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Abstract: Cellular therapy is a promising tool of human medicine to successfully treat complex
and challenging pathologies such as cardiovascular diseases or chronic inflammatory conditions.
Bone marrow-derived mesenchymal stromal cells (BMSCs) are in the limelight of these efforts,
initially, trying to exploit their natural properties by direct transplantation. Extensive research on the
therapeutic use of BMSCs shed light on a number of key aspects of BMSC physiology including the
importance of oxygen in the control of BMSC phenotype. These efforts also led to a growing number
of evidence indicating that the beneficial therapeutic effects of BMSCs can be mediated by BMSC-
secreted agents. Further investigations revealed that BMSC-excreted extracellular vesicles could
mediate the potentially therapeutic effects of BMSCs. Here, we review our current understanding
of the relationship between low oxygen conditions and the effects of BMSC-secreted extracellular
vesicles focusing on the possible medical relevance of this interplay.

Keywords: bone marrow-derived stromal cells; hypoxia; extracellular vesicles

1. Introduction
1.1. Bone Marrow-Derived Stromal Cells

Adult stem cells are present in a variety of organs, where the local microenvironment
has a significant impact on their capacity to differentiate [1]. One of these specialized
environments is the bone marrow, which harbors both hemopoietic and non-hematopoietic
stem cell species [2]. The latter ones, termed bone marrow-derived mesenchymal stro-
mal cells (BMSCs), were first identified by Friedenstein in 1976 [2]. In vitro, the plastic
adherent BMSCs show fibroblastic morphology (Figure 1) and express CD105, CD73 and
CD90 [3]. BMSCs are multipotent cells with the ability to develop into a variety of cells
with mesenchymal origin including adipocytes, chondro- or osteoblasts [4]. Since BMSCs
are negative for CD45, CD34, CD14 or CD11b, CD79α, CD19 and HLA-DR, they show no
alloreactivity in lymphocyte proliferative assays, making them ideal for cellular therapy
applications [5,6]. Human BMSCs (hBMSCs) develop into pericytes, myofibroblasts, os-
teocytes and other mature cells that contribute to the establishment of the bone marrow
microenvironment playing a role in controlling hemopoiesis via maintaining the hemopoi-
etic microenvironment [2]. Indeed, transplantation of hBMSCs into murine bone marrow
results in the reconstruction of the human bone marrow microenvironment and production
of primitive human hemopoietic cells indicating the pivotal role of BMSCs in the establish-
ment and maintenance of the bone marrow milieu [7,8]. Since one of the characteristics of
this niche is low oxygenation and BMSCs reside in areas that are minimally vascularized, it
is widely accepted that hypoxia is an important factor of the BMSC physiology [2].

1.2. Hypoxia

Since oxygen plays a critical role in cellular metabolism, metazoan cells developed a
complex molecular system to respond to oxygen deprivation. The master regulators of the
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adaptive measures are the hypoxia-inducible factors (HIF), which were first identified as
nuclear factors interacting with the 3′ enhancer sequence of the erythropoietin gene (EPO)
in response to hypoxia [9]. HIFs are made up of alpha (HIFα) and beta (HIFβ) subunits
of which the former one is under the control of oxygen levels [10] (Figure 2). To date,
three paralogues of the alpha (HIF-1α, HIF-2α and HIF-3α) and three isoforms of the beta
(HIF-1β, HIF-2β and HIF-3β) subunits have been identified. The best studied heterodimer
is the HIF-1 that seems to be primarily responsible for the upregulation of glycolytic genes
and angiogenesis [11,12]. In contrast, the transactivation capacity of the HIF-2 heterodimer
seems to be more biased toward genes that control cellular physiologic processes such
as the cell cycle or stem cell pluripotency [13,14]. The HIF-3 isoform, however, both
structurally and functionally, more substantially differs from HIF-1 and -2. Due to the lack
of the C-terminal transactivation domain, splicing variants of HIF-3 have been found to
counteract the hypoxia-responses of HIF-1 and -2 in a tissue-specific manner suggesting its
role in the control of HIF-1 and-2 activation [15,16].
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Figure 1. Adaptive measures of the bone marrow-derived stromal cells in hypoxic conditions. BMSC show complex adap-
tive measures under hypoxic conditions that affect practically all aspects of their physiology. Abbreviations used are: 
GLUT4: glucose transporter type 4; mTOR: mechanistic target of rapamycin; HIF: hypoxia inducible factor; IL-6: interleu-
kin-6; TERT: telomerase reverse tran-scriptase; OCT4: octamer-binding protein 4. Micrograph of the human bone marrow-
derived stomal cells are made by Zsolt Fabian. Figure was created using BioRender.com. 
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von Hippel–Lindau (pVHL) ubiquitin ligase that mediates polyubiquitylation and, con-
sequently, the proteasomal degradation of the α subunit [17,18]. In hypoxia, HIF’s desta-
bilization fails, resulting in dimerization with the β subunit and the HIF-mediated upreg-
ulation of a wide range of hypoxia-adaptive genes (recently reviewed in [19]). These in-
clude ones encoding for glycolytic enzymes such as the phosphoglycerate kinase-1 (PGK1) 
and lactate dehydrogenase A (LDHA), glucose and lactic acid transporters such as the 
GLUT4 and the monocarboxylate transporter MCT4 (SLC16A3), respectively, or intracel-

Figure 2. Schematic overview of the hypoxia signaling. In the absence of oxygen, prolyl hydroxylases (PHD) fail to
hydroxylate the alpha subunits of the hypoxia-inducible factors (HIF), which leads to HIF dimerization in the cytosol,
thus resulting in the formation of the transcriptionally active HIF and the adaptive gene expression changes. In the
presence of oxygen, HIF undergoes prolyl-hydroxylation by PHD, which is followed by ubiquitination by von Hippel–
Lindau protein, ultimately leading to its proteosomal degradation. Abbreviations used are: PHD: prolyl hydroxylases;
HIF: hypoxia-inducible factor; pVHL: von Hippel–Lindau protein; HRE: hypoxia response element. Figure was created
using BioRender.com.

In the presence of oxygen, HIFα is hydroxylated on conserved proline residues by
prolyl hydroxylase domain proteins (PHDs), the major intracellular oxygen sensors [17].
Hydroxylated HIFα undergoes a conformational change, revealing a binding site for the
von Hippel–Lindau (pVHL) ubiquitin ligase that mediates polyubiquitylation and, conse-
quently, the proteasomal degradation of the α subunit [17,18]. In hypoxia, HIF’s destabiliza-
tion fails, resulting in dimerization with the β subunit and the HIF-mediated upregulation
of a wide range of hypoxia-adaptive genes (recently reviewed in [19]). These include ones
encoding for glycolytic enzymes such as the phosphoglycerate kinase-1 (PGK1) and lactate
dehydrogenase A (LDHA), glucose and lactic acid transporters such as the GLUT4 and the
monocarboxylate transporter MCT4 (SLC16A3), respectively, or intracellular pH regulators
such as the Na+/H+ exchanger-encoding SLC9A1 or the carbonic anhydrase IX-encoding
CA9, ultimately shifting the metabolism from aerobic to anaerobic [20–22]. In addition, HIF
signaling contributes to the restoration of the oxygen supply at the supracellular level as
well via induction of angiogenetic agents such as the vascular endothelial growth factor
(VEGF) [23]. Although oxygen deprivation is traditionally linked to pathologic states, hy-
poxia is necessary for organogenesis and maintenance of tissue homeostasis as well [24–26].
Indeed, embryonic stem cells require a hypoxic environment to preserve pluripotency,
implying that oxygen plays a key role in inherent stem cell traits [27]. Since HIF signaling is
active in hypoxia-exposed hBMSCs, it is widely believed that the HIF-mediated machinery
is involved in the development of their hypoxic phenotype (Figure 2) [28].
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1.3. The Effects of Hypoxia on BMSCs

BMSCs cultured under low oxygen tensions consume half the amount of oxygen
compared to cells grown under atmospheric oxygen conditions, suggesting the dominance
of anaerobic metabolism in hypoxic BMSCs [29]. In support of this, hypoxic BMSCs
show increased glucose transporter expression, elevated glucose uptake and decreased
conversion of glucose carbons into the tricarboxylic acid cycle (TCA) [30–32]. Indeed, under
normal oxygen tension, glutamate is converted to α-ketoglutarate which feeds into the TCA
cycle by the glutamate dehydrogenase producing ammonia [33]. Under hypoxic conditions,
however, reduced ammonia production was observed in hypoxic BMSC cultures, indicating
repressed incorporation of glutamate into the TCA cycle [30]. Interestingly, due to the
toxic nature of ammonia in cell cultures, its low-rate production is believed to be one of
the factors that determines the proliferative phenotype of oxygen-depleted BMSCs [34,35].
Indeed, BMSCs, have faster proliferation rates at 2% than at atmospheric oxygen levels [36].
Considering that proliferation generally inhibits differentiation, one could speculate that
hypoxia affects the ability of BMSCs to differentiate [37]. To support this idea, BMSCs show
significantly greater expression of stem cell factors under hypoxic conditions than that of
the ones cultured at ambient oxygen levels [38].

In accordance, data indicate that the hypoxic nature of bone marrow supports the stem
cell phenotype of BMSCs, since the stemness marker octamer-binding protein 4 (OCT4)
and the telomerase reverse transcriptase (TERT) are both induced in oxygen-depleted
BMSCs [39]. In support of this idea, BMSCs cultured at low oxygen levels fail to differentiate
into osteogenic lineage, show decreased calcification and repression of genes known to be
involved in the osteogenic differentiation including the alkaline phosphatase (ALPL), RUNX
family transcription factor 2 (RUNX2), osteocalcin (BGLAP) and type I collagen (COLI) [40].
In accordance, the osteogenesis regulator RUNX2 increases the expression of VEGF by
directly inducing HIF-1α in various models [41,42]. These data suggest that RUNX2 acts
upstream of HIF in the osteogenic context and activate the HIF pathway to provide the
oxygen supply for osteogenic differentiation. According to this concept, the HIF-mediated
induction of SOX9, the transcription factor that governs chondrogenesis, could reflect
that chondrogenic differentiation is supported by the hypoxic milieu [43,44]. Indeed,
BMSCs exposed to hypoxia show better chondrogenic potential in vitro [45]. Similarly, the
induction of adipocyte-specific genes and accumulation of lipid droplets in hypoxic BMSCs
suggest that, at least in vitro, the adipogenic program of BMSCs requires a rather hypoxic
microenvironment and that prevention of BMSC differentiation in their physiologic niche
requires the activity of specific regulators upstream of HIF-1α [41,42]. One of the candidate
regulators is the mTOR pathway that mediates maintenance of the undifferentiated state
via parallel intracellular signaling systems including the HIF-1α pathway [46]. Interestingly,
one of the activating stimuli of the mTOR complex 1, an entity of mTOR, is glutamate
of which elevated intracellular levels due to its hypoxia-affected metabolism can also
mediate mTOR activation under hypoxia [47,48]. In bone marrow hemopoietic cells,
activated mTOR induces the expression of Interleukin-6 (IL-6), the same cytokine that is
most abundantly expressed in BMSC and that inhibits their adipogenic and chondrogenic
differentiation [46,49]. Interestingly, IL-6 and the membrane-bound IL-6 receptor (IL-6R)
are both induced during osteogenic differentiation of BMSCs, suggesting not only the role
of hypoxia/mTOR/IL-6 axis in the regulation of BMSCs stemness but the comprehensive
effects of oxygen on the signaling between BMSC and their neighboring bone marrow-
resident cells as well [50]. Surprisingly, in-depth analysis of the BMSC secretome confirmed
a conserved pattern of only a handful BMSC-secreted cytokines raising the existence of
alternative BMSCs-employed signaling mechanisms potentially affected by hypoxia within
the bone marrow [49]. Indeed, data indicate that BMSC maintain extensive cell-to-cell
communication by shedding large quantities of extracellular vesicle that received particular
attention recently due to their possible therapeutic importance [49,51,52].
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1.4. Extracellular Vesicles

The term extracellular vesicles (EV) refers to membrane-bound circular organelles
with various sizes in the nanometer range released by, apparently, every mammalian cell
type [53] (Figure 3). Secreted EVs can fuse with the plasma membrane of various target
cells, provoking a wide range of biological responses representing a higher-level complex-
ity of cell-cell interactions. They include the exosomes that range between 40 and 100 nm
in diameter, similar to that of the vesicles generated within the multivesicular bodies
(MVBs) [54]. Indeed, data indicate that exosomes are formed within MVBs by inward bud-
ding and released to the extracellular matrix following the fusion of MVBs with the plasma
membrane [55]. In contrast to the plasma membrane, however, exosomal membranes show
differential lipid composition [56]. They are enriched in cholesterol, sphingomyelin and
hexosylceramides while phosphatidyl-choline and -ethanolamine are less abundant in
exosomal membranes [57–59]. Proteins are also regularly detected in exosomes but their
protein composition seems to be more heterogenous depending on the source of the vesicles
and the analytic methods applied [60]. Still, the plasma membrane microdomain-clustering
tetraspanins, the endosome biogenesis-related annexins, heat shock proteins and the lipid
raft-related flotillin seem to be stably enriched components of the exosomes [57,61–63].
Data suggest that the differential tetraspanin composition of exosome membranes is one
of the determinants of the target-cell specificity of the exosomes [64]. Besides their com-
mon membrane-related protein elements, a wide range of intracellular proteins have
also been assigned to exosomes including cytoskeleton elements [65,66], metabolic en-
zymes [67,68] or canonical signaling molecules [69]. Ribonucleic acids including messenger
RNAs and various non-coding RNA transcripts have also been reported to be present
in exosomes [64,70–74]. The physiologic importance of the RNA content of exosomes
is highlighted by the findings that exosome-encapsuled RNA species seem not only to
be selectively incorporated into the exosomes but could also be translated in recipient
cells [70,75]. Current experimental data suggest that the composition of the EV cargo is
determined by both the type and the microenvironment of the parental cell [76].

Besides exosomes, mammalian cells also release larger EVs, termed microvesicles
(MV), that are typically up to 1 um in diameter [55]. Besides their size difference compared
to exosomes, another defining hallmark of MVs is that their biogenesis is linked to the
outward budding of the plasma membrane [77–79] (Figure 3). Formation of MVs seems
to be under the control of intricate mechanisms that include differential membrane lipid
compositions and rearrangement of the microfilament system alike [80,81]. The latter one
is mediated by a number of pathways including the small GTPase ARF6/Phospholipase
D/ERK/Myosin light chain kinase pathway that mediates phosphorylation of the Myosin
light chain resulting in MV release in cancer cell models [82]. Data also suggest that
additional microfilament regulatory pathways, such as the RhoA/LIM kinase/cofilin
pathway are also involved in MV formation [83,84]. The apparently central role of the
membrane-bound small GTPases in the regulation of MV biogenesis suggests that extracel-
lular stimuli can directly influence MV formation. Indeed, hypoxia induces MV shedding
in a HIF1-dependent manner via induction of the small GTPase RAB22A [85]. Although the
underlying molecular mechanism might be slightly different depending on the cell type,
the hypoxia-responsive nature seems to be a common feature of EV biogenesis [85–88].

1.5. BMSC-Released Extracellular Vesicles

Similar to other mammalian cell types, hBMSCs also secrete various EVs enriched
in proteins, metabolites and RNA species [89–92]. Proteomics profiling revealed that the
BMSC-secreted EVs both carry canonical exosome markers, such as the tetraspanins, and
BMSC-specific cargo [93]. These include BMSC markers, ion- or protein-transporters,
transcriptional- and cell-cycle regulators, angiogenic factors and proteins associated with
the Wnt signaling pathway or the organization of the extracellular matrix alike [94]. Among
the RNAs, coding and non-coding species have also been reported in BMSCs-derived EVs,
suggesting their complex effects on target cells. Indeed, BMSC-derived EVs have been



Cells 2021, 10, 2199 6 of 15

reported to promote the paracrine transfer of both collagen type VII collagen (COL7A1)
and its functional mRNA to support secretion and de novo synthesis of collagen type VII in
COL7A1-deficient neighboring fibroblasts [95]. In contrast, BMSC-released EVs can reduce
the expression of collagen I or the transforming growth factor-1β, critical elements of the
fibrotic response of connective tissue [96]. Moreover, the fibroblast function-modulating
effects of BMSC-derived EVs include the influence of processes such as the ossification of
ligaments via their miRNA content, confirming the multifunctional nature of the BMSC-
produced EV population [97]. Current data suggest that there are multiple mechanisms
behind the differential effects of BMSC-derived EVs on fibroblast. On one hand, cargo
composition of BMSC EVs is influenced by the extracellular milieu of the EV-releasing cell,
as was seen in osteogenically-induced BMSCs that secrete EVs that promote osteogenic
engagement of naïve BMSCs via their non-coding RNA cargo such as miR-29b-3p and
miR-22-3p [76,98,99]. On the other, data also indicate that BMSCs release functionally
unequal EV populations that allows differential effects in a given EV cohort [100].
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Based on the complex cargo composition of BMSC EVs, one can speculate that the
spectrum of their target cells is not necessarily limited to fibroblast. Indeed, BMSC-derived
EVs seem to contribute to the maintenance of the hemopoietic stem cell population, one of
the central functions assigned to BMSCs residing in their physiologic niche [101,102]. In
addition, BMSC EVs seem to mediate similar anti-inflammatory properties than that of their
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parent cells [103]. These effects, however, are mediated, at least partly, by different miRNA
populations including the miRNA-21 and miRNA-34a that target KLF4 and the cyclin
I/ATM/ATR/p53 axis, respectively [104,105]. Besides their anti-inflammatory effects in
chronic inflammatory conditions, BMSC-derived EVs also display similar activities in
graft versus host models by influencing the ratio of T cell populations biasing regulatory
over cytotoxic species [106]. Moreover, observations that BMSC EVs show non-coding
RNA-mediated pro-survival effects on antibody secreting cells as well as promote M2
macrophage polarization in chronic inflammatory models underpin the idea that they can
target a wide range of cells independently of their histological origin [107–109].

The non-coding RNA content of BMSC EVs includes miRNA that further widens the
range of the potential target cells by influencing neuroinflammatory responses [110]. These
include the miRNA-183-5p and microRNA-221-3p that both have been assigned to the neu-
roprotective effects of BMSC EVs [111,112]. Their protective effects in ischemia/reperfusion
injury are also not restricted to neuronal tissues as has been reported in the hepato-
cellular context but, apparently, are mediated by another non-coding RNA cargo, the
miRNA-146a-5p [113,114]. Moreover, in mouse models, BMSC EVs induce VEGFR1 and
-2 expression of endothelial cells and promote endothelial tube formation in vitro [115].
These EVs were found to be enriched with the VEGF and miR-210-3p, suggesting that the
pro-angiogenic effects on endothelial cells are mediated by concentrated factors that are
capable of triggering the pro-angiogenic program of target cells at multiple levels [115]. The
positive effects of BMSC EVs on hindlimb ischemia in in vivo models raise the question
if the intimate relationship between BMSC and hypoxia is reflected in the physiologic
potential of BMSC-released EVs.

1.6. Hypoxia and the BMSC-Released Extracellular Vesicles

Considering that hypoxia has widespread and profound effects on BMSCs and environ-
mental stimuli fundamentally affect the cellular secretome, it is not surprising that oxygen
depletion significantly affects the composition of BMSC EVs. The primary candidates to
mediate this effect are, obviously, the HIFs. Indeed, HIF-1α directly induces, for instance,
miR-210, a known BMSC EV cargo that secreted in elevated amounts in EVs released by hy-
poxic BMSCs [116–118]. In accordance, miRNA-210 exert pro-angiogenic effects via induc-
tion of VEGF in endothelial cells, providing a potential explanation of the superior effects of
EVs released by hypoxic BMSCs observed in ischemia/reperfusion injury models [119–122].
Besides miRNA-210, there is a growing number of evidence of further microRNAs that
may play a role in the BMSC EVs mediated protection upon ischemia/reperfusion. These
include miRNA-22 that is also enriched in EVs of hypoxia-exposed BMSCs and directly
transferred to cardiomyocytes via an EV-mediated manner [123]. Following its uptake,
miRNA-22 downregulates the epigenic regulator MECP2 and contributes to the reduction
in the post-ischemic fibrotic response of the myocardium [123,124]. Another microRNA,
miRNA-26a, also seems to contribute to cardioprotection upon ischemia/reperfusion by
targeting the glycogen synthase kinase 3beta (GSK3β) encoding GSK3B [125]. Moreover, in
rodent models, miRNA-149 and Let-7c-5p were reported to be enriched in EVs of hypoxia-
preconditioned BMSCs where, following their horizontal transfer to cardiomyoblasts,
they repress FAS ligand expression, rescuing them from hypoxia/reoxygenation-induced
apoptosis [126]. Finally, miR-125b, another miRNA species enriched in EVs secreted by
hypoxia-preconditioned BMSC, efficiently repress the pro-apoptotic TP53 and BAK1 genes
in ischemia/reperfusion models, clearly indicating that the cardiomyocyte-protective ef-
fects of hypoxic BMSC-released EVs are mediated by multiple, simultaneously influenced
pathways [127].

EVs of hypoxia-preconditioned BMSCs were found similarly advantageous in neu-
rodegenerative disease models over EVs produced by normoxic BMSCs but the underlying
mechanisms are also yet to be elucidated [128]. One of the potential candidates to mediate
this effect is miRNA-21 that is induced in hypoxic BMSC and mimics anti-inflammatory ef-
fects of the hypoxic BMSC EVs in the recipient neuronal cells [129]. In response, miRNA-21
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levels are increased in the target cells as well, but whether the excess amounts of miRNA-21
species are directly transferred from hypoxic BMSCs via EVs or other cargo induces
miRNA-21 expression in the recipient cells is not clear [129]. Data also suggest that the
neuroprotective effects of hypoxic BMSC-released EVs are not exclusively mediated by
intraneuronal mechanisms. Instead, EVs excreted by hypoxic preconditioned BMSCs ex-
ert complex, intra- and supracellular effects, simultaneously affecting neuronal signaling
pathways and activation of the astrocytes and microglia [129]. Moreover, data indicate
that the anti-inflammatory nature of EVs derived from hypoxia-preconditioned BMSCs
is not restricted to immunocompetent cells of the central nervous system. Indeed, they
were also found to efficiently reduce the number of infiltrating white blood cells upon
endotoxin-induced acute lung injury and, for this effect, a brief exposure of BMSCs to
hypoxia is already sufficient [130].

Although these data assign potential therapeutic importance to hypoxic BMSC-
secreted EVs, some recent experimental data suggest that their versatile nature might
be disadvantageous in the cancer context. Indeed, various cargo of BMSC EVs have been
reported as potential mediators of lung cancer progression. These include miRNA-328-3p,
miRNA-193a-3p, miRNA-210-3p and miRNA-5100 and miR-21-5p that were all found to
contribute to cancer cell growth and mobility hijacking various intracellular pathways of
the recipient cancer cells [118,122,131] (Table 1).

Table 1. Summary of the cargo molecules enriched in EVs released from hypoxic BMSCs.

Hypoxic EV Payload Observed Effects References
miR-210 induces expression of VEGF resulting in angiogenesis [116,117,119–122]

miRNA-22 downregulates MECP2 contributing to the reduction in
the post-ischemic fibrotic response [123,124]

miRNA-26a targets the glycogen synthase kinase 3beta (GSK3β)
encoding GSK3B [125]

miRNA-149 represses FAS ligand expression rescuing them from
hypoxia/reoxygenation-induced apoptosis [126]

Let-7c-5p represses FAS ligand expression rescuing them from
hypoxia/reoxygenation-induced apoptosis

miR-125b represses the pro-apoptotic TP53 and BAK1 further
indicating protective effects [127]

miR-21 affects neuronal signaling pathways and activation of
the astrocytes and microglia [129]

miRNA-328-3p, miRNA-193a-3p,
miRNA-210-3p miRNA-5100

miR-21-5p
contribute to cancer cell growth and mobility [118,122,131]

2. Discussion

Extracellular vesicles excreted by BMSCs have received growing attention over the
past few years. These include studies that focused on the composition of EVs released
BMSCs exposed to low oxygen conditions that found these “hypoxic” EVs superior to their
“normoxic” counterparts, raising the question if the beneficial effects of “hypoxic” EVs
are due to the hypoxic intracellular composition of the parent cells. This is a fascinating
question suggesting that understanding the composition of “hypoxic” vs. “normoxic” EVs
could provide valuable information on the key regulators of pathologic states. Indeed,
identification of microRNA-148a-3p as the mediator of the beneficial effect of BMSC EVs
on osteonecrosis confirmed the role of SMURF1 in the pathogenesis [132]. Similarly,
identification of targets of the BMSC EV cargo miRNA-375, that mediate anti-cancer effect
on cervical cancer, might reveal further components in the transformation of cervical
epithelium [92].

One could speculate that analysis of the BMSC EV composition might shed light on
BMSC physiology as well. Indeed, miRNA-15b, that is enriched in BMSC EVs revealed
intracellular regulators of osteogenic differentiation confirming that BMSC EVs could
provide invaluable information on BMSC-related processes [133].
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Interestingly, most of the current data on the composition of “hypoxic” BMSC EVs
focus on their microRNA cargo and we have no data on the effects of their protein or
metabolite content on the recipient cells. In addition, considering the fundamental intra-
cellular changes in hypoxic BMSCs, one can speculate that the protein and metabolite
composition of hypoxic EVs reflect similarly profound alterations. Thus, it would be
interesting to see if cargo proteins of the “hypoxic” EVs contribute to the hypoxic adap-
tation of recipient cells. Similarly, the fundamental role of metabolites such as succinate
or the α-ketoglutarate in the regulation of the HIF pathway raises the question if these
metabolites are present in “hypoxic” BMSC-secreted EVs in differential concentrations and
if they influence the HIF pathway of recipient cells.

The beneficial effects of BMSC-derived EVs on various human pathologies naturally
fuel the idea of their future use in clinical applications. For the successful implementation of
BMSC EV-based cell-free modalities in the clinical practice, however, therapeutic EVs need
to be standardized. Since the molecular signature and physicochemical properties of EVs
reflect the same of the parental cells, one of the candidate solutions for the standardization
problem seems to be the production of off-shelf EV-based therapeutic agents instead of the
use of flask-cultivated autologous BMSC-derived ones [134]. Implementation of hollow-
fiber bioreactors for standardized and upscaled production of BMSC-derived EVs is one
of the promising steps toward EV-based off-shelf products [135]. To bias the potential
of the manufactured EVs toward the desired therapeutic effect, however, more detailed
mapping of the cargo composition of EVs under differential culture conditions seems
to be inevitable. Understanding the payload constellation of the hypoxic BMSC EVs,
with particular attention to the dissection of their cargo exerting anti-ischemic and anti-
inflammatory effects from the those with oncogenic ones, seems to be critical to support
both current and future efforts to produce off-shelf nanovesicles that efficiently but safely
mirror the superior therapeutic effects of hypoxic BMSC EVs.
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