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Abstract

The present study aimed to compare the predictive acuity of latent class regression (LCR)

modelling with: standard generalised linear modelling (GLM); and GLMs that include the

membership of subgroups/classes (identified through prior latent class analysis; LCA) as

alternative or additional candidate predictors. Using real world demographic and clinical

data from 1,802 heart failure patients enrolled in the UK-HEART2 cohort, the study found

that univariable GLMs using LCA-generated subgroup/class membership as the sole candi-

date predictor of survival were inferior to standard multivariable GLMs using the same four

covariates as those used in the LCA. The inclusion of the LCA subgroup/class membership

together with these four covariates as candidate predictors in a multivariable GLM showed

no improvement in predictive acuity. In contrast, LCR modelling resulted in a 18–22%

improvement in predictive acuity and provided a range of alternative models from which it

would be possible to balance predictive acuity against entropy to select models that were

optimally suited to improve the efficient allocation of clinical resources to address the differ-

ential risk of the outcome (in this instance, survival). These findings provide proof-of-princi-

ple that LCR modelling can improve the predictive acuity of GLMs and enhance the clinical

utility of their predictions. These improvements warrant further attention and exploration,

including the use of alternative techniques (including machine learning algorithms) that are

also capable of generating latent class structure while determining outcome predictions,

particularly for use with large and routinely collected clinical datasets, and with binary, count

and continuous variables.
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Introduction

The limited acuity and clinical utility of generalised linear models (GLMs)

The potential utility of predictive modelling, using routinely collected data for diagnosis, prog-

nostication and health service planning, is one of five ‘novel capabilities’ that Wang et al. [1]

identified as pertinent to the application of data analytics in medicine and health. Long before

John Mashey first applied the term ‘Big Data’ in this context during the late 1990s [2], general-

ised linear models (GLMs) were used to develop clinical ‘risk scores’ based on much smaller

scale datasets [3]. Indeed, clinical prediction models (CPMs) remain popular for prognostica-

tion and are in widespread usage to this day, not least in cardiovascular medicine [4,5].

While CPMs and their wider utility remain contentious (beyond strict prognostication, and

particularly in prevention [6–9]), many of the standard statistical modelling techniques com-

monly used are on clinical datasets that remain relatively small—at least when compared to

contemporary notions of ‘Big Data’ [2]. A substantial statistical weakness of the commonest of

these (generalised linear models; GLMs) as a predictive tool is that they often fail to make full
use of the joint information available amongst all candidate predictor variables. This is because

these models rarely explore nonlinear relationships and interactions. Moreover, even when

analysts optimally parameterise the candidate predictors available, and carefully consider all

possible interaction terms between these, the clinical utility of GLMs is typically limited to pre-

dictions made at the population level [6,10], while predictions at the individual level often lack

precision (and with it, utility).

Although more sophisticated machine learning techniques may overcome the rigidity of

GLMs and analysts’ tendency to ignore (or overlook) nonlinear relationships and interactions,

population-level predictions generated using cutting edge machine learning techniques will

still be more reliable than individual-level predictions. Indeed, this bald fact applies to all pre-

diction modelling techniques, including those underpinning contemporary claims of ‘person-

alised’ or ‘precision medicine’ [11]. It is therefore critical to recognise that while it is possible

to determine what proportion of any given population will experience a specified outcome

with a reasonable degree of accuracy, all such models provide less accuracy in determining

outcomes for each individual within that population.

Meanwhile, a further epistemological consideration that commonly arises in CPMs (and

elsewhere) is the mistaken belief that the coefficient estimates of covariates included/retained

in the model indicate the extent to which each covariate contributes to the model’s overall pre-

diction (of the model’s specified outcome). This belief is mistaken because each covariate’s

coefficient estimate is generated conditional on the adjustment of all other covariates in the

model, such that the contribution of any one covariate is merged with that of all other covari-

ates included in that model. For this reason, what the coefficient estimate of each covariate

actually represents is the residual relationship between that covariate and the outcome subject
to the joint contributions made by all other covariates in the model considered simultaneously.

This situation is further complicated where any of the covariates included in the model

reflect events that occurred contemporaneously with or even after the specified outcome—in

this instance, the joint contributions made by all covariates would be subject to conditioning

on the outcome, which can have other adverse consequences on model interpretation [12–14].

In practice, the inclusion of covariates acting contemporaneously with or after the outcome’ in

prediction modelling is likely to be used only where the aim is to estimate the values for vari-

ables whose measurements are missing, imprecise or challenging to measure (i.e. in modelling

that aims to achieve what might be called ‘predictive interpolation’ for diagnostic and related

measurement/ascertainment purposes). These issues aside, it is important to stress that the

coefficient estimates of all covariates (with the exception of the covariate closest in time to the
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outcome) cannot be causally interpreted, as they will be subject to inferential bias known as

mediator bias [15], which undermines causal interpretation of their coefficients due to the so-

called ‘Table 2 Fallacy’ [16].

Due to these caveats, predictions that are generated using GLMs cannot address the two

key concerns of attending physicians, namely: “Which of the covariates (i.e. ‘predictor’ vari-

ables) are amenable to clinical intervention, so as to prevent or mitigate any adverse outcome

(or promote and amplify any favourable outcome) in each (or all) of these patients?” and

“Which particular patients will experience an adverse (or favourable) outcome?”. To address

the first of these questions, analysts need to switch their focus from predicting outcome values

to estimating each of the relationships between covariates considered plausible targets for

intervention and the outcome—an approach that can capitalise on recent advances in causal

inference modelling techniques [17]. To address the second question, the best that can be

achieved is to identify clinically meaningful subgroups of patients with shared characteristics

that set them apart from other (subgroups of) patients—a relatively novel approach that

involves multivariable ‘risk profiling’.

Improving the acuity and clinical utility of predictive modelling for

prognostication

Multivariable risk profiling can be achieved using latent class analysis (LCA) in which the

exploration of nonlinearity, and of important interactions amongst included covariates, forms

an integral (albeit implicit) part of classifying patients into subgroups [18]. Despite these bene-

fits, the clinical utility of the resulting latent classes ultimately depends upon the extent to

which this approach optimally exploits the joint information amongst available covariates.

This approach perhaps has greatest clinical utility where there are: (i) factors known to be asso-
ciated with the outcome (which therefore facilitate prediction); but (ii) there are no known,

modifiable causes of the outcome, or aetiological understanding is poor/contested (as is the

case with many rare, novel or complex diseases). Indeed, providing that the specified outcome

is excluded from the LCA process (to avoid conditioning on the outcome) [14], combining

LCA class membership with candidate predictors provides increased complexity that can help

exploit the joint covariate information in multivariable GLM prediction. That said, it is impor-

tant to stress that causal interpretation of any covariate coefficients for latent class membership

in such models remains deeply flawed for the very same reasons that causal interpretations of

any covariate coefficient in prediction GLMs is flawed (as explained earlier). Ostensibly this

consideration might appear to limit the clinical utility of LCA-generated class membership,

and it is true that describing class membership as a ‘risk factor’ often generates, and commonly

reflects, a lack of understanding. Indeed, it risks conflating prediction and causal inference/

determination just as it does when individual covariates are described in similar terms as ‘risk

factors’ [7].

Thus, while classifying subgroups of individuals using LCA can improve analytical practice

and strengthen consideration of nonlinear relationships (and important interactions amongst

covariates), it does not address the clinical appetite for identifying so-called ‘modifiable risk

factors’, or for individually tailored risk probabilities (the so-called ‘holy grail’ of personalised

or precision medicine) [10]. This might explain why the use of latent variable methods in pre-

diction modelling remains largely under-explored, even though more sophisticated

approaches exist that incorporate such techniques within GLM and offer substantial advan-

tages for clinicians through subgroup risk profiling. These approaches involve the construction

of latent classes ‘across’ multivariable GLMs to: integrate consideration of nonlinear relation-

ships and important interactions between covariates; and better capture (and exploit) the joint
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information amongst the available/included covariates. For example, in what is termed latent

class regression (LCR) modelling, population data are partitioned into their constituent latent

classes and a distinct GLM is simultaneously generated for each class. In the process, this

approach accommodates any inherent population heterogeneity and thereby improves model

precision.

In its simplest form, LCR models may be viewed as two distinct modelling concepts under-

taken in a single estimation process: in the first, population data are probabilistically assigned

to latent classes (population subgroups); while, in the second, separate GLMs are derived for

each class/subgroup. The probability of an individual belonging to each class is based on simi-

larities in the characteristics displayed by individuals attributed to different classes. Impor-

tantly, the assignment of individuals to classes is not limited to just those covariates available

for analysis, since outcome differences attributable to unknown (i.e. latent) influences are also

accommodated, and without inappropriate conditioning on the outcome. Individuals may

thus belong to more than one class, with the sum of probabilities over all classes being one.

Within each class, distinct GLMs are generated, with the selection of covariates acting as pre-

dictors (and their model coefficients) permitted to vary from one class to the next. In this way,

by ensuring that the consideration of potential nonlinearity and possible interactions is inte-

gral to the application of LCR models, these models should exploit the covariate joint informa-

tion available in a more consistent fashion and thereby strengthen the acuity of the prediction

achieved. An additional benefit of this approach is that the latent classes/subgroups identified

using LCR may also strengthen the clinical utility of the prediction achieved because any varia-

tion in the risk of the outcome amongst different classes/subgroups can be used to target diag-

nostic, therapeutic or palliative resources more precisely and efficiently.

The aim of the present study was therefore to explore whether LCR models might improve

the accuracy and precision of predictions at the population and individual level, by comparing

LCR-generated predictions to standard GLM and LCA-informed GLM (including the use of

LCA-generated class membership as either the only candidate predictor in univariable GLMs,

or as an additional candidate predictor alongside all other available covariates in multivariable

GLMs). We thus explore four models offering progressively more complex exploitation of the

individual and joint information available from the covariates available for consideration as

candidate predictors. To this end, the analyses that follow use data (on age, sex, haemoglobin

level and diabetes) that are routinely available in a clinical context (cardiovascular medicine)

in which Cox proportional hazards time-to-event analyses are commonly used in prognostic

predictions of mortality, where survival and loss to follow-up are pertinent analytical

endpoints.

Methods

Study design, data collection and ethics

The analyses that follow used data from the United Kingdom Heart Failure Evaluation and

Assessment of Risk Trial 2 (UK-HEART2)–a prospective cohort of ambulant patients with

signs and symptoms of chronic heart failure (CHF) [19]. The study recruited 1,802 adult

patients with CHF who attended specialist cardiology clinics in four UK hospitals between July

2006 and December 2014 [20]. Patients were eligible for recruitment if they: were aged 18

years or older; had had clinical signs and symptoms of CHF for at least 3 months; and had a

left ventricular ejection fraction that was less than or equal to 45% [19,20]. Ethical approval

was obtained from the West Yorkshire research ethics committee (REC), reference 07/01205/

17 and eligible study participants were only recruited following written informed consent [21].

Additional information regarding UK-HEART-2’s study design, patient eligibility and
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inclusion criteria, together with a detailed description of the study cohort has been reported

elsewhere [19–21].

Statistical methods. To simplify the methodological comparisons undertaken in the pres-

ent study, the covariates selected as candidate predictors comprised two demographic variables

(age, sex), a single physiological parameter (haemoglobin level), and a single clinical character-

istic (type 2 diabetes). These four covariates were then used to generate prognostic predictions

of survival amongst UK-HEART-2 participants using four separate statistical Procedures (for

each of which the underlying principles and model building processes are described in detail

in Part 1 of the Supplementary Materials):

• Procedure 1 (standard GLM) involved single step multivariable Cox proportional hazards

models that considered all four covariates as candidate predictors of survival, with no con-

sideration of nonlinear relationships or interactions between covariates.

• Procedure 2 (LCA-informed GLM without the inclusion of covariates) involved two sets of

models, each involving two separate steps. First, LCA was used to identify any latent classes/

subgroups of participants using the four selected covariates, with individual membership to

each latent class allocated using modal (Procedure 2a) and probabilistic (Procedure 2b)

assignment. Second, univariable Cox proportional hazards models examined latent class

membership as the sole predictor of survival, with separate models generated using latent

class membership derived using modal (Procedure 2a) or probabilistic (Procedure 2b)

assignment.

• Procedure 3 (LCA-informed GLM with the inclusion of covariates) again involved two sets

of models, each involving two separate steps. First, LCA was used to allocate latent class

membership using modal (Procedure 3a) and probabilistic (Procedure 3b) assignment—as

in the first step of Procedure 2 (above). Second, multivariable Cox proportional hazards

models considered all four covariates (as used in Procedure 1) plus latent class membership

as multiple predictors of survival, with separate models generated using latent class member-

ship derived using probabilistic (Procedure 3a) or modal (Procedure 3b) assignment.

• Procedure 4 (LCR) involved single step latent class regression (LCR) models that considered

all four covariates as candidate predictors to simultaneously predict both latent class mem-

bership and survival within each latent class.

For all latent class models, entropy is reported which assesses the extent that individuals are

aligned predominantly to a single class (i.e. having a large modal probability, leading to a

greater entropy), as this facilitates clearer interpretation of each latent class as a near-complete

collection of individuals. Model optimisation in terms of the number of latent classes may thus

depend upon both the overall predictive acuity of the latent class structure (as evident from the

model BIC) and the intended utility of the determined classes thereafter (as indicated by the

model entropy). For this illustration, we prioritise overall predictive acuity.

All descriptive statistics and GLMs were generated using R (version 4.0.3) [22], as were the

model specification, selection, validation and bootstrapping procedures (Part 2 of the Supple-

mentary Materials). All latent class modelling was undertaken in Mplus (version 8.3) [23],

using the Mplus automation package to run models in Mplus from within R [22].

Results

The first column of Table 1 summarises the distribution of each covariate amongst participants

in the UK-HEART-2 cohort. These indicate that: the mean age of the cohort’s participants was

70 years; around two thirds (69.7%) were male; over a quarter (28%) had type 2 diabetes; the
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mean level of circulating haemoglobin was 13.5 g/dl; and 60% died during the period of fol-

low-up (equivalent to a median survival of 3.4 years).

In Procedure 1, the single step Cox proportional hazards models that considered all four

covariates as candidate predictors of survival found that the model in which all four covariates

were retained achieved the highest c-statistic (0.68)–a level of acuity considered ‘modest to

poor’ [24].

In Procedure 2, the LCAs conducted during the first step found that the 5-class model

which retained all four covariates had the most favourable BIC (Table 2). Applying this 5-class

model during the second step as the sole predictor of survival in a Cox proportional hazards

model, achieved a c-statistic of 0.64 using modal assignment (Procedure 2a) and 0.65 using

probabilistic assignment (Procedure 2b). These levels of acuity were both lower than that

achieved using Procedure 1 (c-statistic = 0.68).

In Procedure 3, the second step involved consideration not only of the four covariates as

candidate predictors of survival in the Cox proportional hazards model (as in Procedure 1),

but also membership of the same 5-class model developed in the first step of Procedure 2.

These analyses found that: the best fitting GLMs did not retain class membership as a predic-

tor; and forcibly retaining class membership in the model did not improve the c-statistics com-

pared to what was achieved in Procedure 1, regardless of how class membership was assigned

(modal: c-statistic = 0.68; probabilistic: c-statistic = 0.68).

In Procedure 4, with all four covariates eligible for inclusion as candidate predictors of both
latent class membership and the Cox Proportional Hazards models, some of the models were

over-parameterised and failed to converge. Nonetheless, the most favourable of the models

that successfully converged involved a latent class variable with just two classes and a c-statistic

of 0.86. When compared to the best performing models in Procedures 1–3, these results sug-

gest that Procedure 4 achieved a substantial improvement in predictive acuity of 18–22%.

Improvements in acuity aside, the most favourable of the LCR models had only three of the

covariates (age, sex, and type 2 diabetes) retained in the Cox proportional hazards models for

each membership class, and only one of these covariates (type 2 diabetes) and the remaining

covariate (haemoglobin level) retained as covariates in the LCR class membership model

(Table 3). Given that all four covariates were retained in the most favourable CPH models gen-

erated by Procedures 1 and 3, and in the LCA models generated in the first step of Procedures

2 and 3, these findings suggest that Procedure 4’s 18–22% improvement in c-statistic is likely

Table 1. Descriptive characteristics of the study cohort.

Study Cohort

N (%)

Participants 1,796 (100.0)

Deaths 1,061 (59.1)

Male 1,313 (73.1)

Type 2 Diabetes 504 (28.1)

Median (IRQ)

Survival Time (years) 3.40 (2.11, 5.78)

Mean (95% CI)

Age (years) 69.7 (69.1, 70.2)

Haemoglobin (g/dl) 13.46 (13.38, 13.54)

N = number; % = percentage; IQR = interquartile range; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0243674.t001
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to have been achieved by exploiting the available covariate information differently to each of

the three other Procedures. An indication of what this entailed can be found in the distribution

of covariate characteristics amongst the two classes of the most favourable LCR model

(Table 4), which suggest that these classes might warrant post-hoc labelling as ‘high risk’ and

‘low risk’ subgroups and might thereby offer substantial additional clinical utility (in guiding

the allocation of diagnostic, therapeutic and/or palliative resources).

A further key finding that emerges from closer examination of the Cox proportional haz-

ards models generated for each of the two classes within the optimum LCR model (Table 3) is

that the contribution made by each of the covariates therein varied by class, and was dissimilar

to the contribution these covariates made in those Procedures where all covariates were avail-

able for inclusion as separate candidate predictors (i.e. Procedure 1 and 3a/b). While the coeffi-

cient estimates of covariates in each of these models cannot be interpreted as measures of

causal effects [16], their contribution as candidate predictors is strikingly different and

depends upon the choice of model(s) used in each Procedure (Table 3). For example, the haz-

ard of death associated with being male was 1.7 to 1.8 in Procedures 1 and 3, whilst for Proce-

dure 4 being male was associated with a substantially higher hazard of death in one class

(HR = 2.07; 1.58, 2.71) yet was unrelated to the hazard of death in the other class (HR = 1.01;

0.64, 1.60). Likewise, Type 2 diabetes was consistently associated with an elevated hazard of

death in models generated under Procedure 1 and 3, while in Procedure 4 this covariate was

associated with both an elevated hazard of death in one class (HR = 1.26; 0.91, 1.75) and a

reduced hazard of death in the other class (HR = 0.43; 0.23, 0.82).

Table 2. Latent class analysis (LCA) model summaries—The preferred model from this step was used in Procedures 2 and 3.

Number of classes Number of parameters BIC Entropy Class Modal N (%) Probabilistic N (%)

1 6 19,818.53 - 1,796 (100.0) -

2 11 19,537.79 0.75 Class 1 1,452 (80.8) 1425.3 (79.4)

Class 2 344 (19.2) 370.7 (20.6)

3 16 19,445.74 0.74 Class 1 1,203 (67.0) 1175.0 (65.4)

Class 2 480 (26.7) 500.7 (27.9)

Class 3 113 (6.3) 120.3 (6.7)

4 21 19,422.35 0.80 Class 1 811 (45.2) 797.0 (44.4)

Class 2 486 (27.1) 504.4 (28.1)

Class 3 381 (21.2) 371.4 (20.7)

Class 4 118 (6.6) 123.2 (6.9)

5 26 19,421.44 0.67 Class 1 586 (32.6) 566.7 (31.6)

Class 2 470 (26.2) 459.7 (25.6)

Class 3 324 (18.0) 296.9 (16.5)

Class 4 317 (17.7) 368.6 (20.5)

Class 5 99 (5.5) 104.1 (5.8)

6 31 19,422.87 0.63 Class 1 527 (29.3) 517.7 (28.8)

Class 2 474 (26.4) 470.5 (26.2)

Class 3 276 (15.4) 247.7 (13.8)

Class 4 234 (13.0) 232.6 (13.0)

Class 5 186 (10.4) 229.8 (12.8)

Class 6 99 (5.5) 97.6 (5.4)

BIC = Bayesian information criterion; N = number; % = percentage; the optimal LCA model according to the BIC is emboldened.

https://doi.org/10.1371/journal.pone.0243674.t002
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Table 3. Covariate coefficients for each preferred model (Procedures 1–4) executed on the complete data, along

with median c-statistic and empirical 95% empirical confidence intervals generated through 10-fold cross-

validation.

Model (c-statistic: 95% CI) HR (95% CI)

Procedure 1—CPH (c-statistic = 0.69: 0.67, 0.71)

Type 2 Diabetic vs. not 1.35 (1.16, 1.59)

Male vs. Female 1.76 (1.47, 2.11)

Age (per 5 years) 1.24 (1.20, 1.29)

Haemoglobin (per g/dl) 0.82 (0.78, 0.86)

Procedure 2a—LCA (modal)/CPH (c-statistic = 0.65: 0.61, 0.67)
†Class 1 (N = 586) vs: Class 2 (470) 0.35 (0.30, 0.44)

Class 3 (324) 1.33 (1.10, 1.60)

Class 4 (317) 0.71 (0.57, 0.87)

Class 5 (99) 0.17 (0.10, 0.29)

Procedure 2b—LCA (probabilistic)/CPH: (c-statistic = 0.65: 0.65, 0.66)
‡Class 1 (32.0%) vs: Class 2 (26.0%) 0.26 (0.19, 0.34)

Class 3 (18.0%) 1.00 (0.71, 1.39)

Class 4 (18.0%) 1.58 (1.27, 1.97)

Class 5 (6.0%) 0.17 (0.09, 0.32)

Procedure 3a—LCA (modal)/CPH (c-statistic = 0.69: 0.66, 0.71)

Type 2 Diabetic vs. not 1.51 (1.13, 2.01)

Male vs. Female 1.80 (1.49, 2.17)

Age (per 5 years) 1.21 (1.13, 1.29)

Haemoglobin (per g/dl) 0.82 (0.79, 0.86)
†Class 1 (N = 586) vs: Class 2 (470) 0.77 (0.53, 1.10)

Class 3 (324) 0.84 (0.59, 1.19)

Class 4 (317) 0.92 (0.71, 1.20)

Class 5 (99) 0.79 (0.38, 1.67)

Procedure 3b—LCA (probabilistic)/CPH (c-statistic = 0.69: 0.66, 0.71)

Type 2 Diabetic vs. not 1.44 (1.01, 2.06)

Male vs. Female 1.70 (1.31, 2.21)

Age (per 5 years) 1.21 (1.11, 1.32)

Haemoglobin (per g/dl) 0.81 (0.76, 0.88)
‡Class 1 (32.0%) vs: Class 2 (26.0%) 0.78 (0.41, 1.49)

Class 3 (18.0%) 0.90 (0.55, 1.48)

Class 4 (18.0%) 1.15 (0.56, 2.36)

Class 5 (6.0%) 0.99 (0.35, 2.78)

Procedure 4 –LCR (c-statistic = 0.86: 0.84, 0.88)

Cox proportional hazards model
Class 1 (‘High risk’): Type 2 Diabetic vs. not 1.26 (0.91, 1.75)

Male vs. Female 2.07 (1.58, 2.71)

Age (per 5 years) 1.36 (1.28, 1.44)

Class 2 (‘Low risk’): Type 2 Diabetic vs. not 0.44 (0.23, 0.82)

Male vs. Female 1.01 (0.64, 1.60)

Age (per 5 years) 1.17 (1.06, 1.29)

(Continued)
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Clearly, the joint information available amongst each of the candidate predictors is selected

and utilised very differently by each of the Procedures examined in the present study (see

Table 3). Nonetheless, what sets the LCR model in Procedure 4 apart from the models used in

Procedures 1–3 is that LCR allows the predictive contribution from each covariate to be parti-

tioned across any latent substructures existing within the study population, such that covariates

are able to operate differently within each of the latent subgroups—thereby capturing and

reflecting population heterogeneity that is: unavailable to any of the other modelling Proce-

dures; and, crucially, of substantial (additional) value when predicting the specified outcome.

Discussion

The present study provides proof of principle that LCR models can provide substantive

improvements in predictive acuity and clinical utility over standard approaches using GLM

(with or without LCA). Nonetheless, there are several potential limitations that warrant con-

sideration and further investigation. In particular, it would be insightful to compare these

alternative approaches to prediction using larger datasets and larger numbers of covariates

than those chosen in this instance for illustration. This might involve comparing Procedures 1

through 4 using different numbers and sets of covariates from similar sized datasets; as well as

extending the application of LCR modelling to more complex scenarios and much larger data-

sets. At the same time, it is important to point out that, in the context of the dataset used in the

present study, the underlying ‘truth’ (and the data generating mechanisms involved) cannot be

known with certainty, and exploring the potential strengths (and analytical limitations) of

LCR would thus benefit from extensive simulations to evaluate a range of different circum-

stances for a range of different covariates and outcomes (including those comprising binary,

continuous and count variables) to evaluate whether LCR continues to perform well (and bet-

ter than GLM, LCA or both) under these circumstances. In the absence of subsequent research

along these lines, the ‘proof of principle’ offered by the present study remains speculative;

although it would also be worth exploring whether alternative approaches to prediction model-

ling might be incorporated into, or integrated with, the analytical principles underpinning

LCR modelling, such as the inclusion of similar dual modelling structures within machine

learning, to assess whether the apparent benefits of LCR models might be further enhanced.

These limitations, the present study successfully compared three different approaches for

incorporating latent variable methods within prediction modelling and demonstrated that

LCR models can outperform not only the standard approach using GLM (in which member-

ship of latent classes is ignored—Procedure 1), but also those that include latent class member-

ship identified using LCA to generate an alternative (Procedure 2) or additional (Procedure 3)

candidate predictor. This improvement in predictive acuity (which, as shown above, resulted

Table 3. (Continued)

Model (c-statistic: 95% CI) HR (95% CI)

Class membership model OR (95% CI)

‘High’ vs. ‘Low’ risk: Type 2 Diabetic vs. not 0.27 (0.09, 0.76)

Haemoglobin (per g/dl) 2.16 (1.64, 2.84)

c-statistic = concordance index; CI = empirical confidence interval obtained from the 2.5% to 97.5% centiles of

bootstrapped samples following 10-fold cross-validation; HR = hazards ratio; OR = odds ratio; CPH = Cox

proportional hazards; LCA = latent class analysis (modal assignment or probabilistic assignment); LCR = latent class

regression.

https://doi.org/10.1371/journal.pone.0243674.t003
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in a 18–22 percentage point improvement in c-statistic, despite the modest number of partici-

pants and covariates involved) illustrates the potential benefits of LCR for prediction model-

ling which, in this instance, shifted the acuity of prediction from ‘modest to poor’ to

‘substantial’ [24].

The present study also demonstrated that the latent class/subgroup structure that is revealed

through LCR may have potential clinical utility. This is because it might—as in the example

examined here—facilitate the identification of discrete subgroups (i.e. latent classes) of popula-

tions with very different underlying risks of the outcome. While such subgroups may not nec-

essarily be amenable to effective intervention (given that LCR models support prediction, not

causal inference [16]), they should help to improve the efficient allocation/targeting of out-

come-relevant diagnostic, therapeutic and/or palliative resources to those subgroups identified

as more likely to require (and perhaps even benefit from) these. However, to maximise the

clinical exploitation of latent subgroups identified using LCR (and similar techniques), model

selection must focus on those achieving higher entropy—where the probability of class assign-

ment is closer to one for most assignments—as this better aligns individuals/participants to a

predominant single class (rather than aligning individuals/participants to multiple classes).

For example, in Procedure 4, the 3-class model had lower predictive acuity but greater entropy

than the 2-class model (see Table 5); and had the identification of clinically meaningful sub-

groups been the focus of these analyses (as opposed to overall predictive acuity), then it might

have been appropriate to accept a modest reduction in predictive acuity in favour of enhanced

clinical utility—i.e. recognising three (‘high’, ‘medium’ and ‘low’ risk) subgroups rather than

just the two (‘high’ and ‘low’ risk) subgroups identified by the LCR model with the most

favourable predictive acuity (Table 5). Indeed, when clinical resources are scarce, such an

Table 4. Descriptive characteristics for the 2-class Cox proportional hazards latent class regression model.

Latent Class Regression Model

Class 1 (‘High risk’) Class 2 (‘Low risk’)

Modal N (%) Probabilistic N (%) Modal N (%) Probabilistic N (%)

Participants 1,566 (87.2) 1507.8 (84.0) 230 (22.8) 288.2 (16.0)

Deaths 1,046 (66.8) 1014.7 (67.3) 15 (6.5) 45.8 (15.9)

Male 1,160 (74.1) 1112.8 (73.8) 153 (66.5) 200.9 (69.7)

Type 2 Diabetes 368 (23.5) 342.3 (22.7) 136 (59.1) 162.5 (56.4)

Median (IRQ) Median (IRQ)

Survival Time (years) 3.86 (2.41, 5.89) 1.13 (0.50, 2.27)

Mean (95% CI) Mean (95% CI)

Age (years) 69.2 (68.6, 69.9) 72.5 (71.1, 73.9)

Haemoglobin (g/dl) 13.80 (13.72, 13.88) 11.14 (10.99, 11.30)

N = number; % = percentage; IQR = interquartile range; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0243674.t004

Table 5. Latent class regression (LCR) model summaries for Procedure 4.

Number of classes Number of parameters BIC Entropy

1 3 3695.06 - - - -

2 10 3659.49 0.68

3 17 3682.44 0.91

4 24 3722.89 0.94

BIC = Bayesian information criterion; the optimal LCA model according to the BIC is emboldened.

https://doi.org/10.1371/journal.pone.0243674.t005
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approach might prove a more reliable approach to resource allocation than one based upon a

stringent interpretation of predictive acuity alone.

Online supplementary material

Part 1. Underlying principles and model-building processes involved in the

GLM, LCA and LCR techniques examined

GLM: The Cox proportional hazards model. A Cox proportional hazards model gener-

ates a (hazard) function which indicates the risk of the outcome occurring during the period

of follow-up. Mathematically, a Cox regression model [25,26] is defined as:

hðtjx; biÞ ¼ h0ðtÞexpðxβ
TÞ ð1Þ

where: t is a non-negative random variable representing time to ‘death’, ‘loss to follow-up’ or

‘the end of the study’ for all participants (in this example, patients with CHF); h0(t) is the base-

line hazard function; x is the vector of predictors for the time-to-event outcome t; and βT is the

transpose of the vector of coefficients obtained from the Cox proportional hazards model. To

make predictions using the Cox proportional hazards model, the survival function is defined

as:

Sðtjx; biÞ ¼ ½S0ðtÞ�
expðxβT Þ

ð2Þ

where, if the baseline hazard function h0(t) is known, then:

S0ðtÞ ¼ expf�
Z t

0

hðuÞdug ð3Þ

LCA: The general latent class (profile) model. Latent class (profile) models come from a

family of finite mixture models that classify observations into classes associated with unob-

served heterogeneity in a population. A population is partitioned into g classes for the outcome

y with the mixture density function defined in relation to covariates x as:

f ðyjx; lÞ ¼
Xg

i¼1
pifiðyjx; βiÞ ð4Þ

where fi(y|x, βi) is the conditional probability density function for the observed response in the

ith class and πi (i = 1 . . . g) represent the class-membership probabilities that are estimated for

each class such that:

Xg

i¼1
pi ¼ 1: ð5Þ

For a class membership model, the structural part of the model is given by:

logitðpiðxjgi; δiÞÞ ¼ gi þ xδT
i ð6Þ

hence

pi xjgi; δið Þ ¼
expðgi þ xδT

i Þ

Pg

j¼1

gi þ xδT
i

ð7Þ

where: x is a (p × 1) covariate vector for the class-membership model; and δT
i is the transposi-

tion of the vector δi for the multinomial logistic class-membership model.
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LCR: The latent class regression model. The latent class regression (LCR) model is an

extended version of the generalised linear model where the concept of latent class mixtures is

applied to the entire model specified, not just to a cluster of covariates. LCR survival analysis

extends this to the time-to-event framework of Cox proportional hazards modelling to: (i) pre-

dict probabilistically assigned subgroups of participants with different futures (in this example,

subgroups of patients with different prognoses of survival/death) based on the available covari-

ates; and, (ii) simultaneously predict the survival distributions for each subgroup selecting

from the same covariates acting as candidate predictors. The distribution of the survival time

variable for each component in Eq 4 can be:

• parametric—a scenario with distributional assumptions concerning the survival times;

• semi-parametric—a scenario with relaxed distributional assumptions; or

• non-parametric—a scenario without distribution assumptions concerning the survival

times.

Assuming a parametric model for the specified outcome variable, the component’s densities

are assumed to be from the same family, so that a number of common distribution functions

may be considered appropriate for survival times, such as: exponential; Gamma; and Weibull

[38]. In a semi-parametric case, the Cox proportional hazards model is an example. Within a

latent class framework, if t is the random variable representing time to event (e.g. ‘death’, ‘loss

to follow-up’, or ‘end of the study’), individuals are divided into g latent classes that are differ-

entiated by the covariate vector z, with individual survival in each class i predicted by covariate

vector x, and the survival model is defined as:

Sðtjx; z; yÞ ¼
Xg

i¼1
piðzjgi; δiÞSiðtjxi; βiÞ ð8Þ

where: θ = (γi, δi, βi) is the collection of parameters to be estimated such that πi(z|γi, δi) satisfies

the constraints in Eq 4. Vectors xi and z are any available measures of participant characteris-

tics, exposures and treatments etc., which may be the same or differ, just as the xi covariates

may also differ for each class.

If the effects of the xi covariates on the hazards (i.e. the instantaneous risk of event) in each

class is constant during the duration of follow-up, then the hazard function can be specified as:

hiðtjxi; βiÞ ¼ h0iðtÞexpðxiβ
T
i Þ ð9Þ

where: h0i(t) is the baseline hazard for class i; and expðxib
T
i Þ is the relative risk associated with

a vector of the xi covariates acting as candidate predictors. We can then derive a survival func-

tion from equation Eq 9 as follows:

Sðtjxi; βiÞ ¼ ½S0iðtÞ�
expðxiβTi Þ ð10Þ

where:

S0iðtÞ ¼ expf�
Z t

0

hiðtjxi; βiÞdug ð11Þ

is the baseline survival for individuals at times t, given a vector of candidate predictors xi for

class i.
The baseline hazard h0i(t) in Eq 9 is assumed to be an unknown, arbitrary and non-negative

function of time and the only parametric part of the model in Eq 10 is expðxiβ
T
i Þ [25]. The

maximum likelihood procedure fails to estimate parameters for the likelihood function of Eq 9
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accurately because the baseline hazard function is not assumed to take any particular form.

Instead, these parameters can be estimated using the partial-likelihood approach [26]. This is

derived by taking the product of the conditional risk at time ti given the set of individuals not

yet dead, lost to follow-up or censored by that time.

Part 2. Model specification, selection, validation and software used in

Procedures 1, 2a/b, 3a/b and 4

Model specification, selection and validation. All subsets regression was deployed [27],

along with k-fold cross-validation as recommended by Grimm et al. [28], to find the best-fit-

ting model for Procedures 1–4, with four covariates considered for both Cox proportional haz-

ards models and (where applicable) the latent class models. The concordance statistic (c-

statistic or c-index) was used to evaluate all models generated—an approach that has been

widely used in medical research to determine how well a risk prediction model could predict a

higher risk score for a patient with an event than another randomly selected patient without

an event [29–31]. In this way the c-statistic was used in the present study to quantify the extent

to which each modelling Procedure was able to assign a higher risk score to patients with

shorter survival times and a lower risk score to patients with higher survival times. C-statistic

values range from 0.5 to 1, where 0.5 indicates that the discrimination achieved is equivalent to

(and no better than that that could be achieved) by chance; a value of 1 indicates perfect dis-

crimination; and a value >0.8 is interpreted as evidence of good discrimination. k-fold cross-

validation involved randomly dividing the dataset into k partitions of approximately equal

size, where k– 1 partitions were used as a training set and the model was evaluated and vali-

dated using the remaining kth partition, repeated k times. The value k = 10 was chosen based

on established (and evaluated) best practice [32], with k = 10 favoured for less biased model

parameters, according to experimentation [33]. The c-statistic was calculated for each of the 10

test samples, with subsequent confirmation of the results obtained from 10 iterations assessed

using a bootstrap re-sampling procedure 100 times (creating datasets from the original data

without making further assumptions) to provide empirical 95% confidence intervals [34].

Covariate selection was guided by the desire to achieve parsimonious models according to

the Bayesian Information Criterion (BIC)–the statistic preferred as the most parsimonious

penalised likelihood statistic to minimise the risk of overfitting [35]. In choosing the optimum

number of latent classes for the latent variable models (i.e. LCA and LCR), BIC was again the

preferred statistic as simulations have demonstrated it outperforms other model fit statistics

[36]. Strategies for determining the optimal number of classes may also be influence by

interpretability (such as clinical salience and/or utility [33,37]), which is often reflected in

‘entropy’ [38]–a measure of the consistency between the modal (highest probability) and prob-

abilistic (exact probabilities) assignment of individuals to latent classes. A high entropy indi-

cates that individuals are more aligned to a single class (large modal probability), which leads

to clearer interpretation of each latent class. A low entropy does not preclude latent classes

having utility and substantive meaning, but individuals may not be as clearly aligned to just

one class, making modal assignment a poor representation of the latent class structure.

Software. An important challenge with latent class modelling is its sensitivity to starting

values, because these are used to maximize the likelihood function when estimating model

parameters. Where the starting values are far from the optimum solution, the likelihood func-

tion takes longer to converge and may even fail to do so. Occasionally, up to 50% of the ran-

dom starts chosen will generate meaningful solutions when the likelihood function is

maximized. For a solution to be meaningful, the highest likelihood value is expected to be rep-

licated many times. When this does not occur, it signifies that either: no solution has been
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achieved and the number of random starts needs to be increased to converge on a global opti-

mum solution; or the specified model structure is unsuitable for the given dataset. While this

can add to the time required to explore optimum solutions, once the target values are esti-

mated they can be used as initial values for the final models derived, thereby reducing the

duration of the final search process [23].
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