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a b s t r a c t 

The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent 

problems in developing reliable computer aided detection and diagnosis endoscopy systems and sug- 

gest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and 

treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 

1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying 

subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of deep 

learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of in- 

terest. EndoCV2020 challenges are designed to address research questions in these remits. In this paper, 

✩ Endoscopy Computer Vision Challenge (EndoCV2020). 
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1 https://endocv.grand-challenge.org . 
. Introduction 

Endoscopy is a widely used imaging technique for both diagno- 

is and treatment of patients with complications in hollow organs 

uch as esophagus, stomach, colon, bladder, kidney and nasophar- 

nx. During the endoscopic procedure, an endoscope, a long thin 

ube with a light source and a camera at its tip, is inserted into the

rgan cavity. The imaging procedure is usually displayed on a mon- 

tor on-the-fly and is often recorded for post analysis. Each organ 

mposes very specific constraints to the use of endoscopes, but the 

ost common obstructions in all endoscopic surveillance consists 

f artefacts caused by motion, specularities, low contrast, bubbles, 

ebris, bodily fluid and blood. These artefacts hinder the visual in- 

erpretation of clinical endoscopists ( Ali et al., 2020c ). Missed de- 

ection rates of precancerous and cancerous lesions are another 

imitation. Gastrointestinal (GI) cancer (especially colorectal can- 

er) has high mortality rates and 5-year relative survival rates for 

tage IIB is around 65% ( Rawla et al., 2019 ). In general, the missed

etection rates in endoscopic surveillance is considerably high, at 

ver 15% ( Lee et al., 2017 ). Therefore, the requirement for tech- 

ology that can be effectively used in clinical settings during en- 

oscopy imaging is necessary. 

While a dedicated endoscopic procedure is followed for each 

pecific organ, often these procedures are very similar, in particu- 

ar for the GI tract organs like the esophagus, stomach, small in- 

estine, colon and rectum. Notably, some precancerous abnormali- 

ies such as inflammation or dysplasia and even cancer lesions in 

hese GI organs naturally look very similar. Often automated meth- 

ds are only trained for a specific abnormality, organ and imaging 

odality ( Zhang et al., 2019 ), whereas multiple different types of 

bnormalities can be present in different or gans and several imag- 

ng protocols are used during endoscopy. Also, methods that are 

uilt for colonoscopy cannot be used during a gastroscopy (in the 

sophagus, stomach and small intestine), despite the nature and 

ccurrence of many abnormalities being similar in these organs. 

rtefacts are prevalent in all endoscopy surveillance and are usu- 

lly confused with lesions, which can lead to unreliable outcomes. 

A pathway to develop and reliably deploy methods in clinical 

ettings is by benchmarking methods on a curated multi-center, 

ulti-modal, multi-organ and multi-disease dataset and through a 

horough evaluation of built methods using standard imaging met- 

ics and metrics that can test their clinical applicability, for ex- 

mple ranking based on accuracy, robustness and computational 

fficiency ( Ali et al., 2020c ). Most publicly available datasets are 

pecific to a particular organ, modality or a single abnormality 

lass, e.g., polyp detection and segmentation challenges ( Bernal 

t al., 2017; Jorge and Aymeric, 2017 ). While dedicated organ spe- 

ific challenges help to identify one particular disease type, they 

o not resemble the clinical workflow where the endoscopists are 

nterested in biopsy and treatment of such abnormalities when 
2 
hods developed by the top 17 teams and provide an objective compar-

s and methods designed by the participants for two sub-challenges: i)

ation (EAD2020), and ii) disease detection and segmentation (EDD2020).

i-class, and multi-modal clinical endoscopy datasets were compiled for

b-challenges. The out-of-sample generalization ability of detection algo-

ilst most teams focused on accuracy improvements, only a few methods

bility. The best performing teams provided solutions to tackle class im-

e, origin, modality and occurrences by exploring data augmentation, data

olding techniques. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

f potential threat. For polyp class, it is required to identify dif- 

erent stages of polyp such as benign, dysplastic or cancer. Re- 

ently, it was shown that polyps and artefacts can be confused 

ostly due to specularity ( Soberanis-Mukul et al., 2020 ). Artefacts 

re the fundamental and inevitable issue in endoscopy that of- 

en add confusion in detecting tissue abnormalities in these or- 

ans. It is therefore vital to accelerate research in identifying these 

lasses and restore frames where possible ( Ali et al., 2021 ) or re-

uce the false detections by adding uncertainties for such confu- 

ions ( Soberanis-Mukul et al., 2020 ). Other ways to address arte- 

act problems in the endoscopy data is by using synthetically gen- 

rated frames ( Mahmood et al., 2018; Formosa et al., 2020; In- 

etan et al., 2020 ). Mahmood et al. (2018) used self-regularized 

ransformer network that allowed to transform the real images 

nto synthetic-like images with preserved clinically-relevant fea- 

ures. This allowed the authors to estimate depth in colonoscopy 

ata robustly without being affected by adverse artefact problems. 

ncetan et al. (2020) demonstrated the use of a virtual active cap- 

ule environment that can simulate wide range of normal and ab- 

ormal tissue conditions such as inflated, dry and wet; organ types 

nd endoscopy camera designs in capsule endoscopy. This allowed 

o optimize the analysis software for varied real conditions. 

The Endoscopy Computer Vision Challenge (EndoCV2020) 1 is 

nother crowd-sourcing initiative to address fundamental prob- 

ems in clinical endoscopy and consists of: 1) Endoscopy arte- 

act detection and segmentation (EAD2020), and 2) Endoscopy dis- 

ase detection and segmentation (EDD2020). EndoCV2020 releases 

iverse datasets that include multi-center, multi-modal, multi- 

rgan, multi-disease/abnormality, and multi-class artefacts. Among 

he two sub-challenges, EAD2020 is an extended sub-challenge of 

AD2019 ( Ali et al., 2019 ), however, unlike EAD2019 it includes 

oth frame and sequence data with an addition of nearly 500 

rames and a total of 41,832 annotations for detection task and 

0,739 for segmentation task. 

In this paper, we summarise and analyze the results of the top 

7 (out of 43) teams participating in the EndoCV2020 challenge. 

dditionally, we benchmark these methods with the current state- 

f-the-art detection and segmentation methods. Each method is 

lso evaluated for its efficacy to detect and segment multi-class in- 

tances. In addition to the standard computer vision metrics used 

o evaluate methods during the challenge, we perform a holistic 

nalysis of individual methods to measure their clinical applicabil- 

ty. 

. Related work 

With the advancements in deep learning for computer vision, 

bject detection and segmentation algorithms have shown rapid 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.endocv.grand-challenge.org
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evelopment in recent years. This is due to the hidden feature rep- 

esentations provided by Convolutional Neutral Networks (CNNs) 

hat show significant improvement over hand-crafted features. 

NN-based methods quickly gained the attention of the Medical 

maging community and are now widely used for automating the 

iagnosis and treatment for a range of imaging modalities, e.g. 

adiographs, CT, MRI, and endoscopy imaging. Below we present 

n overview of the recent deep learning-based object detection 

nd segmentation techniques and discuss the related work in the 

ontext to medical image analysis with a particular focus on en- 

oscopy imaging applications. 

.1. Detection and localization 

Object detection and localization refers to determining the in- 

tances of an object (from a list of predefined object categories) 

hat exist in an image. Object detection approaches can be broadly 

ivided into three categories: single-stage, multi-stage and anchor- 

ree detectors. A brief survey of these is presented below. Single- 

tage detectors Single-stage networks perform a single pass on the 

ata and incorporate anchor boxes to tackle multiple object detec- 

ion on the same image grid such as in YOLO-v2 ( Redmon et al.,

016 ). Similarly, Liu et al. (2016) proposed the Single Shot MultiBox 

etector (SSD) with additional layers to allow detection of multi- 

le scales and aspect ratios. RetinaNet was introduced by Lin et al. 

2017b) where the authors introduced focal loss that puts the fo- 

us on the sparse hard examples enabling a boost in performance 

nd speed. 

The domain of Gastroenterology has started to benefit 

rom the success of single-stage object detectors. Wang et al. 

 Wang et al., 2018 ) proposed a model that is based on SegNet

 Badrinarayanan et al., 2017 ) architecture to detect polyps dur- 

ng colonoscopy. Urban et al. (2018) used YOLO to detect polyps 

rom colonoscopy images in real-time. Horie et al. (2019) used 

SD to detect superficial and advanced esophagal cancer. RetinaNet 

as the most popular detector in the first EAD challenge held in 

019. RetinaNet detector with focal loss was used by some top 

erforming teams ( Kayser et al., 2019; Oksuz et al., 2019 ) Multi- 

tage detectors use a region proposal network to find regions of 

nterest for objects and then a classifier to refine the search to 

et the final predictions. A two-stage architecture R-CNN using 

he classical region proposal method was proposed by Girshick 

t al. (2014) whose speed was improved later by integrating an 

nd-to-end trainable region proposal network (RPN), widely known 

s Faster R-CNN ( Ren et al., 2015 ). Due to the high precision of

he Faster R-CNN, its architecture has become the base for many 

uccessful models in the object detection and segmentation do- 

ains, such as Cascade R-CNN ( Cai and Vasconcelos, 2018 ) and 

ask R-CNN ( He et al., 2017 ). Although these two-stage networks 

ave shown successful results on public datasets such as Pascal 

OC ( Everingham et al., 2012 ) and COCO ( Lin et al., 2014 ), they are

low compared to the single-stage object detectors due to their re- 

ion proposal mechanism. 

In the field of Gastroenterology, Yamada et al. (2019) used 

aster R-CNN with VGG16 as the backbone to detect challenging le- 

ions which are generally missed by colonoscopy procedures. Their 

eported prediction speed was not suitable for real-time examina- 

ion. Shin et al. (2018) detected Polyps using the Fast R-CNN archi- 

ecture with a region proposal network and an inception ResNet 

ackbone. The two-stage detectors tend to yield better results than 

heir single-stage contemporaries and have performed better at 

edical image analysis challenges. In the EAD2019 challenge, the 

op performing team ( Suhui Yang, 2019 ) used a Cascade R-CNN 

ith a feature pyramid network (FPN) module and a ResNet back- 

one. Similarly, Pengyi and Xiaoqiong ( 2019 ) who used Mask aided 
3 
-CNN with an ensemble of different ResNet backbones finished 

econd. 

Anchor-free detectors A newly emerging detector type are the 

nchor-free detectors. Single and multi-stage detectors rely on the 

resence of anchors. Anchor free architectures claim to detect ob- 

ects while skipping the process of anchor definition. They rely 

n different geometrical characteristics like the center or corner 

oints of objects ( Law and Deng, 2018; Duan et al., 2019 ). Duan

t al. (2019) utilized the upper left and lower right corner to 

ark an object. The authors used classical backbones to gener- 

te a heatmap from the feature map showing potential spots of 

he object corners. A corner pooling technique was then used to 

reate the classic bounding box of object detection. Zhou et al. 

2019) used a similar approach but instead they used a single point 

s the center of the bounding box. 

Because of real-time dependencies in medical applications 

ike the detection of polyps which have to be removed directly 

 Wang et al., 2019 ), anchor-free detectors are receiving more atten- 

ion. Wang et al. (2019) designed an anchor-free automatic polyp 

etector which achieved the state-of-the-art results while main- 

aining real-time applicability. Liu et al. (2020) showed an anchor- 

ree detector with state-of-the-art performance while maintaining 

eal-time performance. 

.2. Semantic segmentation 

Semantic segmentation involves pixel-level partitioning of an 

mage into multiple segments where each segment represents a 

re-defined object or scene category. Based on the success of deep 

earning approaches on medical imaging data for segmentation, we 

an divide these approaches broadly into the following groups: 

odels based on fully convolutional networks Fully Convolutional 

etwork (FCN) architectures include only convolutional layers that 

nable them to take any arbitrary size input image to output a seg- 

entation mask of the same size. These models are mostly based 

n the architecture developed by Long et al. (2015) for semantic 

mage segmentation. 

Sun et al. (2017) proposed a multi-channel FCN (MC-FCN) to 

egment liver tumors from multi-phase contrast-enhanced CT im- 

ges. Kaul et al. (2019) proposed FocusNet for skin cancer and 

ung lesion segmentation. A benchmark study for polyp segmen- 

ation using FCNs was conducted by Gao et al. (2017) . Similarly, 

randao et al. (2017) used FCN architecture with VGG backbone for 

 polyp segmentation task. The same group explored integration of 

epth information to improve segmentation accuracy in their FCN- 

ased model ( Brandao et al., 2018 ). 

Models based on encoder-decoder architecture U- 

et ( Ronneberger et al., 2015 ), an encoder-decoder architecture, 

as become widely popular in medical image analysis commu- 

ity. U-Net based models have shown tremendous success, from 

ell segmentation ( Falk et al., 2019 ) to liver tumor segmenta- 

ion ( Chlebus et al., 2017 ) and beyond ( Sevastopolsky, 2017; 

orman et al., 2018 ). 

In endoscopy imaging, U-Net-based models were used for in- 

trument segmentation on GI endoscopy data ( Jha et al., 2020 ). 

han and Choo (2019) developed a model based on U-Net archi- 

ecture for endoscopy artefact segmentation. Bano et al. (2020) di- 

ectly used U-Net architecture for segmenting placental vessels 

rom Fetoscopy imaging. Motion induced segmentation exploiting 

-Net in the framework was used to segment kidney stones in 

he Uteroscopy data ( Gupta et al., 2020 ). Models based on pyramid- 

ased architecture In both detection and segmentation tasks, a cru- 

ial part is being able to identify objects and features of varying 

cales and sizes. One approach to this problem is to incorporate 

onvolutional feature maps of varying resolutions during classifica- 

ion, which yields information about different scales of the image, 
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aking it easier to detect both small and big objects. Such archi- 

ectures are referred to as pyramid networks . PSPNet ( Zhao et al., 

017 ) is one of such design that incorporates global context infor- 

ation for the task of scene parsing using a pyramid pooling mod- 

le. A similar pyramid-based approach can be found in the task of 

bject detection with Feature Pyramid Network (FPN) ( Lin et al., 

017a ). FPN extracts feature maps on a per-resolution-basis from 

he two bottom-up and top-down pathways of a pretrained archi- 

ecture. The output maps can then be upsampled and concatenated 

o output a segmentation map ( Seferbekov et al., 2018 ). 

Guo et al. (2019) used PSPNet as part of an ensemble model 

ncluding a U-Net and SegNet architecture for the task of au- 

omated polyp segmentation in colonoscopy images. Jia et al. 

2020) trained a two-stage polyp detector named PLPNet which 

tilizes FPN for multiscale feature representation using both CVC- 

olonDB ( Bernal et al., 2012 ) and CVC-ClinicDB ( Bernal et al., 2015 ).

heir experimental results show that PLPNet outperforms other 

rchitectures in most regions on CVC-612 dataset ( Bernal et al., 

015 ) and performs similarly on the ETIS dataset ( Silva et al., 

014 ). Zhang and Xie (2019) utilized an FPN combined with a 

ascade R-CNN for artefact detection in endoscopic images. Models 

ased on dilated convolution architecture One of the challenges in 

he construction of semantic segmentation networks is to effec- 

ively control the size of the receptive field, providing adequate 

ontextual information for pixel-level decisions while, at the same 

ime, maintaining high spatial resolution and computational effi- 

iency. The dilated or atrous convolution was proposed to address 

hese challenges ( Yu and Koltun, 2015 ). Chen at al. (2018) proposed 

 family of very effective semantic segmentation architectures, 

ollectively named DeepLab (also an encoder-decoder network), 

ll using the dilated convolution. DeepLabv3+ uses atrous ker- 

els within the spatial pyramid pooling (ASPP) module and 

epth-wise separable convolution to improve the computational 

fficiency. 

Guo et al. (2020a) proposed a fully convolutional network 

ased on atrous kernels to segment polyps in endoscopy im- 

ges, with their network winning the GIANA 2017 challenge 

 Jorge and Aymeric, 2017 ). Nguyen et al. (2020a) augmented 

eepLabv3+ architecture, showing its favourable performance 

hen compared with other state-of-the-art methods on the CVC- 

linicDB Bernal et al. (2015) and ETIS-Larib ( Silva et al., 2014 ) 

atasets. Ali et at. (2020a) used DeepLabv3+ with ResNet50 back- 

one to segment Barrett’s area from esophageal endoscopy data. 

ang and Cheng (2019) developed a model based on DeepLabv3+ 

or multi-class artefact segmentation used with different backbone 

rchitectures. 

.3. Endoscopy computer vision challenges 

Biomedical challenges allow to set-up a benchmark for different 

omputer vision methods. Several sub-challenge categories for the 

evelopment of automated methods for wide-range of problems in 

ndoscopy including surgical instrument segmentation ( Ross et al., 

020 ), robotic scene segmentation ( Allan et al., 2020 ), and com- 

uter aided detection and segmentation for polyps ( Bernal et al., 

017; 2018 ) and Barrett’s cancer detection 

2 have been initiated 

nder MICCAI EndoVis challenge 3 . Endoscopy artefact detection 

EAD2019) is another challenge which was first initiated in 2019 

nd launched in conjunction with IEEE International Symposium 

n Biomedical Imaging (ISBI) 2019 ( Ali et al., 2020c ). 
2 https://endovissub- barrett.grand- challenge.org . 
3 https://endovis.grand-challenge.org . 

m

t

4 
. The endocv challenge: Dataset, evaluation and submission 

In this section, we present the dataset compiled for the En- 

oCV2020 challenge, the protocol used to obtain the ground truth 

or this data, evaluation metrics that were defined to assess partic- 

pants methods and a brief summary on the challenge setup and 

anking procedure. 

.1. Dataset and challenge tasks 

The EndoCV2020 challenge consists of two sub-challenges criti- 

al in clinical endoscopy. The EAD2020 4 sub-challenge comprises 

f diverse endoscopy video frames collected from seven institu- 

ions worldwide, including three different modalities and five dif- 

erent human organs (see Fig. 2 ). Endoscopy video frames were 

nnotated for detection and localization of eight different arte- 

act class occurrences identified by clinical experts in the chal- 

enge team. These include specularity, saturation, misc. artefacts, 

lur, contrast, bubbles, instrument and blood. A total of 280 pa- 

ient videos from multiple organs and institutions have been used 

or curating this dataset. Over 45,478 annotations were performed 

or this challenge on both single frame and sequence video data. 

xample annotations are shown in Fig. 1 . Training data for the de- 

ection task consisted of total 2531 frames with 31,069 bounding 

oxes while 643 frames with 7511 binary masks were released for 

he segmentation task (except for blur, blood and contrast). The se- 

uence data were sampled by manually observing the amount of 

hanges in artefact categories in the selected sequence. Sequences 

ere required to change from large areas of artefacts to small or 

o artefact frames and vice versa mimicking natural occurrence in 

ndoscopic procedures. Sequence data for training included 5 se- 

uences (232 frames) for detection and 2 sequences (70 frames) 

or semantic segmentation tasks sampled from 3 videos of 3 dif- 

erent patients. For the test set, two sequence (80 frames) for de- 

ection task were used from 2 independent patient videos. As ob- 

erved in Fig. 2 , due to the nature of occurrence of various arte- 

act classes, the proportion of annotations for each class is differ- 

nt ( Fig. 3 ). However, the proportion of training and test samples 

er-class were matched in the test data (also see Table 1 ). 

Separately, EDD2020 5 is a new disease detection and seg- 

entation sub-challenge that consists of five disease cate- 

ories ( Ali et al., 2020b ). The provided training set consisted of 

otal 385 video frames comprising of 137 different patients used 

n this study with a total of 817 individual annotations. The an- 

otations included non-dysplastic Barrett’s esophagus (NDBE), sus- 

icious, high-grade dysplasia (HGD), cancer, and polyp categories 

also see Fig. 1 ). These disease classes were from three differ- 

nt endoscopic modalities (white light, narrow-band imaging, and 

hromoendoscopy) acquired from four different clinical centers, in- 

estigating four different GI organs. By including varied range of 

ndoscopy data acquired from multiple organs like GI tract and 

iver in EAD sub-challenge and both upper and lower GI tract data 

or EDD sub-challenge, EndoCV2020 challenge aimed at developing 

ore general methods that can potentially be applied in different 

ndoscopy routine procedures independent to organ type. To our 

nowledge, this is the first comprehensive dataset for the multi- 

lass detection and segmentation tasks. More details on the dataset 

re provided in Fig. 2 . The detailed breakdown of training set and 

est set for each specific task is provided in Table 1 . 

EndoCV2020 posed three specific challenge tasks (see Fig. 4 ) 

hat included: 1) detection and localization task, 2) semantic seg- 

entation task and 3) out-of-sample generalization task. For de- 

ection and generalization tasks, participants were provided with 
4 https://ead2020.grand-challenge.org . 
5 https://edd2020.grand-challenge.org . 

https://www.endovissub-barrett.grand-challenge.org
https://www.endovis.grand-challenge.org
https://www.ead2020.grand-challenge.org
https://www.edd2020.grand-challenge.org
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Fig. 1. EndoCV2020 train data samples. (a) Endoscopy artefact detection and segmentation sub-challenge (EAD2020) samples. Both single frame samples (top) and sequence 

frames (bottom) were released. While detection annotations involve 8 classes, segmentation classes were limited to 5 distinct class instances, mostly large indefinable shapes 

that include specularity, saturation, imaging artefact, bubbles and instrument. It can be observed that for sequence data most artefact instances follow upto few sequential 

frames so it is desirable to achieve such training datasets. 4th sample in the single frame data for segmentation shows that even though bounding boxes for detection are 

provided for all specular regions, some segmentation labels were missing. This shows the presence of annotator variability in the data. (b) Endoscopy disease detection and 

segmentation training samples for sub-challenge EDD2020. First four samples belong to esophageal endoscopy while the last two frames were acquired during colonoscopy. 

It can be observed that disease classes in esophagus confuse often, mostly the patient choice here is Barrett’s where clearly suspected and high-grade dysplasia appear 

jointly. Similarly, for colonoscopy data protruded polyps can easily be confused with the surrounding ridge-like openings and specular areas. 

Table 1 

Breakdown of data: Number of samples and annotations released for EndoCV2020 challenge. 

EndoCV Tasks # of classes # of frames # of annotations 

Train Test Train Test 

EAD2020 Detection task 8 single: 2299 seq.: 232 single: 237 seq.: 80 31,069 7750 

Segmentation 

task 

5 643 162 7511 3228 

Generalization 

task 

8 na 99 na 3013 

EDD2020 Detection task 5 386 43 749 68 

Segmentation 

task 

5 386 43 749 68 

5 
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Ambroise Paré Hospital, Paris, France

University Hospital Vaudois, Switzerland

Centro Riferimento Oncol., IRCCS, Italy

ICL Cancer Institute, Nancy, France

Botkin Clinical City Hospital, Moscow, Russia

Istituto Oncologico Veneto, Padova, Italy

John Radcliffe Hospital, Oxford, UK

Train data Train and test data
EAD2020 EDD2020

Test data
Out-of-sample
test data

Institutes (Outer circle)

386 + 48
frames

White light (WL)

Narrow band imaging (NBI)

Chromo endoscopy

Modality (Middle circle)
Oesophagus

Stomach

Colon

Small intestine

Other

Organ (Inner circle)

Mean box width and heightTrain data Test data

specularity saturation artifact blur contrast bubbles instrument blood

Mean box width and height

Mean box width and height

BE suspicious HGD cancer polyp

Train data Test data

b. EAD2020 train and test sample with per class width and height for detection dataset

c. EDD2020 train and test sample with per class width and height for detection dataset

a. EndoCV2020 multi-center data cohort: Train and test data for each sub-challenge

Fig. 2. Endoscopy computer vision EndoCV2020 challenge dataset details. (a) Multi-center, multi-modality and multi-organ dataset for EAD and EDD sub-challenges. For 

EAD2020, 2532 frames with 8 class bounding boxes for the detection task out-of which 573 included ground truth masks for segmentation task were provided. Participants 

were assessed on 317 frames for detection and 162 frames for segmentation tasks. An additional 99 frames were used to test out-of-sample generalization task for EAD 

sub-challenge. While EDD2020 consisted of 384 train samples and 43 test samples for 5 disease classes. (b-c) The distribution of 8 artefact classes of EAD and 5 disease 

classes of EDD w.r.t. their size compared to their height and width of image is provided. Each class size variability is also shown on right as blobs with mean at center and 

radius as standard deviation. 

6 
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Fig. 3. EndoCV2020 train and test per-class sample proportion: Train and test annotations for sub-challenge on artefact (A,B) and disease (C) detection and segmentation for 

each class label. 

Fig. 4. EndoCV2020 challenge task descriptions for each sub-challenge. The three tasks of the EndoCV2020 challenge includes: (a) The “detection” task aimed at the coarse 

localization and classification. Given an input image (left) a detection model (middle) outputs the artefact/disease class and coordinates of the containing bounding box. 

(b) The “segmentation” task is aimed at precise delineation of artefact/disease object boundaries. The model predicts binary output images denoting the presence (‘1’) or 

absence (‘0’) of each class. (c) The “out-of-sample generalization” task is aimed at assessing the ability of a model trained on different dataset to generalize on an unseen 

dataset usually coming from a different center. 

7 
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Table 2 

Data collection information for each center: Data acquisition system and patient consenting information. 

Centers System info. Ethical approval Patient consenting type 

John Radcliffe Hospital, Oxford, UK Olympus GIF-H260Z, REC Ref: 16/YH/0247 Universal consent 

EVIS Lucera CV260 

Ambroise Paré Hospital, Paris, France Olympus Exera 195 N 

◦ IDRCB: 2019-A01602-55 Endospectral study 

Istituto Oncologico Veneto, Padova, Italy Olympus endoscope H190 NA Generic patients consent 

Centro Riferimento Oncologico, IRCCS, Italy Olympus VG-165, CV180, H185 NA Generic patients consent 

ICL, Cancer Institute, Nancy, France Karl Storz 27005BA NA Generic patients consent 

University Hospital Vaudois, Switzerland NA (flexible cystoscopy) NA Generic patients consent 

Botkin Clinical City Hospital, Moscow, Russia BioSpec NA Generic patients consent 
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oth frame label annotations for single and sequence images for 

he EAD2020 challenge while only single frames were released 

or EDD2020. The generalization task was only evaluated for the 

AD2020 and only consisted of test data from an unseen institu- 

ion that was not present in any training set. It is to be noted that

est samples for all other tasks were taken from different patients 

s well even though they were collected from the same centers 

s that in the training set. EAD2020 attracted nearly 700 partic- 

pants with 29 teams on the leaderboard and EDD2020 recorded 

early 550 participants with 14 teams on the leaderboard. Partic- 

pation was permitted in either one or both sub-challenges. Both 

hallenge datasets are publicly available for research and educa- 

ion. EAD2020 challenge data is available at Mendeley Data ( https: 

/doi.org/10.17632/c7fjbxcgj9.3 ) and EDD2020 dataset is available 

t IEEE dataPort ( https://doi.org/10.21227/f8xg-wb80 ). 

.1.1. Ethical and privacy aspects of the data 

Data for EAD2020 were collected from 7 different centers while 

or EDD2020 were from 4 centers. Each center was responsible for 

andling the ethical, legal and privacy of the relevant data sent 

o the challenge organizers. The data collection from each center 

ncluded either two or all essential steps described below: 

1. Patient consenting procedure at the home institution (required) 

2. Review of the data collection plan by a local medical ethics 

committee or an institutional review board 

3. Anonymization of the video or image frames (including de- 

mographic information) prior to sending to the organizers (re- 

quired) 

Table 2 illustrates the ethical and legal processes fulfilled by 

ach center along with the endoscopy equipment used for the data 

ollected for this challenge. 

.1.2. Annotation protocol 

A team of two clinical experts and one post-doctoral researcher 

etermined the class labels for the artefact detection challenge 

hile for the disease detection challenge we consulted with four 

enior Gastroenterologists (over 20 years experience) regarding the 

lass labels in the GI tract endoscopy. For each sub-challenge se- 

ior Gastroenterologists sampled the video frames from a small 

ub-set of video data collected from various institutions and multi- 

atient data cohort (see Fig. 2 ). These frames were then taken as 

eference to produce bounding box annotations for the remaining 

rain-test dataset by four experienced postdoctoral fellows. Finally, 

urther validation by three clinical endoscopists independently was 

arried out to assure the reference standard. The ground-truth la- 

els were randomly sampled (1 per 20 frames) during this process. 

owever, after the completion of this phase the entire annotation 

as discussed and reviewed together with the team of senior Gas- 

roenterologists. Priority was given to indecisive frame annotations 

o have a collective opinion from experts. Following general anno- 

ation strategies were used by clinical experts and researchers: 

• For the same region, multiple boxes (for detection/ 

generalization) or pixel-wise delineation (for semantic seg- 
8 
mentation) were performed if the region belonged to more 

than 1 class 
• The minimal box sizes were used to describe the class re- 

gion and similarly possible small annotation areas for seman- 

tic segmentation were merged instead of having multiple small 

boxes/regions 
• Each class type was determined to be distinctive and general 

across all datasets 

For EAD dataset, defined class categories used included below 

escriptions ( Ali et al., 2021 ). Related samples are presented in 

ig. 1 (a). 

1. blur → fast camera motion 

2. bubbles → a thin film of liquid with air that distorts tissue ap- 

pearance 

3. specularity → mirror-like reflection 

4. saturation → overexposed bright pixel areas 

5. contrast → low contrast areas from underexposure 

6. misc. artefact → chromatic aberration, debris etc. 

7. instrument → biopsy or any other instrument 

8. blood → flow of red colored liquid due to biopsy or surgery 

For EDD dataset, both upper-GI (gastroscopy) and lower-GI 

colonoscopy) data were used with below defined class categories 

please refer to the samples in Fig. 1 (b)): 

1. NDBE or BE → non-dysplastic Barrett’s esophagus determined 

by a squamo-columnar junction above the gastric fold in the 

esophagus ( Eluri and Shaheen, 2017 ) 

2. HDG → high-grade dysplasia or early adenocarcinoma deter- 

mined by irregular mucosal appearance ( Wang et al., 2012 ) 

3. suspected → aka low-grade dysplasia, an early sign of pathol- 

ogy ( Eluri and Shaheen, 2017 ) 

4. cancer → abnormal growth ( Boland et al., 2005 ) 

5. polyp → abnormal protrusion of the mucosa ( Williams et al., 

2013 ) 

For the annotations of disease classes, pathology reports were 

lso used to validate the class category for non-dysplastic Barrett’s 

sophagus (BE), high-grade dysplasia (HGD), suspected (dysplasia 

r low-grade dysplasia), and cancer categories. That is, expert an- 

otations (three senior gastroenterologists) were taken and sup- 

orted with the pathology report for most disease categories in- 

luding some indecisive cases. However, for the polyp class, both 

he protruded and flat polyps were marked by two experienced 

ost-doctoral researchers and checked by a senior lower-GI special- 

st (no further categorization based on pathology report was done 

xcept for cancer cases). 

.2. Evaluation metrics 

The challenge problems fall into three distinct categories. For 

ach there already exist well-defined evaluation metrics used by 

he wider imaging community which we use for evaluation here. 

https://doi.org/10.17632/c7fjbxcgj9.3
https://doi.org/10.21227/f8xg-wb80
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7 https://endocv.grand-challenge.org . 
8 https://ieee-dataport.org/competitions/endoscopy-disease-detection-and- 

segmentation-edd2020 . 
odes related to all evaluation metrics used in this challenge are 

lso available online 6 . 

.2.1. Spatial localization and classification task 

Metrics used for multi-class disease detection: 

• IoU - intersection over union: This metric measures the overlap 

between two bounding boxes A and B, where A is segmented 

region and B is annotated GT. It is evaluated as the ratio be- 

tween the overlapped area A ∩ B over the total area A ∪ B occu-

pied by the two boxes: 

IoU = 

A ∩ B 

A ∪ B 

(1) 

where ∩ , ∪ denote the intersection and union respectively. In 

terms of numbers of true positives (TP), false positives (FP) and 

false negatives (FN), IoU (aka Jaccard JC) can be defined as: 

IoU/JC = 

T P 

T P + F P + F N 

(2) 

• mAP - mean average precision: mAP of detected class instances 

is evaluated based on precision (p) defined as p = 

T P 
T P+ F P and re- 

call (r) as r = 

T P 
T P+ F N . This metric measures the ability of an ob-

ject detector to accurately retrieve all instances of the ground 

truth bounding boxes. Average precision (AP) is computed as 

the Area Under Curve (AUC) of the precision-recall curve of de- 

tection sampled at all unique recall values (r 1 , r 2 , . . . ) whenever 

the maximum precision value drops: 

AP = 

∑ 

n 

{
( r n +1 − r n ) p interp (r n +1 ) 

}
, (3) 

with p interp (r n +1 ) = max 
˜ r ≥r n +1 

p( ̃ r ) . Here, p(r n ) denotes the precision

value at a given recall value. This definition ensures monotoni- 

cally decreasing precision. The mAP is the mean of AP over all 

N classes given as 

mAP = 

1 

N 

N ∑ 

i =0 

AP i (4) 

This definition was popularised in the PASCAL VOC chal- 

lenge ( Everingham et al., 2012 ). The final mAP (mAP d ) was 

computed as an average mAPs for IoU from 0.25 to 0.75 with 

a step-size of 0.05 which means an average over 11 IoU levels 

is used for 5 categories in the competition (mAP @[ . 25 : . 05 :

. 75] ). 

Participants were finally ranked on a final mean score ( score d ) , 

 weighted score of mAP and IoU represented as: 

core d = 0 . 6 × mAP d + 0 . 4 × IoU d (5) 

tandard deviation between the computed mAPs ( ±σscore d 
) are 

aken into account when the participants have the same score d . 

cores on both single frame data and sequence data were first sep- 

rately computed and then averaged to get the final score d of the 

etection task. 

.2.2. Segmentation task 

Metrics widely used for multi-class semantic segmentation of 

isease classes have been used for scoring semantic segmentation. 

he final semantic score score s comprises of an average score of F 1 - 

core (Dice Coefficient, DSC), F 2 -score, precision (PPV), recall (Rec) 

nd accuracy (Acc). 

Precision, recall, F β -scores: 

These measures evaluate the fraction of correctly predicted 

nstances. Given a number of true instances # GT (ground-truth 
6 https://github.com/sharibox/EndoCV2020 . 

9 
ounding boxes or pixels in image segmentation) and number of 

redicted instances # Pred by a method, precision is the fraction of 

redicted instances that were correctly found, P P V = 

# TP 
# Pred . 

where 

 TP denotes number of true positives and recall is the fraction 

f ground-truth instances that were correctly predicted, Rec = 

# TP 
# GT . 

deally, the best methods should have jointly high precision and 

ecall. F β-scores gives a single score to capture this desirability 

hrough a weighted ( β) harmonic means of precision and recall, 

 β = (1 + β2 ) · P P V ·Rec 
(β2 ·P P V )+ Rec 

. 

Participants are ranked based on the value of their semantic 

erformance score given by: 

core s = 0 . 25 × (p + r + F 1 + F 2 ) (6) 

tandard deviation between each of the subscores are computed 

nd averaged to obtain the final ±σscore s which is used during eval- 

ation for participants with same final semantics score. We have 

lso used provided accuracy of each semantic method in this pa- 

er for scientific completeness. Accuracy (Acc) can be defined as 

cc = 

T P+ T N 
T P+ T N+ F P+ F N . 

.2.3. Out-of-sample generalization task 

Out-of-sample generalization of disease detection is defined as 

he ability of an algorithm to achieve similar performance when 

pplied to a completely different institution data. To assess this, 

articipants were challenged to apply their trained models on 

ideo frames that were neither included in the training nor in the 

est data of the other tasks. Assuming that participants applied the 

ame trained weights, the out-of-sample generalization ability was 

stimated as the mean deviation between the mAP score of the de- 

ection and out-of-sample generalization test datasets of each class 

 for deviation greater than a tolerance of { 0 . 1 × mAP i 
d 
} . 

ev g = 

1 

N 

∑ 

i 

dev g 
i 

(7) 

ev g 
i = 

{
0 , for | mAP d 

i − mAP g 
i | / mAP d 

i ≤ 0 . 1 

| mAP d 
i − mAP g 

i | , for | mAP d 
i − mAP g 

i | / mAP d 
i 
> 0 . 1 

(8) 

he best algorithm should have high mAP g and low dev g (→ 0 ). 

articipants were finally ranked using a weighted ranking score 

or out-of-sample generalization as R gen = 1 / 3 · Rank( dev g ) + 2 / 3 ·
ank( mAP g ) where Rank( mAP g ) is the rank of a participant when 

orted by mAP g in ascending order. 

.3. Challenge setup, and ranking procedure 

The challenge proposal was submitted to the IEEE ISBI challenge 

rganisers and was peer-reviewed by two reviewers. Upon the ac- 

eptance, the challenge website 7 was launched on 1st November 

019. Training datasets for each sub-challenge (EAD and EDD) were 

rst provided (via AWS amazon S3 for EAD data and IEEE data 

ortal for EDD data 8 ). The test data was released nearly 20 days 

efore the leaderboard closing through a docker container set-up. 

 docker based online leaderboard was established separately for 

AD2020 9 and EDD2020 10 where each participating team was al- 

owed to submit a maximum of 2 submissions per day on the final 

est data. A wiki-page 11 was set-up for the submission guidelines 
9 https://ead2020.grand-challenge.org/evaluation/leaderboard/ . 
10 https://edd2020.grand-challenge.org/evaluation/leaderboard/ . 
11 https://github.com/sharibox/EndoCV2020/wiki . 

https://www.github.com/sharibox/EndoCV2020
https://www.endocv.grand-challenge.org
https://www.ieee-dataport.org/competitions/endoscopy-disease-detection-and-segmentation-edd2020
https://www.ead2020.grand-challenge.org/evaluation/leaderboard/
https://www.edd2020.grand-challenge.org/evaluation/leaderboard/
https://www.github.com/sharibox/EndoCV2020/wiki
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nd a code repository with evaluation metrics used in the chal- 

enge was also provided 

12 . 

For the ranking of different task categories, we used the metrics 

escribed in Section 3.2 . The participants were able to see only 

he final score in the leaderboard and all other sub-scores were 

idden for the final test data. This was done to avoid any class 

pecific refinement on the released test set. Notably, the detection 

ask was bounded by two IoU thresholds (mAP @ IoU thresholds 

 . 25 : . 05 : . 75] ) and the overall IoU scores itself. For the detection

ask, participants were ranked on a final weighted score of mAP 

nd IoU (see Eq. (5) ), while for the segmentation task, participants 

ere ranked based on a final weighted average of DSC or F1-score, 

2-score, precision and recall (see Eq. (6) ). For the generalization 

ask, both the mAP score gap dev g and mAP on generalization data 

AP g were taken into account. 

. Method summary of the participants 

In this Section, we present summary of top participating teams 

or both EAD2020 and EDD2020 sub-challenges. Each of these 

eams has participated in either detection task or segmentation 

ask or both. 

.1. EAD2020 Participating teams 

• Team polatgorkem ( Polat et al., 2020 ) The team used an 

ensemble of three object detectors: Faster R-CNN (ResNet50 

with FPN), Cascade R-CNN (ResNet50 with FPN), RetinaNet 

(ResNet101 with FPN). Class-agnostic NMS operation, where the 

model predictions were passed through the NMS procedure to- 

gether for all classes, was applied to the output of each indi- 

vidual model. During ensemble, only the bounding boxes for 

which majority of the models agree were kept. False-positive 

elimination was applied as a post-processing step to eliminate 

same-type predicted boxes located close to each other. For each 

class, an IoU threshold was determined. 
• Team CVML ( Guo et al., 2020b ) CVML team’s model was in- 

spired by DeepLabV3+. The team experimented with several 

changes including the backbone, the global pooling, the dilated 

kernels and the convolution kernels with dilation rates. More- 

over, the squeeze-and-excitation module is added behind the 

balanced ASPP module to introduce attention gating at the out- 

put of the original encoder to better utilize the information 

available in the computed feature maps. In addition, the orig- 

inal multi-class classifier is replaced with 5 binary classifiers to 

enable segmentation of the overlapping objects. At test time, 

they used some post-processing techniques such as rotation, 

holes filling and removal of objects from the image boundary. 
• Team mouradai_ox ( Gridach and Voiculescu, 2020 ) The team 

proposed a novel neural network called OxEndoNet to tackle 

the segmentation challenge. The network uses the pyramid di- 

lated module (PDM) consisting of multiple dilated convolutions 

stacked in parallel. For each input image, pre-trained ResNet50 

(on ImageNet) was used as the backbone to extract the feature 

map followed by multiple PDM layers to form an end-to-end 

trainable network. In the final architecture, they used four PDM 

layers; each layer used four parallel dilated convolutions with 

a filter size of 3 × 3 and dilation rates of 1, 2, 3, and 4. They

fed the final PDM layer to a convolution layer followed by a bi- 

linear interpolation to up-scale the feature map to the original 

image size. 
• Team mimykgcp ( Y et al., 2020 ) The team re-trained the 

ResNeXt101 backbone with the cardinality parameter set to 64. 
12 https://github.com/sharibox/EndoCV2020 . 

10 
To enable detection of artefacts at different scales, an FPN was 

integrated into the object detectors. Data-Augmentation tech- 

niques based on RandAugment ( Cubuk et al., 2019 ) were in- 

corporated to improve the generalization capability. For the 

segmentation task, a U-Net with an ImageNet pre-trained 

ResNext50 backbone was used. 
• Team DuyHUYNH ( Huynh and Boutry, 2020 ) For segmenta- 

tion, the team exploited a model based on U-Net++ using pre- 

trained EfficientNet on ImageNet as the backbone. The model 

was trained to minimize F2-loss using the Adam optimizer. At 

the test-time the team used five transformations: horizontal, 

vertical flipping, and three rotations. For detection, the team 

used the bounding boxes deduced from the results of their seg- 

mentation model on the EDD dataset, while for EAD, they used 

YOLOv3 pre-trained on COCO. 
• Team mathew666 ( Hu and Guo, 2020 ) The team used Cascade 

RCNN architecture with the ResNeXt backbone in a FPN based 

feature extraction paradigm. Data augmentation with probabil- 

ity of 0.5 for horizontal flip was applied. The team also utilised 

multi-scale detection to tackle with variable sized object detec- 

tion. 
• Team arnavchavan04 ( Jadhav et al., 2020 ) For the object detec- 

tion task, the team used an ensemble of three models: Faster 

R-CNN (ResNext101 + FPN), RetinaNet (ResNet101 + FPN) and 

Faster R-CNN (ResNext101 + DC5). For the segmentation task, 

an ensemble of multiple depth EfficientNet models with FPN 

trained on multiple optimization plateaus (DSC, BCE, IoU) was 

designed. Data augmentation techniques like horizontal and 

vertical flip, cutout (random holes), random contrast, gamma, 

brightness, rotation along with CutMix ( Yun et al., 2019 ) strat- 

egy for the segmentation task were incorporated to improve 

generalization capability. 
• Team anand_subu ( Subramanian and Srivatsan, 2020 ) The team 

used RetinaNet with ResNet101 backbone. For the segmen- 

tation task, the team used an ensemble network with U- 

Net with a ResNet50 backbone and DeepLabV3. However, the 

team reported U-Net with ResNet101 as their best architec- 

ture of choice. All the backbones were pre-trained on the Im- 

ageNet. Real-time augmentation techniques like rotation, shear, 

random-image-flip, image contrast, brightness, saturation, and 

hue variations were incorporated while training to improve the 

generalization capability of the network. 
• Team higersky ( Chen et al., 2020 ) The team implemented Hy- 

per Task Cascade and Cascade R-CNN with ResNeXt101 back- 

bone as a feature extractor and FPN module for multi-scale 

feature representation for the object detection task. They ap- 

plied Soft-NMS ( Bodla et al., 2017 ) to avoid mistakenly dis- 

carded bounding-boxes. For the semantic segmentation task, 

the team incorporated DeepLabV3+ with ResNet101 backbone 

and trained with BCE and DICE losses. The backbones for both 

tasks were pre-trained on ImageNet. 
• Team MXY ( Yu and Guo, 2020 ) The team used a Cascade R- 

CNN with an ImageNet pre-trained ResNet101 backbone and 

a FPN module. Post-detection, soft-NMS was added to remove 

false predictions. The dataset was augmented by random re- 

sizing technique to improve the final output scores. The team 

used more weight for the losses of specularity, artefact, and 

bubbles classes to overcome classification difficulties between 

those classes. 
• Team StarStarG The team used Cascade-RCNN as network ar- 

chitecture and adopted COCO2017 pre-trained ResNeXt as back- 

bone with FPN and multi-stage RCNN framework. The authors 

also integrated Deformable Convolutional Networks in back- 

bone to improve the model performance. 
• Tesam xiaohong1 ( Gao and Braden, 2020 ) The team built their 

detection and segmentation method upon Yolact-based instance 

https://www.github.com/sharibox/EndoCV2020
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Table 3 

Endoscopy artefact detection and segmentation (EAD2020) method summary for top 13 teams (out-of 33 valid submissions). 

Team EAD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code 

Detection GPU Test time 

polatgorkem 

(METU_DLCV) 

Faster RCNN + 

CascadeRCNN + 

Retinanet 

Resize Normalise Ensemble Accuracy + ResNet50, 

ResNet101 

Yes (R, F) a COCO RTX 2080 0.76 GorkemP/EAD 

qzheng5 (CVML) Faster RCNN Resize Normalise Context Accuracy + ResNet101 Yes (R, T, LD) a COCO GTX1060 0.20 CVML/EAD2020 

xiaohong1 YOLACT + 

NMS-within-class 

None Context Accuracy + , speed+ ResNet101 None ImageNet Tesla K80 0.14 yolact 

mathew666 Faster RCNN + 

NMS 

None Context Accuracy + ResNet101 Yes NA RTX 2080 NA NA 

VinBDI EfficientDet D0 Resize (512x512) Multiscale scalable Speed + EfficientNet B0 Yes (S, Sc, R, N, 

MU) a 
COCO RTX 2080TI NA endocv2020-seg 

higersky Cascade R-CNN None Cascading Accuracy + ResNeXt101 Yes NA GTX1080 Ti NA NA 

StarStarG Cascade R-CNN Resize Normalise Cascading Accuracy + ResNeXt101 Yes (F, S) a NA RTX 2080 NA NA 

anand_subu RetinaNet Resize Normalise Context Accuracy + , speed+ ResNet101 Yes (R, Sh, F, C, B, 

St, H) a 
ImageNet GTX1050Ti 0.36 anand- 

subu/EAD2020 

arnavchavan04 RetinaNet + 

FasterRCNN (FPN + 

DC5) 

Resize (512x512) Ensemble Accuracy + ResNet50; 

ResNeXt101 

Yes (F, C, R) a ImageNet Tesla T4 NA 

ubamba98/EAD2020 

MXY Cascase RCNN + 

FPN 

Resize Normalise Cascading Accuracy + ResNet101 Yes (F) a ImageNet RTX 2080 Ti 0.80 Carboxy/EAD2020 

mimykgcp Faster RCNN + + 

RetinaNet 

Resize Normalise Ensemble Accuracy + , speed+ ResNeXt101 Yes (RA) a COCO GTX 1080Ti 0.58 NA 

DuyHUYNH (LRDE) YOLOv3 Normalise Multiscale Accuracy + , 

speed++ 

Darknet53 Yes (RA) a COCO GTX1080 Ti 0.07 

dhuynh/endocv2020 

Segmentation 

qzheng5 (CVML) DeepLabv3 + Resize (513x513) 

Normalise 

Encoder-decoder, 

mutiscale 

Accuracy + SE-ResNeXt50 (R, T, LD + TTA) a ImageNet GTX1080Ti 0.50; 5 ( + TTA) CVML/EAD2020 

mouradai_ox Pyramid dilated 

module 

Resize (512x512) 

Normalise 

Multiscale Accuracy + , speed+ ResNet50 Yes (T, R, LD) a ImageNet Colab 0.37 NA 

arnavchavan04 FPN + EfficientNet Resize (512x512) Ensemble Accuracy + EfficientNet Yes (F, C, R) a ImageNet Tesla T4 NA 

ubamba98/EAD2020 

VinBDI U-Net + BiFPN Resize (512x512) Ensemble, 

Endcoder-decoder 

Accuracy + , speed+ EfficientNet B4; 

ResNet50 

Yes (S, Sc, R, F) a COCO ImageNet RTX 2080TI NA endocv2020-seg 

higersky DeepLabv3 + None Encoder-decoder, 

mutiscale 

Accuracy + ResNet101 Yes (F;S;Sc;Bl) a ImageNet GTX1080 Ti NA NA 

anand_subu U-Net Resize (512x512) Encoder-decoder Accuracy + ResNet50 Yes (S, F, R, N, Cr, 

Bl, H, St, C, Sp) a 
ImageNet GTX1050Ti 0.17 anand- 

subu/EAD2020 

DuyHUYNH (LRDE) U-Net + Normalise Encoder-decoder Accuracy + , speed+ EfficientNet B1 Yes (R, S, F, Sc, LD, 

TTA) a 
ImageNet GTX1080 Ti 0.97 

dhuynh/endocv2020 

mimykgcp U-Net Resize Normalise Encoder-decoder Accuracy + , speed+ ResNeXt50 Yes (RA) a ImageNet RTX 2070 0.25 NA 

a B: brightness, C: contrast, F: Flip, H: hue, LD: Local deformation, N: noise, R: Rotation, RA: RandAugment, S: Shift, Sc: scaling Sh: shear, St: saturation, Mu: mixup, T: Translation, TTA: test-time augmentation 

11
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Table 4 

Endoscopy disease detection and segmentation (EDD2020) method summary for top 7 teams (out-of 14 submission). 

Team EDD2020 Algorithm Preprocessing Nature Basis-of-choice Backbone Data aug. Pretrained Computation code 

Detection GPU Test time 

Adrian YOLOv3 + Faster 

R-CNN 

Resize Ensemble Accuracy + , speed+ Darnet53 

ResNet101 

Yes (F, D) a COCO public polyp 

dataset 

Tesla P100 0.41 Adrian398/EDD 

shahadate Mask R-CNN Resize Normalise Multiscale Accuracy, speed + ResNet101 Yes (Sc, R, F, Cr, S, 

N) a 
COCO RTX2060 NA EDD-Mask-rcnn 

VinBDI EfficientDet D0 Resize (512x512) Ensemble Speed + EfficientNet B0 Yes (S, Sc, R, N, 

MU) a 
COCO RTX 2080TI NA endocv2020-seg 

YH_Choi CenterNet NA Context Accuracy + ResNet50 Yes(Du, R, F, C, B) a PASCAL VOC2012 RTX 2080 2 NA 

DuyHUYNH (LRDE) U-Net + Normalise Encoder-decoder Speed EfficientNet B1 Yes (R, S, F, Sc, LD, 

TTA) a 
ImageNet GTX1080 Ti 1.53 

dhuynh/endocv2020 

mimykgcp 

(vishnusai) 

Faster RCNN + 

RetinaNet 

Resize (256x256) 

normalise 

Ensemble Accuracy + , speed+ ResNeXt101 Yes (RA) a COCO GTX1080Ti 0.58 NA 

Segmentation 

Adrian YOLOv3 + Faster 

R-CNN + Cascade 

RCNN 

Resize Ensemble Accuracy + Darnet53 

ResNet101 

Yes (F, D) a COCO public polyp 

dataset 

Tesla P100 

Adrian398/EDD2020 

shahadate MaskRCNN Resize Normalise Multiscale Accuracy, speed + ResNet101 Yes (Sc, R, F, Cr, S, 

N) a 
COCO RTX2060 EDD-Mask-rcnn 

VinBDI U-Net + BiFPN Resized (512x512) Ensemble 

Endcoder- 

decoder 

Accuracy + , speed+ EfficientNet B4 

ResNet50 

Yes (S, Sc, R, F) a COCO ImageNet RTX 2080 Ti NA endocv2020-seg 

YH_Choi U-Net NA Encoder-decoder Accuracy + ResNet50 Yes(Du, R, F, C, B) a PASCAL VOC2012 RTX 2080 7 NA 

DuyHUYNH (LRDE) U-Net + Normalise Encoder-decoder Accuracy + , speed+ EfficientNet B1 Yes (R, S, F, Sc, LD, 

TTA) a 
ImageNet GTX1080 Ti 1.53 endocv2020 

drvelmuruganb SUMNet NA Encoder-decoder Accuracy + , 

speed++ 

VGG11 Yes(R, A, Sc, P, and 

Cr) a 
ImageNet GTX1080 Ti 0.16 

drvelmuruganb/EDD2020 

mimykgcp U-Net Resize Normalise Encoder-decoder Accuracy + ResNeXt50 Yes (RA) a ImageNet RTX2070 1.25 NA 

a A: affine, B: brightness, C: contrast, Cr: cropping, D: distortion, Du: duplication, F: flip, H: hue, LD: local deformation, Mu: mixup, N: noise, P: perspective transformation, R: rotation, RA: RandAugment library, S: shift, Sc: 

scaling, Sh: shear, St: saturation, T: translation, TTA: test-time augmentation 

1
2
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segmentation system. Yolact ( Bolya et al., 2019 ) adds a segmen- 

tation component to the RetinaNet to ensure the tasks of de- 

tection, classification and delineation which are performed si- 

multaneously. The network uses ResNet101 as an imageNet pre- 

trained backbone. 

.2. EDD2020 Participating teams 

• Team Adrian ( Krenzer et al., 2020 ) The team compared two dif- 

ferent models: YOLOv3 with darknet-53 backbone and Faster 

R-CNN with ResNet-101 backbone. For post-processing, both 

algorithms in the final architecture were combined. For the 

second task, the team leveraged the state-of-the-art Cascade 

Mask R-CNN with ResNeXt-151 as a backbone. The team trained 

YOLOv3 using categorical cross-entropy for classification and 

default localization loss, while for Cascade Mask-RCNN, they 

used binary cross entropy for classification and mask, and L1 

smooth for boundary box regression. 
• Team Shahadate ( Rezvy et al., 2020 ) The team implemented a 

modified benchmark Mask R-CNN infrastructure model on the 

EDD2020 dataset. They used COCO trained weights and biases 

with the ResNet101 backbone as an initial feature extractor. 

The network head of the backbone model was replaced with 

new untrained layers that consisted of a fully-connected classi- 

fier with five classes and an additional background class. Non- 

maximum suppression was used to reduce overlapped detec- 

tion. Finally, the team merged multiple bounding boxes for the 

same class label as one bounding box to match with the mask 

annotation. 
• Team VinBDI ( Nguyen et al., 2020b ) For the object detection 

task, the team designed an ensemble of six EfficientDet models 

(with BiFPN modules) trained on six different EfficientNet back- 

bones. A total of eleven augmentation techniques were incorpo- 

rated to increase the output prediction scores of the model. For 

the segmentation task, an ensemble of U-Net and EfficientNet- 

B4 and BiFPN with the ResNet50 backbone was devised. The 

same team also participated in the EAD2020 sub-challenge. 
• Team YH_Choi ( Choi et al., 2020 ) The team implemented 

a CenterNet-based model with the PASCAL VOC pretrained 

ResNet50 backbone for the object detection task. A similar 

backbone with U-Net was devised for the segmentation task. 

The dataset was randomly duplicated to tackle class-imbalance. 

To improve generalization performance, each image was aug- 

mented 86 times by randomly choosing augmentation tech- 

niques from the pool of rotation, flipping, contrast enhance- 

ment and brightness adjustment. 
• Team drvelmuruganb ( Balasubramanian et al., 2020 ) For the 

segmentation of disease classes the team used an encoder- 

decoder based SUMNet architecture with the ImageNet pre- 

trained VGG11 backbone. The authors also applied several aug- 

mentation strategies including variable brightness and HSV val- 

ues, multiple crops and geometric transformations such as rota- 

tion, affine, scaling and projective were also applied to improve 

the accuracy. 

. Results 

For the EAD2020 sub-challenge, we present the results of 12 

articipating teams for multi-class artefact detection task and 8 

eams for segmentation task. Similarly, for EDD2020 sub-challenge, 

e have included top 6 teams for detection and 7 teams for 

egmentation of multi-class diseases. In this section we present 

he quantitative and qualitative results for each team based on 

he evaluation metrics discussed in Section 3.2 . For the EAD2020 

ub-challenge, 3 different test dataset were released: 1) single- 

rame data for detection and segmentation, 2) sequence dataset for 
13 
etection only and 3) out-of-sample data for generalization task 

nly. For the detection task, the average of the aggregated sum of 

he detection scores for the single frame data and the sequence 

ata were considered for final scoring. While, for the EDD2020 

hallenge only single frame detection and segmentation data were 

eleased. Below we present the result for each sub-challenges 

eparately. 

.1. Quantitative results 

.1.1. EAD2020 Sub-challenge 

In this section, the results of the participant teams in the 

AD2020 challenge to detect and segment artefacts are presented. 

Detection task for EAD2020 

Table 5 and Table 6 present the mAP values computed at dif- 

erent IoU thresholds (i.e., 25%, 50%, and 75%), overall mAP, over- 

ll IoU, and the final score for the detection of the artefacts from 

ingle frame and sequence data, respectively. Additionally, we also 

rovide results of baseline methods that include YOLOv3 and Reti- 

aNet with darknet53 and ResNet101 backbones, respectively. In 

able 5 (i.e., single frame detection), it can be observed that the 

eam polatgorkem that implemented ensemble technique with Cas- 

aded RCNN, Faster-RCNN and RetinaNet surpassed the other teams 

y achieving the highest final score on the leaderboard (score d , 

q. 5 ) of 25.123 ± 7.124 with the best overall mIoU of 36.579 pro- 

iding a high overlap ratio between the generated bounding box 

ith ground truth per frame. The method proposed by the team 

rnavchavan04 comes in the second place with score d of 24.079 ±
.342 with 9% more mAP than the winning team but large sac- 

ifice in the mean IoU. Similarly, for sequence data in Table 6 , 

eam polatgorkem maintained the first position with a final score of 

5.529 ± 10.326. While the second scorer team VinBDI suggested 

 method that obtained a better balanced between mAP and mIoU 

cores. 

Furthermore, Table 7 shows the overall ranking for the teams 

n terms of Score (R score d 
), mAP (R mAP ), and generalizability perfor- 

ance (R g ) in addition to, mAP d , mAP seq , score d , mAP g and dev g .

he baseline RetinaNet recorded the least deviation but also the 

east mAPs. On considering the mAP g and dev g together for the fi- 

al ranking of the generalization task, teams VinBDI and StarStarG 

ecured the first place. On observing at the class-wise performance 

n Fig. 5 (a) (i.e., single frame), it can be seen that there was a high

etection score (score d ) and AP for larger artefact instances such 

s saturation and contrast. Similarly, most of the teams had a high 

oU with the ground truth when detecting the instrument class. 

n the other hand, the detection and localization of smaller arte- 

act instances such as bubble and saturation showed the degraded 

erformances by all the participating teams and by the baseline 

ethods. 

Segmentation task for EAD2020 

Table 8 presents the JC, DSC, F2, PPV, recall, and accuracy ob- 

ained by each team and baseline methods. As shown, the method 

roposed by team arnavchavan04 and team VinBDI had the best 

erformance in terms of JC ( > 62%), DSC ( > 67%), F2 ( > 67%)

nd PPV ( > 80%) proving the ability to segment less false posi- 

ive regions. However, the method suggested by team qzheng5 and 

eam DuyHUYNH segmented more true positive regions compared 

o other teams obtaining top recall values of 0.8352 and 0.828. 

he baseline methods showed a low performance in terms of fi- 

al score compared to the methods proposed by the participants. 

urthermore, Fig. 6 (a) shows class-wise scores for DSC, PPV and 

ecall. Similar to detection, segmenting larger instances like the 

aturation and the instrument obtained the high scores. Specular- 

ty, bubble and the artefact classes were among least performing 

lasses for many teams and baseline methods. 
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Table 5 

EAD2020 results for the detection task on the single frame dataset. mAP at IoU thresholds 25%, 50% and 75% are pro- 

vided along with overall mAP and overall IoU computations. Overall scores are computed at 11 IoU thresholds and averaged. 

Weighted detection score score d is computed between overall mAP and IoU scores only. Three best scores for each metric 

criteria are in bold. 

Team names mAP 25 mAP 50 mAP 75 overall mAP d overall mIoU d mAP δ score d ± δ

polatgorkem 26.886 17.883 5.608 17.486 36.579 7.124 25.123 ± 7.124 

qzheng5 33.134 20.084 5.570 19.720 27.185 8.820 22.706 ± 8.820 

xiahong1 30.627 19.384 4.935 18.512 26.388 8.428 21.663 ± 8.428 

mathew666 20.360 19.440 7.783 18.091 32.692 5.617 23.931 ±5.617 

VinBDI 38.429 25.426 7.053 24.069 12.644 10.291 19.499 ± 10.291 

higersky 36.920 25.770 9.452 24.771 17.298 8.707 21.781 ± 8.707 

StarStarG 41.800 29.984 10.733 28.380 16.250 10.042 23.528 ± 10.042 

anand_subu 29.755 19.893 5.271 18.886 24.029 7.619 20.943 ± 7.619 

arnavchavan04 38.752 27.247 9.858 26.021 21.165 9.342 24.079 ±9.342 

MXY 25.373 18.967 7.171 17.82 28.056 5.754 21.914 ± 5.754 

mimykgcp 39.897 26.296 6.839 25.082 10.209 10.765 19.133 ± 10.765 

DuyHUYNH 20.512 12.234 2.978 11.894 27.063 5.671 17.962 ± 5.671 

baselines 

YOLOv3 22.798 13.736 2.804 13.249 24.883 6.525 17.903 ± 6.525 

RetinaNet$ResNet101) 15.270 8.927 2.061 8.754 23.202 4.275 14.533 ± 4.275 

Table 6 

EAD2020 results for the sequence dataset. mAP at IoU thresholds 25%, 50% and 75% are provided along with overall mAP and 

overall IoU computations. Overall scores are averaged with 11 IoU thresholds. Weighted detection score score d is computed 

between overall mAP and IoU scores only. Three best scores for each metric criteria are in bold. 

Team names mAP 25 mAP 50 mAP 75 overall mAP seq overall mIoU seq mAP δ score d ± δ

polatgorkem 38.464 24.803 4.138 23.137 29.117 10.326 25.529 ± 10.326 

qzheng5 48.210 25.717 3.997 25.665 20.949 14.222 23.779 ± 14.222 

xiahong1 46.087 25.813 2.684 25.136 18.398 15.128 22.441 ± 15.128 

mathew666 31.599 21.878 3.053 19.623 20.858 9.718 20.117 ± 9.718 

VinBDI 45.295 26.723 4.396 25.285 23.426 13.972 24.542 ± 13.972 

higersky 47.716 29.841 4.473 28.334 12.865 14.579 22.147 ± 14.579 

StarStarG 46.965 30.202 5.432 28.107 8.371 13.367 20.213 ± 13.367 

anand_subu 38.352 25.535 3.843 23.014 20.703 10.859 22.089 ± 10.859 

arnavchavan04 34.511 21.524 4.886 20.700 11.827 9.839 17.151 ± 9.839 

MXY 31.391 19.838 3.620 18.601 21.504 8.688 19.762 ± 8.688 

mimykgcp 44.972 26.780 4.400 25.937 6.892 13.697 18.319 ± 13.697 

DuyHUYNH 28.632 15.524 0.815 15.468 16.968 9.381 16.068 ± 9.381 

baselines 

YOLOv3 32.199 18.473 1.137 17.176 16.351 10.596 16.846 ± 10.596 

RetinaNet$ResNet101) 17.646 6.447 0.767 8.079 10.000 5.151 9.252 ± 5.151 

Table 7 

EAD2020 team ranking based on different metric criteria for detection and generalization task. Overall mAPs (mAP d and 

mAP seq ) computed on single frame and sequence data are averaged. Final score d is then computed as the weighted value 

between the final IoU d and the averaged mAP. Rankings for each metric are also provided based on ascending order of the 

scores except for deviation score for out-of-sample data. Three best scores for each metric criteria are in bold. 

Team Names mAP d mAP seq final IoU final score d mAP g dev g R score d R mAP R gen 

polatgorkem 17.486 23.137 32.848 25.326 21.008 9.359 1 9 6 

qzheng5 19.720 24.174 23.751 22.668 23.749 8.522 2 6 5 

xiahong1 18.512 25.136 22.393 22.051 24.579 8.169 3 7 3 

mathew666 18.091 19.651 26.783 22.035 16.714 5.674 4 10 4 

VinBDI 24.069 25.282 18.033 22.018 24.140 5.607 5 4 1 

higersky 24.771 28.252 15.061 21.931 24.850 7.686 6 2 2 

StarStarG 28.380 28.107 12.311 21.870 25.340 7.537 7 1 1 

anand_subu 18.886 23.004 22.359 21.510 20.203 7.896 8 8 5 

arnavchavan04 26.021 20.700 16.496 20.614 21.138 6.968 10 5 3 

MXY 17.820 18.597 24.779 20.836 17.294 6.077 9 11 4 

mimykgcp 25.082 25.843 8.536 18.691 23.929 7.999 11 3 4 

DuyHUYNH 11.894 15.468 22.016 17.015 11.304 4.807 13 13 4 

baselines 

YOLOv3 13.249 17.176 20.617 17.374 15.456 4.397 12 12 3 

RetinaNet (ResNet101) 8.754 8.079 16.601 11.690 7.763 1.985 14 14 3 
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.1.2. EDD2020 Sub-challenge 

In this section, we report the performance of the participating 

eams in the EDD2020 challenge for the detection and segmenta- 

ion. 

Detection task for EDD2020 

In Table 9 , the team adrian achieved the highest score among 

ther participants and the baseline methods with a final score 
d 

14 
f 33.602 ± 8.523 with the highest overall mAP (37.594) and the 

econd highest overall mIoU (27.614). The best localization score 

as obtained by the team sahadate but with nearly 5% lower mAP 

han the top scorer team. Furthermore, the baseline method Reti- 

aNet with the ResNet101 backbone performed better than most 

f the participating teams. From Table 10 , it is evident that most 

eams and baselines failed to detect suspicious class instance while 
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Teams Baseline

a. Detection: Single frame only b. Detection: Single frame vs sequence

c. Detection: Seen vs out-of-sample data

single frame sequence frames out-of-sample dataspecularity saturation artifact blur contrast bubbles instrument blood

Fig. 5. Detection and out-of-sample generalization tasks for EAD2020 sub-challenge. a) Error bars and swarm plots for the intersection over union (IoU, top), average 

precision (AP, middle) and challenge detection score (mAP d , bottom) for each team is presented on 237 single frame test data. b-c) Comparison of mAP d w.r.t. mAP seq (mAP 

on sequence test data with 80 frames) and mAP g (mAP on out-of-sample data 99 frames) are provided. a-c) On the right, results from baseline detection methods: YOLOv3 

and RetinaNet (with ResNet101 backbone) are also presented. Teams are arranged by decreasing overall detection ranking R score d (see Table 7 ). 

Table 8 

Evaluation of the artefact segmentation task. Top three best scores for each metric criteria are in bold. 

Team Names JC DSC F2 PPV Rec Acc Score s R score s 

qzheng5 0.477 0.532 0.561 0.556 0.835 0.973 0.621 8 

VinBDI 0.628 0.673 0.670 0.837 0.738 0.978 0.730 2 

higersky 0.529 0.579 0.587 0.675 0.758 0.975 0.650 5 

anand_subu 0.304 0.354 0.361 0.430 0.747 0.975 0.473 14 

arnavchavan04 0.622 0.673 0.683 0.800 0.767 0.977 0.731 1 

DuyHUYNH 0.502 0.557 0.583 0.593 0.829 0.974 0.640 6 

mimykgcp 0.531 0.576 0.579 0.723 0.726 0.977 0.651 4 

mouradai_ox 0.581 0.632 0.647 0.711 0.800 0.974 0.697 3 

baselines 

FCN8 0.500 0.548 0.550 0.670 0.708 0.976 0.619 9 

UNet-ResNet34 0.310 0.364 0.373 0.419 0.766 0.974 0.481 13 

PSPNet 0.497 0.541 0.534 0.698 0.680 0.975 0.613 10 

DeepLabv3 (ResNet50) 0.448 0.495 0.492 0.599 0.704 0.974 0.572 12 

DeepLabv3 + (ResNet50) 0.485 0.533 0.535 0.646 0.726 0.976 0.610 11 

DeepLabv3 + (ResNet101) 0.501 0.547 0.546 0.683 0.718 0.973 0.624 7 

Table 9 

EDD2020 results for the detection task on the single frame dataset. mAP at IoU thresholds 25%, 50% and 75% are pro- 

vided along with overall mAP and overall IoU computations. Overall scores are computed at 11 IoU thresholds and averaged. 

Weighted detection score score d is computed between overall mAP and IoU scores only. Three best scores for each metric 

criteria are in bold. 

Team names mAP 25 mAP 50 mAP 75 overall mAP d overall mIoU d mAP δ score d ± δ

adrian 48.402 33.562 27.098 37.594 27.614 8.523 33.602 ± 8.523 

sahadate 37.612 23.284 15.837 26.834 32.420 8.325 29.068 ± 8.325 

VinBDI 43.202 26.981 17.001 30.219 17.773 9.478 25.241 ± 9.478 

YHChoi 23.183 11.082 8.800 15.783 24.623 6.216 19.319 ± 6.216 

DuyHUYNH 23.959 9.587 5.659 12.479 13.829 6.284 13.019 ± 6.284 

mimykgcp 34.884 20.982 4.463 20.742 2.270 9.359 13.353 ± 9.359 

drvelmuruganb 31.018 18.421 11.768 21.790 7.322 7.424 16.002 ± 7.424 

baselines 

YOLOv3 34.305 21.227 14.650 22.980 24.351 6.456 23.528 ± 6.456 

RetinaNet (ResNet50) 26.833 14.441 9.907 17.552 25.580 6.464 20.763 ± 6.464 

RetinaNet (ResNet101) 42.579 27.000 11.194 27.974 26.434 11.949 27.358 ±11.949 

15 
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a. Segmentation metrics for team and baseline methods
on EAD2020 dataset

b. Segmentation metrics for team and baseline methods
on EDD2020 dataset
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Fig. 6. Semantic segmentation for EAD and EDD sub-challenges: Error bars with overlayed swarm plots for dice similarity coefficient (DSC), positive predictive value (PPV) 

or precision and recall are presented for each team and baseline methods for the EAD2020 (a) and EDD2020 (b) challenges. 6 different baseline methods are also provided 

for comparison. 

Table 10 

Per class evaluation results for the detection task of the EDD2020 sub-challenge. 

Teams EDD2020 NDBE suspicious HGD cancer polyp δ

adrian 28.911 1.776 32.727 64.286 60.269 22.841 

sahadate 46.193 1.099 22.727 10.000 54.152 20.414 

VinBDI 48.489 3.497 25.852 10.000 63.260 22.660 

YHChoi 26.900 0.000 22.727 0.000 29.289 13.057 

DuyHUYNH 20.281 1.499 11.364 0.000 29.254 11.134 

mimykgcp 50.089 4.592 23.064 5.852 20.112 16.429 

drvelmuruganb 34.775 0.000 22.727 0.000 51.446 19.993 

baselines 

YOLOv3 (darknet53) 38.839 0.000 6.970 16.667 52.426 19.712 

RetinaNet (ResNet50) 23.636 0.000 18.182 0.000 45.943 17.086 

RetinaNet (ResNet101) 29.483 0.000 22.727 31.818 55.840 17.909 

Table 11 

Evaluation of the disease segmentation methods proposed by the participating teams and the baseline methods. 

Top three evaluation criteria are highlighted in bold. 

Team Names JC DSC F2 PPV Rec Acc Score s R score s 

adrian 0.820 0.836 0.842 0.921 0.894 0.955 0.873 1 

sahadate 0.797 0.816 0.819 0.906 0.883 0.955 0.856 2 

VinBDI 0.788 0.805 0.812 0.859 0.912 0.952 0.847 3 

DuyHUYNH 0.6843 0.7058 0.718 0.762 0.905 0.931 0.773 9 

drvelmuruganb 0.7166 0.7349 0.734 0.819 0.857 0.959 0.786 6 

mimykgcp 0.7561 0.7721 0.770 0.893 0.845 0.957 0.820 4 

YHChoi 0.314 0.340 0.356 0.385 0.896 0.892 0.494 13 

baselines 

FCN8 0.687 0.705 0.709 0.811 0.850 0.953 0.769 10 

UNet-ResNet34 0.617 0.637 0.638 0.732 0.868 0.958 0.719 11 

pspnet 0.698 0.721 0.723 0.797 0.876 0.959 0.779 8 

DeepLabv3 (RetinaNet50) 0.704 0.724 0.724 0.810 0.878 0.962 0.784 7 

DeepLabv3 + (RetinaNet50) 0.725 0.744 0.749 0.818 0.882 0.960 0.798 5 

DeepLabv3 + (RetinaNet1010 0.608 0.627 0.629 0.698 0.880 0.962 0.709 12 

m
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w
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D  
ost teams performed comparatively better on polyp and NDBE 

lasses. Only the winning team adrian and RetinaNet (ResNet101) 

rovided a descent score for cancer class with most teams record- 

ng mAP below 10. For HGD class category, top performing teams 

ere adrian and VinBDI with mAP over 25. 

Segmentation task for EDD2020 

From Table 11 , it can be observed that the three teams (Adrian, 

ahadate and nhanthanhnguyen94 ) achieved a DSC over 0.80. More- 
16 
ver, they maintained the high performance for other metrics as 

ell that include JC ( > 0.78), F2 ( > 0.81), and PPV ( > 0.85) securing

rst, second and third ranks, respectively. Teams VinBDI and Duy- 

UYNH were able to segment more true positive regions reaching 

he top recall values. Fig. 6 (b) represents per-class metric values. 

t can be observed that unlike detection task, most teams reported 

igh performance for cancer class. Also, most teams showed higher 

SC, PPV and recall for BE class instance as well ( > 0 . 8 for top



S. Ali, M. Dmitrieva, N. Ghatwary et al. Medical Image Analysis 70 (2021) 102002 

Fig. 7. EAD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top ranked team results. b) Worse performing samples for the 

same teams in (a). Results with baseline methods are also included together with ground truth sample. 
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hree teams). However, similar to the detection task, most team 

nd baseline methods reported least values for the suspicious class. 

.2. Qualitative results 

etection task 

Fig. 7 shows the best (panel a) and the worse (panel b) per- 

orming frames from single frame dataset for EAD2020. It can be 

bserved that specularity and artefacts are detected and well lo- 

alized by top teams (see Fig. 7 a). Similarly, in the bottom exam- 

le, saturation is also detected by all the participants. Even though, 

lur is not present for this sample, most methods also detected 

t. While for the worse performing frame (see Fig. 7 b), instru- 

ent class is confused with contrast or artefact on the top sample, 

hile in the bottom sample instrument is detected by some teams 

ut often either detected only partially or overlapped by different 

lasses such as saturation or artefact. 

For out-of-sample generalization task, it can be seen in Fig. 8 

a) that besides YOLOv3 baseline method, all the baselines and 

eams detected saturation class. While some teams ( mathew666, 

inBDI, higersky ) detected multiple bounding boxes for the same 

lass, they also detected blur class for this frame. While for worse 

erforming frame (see Fig. 8 (b)), instrument class (at the center 

f the image) is well localized only by the team xiahong1 while 

ost teams either partially detected the instrument (e.g., team 

zheng5 ) or could not detect the instrument class at all (e.g., team 

olatgorkem ). In both cases, the three teams VinBDI, higersky and 

tarStarG produced multiple overlapping and different size bound- 

ng boxes. 

Qualitative results for the EDD2020 challenge is shown in Fig. 9 . 

he best performing samples in Fig. 9 (a) shows polyp class (at 

he top); non-dysplastic Barrett’s esophagus (NDBE) and suspicious 

lasses on the bottom. It can be observed that polyp class is de- 

ected and well localized by all the teams and baseline methods. 

owever, for bottom row NDBE is detected by most of the meth- 
17 
ds while confusion is observed across the suspicious class with 

igh-grade dysplasia (HGD) class. Team mimykgcp produced nu- 

erous bounding boxes failing to optimally localize adherent dis- 

ase classes. For the worse performing frames ( Fig. 9 (b)), cancer 

lass (top) in the ground truth is confused with the polyp class 

nstance for most of the teams and the baseline methods. While, 

or the NDBE class in the bottom of Fig. 9 (b), teams were either

ot able to detect the NDBE class (except team adrian , team YH- 

hoi and YOLOv3) at all or partially detected the NDBE areas (e.g., 

eams VinBDI and drvvelmuruganb ). Again, for the presented case, 

eam mimykgep detected numerous bounding boxes. 

egmentation task 

Endoscopic artefact segmentation samples representing best 

nd worse performing teams is provided in Fig. 10 . For the sam- 

le with only the instrument class (see Fig. 10 a, top panel) it 

an be observed that almost all the baseline and teams were able 

o predict precise delineation of the instrument class. Similarly, in 

he bottom panel of Fig. 10 (a), specularity, saturation and artefact 

lasses were segmented well by most of the teams and baseline 

ethods. Even though, a single instrument class is present in the 

ample image in Fig. 10 (b), none of the methods were able to seg- 

ent the instrument. Also, for the bottom panel in the Fig. 10 (b), 

pecularity areas were segmented well by the teams mouradaiox 

nd mimykgcp . However, saturation area was under segmented by 

ost of the teams and baseline methods. Fig. 11 (a) represents the 

olyp class (at the top); NDBE and suspicious classes (at the bot- 

om). It can be observed that polyp is segmented well by all the 

aselines and most teams (except team drvelmuruganb who mis- 

lassified the pixels to suspicious class). While, most teams and 

aselines were able to precisely delineate NDBE class for the frame 

n the bottom panel but missed suspicious area. In the worse per- 

orming sample (see Fig. 11 (b)), most teams were able to segment 

DBE area but large HGD area was missed by all the teams. Also, 

ome teams confused HGD area with suspicious class. For the bot- 
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Fig. 8. EAD2020 best and worse performing samples for the generalization task. a) Best performing samples for 7 top ranked team results. b) Worse performing samples for 

the same teams in (a). Results with baseline methods are also included together with ground truth sample. 

Fig. 9. EDD2020 best and worse performing samples for the detection task. a) Best performing samples for 6 top ranked team results. b) Worse performing samples for the 

same teams in (a). Results with baseline methods are also included together with ground truth sample. 
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om panel in Fig. 11 (b), instead of suspicious class present in the 

round truth, almost all the teams detected this as polyp or cancer. 

owever, the region delineation was close to the ground truth for 

ost teams. 

. Discussion 

Deep learning methods are rapidly being translated for the use 

f computer aided detection (CADe) and diagnosis (CADx) of dis- 

ases in complex clinical settings including endoscopy. However, 

he amount of data variability particularly in endoscopy is signif- 

cantly higher than in natural scenes which possess a significant 

hallenge in the process. It is therefore vital to determine an ef- 

ective translational pathway in endoscopy. Majority of challenges 

n endoscopy are due to its complex surveillance that lead to se- 
18 
ere artefacts that may confuse with disease. Similarly, a system 

esigned for a particular organ may not generalize to be used in 

he other. 

Most deep learning methods that were used in the EndoCV2020 

hallenge can be categorised into multiscale, symbiotic, ensemble, 

ncoder-decoder and cascading nature, or a combination of these 

see Table 3 and Table 4 ). Fig. 12 presents the overview of the 

sed methods for the detection (a) and segmentation (b) challenge 

asks based on the architecture usage. It can be observed that the 

ajority of detection methods used two-stage Faster-RCNN with 

/7 teams combining it with one-stage RetinaNet or YOLOv3 or a 

ombination of all. Cascade R-CNN which is built upon Faster R- 

NN cascaded architecture was exploited by 4 teams. Similarly, U- 

et-based architectures were utilised by most teams for semantic 
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Fig. 10. EAD2020 best and worse performing samples. a) Best performing samples for 5 top ranked team results. b) Worse performing samples for the same teams in (a). 

Results with baseline methods are also included together with ground truth sample (top). Single class samples are chosen at the top and multi-class samples are at the 

bottom in each category. 

Fig. 11. EDD2020 best and worse performing samples. a) Best performing samples for 5 top team results. b) Worse performing samples for the same teams in (a). Results 

with baseline methods are also included together with ground truth sample (top). 

19 
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Fig. 12. EndoCV2020 method categories in blob-representation. Model occurrences are presented for detection (a) and segmentation (b) tasks for both EAD2020 and EDD2020 

sub-challenges. The number of occurrences is provided inside each blob. 
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egmentation task with 4 teams exploring pyramid module-based 

rchitectures and 2 teams used Deeplabv3+ architecture. Faster 

CNN-based model was also explored with additional thresholding 

e.g., team adrian ) or per pixel prediction heads (e.g., team saha- 

ate ). Even though similar techniques were used in EAD2019 chal- 

enge ( Ali et al., 2020c ), a direct comparison is not possible. This

s due to the inclusion of more data for EAD2020 in both train 

nd test sets. Also, EAD2020 includes sequence data which was not 

rovided in EAD2019 challenge. 

For the detection task, the top performing teams on the chal- 

enge metric in both EAD (team polatgorkem ) and EDD (team 

drian ) were those using ensemble networks, i.e., maneuvering 

utputs from multiple architectures. However, these networks sac- 

ifice the speed of detection which can be observed from the 

omputational time which were significantly higher than teams 

hat used a single architecture (see Table 7 and Table 9 ). Other 

eams that used such an approach included team arnavchavan04 

nd mimykgcp who combined Faster R-CNN with RetinaNet but 

oth teams were respectively on 10th and 11th ranking. Just using 

aster R-CNN alone with ResNet101 backbone, teams qzhang5 and 

athew666 were able to detect both small and large size bound- 

ng boxes with sub-optimal accuracy that put them at 2nd and 4th 

ositions, respectively. Similarly, team sahadate claimed 2nd posi- 

ion on EDD detection task using Mask R-CNN which is based on 

he Faster R-CNN architecture. For EAD2019 challenge ( Ali et al., 

020c ), team yangsuhui also used an ensemble network with Cas- 

ade RCNN and FPN approach for the detection task similar to the 

AD2020 top scorer team polatgorkem . 

An intelligent choice for improved speed and accuracy using 

 scalable network was presented by the teams xiahong1 (used 

OLACT) and VinBDI (used EfficientDet D0) which were placed 3rd 

nd 5th, respectively, on the final detection score of the EAD2020. 

n the sequence data, team VinBDI was the 2nd best method 

emonstrating the reliability of the used EfficientNet and FPN ar- 

hitectures. However, for almost all team methods the standard de- 

iation was higher than for single frame data. No team exploited 

he sequence data provided for training. Team VinBDI was also 

anked 3rd on the EDD detection task. Teams higerssky, StarStarG 

nd MXY that used cascaded R-CNN were ranked respectively on 

th, 7th and 9th positions. Additionally, the team StarStarG was 

anked 1st and team higersky was ranked 2nd on the overall mAP. 

owever, it is to be noted that taking only mAP scores into ac- 

ount for detection could lead to over detection of the bounding 

oxes that increases the chance of finding a particular class but at 
20 
he same time weakens the localization capability of the algorithm 

see Fig. 7 ). Similar observations were found for the EDD dataset 

here the team mimykgcp obtained an overall mAP of 20.742 but 

nly 2.270 for the overall IoU (see Table 9 ). As a result, over de-

ection of the bounding boxes can be seen in Fig. 9 . In order to

eal with the over detection of the bounding boxes, YOLACT archi- 

ecture used by xiahong1 suppressed the duplicate detections using 

lready-removed detections in parallel ( fast NMS ). Similarly, teams 

uch as polatgorkem from the EAD and adrian from the EDD were 

ble to eliminate the duplicate detections using ensemble network 

nd a class agnostic NMS. 

Hypothesis I: In the presence of multiple class objects, object detec- 

ion methods may fail to precisely regress the bounding boxes. Meth- 

ds need better penalization on the bounding box regression or a tech- 

ique to perform effective non-maximal suppression. 

The choice of networks from each team depended on their am- 

ition of either obtaining very high accuracy without focusing on 

peed or a trade-off between the speed and the accuracy or fo- 

using on both and thinking out-of the box to use more recent 

eveloped methods which beats faster networks (such as YOLOv3) 

hat included EfficientDet D0 architecture used by the team VinBDI 

see Table 3 ). Due to the efficiency of the EfficientDet D0 network 

hat used biFPN and efficientNet backbone, team VinBDI achieved 

econd least deviation in mAP (i.e., dev g = 5 . 607 ) with compet- 

tive mAP g ( = 24 . 140 ) and won the generalization task together 

ith the team StarStarG who had slightly higher mAP g ( = 25 . 340 )

ut larger mAP deviation between detection and generalization 

atasets. Most methods for the detection task on both the EAD and 

DD dataset performed better than the baseline one-stage methods 

YOLOv3 and RetinaNet). However, it was found that even though 

eam polatgorkem won the detection task, the method failed on 

eneralization data where the team was ranked only last. The main 

eason behind this could be because the generalization gap mAP g 
as estimated between two mAP’s (mAP d and mAP g ) and not IoU. 

lso, the final ranking was done taking into account the rank of 

ev g and mAP g only. It can be observed in Fig. 8 that the bound- 

ng box localization of team polatgorkem is precise in (a) while it 

isses instrument area at the center in (b). However, the winning 

eams VinBDI and StarStarG both over detect the boxes. The gener- 

lization ability of the methods were not explored for EDD dataset. 

Hypothesis II: Metrics are critical but using a single metric does 

ot always gives the right answer. Weighted metrics are desired in 

bject detection task to establish a good trade-off between detection 

nd precise localization. 
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A major problem in the detection of EDD dataset was class con- 

usion mostly for suspicious, HGD and cancer classes. This could be 

ecause of smaller number of samples for each of these classes 

ompared to NDBE and polyp (see Fig. 3 ). While most methods 

ere able to detect and localize NDBE and polyp class in gen- 

ral (3/7 teams with an overall mAP > 45 and 4/7 teams with 

 50 ), all teams failed in suspicious class (overall mAP < 5 . 0 ) and

ost teams for cancer class (overall mAP < 15 . 0 ) (see Table 10 ).

ig. 9 shows that polyp is detected and localized very well by most 

eams (a, top). Similarly, NDBE is localized by most methods, how- 

ver, in this case suspicious class is confused mostly with the HGD. 

lso, in Fig. 9 (b, top), it can be observed that the cancer class in-

tance is confused with mostly polyp class. 

Hypothesis III: Detection bounding boxes confuse with classes that 

ave similar morphology and smaller number of samples failing to 

earn the contextual features. To improve detection, such samples need 

o be identified and more data demonstrating such attributes need to 

e injected (both positive and negative samples). 

Similar to the detection task, teams that used ensemble tech- 

iques were among the best performing teams for the segmenta- 

ion task. Teams arnavchavan04 and VinBDI secured first ( score s = 

 . 731 ) and second ( score s = 0 . 730 ) positions, respectively, on the

AD2020 segmentation task (see Table 8 ) and the team adrian 

on the EDD2020 segmentation task challenge with score s of 0.873 

see Table 11 ). The team arnavchavan04 used multiple augmenta- 

ion techniques including cutmix and a feature pyramid network 

ith a combination of EfficientNet backbones from B3 to B5. Simi- 

arly, team VinBDI ensembled a U-Net architecture with Efficient- 

et B4 and BiFPN network with ResNet50 backbone. Compared 

o EAD2019 where the winning team yangsuhui used DeepLabV3+ 

odel with two different backbones, both of the top scorer teams 

f 2020 revealed the strength of recent EfficientNet and FPN-based 

egmentation approaches. 

In the EDD2020 segmentation task, the team adrian combined 

redictions from three object detection architectures where the 

OLOv3 and Faster R-CNN class predictions were used to correct 

he instance segmentation masks from Cascade R-CNN. A direct 

nstance segmentation approach used by the team sahadate se- 

ured second position ( score s = 0.856) on the same while ensem- 

le network of the team VinBDI secured the third position ( score s 
 0.847). Direct usage of a single existing state-of-the-art methods 

tilising different augmentation techniques (e.g., DuyHUYNH ) or 

ifferent backbones (e.g., mimykgcp, qzheng5 ) resulted in improved 

esults compared to the original baseline methods, however, much 

ower than the top performing methods (see Table 8 and Table 11 ). 

Hypothesis IV: The choice of combinatorial networks that well syn- 

hesises width, depth and resolution to capture optimal receptive field, 

nd a domain agnostic knowledge transfer mechanism are critical to 

ackle heterogeneous (multi-center and variable size) multi-class ob- 

ect segmentation task. 

From Fig. 6 it can be observed that the top three performing 

eams of the EAD2020 segmentation task ( arnavchavan04, VinBDI, 

ouradai _ ox ) has high DSC value (0.538, 0.548 and 0.492 respec- 

ively) compared to most methods for the specularity class in- 

tance. It is to be noted that the specularities are often confused 

ith either artefact or bubbles which makes them hard to differ- 

ntiate. For the instrument, saturation and bubbles class instances 

see Fig. 10 a.), most methods obtained high performance com- 

ared to other classes (e.g., the top three teams obtained 0.853, 

.844, 0.848 for the instrument; 0.722, 0.758, 0.703 for the satu- 

ation; and 0.738, 0.693, 0.693 for the bubbles class instance, re- 

pectively), artefact (DSC < 0 . 520 ) was among the worst class for 

ost teams and for the baseline methods. This is mostly due to the 

ariable size of artefacts; and the bubbles class instance is predom- 

nantly confused with either artefact or the specularity class (see 

ig. 10 b.). Additionally, due to small sized and sparsely scattered 
21 
pecularity or bubble regions in some cases (for e.g., 4th image 

rom left in Fig. 3 (a)), the annotator variability for these samples 

an have affected method performances for these classes. While 

hecking for such biases is beyond the conducted study, we re- 

er to the work by Rolnick et al. (2017) . The authors suggested 

hat in general deep learning models are capable of generalizing 

rom training data where the correct labels are outnumbered by 

he incorrect ones. However, the authors also acknowledged that 

 decrease in performance is inevitable and necessary steps such 

s using larger batch size and downscaling learning rate can help 

itigate these issues. 

Unlike the EAD2020, the EDD2020 segmentation task com- 

rised of larger shaped regions and only a few classes confused 

see 1 b.). Most methods scored comparably high DSC values with 

ver 75% for most of the disease classes except for suspicious class 

y most of the team. However, Fig. 11 (b) (top) shows that while 

ajority of teams were able to segment NDBE class area, the teams 

ither missed the HGD area or miss classified HGD as suspicious 

lass instance. It is to be noted that there is a very subtle dif- 

erence between the HGD and the suspicious region even for the 

xpert endoscopists. Similar observation can be found for the seg- 

entation of protruded structures ( Fig. 11 (b), bottom) where most 

ethods confused the class with the polyp class and the top two 

eams ( adrian, sahadate ) classified it as cancer class. Looking up 

nto our expert consensus notes we found that these samples had 

ard to reach agreement cases (i.e., suspicious and HGD classes; 

nd cancer and polyp region). 

Hypothesis V: Instead of hard scoring of predicted mask classes 

hat penalizes the method performance heavily in presence of 

arginal visual difference between classes and variability due to ex- 

sting expert consensus in the dataset, probability maps can be used 

o mitigate such problem. Additionally, teams should be encouraged 

o report results for different batch size and learning rates for obtain- 

ng better insight regarding performance especially when datasets are 

rone to have some incorrect labels. 

. Conclusion 

We provided a comprehensive analysis of the deep learning 

ethods built to tackle two distinct challenges in the gastroin- 

estinal endoscopy: a) artefact detection and segmentation and b) 

isease detection and segmentation. It has been possible by the 

rowd-sourcing initiative of the EndoCV2020 challenges. We have 

aid out the summary of the methods developed by the top 17 

articipating teams and compared their methods with the state- 

f-the-art detection and segmentation methods. Additionally, we 

issected-different paradigms used by the teams and present a de- 

ailed analysis and discussion of the outcomes. We also suggested 

athways to improve the methods for building reliable and clini- 

ally transferable methods. In future, we aim towards more holistic 

omparison of the built methods for clinical deployability by test- 

ng for hardware and software reliability in clinical setting. 
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