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Abstract
Since the first studies of the nervous system by the Nobel laureates Camillo Golgi and 

Santiago Ramon y Cajal using simple dyes and conventional light microscopes, microscopy 

has come a long way – to the most recent techniques that make it possible to perform 

images in live cells and animals, in health and disease. Many pathological conditions of the 

central nervous system have already been linked to inflammatory responses. In this 

scenario, several available markers and techniques can help imaging and unveil the 

neuroinflammatory process. Moreover, microscopy imaging techniques have become even 

more necessary to validate the large quantity of data generated in the era of "omics". This 

review aims to highlight how to assess neuroinflammation by using microscopy as a tool to 

provide specific details about the cell’s architecture during neuroinflammatory conditions. 

First, we describe specific markers that have been used in light microscopy studies and that 

are widely applied to unravel and describe neuroinflammatory mechanisms in distinct 

conditions. Then, we discuss some important methodologies that facilitate the imaging of 

these markers, such as immunohistochemistry and immunofluorescence techniques. 

Emphasis will be given to studies using two-photon microscopy, an approach that 

revolutionized the real-time assessment of neuroinflammatory processes. Finally, some 

studies integrating omics with microscopy will be presented. The fusion of these techniques 

is developing, but the high amount of data generated from these applications will certainly 

improve the comprehension of the molecular mechanisms involved in neuroinflammation.
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1. Microscopy in the light of the study of the central nervous system
Since the revolutionary studies by Santiago Ramón y Cajal (1852-1934) and Camillo 

Golgi (1843-1926) (1,2) – whose work is still a foundation of routine techniques of 

histopathologists and neuroscientists (3–5) – to modern developments of molecule specific 

labelling and imaging in freely moving animals, microscopy-related technologies have 

constantly impacted the understanding of the healthy and pathological nervous system, and 

made clear the importance of understanding the relationship between cell structure, 

localization, and connections (3,6,7).

The collection of fields known as ‘omics’ also highlights the importance of 

connections. The omics fields – such as genomics, transcriptomics, metabolomics, and 

proteomics – aim to identify and quantify a large number of elements associated with a 

physiological function, and the connections between them. It has also led to groundbreaking 

findings, e.g., by identifying targets that could help confirm diagnosis (8). Omics approaches 

are particularly helpful when studying immunological functions, such as neuroinflammation, 

as the techniques allow complex interactions to be drawn out. However, the processing of 

tissue removes the structural connections that are revealed by microscopy. In 

neuroinflammatory studies, changes in structural connections, cell morphology, and 

localization of molecules are outcomes of interest, and so a combination of both techniques 

is key. Several studies have integrated these two approaches to elucidate specific 

mechanisms, considering the correspondence between omics and microscopy.

In this review, we describe current applications of microscopy to image 

neuroinflammation, pointing out how changes in the shape and structure of specific cells can 

indicate neuroinflammatory processes. First, we will address some of the main 

neuroinflammatory responses and discuss the signs of neuroinflammation, focusing on the 

involvement of the blood-brain barrier (BBB) and the phenotypic changes in glial cells, as 

well as the main markers that can be used to study neuroinflammation using microscopy 

techniques. Then, we discuss basic methodologies, such as immunohistochemistry and 

immunofluorescence, which allow the microscopic observation of those neuroinflammatory 

markers. We will also emphasize the importance of two-photon microscopy to the in vivo A
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real-time assessment of neuroinflammatory processes. Studies elucidating the function of 

the inflammatory components in healthy and disease conditions will be briefly mentioned as 

examples of the applications of these techniques. Lastly, we will discuss the newest omics 

techniques and how the molecular and imaging approaches may complement each other 

and be applied simultaneously to improve the comprehension of the mechanisms involved in 

neuroinflammation.

2. The concept of neuroinflammation
The term neuroinflammation arose in the 1980s from observations using microscopy 

techniques, which showed an accumulation of leukocytes around degenerating myelin and 

brain vessels in samples of multiple sclerosis (MS) (9). Since then, the study of 

neuroinflammation has expanded greatly, with almost 5,000 articles listed in NCBI PubMed 

for 2020 alone.

The process of neuroinflammation involves multiple types of cells and factors (Figure 
1), which play different roles depending on the context of the inflammation, duration, 

experimental model, or disease, an understanding of which is complicated by inconsistency 

in terminology (10).

Neuroinflammation is mediated by signaling molecules known as cytokines, which are 

proteins produced and secreted by different cell types that mediate the immune and 

inflammatory responses (11). However, it is worth mentioning that some of the 

“neuroinflammatory components” are also involved in physiological function. For example, 

cytokines considered to be neuroinflammatory markers, such as Interleukin-1 (IL-1), IL-18, 

IL-6, and Tumor Necrosis Factor-α (TNF-α), have already been described as key players in 

physiological mechanisms involved in memory consolidation (12). Glial cells are also 

involved in mechanisms activated in non-pathological contexts. Microglia can be activated 

through IL-17 released from hippocampal neurons taking part in synaptic remodeling as part 

of memory consolidation (13). The recent description of the importance of IL-17 from 

meningeal-resident γδ T cells for short-term memory (14) has also increasingly opened up 

the possibilities of studying "inflammatory" cells and mediators in health, not only in disease.A
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Nevertheless, in pathological contexts, the inflammatory signaling that characterizes 

neuroinflammation might become detrimental and ultimately result in neuronal death (15,16). 

This process involves different cytokines, chemokines, as well as reactive oxygen species 

synthesis by microglia, astrocytes, infiltrated immune cells, and endothelial cells. These 

mediators can potentially lead to harmful outcomes, such as edema, tissue damage, and cell 

death (10,11,17,18). Glial cells orchestrate an inflammatory response in a very context-

dependent manner, presenting different neuroinflammatory phenotypes based on which 

pathways are activated, insult context, and the degree of inflammation in experimental 

models, developmental stages, and in health and disease conditions (10,11,19–22). The 

situation is complicated somewhat by the lack of clear terminological definitions of individual 

cells in the central nervous system (CNS) such as terminology concerning astrocyte 

responses in physiological and pathological conditions (23). Table 1 summarizes a variety of 

targets commonly used in light microscopy studies to describe different aspects of the 

neuroinflammatory process.

3. What to observe: the signals of neuroinflammation
In this section, we introduce the cell markers used to study BBB damage in 

neuroinflammatory contexts and the brain clearance ‘glymphatic’ system. We also discuss 

the cells involved in the neuroinflammatory responses, along with the immunological 

synapse that comprises the interaction between nervous and immune cells. These are the 

main targets to be observed when using a microscope as a tool to study neuroinflammation.

3.1. Damage to the blood-brain barrier

Although seen as a structure separating the nervous system from the periphery, the 

BBB also regulates the passage of substances into and out of the nervous system, and 

damage to the BBB is a key point in several inflammatory processes.

The BBB is essential to maintain the microenvironment of the CNS distinct from the 

periphery, regulating the entry and exit of solutes and the entry of peripheral leukocytes (24). 

Its function is performed by specialized blood vessel endothelial cells, which have limited A
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vesicular transport and are connected through highly specialized tight junctions, preventing 

paracellular transport (25,26). The tight junctions are formed by the claudins (CLDN), 

occludin (OCLN) and the zonula occludens protein family (ZO-1, -2, and -3) (27). Pericytes 

and astrocytes are cellular components in close contact with the endothelium, influencing 

and participating in the complex maintenance of the BBB (26,28).

The BBB is disrupted in several neuroinflammatory contexts (29) such as cerebral 

ischemia (30,31), Alzheimer’s disease (AD) (32,33), and MS (34), and it is also affected by 

systemic inflammation, e.g., induced by systemic injections of lipopolysaccharide (LPS) (35). 

Loss of BBB integrity can also affect neurodevelopment, as shown in a model of prenatal 

exposure to valproic acid in rats (36) and neonatal hypoxic-ischemic events (37). 

Sophisticated imaging techniques such as computerized tomography (CT), magnetic 

resonance imaging (MRI), and near-infrared fluorescence (NIRF) are widely used in these 

studies, but the limitation of analysis to macroscopic scales places microscopy as an 

important tool to elucidate the molecular mechanisms involved in the neuroinflammatory 

process (27).

Immunohistochemistry (IHC) was used in brain samples from both epileptic patients 

and rats to detect increased anti-albumin labeling in the hippocampus (38). Since albumin is 

not expected to cross BBB under normal conditions, this suggests a loss of barrier integrity 

(24). The paper by van Vliet et al. (38) demonstrated similar results in chronically epileptic 

rats using immunofluorescence (IF) techniques. This finding was subsequently confirmed by 

injecting fluorescein dye in the tail vein of the animals and visualizing the infiltrated dye with 

a confocal microscope. Since fluorescein does not penetrate the CNS under normal 

conditions and can bind to albumin, it offers a confirmatory method to analyze the infiltration. 

Albumin signal was also co-labeled with astrocyte, neuronal and microglial markers to 

demonstrate the relationship of these cells with invading molecules (38).

In addition to analyzing the leakage of some substances through the BBB, targeting 

junction proteins can provide relevant data on BBB integrity. Decreased expression of 

junction proteins CLDN-5, OCLN, ZO-1, α-catenin, and vascular endothelial cadherin, was 

detected by IF in pre-reactive inflammatory lesions from MS human brain samples (34). A
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One-time and repeated imaging was performed in a mouse model of ischemic stroke with 

CLDN-5 gene coupled with green fluorescent protein (GFP) reporter gene, in which green 

fluorescence was detected using two-photon microscopy, thus providing evidence of 

dynamic changes in tight junctions in this pre-clinical ischemic stroke model (39). Also, using 

GFP expression under the control of CLDN-5 promoter, two-photon microscopy revealed 

remodeling of the tight junctions preceding the invasion of a peripherally injected dye that 

normally does not cross the BBB in an experimental autoimmune encephalitis (EAE) model. 

Interestingly, this dynamic remodeling of the tight junctions precedes the EAE onset (40).

In a blast-induced traumatic brain injury (TBI) model, a decrease in the fluorescence 

intensity of ZO-1, CLDN-5, and OCLN suggested a BBB leakage that was confirmed by 

analyzing the fluorescent tetramethylrhodamine isothiocyanate–dextran (TRITC-Dextran) 

dye invasion into the brain (41). An interesting way to quantitatively analyze the damage to 

the BBB is the use of dyes of different sizes. In a model of sustained inflammation induced 

by systemic injections of LPS, only dextran-Texas red (10 kDa) crossed BBB, while dextran-

tetramethylrhodamine (40 kDa) and dextran-fluorescein (70 kDa) did not (42). Thus, as 

described so far, microscopy can assist in fundamental issues related to BBB integrity, from 

differences in immunoreactivity and location of junction proteins involved in BBB integrity to 

the degree of barrier breakdown assessed through fluorescent dyes.

IHC and IF allow the colocalization of inflammatory cytokines with different cell 

markers to determine the involvement of specific cell types in the neuroinflammatory 

process. Four hours after systemic LPS administration, stromal cells niches in 

leptomeningeal and choroid plexus, and also epithelial cells from the choroid plexus and 

hippocampal vessels were the main producers of chemokine (C-C motif) ligand 2 (CCL2), 

chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and IL-6. Interestingly, after 24 hours 

the main source of mediators such as CCL11 and CXCL10 were astrocytes, evidenced by 

co-labeling with glial fibrillary acidic protein (GFAP). The use of histological techniques also 

showed that the expression of cytokine receptors following systemic LPS administration 

occurred specifically in the astrocytic end-feet, a part of the cells that is in contact with 

capillaries and which plays a role in BBB maintenance (43).A
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Visualizing fluorescent tracers in the cerebral cortex using two-photon microscopy 

allowed the elucidation of a brain waste clearance system: a perivascular pathway that 

enables the transport of cerebrospinal fluid (CSF) into and out the brain parenchyma. The 

same study showed that aquaporin 4 (AQP4) in astrocyte foot processes is fundamental to 

fluid dynamics (44). The glial-based clearance system was termed the “glymphatic system”. 

The same research group later used in vivo two-photon and ex vivo fluorescence 

microscopy to find that cerebral arterial pulsatility is also critical to CSF transport into and 

through the brain (45). Also, light-sheet fluorescence microscopy has been applied as a new 

way to study the glymphatic system, reducing some of the limitations, such as the need for 

antibodies, due to the use of CSF tracers (for details, see reference (46)). The wide range of 

approaches in these studies demonstrates that microscopy was a fundamental tool for 

describing this important clearance system in the brain.

3.2. Cell types involved in the neuroinflammatory response

Glial cells - mainly microglia and astrocytes - and invading leukocytes orchestrate the 

neuroinflammatory response following BBB disruptions. Microglia cells are the CNS 

macrophages, and assume different phenotypes within a spectrum ranging from M1 (pro-

inflammatory phenotype) to M2 states (anti-inflammatory phenotype) (47,48). The M1 

phenotype is characterized by secretion of pro-inflammatory cytokines such as TNF-α, 

interferon-γ (IFN-γ), and IL-6 (49), whereas the M2 phenotype is related to anti-inflammatory 

cytokines such as IL-4 and IL-10 (49). Besides differences in the cytokines released by each 

microglial phenotype, the shape of the microglia themselves following stimulation also 

varies, and the different shapes reflect their differing function. For example, following LPS 

challenge, M1 microglia show a profile with an ameboid shape (50), aiding its ability to 

phagocytose pathogens in the CNS. In contrast M2 morphology presents ramified branches 

that enhance its surveillance role (51). It is important to point out here that 

oversimplifications of these phenotypes should be avoided when describing not only the 

state of microglia but also the outcomes of a particular neuroinflammatory event (52).
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Microglia polarization analyzed by immunostaining and further confirmed by flow 

cytometry has been employed in middle cerebral artery occlusion (MCAO) models (53). Flow 

cytometry has been employed to confirm the inflammatory response and microglial 

polarization using F4/80 labeling, which is a glycoprotein found on the surface of 

macrophages and resting microglia (53).

Usually, microglia alterations are widely used to suggest a neuroinflammation 

condition in the CNS using the ionized calcium-binding adaptor molecule 1 (Iba-1) marker 

(54–56). Some authors applied double-labeling of the Iba-1, as a marker for all microglial 

cells, labeling the soma, with LN3 (a monoclonal antibody used as a microglial activation 

marker since it recognizes the major histocompatibility complex II - MHCII), to evaluate 

microglial hypertrophic and ameboid morphology (57). Another interesting marker, P2Y 

purinoceptor 12 (P2RY12), was double-stained with Iba-1 to enhance the labeling of the 

microglial ramifications (57,58). Also, CX3C chemokine receptor 1 (CX3CR1) fractalkine 

receptor is expressed on the surface of macrophages and microglial cells and responds to 

CX3CL1 (fractalkine) (59–61), and is considered a potential marker for macrophages and 

microglial cells.

Although it can lead to confusion with neutrophils, cluster of differentiation 11b 

(CD11b) is used as a marker for microglia, as these cells express this protein (56,62). On 

the other hand, myeloperoxidase protein (MPO) can be used as a marker for neutrophils 

(63), allowing discrimination of neutrophils from microglia. As mentioned before, Iba-1 is 

widely considered a microglia marker; however, this antigen does not differentiate microglia 

from monocytes. CD45 could help in this case, as it is more expressed in monocytes than in 

microglia. So, both Iba-1 and CD45 positive cells – particularly round-shaped ones – are 

likely monocytes, while Iba-1 positive cells and CD45 negative cells with processes are 

microglia (62,64). Another helpful marker is CD68 (a macrophage/phagocytic activity 

marker), which appears after ischemia in the border zone of the lesion, but invades the 

ischemia core 7 days after the insult (56,62).

The microglial inhibitor AZD8797 (a CX3CR1 inhibitor) was used in a study designed 

to observe microglial-dependent neuroinflammatory responses. A significant increase in the A
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percentage of IL-1β+ and IL-6+ cells (observed by IHC) caused by hypertension was 

mitigated by blocking microglia with AZD8797 (59). In a model of brain ischemia, 

immunofluorescent staining was used to co-label cells with anti-Iba-1 and anti-TNF-α, 

demonstrating that microglia were the main cell type responsible for the TNF-α increase 

observed in the brain tissue. As IF was performed after 12 hours, 1 day, 3 days, and 7 days 

following ischemia induction, it allowed a sequential analysis of the role of microglia in 

establishing the neuroinflammatory process (65).

Due to the extensive range of possible microglial phenotypes, double labeling may 

differentiate the pattern of the response of these cells in a particular situation. Moreover, 

studies should consider not only the number or optical density of cells immunoreactive to 

these markers but also cell morphology and time course of the event. These factors further 

reinforce the need to use microscopy techniques to study cellular responses in 

neuroinflammation (64,66).

Astrocytes also play an important role in different CNS diseases (67) such as stroke 

(68), TBI (69), AD (70–72), amyotrophic lateral sclerosis (ALS) (73), and other 

neurodegenerative diseases (67,72,74). Astrocytes and microglia act in a coordinated way 

to maintain homeostasis (75), influencing each other in the pathophysiology and 

inflammatory responses (76–79). Astrocytes are also responsive to physiological and 

pathological stimuli, becoming reactive and presenting functional and morphological 

changes (70,80). While morphological analyses are useful to describe astrocyte remodeling 

in different contexts, the techniques are less helpful for understanding functional changes 

such as metabolic and transcriptional modifications (23).

Nevertheless, morphological changes are extremely important to understand the role 

of astrocytes both in health and disease. One of the main markers for analyzing astrocyte 

morphology is GFAP, the principal intermediate filament (81), a member of the cytoskeletal 

protein family of these cells (82–84). Due to its unique and highly immunogenic epitopes, 

GFAP application in IHC has been suggested since 1994 (85). Reactive astrocytes show 

increased GFAP immunoreactivity (23), as well as an increase in the number and length of 

processes leaving the soma as well as an increase in the thickness of the branches (74,80). A
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Imaging techniques across a range of studies have found changes in important features of 

astrocytes in a variety of models of neuroinflammation. Following LPS injection into the 

substantia nigra of adult rats, astrocytes changed morphology, exhibiting long, thick 

branches compared to the small soma and few thin branches in basal conditions. LPS-

injected animals also showed increased GFAP+ cell number and GFAP immunoreactivity 

(86). Astrocyte-linked inflammation was also seen via increased GFAP immunofluorescence 

following experimental TBI (87). Astrocyte morphology is altered in distinct conditions. In a 

model of epilepsy, astrocytes in brain slices presented hypertrophy and significant overlap of 

their processes (88). An increased astrocytic arborization was also seen after intermittent 

exposure of rats to heavy consumption of alcohol (89). While no alteration was found in 

hippocampal astrocytes after acute hypoxia exposure, neuroinflammation was observed 

through increased microglial markers (Iba-1 and CD86) (90). GFAP upregulation was also 

evidenced in ischemic injury, and different functional significance was found according to 

sex (91). In young rats, GFAP fluorescence intensity was increased after toluene exposure 

together with an increase seen in both the number of CD11b+ cells and the mRNA levels of 

the proinflammatory cytokine IL-1β (92). Even aging was associated with GFAP 

upregulation. In a model of perioperative cognitive impairment, an increase in the number of 

GFAP+ astrocytes – which led to the production of proinflammatory cytokines and was 

suppressed through NOD-like receptor protein 3 (NLRP3) inflammasome inhibition – was 

observed in the hippocampus of aged mice (93).

It has already been demonstrated that, despite the various structural modifications, 

even when reactive, astrocytes did not present alterations in the total area occupied (84), 

nor in the cellular division process of mature astrocytes, except for a specific subpopulation 

of these reactive astrocytes, identified by the GFAP expression (94). The GFAP positive 

subpopulation of cells originates from neural stem cells in specific regions, such as the 

subventricular zone (94) and the subgranular layer of the hippocampus (95). The region-

specific reactive astrocytes may be used in treatment as multipotent cells that could be 

applied within the injury site to support damaged or dysfunctional neurons in important and 

specific regions (96), a discovery in which the use of microscopy to visualize fate-mapping A
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astrocytes in adult mice was key (96). Markers of proliferation such as BrdU (5-bromo-2’-

deoxyuridine) or Ki67 (97) and aldehyde dehydrogenase 1 L1 (ALDH1L1), glutamine 

synthetase (GS), or aldolase C (ALDOC) (23,98) co-labeled with GFAP might robustly 

characterize remodeling and modifications in the number of astrocytes (23). Thus, when 

testing a therapy based on multipotent cells or any other therapy involving CNS, evaluating 

astrocyte response is a valuable approach.

In addition to the structural changes in the resident glial cells of the central nervous 

system described so far, the invasion of peripheral cells is also an important part of the 

neuroinflammatory response. The term immunological synapse was coined to designate a 

cell junction between a lymphocyte and an antigen-presenting cell (99). Microglia are the 

most important antigen-presenting cell in the brain, and genes involved in microglia and T 

cell interactions are upregulated in neurodegenerative disease (for review, see 100). 

Imaging this interaction is a challenge. In the periphery, the immunological synapse has 

been studied using super-resolution microscopy to allow single-molecule imaging (101). In 

the CNS, Flügel and colleagues studied autoimmune encephalomyelitis, an animal model for 

multiple sclerosis (102). The study used a retroviral vector system to combine fluorescently 

labeled nuclear factor of activated T cells (NFAT) with histone protein H2B. The combination 

of both sensors allowed imaging T cell activation in real-time. In intravital experiments using 

two-photon microscopy, the authors showed that contact with phagocytes from 

leptomeninges is important to activating T cells entering the CNS. They were also able to 

show contact of T cells with non-activated and activated microglia along with the progression 

of the disease. These double-fluorescent T cells could be used in other neuroinflammation 

models to allow real-time monitoring of the pattern of interaction between peripheral immune 

system cells and CNS cells.

In summary, astrocytes and microglia (and their structural changes) are key players 

when evaluating neuroinflammation (103). However, the interaction between brain cells and 

invading peripheral immune cells (104) is becoming an important topic of study to unveil the 

mechanisms involved in neuroinflammation. Moreover, most of the studies discussed in this 

review showed that the fundamental mechanisms, which served as the basis for the highly A
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advanced techniques currently used in the study of neuroinflammation, have been described 

using basic histological techniques, highlighting the importance of microscopy.

4. How to observe: the methodologies for visualizing neuroinflammation
Several pathways are activated during neuroinflammatory events (19,105) and 

numerous techniques were developed using specific dyes or antibodies against suitable 

targets (106,107). However, it is difficult to determine a specific marker to unambiguously 

detect a neuroinflammatory response is underway (23), and imaging technologies assist the 

identification and localization in situ of CNS cells.

4.1. Conventional light microscopy

The Golgi technique stains the plasma membrane of neurons using a reaction of 

silver nitrate and potassium bichromate (107), and modifications of the method of Golgi are 

still used today to describe the morphology of individual neurons (108–110) and generate 

information about changes in morphology under neuroinflammatory circumstances. In a 

model of TBI, Golgi staining was used to quantify the decrease in the size and number of 

general and apical ramifications of pyramidal neurons in the cerebral cortex during 

neuroinflammation induced by injury (111). The Golgi technique was also used to show 

dendritic spine changes in hippocampal neurons in radiation-induced neuroinflammation 

(112) and to assess cortical and hippocampal neurons under systemic LPS injection, where 

they showed decreased branching and dendritic spines compared to animals without 

inflammatory stimulus (113). A decrease in the density of dendritic spines was also found in 

the medial posterodorsal amygdala in animals subjected to prolonged stress (114). Using a 

model of influenza infection, a modified Golgi staining showed a decrease in the density of 

dendritic spines and the branching of specific neuronal subpopulations in the hippocampus 

after infection (115). The density of dendritic spines was also negatively influenced in a 

transgenic animal model of AD, and treatment with valproic acid partially ameliorated it, 

demonstrated by modified Golgi staining (116). The Golgi technique remains a widely used 
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method for analyzing changes in dendritic spines, in part because of the simplicity of the 

technique and equipment involved.

Despite the ease of use and wide applications of histological stains, their specificity is 

limited. The ability to target a protein of interest with a labelled antibody allowed the 

development of new techniques such as IHC and IF and opened up the neuroscience field 

(117). The main techniques used for imaging neuroinflammation will be elucidated below, 

from immunohistochemical to in vivo approaches (Table 2 describes the advantages and 

limitations of basic types of preparation used to view specimens with a light microscope).

4.2. Immunohistochemical techniques

The application of IHC in neuroscience as a tool to assist in the localization and 

identification of proteins, has remodeled and reorganized the clinical diagnosis as well as 

day-to-day bench techniques (118). Antibodies provide an extensive map of the CNS by 

pinpointing antigens to specific locations and subpopulations of cells in the brain. In the 

context of neuroinflammation, immunohistochemical analysis can be very helpful to indicate 

the exact location of antigens and suggest cell-to-cell communication in a specific disease or 

condition, elucidating the mechanisms involved in a unique way (118). This technique 

enables the detection of a protein of interest using a specific antibody against the protein’s 

epitopes. In IHC, the antibody (usually a secondary antibody) is conjugated to an enzyme 

whose product forms a precipitate which can be visualized using conventional microscopy 

(119). Co-labelling with multiple markers, for example the commonly used Iba-1 and GFAP 

described above, can provide greater information than each marker alone but studying the 

intensity of immunoreaction, cell counting, and morphological analysis of the cell (15,120–

124). As for astrocytes, IHC labelling of GFAP can reveal an increase in the length of cell 

processes in neuroinflammatory contexts such as animals subjected to a high-fat diet (119), 

alcohol-induced neuroinflammation (125), and hypoxia (121).

Microglia cells acquire an amoeboid shape and proliferate during neuroinflammation. 

In a study using avidin-biotin-peroxidase complex to visualize microglia, the count of Iba-1+ 

cells and the area occupied by microglial cell body relative to the total area occupied were A
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used as indices of microglial activation in a model of postsurgical neuroinflammation (126). 

In a hypoxia model, several parameters such as the size of the cell soma and branches 

were used to indicate microglia activation (127). A proliferation marker like BrdU can also be 

used to assess microglial proliferation during neuroinflammation (120).

Sholl analysis (128) is another useful tool to analyze morphological alterations after 

neuroinflammation. This analysis is applied to astrocytes (129,130), microglia (121,131–133) 

and also, neurons (111,115). Sholl analysis consists of applying a series of concentric 

circles on marked cells, allowing quantification of some features of cell processes in a 

systematic, simple, and relatively inexpensive way. After concentric circles are applied, two 

central and two lateral quadrants can be delimited (Figure 2). Parameters such as the 

number of intersections of processes in each quadrant, the number of primary processes 

leaving the soma, and the largest branch of each quadrant might provide useful insights 

indicative of cell activation during neuroinflammation (130,131). Sholl circles have been used 

to elucidate astrocyte activation in different contexts of neuroinflammation, such as 

neuroinflammatory activation caused by intermittent exposure to alcohol (89) or neonatal 

excitotoxicity (134). The same goes for microglia, whose neuroinflammatory activation can 

be studied under classical stimuli such as systemic LPS administration (135) or in hypoxia 

(121). In a model of TBI, Sholl circle analysis evidenced microglia with a more 

ameboid/reactive morphology that was reverted after neutralizing IL-1β (136). Last but not 

least, Sholl circles also provide a tool for neuronal morphology quantification, evidencing a 

decreased number of neuronal branch intersections after TBI (111) and altered dendritic tree 

in hippocampal neurons after influenza infection in mice (115).

4.3. Fluorescence techniques

IF is an alternative to the enzymatic system used in IHC, taking advantage of primary 

or secondary antibodies conjugated to a fluorochrome, excluding the need for a period of 

incubation with an enzyme substrate necessary to produce color in IHC. The broad range of 

fluorophores currently available allows the use of multiple fluorophores excited by different 

wavelengths and therefore the detection of multiple targets simultaneously. Some of the A
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most used fluorophores in histology are fluorescein isothiocyanate - FITC (green/yellow), 

TRITC (red), rhodamine (red), Texas red (red), cyanine - Cy2 (green), indocarbocyanine - 

Cy3 (red), and aminomethyl coumarin – AMCA (blue) (118). Red and green fluorescent dyes 

are broadly applied due to their sensitivity and fast responses in optical imaging systems 

(137). In this sense, fluorescein and rhodamine can be broadly used to evaluate cells, 

tissues, and whole animals (138), considering their excellent optical properties due to the 

long excitation wavelength and high fluorescence quantum yield (137). Usually, the cell DNA 

is also stained with a fluorescent substance such as DAPI (4′,6-diamidino-2-phenylindole) 

(139), allowing nuclear visualization to indicate that fluorescent emission comes from a real 

cell, not from an artifact.

Iba-1 and GFAP are targets widely used in IF to assess the spectrum of activation 

and morphology of astrocytes and microglia under neuroinflammatory settings such as 

astrocytes subjected to oxygen and glucose deprivation in vitro (140), Parkinson’s disease 

model (141), EAE model (142) and, AD model (143). The areas covered by Iba-1+ and 

GFAP+ cell fluorescence were determined under immunological activation through systemic 

LPS administration (144) and in a mouse model of tauopathy (145) and used as a signal 

indicative of astrogliosis in both contexts. Besides quantifying immunoreactivity through the 

intensity of the signal, the number of Iba-1+ cells (relative to the total number of cells in the 

area) has been used to quantify microglial proliferation after a neuroinflammatory stimulus 

(146). To accurately assess microglial proliferation in the face of neuroinflammatory stimuli, 

markers such as Iba-1 and DAPI can be colocalized with BrdU, a proliferation marker (120). 

Stolz and colleagues used a computer-aided method to perform an unbiased and automatic 

analysis of astrocytes and microglia in different models of EAE. They programmed the 

analysis of several parameters, including particle density and mean intensity, and found 

differences in microglia and astrocyte activation in different models of EAE (147).

Quantifying the fluorescent co-labeling of GFAP+ and C3+ (complement component 

3), used as a marker of astrocytic activation, astrocytes in the spinal cord and the motor 

cortex of patients with MS were positively labelled, indicating the occurrence of astrogliosis 

(73). IF can also be useful to analyze targets involved with neuroinflammation within cells, A
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for example, double-marking Iba-1+ or GFAP+ and an enzyme producer of inflammatory 

mediators such as cyclooxygenase 2 (COX-2) (125). Fluorescence-coupled antibodies can 

be used to mark specific proteins of certain models and diseases involved in 

neuroinflammation, such as amyloid-beta (146) and alpha-synuclein (148). Also, labeling 

specific proteins from neurons such as vesicular glutamate transporter-1 (vGLUT-1) and 

Homer-1 to identify excitatory neurons and glutamic acid decarboxylase 65/67 (Gad65/67) 

and Gephyrin to identify inhibitory neurons, Jafari and colleagues demonstrated a 

preferential synaptic loss in excitatory neurons in a model of MS (149).

The fluorescence technique also has its limitations, such as fading of fluorophores, 

cross-reaction, as well as autofluorescence of some biological materials that could produce 

false-positive results. Even so, the technique allows several possibilities of use and analysis 

and must be considered when planning a study on neuroinflammation.

Some of the issues of immunolabelling, such as the fluorophore permeability and 

cross-reaction can be overcome by using transgenic animals expressing fluorescent reporter 

genes. Briefly, reporter genes expressing fluorescent proteins are inserted into the DNA 

chain under the control of the promoter of the gene of interest. When the gene of interest is 

expressed, both protein of interest and fluorescent protein are produced. Thus, the 

fluorescent signal enables real-time imaging of the dynamics involving the expression and 

distribution of a certain cell protein (150).

The first fluorescent reporter protein used was GFP, which was also used primarily in 

the CNS to differentiate astrocytes (expressing GFP under the control of the GFAP 

promoter) from other cells (151). Mutations in the GFP gene created other reporter genes 

with different fluorescent wavelengths: BlueFP (BFP), CyanFP (CFP), and YellowFP (YFP). 

One of the advantages of this method is the ability to visualize proteins without the use of 

synthetic compounds or labeled antibodies (152). Reporter genes for fluorescent proteins 

from other sources have also been characterized, such as AmCyan1, DsRed1, AsRed2, 

HcRed1, increasing the diversity of analysis and targeting possibilities (153).

Transgenic animals expressing fluorescent proteins are a helpful tool to clarify the 

role of molecular pathways, communication, and interplay between different CNS cells A
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related to neuroinflammation. Double transgenic mice can be used to express fluorescent 

proteins in more than one cell group, for example, neurons expressing YFP and microglia 

expressing GFP could elucidate microglial responses after laser-evoked spinal cord injuries 

(154).

Alterations in astrocyte gap junctions were demonstrated in GFAP-GFP animals with 

an induced abscess, leading to a pronounced inflammatory response. In this study, a group 

of astrocytes was specifically stained either with sulforhodamine 101 (SR101) acid chloride 

or double-labeled with GFAP-GFP+ and SR101+, whereas another expressed only one of 

the markers, describing the astrocytic heterogeneity. Also, a difference in the prevalence of 

these cells populations was found between control and abscess-induced animals (155). 

Triple transgenic amyloid precursor protein, presenilin 1 and Nestin-GFP (APP/PS1/Nestin-

GFP) mice were used to elucidate hippocampal neurogenesis in a model of AD. Nestin-GFP 

was used to assess neuronal progenitors in different regions of the hippocampus. A 

decrease in the number of Nestin-GFP+ cells in the dentate gyrus of AD animals was 

observed, indicating reduced hippocampal neurogenesis (156). This decrease in Nestin-

GFP+ cells was less pronounced in animals treated with valproic acid (116).

Nuclear receptor subfamily 4 group A member 1 (Nr4a1)-GFP transgenic mice were 

used to elucidate a fundamental role of the Nr4a1 transcription factor in the development of 

EAE: intravital microscopy showed an increase of fluorescence in the spinal cord after the 

transference of myelin-specific activated lymphocytes (157). In a model of MS, CX3CR-1-

GFP and Chemokine (C-C Motif) receptor 2 (CCR2)-RedFP transgenic animals were used 

to visualize microglia and invading macrophages, respectively. Pre-synaptic (Synapsin-1) 

and post-synaptic (Homer1 and PSD-95 - postsynaptic density protein 95) proteins and 

lysosomes (Lysosomal-associated membrane protein 1 - LAMP-1) were also marked to 

allow the colocalization with microglia and/or macrophages. Results showed that both 

microglia and infiltrated macrophages participate in the synaptic engulfment occurring in the 

cortical layers in this model of MS (149).

4.4. The benefits of two-photon microscopy A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

In vivo studies are important to understand neuroinflammation since most responses 

are transient and dynamic. Thus, recent methods and techniques used to study 

neuroinflammation include real-time analysis of living samples or animals. Live cell imaging 

provides more than a snapshot of the cell state, it allows for the observation of specific 

processes as they occur over time. The essential requirement to successfully conduct this 

type of analysis is to have live and healthy specimens. Microscopes are usually inverted and 

enclosed in a microcell incubator to keep cells alive (Figure 3). However, this process may 

cause cellular damage when applied to living cells (158) since it requires high-intensity light 

exposure. Two-photon microscopy may address this problem – allowing more exposure time 

with less damage (158). Two-photon even allows the acquisition of intravital imaging, one of 

the most powerful tools for tracking processes in vivo and in real-time. Intravital imaging 

allows the visualization of cellular responses in living organisms (159,160).

Two-photon microscopy is a technique in which two photons, with longer wavelength 

than the emitted light, cooperate to simultaneously excite a fluorophore. In contrast, in 

traditional fluorescence microscopy, the excitation wavelength is shorter than the emitted 

one. Using two-photon, the light detection is more efficient, the tissue penetration is deeper, 

and the photobleaching and sample damage is reduced (Figure 4).
Two-photon microscopy is particularly helpful for thick specimens. It appears to be 

one of the most appropriate techniques to describe inflammatory mechanisms in different 

models of CNS diseases in animals (154,158,160–162). The highly localized excitation of 

the two-photon absorption process and the reduced light spreading in the sample reduce 

tissue damage, and two-photon is a suitable tool when working with living samples (live cells 

and intravital imaging in small animals) (154,160,162,163). Two-photon studies show that 

microglial cells use their processes to continually scan the brain parenchyma as a 

mechanism of surveillance of the microenvironment (10,164). It is also a useful tool to 

elucidate mechanistic aspects of neuroinflammatory diseases: in a study by Jafari and 

collaborators (149), calcium waves were visualized chronologically in apical dendritic spines 

as a signal for synaptic pruning. The authors also demonstrated that the synaptic loss in MS 
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is mostly mediated by microglia and invading macrophages, suggesting the important role of 

these cells in this condition.

Two-photon microscopy was also key in the in vivo study that described the brain 

waste clearance system now known as “glymphatic system” (44), reported earlier in this 

review, and which has a potentially large impact on future neuroinflammation studies.

4.5. Omics and spatial information

An important limitation of the imaging techniques described so far is the small number 

of targets visualized in cells simultaneously (165). On the other hand, advances in 

bioinformatics and system biology have contributed to the "omics" era – enabling the 

identification of thousands of targets simultaneously in a single cell, generating data 

regarding their molecular signatures.

Omics analysis – including genomics, transcriptomics, metabolomics, and proteomics 

– have emerged and integrated different knowledge areas to identify genes, mRNA, 

metabolites, and proteins, respectively, in a biological sample. Omics analyses are 

extremely important for the understanding of gene expression, single-cell evaluations, and 

activated signaling pathways. However, the techniques used in omics analysis – such as 

next-generation sequencing, microarray, RNAseq, mass spectrometry, and nuclear 

magnetic resonance spectroscopy – require the cells to be removed from the original tissue 

or site, losing crucial information related to the spatial distribution and heterogeneity of cells 

(166,167).

To overcome this barrier, in situ fluorescent techniques such as sequential 

fluorescence in situ hybridization (seqFISH), multiplexed error robust FISH (MERFISH), and 

codetection by indexing (CODEX) have been adapted to enable the integration of 

microscopy to the era of omics data (Figure 5).
The technique seqFISH uses fluorescence probes complementary to the RNA 

sequences but with several rounds of hybridization and probe removal, creating a temporal 

barcode for each transcript, which is subsequently decoded using computer software, 

allowing for the identification of multiples targets in a single cell in its native tissue (168,169).A
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Although in seqFISH the number of targets can grow exponentially according to the 

hybridization rounds, it can also significantly increase the chances of error (170). MERFISH 

is also an imaging method capable of simultaneously measuring the number of copies and 

the spatial distribution of hundreds to thousands of RNA species in single cells, the main 

difference being a system to detect and/or correct errors, ensuring a higher efficiency (170).

In addition to transcript identification, other techniques using antibodies against 

proteins of interest are also part of the new era of microscopy. In CODEX, tissue sections 

are subjected to a mixture of antibodies in a single round. However, only a few of these 

antibodies are imaged in each round of image capture, as DNA probes are turned on and off 

from the antibodies in several rounds until a barcode is established, providing a multiplex 

cytometry technique (171,172).

In the brain, seqFISH may avoid some of the previously mentioned ‘omics era’ 

challenges since it accurately captures (through a confocal microscope) the mRNAs for 

10,000 genes in single cells with a lower diffraction-limit resolution (169). Other spatial 

transcriptomics combines the CITE-seq (Cellular Indexing of Transcriptomes and Epitopes 

by Sequencing) (173) data with ultra-high multiplex immunohistochemistry, obtained with 

CODEX (171,172).

MERFISH, SeqFISH, CODEX are raising many possibilities to be explored in the field 

of imaging neuroinflammation by assessing spatial and localized information, combining the 

pioneering approach (histology) with omics. The high amount of data generated from these 

applications will considerably improve the comprehension of the molecular mechanisms 

involved in neuroinflammation, although the high cost and the system knowledge required 

are significant limitations to the broader employment of these techniques.

Considering the different phenotypes the same cell type could adopt, and the 

demonstrated heterogeneity (i.e., astrocytes and microglia), it may be important to evaluate 

the spatial information regarding neuroinflammatory genes, metabolites, and proteins in 

several CNS pathological conditions. For that reason, future studies should explore the 

fusion of microscopy and omics.
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5. Human neuroinflammatory studies: still a long way to go
Up to this point, the vast majority of neuroinflammation findings were described in 

useful animal models (for details, see Table 1), as well as live cell and real-time 

assessments that allowed the better comprehension of specific inflammatory mechanisms 

(75,120,174). In humans, immunohistochemistry has been applied to identify microglia 

polarization and phenotype in postmortem brain tissue following deep subcortical lesions 

linked to cognitive impairments and depression (175), drug-abuse-related neuroinflammation 

(123), the association of amyloid plaques and neurofibrillary tangles in AD (98), and to 

describe the existence of the P2Y12 receptor (176). Microscopy was the basis of 

neuroinflammatory-related descriptions, and even the postmortem human brain studies 

made it clear that a combination of different microglial markers is required for phenotype 

identification (175).

However, beyond postmortem studies, approaches to imaging neuroinflammation in 

humans– such as MRI – are limited by their spatial resolution, although the 18 kDa 

translocator protein (TSPO) binding evaluated by positron emission tomography (PET) has 

been considered an in vivo marker of neuroinflammation at the cellular level (177). 

Notwithstanding that, it is still a challenge to identify real-time inflammatory processes in 

human patients due to the invasive aspect of existing procedures.

The pinpointing of neuroinflammatory features in humans would significantly improve 

the prognosis, diagnosis, and possible further treatments for CNS neuroinflammatory 

conditions.

6. Concluding remarks
This review summarizes the current and developing approaches for better 

understanding neuroinflammation using microscopy. It is clear that even with a conventional 

light microscope, it is possible to study many aspects of neuroinflammation. Nonetheless, it 

seems that two-photon and in vivo approaches emerge as some of the most appropriate 

techniques to evaluate neuroinflammation in real-time. Regardless, we still have a long way 
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to go to untangle the details of neuroinflammation in different CNS conditions and diseases, 

mainly when considering clinical assessments at the cellular level.

The emergence of ‘omics’ technologies has enhanced the understanding of the 

diagnosis and mechanisms of certain neurological diseases and conditions. Nevertheless, 

microscopy techniques are still needed to provide spatial and temporal localization, in 

addition to allowing in vivo and real-time studies.

As omics and microscopy advance together and the production of more data is 

possible, more details of this complex picture called neuroinflammation will be unraveled.
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Figure captions

Figure 1. Neuroinflammation is characterized by several cellular and molecular processes, 

leading to different cell phenotypes, mainly in astrocytes and microglia. These 

neuroinflammatory features (production and release of pro-inflammatory mediators and BBB 

leakage) can drive morphological changes in glial cells, which can be assessed through 

histological techniques with different markers (see the main text for details). BBB: blood-

brain barrier.

Figure 2. Simplified illustration of Sholl analysis of cell arborization. (A) In this technique, the 

cell can be imaged using immunofluorescence or immunohistochemistry. (B) Concentric 

circles are drawn over the cell, with the body at the center. (C) Two diagonal lines can be 

drawn to establish two lateral quadrants and two central quadrants. (D) Analysed 

parameters can include: number of branches starting from the soma; number of times 

branches cross the circles in each quadrant; the length of the longest branch. Parameters 

can be reported in total or by quadrant (128,130,131).

Figure 3. In vivo microscopy can be performed in cell cultures or tissue slices. The 

microscope is coupled to an incubation system that maintains controlled conditions such as 

temperature, atmospheric gases (O2, CO2), pH, and osmolarity, to keep cells/tissue alive for 

as long as possible.

Figure 4. Two-photon microscopy versus one-photon microscopy. Two-photon microscopy 

uses the simultaneous excitation of a fluorophore by two photons. The excitation wavelength 

is longer than the emission wavelength. Longer wavelengths are lower energy, reducing 

sample damage caused by phototoxicity. In traditional one-photon fluorescence microscopy 

shorter excitation wavelengths are used (for example, ultraviolet light), reducing cell/tissue 

viability.
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Figure 5. Omics analyses are a range of approaches that examine the totality or a broad 

selection of features in a biological sample, for example genomics, transcriptomics, 

metabolomics, and proteomics, identifying respectively, genes, mRNA, metabolites, and 

proteins. However, omics analysis uses techniques which requires the cells to be removed 

from the original tissue or site, losing crucial information related to the spatial distribution and 

heterogeneity of cells. The fusion of microscopy and omics allows the analysis of a large 

amount of data without losing spatial information, which is extremely important in the study 

of neuroinflammation.
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Table 1. Common targets and related outcomes regarding neuroinflammation markers

Target Description Comments
Histological-evaluated responses in different neurological 

conditions

Damage to the Blood-Brain Barrier (BBB)

CLDN

Claudin, a transmembrane 

protein family component of 

the tight junctions at the BBB

CLD5 remodeling and changes in localization after stroke (39);

↑ microglia-associated CLDN5 in a model of SLE and after LPS 

stimuli (42);

↓ CLDN5 in a model of EAE (179);

↓ CLDN3 in MS (180).

OCLN

Occludin, together with CLDN, 

is one of the main protein 

families that are part of the 

tight junctions of the BBB

↓ in stroke (39);

↓ in models of inhaled cigarettes and e-cigarette (178).

ZO

Zonula occludens, a family of 

intracellular proteins that 

provides anchoring sites for 

the tight junctions of the BBB

In neuroinflammatory contexts, a BBB 

impairment may occur, weakening tight 

junctions and allowing peripheral 

molecules and cells to invade the CNS. 

In this sense, evaluating such proteins 

can be useful to relate its findings with 

other BBB integrity assays (39,42,178–

180).

↓ in stroke (39).
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Table 1. continuation...

Microglia

Iba-1
Ionized calcium-binding 

adaptor molecule 1

Expressed in myeloid cells. In the CNS 

is highly and selectively expressed by 

microglia and widely used to visualize 

the morphological spectrum between the 

classic M1 (amoeboid) and M2 (ramified) 

states. Also used to quantify soma size, 

perimeter, and to distinguish these two 

phenotypes (usually associated with 

another marker e.g., CD68) 

(54,103,144,175,181–186).

↑ 7 days after global ischemia (181);

↑ 24h after LPS challenge (144);

↑ 24h after HI (182);

↑ 3 days after TBI (54);

↑ after LPS challenge (183);

↓ in the white matter in DSCL (175).

CX3CR1

Fractalkine receptor or G-

protein coupled receptor 13 

(GPR13)

A chemokine receptor involved in 

leukocyte adhesion and transmigration 

(59,187).

↑ in the brainstem in hypertensive rats (59).

P2RY12
Purinergic receptor or G-

protein coupled receptor P2Y

A purinergic receptor used as an 

indicator of ramified microglia (used as a 

marker of microglial branches) (188).

Microglial P2RY12 deficiency ↓ neurotoxicity after OGD (188).

OX-42

Cluster of differentiation 11b 

(CD11b), a surface protein 

from the integrin superfamily

Expressed in myeloid cells (↑ in 

neutrophils and monocytes in the 

presence of pathogens). In the brain, it is 

↑ 8h after reperfusion in ischemic stroke (131).
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a specific marker of microglia. Due to its 

rapid shift, CD11b could be considered 

an early marker of infection. It was 

blocked in experiments to evaluate 

microglial phagocytosis of newborn 

astrocytes (131,189,190).
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Table 1. continuation...

CD45 Cluster of differentiation 45

Surface tyrosine phosphatase protein, a 

protein expressed in the membrane of 

hematopoietic cells. It is highly 

expressed in CNS-associated 

macrophages, and expressed in low 

levels in microglia, allowing to 

differentiate macrophages from 

microglia. Expression levels may also 

indicate amoeboid or more branched 

morphology. CD45 is increased in 

disease-related conditions (64,191–195).

↑ around cortical plate lesions in a model of neonatal 

excitotoxic brain damage (191);

↑ after acute brain injury (192).

CD68 Cluster of differentiation 68

Transmembrane glycoprotein expressed 

in monocytes and in macrophages with 

phagocytic activity, usually suggesting 

microglia with ameboid morphology (M1 

phenotype) (54,175,196).

↑ after TBI (54);

Involved in white matter damage (175);

↑ in morphologically activated microglia after cranial irradiation 

(196).

CD86 Cluster of differentiation 86

Microglia/ameboid morphology marker, a 

transmembrane glycoprotein 

constitutively expressed in immune cells. 

Usually, double staining for CD86 and 

Iba-1 is used to identify microglial 

↑ in microglia after subarachnoid hemorrhage (197);

↑ after acute hypoxia (90);

↑ in a model of sepsis-associated encephalopathy (198).
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phenotype (90,197,198).

CD206 Cluster of differentiation 206

Mannose receptor. Its expression 

provides anti-inflammatory and 

immunosuppressive responses of 

microglia, suggesting M2 phenotype 

polarization (62,90,197,199–201).

↑ after ischemia (62);

Apparently, not expressed in acute sepsis (201);

↑in TLR4–/– mice after subarachnoid hemorrhage (197);

↓ after acute hypoxia (90).

Arg1 Arginase 1 

Alternative phenotype marker of 

microglia, which expression might be 

upregulated in the alternative activation 

phenotype (184).

↓ after ischemic stroke (184).
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Table 1. continuation...

Astrocytes

GFAP Glial fibrillary acidic protein

Intermediate filament protein of 

astrocytes. The cytoskeleton of reactive 

astrocytes may undergo hypertrophy 

and other structural changes, affecting 

GFAP expression (54,119,202,203).

↑ in obese rats after an HFD diet (119);

↑ expression in TBI and contusion trauma (202);

↑ after OGD (203).

S100B Calcium-binding protein

Primarily produced by astrocytes and 

mostly expressed in the cytoplasm of 

these cells, but oligodendrocytes also 

express S100B. This protein is involved 

in calcium homeostasis, and since glial 

cells are sensitive to CNS disturbances, 

S100B is usually regarded as an indirect 

biomarker of neural injury (103,204–

207).

↑ in a model of stroke-prone spontaneously hypertensive rats 

(204);

↓ in a model of diabetic ketoacidosis brain injury (205);

↑ in an in vitro model of MS (206).

Cytokines

IL-1β Pro-inflammatory cytokine

Inflammatory mediators usually 

produced by glial cells in 

neuroinflammatory events 

↑ in hypertension (59);

↑ in MS (208).
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IL-6

Usually considered as a pro-

inflammatory cytokine, but 

may present pro or anti-

inflammatory roles depending 

on the context

↑ in hypertension (59);

↑ in AD senile plaques (209);

↑ after stroke (162).

TNF-α Pro-inflammatory cytokine

(59,65,162,208,209).

↑ in cerebral ischemia (65);

↑ after stroke (162).

AD: Alzheimer’s disease; Arg1: Arginase 1; BBB: Blood-brain barrier; CD: Cluster of differentiation; CLDN: Claudin; CNS: Central nervous system; 

CX3CR1: CX3C chemokine receptor 1; DSCL: deep subcortical lesions; EAE: Experimental Autoimmune Encephalopathy; GFAP: Glial fibrillary acidic 

protein; HFD: High-fat diet; HI: Hypoxia-ischemia; Iba-1: Ionized calcium-binding adapter molecule 1; IL-1β: Interleukin-1 beta; IL-6: Interleukin-6; KO: 

Knockout; LPS: Lipopolysaccharide; MS: Multiple Sclerosis; OCLN: Occludin; OGD: Oxygen-glucose deprivation; OX-42: Anti-Integrin αM, CD11b 

antibody; P2RY12: Purinergic Receptor P2Y, G-protein-coupled receptor 12; S100B: S100 calcium-binding protein B; SLE: systemic lupus 

erythematosus; TBI: Traumatic brain injury; TLR-4: Toll-like receptor 4; TNF-α: Tumor necrosis factor-alpha; ZO: Zonula Occludens.
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Table 2. Main types of specimen's preparation used for imaging neuroinflammation

Fixed tissue Live cell Intravital

Advantages

Relatively low-cost and low 

complexity technique. It allows the 

visualization of the spatial 

localization and general 

morphology of labeled targets 

(118).

Over time evaluation of the cell 

responses with time-lapse. It can also 

be combined with fluorescence 

techniques. Some microscopes allow 

to track cell proteins dynamic, as well 

as their responses in time and space 

(210).

Evaluation of living cells in the body 

over time. Real-time evaluation of 

physiological and pathological 

responses in the live animal. Some 

microscope adaptations should be 

performed to keep the animal at an 

adequate temperature, increasing 

the time for image acquisition 

(159,211).

Limitations

It is not possible to observe the live 

cells in action, neither time-

dependent responses in real-time. 

Possibility of alterations in the 

structure of the tissue during the 

preparation of the specimens (118).

Expensive and complex process that 

usually requires trained professional 

and highly specialized equipment for 

image acquisition. Microscopes need 

a set-up with controlled 

atmosphere/medium and temperature 

to keep cells alive (174,210).

Impaired resolution due to tissue 

motion and motion of artifacts in 

small processes of individual cells. 

Depending on the specific approach, 

it can also be expensive (211).
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