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ABSTRACT
We report the frequency analysis of a known roAp star, HD 86181 (TIC 469246567), with new inferences from Transiting
Exoplanet Survey Satellite (TESS) data. We derive the rotation frequency to be νrot = 0.48753 ± 0.00001 d−1. The pulsation
frequency spectrum is rich, consisting of two doublets and one quintuplet, which we interpret to be oblique pulsation multiplets
from consecutive, high-overtone dipole, quadrupole, and dipole modes. The central frequency of the quintuplet is 232.7701 d−1

(2.694 mHz). The phases of the sidelobes, the pulsation phase modulation, and a spherical harmonic decomposition all show that
the quadrupole mode is distorted. Following the oblique pulsator model, we calculate the rotation inclination, i, and magnetic
obliquity, β, of this star, which provide detailed information about the pulsation geometry. The i and β derived from the best fit
of the pulsation amplitude and phase modulation to a theoretical model, including the magnetic field effect, slightly differ from
those calculated for a pure quadrupole, indicating the contributions from � = 4, 6, 8,... are small. Non-adiabatic models with
different envelope convection conditions and physics configurations were considered for this star. It is shown that models with
envelope convection almost fully suppressed can explain the excitation at the observed pulsation frequencies.

Key words: asteroseismology – techniques: photometric – star: chemically peculiar – stars: individual: HD 86181
(TIC 469246567; V437 Car) – stars: oscillations.

1 IN T RO D U C T I O N

The Ap (chemically peculiar A-type) stars have non-uniform distri-
butions of chemical abundances on their surfaces and strong magnetic
fields. These magnetic fields suppress surface convection that then
leads to element stratification. For some heavy elements, such as
Eu, Sr, and Si, the radiation pressure can lift them up to the surface
against gravity leading to many absorption features. These elemental
overabundances occur in spots, making Ap stars obliquely rotating
variable stars of a class known as α2 CVn stars (Pyper 1969).

Some cool Ap stars exhibit high-overtone, low-degree pressure
pulsation modes with periods between 4.7 and 24 min [frequencies in
the range 55.8–300 d−1; 0.6–3.5 mHz (Holdsworth et al. 2021)] and
photometric amplitudes up to 0.018 mag in Johnson B (Kochukhov
2009; Smalley et al. 2015; Cunha et al. 2019). They are called rapidly
oscillating Ap (roAp) stars. Some of these stars show both rotation

� E-mail: 1801110218@pku.edu.cn (FS); kurtzdw@gmail.com (DWK);
zhanghw@pku.edu.cn (HZ)

features with periods of days to decades, and pulsation features in
their light curves.

Stibbs (1950) developed the oblique rotator model of the Ap
stars, which accounts for the magnetic, spectral, and light variations
observed in Ap stars. Following this model, Kurtz (1982) introduced
the oblique pulsator model, which was generalized with the effects
of both the magnetic field and rotation taken into account (Kurtz
1982; Dziembowski & Goode 1985; Shibahashi & Takata 1993;
Takata & Shibahashi 1994, 1995; Bigot & Dziembowski 2002;
Saio & Gautschy 2004; Bigot & Kurtz 2011). According to this
model, the pulsation axis is misaligned with the rotation axis, and
generally closely aligned to the magnetic axis. When the star rotates,
the viewing aspect of the pulsation modes varies along the line of
sight, leading to apparent amplitude and phase modulation. This
modulation can provide information on the geometry of observed
pulsations, hence mode identification, which is necessary for astero-
seismic inference with forward modelling.

Since the first roAp stars were discovered by Kurtz (1982),
88 roAp stars have been found (Smalley et al. 2015; Balona,
Holdsworth & Cunha 2019; Cunha et al. 2019; Hey et al. 2019;
Holdsworth et al. 2021). Asteroseismology is a useful method to
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Table 1. Parameters of HD 86181.

Apparent G
magnitude

9.341 ± 0.003 Gaia Collaboration (2020)

Extinction in G band 0.1 ± 0.2 Anders et al. (2019)
Spectral type F0 Sr Renson & Manfroid (2009)
Parallax (mas) 4.15 ± 0.01 Gaia Collaboration (2020)
Distance (pc) 241.0 ± 0.6 Derived from parallax
b − y 0.175 Perry (1991)
m1 0.245 Perry (1991)
c1 0.702 Perry (1991)
Hβ 2.804 Perry (1991)
Teff(K) 7750; [7240–7910] This worka; Literatureb

Luminosity (L�) 8.8 ± 1.9 Andrae et al. (2018)
Mean longitudinal 536 ± 75 Bagnulo et al. (2015)
Magnetic field (G)

aBased on Rogers (1995).
bTrifonov et al. (2020), Anders et al. (2019), and Mathys, Kharchenko & Hubrig
(1996).

diagnose stellar structure and interior physics from the evidence of
surface pulsations (Cunha, Fernandes & Monteiro 2003). Progress
of this research for roAp stars has been hindered by the relatively
small number of known stars, and because their rapid pulsation
requires dedicated observations and high accuracy to detect the small
pulsation amplitudes (Balona et al. 2019; Cunha et al. 2019; Hey et al.
2019).

The space telescopes Kepler and the TESS (Transiting Exoplanet
Survey Satellite) provide an opportunity to detect oscillations well
below the amplitude threshold of ground-based observations. Both
Kepler and TESS have short cadence (2 min for TESS and 58.89 s
for Kepler) observations, but Kepler only observed 512 stars in this
mode during each observing ‘quarter’. However, the standard long-
cadence sampling frequency of the Kepler 30-min observations is
generally too low for studying the pulsation of roAp stars in detail.

Murphy, Shibahashi & Kurtz (2013) showed that the Nyquist
ambiguity in the LC data can be resolved as a result of the Barycentric
corrections applied to Kepler time stamps, and Hey et al. (2019)
discovered 6 roAp candidates through this method. Compared to
the Kepler 58.89-s observations, TESS is observing many more stars
with 2-min observations with sufficiently long-time bases to detect
pulsations. Up to now, 21 new roAp stars have been found from just
TESS sectors 1–13 (Balona et al. 2019; Cunha et al. 2019; Holdsworth
et al. 2021).

Before the TESS observations of our target, HD 86181, Kurtz
& Martinez (1994) discovered it to be a roAp star from 4.85 h of
ground-based data. They reported the star to have a pulsation period
of 6.2 min and with an amplitude of 0.35 mmag through a Johnson
B filter. That period corresponds to a frequency of 2.688 mHz, or
232.26 d−1. No further detailed studies of the pulsations in HD 86181
have been published.

Parameters for this star are listed in Table 1. The effective
temperature was estimated using the Strömgren photometric indices
extracted from the catalogue of Hauck & Mermilliod (1998) and
the calibrations in the TEMPLOGG code (Rogers 1995) which were
developed based on the work of Moon & Dworetsky (1985) and
Napiwotzki, Schoenberner & Wenske (1993). Since no convincing
uncertainty is given by this method, we indicate, instead, a range of
values of Teff published in the literatures.

The luminosity was calculated through the relation −2.5 log L =
MG + BCG(Teff) − Mbol,�, where BCG(Teff) is a temperature-
dependent bolometric correction defined in Andrae et al. (2018),
and the uncertainty of BC (Bolometric Correction) is 0.13, based on
a comparison with Ap data that is described in some detail in Cunha

Figure 1. Top: The light curve of HD 86181 showing the rotational varia-
tions. Bottom: Phase folded light curve of HD 86181, folded on the rotation
period of 2.05116 d; two rotation cycles are shown for clarity. The data are
from TESS sectors 9 and 10. The time zero-point, BJD 2458569.26128, is the
time of pulsation maximum. The phases are binned every 0.001 phase bin.

et al. (2019). While the uncertainty derived in Cunha et al. (2019) was
based on a comparison of Ap-star measurements with the empirical
BCV calibration by Flower (1996) and, thus, the consistency of using
it with the BGG values derived from the calibration of Andrae et al.
(2018) may be questionable, it provides a more conservative result
than the uncertainty derived from Andrae et al. (2018), which does
not account for the stars’ peculiarities. The extinction in the G band
used to calculate MG here was from Anders et al. (2019), and the
uncertainty is 0.2, which is the value indicated in the fig. 20 in Anders
et al. (2019). The parallax was from Gaia eDR3 (Gaia Collaboration
2020). Mbol,� adopted is 4.74 as defined by IAU Resolution 2015
B2.1

2 TESS OBSERVATI ONS

HD 86181 was observed by TESS in sectors 9 and 10 in 2-min
cadence. The data have a time-span of 51.76 d with a centre point
in time of t0 = BJD 2458569.80077, and comprise 33832 data
points after some outliers were removed. The standard PDC SAP
(pre-search data conditioning simple aperture photometry) fluxes
provided by MAST (Mikulski Archive for Space Telescopes) were
used and normalized by dividing by the median flux separately
for each sector. Relative magnitudes were then calculated from the
processed fluxes, giving the light curve shown in the top panel of
Fig. 1.

There are obvious rotational variations from spots, as is typical
of the magnetic Ap stars. Within the oblique rotator model, the
double wave nature of the rotational variations suggests that two
principal spots with enhanced brightness on the stellar surface are

1https://www.iau.org/static/resolutions/IAU2015 English.pdf
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HD 86181 5631

seen. The high-frequency pulsation cannot be seen in this figure at
this resolution.

3 FR E QU E N C Y A NA LY S I S

3.1 Rotation frequency analysis

Before we conducted a detailed analysis of the rotation frequency of
HD 86181, we first measured the rotation frequency with a coarse
Discrete Fourier Transform (DFT; Kurtz 1985) such that we could
bin the data every one rotation cycle. This allowed us to assess the
instrumental variation, which we subsequently fit with a polynomial
and removed from the original light curve. We then calculated a DFT
with a finer frequency grid, as shown in Fig. 2, to measure the stellar
rotation frequency. The low frequencies dominate in the spectrum,
so we zoom in to both the low-frequency range (second panel) and
high-frequency range (third panel). From the amplitude spectrum at
low frequency, the rotational harmonics are clearly seen. Although
the highest peak is at a frequency of 0.97 d−1, considering the phase
plot, we derive the rotation frequency to be around 0.48 d−1. Because
the variation is a double wave, the second harmonic has the highest
amplitude.

A linear least-squares fit was calculated to find the best amplitudes
and phases of the rotation frequency and its 4 visible harmonics,
and then a non-linear least-squares fit to get optimized results. The
rotational frequency is derived to be νrot = 0.48753 ± 0.00001 d−1

(Prot = 2.05116 ± 0.00004 d) by dividing the frequency of the
highest amplitude second harmonic by two, which has better signal-
to-noise ratio. Besides the rotation frequency and its harmonics,
there are still some signals left in the low-frequency range, probably
because instrumental variation has not been removed completely.
These signals were removed prior to the non-linear least-squares
fit for better estimates of the uncertainties. The uncertainties were
derived following Montgomery & O’donoghue (1999). The rotation
period is short among the known roAp stars, after HD 43226 (Cunha
et al. 2019), HD 216641 (Cunha et al. 2019), and HD 6532 (Kurtz
et al. 1996a, b), which have similar rotation periods of Prot = 1.714 41,
Prot = 1.876 660, and Prot = 1.944 973 d, respectively.

3.2 The pulsations

To study the pulsations, a high-pass filter was used to remove the
rotational light variations, any remaining instrumental artefacts and
other low frequencies. The high-pass filter was a simple consecutive
pre-whitening of low frequency peaks extracted by Fourier analysis
until the noise level was reached in the frequency range 0–6 d−1. The
third panel in Fig. 2 shows the amplitude spectrum for the high-pass
filtered data around the high-frequency variability. By inspection
it can be seen that there is a central quintuplet and two doublets,
one at higher and another at lower frequency than the quintuplet.
After removing these three groups of frequencies, five singlets still
remain (see the bottom panel of Fig. 2). However, their frequencies
are similar to the quintuplet and two doublets within the uncertainties.
These may be caused by amplitude or frequency modulation over the
time-span of the data set, 51.76 d.

To test this, we removed the doublets and singlets from the light
curve and fitted ν1 to sections of the data that are exactly one rotation
cycle long and calculated the amplitude and phase. Fig. 3 shows there
is amplitude and phase variability with time. By choosing exactly
one rotation length of data, the amplitude and phase variations due
to oblique pulsation were smoothed.

Figure 2. The frequency spectrum of HD 86181. Top: The amplitude
spectrum of the S9–10 data out to 300 d−1. The rotational frequencies at
low frequency dominate. The pulsation frequencies centred on 232.2 d−1 are
difficult to see at this scale. Second: The low frequency rotational harmonics.
Third: the pulsation frequencies for the high-pass filtered data. Bottom: The
frequency spectrum after the frequencies in Table 2 have been removed.
The red horizontal lines are 4 times of noise level. The top x-axis is the
corresponding frequency in μHz.

If the frequency were stable, there would be no phase variations.
As the data were fitted with the function �m = Acos (ν(t − t0) + φ),
the frequency and phase terms are inextricably intertwined (see the
section 5.3.2 in Holdsworth et al. 2014), thus a change in one can be
interpreted as a change in the other. Therefore, although we show a
change in the phase in Fig. 3, the change could be in the frequency.
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5632 F. Shi et al.

Figure 3. The pulsation amplitude and phase variations of HD 86181 for the
dominant quadrupole mode. Top: pulsation amplitude variations as a function
of time. Bottom: pulsation phase variations as a function of time.

Table 2. A non-linear least-squares fit of the frequency multiplets for
HD 86181. The zero-point for the phases is t0 = BJD 2458569.26128.

Frequency Amplitude Phase
d−1 mmag radians

±0.007

νrot 0.48765 ± 0.00003 2.970 5.829 ± 0.003
2νrot 0.97506 ± 0.00001 7.296 2.776 ± 0.001
3νrot 1.46233 ± 0.00013 0.732 0.312 ± 0.013
4νrot 1.95043 ± 0.00013 0.761 6.177 ± 0.013
6νrot 2.92585 ± 0.00050 0.190 0.215 ± 0.049

ν2 − νrot 229.6162 ± 0.0012 0.059 0.28 ± 0.17
ν2 + νrot 230.5897 ± 0.0014 0.050 0.49 ± 0.20

ν1 − 2νrot 231.7947 ± 0.0008 0.091 6.00 ± 0.11
ν1 − νrot 232.2853 ± 0.0013 0.055 6.27 ± 0.18
ν1 232.7701 ± 0.0003 0.273 6.24 ± 0.04
ν1 + νrot 233.2587 ± 0.0011 0.062 6.17 ± 0.16
ν1 + 2νrot 233.7438 ± 0.0008 0.080 0.14 ± 0.12

ν3 − νrot 235.2495 ± 0.0010 0.071 6.11 ± 0.14
ν3 + νrot 236.2261 ± 0.0012 0.063 5.94 ± 0.16

Such variability is common in roAp stars studied with high-precision
data (Holdsworth 2021).

As in the analysis of rotation frequency, linear and non-linear
least-squares fits were used to get optimized results of frequencies,
amplitudes, and phases. The non-linear least-squares fit results are
shown in Table 2. Within the uncertainties, the sidelobes of the
quintuplet are exactly split by the rotation frequency. In addition to
the quintuplet, there are two doublets that are split by 2νrot; these are
the sidelobes of two dipole pulsation frequencies that are labelled
as ν2 and ν3. For a pure dipole or quadrupole pulsation, the oblique
pulsator model requires that the sidelobes are split by exactly the
rotation frequency of the star, and that the phases of all components
are equal at the time of pulsation maximum. To test this, the frequency
of the quintuplet sidelobes were fixed to be equally spaced by the
rotation frequency, and the zero-point in time was chosen such that
the phases of the first pair of sidelobes are the same, then a linear
least-squares fit was applied to the data with the results show in

Table 3. A least-squares fit of the frequency multiplets for
HD 86181, where the frequency splitting of the rotational sidelobes
has been forced to be exactly the rotation frequency. The zero-point
for the phases, t0 = BJD 2458569.26128, has been chosen to be
a time when the first two orbital sidelobes of the quintuplet have
equal phase.

Frequency Amplitude Phase
d−1 mmag radians

±0.007

ν2 − νrot 229.6162 0.058 0.25 ± 0.11
ν2 + νrot 230.5913 0.049 0.40 ± 0.14

ν1 − 2νrot 231.7950 0.091 − 0.26 ± 0.07
ν1 − νrot 232.2826 0.053 − 0.13 ± 0.12
ν1 232.7701 0.273 − 0.05 ± 0.02
ν1 + νrot 233.2576 0.061 − 0.13 ± 0.11
ν1 + 2νrot 233.7452 0.080 0.14 ± 0.08

ν3 − νrot 235.2494 0.071 − 0.13 ± 0.09
ν3 + νrot 236.2245 0.063 − 0.11 ± 0.11

Table 3. The phases of the quintuplet sidelobes are not equal within
the uncertainties, which indicates this star pulsates in a distorted
quadrupole mode.

We also investigated the impact of the spots on the pulsations.
From the second panel of Fig. 1, the rotational variation caused by
the spots amounts to 20 ppt peak to peak. We therefore expect the
modulation of the pulsation caused by spots to be also a factor of
0.02 of the pulsation amplitude, which is down to μmag, much below
the noise level. So the effect of spots on the pulsation amplitude is
negligible.

Finally, harmonics of the pulsation frequencies were also searched
for beyond the Nyquist frequency, νNy = 359.804 d−1. Only three
similar alias groups centred at 2νNy − ν1, 2νNy − ν2, and 2νNy − ν3

were found, with no evidence of harmonics of pulsation frequencies.

3.3 Pulsation amplitude and phase modulation

To study the rotation modulation of the pulsation amplitudes and
phases, the light curve was divided into 217 segments each containing
50 pulsation cycles, thus each segment had a time-span of 0.21d, or
0.1 of a rotation cycle. Linear least-squares fitting was applied to
these segments at fixed frequency, ν1 = 232.7701 d−1, to calculate
the pulsation amplitude and phase as a function of rotation phase. Fig.
4 shows these modulations along with the rotation light variations
for comparison.

The maxima of the pulsation amplitude depend on the aspect of
the pulsation axis, while the light extrema depend on the spots. The
difference between the occurrences of the extrema of the pulsation
amplitude and the rotational light variations indicates the position
of spots relative to the pulsation axis. In many Ap stars the surface
positions where spots form – particularly for the rare earth elements
– is related to the magnetic field. In the case that the spots are centred
on the pulsation axis which is also fixed close to the magnetic axis, the
rotation phase of pulsation maximum coincides with, or is near to, the
rotation phase of the light extrema. As Handler et al. (2006) showed
for HD 99563, the maximum of pulsation amplitude coincides with
the maximum of rotation light in red filters, and the minimum in blue
filters. The antiphase variations in blue and red filters are related to
the flux redistribution from UV to optical caused by line blocking
(Leckrone 1973).

MNRAS 506, 5629–5639 (2021)
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HD 86181 5633

Figure 4. The pulsation modulation for pulsation frequency ν1 of HD 86181.
Top: The phase folded rotation light curve. Middle: pulsation amplitude
variations as a function of rotation phase. Amplitude points with 1σ errors
greater than 0.12 mmag are not plotted here. Bottom: pulsation phase
variations as a function of rotation phase. Phase points with 1σ errors greater
than 0.8 rad are not plotted here. The red lines are theoretical amplitude
modulation modelled following Kurtz (1992) with the components from
Table 4. The blue line was calculated based on an oblique pure quadruple
mode (see Section 4). Two rotation cycles are shown. The time zero-point is
t0 = BJD 2458569.26128.

For HD 86181, pulsation amplitude maximum coincides with
the secondary maximum of the light curve, and after half a cycle,
the secondary maximum of pulsation amplitude coincides with the
maximum of the light curve. For a pure quadrupole pulsator, the
intrinsic pulsation amplitude peaks at both pulsation poles and at
the equator. The pulsation maximum at the poles is twice that at
the equator, but with inverse phase. We assume the maximum of
pulsation amplitude is generated at the pole, while the secondary
maximum by equator. This assumption is verified with the oblique
pulsator model below.

At rotation phase 0, which we chose to be the time of pulsation
maximum for the quadrupole mode, we see that the spots show the
secondary rotational light maximum. In contrast, for another roAp
star with a quadrupole mode, KIC 10685175, the maximum of the
pulsation amplitude coincides with the minimum of the rotational
light (Shi et al. 2020) (Fig. 5).

The pulsation phase as a function of rotation does not show a
π -rad phase reversal expected at the times of amplitude minima as
would be the case for an undistorted mode, although the pulsation
phase shows bumps at those times. This then argues for a distorted
quadrupole mode, and also is similar to what is observed in other
roAp stars with well-studied quadrupole modes (Kurtz et al. 1996b;
Holdsworth et al. 2014, 2016, 2018a, b, c; Holdsworth, Saio & Kurtz
2019).

Figure 5. Same as Fig. 4 for KIC 10685175. The time zero-point is t0 =
BJD 2458711.21931.

We also checked the pulsation amplitude and phase modulations
of the two central frequencies (ν2 = 230.1038 and ν3 = 235.7370
d−1) of the dipole modes, as seen in Fig. 6. However, because of the
low amplitudes, the modulation curves are quite scattered, especially
the phase modulation curve. The two dipole modes show similar
behaviour: the pulsation amplitude reaches primary and secondary
maximum at rotation phases 0 and 0.5, respectively, the same as the
quadrupole mode. The pulsation phase variations have large errors,
hence π -rad pulsation phase changes at rotation phases 0.25 and
0.75 – typical behaviour for dipole modes – are neither ruled out, nor
supported by the plots in Fig. 6.

4 O BLI QUE PULSATOR MODEL

The oblique pulsator model describes the pulsation pattern of an
oblique pulsator and only considers the surface geometry of non-
radial pulsation modes. However, some spectroscopic observations
(e.g. Kochukhov 2006; Freyhammer et al. 2009) and simulations
(e.g. Khomenko & Kochukhov 2009) have shown that properties of
pulsations change rapidly with height in the stellar atmosphere and
modes are substantially distorted by the magnetic field. Sousa &
Cunha (2011) and Quitral-Manosalva, Cunha & Kochukhov (2018a)
have also studied this extensively theoretically.

MNRAS 506, 5629–5639 (2021)
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5634 F. Shi et al.

Figure 6. Top panel: The pulsation amplitude (left) and phase (right) modulation of the dipole central frequency ν2 = 230.1038 d−1. Bottom panel: The
pulsation amplitude (left) and phase (right) modulation of the dipole central frequency ν3 = 235.7370 d−1. Phase points with 1σ errors greater than 1.0 rad are
not plotted here. The red lines are theoretical amplitude modulation modelled following Kurtz (1992) with the components from Table 4. The time zero-point is
t0 = BJD 2458569.26128.

Recently, TESS observations of HD 6532 and HD 80316
(Holdsworth et al. 2021) have shown that there are changes in
multiplet structure comparing to the former ground-based B observa-
tions. The TESS filter is broad-band white-to-red, which probes to a
different depth in the stellar atmosphere than the B filter. These new
observations show the complexity of roAp pulsations and importance
of the vertical dimension. Nevertheless, the oblique pulsator model
still allows us a simple first look at the geometry of the pulsation
modes.

For a normal quadrupole pulsator, the ratio of the sidelobes to the
central peak can be calculated with equations (8) and (10) from Kurtz
(1992)

A+1 + A−1

A0
= 12 sin β cos β sin i cos i

(3 cos2 β − 1)(3 sin2 i − 1))
(1)

and

A+2 + A−2

A0
= 3 sin2 β sin2 i

(3 cos2 β − 1)(3 sin2 i − 1))
. (2)

Dividing the two equations leads to a standard constraint for oblique
pulsators with quadrupole modes

tan i tan β = 4
A+2 + A−2

A+1 + A−1
. (3)

We can calculate the rotation inclination i and magnetic obliquity
β of a quadrupole pulsator. Although this relation applies in the
case of a pure quadrupole mode, the results can provide us some
information about the geometry of the mode in HD 86181 for the
pure case.

The determination of tan itan β for a dipole mode is similar to that
shown in equation (3), but it is not possible to constrain i and β

independently. However, for a normal quadrupole mode, equations
(1) and (2) provide two equations in two unknowns, allowing us
nearly uniquely to derive values for i and β. From equations (1)
and (3), we find i = 84 ± 3◦, β = 30 ± 3◦, or vice versa, for
HD 86181. The uncertainties were calculated through MCMC fits.
With i, together with the rotation period and the estimated radius,
vsin i = 6.5 km s−1 can be derived. Although there is no published
vsin i value for comparison, this value is reasonable for a roAp star.

For an axisymmetric quadrupole mode, the pulsation amplitude
at the poles is twice that at the equator and in antiphase. Maximum
pulsation amplitude for the angles determined above comes when i −

β = 54◦. Since the surface nodes for an � = 2, m = 0 quadrupole lie
at co-latitudes ±54.7◦, at the time of pulsation maximum the pole is
inclined i − β = 54◦ to the line of sight, one surface node is tangent
to the lower limb of the star, and the other surface node is over the
top limb. Hence, we are seeing only the pulsation polar cap at that
time. Half a rotation later, the pole is inclined by i + β = 114◦;
i.e. the pole we were seeing is now on the other side of the star. The
second pole has come into view, but is at poorer viewing aspect, being
inclined 66◦ to the line of sight. That then puts one of the surface
nodes close to the line of sight, i.e. 66–54 = 12◦. Hence much of
the visible hemisphere is dominated by the equatorial region. Fig. 7
shows schematically this geometry at four rotation phases.

For a pure oblique quadrupole mode, the pulsation amplitude
distribution on the surface, Aθ , is proportional to 1

2 (3 cos2 θ − 1)
where θ is co-latitude, the angle to the poles. With knowledge of the
rotational inclination, i, and magnetic obliquity, β, we can calculate
an integral to obtain the pulsation amplitude at any time during a
rotation cycle. Numerically, the sphere surface of the star is divided
into a grid; then, with the formula, the pulsation amplitude for each
cell of the grid can be calculated. With i, β and the rotation angle
at a given time (t), 2πνrott, we know which grid cells can be seen
by us and also the projection of each cell. Then the integrated and
projected surface pulsation amplitude can be derived. The limb-
darkening model for TESS (Claret 2018) is used here. The results
are shown as the blue curves in Fig. 4. The maximum of the integral
pulsation amplitude is fixed to be the same as the one derived from
the model (red line). Since the calculation just considers the pulsation
as a pure quadrupole mode, the difference between blue and red line
shows the contribution from the radial and dipole component.

5 SP H E R I C A L H A R M O N I C D E C O M P O S I T I O N

Using the technique of Kurtz (1992), the quintuplet for HD 86181
can be decomposed into a spherical harmonic series. This model is
also based on the oblique pulsator model. Although there are some
caveats of this model, estimates of pulsation amplitudes at some
special phases and pulsation amplitude ratios can be made easily.

The decomposition was done using the frequencies, amplitudes,
and phases from Table 3. In order to interpret the two maximum
pulsation amplitudes, we calculated the decomposition with the
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Figure 7. The schematic diagram of the viewing geometry of quadrupole mode of HD 86181 through one rotation cycle. Red dots indicate the pulsation poles,
and blue dashed lines indicate the surface nodes at co-latitudes ±54.7◦.

Table 4. Results of the spherical harmonic decomposition (with the time
zero-point t0 = BJD 2458569.26128) of the quadrupole mode in HD 86181
for i = 84◦ and β = 30◦.

� A
(�)
−2 A

(�)
−1 A

(�)
0 A

(�)
+1 A

(�)
+2 φ (rad)

(mmag) (mmag) (mmag) (mmag) (mmag)

2 0.093 0.060 − 0.278 0.056 0.081 − 0.322
1 0.015 0.005 0.014 1.962
0 0.542 − 0.204

time zero-point t0 = BJD 2458569.26128. The results are shown
in Table 4.

In recent works, we have corrected a small error in the decompo-
sition code. The original code used to calculate the decomposition of
HD 6532 (Kurtz et al. 1996b) and several stars miscoded equations
(8) and (10) in Kurtz (1992).

The decomposition components of HD 86181 show that at phase
= 0, the dipole � = 1 component contributes only 0.034 mmag to the
quadrupole mode – almost nothing comparing to the strong radial
contribution, which means that the polar amplitude is increased and
the equatorial amplitude is reduced compared to a pure quadrupole
mode. These results verify the assumption that the pulsation ampli-
tude maximum comes from the poles, with the secondary maximum
from the equator.

As an example, we estimate the pulsation amplitude maximum at
phase 0. According to the equations (20), (21), and (22) in Kurtz
(1992), at phase 0, the pulsation amplitude is

A =

√√√√(
2∑

�=0

�∑
m=−�

A�
m cos φ�

)2

+
(

2∑
�=0

�∑
m=−�

A�
m sin φ�

)2

.

The amplitude of the dipole mode (A�=1
m ) is negligible, and the

quadrupole and radial components have similar phases, meaning
φ� = 2 and φ� = 0 can be considered as the same, so they can add at the
time of amplitude maximum. Therefore, the pulsation amplitude is A
= 0.542 + 0.093 + 0.060 − 0.278 + 0.056 + 0.081 = 0.559 mmag,
which fits the pulsation phase plot well. Of course, the decomposition
technique was designed to fit the data, so it is not a surprise that it
does. This discussion is to give a mental picture of why this is so.
More precisely, a fit of all three spherical harmonic components
taking into account that the exact phases seen in Table 4 gives the fit
shown in Fig. 4 as the red curves.

In addition to the quintuplet for HD 86181, there are two doublets.
With the i and β in Section 7, we derive tan itan β = 4.76. For dipoles

that gives

A+1 + A−1

A0
= 4.76. (4)

We therefore expect to see triplets with very small central components
at ν2 and ν3, with amplitudes only about 0.03 mmag, which is at the
detection limit for these data. This supports the identification of ν2

and ν3 as dipole modes, and it is therefore no surprise that we see
doublets separated by twice the rotation frequency.

6 TH E L A R G E SE PA R AT I O N A N D AC O U S T I C
CUT-OFF FREQUENCY

The large separation, �ν, is the separation in frequency of modes of
the same degree and consecutive radial orders, and is proportional to
the square-root of the mean density of the star, i.e. �ν ∝ √

ρ (e.g.
Gabriel et al. 1985). This relation was developed for the frequencies
of high-order, acoustic, adiabatic, non-radial oscillations (Tassoul
1980, 1990). Since the roAp pulsations are in the asymptotic regime,
they are also applicable here. If the pulsation modes, or at least
relative radial orders are identified, the large separation can, in
principle, be determined.

To calculate the large separation, stellar radius and mass are
required. We estimate the radius of HD 86181 from L = 4πσR2T 4

eff ,
and its mass from M/M� = (L/L�)1/4 (derived from stellar homology
relations; see e.g. Eddington 1924) with the luminosity in Table 1.
We find R = 1.65 R�, M = 1.72 M�, and log g = 4.19 (cgs) for
HD 86181. Although the mass is obtained from a rough scaling
relation, it is fine for estimating the large separation and the cut-off
frequency in this section.

With the knowledge that the doublets we see are the result of dipole
modes with undetected central peaks, we are able to derive the mode
frequencies to be ν2 = 230.103 and ν3 = 235.737 d−1 by taking
the average of the two sets of sidelobes. That then gives the mode
frequency separations to be ν1 − ν2 = 2.668 d−1 = 30.87μHz, and
ν3 − ν1 = 2.967 d−1 = 34.32μHz. Using the radius, mass, and log g
estimated above and the value of the solar large frequency separation

�ν� = 134.88μHz (Huber et al. 2011), through �ν ∝
√

g

R
, we

estimate �ν/2 = 38.2μHz, which is consistent with the observations.
In roAp stars part of the pulsation mode energy can be refracted

back into the star by the influence of the magnetic field, even
when the frequency of the mode is above the acoustic cut-off
frequency, νac (Sousa & Cunha 2008; Quitral-Manosalva, Cunha
& Kochukhov 2018b). Therefore, there is no reason to assume that
very high frequency modes will not be observed in these pulsators.
Nevertheless, theory predicts that the excitation by the opacity
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Figure 8. Phase modulations (solid black lines) obtained by assuming
various strengths of magnetic fields for the quadrupole mode in the same
model shown in Fig. 10. Red dots are observed phase modulations of
HD 86181, while dashed magenta lines are the same as the one in the bottom
panel of Fig. 10, which are obtained from the oblique pulsator model of Kurtz
(1992) (red lines in Fig. 4). For all cases, (β, i) = (40◦, 80◦) are adopted,
for which the theoretical amplitude modulations are consistent with that of
HD 86181, while Bp in the range 6.5–8 kG (e.g. 7 kG; Fig. 10) gives phase
modulation comparable with the observed one (see also Fig. 10).

mechanism takes place in a frequency range that is close to, but
does not exceed the cut-off frequency and, thus, that an alternative
excitation mechanism would be required to excite modes of yet
higher frequencies (Cunha et al. 2013). It is therefore of interest to
estimate the cut-off frequency in HD 86181 based on the star’s global
properties. Using the mass, radius, and the effective temperature in
solar values in Table 1, and the scaling relation νac ∝ g/

√
Teff (Brown

et al. 1991) with νac,� = 5.55 mHz (Fossat et al. 1992), we find that in
HD 86181 νac ≈ 3.03 mHz, which is slightly larger than the observed
mode frequencies, around 2.73 mHz.

7 MO D E L L I N G O B L I QU E QUA D RU P O L E
PULSATION S D ISTORTED BY DIPOLE
MAGN ETIC F IELDS

In this section, we present comparisons of the observed amplitude
and phase modulations of HD 86181 with a quadrupole pulsation
calculated by the method of Saio (2005) including the effect of a
dipole magnetic field. We assume that the pulsations in roAp stars
are axisymmetric with the pulsation axis aligned with the axis of the
dipole magnetic field. The strength of the field is denoted by Bp, the
magnetic field strength at the poles.

In the presence of a magnetic field, the pulsation frequency
is modified only slightly (see Fig. 8), while the eigenfunction is
distorted considerably because the magnetic effect generates � = 0,
4, 6, . . . components of spherical harmonics in addition to the main
� = 2 component. (We have included 12 components; i.e, up to � =
22.) The eigenfunction gives pulsation amplitude and phase on each
point on the surface as a function of the angle from the magnetic (or

Figure 9. Loci of roAp stars on the HR diagram with some evolutionary
tracks with initial composition of (X, Z) = (0.70, 0.02). The number along
the ZAMS of each track indicates the stellar mass in solar units. HD 86181 is
shown in red and other distorted quadrupole pulsators are shown in blue for
comparison. (J1940 is not shown because its location is very close to J1640.)
Triangles on 1.70, 1.68, and 1.65 M� tracks indicate the loci of models for
which pulsation amplitude and phase modulations are calculated; filled (open)
triangles indicate models whose phase modulations can (cannot) be fitted with
the HD 86181 phase modulation. Red filled triangles indicate models which
have large frequency spacings similar to the observed one. Parameters of
roAp stars other than HD 86181 are adopted from Holdsworth et al. (2018b).

pulsation) axis. The amplitude/phase distribution can be converted to
observational amplitude/phase modulation as a function of rotation
phase (see Saio & Gautschy 2004 for details) for a set of (β, i). The
method of comparison is also discussed in Shi et al. (2020).

According to the estimated luminosity range, we selected some
models on the 1.65, 1.68, and 1.70 M� evolutionary tracks as
indicated by triangles in the HR diagram of Fig. 9, in which the
initial composition (X, Z) = (0.70, 0.02) is adopted, while the helium
abundance is assumed to be depleted to 0.01 (mass fraction) in
the layers above the second helium ionization zone (polar model
in Balmforth et al. 2001). For a stellar model, we find, firstly
without including a magnetic field, a quadrupole mode having a
pulsation frequency close to ν1 = 232.77 d−1. Then, we re-calculate
the quadrupole mode by taking into account the effect of an assumed
dipole magnetic field of Bp.

For each case, an appropriate set of (β, i) is determined by fitting
the amplitude modulation of HD 86181. Then, the phase modulation
is compared with the observations. Generally, for most assumed
values of Bp, the obliquity and inclination angles (β, i) can be
determined easily by fitting the predicted amplitude modulation with
the observations, while the theoretical phase modulation tends to
be very small except for a certain range of Bp. Fig. 8 shows how
theoretical phase modulations change with changing Bp for a 1.68 M�
model. In this model, 6.5 � Bp/kG � 8 gives phase modulations that
are comparable with the observed ones. The required Bp tends to
be smaller in more massive models because the mean density of the
envelope is smaller in more massive stars.

Filled triangles in Fig. 9 indicate the loci of models whose
amplitude and phase modulations agree with the observed ones
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Figure 10. The amplitude spectrum of rotational sidelobes (top panel)
and amplitude (middle panel)/phase (bottom panel) modulations of the
quadrupole pulsation mode of HD 86181 are shown by red lines or dots.
Dashed magenta lines (middle and bottom panels) are obtained from the
oblique pulsator model of Kurtz (1992) (red line in Fig. 4). Black lines show
the results of a best model of 1.68 M� with Bp = 7 kG, for which parameters
are shown on the top of the diagram.

of HD 86181; agreements occur if Bp ∼ 9.0–6.0 kG is assumed
depending on the assumed stellar mass of 1.65, 1.68, 1.70 M�.
Among them, the three red triangles denote the models whose large
frequency separations agree with that of HD 86181. We have chosen
the 1.68-M� model as the best model because the luminosity agrees
with our derived value better than the luminosity of the 1.70-M�
model does. However, log Teff = 3.859 (Teff = 7230 K) of the most
approriate fit model is somewhat lower than 7750 K listed in Table 1.
This Teff value is closer to Teff = 7320 K obtained by McDonald,
Zijlstra & Boyer (2012) from a comparison of the SED with model
atmospheres, and to Teff = 7205 K obtained by Masana, Jordi &
Ribas (2006) from 2MASS photometry.

Fig. 10 compares amplitudes of the rotational sidelobes (top),
amplitude (middle), and phase (bottom) modulations between the
best model with Bp = 7.0 kG and HD 86181.By fitting the amplitude
modulation, we find (β, i) = (40◦, 80◦) each with an uncertainly
of 5◦. The (β, i) given by the magnetically distorted model are only
slightly different from the pure quadrupole pulsator model: i given by
the distorted model is consistent with the pure quadrupole pulsator
model within the 1σ , while β is consistent within 2σ . The range of
the phase modulation of the quadrupole model is small, which can
be attributed to contributions from � = 4, 6, 8,.....

The dipole mode frequencies just above and below the quadrupole
mode of the best-fitting model are 235.51 and 229.92 d−1, respec-
tively, at Bp = 7.0 kG, which yield a large frequency spacing
of 5.59 d−1 (or 64.7μHz), which agrees with the observed large
frequency spacing, ν3 − ν2 = 5.63 d−1 (or 65.2μHz).2

For HD 42659, another roAp star pulsating in a distorted mode
(Holdsworth et al. 2019), the distorted model predicted the polar

2The frequency spacing of this model at Bp = 0 is 5.39 d−1 (or 62.4μHz).

magnetic field strength to be 0.8 kG by assuming that star pulsates
in a quadrupole mode. That result was consistent with the measured
mean longitudinal magnetic field, 〈Bl〉 = 0.4 kG (Hubrig et al. 2006;
Kochukhov & Bagnulo 2006). However, the polar magnetic field
strength predicted by our model for HD 86181, Bp = 7.0 kG, is
significantly larger than the measured mean longitudinal magnetic
field, 〈Bl〉 = 0.54 kG (Bagnulo et al. 2015). The cause of the
difference is not clear. It could be a depth effect; i.e. the magnetic
field required in our model refers to the strength in the hydrogen-
rich envelope, while the measured magnetic field corresponds to the
strength in the outermost superficial layers. Also, there are some
aspects that are not considered in the model, such as the effects of
surface spots.

8 D R I V I N G O F P U L S AT I O N S

The driving of pulsations in roAp stars is still a matter of debate. Non-
adiabatic pulsation calculations, assuming that envelope convection
is suppressed by the magnetic field at least in some angular region
around the magnetic pole, have been reasonably successful in
explaining the driving of most oscillations observed in roAp stars
through the opacity mechanism acting on the hydrogen ionization
region (Balmforth et al. 2001; Cunha 2002). The same model also
predicts that very high frequencies may be excited by the turbulent
pressure mechanism, a fact that has been suggested to explain the
pulsation frequencies observed in the roAp star α Cir (Cunha et al.
2013). In this section, we adopt the models discussed in these earlier
works to perform theoretical non-adiabatic pulsation calculations for
HD 86181.

The analysis follows closely that presented by Cunha et al. (2013).
In short, the equilibrium model is derived from the matching of
two spherically symmetric models, one with envelope convection
suppressed (the polar model) and the other with convection treated
according to a non-local mixing length prescription (Spiegel 1963;
Gough 1977a) (the equatorial model). It takes as input the stel-
lar mass, luminosity, effective temperature, chemical composition
(hydrogen, X, and helium, Y, mass fractions) and the parameters
associated with convection. The atmosphere is described by a T–τ

relation, which can be chosen amongst different options, with the
minimum optical depth, τmin, being an additional input parameter.
Finally, helium settling can also be considered both in the polar and
in the equatorial regions, following a parametrized description with
the surface helium abundance in each region being additional input
parameters.

The stability analysis is performed in each region separately and
can consider two different options for the surface boundary condition
applied at the minimum optical depth, namely, one that guarantees a
full reflection of the mode and one that allows waves with frequencies
above the acoustic cut-off frequency to propagate. In the equatorial
model, the final non-adiabatic solutions are computed using a non-
local, time-dependent mixing-length treatment of convection (Gough
1977b; Balmforth 1992). The results from the non-adiabatic analysis
in each region can then be combined to derive the growth rates of
modes in the model where convection is assumed to be suppressed
only in some angular region around the magnetic pole (the composite
model). Further details on the models can be found in Balmforth et al.
(2001) and references therein.

For each set of (M, L, Teff), four different physics configurations
were considered by varying different input parameters identified in
previous works as having significant impact on the stability results,
namely: the minimum optical depth, the outer boundary condition,
and the amount of surface helium. Table 5 summarizes the options
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Table 5. Modelling parameters for the cases illustrated in Fig. 11, all computed with M = 1.72 M�, L =
8.69 L�, Y = 0.278, X = 0.705.

Model Polar Ysurf Equatorial Ysurf τmin Boundary Symbols
condition in Fig. 11

A 0.01 0.278 3.5 × 10−5 Reflective Circles
B 0.01 0.278 3.5 × 10−4 Reflective Squares
C 0.01 0.278 3.5 × 10−5 Transmissive Upward triangles
D 0.1 0.1 3.5 × 10−5 Reflective Rightward triangles

Figure 11. Normalized growth rates for polar (blue) and equatorial (red
symbols) regions as a function of the cyclic frequency ν = ω/2π . Excited
modes have positive growth rates. Different shape symbols represent different
modelling parameters we have used; circles are for model A in Table 5, while
squares, upward triangles, and rightward triangles for models B, C, and D,
respectively. Zero growth rate is indicated by the horizontal dashed line and
the green shadowed region marks the range of observed frequencies.

in each case. Other parameters and physics not mentioned here were
fixed following the options adopted in Balmforth et al. (2001).

Fig. 11 shows an example of the results from the stability analysis
in blue and red, for polar and equatorial models, respectively,
adopting the effective temperature and luminosity in Table 1. Here,
we plot the relative growth rates η/ω as a function of the cyclic
pulsation frequency ν, where η and ω are the imaginary and real
parts of the angular eigenfrequency, respectively, and a positive
growth rate indicates the mode is intrinsically unstable, thus excited.
From the red symbols in the figure we can see that all modes
are stable in the equatorial model, independently of the physics
configuration adopted. In the polar models (blue symbols), a few
modes have positive growth rates at frequencies from ∼2.1 mHz up
to ∼ 2.7 mHz, depending on the physics considered. The range of
excited frequencies scales approximately with the square root of the
mean density (Cunha 2002; Cunha et al. 2013). Given the uncertainty
on the radius of the star, one can thus confidently conclude that the
region where the oscillation frequencies are observed is within the
range where the polar models predict instability. Despite this, the
growth rates on these polar models are one order of magnitude
smaller than the growth rates of the corresponding modes in the
equatorial model (in absolute value). This means that envelope
convection needs to be almost fully suppressed in order for these
modes to be unstable in the composite model (cf. fig. 4 of Balmforth
et al. 2001) and, thus, explain the observations.

9 D I S C U S S I O N A N D C O N C L U S I O N S

We analysed HD 86181 with TESS data, and confirm it as a roAp star.
The rotation frequency is derived to be νrot = 0.48765 ± 0.00003 d−1

(Prot = 2.0507 ± 0.0001 d). The pulsation frequency spectrum is rich,
consisting of one doublet, one quintuplet, and another doublet. The
central frequency of the quintuplet is 232.7701 d−1 (2.694 mHz).
The two doublets are very likely to be sidelobes of two triplets, the
amplitudes of whose central frequencies are too small to be observed.
With this interpretation, we calculate the two central frequencies
of the triplets to be 230.1028 d−1 (2.663 mHz) and 235.7361 d−1

(2.728 mHz).
Pulsation amplitude and phase modulation were calculated as a

function of rotation phase and shown to be modulated. Two maxima
can be seen in the rotational light curve, which indicates we see
two primary spots in the TESS pass-band, but the spot geometry is
complex and further work is needed to construct the chemical and
magnetic map of this star.

We calculated the rotation inclination, i, and magnetic obliquity, β,
for HD 86181, which provided detailed information of the geometry
and we used those values with a spherical harmonic decomposition
to better understand the pulsation geometry and the distortion from
a pure quadrupole mode.

Models considering the dipole magnetic field distortion were
calculated and compared with the observed amplitude and phase
modulation. The best-fitting model gives Bp = 7.0 kG and (β, i) =
(40◦, 80◦). The (β, i) given by magnetic distortion model are only
slightly different from the pure quadrupole pulsator model with the
relevant differences of (25, 5 per cent) for (β, i), respectively. Also,
the difference from the phase modulation of the quadrupole model
is small, which can be attributed to higher degree components, � =
4, 6, 8,.... The pulsation frequency and the large frequency spacing
given by this model are comparable with the observation.

To explain the driving mechanism of this star, two non-adiabatic
models were constructed for HD 86181, one with envelope convec-
tion suppressed (the polar model) and another considering convection
(the equatorial model). We find that polar model predicted the
excitation of modes in the observed range.

The rich pulsation frequency spectrum let us study the large
frequency separation, �ν. The �ν derived from g and R is consistent
with the observed value. The acoustic cut-off frequency, νac, of this
star is larger than the observed mode frequencies.
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