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Graphical Abstract
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haviours using a Machine Learning approach
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clough,Ioannis Korkontzelos

  

 

 

 

 

 

 

 

 

 

 

Accelerometer 

ROC 

Analyses 

• Sedentary 

• Moderate to Vigorous 

Regression 

Task 

Obtain and feed data: 

• Raw acceleration 

Obtain and feed data: 

• Bio data 

• PA characteristics 

Predict 

Determine PA cut-points using: 

• Youden 

• Sensitivity 

• Specificity 

Error Metrics 

Evaluate 

Person 

Wears 

                  



Highlights
Personalised Accelerometer Cut-point Prediction for Older Adults’ Movement Be-
haviours using a Machine Learning approach
Nonso Nnamoko,Luis Adrián Cabrera-Diego,Daniel Campbell,George Sanders,Stuart J. Fair-
clough,Ioannis Korkontzelos

• A model is developed to predict physical activity cut-points on accelerometer based on individual
characteristics

• Post data collection analytical process helps towards a standardised method for characterising phys-
ical activity

• Multiple features calculated from raw accelerometer data was used to enrich the feature set for
training machine learning

• Personalisation was achieved by combining raw accelerometer data with person-specific data e.g.,
blood pressure
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Abstract
Background and Objectives: Body-worn accelerometers are the most popular
method for objectively assessing physical activity in older adults. Many studies have
developed generic accelerometer cut-points for defining activity intensity in metabolic
equivalents for older adults. However, methodological diversity in current studies has
led to a great deal of variation in the resulting cut-points, even when using data from
the same accelerometer. In addition, the generic cut-point approach assumes that ‘one
size fits all’ which is rarely the case in real life. This study proposes a machine learning
method for personalising activity intensity cut-points for older adults.
Methods: Firstly, raw accelerometry data was collected from 33 older adults who
performed set activities whilst wearing two accelerometer devices: GENEActive
(wrist worn) and ActiGraph (hip worn). ROC analysis was applied to generate per-
sonalised cut-point for each data sample based on a device. Four cut-points have
been considered: Sensitivity optimised Sedentary Behaviour; Specificity optimised
Moderate to Vigorous Physical Activity; Youden optimised Sedentary Behaviour; and
Youden optimised Moderate to Vigorous Physical Activity. Then, an additive regres-
sion algorithm trained on biodata features, that concern the individual characteristics
of participants, was used to predict the cut-points. As the model output is a numeric
cut-point value (and not discrete), evaluation was based on two error metrics, Mean
Absolute Error and Root Mean Square Error. Standard Error of estimation was also
calculated to measure the accuracy of prediction (goodness of fit) and this was used
for performance comparison between our approach and the state-of-the-art. Hold-out
and 10-Fold cross validation methods were used for performance validation and com-
parison.
Results: The results show that our personalised approach performed consistently
better than the state-of-the-art with 10-Fold cross validation on all four cut-points con-
sidered for both devices. For the ActiGraph device, the Standard Error of estimation
from our approach was lower by 0.33 (Youden optimised Sedentary Behaviour), 9.50
(Sensitivity optimised Sedentary Behaviour), 0.64 (Youden optimised Moderate to
Vigorous Physical Activity) and 22.11 (Specificity optimised Moderate to Vigorous
Physical Activity). Likewise, the Standard Error of estimation from our approach was
lower for the GENEActiv device by 2.29 (Youden optimised Sedentary Behaviour),
41.65 (Sensitivity optimised Sedentary Behaviour), 4.31 (Youden optimisedModerate
to Vigorous Physical Activity) and 347.15 (Specificity optimised Moderate to Vigor-
ous Physical Activity).
Conclusions: personalised cut-point can be predicted without prior knowledge of
accelerometry data. The results are very promising especially when we consider that
our method predicts cut-points without prior knowledge of accelerometry data, unlike
the state-of-the-art. More data is required to expand the scope of the experiments
presented in this paper.

N Nnamoko et al.: Preprint submitted to Elsevier Page 1 of 24

                  



Personalised Accelerometer Cut-point Prediction for Older Adults

1. Introduction
Objectively representing daily physical activ-

ity (PA) is crucial, particularly in studies that in-
volve older adults, where increasing PA and/or re-
ducing sedentary behaviour (SB) is often the in-
tended outcome [5]. Among the numerous devices
available for measuring PA, body-worn accelerom-
eters are the least obtrusive, thus are increasingly
utilised for this purpose [41, 63, 65, 46]. However,
there are arguments against the validity of the re-
sults in calibration studies involving older adults.
This is in part because the underlying standards
used to determine metabolic costs are not applica-
ble to older adults [4]. Furthermore, the methods
used to translate accelerometer outputs into activity
intensity thresholds are too diverse [43, 59].

Generally, PA recommendations for health ben-
efits are intensity specific; typically categorised
into light, moderate and vigorous intensity based
on metabolic equivalents (MET) [28]. One MET
equates to the standard resting metabolic rate
(RMR), i.e., the oxygen (O2) consumption required
at rest or sitting quietly, and in healthy adults is
assumed to be 3.5 mL × kg−1 × min−1. This in-
dex is used to express O2 uptake or activity inten-
sity in multiples of the value of 1 MET and is use-
ful for estimating and prescribing exercise of differ-
ent intensities. For example, activities may range
from sleeping (0.9MET) to running at 10.9mph (18
METs) [53]; and 3 METs represent the commonly-
accepted cut-off value between light and moderate
intensity PA [1]. Currently, this index is commonly
used for categorising PA intensity in observational
studies for older adults [3, 6, 39, 54]. However,
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the actual energy cost varies between individuals
due to differences in body mass, age, health status
etc. and it is well established that RMR decreases
with age [34, 9, 20, 31, 40]. Thus, for individu-
als of different size and age, the energy expenditure
estimates are influenced by the consistency of the
assumed RMR value of 3.5 mL × kg−1 × min−1.
In other words, computing MET-based PA intensity
values using the RMR index has implications for
older adults. With under-estimated energy expendi-
ture, older adults would be exercising at higher rel-
ative intensities than assumed and their time spent
in PA above activity intensity thresholds would be
under-estimated [21]. Therefore, it is not surpris-
ing that a growing number of research studies have
found this index to be inaccurate across individu-
als with heterogeneous physical, demographic and
health status characteristics [9, 61].

Another growing concern is that there is no
standardised method to translate accelerometer out-
put into an estimate of physical activity for older
adults [42]. This is in part due to methodologi-
cal diversity in the energy expenditure equations
used in existing calibration studies to translate ac-
celerometer output into measures of MET expen-
diture that reflect thresholds for specified levels of
PA [59, 43]. The methodological diversity of these
studies has produced a wide variety of predictive
equations and cut-points for PA, even when assess-
ing the same accelerometer. This diversity reduces
the ability to interpret results obtained from same
accelerometers, among different research studies or
even among different accelerometer types. Con-
sequently, research in the area is moving towards
post-data collection analytical methods, such as su-
pervised/unsupervised machine learning for for free
living PA, rather than lab caliberation protocols.
Such methods can be replicated easily, thereby pro-
viding greater methodological transparency and im-
prove comparability between different studies and
accelerometer models.

On that note, the research presented in this paper
is motivated by a recent study by Sanders et al. [52]
that used a post-data collection analytical process to
estimate generic cut-points for SB and moderate to
vigorous physical activity (MVPA) in older adults.
Specifically, the study used the accelerometer out-

N Nnamoko et al.: Preprint submitted to Elsevier Page 2 of 24

                  



Personalised Accelerometer Cut-point Prediction for Older Adults

put from GENEActiv1 (GA) and ActiGraph2 (AG)
obtained from a heterogeneous sample of 34 older
adults (mean age = 69.6, SD = 8.0) to determine
raw acceleration cut-points for SB and MVPA. GA
is worn on the non dominant wrist while AG is at-
tached to the left hip area. Two approaches based on
receiver operative characteristic (ROC) curve anal-
ysis [30] were adopted to achieve this. The results
were promising but the ‘one size fits all’ approach
that is known to produce inconsistent result across
individuals of different body mass and age [9, 61]
was maintained.

In this paper, we go a step further by propos-
ing a model capable of personalising raw accel-
eration cut-points for SB and MVPA for older
adults, according to their individual characteristics.
Specifically, we constructed an additive regression
model [19] that describes the relationship between
aspects of an individual, i.e., input features such
as age, gender, weight etc., and the value of inter-
est, i.e., output features such as cut-points for SB or
MVPA). The model can generate estimated outputs
when given a new set of input features. All exper-
iments were conducted with the same data used in
Sanders et al. [52], so that the results are fully com-
parable.

The model predicts values within a range rather
than discrete class labels, e.g., ‘MVPA’ or ‘not
MVPA’. Thus, the accuracy of such model is typ-
ically evaluated via the error in the predicted val-
ues [62]. We used the mean absolute error (MAE)
and the root mean squared error (RMSE) as metrics.
Standard Error of estimation was also calculated to
measure the accuracy of prediction i.e., ‘goodness
of fit’ of the regression models and this was used for
performance comparison between our approach and
the state-of-the-art which we used as the Baseline.
As an evaluation Baseline, we used the results pub-
lished in Sanders et al. [52], which is the only study
that uses a post data-collection process to determine
raw acceleration cut-points for older adults. The re-
sults suggest that generic cut-points are unreliable.
The proposed personalised approach is a superior
alternative to the state-of-the-art as proven by the re-
sults which shows higher performance consistently
across the cut-points considered in this study. There
is also room for improvement especially given a

1www.activinsights.com
2www.actigraphcorp.com

larger training data.
This study makes the following contributions:

i Post data collection analysis using machine
learning to predict personalised PA accelera-
tion cut-points for older adults:
To the best of our knowledge, this is the
first study to personalise activity classification
thresholds among this age group using a stan-
dardised approach.

ii A priori rather than a posteriori PA acceleration
cut-point determination:
We predict cut-points for SB and MVPA based
on the general characteristics of a person such
as age, gender, weight etc. This contradicts
the state-of-the-art, where accelerometry data is
known and used to calibrate cut-points.

iii personalised PA acceleration cut-points is fea-
sible and superior:
The results presented in this paper indicates that
personalised PA acceleration cut-points is a fea-
sible and superior alternative to generic ones.
The personalisation approach presented in this
paper prove absolute superiority over the state-
of-the-art. We believe that a larger training data
would lead to further improvement and thus, a
result that can be generalised.
The remainder of this paper is organised as fol-

lows: A concise overview of related work is pro-
vided in Section 2, followed by a detailed explana-
tion of the experimental data in Section 3.1. In Sec-
tion 3.2, we discuss our approach. This is followed
by the experimental setup in Section 3.3, and ex-
perimental results in Section 4. We put the results
into context in Section 5 before Section 6, where
we present a summary of conclusions drawn from
the entire experiments as well as recommendations
based on the findings.

2. State-of-the-art
The number of older adults continues to grow

at an unprecedented rate globally, with individu-
als who are 60 years or older accounting for 8.5%
(617 million) of the populace in 2016; and pro-
jected to rise to 17% (1.6 billion) by 2050 [23].
Such increase in ageing population presents several
public health challenges, thus positive lifestyle is

N Nnamoko et al.: Preprint submitted to Elsevier Page 3 of 24
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Table 1
Summary of experimental studies conducted for Actigraph 7164. Age distribution is a
range or a mean and standard deviation. M and F stand for male and female, respectively.

Number of Characteristics Energy Expenditure Function PA cut-point
Study Participants Sex Age [counts∕min] moderate vigorous

Brage et al. [7] 12 M [23, 30] 2.886 + 7.429 × 10−4 × counts/min − 0.02 × VO2 1810 5850
Freedson et al. [18] 50 M/F 24 ± 4 1.439008 + 7.95 × 10−4 × counts/min 1316 5354
Leenders et al. [37] 28 M/F 24 ± 4 2.240 + 6 × 10−4 × counts/min 1952 5725
Brooks et al. [8] 72 M/F [35, 45] 2.240 + 6 × 10−4 × counts/min 1267 6252
Heil et al. [25] 58 M/F 28 ± 6 1.551 + 6.19 × 10−4 × counts/min 2341 7187
Yngve et al. [64] 28 M/F 23 ± 3 1.136 + 8.249 × 10−4 × counts/min 2260 5896
Yngve et al. [64] 28 M/F 23 ± 3 0.751 + 8.198 × 10−4 × counts/min 2743 6403
Hendelman et al. [26] 25 M/F [30, 50] 2.922 + 4.09 × 10−4 × counts/min 191 7526
Swartz et al. [56] 70 M/F [19, 74] 2.608 + 6.863 × 10−4 × counts/min 574 4945
Troiano et al. [57] 4867 M/F [6, 70+] Weighted average of cut-points in [7, 18, 64] 2020 5999

often encouraged among older adults to maintain
good health, functionality and independent living.
Body-worn accelerometers offer an objectivemeans
to assess free-living physical activity by measuring
movement. They are capable of sensing and record-
ing unfiltered movement activity, which can then be
used to determine time spent in SB and/or MVPA.
The most common means of doing so is to translate
accelerometer output into measures of MET expen-
diture that map to thresholds for specified levels of
physical activity [59]. Although numerous studies
have attempted to calibrate and validate accelerom-
eters, there is no standardised method to translate
accelerometer output into an estimate of physical
activity for older people [42]. The majority of cal-
ibration studies for adults have typically developed
prediction equations that use oxygen expenditure as
a criterion measure to translate activity counts into
measured activity intensity levels [43]. However,
the wide range of methods used in these studies has
lead to great variation in the developed energy ex-
penditure equations and the resultant activity inten-
sity thresholds or cut-points calculated from them,
even when using the same monitor [59].

Several studies [7, 18, 37, 8, 43, 57, 64, 25] have
been conducted to examine the validity of Acti-
Graph, a uniaxial accelerometer popularly used in
PA research, for measuring PA [56, 49, 48, 27, 13].
We summarised their results in Table 1 to show
the various sample size; age and gender composi-
tion of the study population; the energy expenditure
function used in each study; and the resultant PA
acceleration cut-points deduced for defining mod-

erate and vigorous activity. We observe that all
the studies arrived at a radically different cut-points
for moderate intensity activity (range:191–2743)
and vigorous intensity activity (range: 4945–7526);
even though they all used the same Actigraph ac-
celerometer data.

A common theme among the studies in Ta-
ble 1 is that gross energy expenditure predictive
equations were used to translate accelerometer out-
put into measures of MET expenditure so that
cut-points can be determined. However, recent
accelerometer-based PA research has moved toward
post-data collection analytical methods involving
raw acceleration rather than counts [52]. Since ac-
celerometers are capable of recording raw unfiltered
movement activity, researchers [60, 52, 51] believe
that the data lends itself to further development of
innovative metrics. On that note, Fairclough et
al. [17] argued that accelerometer output can be
post-processed by reducing the data to dimension-
less activity “counts” per user-specified period of
time or epoch. Then, the data can be processed with
standardised methods, e.g., machine learning, to
generate activity intensity threshold values. Hilde-
brand et al. [27] added that post-data collection
analysis with standardised methods is likely to pro-
vide greater methodological transparency and im-
prove comparability of results.

To the best of our knowledge, Sanders et al. [52]
is the only study to use a standardised method to
process raw acceleration, with a view to generate
distinguishing cut-points for PA intensity in older
adults. Specifically, the authors used receiver op-

N Nnamoko et al.: Preprint submitted to Elsevier Page 4 of 24
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erative characteristic (ROC) curve analysis [30] to
determine cut-points for SB and MVPA. The study
was conducted with raw acceleration data from GA
and AG devices obtained from a heterogeneous
sample of 34 older adults (59 - 86 years old, 44 -
115kg, 10 male and 24 female); who engaged in a 2-
visit laboratory PA protocol, that involved a mixture
of ambulatory and lifestyle activities. Following re-
cent studies that analysed body-worn accelerometer
data [50, 44, 27, 17], Sanders et al. [52] used the Eu-
clidean Norm Minus One (ENMO) [24] to quantify
acceleration values from the devices, i.e., GA and
AG, in relation to gravity (1 mg = 0.00981 ms−2).
The raw data was further reduced by averaging the
ENMO values over 1-second epochs. Thus, the re-
sulting ENMO values are expressed in milli (10−3)
gravity-based acceleration units (mg), where 1 g =
9.81 m/s2.

The experiments took a calibration vs. val-
idation approach in which a randomly counter-
balanced sample of 17 participants (12 female, five
male) from visit 1, and 17 participants (12 female,
five male) from visit 2 was used for calibration and
the rest for validation. Basically, ENMO values
from both devices, i.e., GA and AG, were first la-
belled as either SB or MVPA. The activPAL3 ac-
celerometer worn by participants on the left anterior
thigh was used to categorise ENMO values into SB
or not SB. Likewise, 3 MET VO2 values were usedas the criterion reference standard for MVPA. SB
and MVPA were each coded as either 0 (behaviour
occurring) or 1 (behaviour not occurring). It is im-
portant to note that the observed mean RMR of the
study participants was 2.89mL× kg−1 ×min−1 and
this was used to define 1 MET.

Calibration was based on ROC curve analy-
sis [30] to determine SB and MVPA cut-points for
each device. Specifically, two different pairs of cut-
points were generated by analysing combinations
of sensitivity (Se) and specificity (Sp) on the ROC
curves. Firstly, ENMO values that indicates a com-
promise between Se and Sp (Youden index) [47] is
calculated for both SB and MVPA values and used
as one set of cut-point (SBYouden andMVPAYouden).Youden is a suitable metric used in cases where Se
and Sp are equally important and is given by eq 1.

Youden = Maxc
(Sec + Spc

) (1)
3http://www.palt.com/

Table 2
Calibrated cut-points for GA and AG expressed in mg

Device SBYouden MVPAYouden SBSe MVPASp

GA ≤ 20 ≥ 32 ≤ 57 ≥ 104
AG ≤ 6 ≥ 19 ≤ 15 ≥ 69

where c is the optimal compromise point.
Secondly, a set of cut-points were determined

(i) by emphasising Se over Sp for SB (SBSe) to
minimise the likelihood of classifying SB as PA,
and (ii) by emphasising Sp over Se for MVPA
(MVPASp), to reduce the likelihood of misclassi-
fying light PA as MVPA. Consequently, a total of
4 cut-points were computed for each device, i.e.,
SBYouden, MVPAYouden, SBSe and MVPASp.Using the established cut-points, a validation
analysis was performed with data from the 17 par-
ticipants (12 female, five male) whose visit 1 data
was not used for calibration analysis, and the 17 par-
ticipants (12 female, five male) whose visit 2 data
was not used for calibration (N = 34). Specifically,
the ENMO values were categorised into SB/not SB
and MVPA/not MVPA. Then, two-by-two (2 × 2)
contingency tables were used to compare them with
the calibrated cut-points. The calibrated cut-points
for both devices are shown in Table 2.

The results are promising but still maintain a
‘one size fits all’ approach, which has been shown
to produce inconsistent result across individuals of
different body mass and age [9, 61]. Consequently,
the aim of our study is to personalise the raw accel-
eration cut-points for SB and MVPA based on the
individual characteristics of each participant.

3. Method and Materials
This section presents the experimental method

we used to achieve the research aims. This includes
the experimental setup implemented as well as a de-
tailed description of the experimental data and its
characteristics.
3.1. Data

We obtained the exact data used in Sanders et
al. [52] to determine cut-points for SB and MVPA
in older adults. The dataset contains measurements
collected from 34 older adults, who took part in a
laboratory-based protocol consisting of 16 activities

N Nnamoko et al.: Preprint submitted to Elsevier Page 5 of 24
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Figure 1: High level diagram of the experimental method

(see Table 1 in [52]). The authors used GA and AG
activity monitors worn on the non dominant wrist
and left hip respectively, to measure raw triaxial ac-
celerations at 60 Hz during the protocol.
i ≥ 59 years of age
ii physically cleared for exercise using the mod-

ified Physical Activity Readiness Question-
naire [10, 11]

iii have the ability to walk briskly on a treadmill
without assistance

iv not taking any medications that would influence
energy expenditure or ability to perform ambu-
latory activity

We experimented with 33 out of the 34 samples,
due to large amount of missing values in the sample
of a female participant. A total of 21 features were
adopted for each sample, and the data characteris-
tics are shown in Table 3.

Some features correspond to quantities that
were measured directly during the study, whereas
others were calculated later from the directly mea-
surable ones. For example, the top part of Ta-
ble 3 includes simple biodata associated to the study
participants, e.g., weight, height, body mass index
(BMI), systolic and diastolic blood pressure (BP).
The middle part of Table 3 includes a 6 minute walk
test (6MWT) [2] on a threadmill to measure maxi-
mumwalk speed; as well as walking on a threadmill

Table 3
Experimental data features and characteristics
(N=33)

Variable Min Max Mean ± SD

Gender 0.00 1.00 0.70 ± 0.47
Age (years) 59.00 86.00 69.27 ± 7.93
Weight (kg) 44.00115.00 71.27 ± 17.62
Height (m) 1.45 1.82 1.64 ± 0.10
BMI (kg/m2) 20.50 41.00 26.10 ± 4.66
Systolic BP (mm/Hg) 109.00195.00145.72 ± 21.49
Diastolic BP (mm/Hg) 62.00109.00 85.15 ± 11.19

6MWT (km/h) 1.70 6.80 4.37 ± 1.39
Walk at 65% speed (km/h) 1.10 4.40 2.84 ± 0.89
Walk at 75% speed (km/h) 1.30 5.10 3.28 ± 1.04
Walk at 85% speed (km/h) 1.40 5.80 3.72 ± 1.18

RMR (mL ⋅ kg−1 ⋅ min−1) 2.69 6.59 4.09 ± 0.79
Min. VO2 (L/min) 0.05 0.23 0.14 ± 0.05
Max. VO2 (L/min) 0.86 2.14 1.47 ± 0.32
Avg. VO2 (L/min) 0.39 0.78 0.55 ± 0.10
Min. EE (mL ⋅ kg−1 ⋅ min−1) 0.62 3.47 1.94 ± 0.65
Max. EE (mL ⋅ kg−1 ⋅ min−1) 13.49 32.63 21.21 ± 4.11
Avg. EE (mL ⋅ kg−1 ⋅ min−1) 5.57 10.46 7.86 ± 1.13
Min. METs 0.21 1.20 0.67 ± 0.22
Max. METs 4.65 11.25 7.31 ± 1.42
Avg. METs 1.92 3.61 2.71 ± 0.39

at 3 maximal percentage speeds (65, 75 and 85) in-
dividually calibrated from the 6MWT. The top and
middle part of the table was directly adopted from
Sanders et al. [52]. The bottom part of Table 3 refers
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to data derived from oxygen consumption (VO2)during the laboratory-based PA protocol. VO2 wasdirectly measured breath-by-breath in 1 second in-
tervals and its value was used to calculate energy
expenditure (EE), which was then used to classify
activity intensity in METs. We enriched the data
by performing further calculations to determine the
minimum, maximum and average values per partic-
ipant.
3.2. Experimental Method

Sanders et al. [52] calculated generic ROC-
induced cut-points through group calibration in-
volving data from half of the study sample.
The target was to determine cut-points SBY ouden,MVPAY ouden, SBSe, MVPASp for each device, thatgeneralise across all study participants and indeed
older adults (≥ 60) in general, regardless of their
individual characteristics such as age, weight and
height. In our approach, we started by performing a
preliminary experiment using ROC analysis to gen-
erate SBY ouden, MVPAY ouden, SBSe and MVPASpcut-points per individual based on ENMO values
from each device.

To estimate personalised cut-points for classi-
fying PA as SB or MVPA, we developed an addi-
tive regression model [19] that learns the relation-
ship between the input features in Table 3 and the
output features, i.e., SBY ouden, MVPAY ouden, SBSeand MVPASp. The term ‘additive’ means the con-
struction of a regression model in the form of an en-
semble of underlying machine learners. Ensemble
modelling is the construction of a powerful model
by taking advantage of a collection of weak base
models [22]. This is done by sequentially fitting a
series of regression trees to the residuals left by the
underlying classifier on the previous iteration to en-
large the model capacity. Thus, the residuals gener-
ally decrease as the number of regression trees in-
crease. Prediction is accomplished by adding the
predictions of each model. To prevent overfitting,
the shrinkage parameter (or learning rate) can be
reduced but this increases the learning time. The
additive training process can be expressed as:

ŷ(T ) = v
T∑
j=1

fj(x;�j) = ŷ(T−1)+vfT (x;�T ) (2)

where T = number of regression trees; �j = struc-

ture of the jth regression tree; v = shrinkage pa-
rameter with the range 0 < v < 1; ŷ(j) = predic-
tion of target variable using the first j regression
trees; fj() = output of the jth regression tree with-
out shrinkage, which uses predictor x to approxi-
mate the residuals y − ŷ(j−1) with regression tree
structure �j .A schematic diagram of the additive model is
shown in Figure 1. We used Decision Stump [29]
as the underlying machine learner for the additive
regression model presented in this paper and we
adopted ten (10) as the number of iterations. A De-
cision Stump is a one-levelDecision Tree that makes
prediction based on the value of a single input vari-
able.

Unlike classification tasks that predict discrete
classes, e.g., ‘yes’ or ‘no’, the output of the addi-
tive regression model is a measurable quantity, i.e.,
a numeric cut-point value. The performance of such
a model is typically evaluated via the error in the
predicted values [62]. Thus, we experimented with
the mean absolute error (MAE) and the root mean
squared error (RMSE) as metrics. These are well
known error metrics commonly used to compare the
performance of competingmodels. Since themodel
produces a numeric output given a set of input vari-
ables, MAE and RMSE allows to check the esti-
mated output against the actual value that we tried
to predict.

The MAE computes the average absolute differ-
ence between each actual output value, yj , and the
corresponding predicted value, ŷj :

MAE = 1
n

n∑
j=1

|||yj − ŷj
||| (3)

where n is the total number of data points. To obtain
the RMSE, we first calculated the mean square error
(MSE) which measures the average squared differ-
ence between each actual output value, yj , and the
corresponding predicted value, ŷj :

MSE (model) = 1
n

n∑
j=1

(
yj − ŷj

)2 (4)

where n is the total number of data points. The
RMSE is the square root of MSE.

RMSE =

√∑n
j=1

(
yj − ŷj

)2
n

(5)
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For every data point, MAE andRMSE condense
the differences between each actual and predicted
value into a single value, and represent the predic-
tive ability of the model. Each predicted value is
expected to be off from the actual value by no more
than theMAE or RMSE, whichever is used for eval-
uation. For example, if yj is a MVPA actual output
value, the predicted value ŷj is considered correct if
yj value is greater or equal to yj−MAE or RMSE4.
For SB prediction however, the predicted value ŷjis considered correct if the actual value yj is less or
equal to yj+MAE or RMSE5.

In general, low values of MAE or RMSE indi-
cate a good model. However, there is no absolute
criterion for a good value of MAE or RMSE as it
depends on the units in which the variable is mea-
sured and on the degree of predictive accuracy, as
measured in those units, which is desirable in a par-
ticular application [12]. Depending on the unit of
measurement, the MAE or RMSE of the best model
could be measured in hundreds, thousands or even
millions. Thus, it does not makes sense to say ‘the
model is good or bad’ because the MAE or RMSE
is ‘less or greater than a particular value’, unless you
are referring to a specific degree of accuracy that is
relevant to a particular prediction application.

The recommended way to ascertain the ‘good-
ness of fit’ for such non-linear regression model is
to measure the standard error of the estimate, S.
This metric provides the absolute measure of the
typical distance that the predicted data points fall
from the regression line drawn with the true values.
In other words, S is the measure of an observation
made around the computed regression line. Thus, it
provides an indication of the likely accuracy of pre-
dictions made with the regression line of the actual
values. S is computed as:

S =
2

√∑
(ŷ − y)2

n − 2
(6)

where ŷ represents the predicted values, y is the ac-
tual values and n is the total number of samples ex-
amined. The smaller the value of S, the less the
spread and themore likely it is that any samplemean

4AMVPA prediction must be greater or equal to a specified
cut-point to be considered correct

5A SB prediction must be less or equal to a specified cut-
point to be considered correct

Table 4
Personalised cut-points for the sample population

Validation Min (mg)Max (mg)Mean ± SD (mg)

G
A

SBYouden 3.14 53.91 20.87 ± 12.00
MVPAYouden 1.47 76.53 36.81 ± 19.82
SBSe 20.76 248.19 118.71 ± 57.80
MVPASp 202.17 976.07 454.70 ± 176.70

A
G

SBYouden 0.08 18.73 5.89 ± 4.60
MVPAYouden 0.64 37.74 17.40 ± 8.60
SBSe 0.08 179.87 16.87 ± 30.85
MVPASp 16.04 179.87 87.82 ± 49.94

is close to the population mean. This allows for
comparison between our approach and Sanders et
al.’s [52]. For example, a smaller value of S for our
model indicates that it is better than the Baseline
and vice versa.

R-squared (R2) is another ‘goodness of fit’ met-
ric commonly used in regression tasks. It explains
to what extent the variance of an output variable ex-
plains the variance of the input variable(s). How-
ever, R2 has been empirically proven to be inade-
quate for measuring non-linear models [55, 45, 33].
Thus, only S values were used in this paper to com-
pare performance between the Baseline and our ap-
proach.
3.3. Experimental Setup

We experiment with the method introduced in
Section 3.2, which takes as input a set of indepen-
dent characteristics about an individual, i.e., the fea-
tures in Table 3, and uses them to generate person-
alised cut-points for SB and MVPA.

At first, we used ROC analysis to determine
four cut-points, i.e., SBYouden, MVPAYouden, SBSeand MVPASp, for each of the devices, GA and AG.
Instead of the collective approach by Sanders et
al. [52], where a randomly counter-balanced sample
of 34 individuals was used collectively to determine
generic cut-points, we computed cut-points per in-
dividual. These personalised cut-points are shown
in Table 4.

Using as output features the four individual
cut-points, i.e., SBYouden, MVPAYouden, SBSe and
MVPASp, we conducted eight separate regression
experiments with the method described in Sec-
tion 3.2, i.e., four experiments for each device, GA
or AG. Two variations of the data described in Ta-
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ble 3 were used as input features to the experi-
ments. Firstly, the Basic dataset involving only the
top 7 features in Table 3; and secondly the Enriched
dataset involving all features. The aim is to compare
their performance with a view to determine the best
of the two alternatives for recommending classifica-
tion cut-points for SB and MVPA in practice. For
example, a model trained with the Basic dataset al-
lows the user, e.g., a clinician, to use easily accessi-
ble patient data such as age, gender etc., to make in-
ference about the appropriate cut-points for SB and
MVPA specific to that patient. The performance
of such model is particularly interesting to compare
with Sanders et al.’s [52] generic approach because
technically, the regressionmodel predicts cut-points
without knowledge of a persons PA ability. In the
presence of PA data however, a model trained with
the Enriched dataset can be used to determine cut-
points (if they lead to better performance in our ex-
periment).

Two independent validation methods, i.e., hold-
out and k-fold cross validation (CV), were used.
Hold-out means splitting the dataset into a ‘train’
and ‘test’ set. We used a 50% split, stratified so
that the gender distribution in the data is taken into
consideration. In particular, of the 33 available data
samples (male = 10, female = 23), we allocated 17
(male = 5, female = 12) for training and 16 (male
= 5, female = 11) for testing. On the other hand,
k-fold CV means splitting the training data into k
equal size subsets, such that one of the k subsets
is retained as test data, and the remaining k-1 sub-
sets are used as training data and repeating until all
k subsets have been used exactly once for testing.
The k results from the folds are then combined to
produce a single result. For our experiments, k =
10, with each fold stratified according to the gender
distribution in the data.

Our intuition is that 10-Fold CV may be more
suitable due to the modest data size (n = 33) avail-
able for this research. For example, the 50:50 hold-
out sets used for training and testing may not be rep-
resentative of the entire data characteristics, which
would limit knowledge gain for the base classifier
used. In such cases, 10-Fold CV is a good alterna-
tive method because it has the benefit of allowing
all data instances to be used as test instances at least
once. The results of all repetitions are then averaged
to produce a combined final result. For complete-

ness and to provide a transparent view of the find-
ings in this experiment, the results obtained from
both validation methods are reported.

As noted in Section 3.2, performance evalua-
tion is based on both MAE and RMSE calculated
as in equations 3 and 5, respectively. We also cal-
culated S values for each model using equation 6.
This allows for comparison between our approach
and Sanders et al. [52].

To validate the proposed method and compare
with the state-of-the-art, we investigate the research
questions:
RQ1: How accurate are the generic cut-points of

Sanders et al. [52] when evaluated per indi-
vidual participant?

RQ2: Does the proposed approach outperform the
state-of-the-art? If yes, to what extent?

RQ3: How does the data feature(s) contribute to
the performance of our method?

The first research question (RQ1) examines the per-
formance of the generic cut-points when evaluated
against cut-points calculated for each study partic-
ipant, rather than the general approach reported by
Sanders et al. [52]. We compared the generic cut-
points to the actual per individual to see if the results
are the same as in Sanders et al. [52].

The second research question (RQ2) investi-
gates the performance improvement of the proposed
approach against the state-of-the-art. We chose
Sanders et al. [52] for the following reasons. First,
the experimental data was made available which al-
lows to compare results. Second, to the best of our
knowledge, this is the only state-of-the-art approach
to have used standardised method post-data collec-
tion to determine raw acceleration PA cut-points
specifically for older adults.

The third research question (RQ3) investigates
the effects of data features on the performance of
our approach. The goal is to determine how the
features contribute to information gain for the base
classifier, in this case additive regression algorithm;
and also to investigate whether we can use fewer fea-
tures to improve results. Recommendations would
be guided by the results obtained from this question.
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4. Results
This section presents the results of comparison

between the Baseline and the additive regression
method proposed in Section 3.2. For clarity, we dis-
sect the research questions RQ1, RQ2 and RQ3 in
separate sub-sections.
4.1. RQ1: Examination of the accuracy of

the evaluation approach in Sanders et
al. [52]

Table 5 shows the Baseline result obtained by
checking for agreement between the generic cali-
bration cut-points from Sanders et al. [52] and the
actual cut-points calibrated per participant. For
completeness, we represent the generic cut-points
from Sanders et al. [52] in the Cut-pt column. The
AccG column represents the reported validation ac-
curacy in Sanders et al. [52]. It is important to recall
that Sanders et al.[52] obtained the AccG values by
checking for agreement between the generic cali-
bration cut-points, and a collection of samples that
were not used for calibration. In other words, the
ENMO values from GA and AG were aggregated
for those samples not used for calibration, and then
checked against the generic calibrated cut-points for
agreement. Unfortunately, such collective valida-
tion approach is impractical in real life scenarios
where samples would most likely be validated in-
dividually. Thus, we recalculated the validation re-
sults by checking for agreement between the generic
calibration cut-points, and the actual cut-points per
participant. The results are presented in the AccP1column for the hold-out validation setting and the
AccP2 column for the 10-fold CV setting.

The results obtained with the personalised ap-
proach are generally worse than those reported in
Sanders et al. [52], except on two instances high-
lighted in bold, i.e., MVPASp for the GA device
and SBSe for the AG device. The AG SBSe cut-
point (≤ 15) seems reasonable for the study pop-
ulation. This is because the mean SBSe is 16.87 mg
and standard deviation is 30.85 mg as shown in Ta-
ble 4. Therefore, one could argue that the generic
cut-point did perform well in this case, particularly
with 10-fold CV with accuracy of 75.8%. How-
ever, the same does not hold for the GA MVPASpcut-point (≥ 104). Although it produced 100% ac-
curacy with both the hold-out and the 10-fold CV,

Table 5
Cut-points for GA and AG with associated agreement
calculated according to the generic and the person-
alised approach

Validation Cut-pt AccG AccP1 AccP2

G
A

SBYouden ≤ 20 73.1 75.0 54.5
MVPAYouden ≥ 32 76.2 56.3 60.6
SBSe ≤ 57 67.2 12.5 15.2
MVPASp ≥ 104 68.9 100.0 100.0

A
G

SBYouden ≤ 6 83.3 62.5 60.6
MVPAYouden ≥ 19 87.3 50.0 36.4
SBSe ≤ 15 73.2 68.8 75.8
MVPASp ≥ 69 80.4 68.8 66.7

Cut-pt: generic cut-points
AccG: Accuracy of the group validation reported
in [52];
AccP1: Accuracy of personalised hold-out validation
AccP2: Accuracy of personalised 10-fold Cross
Validation

the actual MVPASp calculated for each individual
participant suggests that the cut-point is extremely
low. For example, the generic cut-point is 98.17 mg
lower than the minimum actual value per individ-
ual (n = 202.17 mg) and the mean MVPASp for thestudy population is 454.70 mg. This is a clear indi-
cation that the generic cut-point is seriously under-
estimated.

Apart from MVPASp for the GA device and
SBSe for the AG device, all other results obtained
through the personalised validation approach pro-
duced lower accuracy values than those reported in
Sanders et al. [52]. In other words, the ‘one size fits
all’ assumption in Sanders et al. [52] is clearly im-
practical in real world scenario as indicated by the
results in Table 5.
4.2. RQ2: Our approach vs. the

state-of-the-art
Here, we compare the performance of the

generic approach [52] with the personalised one
proposed in this paper. For simplicity, the results
are presented separately in Sections 4.2.1 for theGA
device and 4.2.2 for the AG device.
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Table 6
MAE, RMSE and S values used to compare the regression and generic [52] models in
predictiong GA related cut-points

Evaluation/Cut-pt Baseline Basic Enriched
MAE RMSE S MAE RMSE S MAE RMSE S

H
ol

d-
ou

t SBYouden 2.22 10.87 10.78 10.76 14.99 14.93 13.41 15.36 15.29
SBSe 62.16 85.90 85.89 46.76 59.23 59.21⋆ 57.09 68.34 68.33⋆
MVPAYouden 8.39 24.75 24.71 16.35 19.50 19.45⋆ 18.39 22.83 22.78⋆
MVPASp 392.80 436.16 436.16 207.79 270.63 270.63⋆ 185.35 246.01 246.00⋆

10
-F

ol
d

C
V SBYouden 0.87 11.85 16.96 12.13 14.74 14.67⋆ 12.91 15.60 15.53⋆

SBSe 61.71 83.96 120.56 61.82 78.36 78.35⋆ 66.21 82.53 82.52⋆
MVPAYouden 4.81 20.10 28.83 20.24 24.57 24.52⋆ 19.05 24.76 24.72⋆
MVPASp 350.70 391.49 562.24 174.16 215.09 215.09⋆ 174.81 246.67 246.67⋆

⋆ Regression model better than baseline in terms of S value

4.2.1. Results for the GA Device (worn on non
dominant wrist)

This section presents the comparison of results
between the Baseline and additive regression mod-
els trained with data from the GA device. As
noted in Section 3.3, the performance of the mod-
els was evaluated as an error of the predicted value
using MAE and RMSE. These errors along with
S values used for comparison are shown in Ta-
ble 6. The results for each cut-point, i.e., SBYouden,MVPAYouden, SBSe andMVPASp is presented sepa-rately with respect to the validation approach used,
i.e., hold-out and 10-fold CV. Where applicable, we
use ‘⋆’ to indicate cases where the regressionmodel
is better than the Baseline result. This is determined
by the S values, i.e., lower S value indicates supe-
riority.
Hold-out analysis: The results obtained with
hold-out validation is presented at the top part of
Table 6. Using S as criterion measure, the regres-
sion models mostly performed better than the Base-
line model. Both the Basic and Enriched regression
models performed better than the Baseline in three
out of the four cut-points when validated with the
hold-out method. For example, the lower S value
of 59.21 and 68.33 produced by the Basic and En-
riched, respectively, mean that both models are bet-
ter than the Baseline in predicting SBSe. In other
words, the distance of the predicted SBSe values
from the actual cut-point is shortest with the Ba-
sic model, followed by the Enriched model and far-
thest with the Baseline model. The variation be-
tween the S value of the Baseline and the Basic

model is 26.68, while that of the Enriched model
is 17.56. This is expected because the generic cut-
point from Sanders et al. [52] did not perform par-
ticularly well in predicting SBSe, in the adjusted ac-curacy results for GA device (i.e., AccP1) observedin Table 5. Specifically, the generic cut-point only
predicted 12.5% of SBSe correctly, when validated
with personalised cut-points using hold-out valida-
tion. Therefore, the wide variation observed in the
S values between the Baseline and regression mod-
els is not surprising.

The regression models were also better than the
Baseline in predicting MVPAYouden and MVPASp.For MVPAYouden cut-point prediction, the S val-
ues for Baseline is 24.71 while Basic and En-
riched models produced 19.45 and 22.78, respec-
tively. The Baseline S value is 5.27 smaller than
that of Basic and 1.93 for Enriched. These values
are relatively smaller than the observed differences
in predicting SBSe. However, this is not surpris-
ing, considering that the Baseline predicted 56.3%
of MVPAYouden correctly, when we compared the
generic cut-point from Sanders et al. [52] with per-
sonalised ones using hold-out validation for GA de-
vice in Table 5. Technically, higherMAE, RMSE or
S indicates relative inferiority. This is the case for
the Baseline model, which produced higher values
across the threemetrics than both regressionmodels
in predicting MVPAYouden.Much larger improvement in terms of S value
was observed in MVPASp prediction, where the re-gression models also outperformed the Baseline.
Interestingly, the generic cut-point from Sanders et
al. [52] predicted 100% of MVPASp correctly when
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compared to personalised ones for GA device as
shown in Table 5. As explained in section 4.1, there
is evidence that the generic cut-point for MVPASpwas set too low. As such, it is likely that the Base-
line model is not as good as it seems, in spite of
achieving perfect prediction results. Indeed, this is
confirmed by the lower S values produced by the
regression models, showing that the predicted val-
ues have closer and better fit to the regression line
than the Baseline model.

It is important to note that the Baseline model
was better in predicting SBYouden, as indicated by
the higher S values produced by the regression
models in Table 6. This corroborates with the re-
sults shown in Table 5, where the generic cut-point
predicted 75.0% of the personalised cut-points cor-
rectly, when using hold-out validation for AG de-
vice i.e., AccP1. In fact, the Baseline model pro-
duced lower values across the three metrics (i.e.,
MAE, RMSE and S) than both regression models
in predicting SBYouden which corroborates with the
level of accuracy observed in Table 5.
10-Fold CV analysis: The results for 10-fold CV
are shown in the bottom half of Table 6. Using S
as criterion, the regression models performed bet-
ter than the Baseline in all the four cut-points when
validated with 10-fold CV method. The superiority
of the regression models is particularly sizeable in
SBSe and MVPASp results. In predicting SBSe thelower S values of 78.35 and 82.52 produced by the
Basic and Enriched respectively, means that both
models performed better than the Baseline which
yielded an S value of 120.56. In other words, the
distance of the predicted SBSe values from the ac-
tual cut-point is shortest with the Basic model, fol-
lowed by the Enriched model and farthest with the
Baseline model. It is noteworthy that the generic
cut-point from Sanders et al. [52] did not perform
particularly well in predicting SBSe, when com-
pared to personalised ones for GA device with 10-
fold cross validation. This can be seen in the AccP2column of Table 5 for GA device, where the generic
cut-point only predicted 15.2% of the personalised
SBSe correctly. Therefore, the lower S values pro-
duced by the regression models is not surprising.

The regression models were also better than the
Baseline in predicting MVPASp. Here, the S val-
ues for Basic and Enriched models are 215.09 and

246.67 respectively. These are clearly lower than
the 562.24 recorded for the Baseline model. It is
important to note that the generic cut-point from
Sanders et al. [52] predicted 100% of MVPASp cor-rectly when compared to personalised ones for GA
device as shown in Table 5. However, we know
from the analysis in section 4.1, that the generic
cut-point for MVPASp was set too low, hence the
perfect accuracy result. Indeed, this is confirmed
by the higher S values produced by the Baseline
model, showing that its predicted data points are far-
ther away from the actual personalised data points
on the regression line than those predicted by the
Basic and Enriched models.

As noted earlier, the superiority of the regres-
sionmodels over theBaselinewas evident in all four
cut-points including SBYouden and MVPAYouden.In predicting SBYouden, the Baseline model pro-
duced an S value of 16.96 which is higher than
14.67 and 15.53 produced by the Basic and En-
riched regression models. Similar results were
observed for MVPAYouden prediction, where the
S value produced by the Baseline model (28.83)
is higher than that of the Basic (24.52) and En-
riched (24.72) models by 4.31 and 4.11 respec-
tively. Again,considering that the generic cut-point
from Sanders et al. [52] for predicting SBYoudenandMVPAYouden performed reasonably well in pre-
dicting the personalised cut-points as shown in the
AccP2 column of Table 5; the sizeable variation
between S values produced by the regression and
Baseline models indicate good improvement for our
approach in the right direction.
4.2.2. Results for the AG Device (worn on left

hip)
This section presents the results comparison be-

tween the Baseline and additive regression models
trained with data from the AG device. The MAE,
RMSE and S results are shown in Table 7. For
clarity, the results for each cut-point, i.e., SBYouden,MVPAYouden, SBSe andMVPASp is presented sepa-rately with respect to the validation approach used,
i.e., hold-out and 10-fold CV. Where applicable, we
use ‘⋆’ to indicate cases where the regressionmodel
is better than theBaseline. This is determined by the
S values i.e., lower S values indicates superiority.
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Table 7
MAE, RMSE and S values used to evaluate the regression and generic [52] models in
predictiong AG related cut-points

Evaluation/Cut-pt Baseline Basic Enriched
MAE RMSE S MAE RMSE S MAE RMSE S

H
ol

d-
ou

t SBYouden 0.19 3.95 3.69 3.50 4.68 4.46 3.51 4.14 3.89
SBSe 8.50 42.43 42.41 17.48 41.73 41.71⋆ 18.16 43.23 43.21
MVPAYouden 0.59 9.51 9.40 4.43 10.40 10.30 6.81 9.35 9.24⋆
MVPASp 19.87 56.32 56.30 48.35 67.89 67.88 43.35 59.90 59.89

10
-F

ol
d

C
V SBYouden 0.11 4.35 6.35 4.87 6.19 6.02⋆ 4.72 5.54 5.36⋆

SBSe 1.87 30.44 43.69 14.10 34.22 34.19⋆ 21.91 44.66 44.64
MVPAYouden 1.60 8.62 12.29 9.88 11.74 11.65⋆ 9.99 12.69 12.62
MVPASp 18.82 52.66 75.61 44.12 53.52 53.50⋆ 46.09 58.16 59.14⋆

⋆ Regression model better than baseline in terms of S value

Hold-out analysis: The results obtained with
hold-out validation are presented at the top part of
Table 7. Using S as criterion, the Baseline mod-
els in most cases performed better than the regres-
sion model. For example, in predicting SBYouden,the lower S value of 3.69 produced by the Base-
line mean that it performed better than both regres-
sion models models which yielded 4.46 for Basic
and 3.89 for Enriched. In other words, the distance
of the predicted SBSe values from the actual cut-
point is shortest with the Baseline model, followed
by the Enriched model and farthest with the Ba-
sic model. However, the variation between the S
value of the Baseline and the regression models are
minimal, particularly the Enriched model where the
difference is only 0.2. It is important to note that
the generic cut-point from Sanders et al. [52] pre-
dicted SBYouden with 62.5% accuracy, in the hold-
out validation result for AG device (i.e., AccP1) ob-served in Table 5. This indicates that the regression
models are likely to produce accuracy values within
the same region of 62.5% due to the narrow differ-
ence between their S value and that of the Baseline
model.

Similar result was observed with MVPASp pre-diction where the Baseline model also performed
better than both regression models in terms of S
value. This time, theS value for the Baselinemodel
is smaller than that of Basic and Enriched mod-
els by 11.58 and 3.59 respectively. However, the
the generic cut-point from Sanders et al. [52] pre-
dicted MVPASp with higher accuracy of 68.8%, in

the hold-out validation result for AG device (i.e.,
AccP1) observed in Table 5.

Mixed results were observed in predicting the
other two cut-points i.e., SBSe and MVPAYouden.For SBSe, the Basic model produced the lowest
S value (41.71), followed by 42,41 for the Basic
model and then 43.21 for the Enriched model. The
difference between them ismarginal, so both regres-
sion models are likely to predict SBSe at an accu-
racy level similar to the observed with the generic
cut-point from Sanders et al. [52] (68.8%), for the
AG device when validated with hold-out method as
shown in AccP1 column in Table 5.

Mixed result was also observed in MVPAYoudenprediction, but this time the Enriched model is the
most superior with S value of 9.24, followed by
9.40 for the Basic model and the 10.30 for the Ba-
sic model. The difference between them in terms of
S value is also marginal - 0.90 between the Base-
line and Basic models and 0.16 between the Base-
line and Enriched models. As shown in Table 5,the
generic cut-point from Sanders et al. [52] produced
an average performance in predicting MVPAYoudenwith an accuracy value of 50.00% for the AG device
when validated with hold-out method. Given the
marginal difference in S values between all three
models, it is likely that they will all produce aver-
age accuracy results.
10-Fold CV analysis: The results for 10-fold CV
are shown in the bottom half of Table 7. Using S
as criterion, the Basic regression model performed
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better than the Baseline in all the four cut-points
when validated with 10-fold CV method. The En-
riched model also performed better than the Base-
line in predicting two out of the four cut-points i.e.,
SBYouden andMVPASp. Similar to the 10-fold cross
validation result observed for GA device in Table 6,
the superiority of the Basic regression models for
AG device is also particularly sizeable in SBSe andMVPASp results as shown in Table 7.In predicting SBSe the lower S value of 34.19
produced by the Basic model is considerably bet-
ter than the Baseline which yielded an S value of
43.69. In other words, the distance of the predicted
SBSe values from the actual cut-point is shortest
with the Basic model. This is however followed by
the Baseline model and farthest with the Enriched
model. It is noteworthy that the generic cut-point
from Sanders et al. [52] performed particularly well
in predicting SBSe, when compared to personalised
ones for AG device with 10-fold cross validation.
This can be seen in the AccP2 column of Table 5 for
AG device, where the generic cut-point predicted
75.8% of the personalised SBSe correctly. There-
fore, the lower S values produced by the Basic re-
gression model is a very good improvement.

Both regression models were better than the
Baseline in predicting MVPASp. Here, the S values
for Basic and Enriched models are 53.50 and 59.14
respectively. These are clearly lower than the 75.61
recorded for the Baseline model. Considering that
the generic cut-point from Sanders et al. [52] pre-
dicted 66.7% of MVPASp correctly when compared
to the personalised cut-point values as shown in Ta-
ble 5, the sizeable variation between its S value and
that of the regressionmodels can only be interpreted
as a very good improvement for our approach.

As noted earlier, the superiority of the Basic
model over the Baseline is evident in all four cut-
points including SBYouden and MVPAYouden. In
fact, both regression models performed better than
the Baseline in predicting SBYouden. As shown in
Table 7, the Baseline model produced an S value of
6.35, which is higher than 6.02 and 5.36 produced
by the Basic and Enriched regression models, re-
spectively. Considering that the generic cut-point
from Sanders et al. [52] for predicting SBYouden per-formed reasonably well (60.6%) in predicting the
personalised cut-points, as shown in the AccP2 col-umn of Table 5; the variation between S values pro-

duced by the regression and Baseline models in-
dicates good improvement for our approach in the
right direction.

Unfortunately, only the Basic regression model
predicted MVPAYouden better than the Baseline,
where the S value produced by the Baseline model
(12.29) is higher than that of the Basic model
(11.65) by 0.64 but lower than the Enriched model
(12.62) by 0.33. This time, the generic cut-point
from Sanders et al. [52] for predicting MVPAYoudendid not perform particularly well (36.4%) in pre-
dicting the personalised cut-points, as shown in the
AccP2 column of Table 5. Thus, it is unlikely that
the superiority of the Basic model over the Baseline
model would result in substantial improvement. It
is still an improvement nonetheless.
4.3. RQ3: Contribution(s) of data features

to our method
Based on the result analysis presented in Sec-

tion 4.2, 10-Fold CV clearly led to better perfor-
mance than the hold-out validation method in our
experiments; particularly when applied to the Basic
regression version of our approach. Indeed, the re-
sults validates our intuition that 10-Fold CV would
yield better results than hold-out due to the modest
data available for this study (n = 33). For exam-
ple, the hold-out sets used for training and testing
may not be representative of the entire data charac-
teristics, which would limit knowledge gain for the
base classifier used. By using 10-Fold CV however,
the classifier learns from all the available data and
still remains objective in its prediction. In Tables 6
and 7, the Basic regression was shown to perform
better than its Enriched counterpart, when 10-Fold
CVwas applied. Thus, we conducted further exper-
iments with the Basic regression models to measure
the contribution(s) of each of the seven data features
towards information gain to the base algorithm, i.e.,
additive regression. For each of the cut-points con-
sidered in this study, we re-trained the Basic regres-
sion model with 10-Fold CV in seven iterations; re-
moving one of the features in each iteration and cal-
culating how well the model fits predicted values to
the regression line, i.e., the S value. The goal is to
determine if fewer features could lead to better pre-
diction.

The results are presented in Table 8. The S
values obtained for the reduced feature subsets are
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shown in the top half of the Table. For clarity and to
aid comprehension, we present in the bottom half,
S values for the Baseline and Basic models, when
trained with all the features and validated with 10-
Fold CV. These were extracted from Tables 6 and 7.
Cases where the Basic model trained with reduced
feature subset produced better (lower) S value than
with full feature subset are denoted with bold type-
face. We also highlight (in yellow), cases where
the Basic model trained with reduced feature subset
produced worse (higher) S value than the Baseline.

Only one of the reduced feature subset models
performed below the baseline i.e., MVPAYouden pre-diction for the AG device without the ‘Systolic BP’
feature. This indicates that Systolic BP is a vital
feature for predicting MVPAYouden on the AG de-
vice, and perhaps MVPASp as well, where the S
value (58.55) also increased above the original Ba-
sic result (53.5). Unfortunately, the same cannot
be said about predicting SBYouden and SBSe with-
out the ‘Systolic BP’ feature for AG device because
of the improved performance observed.

A good number of the models performed better
than the original Basic trained with full feature set
as shown in Table 8. In particular, there is almost
a perfect performance improvement across all the
cut-points for both GA and AG device without the
‘sex’ feature. In fact, this is the case with data from
AG device but fell short by one cut-point for the GA
device. That said, a perfect performance improve-
ment was observed without the ‘age’ feature for the
GA.

It is also important to note that a lot of the results
became worse than the original Basic model as a re-
sult of feature reduction. The performance is rarely
consistent across both GA and AG devices. For ex-
ample, the removal of the ‘weight’ feature led to re-
duced performance in three out of four cut-points
predicted for the GA device. However, the same
setting led to improvement in three out of four cut-
points predicted for the AG device.

Unfortunately, none of the reduced subsets led
to a perfect reduction in S value across the cut-
points on both GA and AG devices. Thus, we are
unable to generalise and recommend a particular
subset for the purpose of improving the results of
the additive regression algorithm when validated
with 10-Fold CV.

5. Discussion
The result analysis presented in Section 4 indi-

cates that the proposed Basic regression approach
consistently performs better than the Baseline mod-
els with data from both GA and AG devices when
validated with 10-Fold CV. In most cases, the pro-
posedEnriched regression approach also performed
better than the Baseline models. The discussion
presented in this section will put the results into
context and draw attention to a number of other fac-
tors that were not (directly) taken into consideration
by the evaluation metrics used (i.e., MAE, RMSE
andS) and the corresponding result analysis in Sec-
tion 4.

We observed from Tables 6 and 7 that the Base-
line models perform better than some of the re-
gression models. Interestingly, this happens even
with cut-points derived from the Youden index,
which provides a compromise between sensitivity
and specificity, i.e., MVPAYouden and SBYouden. We
suspect this is mainly due to the method in which
Sanders et al [52] generated the generic cut-points;
and partially due to factors, such as the data fea-
tures, validation method employed and the device
from which the experimental data was obtained.

First, Sanders et al. [52] took an a posteriori re-
search approach, in which the cut-points were gen-
erated based on knowledge of the ENMO values
taken directly from the study participants. Basi-
cally, ENMO values from a subset of the experi-
mental data were used to generate cut-points and
the remaining samples were used to evaluate ac-
curacy. It is expected that these cut-points would
perform well given that the test data belongs to
the same group of participants from which the cut-
points were generated. In other words, the generic
cut-points already have direct knowledge of the out-
put being predicted.

In our approach however, we make predictions
without knowledge of the ENMO values from the
study participants. Specifically, the Basic regres-
sion model only uses basic information about the
participants as input, i.e., gender, age, weight,
height, bmi, systolic and diastolic BP. Despite this,
the model consistently outperformed the Baseline
models when validated with 10-Fold CV. This is
most notable in its prediction of SBSe for the AG
device, where the generic cut-point from Sanders
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Table 8
Training data features and associated contribution to the S value performance of Basic
regression model

S value for GA S values for AG
Data subset SBYouden SBSe MVPAYouden MVPASp SBYouden SBSe MVPAYouden MVPASp

Features - Sex 14.97 77.36 24.27 212.20 5.94 34.11 11.63 53.04
Features - Age 13.59 66.66 23.85 176.13 5.77 34.52 13.17 54.63
Features - Weight 15.23 81.81 22.23 225.60 5.41 33.58 11.41 61.08
Features - Height 14.18 66.41 25.01 233.06 6.18 34.12 11.96 53.41
Features - BMI 15.28 80.23 23.75 261.52 5.52 31.70 11.70 57.45
Features - SysBP 14.41 72.88 22.32 238.80 5.72 33.05 12.77 58.55
Features - DiaBP 14.18 74.52 22.84 245.43 5.68 33.32 9.62 63.40

All FeatureBasic 14.67 78.35 24.52 215.09 6.02 34.19 11.65 53.5
All FeatureBaseline 16.96 120.56 28.83 562.24 6.35 43.69 12.29 75.61

et al. [52] produced its best result, i.e., 75% with
10-Fold CV in themodified accuracy representation
shown in Table 5. The Basic regression model pro-
duced S values of 34.19 which is 9.5 lower than the
43.69 produced by the Baseline model. This differ-
ence in favour of the Basic model seems reasonably
high for a model that was trained without knowl-
edge of the ENMO values. On this note, the good
results obtained with our approach show that there
is potential in this line of research and further ex-
ploration which looks at optimising the base algo-
rithm, i.e., additive regression, or even testing with
a different algorithm may well improve the results.

We suspect that validation methods may have
also contributed to the instances where our ap-
proach performed lower than the Baseline model.
In Table 6, where the experimental data was ob-
tained from the GA device, the Baseline only per-
formed better than the regression models in pre-
dicting SBYouden. More importantly, this occurred
when we validated with the hold-out method. As
discussed earlier in this paper, we had the intuition
that 10-Fold CVwould provide a more objective as-
sessment of our approach due to the modest exper-
imental data size (n = 33), because it has the ben-
efit of allowing all data instances to be used as test
instances at least once. This is in contrast to the
hold-out method in which the training or testing set
may not be representative of the entire data charac-
teristics, and thus limit knowledge gain for the base
classifier used. To an extent, our intuition was con-
firmed because both regression models performed

consistently better in predicting the four cut-points
than the Baseline model, when 10-Fold CV was ap-
plied to experimental data from the GA device.

It is possible that data features may have im-
pacted the performance of our approach, particu-
larly the Enriched model which was trained with
additional features related to a person’s PA charac-
teristics. This is obvious in Table7 where the exper-
imental data was obtained from GA device. Even
when 10-Fold CV was applied, the Enriched model
is shown to perform marginally below the Baseline
model on two occasions but the error margin is big-
ger when compared to the Basic model. This shows
that the additional features had a negative effect on
our approach.

Another important factor to consider is the at-
tachment site of the devices tested in this experi-
ments. GA is wrist worn and AG is worn on the
hip. The results of our experimentation shows that
our approach performed better with data from the
GA device, in comparison to its AG counterpart,
which yielded mixed results with a high number
of cases where our approach performed below the
Baseline model - excluding results of 10-Fold CV
with the Basic regression model (see Table 7). It
is not very clear from the experiments why this
is the case but there is evidence within the litera-
ture that wrist-worn accelerometers capture energy
expenditure more accurately than hip-worn moni-
tors [15]. Recent accelerometer studies have sug-
gested that the wrist may be a preferable attach-
ment site, as it allows to capture armmotions during
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non-ambulatory activity, such as household chores,
more accurately [16, 36]. Moreover, wrist-worn ac-
celerometers are less influenced by atypical gait pat-
terns and walking speed variability, which are both
commonly observed in older adults [32]. Older peo-
ple are more likely to move their wrist than hip,
so we suspect that the GA device (wrist-worn) pro-
vided a more accurate and complete set of raw ac-
celeration signals than the AG (waist-worn). As
such, the data from GA device lead to better infor-
mation gain to the input features used for our regres-
sion models. This is particularly important because
of the a priori research approach we took, in com-
parison to Sanders et al. [52] that took an a posteri-
ori approach.

There is also evidence in favour of wrist-worn
device over their hip-worn counterparts in terms
of compliance and production of uninterrupted
data [14, 35, 58]. This can be illustrated with
the evolving cycles of the National Health and
Nutrition Examination Survey (NHANES) in the
United States of America [58]. Participants of the
2003–2004 and 2005–2006 cycles were asked to
wear Actigraph 7164 on a waist belt during all non-
sleeping hours for seven days. However, only about
25% of the participants provided seven days of data,
and this was mostly attributed to the discomfort or
inconvenience of wearing a device on the hip over
time, and forgetting to put the monitor back on after
taking it off at night. Fast forward to the 2011–2012
and 2013–2014 cycles for which a wrist worn Acti-
graph GT3X+ was used, the location change had
the desired effect on compliance, as 70% of the par-
ticipants provided seven days of continuous triaxial
accelerometer raw-signal data at 80Hz; with the ad-
ditional benefit of tracking movement during sleep.
Although the experimental data used in our research
was obtained during non-sleeping hours, we ob-
served a large amount of missing values in the data
from AG device (hip-worn), in comparison to GA
device (wrist-worn) which had no missing value(s).
We removed the rows of data with missing values
during experiment and we suspect that it (i.e., data
shortage) had an adverse effect on the classification
tasks with data from the AG device.

Data size is another important factor that may
affect the results reported in this paper. The mod-
est dataset available for this experiment is particu-
larly less favourable to our approach, in comparison

to Sanders et al’s. This is due to reasons discussed
previously, where calibration and test data used in
Sanders et al. [52] belongs to the same group of par-
ticipants from which the calibration cut-points were
obtained. A good example to illustrate this is in
MVPASp prediction for the GA device, where the
generic cut-point correctly predicted all instances
(accuracy = 100%) in the modified accuracy repre-
sentation shown in Table 5. The MVPASp cut-pointmaximises specificity over sensitivity on a Receiver
Operating Curve (ROC). This happens at the point
on the ROC that is capable of ruling out participants
who are not engaging in MVPA, without necessar-
ily trying to find those engaging in MVPA. Given
that the test data belongs to the same participants,
this cut-point is likely to result in a high but mis-
leading accuracy value, because it was calibrated
with knowledge of ENMO values from the study
participants. On the other hand, our approach re-
lies on the variation in the personal characteristics
of the study participants, without knowledge of the
ENMO values. Therefore, having a larger training
dataset that represents a much wider variation of in-
dividual characteristics would be beneficial.

6. Conclusion
The use of accelerometer-based data in physical

activity (PA) research have brought tremendous ad-
vances. Users are now able to capture, store and/or
transmit large volumes of raw acceleration signal
data. These data provides opportunities to charac-
terise and represent PA better, but the opportuni-
ties are accompanied by several challenges, such as
PA data analysis and interpretation. A notable chal-
lenge identified in this research is the wide variety
of predictive equations available for characterising
PA levels. As shown in Table 1, PA estimates de-
rived from these equations are conceptually incom-
patible even though they are expressed in the same
metrics. This diversity reduces the ability to make
direct data comparisons between PA research stud-
ies, even when they used the same accelerometer.

Thankfully, there is growing effort in PA re-
search to shift away from multiple independent cal-
ibration studies and move towards a consensus an-
alytic method. This is evident in Sanders et al. [52]
who opted for a post-data collection analytical pro-
cess with Receiver Operating Curve (ROC) analy-
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sis. The results were promising but left some ques-
tions unattended, such as (a) the use of a single fea-
ture for PA characterisation, i.e., ENMO values de-
rived from the accelerometer, (b) the generic na-
ture of the cut-points, i.e., the one size fits all ap-
proach, and (c) the potential bias in their validation
approach, because they calibrated and tested with
data from the same group of individuals. We ex-
tended this research by using multiple features re-
lating to a person’s individual characteristics to pre-
dict PA cut-points. In addition, adopting a machine
learning approach allowed us to personalise PA cut-
points with improved performance against the state-
of-the-art, particularly when validated with 10-Fold
CV.

An advantage of our approach is that it can be
easily replicated, thereby providing greater method-
ological transparency and improved comparabil-
ity between different studies and accelerometer de-
vices. Of course some logistical issues still remain,
such as data availability, which is compounded by
issues of compliance and attachment site for the ac-
celerometer device, i.e., wrist, hip etc. Thewrist has
been highly recommended by the wider PA research
community and advances in data storage, transmis-
sion, and big data computing will hopefully min-
imise the logistic challenges.

It may be possible to improve the performance
of our approach. For example, we could apply ad-
ditional optimisation techniques to the additive re-
gression algorithm such as parameter tuning or re-
place the underlying machine learning algorithm
used Decision Stump. In fact, there are many other
simpler regression models that could be used such
as the non-linear least squares [38] among others. In
the future, we would consider optimisation options
with the additive regression algorithm and compare
results with other regression algorithms.
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