ~α?γ

1þ ~α2
?

1
jMjM

� (M� (HþHthermal))þ
γ~αjj
jMj (M:H)Mþ ηthermal: (13)

FIG. 8. Spin torques in a CPP-GMR spin valve structure for a current density of
∼1012 A/m2. (a) Spin-valve geometry with dimensions 160 × 80 nm2, 10 nm
fixed layer thickness, 5 nm free layer thickness, 2 nm spacer thickness, and con-
tacts of 20 nm thickness. (b) Computed spin torques in the free layer for uniform
magnetization as a function of in-plane angle, with fitted Slonczewski and field-
like spin torques.
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Here, for T < TC (TC is the Curie temperature),
α? ¼ α(1� T/3TC), αjj ¼ α2T/3TC , ~α? ¼ α?/m, and ~αjj ¼ αjj/m,
where m is the magnetization length normalized to its zero temper-
ature value, i.e., m ¼ jMj/M0

S . For T > TC, α? ¼ αjj ¼ 2T/3TC . The
effective field H must be complemented by a longitudinal suscepti-
bility field given by

Hl ¼
1�m2

m2
e

� �
m

2μ0~χjj
, T � TC ,

� m
μ0~χjj

, T . TC:

8>><
>>: (14)

The field and temperature-dependent equilibrium magnetiza-
tion, me, is obtained from the Curie–Weiss law as

me(T) ¼ B me
3TC

T
þ μμ0Hext

kBT

� �
, (15)

where B(x) = coth(x) − 1/x is the Langevin function and μ is the
atomic moment. The longitudinal susceptibility is
χjj(T) ¼ @M/@HjH!0,

6,8 and from this we obtain the relative longi-
tudinal susceptibility (units T−1)

~χjj(T) ¼
μ

kBT
B0(x)

1� B0(x)(3TC/T)
¼ χjj(T)/μ0M

0
S , with

x ¼ me3TC/T: (16)

The components of the thermal field, Hthermal, and torque,
ηthermal, follow Gaussian distributions with no correlations, zero
mean, and standard deviations given, respectively, by

Hσ ¼ 1
α?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT(α? � αjj)
γμ0M

0
SVΔt

s
,

ησ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTαjjγM0

s

μ0VΔt

s
:

(17)

Here, V is the computational cellsize and Δt is the integration
time step. Stochastic equations are evaluated in Boris in the
Stratonovich interpretation,73 and applicable methods include the
Euler and Heun methods (both fixed and adaptive time step)—the
other previously mentioned higher order methods are not suitable
for stochastic equations.

Temperature dependences of parameters may be adjusted by the
user as explained above; however, when a Curie temperature is set the
program computes a set of default temperature dependences, which
are given as scaling laws on the base (zero-temperature) material
parameter values. These are MS(T) ¼ M0

Sme(T) and A(T) ¼
A0m2

e (T) for the exchange stiffness,74 D(T) ¼ D0m2
e (T) for the

Dzyaloshinsky–Moriya exchange constant,75 and K(T) ¼ K0m3
e (T)

for the anisotropy constants.76,77 It must be noted, however, the
default temperature dependences are not always appropriate and
may need to be adjusted depending on the material simulated, for
example, see Refs. 78 and 79. For the full list of effective fields
implemented, see Appendix A.

VI. HEAT SOLVER

In the simplest case, the electron temperature in the LLB
equation is uniform. More advanced simulations also require
non-uniform temperatures, and this calls for implementation of
the heat equation, although an externally computed temperature
distribution can also be loaded into Boris. For example, the
authors in Ref. 22 investigated the AMR-induced magnonic
spin-Seebeck effect, where Joule heating is included in the heat
equation as the heat source J2/σ (W/m3). Due to the AMR of a
transverse DW, the conductivity is higher at the DW, locally
resulting in decreased Joule heating. This results in a temperature
gradient between the center of the DW and its boundaries, and
moreover when the DW is displaced due to STT the leading edge
of the DW experiences a higher temperature compared to the
trailing edge. Due to the magnonic spin-Seebeck effect,80 this
results in a significant enhancement of the DW velocity up to
15% for realistic material parameters.22 To reproduce such an
effect, it is necessary to simultaneously solve both the LLB and
heat equations, in addition to computing the current density
using the transport solver. The heat equation implemented in
Boris is shown below,

C(r)ρ(r)
@T(r, t)

@t
¼ ∇ � K(r)∇T(r, t)þ S(r, t)þ J(r, t)2

σ(r)
: (18)

Here, C is the total specific heat capacity, K is the thermal
conductivity, ρ is the mass density, and S is the heat source. The
material parameters in the heat equation are allowed to vary spa-
tially, for example, if a temperature dependence is enabled. All
material parameters, including the heat source S, in Boris may be
assigned a temperature dependence, specified either through a
data file or through a user-defined mathematical equation. The
final term in Eq. (18) represents Joule heating, and the heat
solver may be coupled to the transport solver as explained in
relation to the example in Ref. 22. The heat equation is evaluated
using the forward-time centered-space method. While this is a
first-order method, so the time step required for stability is small,
this is in many cases comparable to the time step required for
evaluating the LLB equation; thus, a higher order scheme is not
necessary.

For more advanced studies, which require separating the
lattice and electron temperatures, a two-temperature model23 is
available, which is given as

Ce(r)ρ(r)
@Te(r, t)

@t
¼∇ �K(r)∇Te(r, t)�Ge(r)[Te(r, t)�Tl(r, t)]þ S(r, t),

Cl(r)ρ(r)
@Tl(r, t)

@t
¼Ge(r)[Te(r, t)�Tl(r, t)]:

(19)

Here, Ce and Cl are the electron and lattice specific heat capac-
ities, and Ge is the electron-lattice coupling constant, typically of
the order 1018W/m3 K. When used together with the LLB equa-
tion, the magnetization and magnetic parameters are coupled to
the electron temperature (T = Te).
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Studies of ultrafast magnetization dynamics have revealed
a large difference between electron and spin dynamics on
time scales of the order 1 ps and below, explained in terms of a
three-temperature model which includes the electron, spin, and
lattice temperatures,81 and later formulated as a microscopic
three-temperature model.82 This latter approach was shown to
be equivalent to an LLB formulation,23 which accounts for the
different electron and lattice temperatures on ultra-short time
scales. Within this formulation, the photon energy is absorbed
by the delocalized electrons, which are coupled to the lattice
electrons via the rate equations shown in Eq. (19). This allows
simulations of ultrafast demagnetization due to heating by a
laser pulse, by including an appropriate heat source S in
Eq. (19). Here, we show an example of such a simulation by
taking a Gaussian profile for a linearly polarized laser pulse as
given below, where d and tR are full-width at half-maximum
values for the spatial and temporal widths,

S ¼ P0 exp
�jr� r0j
d2/4 ln (2)

� �
exp

�(t � t0)
2

t2R/4 ln (2)

� �
(W/m3): (20)

The geometry simulated is shown in Fig. 9(a), where we use
a Co (2 nm)/Pt (8 nm)/SiO2 (40 nm) structure, with in-plane
dimensions of 512 nm2 and periodic boundary conditions. For
the Co layer, we also include the interfacial DMI contribution and

uniaxial anisotropy with easy axis out of the plane. The two-
temperature model is computed for the Co and Pt layers, while
the one-temperature heat equation is computed for the SiO2 sub-
strate. Continuity of heat flux and temperature is assumed at the
interfaces, and Robin boundary conditions are used on the
exposed surfaces of the magnetic layer and substrate with ambient
temperature set to room temperature. For a high power laser pulse
(P0 = 4 × 1021 W/m3) with d = 400 nm and tR = 100 fs, the com-
puted maximum Co electron temperature is plotted in Fig. 9(c),
showing ultrafast heating up to Tmax≅ 2TC (TC = 500 K), followed
by rapid cooling as the electron and lattice temperatures equili-
brate. The temperature decays back to room temperature on a
longer time scale. For this problem, we solve the stochastic LLB in
Eq. (13) and compute the topological charge (which takes on
values ±1 for a single skyrmion) using83

Q ¼ 1
4π

ð
A

m � @m
@x

� @m
@y

� �
dxdy: (21)

Thus, by plotting |Q| as a function of time, the number of
skyrmions present can be monitored. As the magnetization
order recovers for T < TC following ultrafast demagnetization,
Néel skyrmions begin to emerge under the action of DMI, as
observed experimentally.84 The mean number of skyrmions
formed is dependent on the laser power and follows a Poisson
counting distribution as discussed in Ref. 85. Two examples are
shown in Fig. 9(c): the low power pulse results in a single sky-
rmion formed in this case, while the high power pulse results
in five skyrmions formed, with the final state indicated in
Fig. 9(b). The integration of a multi-layered heat solver with
the magnetization dynamics solver is thus a powerful feature,
allowing detailed studies with non-uniform and non-constant
temperatures and heat sources.

VII. TWO-SUBLATTICE MODEL

Recent years have seen an increased interest in antiferromag-
netic spintronics,86–88 with the real prospect of antiferromagnetic
memories89 in sight, and applications to terahertz technologies.90

Thus, micromagnetics research software is needed to support
future efforts in this area. Following the multi-mesh and multi-
material paradigm, Boris has been extended with a two-sublattice
model, allowing modeling of antiferromagnetic and ferrimagnetic
materials, for example, applicable to studies of ferrimagnetic sky-
rmions.91 This allows studying not only antiferromagnetic and fer-
rimagnetic materials devices on their own, but also complex
multi-layered devices including both antiferromagnetic and ferro-
magnetic materials—one obvious application here is to the study of
exchange bias.92

Here, we show the two-sublattice stochastic LLB equation
implemented in Boris, based on the LLB equation from Refs. 93
and 94 applicable for antiferromagnetic, ferrimagnetic, and
binary ferromagnetic alloys. This is given in Eq. (22) in terms of
the macroscopic magnetization, where we denote the two sublat-
tices as i = A, B,

FIG. 9. Ultrafast demagnetization and Néel skyrmion creation in a 2 nm thick
Co layer on Pt (8 nm) and SiO2 substrate (40 nm). (a) Simulated trilayer struc-
ture. (b) State after 800 ps for a high power laser pulse (Tmax≅ 2TC,
TC = 500 K) and out-of-plane field of 100 kA/m, showing the z component of
magnetization and five created skyrmions. (c) |Q| plotted as a function of time
for two different pulse strengths (high Tmax≅ 2TC, low Tmax≅ 1.5TC) and
d = 400 nm, tR = 100 fs. The maximum Co temperature reached for the high
power laser pulse is also plotted.
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@Mi

@t
¼� ~γ iMi �Heff , i� ~γ i

~α?, i

Mi
Mi � (Mi� (Heff , iþHth, i))

þ γ i
~αjj, i
Mi

(Mi �Hjj, i)Mi þηth, i (i¼A, B): (22)

The reduced gyromagnetic ratio is given by
~γ i ¼ γ i/(1þ ~α2

?, i), and the reduced transverse and longitudinal
damping parameters by ~α?(jj), i ¼ α?(jj), i/mi, where
mi(T) ¼ Mi(T)/M0

S, i, with M0
S, i denoting the zero-temperature

saturation magnetization and
Mi ≡ |Mi|. The exchange field now includes not only intra-lattice
contributions, but also homogeneous and non-homogeneous inter-
lattice contributions given as

Hex, i ¼ 2Ai

μ0M
2
e, i
∇2Mi� 4Ah, i

μ0Me, iMe, j
m̂i� (m̂i�Mj)þ Anh, i

μ0Me, iMe, j
∇2Mj

(i¼A, B, i= j):

(23)

The effective field includes a number of contributions, as
for the ferromagnetic model, namely, demagnetizing field com-
puted for (MA+MB)/2, external field, magneto-crystalline
anisotropy, as well as DMI or interfacial DMI terms. The for-
mulas given in Appendix A are now applicable to the two sub-
lattices separately.

The relative longitudinal susceptibility, ~χjj, i ¼ χjj, i/μ0M
0
S, i,

now becomes94

kBT~χjj, i ¼
μiB

0
i(1� 3τ j~TNB0

j/T)þ μj3τ ij~TNB0
iB0

j/T

(1� 3τ i~TNB0
i/T)(1� 3τ j~TNB0

j/T)� τ ijτ jiB0
iB0

j(3~TN /T)
2 ,

(24)

where B0
i ; B0

me, i
[(me, iτ i þme, jτ ij)3~TN /T] (i =A,B). Here, me,i are

magnetization temperature scaling laws, and τi, τij are dimension-
less coupling parameters between the effective exchange parameters
and the phase transition temperature, which allow convenient spec-
ification of materials for two-sublattice micromagnetic simulations.
Full details, including the longitudinal relaxation field expression,
and examples are given in Appendix B.

Here, we test the two-sublattice model by computing the
antiferromagnetic resonance (AFMR) as a function of antiferro-
magnetic exchange and uniaxial anisotropy. The predicted

resonance frequency is given by the Kittel formula95 as
f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HA(2HE þHA)

p
at zero external field, where HA= 2K1/μ0MS,

and HE= 4|Ah|/μ0Ms. We compute the resonance frequency for a
generic antiferromagnetic material with MS= 800 kA/m and
A = 13 pJ/m on each sublattice, as a function of homogeneous
antiferromagnetic exchange and uniaxial anisotropy constant, by
applying a uniform sinc pulse and taking the Fourier transform
to obtain a frequency-swept AFMR peak. The excitation is
applied perpendicular to the easy axis with amplitude 1 kA/m.
Results are plotted in Fig. 10(a), showing a good agreement with
the Kittel formula over a wide range of values. We further
compute the spin wave dispersion with the same method used to
compute the ferromagnetic spin wave dispersion in Fig. 3. Here,
we set A = 5 pJ/m, Ah = − 20 MJ/m3, K1 = 50 kJ/m3 and also set a
nonhomogeneous exchange constant Anh= − 10 pJ/m, with a
damping constant of 0.002. The n = 0 spin wave mode analytical
formula is given as

w0(k)¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HE þHAþ 2AþjAnhj

μ0MS

� �
k2

� �
HAþ 2AþjAnhj

μ0MS

� �
k2

� �s
:

(25)

The results are plotted in Fig. 10(b), showing an excellent
agreement with Eq. (25).

The two-sublattice model in Eq. (22) also includes stochastic
terms, which is similar to the stochastic LLB equation having zero
spatial, vector components, and inter-lattice correlations, and
whose components follow Gaussian distributions with zero mean
and standard deviations given by

Hstd:
th, i ¼

1
α?, i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT(α?, i � αjj, i)

γ iμ0M
0
S, iVΔt

s
,

ηstd:th, i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTαjj, iγ iM0

S, i

μ0VΔt
:

s (26)

Similarly to the approach in Ref. 8, it can be shown that the
magnetization length distribution follows a Boltzmann probability
distribution. For the two-sublattice case, in general, this distribution
is a function of the magnetization length of both sublattices, mA

and mB, and is shown below for the isotropic case (see Appendix B
for further definitions),

Pi(mA, mB)/m2
i exp � M0

S,iV

4μime,ikBT

(m2
i �m2

e,i)
2

me,i

(μi þ 3τ ijkBTN~χjj,j)
2~χjj,i

þ (m2
j �m2

e,j)

me,j
3τ ijkBTNm

2
i

" #( )
(i, j ¼ A, B, i = j): (27)

We test this by computing a two-sublattice histogram for
the magnetization length as a function of temperature, taking

the generic antiferromagnetic material of Fig. 10(a) with a Néel
temperature TN= 500 K. A temperature is set and a cubic block

Journal of
Applied Physics METHOD scitation.org/journal/jap

J. Appl. Phys. 128, 243902 (2020); doi: 10.1063/5.0024382 128, 243902-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


of antiferromagnetic material (400 nm side) with periodic boun-
dary conditions in all directions is allowed to relax for a set time
(20 ps or longer). The computed two-sublattice probability distri-
bution is shown in Fig. 11 for T/TN= 0.99 as a color map. A very
good agreement is obtained with the two-sublattice Boltzmann dis-
tribution from Eq. (27), plotted as a wire-frame. Similar tests were
repeated over a wide range of temperatures. This shows that the
implemented stochastic two-sublattice LLB model correctly repro-
duces the expected stochastic properties.

Exchange bias may also be modeled by simulating a
bilayer consisting of an antiferromagnetic and a ferromagnetic
mesh. The effective exchange bias field, first observed by
Meiklejohn and Bean,96 coincides with the bilinear surface
exchange field of Eq. (5); thus, exchange bias may be included
by enabling the surface exchange fields at the interface between
antiferromagnetic and ferromagnetic meshes.97 By including

such coupling terms between the ferromagnetic spins and one
or both antiferromagnetic sublattices, uncompensated spins as
well as compensated spins98 may be simulated. This subject,
however, is beyond the scope of the current work and will be
addressed in a separate publication.

VIII. PERFORMANCE AND BENCHMARKING

Large-scale micromagnetics simulations require significant
computational resources. An important advancement is the use of
GPUs, which result in significant speed-up factors compared to
CPUs,2 typically over an order of magnitude. All the computational
routines in Boris may be executed on the CPU as well as on the
GPU, either with single or double floating point precision. For
CPU computations, Boris has been designed to run on shared
memory devices with parallelization based on OpenMP. Fast
Fourier transforms (FFTs) are computed using the FFTW3
library,32 configured to use threading. For GPU computations,
Boris uses the CUDA toolkit,31 including for FFTs. Currently, true
distributed computing in a cluster is not possible with Boris,
although in a future work the possibility of using multiple GPUs
for a single simulation will be explored. It should be noted that
finite element/boundary element method codes are available for
distributed computations, particularly suitable for curved geome-
tries due to increased accuracy compared to finite difference
codes,99 for example, Magpar has shown near-linear performance
scaling.100 Boris can be controlled by using remote Python scripts;
thus, execution and control of multiple independent remote Boris
instances (for example, in a Linux cluster) is possible.

By far, the most expensive term to evaluate is the demagnetiz-
ing field, which involves evaluating a convolution sum over the
entire mesh—see Eq. (4)—and normally takes 75% or more of the
computation time in each iteration. The convolution sum may be

FIG. 10. (a) Antiferromagnetic resonance computed as a function of homoge-
neous antiferromagnetic exchange and uniaxial anisotropy, compared to the
Kittel formula. (b) Antiferromagnetic spin wave dispersion computed for the
same geometry in Ref. 38 with A = 5 pJ/m, Ah =− 20 MJ/m3, Anh =− 10 pJ/m,
and K1 = 50 kJ/m

3, using a damping factor of 0.002, compared to Eq. (25) for
n = 0 mode (dotted line).

FIG. 11. Two-sublattice antiferromagnetic magnetization length probability distri-
bution at T/TN = 0.99, showing the computed distribution as a color map, with
the wire frame showing the predicted two-sublattice Boltzmann probability
distribution.
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evaluated very efficiently using the convolution theorem: a (2)3D
FFT algorithm is used on the input magnetization; this is then mul-
tiplied with the demagnetizing kernel in the transform space, and
an inverse (2)3D FFT algorithm is used to obtain the output
demagnetizing field. The computational complexity of this
approach increases as Nlog(N), compared to N2 for the naïve evalu-
ation of the convolution sum; thus, several orders of magnitude
improvement may be achieved for a large number of computational
cells N. The simplest method of implementing the 3D convolution
algorithm consists of computing 1D FFTs along the x, y, and z
directions, performing the point-by-point multiplication, then
computing the z, y, and x inverse 1D FFTs in this order. With
CUDA31 implementations of GPU computations, these seven steps
are most easily implemented using separate CUDA kernel launches.
In particular, the z FFTs, point-by-point multiplications and z
inverse FFTs are done in three separate steps. This can be ineffi-
cient for a small number of cells along the z direction. In Boris, a
new approach is taken, termed pipelined convolution, where the z
(inverse) FFTs and point-by-point multiplications are done using a
single CUDA kernel launch, simultaneously for all three vector
components. This involves manually coding the FFT algorithm and
results in significant performance improvement over the non-
pipelined approach due to more efficient use of GPU instruction
bandwidth, up to a certain number of computational cells along
the z direction.

To test the efficient implementation of computational rou-
tines in Boris, benchmark comparisons with Mumax32 have been
performed. A testing platform consisting of a GTX 980 Ti GPU
in single floating precision mode on Ubuntu 20.04 was used. An
identical simulation was configured for both programs, consisting
in computing the magnetization response to a perpendicular
magnetic field, with effective field contributions of demagnetizing
field, exchange interaction, and applied field. The RK4 evaluation
method was used, and the time per evaluation was measured,
noting the RK4 method consists of four evaluations per time step
iteration. The benchmarking scripts for both programs are avail-
able in the Boris GitHub repository.29 Typical results are shown
in Fig. 12(a), for both 2D and 3D modes, showing the time per
evaluation as a function of a total number of simulation cells N.
In the 2D mode, the computational performance of Boris and
Mumax3 is comparable; however, in the 3D mode Boris is found
to run significantly faster. More information is obtained by plot-
ting the speedup factor (tMumax3/tBoris) as a function of number
of z cells for a wide range of total number of computational cells,
shown in Fig. 12(b). The pipelined convolution algorithm has
been implemented up to 24 cells along the z direction, thus for
FFTs of up to 32 points, noting the circular convolution theorem
requires doubling the input data size by zero padding when not
using periodic boundary conditions. This approach is found to be
significantly faster compared to Mumax3, with the speedup
factor also increasing with the total number of computational
cells. Above 24 cells along the z direction, the pipelined convolu-
tion algorithm becomes less efficient than the non-pipelined
algorithm; thus, 24 is the largest value for which Boris imple-
ments the pipelined convolution approach, although speedup
factors above 1 are still obtained for the non-pipelined convolu-
tion mode in all 3D cases.

Finally, we test the performance scaling at fixed problem
sizes for different GPUs as a function of available floating point
operations per second (Flops), using the same simulation proce-
dure explained above. The results are shown in Fig. 13 for the
GTX 1050 Ti, GTX 980 Ti, RTX 2080 Super, and RTX 2080 Ti
GPUs, using GTX 1050 Ti as a reference. Normally strong
scaling as a function of number of available processors is
described by Amdahl’s law;101 however, for the results in Fig. 13,
where not only the number of CUDA cores changes, but also the
operating frequency, memory bandwidth, and microarchitecture
changes, we simply indicate the ideal scaling of 1:1 increase with

FIG. 12. Comparison of computational performance with Mumax3, for single
floating point precision CUDA computations, benchmarked on a GTX 980 Ti
GPU under Ubuntu 20.04. (a) Time per evaluation as a function of a total
number of simulation cells for Nz = 1 (2D mode) and Nz = 8 (3D mode). (b)
Speedup factor, defined as the ratio of time per evaluation as tMumax3/tBoris, as a
function of Nz and a total number of computational cells. In Boris, 3D computa-
tions up to 16 cells along the z direction (80 nm thickness for a 5 nm cellsize)
are handled using an efficient pipelined convolution algorithm, resulting in signifi-
cant speedup factors compared to non-pipelined convolution in Mumax3, up to
nearly twice faster on this platform for large simulations containing over 8 × 106

computational cells.
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available Flops for comparison. The performance increase is
comparable to the ideal case on average. We note the most recent
Ampere microarchitecture, with CUDA Compute 8.0, has GPUs
with available Flops in the range of 20–40 teraFlops; however, we
have not tested Boris in this range yet, although the code can also
be compiled on this microarchitecture.

IX. CONCLUSIONS AND OUTLOOK

Here, we have presented the main mathematical models
implemented and testing of a new comprehensive computational
magnetism research software. This represents a significant
addition to the body of modeling capabilities introduced in other
comparable open-source software, including OOMMF,1

Mumax3,2 and Fidimag.3 Thus, in addition to the existing micro-
magnetics modeling software, a new multi-mesh modeling para-
digm is introduced, allowing complex simulations with multiple
independently discretized computational meshes and materials.
This allows simulations of multi-material structures, including
ferromagnetic, antiferromagnetic, ferrimagnetic, and non-
magnetic and substrate materials, without the constraint of fitting
the computations on a single uniformly discretized finite differ-
ence mesh, while still preserving the computational performance
associated with finite difference methods. In addition to magneti-
zation dynamics models, including LLG, LLB, and stochastic and
two-sublattice models, Boris also implements a drift-diffusion
spin transport solver in ferromagnetic materials, as well as a heat
flow solver in multi-layered structures.

While the implemented spin transport solver is only applica-
ble to ferromagnetic materials, a future development consists in

extending the drift-diffusion model implementation to a two-
sublattice model, for example, as introduced in Ref. 102 with
appropriate boundary conditions. Magnetoelastic effects may be
modeled in Boris either using a uniform stress or by importing an
externally computed strain or mechanical displacement, similar
to the approach implemented in an OOMMF extension.103 A
future development will implement both a multi-layered elasto-
statics solver and an elastodynamics solver,104 allowing complex
simulations with non-uniform and time-dependent strains,
including magnetoelastic and magnetostriction-related dynamical
effects. Finally, a basic atomistic modeling105 capability has
already been introduced in Boris, with a view to implementing
true multi-scale simulations106,107 in the multi-mesh paradigm,
although this was not discussed in the current work and will be
treated in a separate publication.
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APPENDIX A: MICROMAGNETICS EFFECTIVE FIELD
TERMS

Effective field terms for various interactions are included as
additive terms in Heff, in either the LLG or LLB equations. These
are usually obtained from their corresponding energy density terms
using the relation H ¼ �1

μ0MS

@ε
@m. The main terms implemented in

Boris not already given in the main text are shown in Table I.
Parameter definitions are not repeated here if given in the
main text.

APPENDIX B: LANDAU–LIFSHITZ–BLOCH
TEMPERATURE DEPENDENCES

For the two-sublattice model, we introduce convenient dimen-
sionless micromagnetic parameters τi and τij ∈ [0, 1]. These are
coupling parameters between exchange parameters and the phase
transition temperature, where |J0,i| = 3 τikBTN, |J0,ij| = 3 τijkBTN. Here,
J0,i( j) is the effective exchange parameter for intra-lattice (i =A,B) and
inter-lattice (i,j =A,B, i≠ j) coupling, respectively, obtained from the
exchange parameters as given in Ref. 94. For a simple prototypical
antiferromagnet, we have τA = τB = τAB = τBA = 0.5 (J0,ij < 0). For
τA = 1, τB = 0, τAB = τBA = 0, the temperature dependences given
below, as well as the two-sublattice LLB equation, reduce to the fer-
romagnetic LLB case. Thus, here we give the general case in terms
of τ parameters.

The damping parameters are continuous at TN—the phase
transition temperature—and are given by

α?, i ¼ αi 1� T

3(τ i þ τ ijme, j/me, i)~TN

 !
, T , TN ,

αjj, i ¼ αi
2T

3(τ i þ τijme, j/me, i)~TN

 !
, T , TN ,

α?, i ¼ αjj, i ¼ 2T
3TN

, T � TN :

(B1)

FIG. 13. Scaling at fixed problem size as a function of available single precision
(FP32) floating point operations per second (Flops), across three different
CUDA Compute major versions (5.0, 6.0, 7.0), for the 2D, pipelined 3D, and
standard 3D simulation modes. The GTX 1050 Ti GPU was taken as a refer-
ence when computing the speedup factors, and these have been averaged for
fixed problem sizes with 220, 221, 222, and 223 number of simulation cells.
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We denote ~TN the re-normalized transition temperature as

~TN ¼ 2TN

τA þ τB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(τA � τB)

2 þ 4τABτBA
p : (B2)

The normalized equilibrium magnetization functions me,i are
obtained from the Curie–Weiss law as

me, i ¼ B[(me, iτi þme, jτ ij)3~TN /T þ μiμ0Hext/kBT], (B3)

TABLE I. Effective field terms implemented in Boris, not already given in the main text.

Term Formulas

Uniaxial anisotropy ε ¼ K1[1� (m � eA)2]þ K2[1� (m � eA)2]2
H ¼ 2K1

μ0MS
(m � eA)eA þ 4K2

μ0MS
[1� (m � eA)2](m � eA)eA

where eA is the symmetry axis.

Cubic anisotropy ε = K1[α
2β2 + α2γ2 + β2γ2] + K2α

2β2γ2

H ¼ � 2K1

μ0MS
[e1α(β

2 þ γ2)þ e2β(α
2 þ γ2)þ e3γ(α

2 þ β2)]� 2K2

μ0MS
[e1αβ

2γ2 þ e2α
2βγ2 þ e3α

2β2γ]

α =m⋅e1, β =m⋅e2, and γ =m⋅e3, where e3 = e1 × e2.

Direct exchange
ε ¼ A @m

@x

� �2 þ @m
@y

	 
2
þ @m

@z

� �2� �
H ¼ 2A

μ0MS
∇2m

Homogeneous Neumann boundary condition: @m@n ¼ 0

DM exchange ε ¼ Dm � (∇�m)
H ¼ � 2D

μ0MS
∇�m

The non-homogeneous Neumann boundary condition is used: @m@n ¼ D
2An�m

Interfacial DM
exchange

ε ¼ �Dm � ((∇ �m)ẑ� ∇mz)
H ¼ 2D

μ0MS
((∇ �m)ẑ� ∇mz)

For single lattice models, the non-homogeneous Neumann boundary condition is used:
@m
@n ¼ D

2A (ẑ� n)�m
For two-sublattice models, the boundary conditions become108
@mi
@n ¼ Di

2Ai(1�c2i )
[(ẑ� n)� (mi � cimj)], (i, j ¼ A, B, i = j)

where ci = Anh/2Ai.

Demagnetizing field H(r0) ¼ �P
r
N(r� r0)M(r)

N computed using formulas in Ref. 53

Oersted H(r0) ¼
P
r
K(r� r0)JC(r)

K computed using formulas in Ref. 66

Magneto-optical HMO ¼ σ+H0
MOfMO(r, t)ẑ

Roughness
H(r0) ¼ � P

r[V
N(r� r0)G(r, r0)

� �
M(r0) (r0 [ V)

G is computed using formulas in Ref. 28

Magnetoelastic εmel,d ¼ B1[(m � e1)2(Sd � e1)þ (m � e2)2(Sd � e2)þ (m � e3)2(Sd � e3)]

εmel,od ¼ 2B2
(m � e1)(m � e2)(Sod � e3)þ (m � e1)(m � e3)(Sod � e2)

þ(m � e2)(m � e3)(Sd � e1)

� �
where B1 and B2 are magnetoelastic constants, e1, e2, e3 are cubic anisotropy axes, and Sd and Sod are diagonal and

off-diagonal strain tensor terms
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where B(x) ¼ coth (x)� 1/x and μi is the atomic magnetic
moment.

The longitudinal relaxation field that includes both intra-
lattice and inter-lattice contributions is given by

Hjj, i ¼
(

1
2μ0~χjj, i

1� m2
i

m2
e, i

 !
þ 3τijkBTN

2μ0μi

� ~χjj, j
~χjj, i

1� m2
i

m2
e, i

 !
�me, j

me, i
(m̂i � m̂j) 1� m2

j

m2
e, j

 !" #)
mi, T , TN ,

Hjj, i ¼� 1
μ0~χjj, i

þ 3τijkBTN

μ0μi

~χjj, j
~χjj, i

�me, j

me, i
(m̂i � m̂j)

" #( )
mi, T . TN :

(B4)

Here, m̂i ¼ mi/mi, and the relative longitudinal susceptibility
is given in Eq. (24).

Similarly to the ferromagnetic case, the default magnetization
temperature scaling is given as Me, i ¼ me, iM0

S, i. The anisotropy
constant follows the temperature dependence K1, i ¼ K0

1, im
3
e, i. The

intra-lattice exchange stiffness Ai has the temperature dependence
Ai ¼ A0

i m
2
e, i, while the inter-lattice exchange stiffnesses have the

temperature dependences Ah(nh), i ¼ A0
h(nh), ime, ime, j. The DMI

exchange parameter follows the temperature dependence
Di ¼ D0

i m
2
e, i. Note these temperature dependences can be adjusted

depending on the material simulated where appropriate, for
example, using me,i exponents computed using an atomistic model.

We further show examples of magnetization temperature
scaling laws as well as relative longitudinal susceptibility tempera-
ture dependences in Fig. 14. In Fig. 14(a), we take a simple ferro-
magnet with μ = 1 μB and TC= 800 K, plotting the computed
relative susceptibility above and below TC based on Eq. (16). The
input me function—Eq. (15)—is also plotted for an applied external
field of 10 kA/m, and we test the correct implementation by com-
puting the output magnetization temperature dependence using the
LLB equation; as expected the input and output me scalings are vir-
tually identical. Next, we consider the two-sublattice LLB model
using the parameters for Gd25(FeCo)75 given in Ref. 94. From
these, we obtain the dimensionless coupling parameters τA= 0.958,
τB= 0.127, τAB= 0.111, and τBA= 0.333 for TC= 565 K. Again, we
plot the relative longitudinal susceptibilities—Eq. (24)—for the two
sublattices (A = FeCo, B = Gd) in Fig. 14(b), as well as the input me,i

functions from Eq. (B3)—as for the ferromagnetic case, these are
virtually identical to the magnetization temperature scaling com-
puted using the two-sublattice LLB model as expected. The
damping parameter temperature scaling functions—Eq. (B1)—are
plotted in Fig. 14(c).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request and the
scripts used to obtain the data are available at https://github.com/
SerbanL/Boris2/tree/master/BorisArticle Ref. 29.
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