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Abstract: The present study aimed to investigate whether attenuated total reflection 

Fourier-transform infrared (ATR-FTIR) spectroscopy coupled with Multivariate 

Analysis could be applied to discriminate and classify among breast tumour molecular 

subtypes based on the unique spectral “fingerprints” of their biochemical composition. 

The different breast cancer tissues and normal breast tissues were collected and 

identified by pathology and ATR-FTIR spectroscopy respectively. The study indicates 

that the levels of the lipid-to-protein, nucleic acid-to-lipid, phosphate-to-carbohydrate 

and their secondary structure ratio, including RNA-to-DNA, Amide I-to-Amide II, and 

RNA-to-lipid ratios were significantly altered among the molecular subtype of breast 

tumour compared with normal breast tissues, which helps explain the changes in the 

biochemical structure of different molecular phenotypes of breast cancer. Tentatively-

assigned characteristic peak ratios of FTIR spectra reflect the changes of the 

macromolecule structure in different issues to a great extent and can be used as a 

potential biomarker to predict the molecular subtype of breast tumour. The present 

study acts as the first case study to show the successful application of IR spectroscopy 

in classifying subtypes of breast cancer with biochemical alterations. Therefore, the 

present study is likely to help to provide a new diagnostic approach for the accurate 

diagnosis of breast tumours and differential molecular subtypes and has the potential to 

be used for further intraoperative management. 

 

Keywords: Breast tumour; FTIR spectroscopy; Multivariate analysis; Characteristic 

peaks ratio 
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INTRODUCTION 

Breast cancer is the most common malignancy worldwide threatening women's 

health, with the first incidence rate and fifth leading cause of cancer deaths in China [1, 

2]. Such a high mortality is a result of late presentation and diagnosis at clinical stage 

III or IV. There is growing evidence that the different molecular subtypes and treatment 

time of breast cancer are associated with distinct outcomes [3]. Therefore, early 

detection is still the cornerstone for improving the outcome and survival of patients 

with breast cancer. Currently, the results of pathological diagnosis and 

immunohistochemistry (IHC) are often used as a diagnostic gold standard to identify 

the four major intrinsic molecular subtypes of breast cancer. Oestrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) 

statuses are well-established biomarkers for distinguishing breast cancer subtypes [4], 

while Ki-67 is employed as a prognostic indicator in these patients [3, 5]. To achieve 

this, breast tissue sections have to be stained by IHC for antibody of ER, PR, HER2 and 

Ki-67, respectively named Luminal A, Luminal B, HER2-positive and triple negative 

breast cancer (TNBC) [6, 7]. Since the early diagnosis and treatment of breast cancer 

patients is so important, it is time to find a novel approach to quickly and accurately 

diagnose tumour molecular subtypes in the early stages. 

Recent studies have demonstrated the applicability of infrared (IR) spectroscopy 

in rapid, non-destructive and in situ diagnosis of various diseases and biological 

systems, including the characterization of cell cycle events, toxic damage and cancer 

diagnosis [8-10]. It is well known that the initiation and development of cancer is 

manifested at a molecular level before morphological changes occur, while the 

molecular changes cannot be easily detected by traditional methods or even 

pathological examinations [11]. Attenuated total reflection Fourier-transform infrared 

(ATR-FTIR) spectroscopy is based on the concept of light absorption, which 

subsequently causes vibrations of the chemical bonds of biomolecules in the mid-

infrared (IR) region (4000-400 cm-1) [12, 13]. As an emerging biochemical analytical 

tool, with a good signal-to-noise ratio, as well as high-resolution throughput over the 

entire spectral region, ATR-FTIR spectroscopy can provide biochemical information 

for proteins, nucleic acids (DNA/RNA), lipids and carbohydrates in biological samples 

[14, 15]. In addition, alterations in protein secondary structure and protein 

phosphorylation can also be identified from the vibrations of the respective functional 
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groups [16, 17]. In view of the different chemical bond absorption of biochemical 

samples in the infrared region (including 1800 cm-1 to 900 cm-1), FTIR spectroscopy 

helps to investigate the chemical structure of the different molecules [18]. The 

vibrational spectrum in the 1800-900 cm -1 region is commonly referred to as the “bio-

fingerprint” region [19]; absorbance in 1750-1700 cm-1 is primarily associated with 

C=O stretching vibrations of lipids [20, 21]; regions at 1700-1580 cm-1 (C=O stretch of 

proteins and particularly sensitive to changes in β-sheet formation) and 1580-1480 cm-

1 (N–H bend of proteins) can be respectively assigned to protein secondary structures 

of Amide I and Amide II; the 1280-1185 cm-1 region is known as the nucleic acid and 

phosphate region; 1180-900 cm-1 region denotes vibrations related to carbohydrates [8, 

22, 23]. 

A number of previous studies used FTIR spectroscopy to explore the classification 

and staging of various tumours, including the identification of benign and malignant 

tumours [24, 25]. The main purpose of this study was to use ATR-FTIR spectroscopy 

combined with multivariate identify in order to classify different molecular subtypes of 

breast cancer tissues. Further exploration of the characteristic spectral changes 

associated with different molecular subtypes, was also carried out. 

 

Materials and Methods 

Study participants 

With the approval of the Ethics Committee (Approval NO.: 2015yx11kt46), we 

obtained fresh breast mass samples (42 cases) from the Department of Breast Surgery 

in the Guilin Medical University Affiliated Hospital. Age, histological type and WHO 

grade for all samples are summed up in Table 1. These pathologies are all derived from 

Chinese women, aged 18 to 82 years old, the median age is 46(The median age of the 

normal group is 37, and the median age of the tumour group is 47). Tissue blocks 

consisted of breast cancer (n=28 patients), breast fibroadenoma (n=7 patients) and 

normal breast (n=7 patients). 

H&E staining 
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The isolated breast tissue was fixed in 10% formalin for 24 h and then paraffin-

embedded. Three consecutive tissue sections were obtained using a microtome and the 

first 4-μm-thick tissue sections were transferred onto a glass slide after de-waxing and 

stained with stained with haematoxylin and eosin (H&E) for histopathological 

examination by two pathologists. 

Immunohistochemical staining 

Another 4-μm-thick tissue section from almost the same position of the same 

sample was collected to carry out the immunohistological staining. The tissue sections 

were submitted to roasting overnight, conventional de-waxing and hydration treatment. 

The tissue was circulated with a gradient alcohol, followed by incubation with 3% H₂O₂ 

in methanol at room temperature for 30 min to inactivate endogenous peroxidation 

enzyme. The sections were subsequently immersed in a cup of 0.01 M citrate buffer 

(pH 6.0) and placed in a high-pressure cooker for 2 min for antigen repair. Subsequently, 

the sections were incubated in 3% H₂O₂ blocking medium for 5 minutes, washed with 

distilled water and incubated for 60 minutes at room temperature with mouse 

monoclonal antibody against the following antigen: ER (1D5, 1:50; pH 7.3; Dako, San 

Jose, USA), PR (PR 636, 1:50; pH 7.3; Dako, San Jose, USA), HER2/neu (CB11, 1:50; 

pH 7.3; Novocastra, Newcastle, UK) and the cell proliferation marker Ki-67 (sp6) 

rabbit monoclonal antibody (REF275R-18). Slides were rinsed in TBS and then 

incubated for 35 minutes in DAKO Duet (code: K0492) biotinylated goat anti-

mouse/rabbit secondary antibody (1:100). Followed by rinsing in TBS, dropping DAB 

working solution (code: 896102, Kem-En-Tec, Copenhagen, Denmark). 

Immunoreaction was visualized under a light microscope through adding DAB for 3 

min. Staining was carried out according to the manufacturer's instructions by staining 

the slides with DakoREAL haematoxylin (code: S2020) for 1 minute and covering the 

glass with the mounting media. Internal positive control was normal breast epithelium 

for ER and PR. ER, PR and HER2 were positive for ER, PR and HER2 positive breast 

cancer, respectively. Negative control was evaluated by replacing the primary antibody 

with PBS. 

Tissue preparation for ATR-FTIR 

Parallel 10-μm-thick tissue section was obtained from the paraffin-embedded 

blocks and de-waxed by immersion in three sequential baths of fresh xylene (5 min), 
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then washed and cleared in an acetone bath for a further 5 min, and then fixed on a 

Low-E IR reflective slide (Kelvey Technologies, Chesterland, OH, USA) for ATR-

FTIR spectroscopy [26]. The tissue slices were air-dried and then stored in a desiccator 

until analysed. 

ATR-FTIR spectral measurement 

The prepared samples on Low-E IR reflective slides were investigated using a Bruker 

Vector 70 FTIR spectrometer (Bruker Optics) equipped with a Helios ATR attachment 

containing a diamond crystal (≈ 250 μm × 250 μm sampling area) (Bruker Optics Ltd., 

Coventry, UK) and a HYPERION microscope, which contained a liquid nitrogen-

cooled detector. The instrumental settings were optimized: ATR sampling mode, 64 

scans, and 8 cm-1 spectral resolution giving 4 cm-1 data to spacing [27]. Tissue sections 

were acquired in a random manner to avoid deviations. Thus, 20 spectra of each sample 

were randomly obtained from different locations of the dried frond samples. Prior to 

starting the next slide, the ATR crystal was cleaned with distilled water and dried with 

dry tissue paper before the acquisition of spectral background. A new background 

spectrum was recorded after every 10 spectral measurements. 

Computational analysis 

IR spectra obtained from interrogated samples were converted into absorbance by 

Bruker OPUS software. Then the raw data was converted to TXT files [28]. Data pre-

processing and multivariate analysis were then performed within IRootLab toolbox 

(http://irootlab.googlecode.com/)[28] running on MATLAB R2015b (The Maths 

Works, Natick, MA, USA). From the multidimensional analysis and consideration of 

the IR spectral dataset, the most important factors can be obtained by minimizing the 

dimension of the multivariate analysis techniques, for instance, by employing principal 

component analysis (PCA) followed by linear discriminant analysis (LDA) [19, 29, 30]. 

PCA is an unsupervised, data processing technique that allows for the reduction of 

variables, which can produce major components (PCs) that can capture more than 95% 

of the difference in the original variance dataset in the spectral dataset [31]. LDA is a 

supervised technique that forms a linear variable combination depending on the 

different classes. It can regenerate new variables, which are linear combinations called 

as “factors”. Each weighting factor is represented by a vector called "load vector". The 

http://irootlab.googlecode.com/
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function of the load vector seems to maximize the difference between the classes 

responsible for diagnosing the separation of the category over the variance [31]. LDA 

is often used after PCA to reduce computational complexity and improve the accuracy 

of identifying different categories [9]. Factors derived from PCA-LDA techniques, the 

most important contribution to the few factors can be used as Cartesian coordinates 

generates 1, 2 or 3 dimension scatter plots. While the scores plot allows visual 

classification, the derived cluster vector and loading plot determine the responsible 

wavenumber separation [26]. Each spectrum was cut at the “biochemical fingerprint” 

region, followed by rubber-band baseline correction, normalization to the Amide I peak 

(~1650 cm-1) and mean-centring [19]. After the above-mentioned pre-processing steps, 

cross-calculated PCA-LDA cross-calculated was applied to identify biochemical 

alterations that segregate the different groups from each other [18]. PCA was applied 

to the spectral dataset to reduce the dimensions of the datasets [32]. In order to interpret 

such complex biochemical information and avoid the spectral over-fitting, LDA was 

applied to discriminate differences between the classes [18, 33]. The scores plots and 

cluster vector plots were used to show the multivariate analysis’ results. In the scores 

plots, proximity in LD1 space between two groups means similarity of biochemical 

structure, while distance represents dissimilarity and separation. Cluster vector plots 

after PCA-LDA contributed to revealing biochemical alterations associated with each 

category in the spectra dataset. In order to simplify the identification of major 

biochemical changes in each group, cluster vector were used to represent the top six 

peaks in the cluster vector plots [18, 34]. The statistical significance of each linear 

contribution determines the discriminant (LD) and the subtype of category interval was 

achieved in the GraphPad Prism 7 (GraphPad Software, USA) through unpaired t-test 

and ANOVA analysis with Dunnett's T3 post hoc test. A probability (p) value of <0.05 

was considered to indicate the statistical significance for all tests. 

RESULTS  

Characteristics of breast tissues in H&E stained samples 

Small red arrows in Fig. 1A indicate the microscopic appearance of female normal breast 

tissue, which is characterized by a larger duct and acinus. Amount of adipose tissue can be 

seen admixed with these elements. Fig. 1B shows a fibroadenoma, which is 

characterized by the disappearance of normal breast lobular structure, tumor tissue by 
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the proliferation of duct and fibrous tissue composition, and visible proliferation of 

fibrous tissue compression gland. Fig. 1C-F illustrate pathological sections in different 

molecular subtypes of breast cancer. After the use of the microscope it can be observed 

that the arrangement of cancer cells is very irregular, large nuclei and deep staining, 

showing an increase of mitotic figures.  

Immunohistochemical identification  

The percentage of positively stained tumour cells was observed and evaluated 

under a microscope. ER/PR staining positive in the nucleus, while HER2 staining was 

positive in the cell membrane. Staining positive intensity evaluation criteria: light 

yellow for the weak positive (+), brown positive medium (2+), tan is strongly positive 

(3+). The results were blindly performed and revised by two pathologists. Being 

dependent on the results of immunohistochemical staining, each breast cancer sample 

was divided into Luminal A, Luminal B, HER2-positive and TNBC, see Table 1 in 

detail. Fig. 2 shows one of the immunohistochemical results identified as breast cancer 

tissue. Fig. 2A illustrated that the nuclei were stained tan, and the pathology reported 

the following: ER (70%, strongly positive), PR (80%, strongly positive), HER2 (0, 

negative) and Ki-67 was 5%. Fig. 2B showed that the nuclei and cell membranes were 

stained with brown or tan, and the pathology reported: ER (60%, strongly positive), PR 

(90%, strongly positive), HER2 (3+, strongly positive), Ki-67 was 30%. Fig. 2C 

showed that the membrane was stained with brown, and the pathology reported that ER 

(0, negative), PR (0, negative), HER2 (3+, strongly positive) and Ki-67 was 20%. Fig. 

2D showed that the nuclei and cell membranes were not stained as brown, and the 

pathology reported ER (0, negative), PR (0, negative), HER2 (0, negative), Ki-67 was 

30%. Obviously, the immunohistochemical results were judged to be Luminal A, 

Luminal B, HER2-positive, and TNBC from A to D. 

Diagnostic segregation of breast cancer with Multivariate analysis 

Fig. 3A shows the average spectra for normal breast tissue (n =7) and breast 

tumours (n=35) after pre-processing. Overall, the IR spectra of breast tumours appear 

to overlap with the normal breast spectra in the biochemical cell fingerprint region, 

making it difficult to distinguish any subtle differences, except the absorbance at 

~1250-1000 cm-1 (protein and nucleic acid), which is slightly increased compared to 

normal and benign tissue. The spectral data were subsequently explored by multivariate 
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analysis due to the evident overlap and the delicate biochemical changes in the breast 

tissue. In this more discriminatory approach, each spectrum becomes a point for 

determining the optimal separation and correlation wavenumbers. By this discriminant 

analysis, clear clustering of normal tissue and breast cancers was observed, as shown 

in the 2-D PCA-LDA scores plots (Fig. 3B).  Fig. 3B revealed that the less degree of 

overlap in LD1 between the spectral point from breast cancer and normal tissue while 

no obvious separation in LD2. In other words, the contribution of LD1 in the tumour is 

relatively large relative to normal breast, while LD2 was less. Fig. 3C shows the 

difference of the spectral points (mean±SD) in LD1 between normal and tumour, the 

result shows distance in LD1 space from the spectral points (mean±SD) has been found 

statistically significant (p <0.0001). To be exact, breast cancer and fibroadenoma can 

be separated in LD1, especially in breast cancer. Fig.3D shows the corresponding 

cluster vector plot (peak detection plot) with wavenumbers discriminating the benign 

and breast tumour cases from normal tissue. Clearly, the major changes in benign tissue 

occur in protein molecules (wavenumbers around 1650 cm-1, 1550 cm-1 and 1450 cm-

1), whereas malignant tissue differs in protein and nucleic acid molecules 

(wavenumbers around 1650 cm -1, 1450 cm-1 and 1080 cm-1) [22]. The corresponding 

loadings plots according to pairs are displayed with the top six wavenumbers marked 

in LD1 spaces (Fig. 3E & F). The wavenumbers derived from the spectral dataset of 

fibroadenoma were the following, with an importance order: 1541 cm-1 (Amide II), 

1493 cm-1 (amino acid; ν[COO−]), 1171 cm-1 (νC-O of side chain group in proteins), 

1716 cm-1 (C=O stretching vibrations of lipids), 1458 cm-1 (σasCH3 of protein and 

lipids), 1066 cm-1 (νsPO2
− of nucleic acids). Those derived from cancer in the LD1 

space were similar to fibroadenoma , the top six wavenumbers are 1452 cm-1 (σasCH3 

of protein and lipids), 1001 cm-1 (νsPO4= of RNA), 1655 cm-1 (Amide I), 1061 cm-1 

(glycogen), 1238 cm-1 (νasPO2− of nucleic acids) and 1541 cm-1 (Amide II) [35]. 

Inter-individual vs. disease differences 

As shown in Fig. S1A (see ESI), there is almost no evidence of inter-individual 

variability in the spectral averages of all data from breast cancer, while the 2-D cross-

calculated LDA score plot shows the individual differences in IR spectra of the patient. 

As shown in Fig. S1B (see ESI), the results from cross-calculated LDA are excellent, 

because the classes are almost separated; just a small overlap is seen among all subtypes. 

The difference in the mean spectrum of FTIR spectra originates from different cancer 
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subtypes which has been shown in Fig. S1C (see ESI). The average absorbance of all 

the breast tumour samples is higher than normal between 1750 -1650 cm-1 (lipid) and 

1250-1080 cm-1 (nucleic acid), peaking at 1700 cm-1 and 1230 cm-1. In addition, 

malignant and benign tissue changes followed an opposite trend at 1580-1480 cm-1 

(protein) [22]. 

Classifying subtypes of breast cancer with Multivariate analysis 

Two-category discriminant analysis was performed using cross-calculated PCA-

LDA in FTIR spectroscopy to identify wavenumber in each spectrum to be the best 

separation and the spectral variance between the response categories. Then, 3-D, 2-D, 

and 1-D PCA-LDA scores plots were generated for visualization. Fig. 4A shows the 

overlap of data and spectral variations among each cancer subtype. It is difficult to 

identify segregation with other categories, except for TNBC and the normal group. Fig. 

4B indicates these subtypes of 2-D plots that have been partially divergent in LD1 while 

overlapping in LD2. A clearer interpretation of segregation among each category by 

using PCA-LDA was presented using 1-D plots. Fig. 4C reveals a separation of the 

molecular subtypes with overlapping levels compared to normal breast. It is obvious 

that the contribution of the LD1 is partially overlapped with those tumours within a 

certain range, but the inter-class variance between tumour subtypes and normal breast 

tissue is significant. The difference of the spectral points (mean ± SD) in LD1 between 

classes is statistically significant (p <0.001). Obvious separation is observed between 

the normal tissue and diverse types of tumours following ATR-FTIR spectroscopy, with 

Luminal A and Luminal B being the most apparent. Fig.4D demonstrates the 

corresponding cluster vector plot with wavenumbers discriminating the fibroadenoma 

and breast tumour subtypes from normal tissue. The cluster vector plot represents the 

discriminant variables in the corresponding fractional plot that is dependent on the peak 

intensity. The top six differences in the wavenumbers were presented. Figs. S2 (see ESI) 

shows the corresponding loadings plots identifying wavenumbers responsible for 

separation in LD1. The loadings plot of the contribution of LD1 shows the majority of 

the difference between normal. The wavenumbers in the loadings plots show that each 

molecule subtype has a strong change at 1068 cm-1 or 1066 cm-1 (nucleic acid) except 

for Luminal B. Luminal B showed the main changes at 1680-1380 cm-1 (Amide I and 

Amide II), while HER2-positive at Amide I, Amide II, nucleic acid and glycogen. Table 

2 has listed the principal six biomarkers of each category [35]. Luminal A mainly 
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showed RNA (1001 cm-1), Amino acid (1450 cm-1,1493 cm-1) and Amide II (1541 cm-

1); Luminal B mainly showed Amide I (1653 cm-1, 1614 cm-1), Amide II (1574 cm-

1,1541 cm-1) and amino acid (1452 cm-1, 1392 cm-1); HER2-positive mainly showed 

protein (1159 cm-1), Nucleic acid (983 cm-1), Amide I (1662 cm-1) and Amino acid 

(1479 cm-1); and TNBC predominantly showed C=O stretching of Lipid (1716 cm-1), 

Amide I (1683 cm-1, 1647 cm-1) and nucleic acid (1066 cm-1). 

Characteristic peaks ratio in IR spectroscopy 

Since the specific wavenumber in FTIR spectrum can be used as a marker of 

biochemical structure in cells, the absorbance intensity after simple pre-treatment, (cut 

at the fingerprint region, rubber-band baseline correction and normalization to the 

Amide I peak) can be used to assess the biochemical structure of the target cells. It is 

necessary to further excavate the ratio of the intensity of the characteristic peaks derived 

from different spectra as a spectral marker for determining the molecular subtype of 

tumour. Specifically, the absorbance intensity of breast cancer in lipid-to-protein ratio 

was higher compared to normal tissue. The ratios for the two groups of Luminal B and 

TNBC, specifically, were significantly higher than the other subgroups (Fig. 5A). The 

RNA-to-DNA ratio was increased significantly in cancer tissue, especially for Luminal 

B and TNBC (Fig. 5B). Fig. 5C shows that the phosphate-to-carbohydrate ratio is 

decreased in fibroadenoma, while it increased in tumour tissue and in particular for the 

TNBC group. Fig. 5D indicated the significance of difference in the Amide I-to-Amide 

II ratio of various tumour subtypes compared to normal breast tissue. The absorbance 

ratio was higher in various tumour subtypes, with TNBC being significantly higher than 

any other subgroup. Fig. 5E and F show the ratio of RNA-to-lipid and nucleic acid-to-

lipid, respectively, showing a completely synchronized tendency. The ratio of other 

tumour subtypes was significantly higher than that of normal tissues except from 

HER2-positive.  

Discussion 

In order to introduce a screening opportunity for early breast cancer cases in 

clinical practice, we introduced FTIR spectroscopy as a tool to identify breast cancer 

and classify its molecular subtype. This exploratory study has demonstrated that ATR-

FTIR spectroscopy, coupled with multivariate analysis, has the potential to distinguish 

between normal breast and tumour tissue (Fig. 3), as well as between various subtypes 
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thereof (Fig. 4). The separation of cancerous from normal tissue was also found to be 

consistent with previous studies in a number of different tissues [26, 36, 37]. Results 

from the 2-D LDA score plot have indicated spontaneous clustering of similar 

molecular subtypes, which indicates the common biochemical characteristics of 

specific tumour subtypes within the cluster. In other words, breast cancer with different 

molecular subtypes has different biochemical characteristics, and it can be clustered by 

FTIR spectroscopy. Multivariate analysis with PCA-LDA and spectral visualization 

were also performed, which showed a good discrimination among the different 

subtypes and identified tentative biomarkers [38]. One-D score plots and wavenumber 

assignment in LD1 allowed the identification of molecular markers that can be utilized 

to separate normal breast tissue from tumours (Fig. 4C & D). To some extent, the result 

reflects the main changes in macromolecule structure and content in different subtypes 

of breast cancer. Specifically, the average spectra from malignant tumours showed 

increased intensity of nucleic acid region (1250 cm-1 to 900 cm-1), which could be due 

to tumour cell overgrowth and replication. It was further found that there were 

significant differences in the following biological fingerprint regions, including 1580-

1480 cm-1 (Amide II), 1280-1185 cm-1 (nucleic acid and Amide III) and 1750-1700 cm-

1 (lipids). The most prominent result of the two-category discriminant analysis was the 

contribution of peak intensity in Luminal A, Luminal B, HER2-positive, and TNBC. 

Compared with the normal tissue, the cluster vector plot and the corresponding loadings 

plots illustrate the intrinsic molecular differences between the molecular subtypes and 

the associated contribution wavenumber. The results indicated that biochemical 

structure changes of nucleic acid in molecular subtypes of breast cancer are basically 

very similar, whereas the wavenumber that were representative of proteins and lipids 

showed significant differences. Obviously, the alteration of protein structure was the 

most complex in HER2-positive. This means that different molecular subtypes have 

different structural changes in the process of tumour formation. It may be closely 

related to the phosphorylation of the relevant signalling pathway in the process of 

tumour formation [39, 40]. Fig. 4C and D indicated that the inter-class similarities and 

differences in molecular basis from each category may be attributed to the inherent 

heterogeneity of breast tumour tissue [41]. Different molecular subtypes of breast 

cancer may contain separate matrix elements, including some changes in nucleic acid 

content and protein structure. Although there is a partial overlap of the spectra between 

the different categories, the important molecular biomarkers are identified by 
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wavenumber allocation, leading to the separation of normal tissue from the different 

molecular subtypes (Fig. S2, see ESI). 

Our experimental results are the proof that the changes in normal tissue to tumour 

tissue are associated with structure and quantitative changes in lipid, protein and nucleic 

acid [42]. So, the absorbance ratio of the characteristic spectrum was used to explore 

and distinguish between normal tissue and molecular subtype in tumour tissue. Early 

studies have shown that the ratio of lipids to proteins is associated with the progress of 

malignant tumours [26, 43]. The ratios of lipid-to-protein, RNA-to-DNA, RNA-to-lipid 

or nucleic acid-to-lipid have also been used as potential biomarkers to predict cell 

proliferation or malignancy degree in normal or malignant tissue [44-46]. The results 

increased significantly among those categories, especially in Luminal B and TNBC, 

which may be closely associated with the degree of differentiation and malignancy in 

breast cancer [47]. This is similar to Argov and Mordechai's main findings [48, 49]. 

However, the group of HER2-positive may have its own characteristics due to its 

biochemical structure. In these breast molecular subtypes, TNBC has a clear advantage, 

which is consistent with the clinical results that more high degree of malignancy [50-

52]. The Amide I and Amide II vibrations of the protein are almost independent of the 

side chain vibrations, which depend on the secondary structure of the main chain and 

are the most commonly used amide vibrations for secondary structure analysis [53]. So 

Amide I-to-Amide II ratio is used as a potential biomarker to explore the changes of 

protein secondary structure in tumour tissue. The result indicated that the proportion of 

tumour tissue was increased, especially with respect to TNBC. However, there is no 

difference of Amide I-to-Amide II ratio in Cohenford's study of cervical cancer smears 

[54]. We suspect that this ratio may be related to the alterations of the secondary 

structure (C=O stretch and changes in β-sheet formation) of the protein in different 

subtypes, and it might be related to the progression of the tumour [55]. Even more 

exciting was the fact that the trend of Lipid-to-protein ratio, RNA-to-DNA ratio, 

phosphate-to-carbohydrate ratio and Amide I-to-Amide II ratio remained consistent: all 

of the ratios in each subtype were higher than that in normal breast tissue with a 

different degree of increase, while normal tissue and fibroadenoma shared similar ratios 

(Fig. 5C). These results may provide information about the metabolism and 

transformation in cancer cells [56]. It may also predict a similar biochemical change in 

different subtypes of breast cancer. Considering that the difference in age may affect 
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the results obtained, we have further analyzed and explained the influence of age on 

our results. We try to stratify all cases by the median age (46 years), and explored the 

mean ±SD of the spectral points respectively. Spectroscopy results indicate that there 

is no significant statistical difference between the different age groups in the tumour 

tissue (Fig. 6, p>0.05). It needs further explanation that the statistical significance of 

normal tissues in different age groups may be caused by the sample size. In other words, 

age alone has not significantly altered our results. 

Previous studies have used spectroscopy to study breast cancer but almost none 

took into consideration the different molecular subtypes as their main focus was to use 

spectroscopy as a screening, diagnostic or monitoring tool for breast cancer. [57, 58]. 

Other similar studies have shown that this tool can also classify grades of pathological 

breast tissue, monitoring treatment effects and identify distinctive biomarkers in each 

category [59, 61]. This proves that FTIR spectroscopy can not only identify breast 

cancer, but also precisely recognize peak assignments associated with the “bio-

fingerprint” region and assess their corresponding contribution. In addition, it was also 

found that different molecular subtypes can be distinguished and they have distinct 

peaks ratios via the sensitive IR spectroscopic method. These peak ratios may be used 

biomarkers of breast cancer between the different molecular subtypes. 

It is well-known that the prognosis of patients with breast cancer is increasingly 

dependent on early diagnosis and pathologic subtype results [62]. So far, 

histopathological identification has been the gold standard for the diagnosis of breast 

cancer and the principal means to identify different subtypes. The proliferation marker 

Ki-67 has been shown to be an independent predictor and prognostic factor in early 

breast cancer [63]. Additionally, identification and typing of breast cancer are widely 

used in decision-making and follow-up treatment programs for a mammary surgeon or 

oncologist. In terms of the current pathological diagnosis of breast tumour types, it is 

necessary that at least two professional and technical personnel are present for 

observation and analysis. However, the pathological tissue collection requires an 

invasive procedure, a certain pre-treatment time and, to a certain extent, is dependent 

on the subjective judgment of pathologists. Fortunately, we have found that using FTIR 

spectroscopy as a tool for tumour diagnosis and typing can overcome these 

disadvantages, and even has the potential to determine the surgical margins allowing 

for more accurately excised tumour tissue. In the meantime, the intensity ratio of the 
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associated characteristic peaks can be used as a proliferation index and biomarker for 

the different tumour subtypes. Recent research using plasma to diagnose and 

distinguish different diseases is also a future research direction [64]. Currently, however, 

we are still unable to precisely assign the spectral peaks to specific molecules, due to 

the complexity of the structural changes in the process of tumourigenesis. Other 

limitations of the study include the small number of cases studied and unpredictable 

disease severity. It is necessary to establish a database to identify distinct tumour 

subtypes using FTIR spectral markers in the future. Further validation of these 

approaches exploiting other bio-spectroscopic or nanotechnology-based techniques 

using larger and architecturally more robust datasets is also required. 

 

Conclusion 

In this exploratory study, we demonstrate that ATR-FTIR spectroscopy can easily 

identify and classify breast tumour subtypes after the interrogation of breast tissue from 

breast mass. Multivariate analysis of the spectral information revealed specific changes 

associated with malignant tumour subtypes, especially the structural changes of 

proteins in different molecular subtypes of breast cancer. The responsible changes for 

this segregation were primarily alterations in the lipid-to-protein, RNA-to-DNA, 

phosphate-to-carbohydrate, Amide I-to-Amide II, RNA-to-lipid and nucleic acid-to-

lipid ratios, with a marked increase associated with tumour progression and subtyping. 

The difference of the peak intensity ratio of FTIR spectra reflects the change of the 

macromolecule structure in the tissue to a great extent and can be used as a potential 

biomarker to predict the molecular subtype of discrete tumour. In conclusion, ATR-

FTIR spectroscopy can easily identify and classify breast tumour subtypes after the 

interrogation of breast tissue from breast mass, which could become an additional tool 

for the pathological interpretation of breast cancer.  
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