
Central Lancashire Online Knowledge (CLoK)

Title Experimental analysis of defrosting and heating performance of a solar-
assisted heat pump integrated phase change energy storage

Type Article
URL https://clok.uclan.ac.uk/id/eprint/38818/
DOI https://doi.org/10.1002/er.5076
Date 2020
Citation Chen, Haifei, Li, Guiqiang, Wang, Yunjie, Zhang, Fuwei, Badiei, Ali, Lu, Tao, 

Yang, Jie, Jiang, Lvlin and Zhang, Yang (2020) Experimental analysis of 
defrosting and heating performance of a solar-assisted heat pump 
integrated phase change energy storage. International Journal of Energy 
Research, 44 (3). pp. 2173-2182. ISSN 0363-907X 

Creators Chen, Haifei, Li, Guiqiang, Wang, Yunjie, Zhang, Fuwei, Badiei, Ali, Lu, Tao, 
Yang, Jie, Jiang, Lvlin and Zhang, Yang

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.1002/er.5076

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


Experimental analysis of defrosting and heating performance of a 1 

solar-assisted heat pump integrated phase change energy storage 2 

Haifei Chen1, Guiqiang Li2, *, Yunjie Wang1, Fuwei Zhang1, Ali Badiei2, Tao 3 

Lu1, Jie Yang1, Lvlin Jiang1, *, Yang Zhang3 4 

1School of Petroleum Engineering, Changzhou University, Changzhou 233016, 5 

Jiangsu Province, China ;  6 
2 School of Engineering, University of Hull, Hull HU6 7RX, UK 7 
3 School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 8 

USA 9 

* Correspondence: guiqiang.li@hull.ac.uk; Tel.: +86-1519-5010-39810 

Summary:  11 

This thesis investigates a novel solar-assisted heat pump integrated phase change 12 

energy storage system. The defrosting performance of this system was studied 13 

experimentally and the results were compared with two traditionally used methods: 14 

reverse cycle defrosting (RCD) method and hot gas bypass defrosting (HGBD) method. 15 

The results show that the phase change energy storage system has superior performance 16 

compared with traditional defrosting methods. The indoor temperature drop recorded 17 

was relatively small and the defrosting time was 75% of the reverse cycle defrosting 18 

system and 53% of HGBD system. The phase change energy storage system increased 19 

the condensation temperature which consequently increased the temperature difference 20 

of heat transfer resulting in higher conductivity in the defrosting progress. Compared 21 

with the method of RCD and the method of HGBD, the recovery time of the system 22 

was shortened by 90s and 160s, respectively. The system works with low-temperature 23 

heat source and circulating water, which considerably reduces energy consumption, 24 

thereby improving the performance of the defrosting system. A further experimental 25 

study was also conducted on the heating performance and the results also indicated that 26 

the value of COP can reach up to 3.6 in daytime, and the indoor temperature can be 27 

stably maintained above 18 °C throughout the day. 28 

KEYWORDS: Solar energy, Heat pump, Energy storage, Defrosting performance, 29 

Phase change 30 

1. INTRODUCTION31 

With the excessive consumption of traditional energy sources, humans beings have32 

to utilize new energy sources such as solar energy to reduce energy consumption and 33 

improve the efficiency1-3. More and more nationals and governments are considering 34 

the energy saving and environmental benefits of heat pumps. Market data shows that 35 

there is a sharp increase in the implementation and development of new heat pump 36 

technologies with higher COPs. At present, there is great interest in using heat pumps 37 

to save energy and using fuel and energy sources effectively 4-6.38 

Currently, there are three main types of heat pumps namely water source heat 39 

pumps, ground source heat pumps and air source heat pumps. A ground water-source 40 

heat pump system with air pre-conditioning (GWHP-FAP) was proposed from the 41 

perspective of cascade utilization of low-level energy stored in the groundwater 7. A 42 
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new multifunctional water source heat pump system was also presented 8. Pirjo Majuri 1 

studied ground source heat pumps and environmental policies 9. A lot of researches 2 

have been carried out on air source heat pumps 10-12. An air source heat pump with 3 

R407c coolant investigated on the heating performance was proposed. Compared with 4 

traditional air source heat pumps, this new heat pump was suitable for market needs 13. 5 

The most ideal auxiliary heat source for solar heat pump heating system is air 6 

source heat pump because of its high efficiency and energy saving capacities, 7 

convenient use and wide application range. However, the frosting problem of air source 8 

heat pump seriously affects the operation of heat pump unit in winter and reduces the 9 

stability of system. RCD technique has become the most common method to solve the 10 

problem of undesired frost formation.  11 

A defrosting method for cascade air source heat pumps (CASHPs) reverse 12 

circulation based on heat storage was proposed. Compared with the standard HGBD 13 

method, the defrosting time was greatly reduced and the defrosting energy consumption 14 

is reduced by more than two-thirds 14. The defrosting heat and energy consumption of 15 

the experimental device in the process of reversible cycle defrosting was also studied. 16 

The indoor air supply is 71.8% of the total defrosting heat, of which 59.4% is used for 17 

defrosting. The maximum defrosting efficiency can reach up to 60.1%15. Based on 18 

thermal energy storage (TES), a new reverse cycle defrosting method has been studied, 19 

which could improve indoor thermal comfort compared with traditional reverse cycle 20 

defrosting 16. Wenju et al. developed a new anti-circulation hot gas defrosting method. 21 

The thawing time was shortened by 3 min or 38% by applying this method for the 22 

experimental (ASHP) device 17. Defrosting in the ASHP unit could degrade 23 

performance by using more energy. The installation form of the outdoor coil affects the 24 

defrosting performance. Therefore, a study of performance during reverse cycle 25 

defrosting of an ASHP unit with a horizontal three-circuit outdoor coil was carried out 26 
18. A previous study showed that the melted frost over outdoor coil could affect the 27 

defrosting performance during reverse cycle defrosting 19. The proposed reverse cycle 28 

defrosting (NRCD) method was tested on a 8.9kW ASHP device, where the discharge 29 

pressure increased by 0.33MPa. Compared with the traditional RCD methods, the 30 

recovery time disappeared, and the total energy consumption decreased by 27.9% 20. 31 

Due to air tightness of the indoor fan and poor energy storage capacities, the 32 

defrosting performance of the ordinary defrosting method (reverse circulation 33 

defrosting) is poor. Therefore, an ASHP defrost system was proposed in which the heat 34 

storage of the compressor casing is combined with reverse cycle defrosting (RCD) and 35 

hot gas bypass defrosting (HGBD) system using compressor shell to store heat 21. A 36 

similar defrosting system was also designed, which combines the heat storage of the 37 

compressor shell with the hot gas bypass cycle 22. Among the defrosting method with 38 

defrosting efficiency of 34.8%, HGBD method proves to be more suitable. The 39 

applicability of HGBD method for CO2 heat pump was validated by experiments 23. 40 

Then a defrosting cycle combined dual hot gas bypass defrosting (DHBD) and the 41 

accumulator heating method was developed 24. Compared with HGBD method, DHBD 42 

method reduced the defrosting time by 36% 25. 43 

Phase change energy storage defrosting has also been widely studied. In recent 44 



years, performance improvement and energy demand reduction in refrigeration systems 1 

using phase change material (PCM) has attracted more attention 26. A reverse cycle 2 

defrosting (NRCD) method has been proposed, which can improve the suction, 3 

temperature, defrosting and thermal recovery time of the system effectively during 4 

defrosting 27. In order to solve the cold storage problem of cascade air source heat pump 5 

(CASHPs), a reverse cycle defrosting method based on thermal energy storage (TES) 6 

was developed 28.  7 

In this paper, based on the concept of energy space-time utilization, a new 8 

defrosting method for phase-change energy storage defrosting is presented. In order to 9 

verify the superiority of this defrosting method, an experimental system was designed 10 

to analyze the defrosting performance with RCD and HGBD methods. It was found that 11 

the performance of energy storage defrosting is obviously better than the other two 12 

defrosting modes, which can solve the frosting problem of ASHP effectively, thereby 13 

achieving the purpose of improving the operational stability of the energy storage solar 14 

ASHP heating system. Moreover, the performances of the heating system over the day 15 

were experimentally investigated. The experimental results show that the COP is 16 

always at a high level in the daytime, which greatly improves the economy and energy 17 

saving of the system. Finally, the influence of the outdoor temperature on the exergy 18 

efficiency was discussed. 19 

2. ANALYSIS OF DEFROSTING PROCESS  20 

2.1The process of defrosting  21 

Taking HGBD as an example, one feature of the defrosting process is to turn off 22 

the indoor heat exchanger fan during the entire heat exchange process to ensure that the 23 

indoor heat exchanger and the surrounding environment are always in the state of 24 

natural convection, so that the indoor ambient temperature changes as little as possible. 25 

Outdoor heat exchanger defrosting is a complex process with phase change, and the 26 

defrosting process usually consists of three stages. 27 

In the first stage, fan stops to allow the condenser temperature to rise as quickly 28 

as possible for defrosting. In the second stage, the frost layer gradually melts and the 29 

fan continues to stop until the frost layer melts. In the third stage, the fan is turned on, 30 

so that all the frost that has melted into water is drained and evaporated. 31 

2.2The mode of defrosting process 32 

The second stage in defrosting of ASHP system is the most important stage of the 33 

defrosting process when the ASHP operates, which is the phase change heat transfer 34 

process, including the heating of the frost layer and the melting of the frost layer. As 35 

the temperature increases in the wall of heat exchanger, the frost layer near the wall 36 

begins to melt first. Due to the pores in the frost, the melted water is absorbed by the 37 

unmelted frost layer, and when the unmelted frost layer is full of water, free flowing 38 

water begins to appear. At the same time, as the frost layer melts, the thickness of the 39 

frost layer changes continuously. If the influence of the external low temperature 40 

environment is considered, the surface of the frost layer that is in direct contact with 41 



the external low temperature environment will melt after the frost layer melts. In case 1 

of icing, it generates a gap between the hot wall and the frost layer. 2 

3. EXPERIMENTAL SYSTEM DESIGN   3 

3.1The design of experimental system  4 

The ASHP defrosting system used in the experiment mainly consists of a 5 

compressor, an energy storage device, an air source tube-fin and a plate heat exchanger, 6 

an electronic expansion valve, a four-way reversing valve, and an electromagnetic valve. 7 

Fig.1 shows the schematic diagram of the system, which has a heating power of 2.5kW 8 

and a rotor compressor with a rated power of 685W. The 47°C phase change material 9 

produced by Changzhou Haika Solar Heat Pump Co., Ltd. was used in the energy 10 

storage device. The data recorded in the experiment included: defrosting time, indoor 11 

temperature, end water supply temperature, compressor suction and discharge pressure, 12 

recovery heating time, defrosting energy consumption, and surface temperature of air 13 

source tube-fin heat exchanger fins at the end of defrosting. The precision degrees of 14 

solar irradiance, the turbine flowmeter and the temperature are 5%, 0.35% and 0.1°C, 15 

respectively. In order to achieve the performance comparison of three different 16 

defrosting modes, the electromagnetic valve is controlled to turn on and off by manually 17 

switching the power source to distinguish switching of different defrosting modes. 18 

FIGURE 1 Schematic diagram of the defrosting system 19 

3.2 Principle of RCD 20 

The RCD method is a relatively traditional defrosting method. When the 21 

condensation occurs on the heat exchanger and seriously affects the normal operation 22 

of the ASHP, the four-way reversing valve is turned by utilizing the two-way cooling 23 

and heating characteristics of the heat pump. The defrosting system will switch from 24 

heating to cooling mode, and the absorbed indoor heat energy will be discharged to the 25 

outdoor heat exchanger, thereby melting the outdoor heat exchanger frost. 26 

When the RCD mode is running, the electromagnetic valves 1, 2, 3 and 7 are 27 

closed, and the electromagnetic valves 4, 5, 6, 8 and 9 are opened. The four-way 28 

reversing valve switches the heat pump unit from the heating cycle to the refrigerating 29 

cycle. At this time, the fan is turned off, and the refrigerant evaporates into the gas 30 

through the heat absorbed by the plate heat exchanger 1 and goes through the four-way 31 

reversing valve (II→III). When the compressor is adiabatically compressed, the 32 

refrigerant (in gas form) enters the air source tube-fin heat exchanger through the four-33 

way reversing valve (I→IV) and the electromagnetic valve 6 for defrosting. The 34 

refrigerant is then condensed into a liquid, which enters the electron through the 35 

electromagnetic valve 8. After the electronic expansion valve 1 is throttled, the liquid 36 

enters the plate heat exchanger 1 to complete a defrosting cycle. 37 

3.3 Principle of HGBD 38 



The HGBD method achieves the purpose of defrosting mainly by directly 1 

introducing the high-temperature exhaust gas generated by the compressor into the 2 

indoor and outdoor heat exchangers via the bypass circuit. The heat of the exhaust gas 3 

causes the condensation outside the heat exchanger to fall off. During the operation of 4 

the defrosting system, the indoor and outdoor heat exchangers stop rotating, and the 5 

main source of heat energy for the defrosting comes from compression cycle. And it 6 

can melt the frost from the inside out. 7 

When the HGBD mode is running, only electromagnetic valves 1 and 7 are opened, 8 

the remaining electromagnetic valves are closed, and the four-way reversing valve is 9 

not operating when the fan is turned off. The refrigerant compressed by the compressor 10 

defrosts and passes from the electromagnetic valve 1 to the air source tube-fin heat 11 

exchanger, and the defrosted refrigerant is throttled by the electronic expansion valve 12 

2. The electromagnetic valve 7 and the four-way reversing valve (IV→III) are sucked 13 

by the compressor to complete a defrosting cycle. 14 

3.4 Principle of the energy storage defrosting 15 

The energy storage defrosting method is to connect the storage tank with the 16 

appropriate melting temperature to the ASHP unit, and uses the characteristics of the 17 

heat storage device to compensate the heat loss incurred in the defrosting process. When 18 

the ASHP is in the heating state, the unit will continue to provide heat to the air 19 

conditioning system, and will also provide heat to the heat storage device. When the 20 

ASHP is switched to the defrosting mode, the heat storage device will be turned on in 21 

a short time. The system quickly releases heat to the room, while also providing 22 

sufficient heat to the defrosting system to melt the frost on the outdoor heat exchanger.   23 

When the phase change energy storage defrosting mode is running, the 24 

electromagnetic valves 1, 4, 5, 7 are closed, electromagnetic valves 2, 3, 6, 8, 9 are 25 

opened, and the four-way reversing valve is operating. At this time, the fan turns off 26 

and energy storage takes place and the device acts as an evaporator for the system. The 27 

refrigerant absorbs heat through the plate heat exchanger 2 and enters the compressor 28 

(II→III) for adiabatic compression. The compressed high-temperature and high-29 

pressure refrigerant goes through the four-way reversing valve (I→IV) and the 30 

electromagnetic valve 6 to enter the air source tube-fin heat exchanger for defrosting, 31 

then throttles by the electronic expansion valve 1 and returns to the heat exchanger 2 to 32 

complete the defrosting cycle. 33 

 34 

 35 

4. EXPERIMENTAL ANALYSIS  36 

In the Shijiazhuang area, two houses were built with foam color steel plates for 37 

experimental research. The indoor air temperature and humidity were adjusted to 38 



simulate outdoor weather conditions under ASHP frosting conditions by installing a 1 

refrigeration unit, an air heater, a humidifier, and a dehumidifier. 2 

 At present, it is found that the ASHP is most likely to be frosted when operating 3 

under meteorological conditions with a relative humidity of more than 65% between -4 

12.8°C and 5.8°C. When the relative humidity is constant, the defrosting energy 5 

consumption and defrosting time will increase first and then decrease with the decrease 6 

of air temperature. The -3°C working condition was used as the most unfavorable 7 

condition for designing ASHP defrosting. And the relative humidity was 65%. The 8 

thickness of the frost layer at the beginning of the defrosting is not uniform, and the 9 

average thickness is about 3 mm. The solar module and the air source module are 10 

directly connected in parallel. When the outlet temperature of the solar collector is 11 

greater than the outdoor ambient temperature, the system starts the solar heat pump 12 

mode, otherwise the air source heat pump is activated. 13 

 14 

4.1 Analysis of the temperature characteristic of the system 15 

The ASHP is used as an auxiliary heat source in the energy storage type solar 16 

assisted ASHP heating system, and its function is to provide heat to the interior of the 17 

building in colder weather conditions to meet the occupants’ thermal comfort 18 

requirements. However, the ASHP frosting and defrosting process will bring about a 19 

series of problems such as increase in the heat supply and the large fluctuation of the 20 

indoor environment temperature. Therefore, when evaluating the performance of 21 

different defrosting modes, the first problem to be considered is the change in room 22 

temperature during the defrosting of the ASHP. The temperature measurement points 23 

are arranged in four directions from east to west, north and south, and finally an indoor 24 

average temperature is obtained. Fig.2 and Fig.3 show the changes in the indoor water 25 

supply temperature and the indoor temperature air in different defrosting modes. 26 

 27 

FIGURE 2 Variation curve of indoor water supply temperature during defrosting 28 

 29 

FIGURE 3 Variation curve of indoor air temperature during defrosting 30 

 31 

As shown in Fig.2 and Fig.3, among the three defrosting modes the defrosting time 32 

of the HGBD is longer than that of the other two defrosting methods, and the whole 33 

defrosting process takes about 510s. Compared with the other two defrosting modes, 34 

the power consumption required for hot gas bypass defrosting is from input power of 35 

the compressor, so the defrosting process takes a longer time to complete. 36 

Moreover, the indoor water and air temperature drops of energy storage defrosting 37 

is the smallest, and the reverse circulation defrosting is the largest. This is because 38 

HGBD directly circulates the exhaust gas of the compressor to the air source tube-fin 39 



heat exchanger for defrosting. While energy storage defrosting is performed by the 1 

system to absorb heat from energy storage device, the compressor provides the system 2 

with required energy for defrosting. Hence, both compressor and energy storage device 3 

do not need to circulate water from the room and the indoor environment. The heat is 4 

absorbed, so the water supply temperature and the indoor temperature decrease rate are 5 

low during this time. However, since the time required for the hot gas bypass defrosting 6 

is about 1.9 times that of the energy storage defrosting, the indoor air temperature is 7 

still reduced by 8°C. The indoor water supply temperature drops sharply from 45°C to 8 

about 5°C during the reverse cycle defrosting process. This is due to the operation of 9 

four-way reversing valve which causes the system to switch from the heating to the 10 

cooling mode for the purpose of defrosting. Then the indoor circulating water has 11 

absorbed a large amount of heat as the low-temperature heat source of the system, so 12 

the water supply temperature was drastically lowered. Meanwhile, with the decrease of 13 

indoor circulating water temperature, the indoor ambient air temperature drops due to 14 

convective heat exchange with the circulating water, which severely influences the 15 

thermal comfort of occupants. 16 

It can be seen from the above analysis that the energy storage defrosting is 17 

obviously superior to the two common defrosting methods of RCD and HGBD. The 18 

defrosting time is only 75% of the RCD, and 53% of the HGBD. When defrosting, the 19 

indoor temperature drop is small, which can better meet the occupants’ thermal comfort 20 

requirements. 21 

4.2 Analysis of system pressure characteristics 22 

As shown in Fig. 4, when the reverse cycle defrosting is started, there will be a 23 

short rise in the suction pressure of the compressor. This is because the plate heat 24 

exchanger 1 operates as the system operation mode is switched. The evaporator is 25 

connected to the suction port of the compressor. At this time, since the refrigerant does 26 

not undergo electronic expansion, the gas-liquid two-phase refrigerant in the exchanger 27 

1 enters the suction port of the compressor through the suction line. The throttle valve 28 

is also in a high pressure state, which will increase the suction pressure of the 29 

compressor. However, this high-pressure refrigerant is quickly absorbed, and as the 30 

evaporator the exchanger 1 cannot satisfy the evaporation demand of the liquid 31 

refrigerant by the indoor circulating water and the heat absorbed in the indoor 32 

environment. This causes insufficient evaporation of the refrigerant and the evaporation 33 

pressure drops rapidly. The suction pressure of the compressor also drops rapidly. The 34 

minimum suction pressure occurs at 60s after the start of the defrosting, and the 35 

magnitude is about 0.2Mpa. For HGBD, the trend of change in the suction pressure of 36 

the compressor during operation is similar to that of the RCD. However, Fig.4 shows 37 

that the variation of the suction pressure in the compressor during operation is smaller 38 



than the variation of the suction pressure in the compressor during the RCD, and there 1 

is no sudden increase or decrease of the suction pressure. The mechanical impact of the 2 

unit is also relatively small, which can effectively extend the service life of the heat 3 

pump. It can be observed that the average values of the inspiratory pressure during RCD, 4 

HGBD and energy storage defrosting are 0.234Mpa, 0.238Mpa and 0.336Mpa, 5 

respectively. The average value of suction pressure during the HGBD process is much 6 

smaller than that of the energy storage defrosting. This is because when the energy 7 

storage defrosting is performed, the energy storage device serves as a low-temperature 8 

heat source, and the exchanger 2 provides sufficient heat for the evaporation of the 9 

refrigerant, thereby increasing evaporation rate of the refrigerant. The suction pressure 10 

of the compressor is greatly improved, preventing the system from shutting down, and 11 

ensuring the reliability and stability of the system in the defrosting process. 12 

 13 

FIGURE 4 Variation curve of the compressor suction pressure 14 

 15 

As shown in Fig. 5, variation trends of the exhaust pressures of RCD and HGBD 16 

modes are very similar, and demonstrating a trend of decrease first and then increase, 17 

but there is a difference in the magnitude of the change. This happens because 18 

regardless of the defrosting mode of the system, the exhaust port of the compressor is 19 

always connected to the air source tube-fin heat exchanger. At this time, the air source 20 

tube-fin heat exchanger is taken as the condenser of the system, and the internal 21 

condensation temperature is relatively low. The discharge pressure of the compressor 22 

is directly related to the condensation temperature, and then the discharge pressure of 23 

the compressor will initially show a subtle decline. Then, as time goes on, the frosting 24 

layer on the air source tube-fin heat exchanger melts continuously, the condensation 25 

temperature begins to rise, and the exhaust pressure also tends to rise continuously. 26 

Compared with the RCD and HGBD, the displacement pressure of the compressor 27 

during storage defrosting is larger. The average exhaust pressure during the defrosting 28 

process is 32% and 12% higher than that of the RCD and the HGBD, respectively. On 29 

the one hand, the reliability of the system operation is ensured, and the phenomenon of 30 

"oil spill" is prevented. On the other hand, the condensation temperature is also 31 

increased, hence the increase of heat transfer temperature difference is more conductive 32 

to defrosting of the system. 33 

 34 

FIGURE 5 Variation curve of the compressor discharge pressure 35 

 36 

4.3 Analysis of system recovery heating capacity  37 

As shown in Fig.3, the longer the delay in system heat up, the greater the impact 38 

on indoor environment. The main purpose of defrosting by ASHP is to better meet 39 



occupants’ requirements for thermal comfort. Therefore, in studying the defrosting 1 

performance of the ASHP, it is also necessary to consider its heat-recovery capability. 2 

In addition to the surface temperature of the heat exchanger, the thickness of the frost, 3 

and the pressure difference between the inlet and the outlet of the heat exchanger, the 4 

change in the outlet temperature of the working fluid in the heat exchanger is used as a 5 

termination condition. 6 

 7 

Table 1 Three defrosting methods to restore heating parameters  8 

 9 

It can be seen from Table 1 that the time taken to restore heat during RCD is the 10 

longest. This is because the evaporator plate heat exchanger 1 in the defrosting absorbs 11 

a large amount of heat from the indoor circulating water and indoor environment. As a 12 

result, the temperature of both indoor circulating water and indoor environment drops 13 

significantly. For HGBD, the defrosting energy is provided by the compressor with less 14 

influence on indoor circulating water and indoor temperature, so the time for restoring 15 

heating is shorter than that of RCD. Due to the stable low-temperature heat source 16 

during energy storage defrosting, defrosting time is shorter, and the decrease in 17 

temperature of circulating water in the plate heat exchanger 1 is less when compared 18 

with the two defrosting modes. Therefore, the time required to restore heating is the 19 

shortest. The heat recovery time has shortened by 90s and 160s respectively compared 20 

to the RCD and the HGBD methods. The ability to restore heat is the strongest in energy 21 

storage defrosting. At the same time, it can be seen that when the system is running in 22 

energy storage defrosting mode, the temperature of the surface of air source tube-fin 23 

heat exchanger is the highest after defrosting is finished (6 °C higher than the other two 24 

defrosting modes). Besides, the problem of multiple defrosts caused by defrosting water 25 

on the surface of the air source tube-fin heat exchanger can be completely solved. 26 

4.4 Analysis of system defrosting energy  27 

 28 

Table 2 Comparison of defrosting energy consumption and compressor input power of 29 

three defrosting modes 30 

 31 

It can be seen from Table 2 that despite the shorter defrost time of the reverse cycle 32 

compared to the HGBD, the energy consumed by the two is similar. This can be 33 

explained by the energy consumed during the heat recovery period. Since the RCD 34 

takes a long time to restore heat after the defrosting, the total energy consumed by the 35 

two methods end up being similar. At the same time, the average input power of the 36 

compressor during storage defrosting is higher than the other two defrosting modes. 37 

This is because the energy storage material passes through the plate heat exchanger 2 38 



when the system performs energy storage defrosting. The evaporation of the refrigerant 1 

provides sufficient heat to accelerate the evaporation rate, thereby increasing its mass 2 

flow rate, the suction and discharge pressure and temperature of the compressor, and 3 

the input power of the compressor. However, due to its relatively short defrost and heat 4 

recovery time, it can save the energy effectively compared with the other two defrosting 5 

modes. 6 

5. EXPERIMENTAL STUDY ON HEATING SYSTEM  7 

5.1 Analysis of the heating performance during daytime 8 

Based on the monitor of the measured outdoor weather changes in the heating 9 

season in Shijiazhuang, a typical meteorological day was selected to test the operating 10 

performance and heating efficiency of the system. 11 

 12 

FIGURE 6 Indoor and outdoor temperature and cop change with solar radiation 13 

during the daytime 14 

 15 

Performance tests were carried out on the operating conditions of the system. The 16 

experiments were recorded for 8 hours from 8:00 am to 16:00 pm. The variation of solar 17 

radiation intensity and outdoor temperature with time is shown in Fig.6.  18 

The solar radiation increases toward mid-day and then decreases, the average solar 19 

radiation intensity being 752.7W•m-2, and the peak appears at ~12:00, at 950.2W•m-2. 20 

Compared with the intensity of radiation intensity, maximum outdoor temperature 21 

occurs slightly later in day, at 13:30 and the value is 2.5°C. And the outdoor temperature 22 

is between -14°C and 2.5°C. The average indoor temperature is 18°C within 8 hours 23 

from 8:00 am to 16:00 pm. Finally, the indoor temperature is higher than 20°C, which 24 

shows that the system adequately meets the needs of indoor heating needs. 25 

Fig.6 shows that the variation in the COP of the system is maintained between 3.6 26 

and 5.3, with average value of 4.5. It can be concluded that the system can fully utilize 27 

the solar energy to meet building heating requirements, and phase change energy 28 

storage if needed. 29 

5.2 Analysis of the heating performance during night 30 

 31 

FIGURE 7 Outdoor temperature and exergy efficiency change with the time 32 

 33 

Although the heat pump system performance can be analyzed using COP based on 34 

the first law of thermodynamics. However, it can only explain the quantitative 35 

relationship between energy transfer and transformation. Only the "quantity" of energy 36 

is considered, and the loss of energy and the direction of transmission cannot be 37 

evaluated. To examine the exergy efficiency, the second law analysis was implemented 38 

based on experimental tests. When the process involves a long time, and the 39 

temperature level of the system is quite different from the environment, ignoring the 40 

change of the environment temperature will cause a large error. Therefore, considering 41 

the dynamic changes of the outdoor temperature will have a more reasonable impact on 42 



the exergy efficiency in the whole process. As shown in Fig.7, exergy efficiency 1 

fluctuates greatly from morning to night due to the large change of outdoor temperature. 2 

When the outdoor temperature is 2.5oC, the exergy efficiency reaches the lowest value 3 

of 8%. The maximum exergy efficiency is 30%, and average exergy efficiency is 21%.  4 

 5 

FIGURE 8 Temperature of phase change storage 6 

 7 

Fig.8 shows the variation of the phase change storage temperature. By daylight, 8 

the temperature of the phase change storage is relatively constant due to the presence 9 

of solar irradiation, and is maintained at about 47°C. By night, the phase change latent 10 

heat of the phase change material has been completely released, and the energy storage 11 

condenser is heated by the sensible heat of phase change material. Therefore, the 12 

internal temperature of the energy storage condenser decreases in the meantime. The 13 

energy storage type solar ASHP system ensures the stability of the heat provision by 14 

the energy storage condenser. Solar energy's “shifting peaks and filling valleys” 15 

maximized the use of solar energy for heating, achieving a significant increase in 16 

system economy and energy efficiency. 17 

 18 

6. CONCLUSIONS 19 

This paper analyzes and compares the defrosting performance of three defrosting 20 

methods, namely: phase change energy storage defrosting method, RCD and HGBD. 21 

The analyzed parameters include: defrosting time, indoor temperature, terminal water 22 

supply temperature, compressor suction and discharge pressure, recovery heating time, 23 

defrosting energy consumption, and surface temperature of air source tube-fin heat 24 

exchanger. Following conclusions were drawn from the investigation of the three 25 

defrosting methods: 26 

1. Phase change energy storage defrosting method was shown to be better than the 27 

two conventional defrosting methods: RCD and HGBD. The defrosting time was only 28 

75% of the RCD and 53% of the HGBD. The recorded indoor temperature drop was 29 

also small during defrosting in the phase change energy storage method. 30 

2. When the energy storage system is in defrosting mode, the compressor's exhaust 31 

pressure fluctuates, and the average exhaust pressure during the defrosting process is 32 

23% and 21% higher than RCD and HGBD respectively. This superior performance not 33 

only ensures the reliability of the system operation, but also prevents the phenomenon 34 

of “running oil”. It also increases the condensation temperature and makes the heat 35 

transfer temperature difference increase, resulting in higher conductivity. 36 

3. Despite RCD and HGBD system, energy storage defrosting system has a stable 37 

low temperature heat source due to energy storage defrosting, the defrosting time is 38 

shorter, and the temperature of circulating water is lower. The time required to restore 39 

heating is the shortest in energy storage system (it is shortened by 90s and 160s 40 

respectively compared to RCD and HGBD), and the ability to restore heat is the 41 



strongest. Since the defrosting and heat recovery times are relatively short, compared 1 

with the other two defrosting modes, the energy storage defrosting system will 2 

effectively reduce energy consumption required for defrosting progress. 3 

4. Experimental research on the heating performance of the system was studied 4 

out. The COP value of the system was maintained between 3.6 and 5.3. Although the 5 

outdoor temperature variation is huge, the fluctuation of the indoor temperature is small, 6 

and is always maintained above 18°C, which ensures that the occupants’ thermal 7 

comfort requirements are met stably and reliably. 8 
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Figure Captions 2 

1. FIGURE 1 Schematic diagram of the defrosting system 3 

2. FIGURE 2 Variation curve of indoor water supply temperature during defrosting 4 

3. FIGURE 3 Variation curve of indoor air temperature during defrosting 5 

4. FIGURE 4 Variation curve of the compressor suction pressure 6 

5. FIGURE 5 Variation curve of the compressor discharge pressure 7 

6. FIGURE 6 Indoor and outdoor temperature and cop change with solar radiation 8 

during the daytime 9 

7. FIGURE 7 Outdoor temperature and exergy efficiency change with the time 10 

8. FIGURE 8 Variation of the temperatures with the inlet water temperature 11 
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Table Captions 15 

1. Table 1 Three defrosting methods to restore heating parameters 16 

2. Table 2 Comparison of defrosting energy consumption and compressor input power 17 

of the three defrosting modes 18 
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FIGURE 1 Schematic diagram of the defrosting system 3 
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FIGURE 2 Variation curve of indoor water supply temperature during defrosting 3 
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FIGURE 3 Variation curve of indoor air temperature during defrosting 3 
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FIGURE 4 Variation curve of the compressor suction pressure 3 
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FIGURE 5 Variation curve of the compressor discharge pressure 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 



 1 

 2 

FIGURE 6 Indoor and outdoor temperature and cop change with solar radiation 3 

during the daytime 4 
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FIGURE 7 Outdoor temperature and exergy efficiency change with the time 2 
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FIGURE 8 Temperature of phase change storage 2 
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Table 1 Three defrosting methods to restore heating parameters  1 

Operating mode Air source tube-fin heat exchanger fin surface 

temperature /°C at the end of defrosting 

Restore heating 

time / s 

Hot gas bypass 

defrosting 

23.5 210 

Reverse cycle 

defrosting 

24.0 280 

Energy storage 

defrosting 

30.0 120 
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Table 2 Comparison of defrosting energy consumption and compressor input power of 1 

the three defrosting modes 2 

Operating mode Defrosting time / s Defrosting energy 

consumption / kJ 

Compressor average input 

power / W 

Hot gas bypass 

defrosting 

510 226.2 443.5 

Reverse cycle 

defrosting 

390 238.1 610.5 

Energy storage 

defrosting 

270 201.3 745.6 
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